

DECIDABLE FRAGMENTS OF LTL_f MODULO THEORIES

Luca Geatti University of Udine, Italy Alessandro Gianola Instituto Superior Técnico de Lisboa, Portugal

Nicola Gigante <u>Sarah Winkler</u> Free University of Bozen-Bolzano, Italy

26th European Conference on Artificial Intelligence 2 October 2023, Krakow

Satisfiability checking of LTL_fMT

▶ LTL over finite traces with arbitrary decidable logical theories

Satisfiability checking of LTL_fMT

 $\begin{array}{c} \text{dist} = 100 \land \\ \text{G}(-\text{near}_{goal}(\text{dist}) \longrightarrow (\bigcirc \text{dist} < \text{dist})) \land \\ \text{F}(\text{goal} \text{ reached}) \end{array}$

- ▶ LTL over finite traces with arbitrary decidable logical theories
- satisfiability can be checked by tableau method

Satisfiability checking of LTL_fMT

- ▶ LTL over finite traces with arbitrary decidable logical theories
- satisfiability can be checked by tableau method
- unsatisfiability can be rarely detected

Satisfiability checking of LTL_fMT

 $dist = 100 \land$ $G(\neg near _goal(dist) \longrightarrow (\bigcirc dist < dist)) \land \longrightarrow$ $F(goal \ reached)$

- ▶ LTL over finite traces with arbitrary decidable logical theories
- satisfiability can be checked by tableau method
- unsatisfiability can be rarely detected

This talk

▶ sound and complete PRUNE rule for tableau method

Satisfiability checking of LTL_fMT

- ▶ LTL over finite traces with arbitrary decidable logical theories
- satisfiability can be checked by tableau method
- unsatisfiability can be rarely detected

This talk

- sound and complete PRUNE rule for tableau method
- ▶ new, very general decidable fragments: generalizes results from literature

$\varphi ::= \psi \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid \varphi_1 \land \varphi_2 \mid \mathsf{X} \varphi \mid \mathsf{\widetilde{X}} \varphi \mid \mathsf{F} \varphi \mid \mathsf{G} \varphi \mid \varphi_1 \mathsf{U} \varphi_2$

$$\begin{split} \varphi &::= \psi \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid \varphi_1 \land \varphi_2 \mid \mathsf{X} \varphi \mid \mathsf{X} \varphi \mid \mathsf{F} \varphi \mid \mathsf{G} \varphi \mid \varphi_1 \mid \mathsf{U} \varphi_2 \\ \psi &::= p(t_1, \dots, t_n) \mid \neg \psi \mid \psi_1 \lor \psi_2 \mid \psi_1 \land \psi_2 \mid \exists z \psi \mid \forall z \psi \end{split}$$

$$\begin{split} \varphi &::= \psi \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid \varphi_1 \land \varphi_2 \mid \mathsf{X} \varphi \mid \mathsf{\widetilde{X}} \varphi \mid \mathsf{F} \varphi \mid \mathsf{G} \varphi \mid \varphi_1 \mid \mathsf{U} \varphi_2 \\ \psi &::= p(t_1, \dots, t_n) \mid \neg \psi \mid \psi_1 \lor \psi_2 \mid \psi_1 \land \psi_2 \mid \exists z \psi \mid \forall z \psi \end{split}$$

first-order atoms over arbitrary theories

$$\varphi ::= \psi \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid \varphi_1 \land \varphi_2 \mid \mathsf{X} \varphi \mid \mathsf{X} \varphi \mid \mathsf{F} \varphi \mid \mathsf{G} \varphi \mid \varphi_1 \mathsf{U} \varphi_2$$
$$\psi ::= p(t_1, \dots, t_n) \mid \neg \psi \mid \psi_1 \lor \psi_2 \mid \psi_1 \land \psi_2 \mid \exists z \psi \mid \forall z \psi$$

existential and universal quantification

$$\varphi ::= \psi | \neg \varphi | \varphi_1 \lor \varphi_2 | \varphi_1 \land \varphi_2 | X \varphi | \widetilde{X} \varphi | F \varphi | G \varphi | \varphi_1 U \varphi_2$$

$$\psi ::= p(t_1, \dots, t_n) | \neg \psi | \psi_1 \lor \psi_2 | \psi_1 \land \psi_2 | \exists z \psi | \forall z \psi$$

$$t ::= f(t_1, \dots, t_n) | c | z | x | \bigcirc x | \bigotimes x$$

► function application

$$\varphi ::= \psi | \neg \varphi | \varphi_1 \lor \varphi_2 | \varphi_1 \land \varphi_2 | X \varphi | \widetilde{X} \varphi | F \varphi | G \varphi | \varphi_1 U \varphi_2$$

