

DECIDABLE FRAGMENTS OF LTL, MODULO THEORIES

Luca Geatti Alessandro Gianola

University of Udine, Italy Instituto Superior Técnico de Lisboa, Portugal

Nicola Gigante Sarah Winkler Free University of Bozen-Bolzano, Italy

26th European Conference on Artificial Intelligence

2 October 2023, Krakow

Satisfiability checking of LTL_fMT

```
dist = 100 \wedgeG(\negnear goal(dist) \longrightarrow (\bigcirc dist < dist)) \landF (goal_reached)
```
 \triangleright LTL over finite traces with arbitrary decidable logical theories

Satisfiability checking of LTL_fMT

 $dist = 100 \wedge$ $G(\neg near_goal(dist) \longrightarrow (\bigcirc dist < dist)) \land$ F (goal_reached)

- \blacktriangleright LTL over finite traces with arbitrary decidable logical theories
- \triangleright satisfiability can be checked by tableau method

Satisfiability checking of LTL_fMT

 $dist = 100 \wedge$ G(\neg near goal(dist) \longrightarrow (\bigcirc dist \lt dist)) \land F (goal_reached)

- LTL over finite traces with arbitrary decidable logical theories
- ▶ satisfiability can be checked by tableau method
- unsatisfiability can be rarely detected

Satisfiability checking of LTL_fMT

 $dist = 100 \wedge$ G(\neg near goal(dist) \longrightarrow (\bigcirc dist < dist)) \land F (goal reached)

- LTL over finite traces with arbitrary decidable logical theories
- ▶ satisfiability can be checked by tableau method
- unsatisfiability can be rarely detected

This talk

▶ sound and complete PRUNE rule for tableau method

Satisfiability checking of LTL_fMT

 $dist = 100 \wedge$ G(\neg near goal(dist) \longrightarrow (\bigcirc dist \lt dist)) \land F (goal reached)

- LTL over finite traces with arbitrary decidable logical theories
- satisfiability can be checked by tableau method
- unsatisfiability can be rarely detected

This talk

- ▶ sound and complete PRUNE rule for tableau method
- new, very general decidable fragments: generalizes results from literature

 $\varphi ::= \psi \mid \neg \varphi \mid \varphi_1 \vee \varphi_2 \mid \varphi_1 \wedge \varphi_2 \mid X \varphi \mid \widetilde{X} \varphi \mid F \varphi \mid G \varphi \mid \varphi_1 \cup \varphi_2$

 $\varphi ::= \psi \mid \neg \varphi \mid \varphi_1 \vee \varphi_2 \mid \varphi_1 \wedge \varphi_2 \mid X \varphi \mid \widetilde{X} \varphi \mid F \varphi \mid G \varphi \mid \varphi_1 \cup \varphi_2$ $\psi ::= p(t_1, \ldots, t_n) \mid \neg \psi \mid \psi_1 \vee \psi_2 \mid \psi_1 \wedge \psi_2 \mid \exists z \psi \mid \forall z \psi$

 $\varphi ::= \psi \mid \neg \varphi \mid \varphi_1 \vee \varphi_2 \mid \varphi_1 \wedge \varphi_2 \mid X \varphi \mid \widetilde{X} \varphi \mid F \varphi \mid G \varphi \mid \varphi_1 \cup \varphi_2$ $\psi ::= p(t_1, \ldots, t_n) \mid \neg \psi \mid \psi_1 \vee \psi_2 \mid \psi_1 \wedge \psi_2 \mid \exists z \psi \mid \forall z \psi$

 \blacktriangleright first-order atoms over arbitrary theories

$$
\varphi ::= \psi \mid \neg \varphi \mid \varphi_1 \vee \varphi_2 \mid \varphi_1 \wedge \varphi_2 \mid X \varphi \mid \widetilde{X} \varphi \mid F \varphi \mid G \varphi \mid \varphi_1 \cup \varphi_2
$$

$$
\psi ::= p(t_1, \ldots, t_n) \mid \neg \psi \mid \psi_1 \vee \psi_2 \mid \psi_1 \wedge \psi_2 \mid \exists z \psi \mid \forall z \psi
$$

 \blacktriangleright existential and universal quantification

$$
\varphi ::= \psi \mid \neg \varphi \mid \varphi_1 \vee \varphi_2 \mid \varphi_1 \wedge \varphi_2 \mid X \varphi \mid \widetilde{X} \varphi \mid F \varphi \mid G \varphi \mid \varphi_1 \cup \varphi_2
$$

$$
\psi ::= p(t_1, \dots, t_n) \mid \neg \psi \mid \psi_1 \vee \psi_2 \mid \psi_1 \wedge \psi_2 \mid \exists z \psi \mid \forall z \psi
$$

$$
t ::= f(t_1, \dots, t_n) \mid c \mid z \mid x \mid \bigcirc x \mid \bigcirc x
$$

