Are ground-complete systems unique?

Sarah Winkler

Institute for Computer Science University of Innsbruck

Workshop Paris - Innsbruck - Tbilisi

May 20, 2010

Outline

Preliminaries

• Are ground-complete systems unique?

• Conclusion

TRS R is

ullet terminating if $\not\exists t_1 o t_2 o t_3 o \cdots$

TRS R is

- terminating if $\not\exists t_1 \rightarrow t_2 \rightarrow t_3 \rightarrow \cdots$
- confluent if \forall s * \leftarrow $u \rightarrow$ * t there is some v such that $s \rightarrow$ * v * \leftarrow t

TRS R is

- terminating if $\not\exists t_1 \rightarrow t_2 \rightarrow t_3 \rightarrow \cdots$
- confluent if $\forall s^* \leftarrow u \rightarrow^* t$ there is some v such that $s \rightarrow^* v \stackrel{*}{\leftarrow} t$

TRS R is

- terminating if $\not\exists t_1 \rightarrow t_2 \rightarrow t_3 \rightarrow \cdots$
- confluent if $\forall s^* \leftarrow u \rightarrow^* t$ there is some v such that $s \rightarrow^* v^* \leftarrow t$
- complete if terminating and confluent

TRS R is

- terminating if $\not\exists t_1 \rightarrow t_2 \rightarrow t_3 \rightarrow \cdots$
- confluent if $\forall s^* \leftarrow u \rightarrow^* t$ there is some v such that $s \rightarrow^* v^* \leftarrow t$
- complete if terminating and confluent
- reduced if $\forall I \rightarrow r$ in R $r \in NF(R)$ and $I \in NF(R \setminus \{I \rightarrow r\})$

normal forms of R

TRS R is

- terminating if $\not\exists t_1 \rightarrow t_2 \rightarrow t_3 \rightarrow \cdots$
- confluent if $\forall s^* \leftarrow u \rightarrow^* t$ there is some v such that $s \rightarrow^* v^* \leftarrow t$
- complete if terminating and confluent
- reduced if $\forall I \rightarrow r$ in R $r \in NF(R)$ and $I \in NF(R \setminus \{I \rightarrow r\})$

$$g(f(x)) \rightarrow a$$
 $f(x) \rightarrow g(x)$
 $g(g(x)) \rightarrow a$ $f(x) \rightarrow a$
 $g(a) \rightarrow a$

TRS R is

- terminating if $\not\exists t_1 \rightarrow t_2 \rightarrow t_3 \rightarrow \cdots$
- confluent if $\forall s^* \leftarrow u \rightarrow^* t$ there is some v such that $s \rightarrow^* v^* \leftarrow t$
- complete if terminating and confluent
- reduced if $\forall I \rightarrow r$ in R $r \in NF(R)$ and $I \in NF(R \setminus \{I \rightarrow r\})$

$$g(f(x)) \rightarrow a$$
 $f(x) \rightarrow g(x)$ terminating \checkmark $g(g(x)) \rightarrow a$ $f(x) \rightarrow a$ confluent $g(a) \rightarrow a$

TRS R is

- terminating if $\not\exists t_1 \rightarrow t_2 \rightarrow t_3 \rightarrow \cdots$
- confluent if $\forall s^* \leftarrow u \rightarrow^* t$ there is some v such that $s \rightarrow^* v^* \leftarrow t$
- complete if terminating and confluent
- reduced if $\forall I \rightarrow r$ in R $r \in NF(R)$ and $I \in NF(R \setminus \{I \rightarrow r\})$