$$\psi ::= p(t_1, \dots, t_n) | \neg \psi | \psi_1 \lor \psi_2 | \psi_1 \land \psi_2 | \exists z \psi | \forall z \psi$$

$$t ::= f(t_1, \dots, t_n) | c | z | x | \bigcirc x | \bigotimes x$$

► first-order constants

$$\varphi ::= \psi | \neg \varphi | \varphi_1 \lor \varphi_2 | \varphi_1 \land \varphi_2 | X \varphi | \widetilde{X} \varphi | F \varphi | G \varphi | \varphi_1 U \varphi_2$$

$$\psi ::= p(t_1, \dots, t_n) | \neg \psi | \psi_1 \lor \psi_2 | \psi_1 \land \psi_2 | \exists z \psi | \forall z \psi$$

$$t ::= f(t_1, \dots, t_n) | c | z | x | \bigcirc x | \bigotimes x$$

▶ quantified first-order variables z

$$\varphi ::= \psi | \neg \varphi | \varphi_1 \lor \varphi_2 | \varphi_1 \land \varphi_2 | X \varphi | \widetilde{X} \varphi | F \varphi | G \varphi | \varphi_1 U \varphi_2$$

$$\psi ::= p(t_1, \dots, t_n) | \neg \psi | \psi_1 \lor \psi_2 | \psi_1 \land \psi_2 | \exists z \psi | \forall z \psi$$

$$t ::= f(t_1, \dots, t_n) | c | z | x | \bigcirc x | \bigotimes x$$

▶ first-order variables x

 $x \in V$ for fixed, finite set of variables V

 $\varphi ::= \psi | \neg \varphi | \varphi_1 \lor \varphi_2 | \varphi_1 \land \varphi_2 | X \varphi | \widetilde{X} \varphi | F \varphi | G \varphi | \varphi_1 U \varphi_2$ $\psi ::= p(t_1, \dots, t_n) | \neg \psi | \psi_1 \lor \psi_2 | \psi_1 \land \psi_2 | \exists z \psi | \forall z \psi$ $t ::= f(t_1, \dots, t_n) | c | z | x | \bigcirc x | \bigotimes x$

 \blacktriangleright next-value variables $\bigcirc x$

 $x \in V$ for V fixed, finite set of data variables

i.e. the value of x at the next state

weak next-value variables

i.e. the value of x at the next state, if it exists

$$\begin{split} \varphi &::= \psi \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid \varphi_1 \land \varphi_2 \mid \mathsf{X} \varphi \mid \mathsf{X} \varphi \mid \mathsf{F} \varphi \mid \mathsf{G} \varphi \mid \varphi_1 \mathsf{U} \varphi_2 \\ \psi &::= p(t_1, \dots, t_n) \mid \neg \psi \mid \psi_1 \lor \psi_2 \mid \psi_1 \land \psi_2 \mid \exists z \psi \mid \forall z \psi \\ t &::= f(t_1, \dots, t_n) \mid c \mid z \mid x \mid \bigcirc x \mid \bigotimes x \end{split}$$

- robot motion planning
 - ▶ variables V: dist (type real) goal-reached (type bool)

 $\varphi ::= \psi \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid \varphi_1 \land \varphi_2 \mid X \varphi \mid \widetilde{X} \varphi \mid \mathsf{F} \varphi \mid \mathsf{G} \varphi \mid \varphi_1 \cup \varphi_2$ $\psi ::= p(t_1, \dots, t_n) \mid \neg \psi \mid \psi_1 \lor \psi_2 \mid \psi_1 \land \psi_2 \mid \exists z \psi \mid \forall z \psi$ $t ::= f(t_1, \dots, t_n) \mid c \mid z \mid x \mid \bigcirc x \mid \bigotimes x$

- robot motion planning
 - ▶ variables V: dist (type real) goal-reached (type bool)
 - $\bullet \quad dist = 100$

 $\varphi ::= \psi \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid \varphi_1 \land \varphi_2 \mid X \varphi \mid \widetilde{X} \varphi \mid \mathsf{F} \varphi \mid \mathsf{G} \varphi \mid \varphi_1 \cup \varphi_2$ $\psi ::= p(t_1, \dots, t_n) \mid \neg \psi \mid \psi_1 \lor \psi_2 \mid \psi_1 \land \psi_2 \mid \exists z \psi \mid \forall z \psi$ $t ::= f(t_1, \dots, t_n) \mid c \mid z \mid x \mid \bigcirc x \mid \bigotimes x$