▶ function application

$$
\varphi ::= \psi \mid \neg \varphi \mid \varphi_1 \vee \varphi_2 \mid \varphi_1 \wedge \varphi_2 \mid X \varphi \mid \widetilde{X} \varphi \mid F \varphi \mid G \varphi \mid \varphi_1 \cup \varphi_2
$$

$$
\psi ::= p(t_1, \dots, t_n) \mid \neg \psi \mid \psi_1 \vee \psi_2 \mid \psi_1 \wedge \psi_2 \mid \exists z \psi \mid \forall z \psi
$$

$$
t ::= f(t_1, \dots, t_n) \mid c \mid z \mid x \mid \bigcirc x \mid \bigcirc x
$$

 \blacktriangleright first-order constants

$$
\varphi ::= \psi \mid \neg \varphi \mid \varphi_1 \vee \varphi_2 \mid \varphi_1 \wedge \varphi_2 \mid X \varphi \mid \widetilde{X} \varphi \mid F \varphi \mid G \varphi \mid \varphi_1 \cup \varphi_2
$$

$$
\psi ::= p(t_1, \dots, t_n) \mid \neg \psi \mid \psi_1 \vee \psi_2 \mid \psi_1 \wedge \psi_2 \mid \exists z \psi \mid \forall z \psi
$$

$$
t ::= f(t_1, \dots, t_n) \mid c \mid z \mid x \mid \bigcirc x \mid \bigcirc x
$$

 \blacktriangleright quantified first-order variables z

 $\varphi ::= \psi \mid \neg \varphi \mid \varphi_1 \vee \varphi_2 \mid \varphi_1 \wedge \varphi_2 \mid X \varphi \mid \widetilde{X} \varphi \mid F \varphi \mid G \varphi \mid \varphi_1 \cup \varphi_2$ $\psi ::= p(t_1, \ldots, t_n) \mid \neg \psi \mid \psi_1 \vee \psi_2 \mid \psi_1 \wedge \psi_2 \mid \exists z \psi \mid \forall z \psi$ $t ::= f(t_1, \ldots, t_n) | c | z | x | \bigcap x | \bigotimes x$

▶ first-order variables x $x \in V$ for fixed, finite set of variables V

 $\varphi ::= \psi \vdash \neg \varphi \vdash \varphi_1 \vee \varphi_2 \vdash \varphi_1 \wedge \varphi_2 \vdash X \varphi \vdash \widetilde{X} \varphi \vdash F \varphi \vdash G \varphi \vdash \varphi_1 \mathsf{U} \varphi_2$ $\psi ::= p(t_1, \ldots, t_n) \mid \neg \psi \mid \psi_1 \vee \psi_2 \mid \psi_1 \wedge \psi_2 \mid \exists z \psi \mid \forall z \psi$ $t ::= f(t_1, \ldots, t_n) | c | z | x | \bigcap x | \bigcap x$

▶ next-value variables $\bigcap x$ x x ∈ V for V fixed, finite set of data variables

i.e. the value of x at the next state

 \blacktriangleright weak next-value variables

i.e. the value of x at the next state, if it exists

 $\varphi ::= \psi \mid \neg \varphi \mid \varphi_1 \vee \varphi_2 \mid \varphi_1 \wedge \varphi_2 \mid X \varphi \mid \widetilde{X} \varphi \mid F \varphi \mid G \varphi \mid \varphi_1 \cup \varphi_2$ $\psi ::= p(t_1, \ldots, t_n) \mid \neg \psi \mid \psi_1 \vee \psi_2 \mid \psi_1 \wedge \psi_2 \mid \exists z \psi \mid \forall z \psi$ $t ::= f(t_1, \ldots, t_n) | c | z | x | \bigcap x | \bigotimes x$

- ▶ robot motion planning
	- \triangleright variables V: dist (type real) goal-reached (type bool)

 $\varphi ::= \psi \mid \neg \varphi \mid \varphi_1 \vee \varphi_2 \mid \varphi_1 \wedge \varphi_2 \mid X \varphi \mid \widetilde{X} \varphi \mid F \varphi \mid G \varphi \mid \varphi_1 \cup \varphi_2$ $\psi ::= p(t_1, \ldots, t_n) \mid \neg \psi \mid \psi_1 \vee \psi_2 \mid \psi_1 \wedge \psi_2 \mid \exists z \psi \mid \forall z \psi$ $t ::= f(t_1, \ldots, t_n) | c | z | x | \bigcap x | \bigotimes x$