Example

$$g(f(x)) \rightarrow a$$
 $f(x) \rightarrow g(x)$
 $g(g(x)) \rightarrow a$ $f(x) \rightarrow a$
 $g(a) \rightarrow a$

terminating confluent complete

 $g(x) \leftarrow f(x) \rightarrow a$ not joinable

TRS R is

- terminating if $\not\exists t_1 \rightarrow t_2 \rightarrow t_3 \rightarrow \cdots$
- confluent if $\forall s^* \leftarrow u \rightarrow^* t$ there is some v such that $s \rightarrow^* v^* \leftarrow t$
- complete if terminating and confluent
- reduced if $\forall I \rightarrow r$ in R $r \in NF(R)$ and $I \in NF(R \setminus \{I \rightarrow r\})$

$$g(f(x)) \rightarrow a$$
 $f(x) \rightarrow g(x)$
 $g(g(x)) \rightarrow a$ $f(x) \rightarrow a$
 $g(a) \rightarrow a$

TRS R is

- terminating if $\not\exists t_1 \rightarrow t_2 \rightarrow t_3 \rightarrow \cdots$
- confluent if $\forall s^* \leftarrow u \rightarrow^* t$ there is some v such that $s \to^* v \overset{*}{\leftarrow} t$
- complete if terminating and confluent
- reduced if $\forall I \rightarrow r$ in R $r \in NF(R)$ and $l \in NF(R \setminus \{l \rightarrow r\})$

$$g(f(x)) \rightarrow a$$
 $f(x) \rightarrow g(x)$
 $g(g(x)) \rightarrow a$ $f(x) \rightarrow a$
 $g(a) \rightarrow a$

Definition

orientable instances of set of equations E wrt total reduction order > is TRS

$$E_{>} = \{\hat{s} \rightarrow \hat{t} \mid \hat{s} \approx \hat{t} \text{ is instance of } s \approx t \in E \text{ and } \hat{s} > \hat{t}\}$$

Definition

orientable instances of set of equations E wrt total reduction order > is TRS

$$E_{>} = \{\hat{s} \rightarrow \hat{t} \mid \hat{s} \approx \hat{t} \text{ is instance of } s \approx t \in E \text{ and } \hat{s} > \hat{t}\}$$

Example

$$E_{>}=\{a+b\rightarrow b+a,$$

Definition

orientable instances of set of equations E wrt total reduction order > is TRS

$$E_{>} = \{\hat{s} \rightarrow \hat{t} \mid \hat{s} \approx \hat{t} \text{ is instance of } s \approx t \in E \text{ and } \hat{s} > \hat{t}\}$$

Example

$$E_{>}=\{a+b\rightarrow b+a,\ f(a)+a\rightarrow a+f(a),$$

Definition

orientable instances of set of equations E wrt total reduction order > is TRS

$$E_{>} = \{\hat{s} \rightarrow \hat{t} \mid \hat{s} \approx \hat{t} \text{ is instance of } s \approx t \in E \text{ and } \hat{s} > \hat{t}\}$$

Example

$$E_{>} = \{a + b \to b + a, f(a) + a \to a + f(a), f(b) + a \to a + f(b), f(b) + f(b)$$

Definition

orientable instances of set of equations E wrt total reduction order > is TRS

$$E_{>} = \{\hat{\mathbf{s}} \rightarrow \hat{t} \mid \hat{\mathbf{s}} \approx \hat{t} \text{ is instance of } \mathbf{s} \approx t \in E \text{ and } \hat{\mathbf{s}} > \hat{t}\}$$

Example

$$E_{>} = \{ a + b \to b + a, \ f(a) + a \to a + f(a), \ f(b) + a \to a + f(b),$$

$$f(a) + f(b) \to f(b) + f(a), \ f(b) + b \to b + f(b),$$

$$f(f(a)) + a \to a + f(f(a)), \dots \}$$

Definition

orientable instances of set of equations E wrt total reduction order > is TRS

$$E_{>} = \{\hat{s} \rightarrow \hat{t} \mid \hat{s} \approx \hat{t} \text{ is instance of } s \approx t \in E \text{ and } \hat{s} > \hat{t}\}$$

Definition

system (E, R) is ground-complete wrt >

 \iff \forall ground terms s, t with $s \leftrightarrow^* t$ using rules in $E_> \cup R$