Examples

- robot motion planning
 - variables V: dist (type real) goal-reached (type bool)
 - $dist = 100 \land F(goal-reached)$

at some point, goal-reached is true

 $\varphi ::= \psi \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid \varphi_1 \land \varphi_2 \mid \mathsf{X} \varphi \mid \mathsf{X} \varphi \mid \mathsf{F} \varphi \mid \mathsf{G} \varphi \mid \varphi_1 \cup \varphi_2$ $\psi ::= p(t_1, \dots, t_n) \mid \neg \psi \mid \psi_1 \lor \psi_2 \mid \psi_1 \land \psi_2 \mid \exists z \psi \mid \forall z \psi$ $t ::= f(t_1, \dots, t_n) \mid c \mid z \mid x \mid \bigcirc x \mid \bigotimes x$

Examples

- robot motion planning
 - ► variables V: dist (type real) goal-reached (type bool)
 - $dist = 100 \land F(goal-reached) \land G(\neg near-goal(dist) \longrightarrow (\bigcirc dist < dist))$

while *dist* is not near goal, *dist* decreases monotonically

$$\varphi ::= \psi \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid \varphi_1 \land \varphi_2 \mid \mathsf{X} \varphi \mid \mathsf{X} \varphi \mid \mathsf{F} \varphi \mid \mathsf{G} \varphi \mid \varphi_1 \cup \varphi_2$$
$$\psi ::= p(t_1, \dots, t_n) \mid \neg \psi \mid \psi_1 \lor \psi_2 \mid \psi_1 \land \psi_2 \mid \exists z \psi \mid \forall z \psi$$
$$t ::= f(t_1, \dots, t_n) \mid c \mid z \mid x \mid \bigcirc x \mid \bigotimes x$$

Definitions

• trace is finite sequence of valuations of V

- robot motion planning
 - ► variables V: dist (type real) goal-reached (type bool)
 - $dist = 100 \land F(goal-reached) \land G(\neg near-goal(dist) \longrightarrow (\bigcirc dist < dist))$

$$\varphi ::= \psi \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid \varphi_1 \land \varphi_2 \mid \mathsf{X} \varphi \mid \mathsf{X} \varphi \mid \mathsf{F} \varphi \mid \mathsf{G} \varphi \mid \varphi_1 \cup \varphi_2$$
$$\psi ::= p(t_1, \dots, t_n) \mid \neg \psi \mid \psi_1 \lor \psi_2 \mid \psi_1 \land \psi_2 \mid \exists z \psi \mid \forall z \psi$$
$$t ::= f(t_1, \dots, t_n) \mid c \mid z \mid x \mid \bigcirc x \mid \bigotimes x$$

Definitions

▶ trace is finite sequence of valuations of V

- robot motion planning
 - ► variables V: dist (type real) goal-reached (type bool)
 - $dist = 100 \land F(goal-reached) \land G(\neg near-goal(dist) \longrightarrow (\bigcirc dist < dist))$

$$\varphi ::= \psi \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid \varphi_1 \land \varphi_2 \mid \mathsf{X} \varphi \mid \mathsf{X} \varphi \mid \mathsf{F} \varphi \mid \mathsf{G} \varphi \mid \varphi_1 \cup \varphi_2$$
$$\psi ::= p(t_1, \dots, t_n) \mid \neg \psi \mid \psi_1 \lor \psi_2 \mid \psi_1 \land \psi_2 \mid \exists z \psi \mid \forall z \psi$$
$$t ::= f(t_1, \dots, t_n) \mid c \mid z \mid x \mid \bigcirc x \mid \bigotimes x$$

Definitions

- \blacktriangleright trace is finite sequence of valuations of V
- ▶ LTL_fMT formula is satisfiable if \exists first-order model and trace that satisfy it

- robot motion planning
 - ► variables V: dist (type real) goal-reached (type bool)
 - $dist = 100 \land F(goal-reached) \land G(\neg near-goal(dist) \longrightarrow (\bigcirc dist < dist))$

LTL_f modulo theories (LTL_fMT)

$$\varphi ::= \psi \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid \varphi_1 \land \varphi_2 \mid \mathsf{X} \varphi \mid \mathsf{X} \varphi \mid \mathsf{F} \varphi \mid \mathsf{G} \varphi \mid \varphi_1 \cup \varphi_2$$
$$\psi ::= p(t_1, \dots, t_n) \mid \neg \psi \mid \psi_1 \lor \psi_2 \mid \psi_1 \land \psi_2 \mid \exists z \psi \mid \forall z \psi$$
$$t ::= f(t_1, \dots, t_n) \mid c \mid z \mid x \mid \bigcirc x \mid \bigotimes x$$