- ▶ robot motion planning
	- \triangleright variables V: dist (type real) goal-reached (type bool)
	- \div dist = 100

 $\varphi ::= \psi \mid \neg \varphi \mid \varphi_1 \vee \varphi_2 \mid \varphi_1 \wedge \varphi_2 \mid X \varphi \mid \widetilde{X} \varphi \mid F \varphi \mid G \varphi \mid \varphi_1 \cup \varphi_2$ $\psi ::= p(t_1, \ldots, t_n) \mid \neg \psi \mid \psi_1 \vee \psi_2 \mid \psi_1 \wedge \psi_2 \mid \exists z \psi \mid \forall z \psi$ $t ::= f(t_1, \ldots, t_n) | c | z | x | \bigcap x | \bigotimes x$

- robot motion planning
	- \triangleright variables V: dist (type real) goal-reached (type bool)
	- \rightarrow dist = 100 ∧ F (goal-reached)

 $\varphi ::= \psi \vdash \neg \varphi \vdash \varphi_1 \vee \varphi_2 \vdash \varphi_1 \wedge \varphi_2 \vdash X \varphi \vdash \widetilde{X} \varphi \vdash F \varphi \vdash G \varphi \vdash \varphi_1 \mathsf{U} \varphi_2$ $\psi ::= p(t_1, \ldots, t_n) \mid \neg \psi \mid \psi_1 \vee \psi_2 \mid \psi_1 \wedge \psi_2 \mid \exists z \psi \mid \forall z \psi$ $t ::= f(t_1, \ldots, t_n) | c | z | x | \bigcap x | \bigcap x$

Examples

- robot motion planning
	- \triangleright variables V: dist (type real) goal-reached (type bool)
	- \triangleright dist = 100 \land F (goal-reached) \land G (\neg near-goal(dist) \longrightarrow (\cap dist \lt dist))

while *dist* is not near goal, *dist* decreases monotonically

$$
\varphi ::= \psi \mid \neg \varphi \mid \varphi_1 \vee \varphi_2 \mid \varphi_1 \wedge \varphi_2 \mid X \varphi \mid \widetilde{X} \varphi \mid F \varphi \mid G \varphi \mid \varphi_1 \cup \varphi_2
$$

$$
\psi ::= p(t_1, \dots, t_n) \mid \neg \psi \mid \psi_1 \vee \psi_2 \mid \psi_1 \wedge \psi_2 \mid \exists z \psi \mid \forall z \psi
$$

$$
t ::= f(t_1, \dots, t_n) \mid c \mid z \mid x \mid \bigcirc x \mid \bigcirc x
$$

Definitions

 \triangleright trace is finite sequence of valuations of V

- ▶ robot motion planning
	- \triangleright variables V: dist (type real) goal-reached (type bool)
	- \triangleright dist = 100 \land F (goal-reached) \land G (¬near-goal(dist) \longrightarrow (\bigcirc dist \lt dist))

$$
\varphi ::= \psi \mid \neg \varphi \mid \varphi_1 \vee \varphi_2 \mid \varphi_1 \wedge \varphi_2 \mid X \varphi \mid \widetilde{X} \varphi \mid F \varphi \mid G \varphi \mid \varphi_1 \cup \varphi_2
$$

$$
\psi ::= p(t_1, \dots, t_n) \mid \neg \psi \mid \psi_1 \vee \psi_2 \mid \psi_1 \wedge \psi_2 \mid \exists z \psi \mid \forall z \psi
$$

$$
t ::= f(t_1, \dots, t_n) \mid c \mid z \mid x \mid \bigcirc x \mid \bigcirc x
$$

Definitions

 \triangleright trace is finite sequence of valuations of V

- ▶ robot motion planning
	- \triangleright variables V: dist (type real) goal-reached (type bool)
	- \triangleright dist = 100 \land F (goal-reached) \land G (¬near-goal(dist) \longrightarrow (\bigcirc dist \lt dist))

$$
\varphi ::= \psi \mid \neg \varphi \mid \varphi_1 \vee \varphi_2 \mid \varphi_1 \wedge \varphi_2 \mid X \varphi \mid \widetilde{X} \varphi \mid F \varphi \mid G \varphi \mid \varphi_1 \cup \varphi_2
$$

$$
\psi ::= p(t_1, \dots, t_n) \mid \neg \psi \mid \psi_1 \vee \psi_2 \mid \psi_1 \wedge \psi_2 \mid \exists z \psi \mid \forall z \psi
$$

$$
t ::= f(t_1, \dots, t_n) \mid c \mid z \mid x \mid \bigcirc x \mid \bigcirc x \mid \varphi x
$$