 $\exists v \text{ such that } s \rightarrow^* v ^* \leftarrow t \text{ in } E_> \cup R$

Definition

orientable instances of set of equations E wrt total reduction order > is TRS

$$E_{>} = \{\hat{s} \rightarrow \hat{t} \mid \hat{s} \approx \hat{t} \text{ is instance of } s \approx t \in E \text{ and } \hat{s} > \hat{t}\}$$

Definition

system (E, R) is ground-complete wrt >

 \iff \forall ground terms s, t with $s \leftrightarrow^* t$ using rules in $E_> \cup R$

 \exists v such that $s \rightarrow^* v ^* \leftarrow t$ in $E_> \cup R$

Example (1)

MIESEE WOOD // NI

$$(E,R) = \begin{cases} g(f(x)) \to a & f(x) \to g(x) \\ g(g(x)) \to a & f(x) \to a \\ g(a) \to a \end{cases}$$

ground complete (for > being LPO with precedence f > g)

Definition

orientable instances of set of equations E wrt total reduction order > is TRS

$$E_{>} = \{\hat{s} \rightarrow \hat{t} \mid \hat{s} \approx \hat{t} \text{ is instance of } s \approx t \in E \text{ and } \hat{s} > \hat{t}\}$$

Definition

system (E, R) is ground-complete wrt >

 \iff \forall ground terms s, t with $s \leftrightarrow^* t$ using rules in $E_> \cup R$

 $\exists \ v \ \text{such that} \ s \to^* v \ ^* \leftarrow t \ \text{in} \ E_> \cup R$

Example (2)

$$(E,R) = \begin{cases} x \cdot i(x) \approx i(y) \cdot y \\ x \cdot i(x) \approx y \cdot i(y) \\ i(x) \cdot x \approx i(y) \cdot y \\ f(x \cdot i(x)) \to 0 \\ f(i(x) \cdot x) \to 0 \end{cases}$$

ground complete (for > being LPO with precedence f > g)

if $t \xleftarrow{r_1 \sigma \leftarrow l_1 \sigma} u \xrightarrow{l_2 \sigma \rightarrow r_2 \sigma} s$ such that $l_i \approx r_i \in E \cup R$ and $r_i \sigma \not\succ l_i \sigma$

if $t \stackrel{r_1\sigma \leftarrow l_1\sigma}{\leftarrow} u \stackrel{l_2\sigma \rightarrow r_2\sigma}{\rightarrow} s$ such that $l_i \approx r_i \in E \cup R$ and $r_i\sigma \not\succ l_i\sigma$ then $s \approx t$ is in $CP_{\succ}(E \cup R)$

if $t \stackrel{r_1\sigma \leftarrow l_1\sigma}{\leftarrow} u \stackrel{l_2\sigma \rightarrow r_2\sigma}{\rightarrow} s$ such that $l_i \approx r_i \in E \cup R$ and $r_i\sigma \not\succ l_i\sigma$ then $s \approx t$ is in $CP_{\succ}(E \cup R)$

$$x \cdot i(x) \approx i(y) \cdot y$$

$$f(x \cdot i(x)) \rightarrow 0$$

if $t \stackrel{r_1\sigma \leftarrow l_1\sigma}{\longleftarrow} u \stackrel{l_2\sigma \rightarrow r_2\sigma}{\longrightarrow} s$ such that $l_i \approx r_i \in E \cup R$ and $r_i\sigma \not\succ l_i\sigma$ then $s \approx t$ is in $CP_{\succ}(E \cup R)$

$$\stackrel{x \cdot i(x) \approx i(y) \cdot y}{\longleftarrow} f(x \cdot i(x)) \xrightarrow{f(x \cdot i(x)) \to 0}$$

if $t \leftarrow r_1 \sigma \leftarrow l_1 \sigma \atop t \to r_2 \sigma \to s$ such that $l_i \approx r_i \in E \cup R$ and $r_i \sigma \not\succ l_i \sigma$ then $s \approx t$ is in $CP_{\succ}(E \cup R)$