Definitions

- \blacktriangleright trace is finite sequence of valuations of V
- ▶ LTL_fMT formula is satisfiable if \exists first-order model and trace that satisfy it

$$\varphi ::= \psi \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid \varphi_1 \land \varphi_2 \mid X \varphi \mid \widetilde{X} \varphi \mid \mathsf{F} \varphi \mid \mathsf{G} \varphi \mid \varphi_1 \cup \varphi_2$$
$$\psi ::= p(t_1, \dots, t_n) \mid \neg \psi \mid \psi_1 \lor \psi_2 \mid \psi_1 \land \psi_2 \mid \exists z \psi \mid \forall z \psi$$
$$t ::= f(t_1, \dots, t_n) \mid c \mid z \mid x \mid \bigcirc x \mid \bigotimes x$$

Definitions

undecidable

- \blacktriangleright trace is finite sequence of valuations of V
- ▶ LTL_fMT formula is satisfiable if \exists first-order model and trace that satisfy it

- robot motion planning
 - ► variables V: dist (type real) goal-reached (type bool)
 - ► $dist = 100 \land F(goal-reached) \land G(\neg near-goal(dist) \longrightarrow (\bigcirc dist < dist))$ satisfiable

►	trace goal-reached = t	goal-reached=false 0 dist=7.1	<i>goal-reached=false</i> <i>dist=</i> 5.6	goal-reached=false dist=2.1	goal-reached=false dist=0.01	
---	------------------------	----------------------------------	---	--------------------------------	---------------------------------	--

$$\varphi ::= \psi \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid \varphi_1 \land \varphi_2 \mid \mathsf{X} \varphi \mid \mathsf{X} \varphi \mid \mathsf{F} \varphi \mid \mathsf{G} \varphi \mid \varphi_1 \cup \varphi_2$$
$$\psi ::= p(t_1, \dots, t_n) \mid \neg \psi \mid \psi_1 \lor \psi_2 \mid \psi_1 \land \psi_2 \mid \exists z \psi \mid \forall z \psi$$
$$t ::= f(t_1, \dots, t_n) \mid c \mid z \mid x \mid \bigcirc x \mid \bigotimes x$$

Definitions

- \blacktriangleright trace is finite sequence of valuations of V
- ▶ LTL_fMT formula is satisfiable if \exists first-order model and trace that satisfy it

Examples

- robot motion planning
 - ► variables V: dist (type real) goal-reached (type bool)
 - ► $dist = 100 \land \mathsf{F}(goal\text{-reached}) \land \mathsf{G}(\neg near\text{-}goal(dist) \longrightarrow (\bigcirc dist < dist))$ satisfiable

► can describe business processes that operate over data and access read-only database

- ▶ semi-decision procedure to check satisfiability
- ► can construct model if it exists
- ▶ implemented in LTL/LTL_f satisfiability checker BLACK, using SMT solver as backend

[Geatti, Gianola & Gigante, |JCA| 2022]

- semi-decision procedure to check satisfiability
- can construct model if it exists
- \blacktriangleright implemented in LTL/LTL_f satisfiability checker BLACK, using SMT solver as backend

[Geatti, Gianola & Gigante, |JCA| 2022]

Example (Tableau)

▶ $\psi := (x=1) \land ((\bigcirc x > x) \cup (x=5))$

- semi-decision procedure to check satisfiability
- ▶ can construct model if it exists
- \blacktriangleright implemented in LTL/LTL_f satisfiability checker BLACK, using SMT solver as backend

[Geatti, Gianola & Gigante, |JCA| 2022]

Example (Tableau)

▶ $\psi := (x = 1) \land ((\bigcirc x > x) \cup (x = 5))$

- semi-decision procedure to check satisfiability
- can construct model if it exists
- \blacktriangleright implemented in LTL/LTL_f satisfiability checker BLACK, using SMT solver as backend

[Geatti, Gianola & Gigante, |JCA| 2022]

Example (Tableau) • $\psi := (x = 1) \land ((\bigcirc x > x) \lor (x = 5))$ $\begin{cases} \psi \\ \vdots \\ \{x = 1, (\bigcirc x > x) \lor (x = 5)\} \end{cases}$ rule to split conjunction

- ▶ semi-decision procedure to check satisfiability
- can construct model if it exists
- \blacktriangleright implemented in LTL/LTL_f satisfiability checker BLACK, using SMT solver as backend

[Geatti, Gianola & Gigante, |JCA| 2022]

Example (Tableau)