Definitions

- \triangleright trace is finite sequence of valuations of V
- ► LTL_f MT formula is satisfiable if \exists first-order model and trace that satisfy it

- ▶ robot motion planning
	- \triangleright variables V: dist (type real) goal-reached (type bool)
	- \triangleright dist = 100 \land F (goal-reached) \land G (¬near-goal(dist) \longrightarrow (\cap dist \lt dist))

$$
\varphi ::= \psi \mid \neg \varphi \mid \varphi_1 \vee \varphi_2 \mid \varphi_1 \wedge \varphi_2 \mid X \varphi \mid \widetilde{X} \varphi \mid F \varphi \mid G \varphi \mid \varphi_1 \cup \varphi_2
$$

$$
\psi ::= p(t_1, \dots, t_n) \mid \neg \psi \mid \psi_1 \vee \psi_2 \mid \psi_1 \wedge \psi_2 \mid \exists z \psi \mid \forall z \psi
$$

$$
t ::= f(t_1, \dots, t_n) \mid c \mid z \mid x \mid \bigcirc x \mid \bigcirc x \mid \varphi x
$$

Definitions

- \blacktriangleright trace is finite sequence of valuations of V
- LTL_f MT formula is satisfiable if \exists first-order model and trace that satisfy it

$$
\varphi ::= \psi \mid \neg \varphi \mid \varphi_1 \vee \varphi_2 \mid \varphi_1 \wedge \varphi_2 \mid X \varphi \mid \widetilde{X} \varphi \mid F \varphi \mid G \varphi \mid \varphi_1 \cup \varphi_2
$$

$$
\psi ::= p(t_1, \dots, t_n) \mid \neg \psi \mid \psi_1 \vee \psi_2 \mid \psi_1 \wedge \psi_2 \mid \exists z \psi \mid \forall z \psi
$$

$$
t ::= f(t_1, \dots, t_n) \mid c \mid z \mid x \mid \bigcirc x \mid \bigcirc x \mid \otimes x
$$

Definitions

- \triangleright trace is finite sequence of valuations of V
- ► LTL_f MT formula is satisfiable if \exists first-order model and trace that satisfy it

Examples

- ▶ robot motion planning
	- ▶ variables V: dist (type real) goal-reached (type bool)
	- \triangleright dist = 100 ^ F (goal-reached) ^ G (¬near-goal(dist) \longrightarrow (\bigcirc dist < dist)) satisfiable

undecidable

$$
\varphi ::= \psi \mid \neg \varphi \mid \varphi_1 \vee \varphi_2 \mid \varphi_1 \wedge \varphi_2 \mid X \varphi \mid \widetilde{X} \varphi \mid F \varphi \mid G \varphi \mid \varphi_1 \cup \varphi_2
$$

$$
\psi ::= p(t_1, \dots, t_n) \mid \neg \psi \mid \psi_1 \vee \psi_2 \mid \psi_1 \wedge \psi_2 \mid \exists z \psi \mid \forall z \psi
$$

$$
t ::= f(t_1, \dots, t_n) \mid c \mid z \mid x \mid \bigcirc x \mid \bigcirc x \mid \varphi x
$$

Definitions

- trace is finite sequence of valuations of V
- LTL_f MT formula is satisfiable if \exists first-order model and trace that satisfy it

Examples

- robot motion planning
	- \triangleright variables V: dist (type real) goal-reached (type bool)
	- \triangleright dist = 100 \wedge F (goal-reached) \wedge G (¬near-goal(dist) \longrightarrow (\cap dist \lt dist)) satisfiable

can describe business processes that operate over data and access read-only database

- \blacktriangleright semi-decision procedure to check satisfiability
- \triangleright can construct model if it exists
- \triangleright implemented in LTL/LTL_f satisfiability checker BLACK, using SMT solver as backend

[Geatti, Gianola & Gigante, IJCAI 2022]

- \triangleright semi-decision procedure to check satisfiability
- \triangleright can construct model if it exists
- \triangleright implemented in LTL/LTL_f satisfiability checker BLACK, using SMT solver as backend

[Geatti, Gianola & Gigante, IJCAI 2022]

Example (Tableau)

