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Preliminaries

Definition

TRS R is

• terminating if 6 ∃ t1 → t2 → t3 → · · ·

• confluent if ∀ s ∗← u →∗ t
there is some v such that s →∗ v ∗← t

• complete if terminating and confluent

• reduced if ∀ l → r in R
r ∈ NF(R) and l ∈ NF(R \ {l → r})

normal forms of R

∗∗

∗∗

Example

g(f (x))→ a f (x)→ g(x)
g(g(x))→ a f (x)→ a

g(a)→ a

terminating X
confluent

	
complete 	
reduced 	

g(x) ← f (x) → a
not joinable
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Preliminaries

Consider reduction orders � ⊆ > where > is total on T (F), equations E and
TRS R.

Definition
orientable instances of set of equations E wrt total reduction order > is TRS

E> = {ŝ → t̂ | ŝ ≈ t̂ is instance of s ≈ t ∈ E and ŝ > t̂}
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E> = {ŝ → t̂ | ŝ ≈ t̂ is instance of s ≈ t ∈ E and ŝ > t̂}

Definition

system (E ,R) is ground-complete wrt >
⇐⇒ ∀ ground terms s, t with s ↔∗ t using rules in E> ∪ R

∃ v such that s →∗ v ∗← t in E> ∪ R

Example (1)

(E ,R) =

 g(f (x))→ a f (x)→ g(x)
g(g(x))→ a f (x)→ a

g(a)→ a

ground complete (for > being LPO with precedence f > g)

SW (IPT) Are ground-complete systems unique? 4/20



Preliminaries

Consider reduction orders � ⊆ > where > is total on T (F), equations E and
TRS R.

Definition
orientable instances of set of equations E wrt total reduction order > is TRS
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system (E ,R) is ground-complete wrt >
⇐⇒ ∀ ground terms s, t with s ↔∗ t using rules in E> ∪ R

∃ v such that s →∗ v ∗← t in E> ∪ R

Example (2)

(E ,R) =


x · i(x) ≈ i(y) · y
x · i(x) ≈ y · i(y)
i(x) · x ≈ i(y) · y

f(x · i(x)) → 0
f(i(x) · x) → 0

ground complete (for > being LPO with precedence f > g)
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Preliminaries

Definition (Extended critical pair)

if t
r1σ←l1σ←−−−−− u

l2σ→r2σ−−−−−→ s such that li ≈ ri ∈ E ∪ R and riσ 6� liσ

then s ≈ t is in CP�(E ∪ R)
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Lemma (Extended critical pair lemma)

for ground peak u ← · → v in E> ∪ R

• either ∃w such that u →∗ w ∗← v
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Preliminaries

Equational Proofs

Definition

proof of s0 ↔∗ sn in (E ,R) is sequence s0, s1, . . . , sn of terms

such that for all 0 ≤ i < n

si ↔E si+1

or si →R si+1 or si+1 →R si
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Preliminaries

Uniqueness of complete systems

Theorem Métivier 83

Let R1 and R2 be

• reduced and

• complete such that

• R1 ⊆ � and R2 ⊆ �
• and ↔∗R1

=↔∗R2
.

Then R1 and R2 are the same (up to renaming variables).

Question

How about ground-complete systems for same theory and reduction order?
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Are ground-complete systems unique?

Are ground-complete systems unique?

Definition

(E ,R) is compatible with �
⇐⇒ R ⊆ � and � ∩ E = ∅

Corollary

Assume (E1,R1) and (E2,R2) are compatible with � and ground-complete
wrt >⊇� such that ↔∗E1∪R1

and ↔∗E2∪R2
coincide on ground terms.

Then reduced forms of TRSs containing all ground rules in (E1 ∪R1)> and
(E2 ∪ R2)> are the same (up to renaming variables).

Question

Are also (E1,R1) and (E2,R2) the same?
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Are ground-complete systems unique?

Example (1)

ground-complete systems for same theory

(E1,R1) =

 x + y ≈ y + x
g(x + y) ≈ g(y + x)

f(x , x)→ g(x)
(E2,R2) =

 x + y ≈ y + x
f(x , x) → g(x)

f(x + y , y + x) → g(x + y)

are compatible with � being LPO with precedence f > g

Problem

superfluous equations and rules prevent uniqueness

Solution

restrict to reduced systems

SW (IPT) Are ground-complete systems unique? 9/20
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Are ground-complete systems unique?