▶ $\psi := (x = 1) \land ((\bigcirc x > x) \cup (x = 5))$ $\psi' := (\bigcirc x > x) \cup (x = 5)$

$$\begin{cases} \psi \} & \text{rule to expand U operator} \\ \{x = 1, (\bigcirc x > x) \cup (x=5)\} \\ \{x = 5\} & \{x = 1, \bigcirc x > x, X \psi'\} \end{cases}$$

- semi-decision procedure to check satisfiability
- can construct model if it exists
- \blacktriangleright implemented in LTL/LTL_f satisfiability checker BLACK, using SMT solver as backend

[Geatti, Gianola & Gigante, |JCA| 2022]

Example (Tableau) $\psi := (x = 1) \land ((\bigcirc x > x) \lor (x = 5))$ $\psi' := (\bigcirc x > x) \lor (x = 5)$ $\begin{cases} \{\psi\} \\ \{x = 1, (\bigcirc x > x) \lor (x = 5)\} \end{cases}$ $\begin{cases} \{\psi\} \\ \{x = 1, (\bigcirc x > x) \lor (x = 5)\} \end{cases}$ $\begin{cases} \{\psi\} \\ \{x = 1, (\bigcirc x > x) \lor (x = 5)\} \end{cases}$ $\begin{cases} \{\psi\} \\ \{x = 1, (\bigcirc x > x) \lor (x = 5)\} \end{cases}$ $\begin{cases} \{\psi\} \\ \{x = 1, (\bigcirc x > x) \lor (x = 5)\} \end{cases}$

- semi-decision procedure to check satisfiability
- can construct model if it exists
- implemented in LTL/LTL_f satisfiability checker BLACK, using SMT solver as backend

[Geatti, Gianola & Gigante, |JCA| 2022]

- semi-decision procedure to check satisfiability
- can construct model if it exists
- ▶ implemented in LTL/LTL_f satisfiability checker BLACK, using SMT solver as backend

[Geatti, Gianola & Gigante, |JCA| 2022]

Example (Tableau)

▶ $\psi := (x = 1) \land ((\bigcirc x > x) \cup (x = 5))$ $\psi' := (\bigcirc x > x) \cup (x = 5)$

- semi-decision procedure to check satisfiability
- ▶ can construct model if it exists
- \blacktriangleright implemented in LTL/LTL_f satisfiability checker BLACK, using SMT solver as backend

[Geatti, Gianola & Gigante, IJCAI 2022]

Example (Tableau)

▶
$$\psi := (x = 1) \land ((\bigcirc x > x) \cup (x = 5))$$

 $\psi' := (\bigcirc x > x) \cup (x = 5)$

► can extract model from accepted branches:

▶
$$\langle \{x=1\}, \{x=5\} \rangle$$

$$\{\psi\}$$

$$\{x = 1, (\bigcirc x > x) \cup (x = 5)\}$$

$$\underbrace{\{x = 5\}}_{\checkmark} \qquad \underbrace{\{x = 1, \bigcirc x > x, X \ \psi'\}}_{\lbrace \psi' \rbrace}$$

$$\underbrace{\{x = 5\}}_{\checkmark} \qquad \underbrace{\{\bigcirc x > x, X \ \psi'\}}_{\lbrace \psi' \rbrace}$$

$$\underbrace{\{x = 5\}}_{\checkmark} \qquad \underbrace{\{\bigcirc x > x, X \ \psi'\}}_{\lbrace \psi' \rbrace}$$

- semi-decision procedure to check satisfiability
- can construct model if it exists
- implemented in LTL/LTL_f satisfiability checker BLACK, using SMT solver as backend

[Geatti, Gianola & Gigante, |JCA| 2022]

```
satisfiable
Example (Tableau)
                                                                                    \{\psi\}
\{x = 1, (\bigcirc x > x) \cup (x = 5)\}
\{x = 5\}
\{x = 5\}
\{x = 5\}
\{\psi'\}
\{\psi'\}
\{x = 5\}
\{\bigcirc x > x, X \psi'\}
\{x = 5\}
\{\bigcirc x > x, X \psi'\}
\{x = 5\}
  ▶ \psi := (x = 1) \land ((\bigcirc x > x) \cup (x = 5))
        \psi' := (\bigcirc x > x) \cup (x = 5)
  can extract model from accepted branches:
           ▶ \langle \{x=1\}, \{x=5\} \rangle
           ▶ \langle \{x=1\}, \{x=3\}, \{x=5\} \rangle
```

- semi-decision procedure to check satisfiability
- can construct model if it exists
- \blacktriangleright implemented in LTL/LTL_f satisfiability checker BLACK, using SMT solver as backend