 $\blacktriangleright \psi := (x = 1) \wedge ((\bigcirc x > x) \cup (x = 5))$

- \triangleright semi-decision procedure to check satisfiability
- \triangleright can construct model if it exists
- \triangleright implemented in LTL/LTL_f satisfiability checker BLACK, using SMT solver as backend

[Geatti, Gianola & Gigante, IJCAI 2022]

Example (Tableau)

 $\blacktriangleright \psi := (x = 1) \wedge ((\bigcirc x > x) \cup (x = 5))$

- \triangleright semi-decision procedure to check satisfiability
- \triangleright can construct model if it exists
- \triangleright implemented in LTL/LTL_f satisfiability checker BLACK, using SMT solver as backend

[Geatti, Gianola & Gigante, IJCAI 2022]

- \triangleright semi-decision procedure to check satisfiability
- can construct model if it exists
- \triangleright implemented in LTL/LTL_f satisfiability checker BLACK, using SMT solver as backend

[Geatti, Gianola & Gigante, IJCAI 2022]

Example (Tableau) \triangleright $\psi := (x = 1) \land ((\bigcirc x > x) \cup (x = 5))$ $\psi' := (\bigcirc x > x) \cup (x = 5)$ $\{\psi\}$ $\{x=1, (\bigcirc x > x) \cup (x=5)\}\$ $\{x = 5\}$ $\{x = 1, \bigcirc x > x, x \psi'\}$ rule to expand U operator

- \triangleright semi-decision procedure to check satisfiability
- can construct model if it exists
- \triangleright implemented in LTL/LTL_f satisfiability checker BLACK, using SMT solver as backend

[Geatti, Gianola & Gigante, IJCAI 2022]

Example (Tableau) $\blacktriangleright \psi := (x = 1) \wedge ((\bigcirc x > x) \cup (x = 5))$ $\psi' := (\bigcirc x > x) \cup (x = 5)$ $\{\psi\}$ ${x = 1, (\bigcirc x > x) \cup (x = 5)}$ $\{x = 5\}$ $\{x = 1, \bigcirc x > x, X \psi'\}$ $\{\psi'\}$ poised node: need to expand X (move on to next time instant)

- \triangleright semi-decision procedure to check satisfiability
- can construct model if it exists
- \triangleright implemented in LTL/LTL_f satisfiability checker BLACK, using SMT solver as backend

[Geatti, Gianola & Gigante, IJCAI 2022]

- \triangleright semi-decision procedure to check satisfiability
- can construct model if it exists
- \triangleright implemented in LTL/LTL_f satisfiability checker BLACK, using SMT solver as backend

[Geatti, Gianola & Gigante, IJCAI 2022]

Example (Tableau)

 \triangleright $\psi := (x = 1) \land ((\bigcirc x > x) \cup (x = 5))$ $\psi' := (\bigcirc x > x) \cup (x = 5)$

- \triangleright semi-decision procedure to check satisfiability
- \triangleright can construct model if it exists
- \triangleright implemented in LTL/LTL_f satisfiability checker BLACK, using SMT solver as backend

[Geatti, Gianola & Gigante, IJCAI 2022]

Example (Tableau)

$$
\triangleright \quad \psi := (x = 1) \land ((\bigcirc x > x) \cup (x = 5))
$$

$$
\psi' := (\bigcirc x > x) \cup (x = 5)
$$

▶ can extract model from accepted branches:

$$
\blacktriangleright \langle \{x=1\}, \{x=5\} \rangle
$$

$$
\{\psi\}
$$
\n
$$
\{x = 1, (\bigcirc x > x) \cup (x = 5)\}\
$$
\n
$$
\{\frac{x = 5}{\mathbf{X}}\}
$$
\n
$$
\{\psi'\}\
$$

- semi-decision procedure to check satisfiability
- can construct model if it exists
- implemented in LTL/LTL_f satisfiability checker BLACK, using SMT solver as backend

[Geatti, Gianola & Gigante, IJCAI 2022]

```
Example (Tableau) satisfiable (Tableau) satisfiable (Tableau) satisfiable (Tableau) satisfiable
  \blacktriangleright \psi := (x = 1) \wedge ((\bigcirc x > x) \cup (x = 5))\psi' := (\bigcirc x > x) \cup (x = 5)▶ can extract model from accepted branches:
          \blacktriangleright \langle \{x=1\}, \{x=5\} \rangle\longrightarrow \langle \{x=1\}, \{x=3\}, \{x=5\} \rangle\{\psi\}\{x=1, (\bigcirc x > x) \cup (x=5)\}\\{x = 5\}\overline{\mathsf{x}}\{x=1, \bigcirc x > x, X\psi'\}\{\psi′}
                                                                                                         \{x = 5\}✓
                                                                                                                         \{\bigcirc x \gt x, X \psi'\}\{\psi′}
                                                                                                                    {x = 5}✓
                                                                                                                                    \{\bigcirc x > x, X \psi'\}. . .
```
- \triangleright semi-decision procedure to check satisfiability
- \triangleright can construct model if it exists
- \triangleright implemented in LTL/LTL_f satisfiability checker BLACK, using SMT solver as backend

