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The Big Picture

Satis�ability checking of LTLfMT

⊢
⊢

⊢
⊢

dist = 100 ∧
G (¬near_goal(dist) −→ (⃝ dist < dist)) ∧
F (goal_reached)

satis�able

timeout

unsatis�able

▶ LTL over �nite traces with arbitrary decidable logical theories

▶ satis�ability can be checked by tableau method

▶ unsatis�ability can be rarely detected

This talk

▶ sound and complete PRUNE rule for tableau method

▶ new, very general decidable fragments: generalizes results from literature
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LTLf modulo theories (LTLfMT)

φ ::= ψ | ¬φ | φ1 ∨ φ2 | φ1 ∧ φ2 | Xφ | X̃ φ | Fφ | Gφ | φ1 U φ2

ψ ::= p(t1, . . . , tn) | ¬ψ | ψ1 ∨ ψ2 | ψ1 ∧ ψ2 | ∃z ψ | ∀z ψ
t ::= f (t1, . . . , tn) | c | z | x | ⃝ x | ⃝∼ x
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▶ �rst-order atoms over arbitrary theories
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De�nitions

▶ trace is �nite sequence of valuations of V

▶ LTLfMT formula is satis�able if ∃ �rst-order model and trace that satisfy it

undecidable

Examples

▶ robot motion planning

▶ variables V : dist (type real) goal -reached (type bool)

▶ dist = 100

∧ F (goal -reached) ∧ G (¬near -goal(dist) −→ (⃝ dist < dist)) satis�able

LRA + near -goalM =

{
true if dist ⩽ 0.01

false otherwise

▶ trace goal -reached=false
dist=10

goal -reached=false
dist=7.1

goal -reached=false
dist=5.6

goal -reached=false
dist=2.1

goal -reached=false
dist=0.01

▶ can describe business processes that operate over data and access read-only databaseinitially, dist has value 100at some point, goal -reached is truewhile dist is not near goal, dist decreases monotonically
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Tableau method for LTLfMT

▶ semi-decision procedure to check satis�ability

▶ can construct model if it exists

▶ implemented in LTL/LTLf satis�ability checker BLACK, using SMT solver as backend

[Geatti, Gianola & Gigante, IJCAI 2022]

Example (Tableau)

▶ ψ := (x = 1) ∧ ((⃝ x > x) U (x = 5))

▶
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De�nition (History constraints)

for tableau branch π where poised nodes have �rst-order formulas F0, . . . ,Fm−1,

h(π) = (∃V0 . . .Vm−1.F0(V 0,V 1) ∧ · · · ∧ Fm−1(Vm−1,Vm))[Vm/V ]

for fresh copies V0, . . .Vm of V

De�nition (PRUNE rule)

for branch with poised nodes π = ⟨π0, . . . , πi , . . . , πm−1⟩, if πi and πm−1 have same labels and

h(π) |=T h(π⩽i ) then branch is rejected

Key idea
{ψ}

{x = 1, ψ′}

{x = 0}
✗

{x = 1,⃝ x > x ,Xψ′}

{ψ′}

{x = 0}
✗

{⃝ x > x ,Xψ′}

{ψ′}

{x = 0}
✗

{⃝ x > x ,Xψ′}

express �situation of variables�
in node, as formula

x = 1x = 0 ∧ x = 1

∃x0. x0= 1 ∧ x > x0∃x0. x0= 1 ∧ x > x0 ∧ x = 0

∃x0 x1. x0= 1 ∧ x1> x0 ∧ x > x1∃x0 x1. x0= 1 ∧ x1> x0 ∧ x > x1 ∧ x = 0
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Theorem (Soundness and completeness)

for LTLfMT formula ψ, tableau with PRUNE rule has accepted branch i� ψ is satis�able
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Decidability Results

Observation: Satis�ability can be decidable

tableau with PRUNE halts on classes of formulas where set of history constraints is �nite up to ≡

Decidable fragments of LTLfMT

1 formulas without ⃝ and ⃝∼ (x>y U x+y = 2z) ∧ G (x+y>0)

2 formulas without G and U F (p(⃝ x) ∧ X (¬p(x))) ∧ XF (r(x , y) ∨ r(⃝ x , y))

3 bounded lookback formulas, that restrict variable dependencies via ⃝ and ⃝∼
to boundedly many con�gurations p(x ,⃝ y) U (⃝ x = x + y)

4 formulas over theory of linear real arithmetic, where �rst arguments of G and U are

variable-to-variable/constant comparisons (x = 1) ∧ G (⃝∼ x > x) ∧ F (x+y = 1

2
)

5 formulas over theory of linear integer arithmetic, where �rst arguments of G and U are

integer periodicity constraints (z = 1) ∧ G (z ≈5 ⃝∼ z) ∧ F (z = 42)

generalizes Demri & D'Souza (2007):

An automata-theoretic approach to constraint LTL

generalizes Demri (2006):

LTL over integer periodicity constraints
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