[Geatti, Gianola & Gigante, |JCA| 2022]

Example (Tableau)

► $\psi := (x = 1) \land ((\bigcirc x > x) \cup (x = 0))$

Tableau method for LTL_fMT

- semi-decision procedure to check satisfiability
- can construct model if it exists
- implemented in LTL/LTL_f satisfiability checker BLACK, using SMT solver as backend

[Geatti, Gianola & Gigante, |JCA| 2022]

Tableau method for LTL_fMT

- semi-decision procedure to check satisfiability
- can construct model if it exists
- implemented in LTL/LTL_f satisfiability checker BLACK, using SMT solver as backend

[Geatti, Gianola & Gigante, |JCA| 2022]

for tableau branch $\overline{\pi}$ where poised nodes have first-order formulas F_0, \ldots, F_{m-1} ,

for tableau branch $\overline{\pi}$ where poised nodes have first-order formulas F_0, \ldots, F_{m-1} ,

 $F_0(\overline{V}_0,\overline{V}_1)\wedge\cdots\wedge F_{m-1}(\overline{V}_{m-1},\overline{V}_m)$

for tableau branch $\overline{\pi}$ where poised nodes have first-order formulas F_0, \ldots, F_{m-1} ,

$$(\exists V_0 \dots V_{m-1}, F_0(\overline{V}_0, \overline{V}_1) \wedge \dots \wedge F_{m-1}(\overline{V}_{m-1}, \overline{V}_m))$$

for tableau branch $\overline{\pi}$ where poised nodes have first-order formulas F_0, \ldots, F_{m-1} ,

$$h(\overline{\pi}) = (\exists V_0 \dots V_{m-1}, F_0(\overline{V}_0, \overline{V}_1) \wedge \dots \wedge F_{m-1}(\overline{V}_{m-1}, \overline{V}_m))[V_m/V]$$

for tableau branch $\overline{\pi}$ where poised nodes have first-order formulas F_0, \ldots, F_{m-1} ,

$$h(\overline{\pi}) = (\exists V_0 \dots V_{m-1}.F_0(\overline{V}_0,\overline{V}_1) \wedge \dots \wedge F_{m-1}(\overline{V}_{m-1},\overline{V}_m))[V_m/V]$$

for tableau branch $\overline{\pi}$ where poised nodes have first-order formulas F_0, \ldots, F_{m-1} ,

$$h(\overline{\pi}) = (\exists V_0 \dots V_{m-1}, F_0(\overline{V}_0, \overline{V}_1) \wedge \dots \wedge F_{m-1}(\overline{V}_{m-1}, \overline{V}_m))[V_m/V]$$

for tableau branch $\overline{\pi}$ where poised nodes have first-order formulas F_0,\ldots,F_{m-1} ,

$$h(\overline{\pi}) = (\exists V_0 \dots V_{m-1}.F_0(\overline{V}_0,\overline{V}_1) \wedge \dots \wedge F_{m-1}(\overline{V}_{m-1},\overline{V}_m))[V_m/V]$$

for fresh copies V_0, \ldots, V_m of V

Definition (PRUNE rule)

for branch with poised nodes $\overline{\pi} = \langle \pi_0, \dots, \pi_i, \dots, \pi_{m-1} \rangle$, if π_i and π_{m-1} have same labels and $h(\overline{\pi}) \models_{\mathcal{T}} h(\overline{\pi}_{\leq i})$ then branch is rejected

$$\begin{array}{c} \{\psi\} \\ \{x = 1, \psi'\} \\ \downarrow \quad \underbrace{\{x = 0\}}_{\mathbf{X}} & \underbrace{\{x = 1, \bigcirc x > x, X \psi'\}}_{\{\psi'\}} \quad \mathbf{x} = 1 \\ \downarrow \quad \underbrace{\{x = 0\}}_{\mathbf{X}} & \underbrace{\{\nabla x > x, X \psi'\}}_{\{\psi'\}} \quad \mathbf{x} \ge 1 \\ \downarrow \quad \underbrace{\{x = 0\}}_{\mathbf{X}} & \underbrace{\{\nabla x > x, X \psi'\}}_{\{\psi'\}} \quad \mathbf{x} \ge 1 \\ \downarrow \quad \underbrace{\{x = 0\}}_{\mathbf{X}} & \underbrace{\{\nabla x > x, X \psi'\}}_{\{\psi'\}} \quad \mathbf{x} \ge 1 \end{array}$$

for tableau branch $\overline{\pi}$ where poised nodes have first-order formulas F_0,\ldots,F_{m-1} ,