When is (E , R) reduced?

Definition

• cost function for proof step (s, t) in (E ,R)

c(s, t) =


({s}, s|p, l , {t}) if s →p

l→r t for some l → r in R

({s}, s|p, l , {t,>}) if s →p
l→r t for some l → r in E>

({s, t},−,−,−) if s ≈E t

• order >c on costs is lexicographic combination of >mul, �, ·B and >mul

• order >U on ground proofs: (s0, . . . , sn) >U (t0, . . . , tm) iff

{c(s0, s1), . . . , c(sn−1, sn)} >c
mul {c(t0, t1), . . . , c(tm−1, tm)}

> > t for all terms t

Lemma

>U is well-founded ordering on proofs and for all proofs P, P ′ with P >U P ′

• C [Pσ] >U C [P ′σ] for all contexts C and substitutions σ

• Q[P] >U Q[P ′] for all proofs Q
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Are ground-complete systems unique?

Definition Löchner 04

• ground s ↔ t is redundant in (E ,R) with respect to >
⇐⇒ ∃ proof P of s ↔∗ t in (E ,R) such that s ↔ t >U P

• non-ground s ↔ t is redundant in (E ,R) with respect to >
⇐⇒ all its ground instances are redundant

• (E ,R) is reduced with respect to >
⇐⇒ no equation or rule in (E ,R) is redundant with respect to >
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⇐⇒ no equation or rule in (E ,R) is redundant with respect to >

Example

(E2,R2) =

 x + y ≈ y + x (1)
g(x + y) ≈ g(y + x) (2)

redundant

f(x , x)→ g(x) (3)

For example g(a + b)
(2)−−→ g(b + a)

>U

g(a + b)
(1)−−→ g(b + a)

because
({g(a + b)}, g(a + b), . . .) >c ({g(a + b)}, a + b, . . .})

I not reduced
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• ground s ↔ t is redundant in (E ,R) with respect to >
⇐⇒ ∃ proof P of s ↔∗ t in (E ,R) such that s ↔ t >U P

• non-ground s ↔ t is redundant in (E ,R) with respect to >
⇐⇒ all its ground instances are redundant

• (E ,R) is reduced with respect to >
⇐⇒ no equation or rule in (E ,R) is redundant with respect to >

Example

(E2,R2) =

 x + y ≈ y + x (1)
g(x + y) ≈ g(y + x) (2) redundant

f(x , x)→ g(x) (3)

For example g(a + b)
(2)−−→ g(b + a) >U g(a + b)

(1)−−→ g(b + a) because
({g(a + b)}, g(a + b), . . .) >c ({g(a + b)}, a + b, . . .})

I not reduced

SW (IPT) Are ground-complete systems unique? 11/20



Are ground-complete systems unique?

Definition Löchner 04
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Are ground-complete systems unique?

Example (2)

ground-complete systems for same theory

(E1,R1) =

{
x + y ≈ y + x

f(x , y)→ g(x + y)
(E2,R2) =

{
x + y ≈ y + x

f(x , y)→ g(y + x)

compatible with � being LPO with precedence f > g

Problem

different right-hand sides of rewrite rules

SW (IPT) Are ground-complete systems unique? 12/20



Are ground-complete systems unique?

Example (2)

ground-complete systems for same theory

(E1,R1) =

{
x + y ≈ y + x

f(x , y)→ g(x + y)
(E2,R2) =

{
x + y ≈ y + x

f(x , y)→ g(y + x)

compatible with � being LPO with precedence f > g

Problem

different right-hand sides of rewrite rules

SW (IPT) Are ground-complete systems unique? 12/20



Are ground-complete systems unique?

Example (3)

ground-complete systems for same theory

(E1,R1) =

 g(x) → a
f (x) → g(x)
f (x) → a

(E2,R2) =


g(f (x)) → a
g(g(x)) → a

g(a) → a
f (x) → g(x)
f (x) → a

compatible with � being LPO where f > g

Problem

one rule in R1 plays role of three rules in R2

Definition

(E ,R) compatible with reduction order � is fairly constructed
⇐⇒ for every s ← u → t in CP�(E ∪ R)

∃ proof P of s ↔∗ t in (E ,R) such that (s, u, t) �U P
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Are ground-complete systems unique?