[Geatti, Gianola & Gigante, IJCAI 2022]

Example (Tableau)

 $\blacktriangleright \psi := (x = 1) \wedge ((\bigcirc x > x) \cup (x = 0))$

- \triangleright semi-decision procedure to check satisfiability
- can construct model if it exists
- \triangleright implemented in LTL/LTL_f satisfiability checker BLACK, using SMT solver as backend

[Geatti, Gianola & Gigante, IJCAI 2022]

- \triangleright semi-decision procedure to check satisfiability
- can construct model if it exists
- \triangleright implemented in LTL/LTL_f satisfiability checker BLACK, using SMT solver as backend

[Geatti, Gianola & Gigante, IJCAI 2022]

for tableau branch $\bar{\pi}$ where poised nodes have first-order formulas F_0, \ldots, F_{m-1} ,

Key idea

for tableau branch $\overline{\pi}$ where poised nodes have first-order formulas F_0, \ldots, F_{m-1} ,

 $F_0(\overline{V}_0, \overline{V}_1) \wedge \cdots \wedge F_{m-1}(\overline{V}_{m-1}, \overline{V}_m)$

for tableau branch $\overline{\pi}$ where poised nodes have first-order formulas F_0, \ldots, F_{m-1} ,

$$
(\exists V_0 \ldots V_{m-1}.F_0(\overline{V}_0, \overline{V}_1) \wedge \cdots \wedge F_{m-1}(\overline{V}_{m-1}, \overline{V}_m)
$$

for tableau branch $\bar{\pi}$ where poised nodes have first-order formulas F_0, \ldots, F_{m-1} ,

$$
h(\overline{\pi}) = (\exists V_0 \ldots V_{m-1}.F_0(\overline{V}_0, \overline{V}_1) \wedge \cdots \wedge F_{m-1}(\overline{V}_{m-1}, \overline{V}_m)) [V_m/V]
$$

for tableau branch $\overline{\pi}$ where poised nodes have first-order formulas F_0, \ldots, F_{m-1} ,

$$
h(\overline{\pi}) = (\exists V_0 \ldots V_{m-1}.F_0(\overline{V}_0, \overline{V}_1) \wedge \cdots \wedge F_{m-1}(\overline{V}_{m-1}, \overline{V}_m)) [V_m/V]
$$

for tableau branch $\bar{\pi}$ where poised nodes have first-order formulas F_0, \ldots, F_{m-1} ,

$$
h(\overline{\pi}) = (\exists V_0 \ldots V_{m-1}.F_0(\overline{V}_0, \overline{V}_1) \wedge \cdots \wedge F_{m-1}(\overline{V}_{m-1}, \overline{V}_m)) [V_m/V]
$$

for tableau branch $\bar{\pi}$ where poised nodes have first-order formulas F_0, \ldots, F_{m-1} ,

$$
h(\overline{\pi})=(\exists V_0 \ldots V_{m-1}.F_0(\overline{V}_0,\overline{V}_1) \wedge \cdots \wedge F_{m-1}(\overline{V}_{m-1},\overline{V}_m))[V_m/V]
$$

for fresh copies $V_0, \ldots V_m$ of V

Definition (PRUNE rule)

for branch with poised nodes $\overline{\pi}=\langle\pi_0,\ldots,\pi_i,\ldots,\pi_{m-1}\rangle$, if π_i and π_{m-1} have same labels and $h(\overline{\pi}) \models_{\mathcal{T}} h(\overline{\pi}_{\leq i})$ then branch is rejected