$$h(\overline{\pi}) = (\exists V_0 \dots V_{m-1}.F_0(\overline{V}_0,\overline{V}_1) \wedge \dots \wedge F_{m-1}(\overline{V}_{m-1},\overline{V}_m))[V_m/V]$$

for fresh copies $V_0, \ldots V_m$ of V

Definition (PRUNE rule)

for branch with poised nodes $\overline{\pi} = \langle \pi_0, \dots, \pi_i, \dots, \pi_{m-1} \rangle$, if π_i and π_{m-1} have same labels and $h(\overline{\pi}) \models_{\mathcal{T}} h(\overline{\pi}_{\leq i})$ then branch is rejected

$$\begin{array}{c} \{\psi\} \\ \{x=1,\psi'\} \\ \downarrow \quad \underbrace{\{x=0\}} \\ X \end{array} \xrightarrow{ \begin{array}{c} \{x=1,\bigcirc x > x, X\,\psi'\} \\ \downarrow \quad \underbrace{\{x=0\}} \\ X \end{array} \xrightarrow{ \begin{array}{c} \{\psi'\} \\ \downarrow \\ \{\psi'\} \\ \{\psi'\} \\ \chi \geqslant 2
\end{array}} x \geqslant 2$$

for tableau branch $\overline{\pi}$ where poised nodes have first-order formulas F_0,\ldots,F_{m-1} ,

$$h(\overline{\pi}) = (\exists V_0 \dots V_{m-1}.F_0(\overline{V}_0,\overline{V}_1) \wedge \dots \wedge F_{m-1}(\overline{V}_{m-1},\overline{V}_m))[V_m/V]$$

for fresh copies V_0, \ldots, V_m of V

Definition (PRUNE rule)

for branch with poised nodes $\overline{\pi} = \langle \pi_0, \dots, \pi_i, \dots, \pi_{m-1} \rangle$, if π_i and π_{m-1} have same labels and $h(\overline{\pi}) \models_{\mathcal{T}} h(\overline{\pi}_{\leq i})$ then branch is rejected

$$\begin{array}{c} \{\psi\} \\ \left\{x=1,\psi'\right\} \\ \downarrow \quad \underbrace{\{x=0\}} \\ \downarrow \quad \underbrace{\{x=1,\bigcirc x > x, X\,\psi'\}}_{\left\{\psi'\right\}} \quad x=1 \\ \downarrow \quad \underbrace{\{x=0\}}_{\left\{\psi'\right\}} \\ \downarrow \quad \underbrace{\{x=0\}}_{\left\{\psi'\right\}} \\ \downarrow \quad \underbrace{\{x=0\}}_{\left\{\psi'\right\}} \quad \underbrace{\{(\bigcirc x > x, X\,\psi')\}}_{\left\{\psi'\right\}} \quad x \ge 2 \\ \end{array}\right.$$

for tableau branch $\overline{\pi}$ where poised nodes have first-order formulas F_0,\ldots,F_{m-1} ,

$$h(\overline{\pi}) = (\exists V_0 \dots V_{m-1}.F_0(\overline{V}_0,\overline{V}_1) \wedge \dots \wedge F_{m-1}(\overline{V}_{m-1},\overline{V}_m))[V_m/V]$$

for fresh copies V_0, \ldots, V_m of V

Definition (PRUNE rule)

for branch with poised nodes $\overline{\pi} = \langle \pi_0, \dots, \pi_i, \dots, \pi_{m-1} \rangle$, if π_i and π_{m-1} have same labels and $h(\overline{\pi}) \models_{\mathcal{T}} h(\overline{\pi}_{\leq i})$ then branch is rejected

Theorem (Soundness and completeness)

for LTL_f MT formula ψ , tableau with PRUNE rule has accepted branch iff ψ is satisfiable

Observation: Satisfiability can be decidable

tableau with PRUNE halts on classes of formulas where set of history constraints is finite up to \equiv

Observation: Satisfiability can be decidable

tableau with PRUNE halts on classes of formulas where set of history constraints is finite up to \equiv

Decidable fragments of LTL_fMT

🔟 formulas without 🔵 and 😔

 $(x > y \cup x + y = 2z) \land \mathsf{G}(x + y > 0)$

Observation: Satisfiability can be decidable

tableau with PRUNE halts on classes of formulas where set of history constraints is finite up to \equiv

Decidable fragments of LTL_fMT

- \blacksquare formulas without \bigcirc and \bigcirc
- 2 formulas without G and U

 $(x>y \cup x+y=2z) \wedge G(x+y>0)$

 $\mathsf{F}\left(\rho(\bigcirc x) \land \mathsf{X}\left(\neg p(x)\right)\right) \land \mathsf{X} \mathsf{F}\left(r(x,y) \lor r(\bigcirc x,y)\right)$