A (non-)result
Assume all u ≈ v in E1 ∪ E2 satisfy Var(u) = Var(v).

Claim

Let (E1,R1) and (E2,R2) be two systems

• compatible with reduction order �,

• ground-complete and reduced for total reduction order >⊇�,and

• fairly constructed

• such that ↔∗E1∪R1
=↔∗E2∪R2

on ground terms.

Then

• for ground instance û ≈ v̂ of u ≈ v in Ei

∃ u′ ≈ v ′ in Ej such that û ≈ v̂ is instance of u′ ≈ v ′

• reducible ground terms in R1 and R2 coincide

up to renaming variables.
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Are ground-complete systems unique?

Proof attempt (1)

• assume there is some

• equation that is instance of u ≈ v in Ei but not of any u′ ≈ v ′ in Ej

• term reducible by u → v in Ri but not in Rj

then ∃ ground instance û ↔ v̂ having no smaller proof in Ei ,Ri

• choose such (û, v̂) minimal wrt to >U (wlog, u ↔ v in (E1,R1))

note that ∀ (ŝ, t̂) <U (û, v̂)

• if ŝ ≈ t̂ instance of s ≈ t in E2

either ∃ s ′ ≈ t ′ in E1, or ∃ proof Q of ŝ ↔∗ t̂ in (E1,R1) with (ŝ, t̂) >U Q

• if ŝ → t̂ instance of s → t in R2

either ŝ reducible in R1, or ∃ proof Q of ŝ ↔∗ t̂ in (E1,R1) with
(ŝ, t̂) >U Q

• ground-complete system (E2,R2) allows for proof P

û −→ t1 −→ t2 −→ . . . −→ tk ←− . . . ←− v̂

which is minimal wrt >U
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(as u1, v1 have same variables)
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case p > ε

	

• u1 → v1 must be rewrite step

• reducible ground terms in R1, R2 coincide

SW (IPT) Are ground-complete systems unique? 16/20



Are ground-complete systems unique?

Proof attempt (2)
(E2,R2) allows for minimal proof P

û
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• û ↔∗ û′ ↔∗ v̂ is smaller proof of (û, v̂) in (E1,R1),
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• ∃ û′ such that û
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• contradicts choice of (û, v̂)
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• (û, v̂) >U (u1σ1, v1σ1)

so some proof of u1σ1 ↔∗ v1σ1 in (E1,R1) is ≤U (u1σ1, v1σ1) (F)
• ground-complete (E1,R1) has valley proof for t1 ↔∗ v̂
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• (û, v̂) >U (u1σ1, v1σ1)

so some proof of u1σ1 ↔∗ v1σ1 in (E1,R1) is ≤U (u1σ1, v1σ1) (F)
• ground-complete (E1,R1) has valley proof for t1 ↔∗ v̂
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case P consists of more than one step

case p1 > ε

	

• have (û, v̂) >U (û, t1) as
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• û ↔∗ t1 ↔∗ v̂ yields proof Q in (E1,R1) such that Q <U (û, v̂)
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• û ↔∗ t1 ↔∗ v̂ yields proof Q in (E1,R1) such that Q <U (û, v̂)
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({û}, û, . . .) >c ({û}, u1σ1, . . .)
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case u1 ·Bu

SW (IPT) Are ground-complete systems unique? 17/20



Are ground-complete systems unique?

Proof attempt (3)

(E2,R2) allows for minimal proof P

û
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Are ground-complete systems unique?

Example

yet another pair of ground-complete systems for same theory

(E1,R1) =

{
0′ + y ≈ y + 0
0 + 0→ 0

(E2,R2) =

 0′ + (x + y) ≈ (x + y) + 0
0 + 0→ 0

0′ + 0→ 0

compatible with simplification order
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Conclusion

Conclusion
• ground-complete systems are “less unique” than complete ones

• reducedness becomes undecidable property

Further work
• fix proof
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