Key idea

$$
\{\psi\}
$$
\n
$$
\pm \underbrace{\{x=0\}}_{\text{X}} \xrightarrow{\{x=1,\psi'\}}_{\text{X} \text{X}} \underbrace{\{x=1,\bigcirc x > x, x \psi'\}}_{\text{X} \text{X}} \quad x=1
$$
\n
$$
\pm \underbrace{\{x=0\}}_{\text{X}} \xrightarrow{\{0 \times x, x \psi'\}}_{\text{X} \text{X}} \quad x \geq 1
$$
\n
$$
\pm \underbrace{\{x=0\}}_{\text{X}} \xrightarrow{\{0 \times x, x \psi'\}}_{\text{X} \text{X} \text{X} \text{X}} \quad x \geq 2
$$

for tableau branch $\overline{\pi}$ where poised nodes have first-order formulas F_0, \ldots, F_{m-1} ,

$$
h(\overline{\pi})=(\exists V_0 \ldots V_{m-1}.F_0(\overline{V}_0,\overline{V}_1) \wedge \cdots \wedge F_{m-1}(\overline{V}_{m-1},\overline{V}_m))[V_m/V]
$$

for fresh copies $V_0, \ldots V_m$ of V

Definition (PRUNE rule)

for branch with poised nodes $\overline{\pi}=\langle\pi_0,\ldots,\pi_i,\ldots,\pi_{m-1}\rangle$, if π_i and π_{m-1} have same labels and $h(\overline{\pi}) \models_{\mathcal{T}} h(\overline{\pi}_{\leq i})$ then branch is rejected

Key idea $\{\psi\}$ $\{x = 1, \psi'\}$ ${x = 0}$
 ${x = 1, 0, x > x, x \psi' }$ $\{\psi'\}$ $\{x = 0\}$ $\{Qx > x, X\psi'\}$ $\{\psi'\}$ $\{x = 0\}$ $\{Qx > x, X\psi'\}$ $\perp \{x = 0\}$ $\{x = 1, \cup x > x, x \psi'\}$ $x = 1$ $\perp \{x = 0\}$ $\{(\bigcirc x > x, x \psi'\} \times x \ge 1\}$ $\perp \{x = 0\}$ $\{ \bigcirc x > x, x \psi' \} > x \ge 2$

for tableau branch $\bar{\pi}$ where poised nodes have first-order formulas F_0, \ldots, F_{m-1} ,

$$
h(\overline{\pi}) = (\exists V_0 \ldots V_{m-1}. F_0(\overline{V}_0, \overline{V}_1) \wedge \cdots \wedge F_{m-1}(\overline{V}_{m-1}, \overline{V}_m)) [V_m/V]
$$

for fresh copies $V_0, \ldots V_m$ of V

Definition (PRUNE rule)

for branch with poised nodes $\overline{\pi}=\langle\pi_0,\ldots,\pi_i,\ldots,\pi_{m-1}\rangle$, if π_i and π_{m-1} have same labels and $h(\overline{\pi}) \models_{\mathcal{T}} h(\overline{\pi}_{\leq i})$ then branch is rejected

Key idea

$$
\begin{array}{c}\n\{\psi\} \\
\downarrow \quad \{\mathbf{x} = 0\} \end{array}\n\begin{array}{c}\n\{\mathbf{x} = 1, \psi'\} \\
\downarrow \quad \{\mathbf{x} = 1, \bigcirc \mathbf{x} > \mathbf{x}, \mathbf{X} \psi'\} \\
\downarrow \quad \mathbf{x} = 1 \\
\downarrow \quad \mathbf{x} \end{array}\n\begin{array}{c}\n\mathbf{x} = 1 \\
\downarrow \quad \mathbf{x} \end{array}\n\begin{array}{c}\n\mathbf{x} = 1 \\
\downarrow \quad \mathbf{x} \end{array}\n\end{array}
$$

for tableau branch $\overline{\pi}$ where poised nodes have first-order formulas F_0, \ldots, F_{m-1} ,

$$
h(\overline{\pi}) = (\exists V_0 \ldots V_{m-1}. F_0(\overline{V}_0, \overline{V}_1) \wedge \cdots \wedge F_{m-1}(\overline{V}_{m-1}, \overline{V}_m)) [V_m/V]
$$

for fresh copies $V_0, \ldots V_m$ of V

Definition (PRUNE rule)

for branch with poised nodes $\overline{\pi}=\langle\pi_0,\ldots,\pi_i,\ldots,\pi_{m-1}\rangle$, if π_i and π_{m-1} have same labels and $h(\overline{\pi}) \models_{\mathcal{T}} h(\overline{\pi}_{\leq i})$ then branch is rejected

Theorem (Soundness and completeness)

for LTL_f MT formula ψ , tableau with PRUNE rule has accepted branch iff ψ is satisfiable

Observation: Satisfiability can be decidable

tableau with PRUNE halts on classes of formulas where set of history constraints is finite up to \equiv

Observation: Satisfiability can be decidable

tableau with PRUNE halts on classes of formulas where set of history constraints is finite up to \equiv