Observation: Satisfiability can be decidable

tableau with PRUNE halts on classes of formulas where set of history constraints is finite up to \equiv

Decidable fragments of LTL_fMT

- 1 formulas without \bigcirc and \bigcirc
- 2 formulas without G and U

 $(x>y \cup x+y=2z) \wedge G(x+y>0)$

 $\mathsf{F}\left(\rho(\bigcirc x) \land \mathsf{X}\left(\neg p(x)\right)\right) \land \mathsf{X} \mathsf{F}\left(r(x,y) \lor r(\bigcirc x,y)\right)$

3 bounded lookback formulas, that restrict variable dependencies via \bigcirc and \bigcirc to boundedly many configurations $p(x, \bigcirc y) \cup (\bigcirc x = x + y)$

Observation: Satisfiability can be decidable

tableau with PRUNE halts on classes of formulas where set of history constraints is finite up to \equiv

Decidable fragments of LTL_fMT

- 1 formulas without \bigcirc and \bigcirc
- 2 formulas without G and U

 $(x>y \cup x+y=2z) \wedge G(x+y>0)$

 $\mathsf{F}\left(\rho(\bigcirc x) \land \mathsf{X}\left(\neg p(x)\right)\right) \land \mathsf{X} \mathsf{F}\left(r(x,y) \lor r(\bigcirc x,y)\right)$

- **3** bounded lookback formulas, that restrict variable dependencies via \bigcirc and \bigcirc to boundedly many configurations $p(x, \bigcirc y) \cup (\bigcirc x = x + y)$
- formulas over theory of linear real arithmetic, where first arguments of G and U are variable-to-variable/constant comparisons $(x=1) \land G(\bigcirc x > x) \land F(x+y=\frac{1}{2})$

Observation: Satisfiability can be decidable

tableau with PRUNE halts on classes of formulas where set of history constraints is finite up to \equiv

Decidable fragments of LTL_fMT

- 1 formulas without \bigcirc and \bigcirc
- 2 formulas without G and U

 $(x>y \cup x+y=2z) \wedge G(x+y>0)$

 $\mathsf{F}\left(p(\bigcirc x) \land \mathsf{X}\left(\neg p(x)\right)\right) \land \mathsf{X} \mathsf{F}\left(r(x,y) \lor r(\bigcirc x,y)\right)$

- **3** bounded lookback formulas, that restrict variable dependencies via \bigcirc and \bigcirc to boundedly many configurations $p(x, \bigcirc y) \cup (\bigcirc x = x + y)$
- 4 formulas over theory of linear real arithmetic, where first arguments of G and U are variable-to-variable/constant comparisons $(x=1) \land G(\bigcirc x > x) \land F(x+y=\frac{1}{2})$
- formulas over theory of linear integer arithmetic, where first arguments of G and U are integer periodicity constraints $(z=1) \land G(z \approx_5 \bigcirc z) \land F(z=42)$

Observation: Satisfiability can be decidable

tableau with PRUNE halts on classes of formulas where set of history constraints is finite up to \equiv

Decidable fragments of LTL_fMT

- 1 formulas without \bigcirc and \bigcirc
- 2 formulas without G and U

 $(x>y \cup x+y=2z) \land G(x+y>0)$

generalizes Demri (2006):

 $\mathsf{F}\left(p(\bigcirc x) \land \mathsf{X}\left(\neg p(x)\right)\right) \land \mathsf{X} \mathsf{F}\left(r(x,y) \lor r(\bigcirc x,y)\right)$

An automata-theoretic approach to constraint LTL

3 bounded lookback formulas, that restrict variable dependencies via ○ and ○ to boundedly many configurations
generalizes Demri & D'Souza (2007):

formulas over theory of linear real arithmetic, where we wanted a state of the s

5 formulas over theory of linear integer arithmetic, where fire LTL over integer periodicity constraints integer periodicity constraints $(z=1) \land f(z\approx_5 \odot z) \land F(z=42)$

Conclusion

Summary

- tableau method to check satisfiability of LTL_f modulo theories: propose sound and complete PRUNE rule
- new decidable fragments for very general logic
- generalizes results from literature

Summary

- tableau method to check satisfiability of LTL_f modulo theories: propose sound and complete PRUNE rule
- new decidable fragments for very general logic
- generalizes results from literature

Future work

- ▶ implementation in BLACK
- ▶ in traces, allow interpretations of relations and functions to change over time
- extension to branching time logics
- ► LTL_fMT monitoring