Decidable fragments of LTL_fMT

1 formulas without ◯ and \odot $\qquad \qquad$ (x>y U x+y = 2z) \land G(x+y >0)

Observation: Satisfiability can be decidable

tableau with PRUNE halts on classes of formulas where set of history constraints is finite up to \equiv

Decidable fragments of LTL_fMT

-
-

1 formulas without ◯ and \odot \cdots $(x>y \cup x+y=2z) \wedge G(x+y>0)$

2 formulas without G and U F $(p(\bigcirc x) \wedge X(\neg p(x))) \wedge X \in (r(x, y) \vee r(\bigcirc x, y))$

Observation: Satisfiability can be decidable

tableau with PRUNE halts on classes of formulas where set of history constraints is finite up to \equiv

Decidable fragments of LTL_fMT

-
-

1 formulas without ◯ and \odot $\qquad \qquad$ (x>v U x+y = 2z) \wedge G(x+y>0)

2 formulas without G and U F $(p(\bigcap x) \wedge X(\neg p(x))) \wedge X F(r(x, y) \vee r(\bigcap x, y))$

3 bounded lookback formulas, that restrict variable dependencies via \cap and \otimes to boundedly many configurations $p(x, \bigcap y) \cup (\bigcap x = x + y)$

Observation: Satisfiability can be decidable

tableau with PRUNE halts on classes of formulas where set of history constraints is finite up to \equiv

Decidable fragments of LTL_fMT

- 1 formulas without ◯ and \bigcirc
-

2 formulas without G and U F $(p(\bigcap x) \wedge X(\neg p(x))) \wedge X F(r(x, y) \vee r(\bigcap x, y))$

- $\overline{\textbf{3}}$ bounded lookback formulas, that restrict variable dependencies via \cap and \otimes to boundedly many configurations $p(x, \bigcap y) \cup (\bigcap x = x + y)$
- α formulas over theory of linear real arithmetic, where first arguments of G and U are variable-to-variable/constant comparisons $\frac{1}{2}$

Observation: Satisfiability can be decidable

tableau with PRUNE halts on classes of formulas where set of history constraints is finite up to \equiv

Decidable fragments of LTL_fMT

-
-

1 formulas without ◯ and \bigcirc

2 formulas without G and U F $(p(\bigcap x) \wedge X(\neg p(x))) \wedge X F(r(x, y) \vee r(\bigcap x, y))$

- $\overline{\textbf{3}}$ bounded lookback formulas, that restrict variable dependencies via \cap and \otimes to boundedly many configurations $p(x, \bigcap y) \cup (\bigcap x = x + y)$
- α formulas over theory of linear real arithmetic, where first arguments of G and U are variable-to-variable/constant comparisons $\frac{1}{2}$
- σ formulas over theory of linear integer arithmetic, where first arguments of G and U are integer periodicity constraints ($z = 1$) ∧ G($z \approx_5 \odot z$) ∧ F($z = 42$)

Observation: Satisfiability can be decidable

tableau with PRUNE halts on classes of formulas where set of history constraints is finite up to \equiv

Decidable fragments of LTL_fMT

- 1 formulas without ◯ and \odot (x = x+y = 2z) ∧ G(x+y>0)
-

generalizes Demri (2006):

2 formulas without G and U F $(p(\bigcap x) \wedge X(\neg p(x))) \wedge X F(r(x, y) \vee r(\bigcap x, y))$

An automata-theoretic approach to constraint LTL

 \sim bounded lookback formulas, that restrict variable dependencies via \cap and \otimes to boundedly many configurations really approach be positive generalizes Demri & D'Souza (2007): (2007):

4 formulas over theory of linear real arithmetic, wh variable-to-variable/constant comparisons

5 formulas over theory of linear integer arithmetic, where firs LTL over integer periodicity constraints integer periodicity constraints $(z=1) \wedge \mathscr{L}(z \approx_5 \odot z) \wedge F(z=42)$

6/7

1)

Summary

- \blacktriangleright tableau method to check satisfiability of LTL_f modulo theories: propose sound and complete PRUNE rule
- \triangleright new decidable fragments for very general logic
- ▶ generalizes results from literature

Summary

 \blacktriangleright tableau method to check satisfiability of LTL_f modulo theories: propose sound and complete PRUNE rule

- ▶ new decidable fragments for very general logic
- ▶ generalizes results from literature

Future work

- ▶ implementation in BLACK
- ▶ in traces, allow interpretations of relations and functions to change over time
- extension to branching time logics
- LTL_fMT monitoring