$$f(i(y) \cdot y) \stackrel{x \cdot i(x) \approx i(y) \cdot y}{\leftarrow} f(x \cdot i(x)) \xrightarrow{f(x \cdot i(x)) \to 0} 0$$

if $t \xleftarrow{r_1 \sigma \leftarrow l_1 \sigma} u \xrightarrow{l_2 \sigma \rightarrow r_2 \sigma} s$ such that $l_i \approx r_i \in E \cup R$ and $r_i \sigma \not\succ l_i \sigma$ then $s \approx t$ is in $CP_{\succ}(E \cup R)$

$$f(i(y) \cdot y) \xleftarrow{x \cdot i(x) \approx i(y) \cdot y} f(x \cdot i(x)) \xrightarrow{f(x \cdot i(x)) \to 0} 0$$
 yields $CP_{\succ} f(i(y) \cdot y) \approx 0$

if $t \xleftarrow{r_1 \sigma \leftarrow l_1 \sigma} u \xrightarrow{l_2 \sigma \rightarrow r_2 \sigma} s$ such that $l_i \approx r_i \in E \cup R$ and $r_i \sigma \not\succ l_i \sigma$ then $s \approx t$ is in $CP_{\succ}(E \cup R)$

Example

$$f(i(y) \cdot y) \xleftarrow{x \cdot i(x) \approx i(y) \cdot y} f(x \cdot i(x)) \xrightarrow{f(x \cdot i(x)) \to 0} 0$$
 yields $CP_{\succ} f(i(y) \cdot y) \approx 0$

Lemma (Extended critical pair lemma)

for ground peak $u \leftarrow \cdot \rightarrow v$ in $E_{>} \cup R$

- either $\exists w$ such that $u \to^* w *\leftarrow v$
- or $u \approx v$ is $C[s\sigma] \approx C[t\sigma]$ where $s \approx t \in CP_{>}(E \cup R)$

Definition

proof of $s_0 \leftrightarrow^* s_n$ in (E, R) is sequence s_0, s_1, \dots, s_n of terms

Definition

proof of $s_0 \leftrightarrow^* s_n$ in (E,R) is sequence s_0,s_1,\ldots,s_n of terms such that for all $0 \le i < n$

$$s_i \leftrightarrow_{\boldsymbol{E}} s_{i+1}$$

Definition

proof of $s_0 \leftrightarrow^* s_n$ in (E, R) is sequence s_0, s_1, \ldots, s_n of terms such that for all $0 \le i < n$

$$s_i \leftrightarrow_E s_{i+1}$$

or
$$s_i \rightarrow_R s_{i+1}$$

or
$$s_{i+1} \rightarrow_{R} s_{i}$$

Definition

proof of $s_0 \leftrightarrow^* s_n$ in (E, R) is sequence s_0, s_1, \ldots, s_n of terms such that for all $0 \le i < n$

$$s_i \leftrightarrow_E s_{i+1}$$

or
$$s_i \rightarrow_R s_{i+1}$$

or
$$s_{i+1} \rightarrow_R s_i$$

$$i(y) \cdot y \approx x \cdot i(x) \qquad i(y) \cdot y \approx x \cdot i(x)$$

$$f((i(0) \cdot 0)) \leftrightarrow f((0 \cdot 0) \cdot i(0 \cdot 0) \qquad f(i(y) \cdot y) \longleftrightarrow f(x \cdot i(x))$$

$$f(x \cdot i(x)) \to 0 \qquad f(x \cdot i(x)) \to 0$$

Definition

proof of $s_0 \leftrightarrow^* s_n$ in (E, R) is sequence s_0, s_1, \ldots, s_n of terms such that for all $0 \le i < n$

$$s_i \leftrightarrow_E s_{i+1}$$

$$s_i \rightarrow_R s_{i+1}$$

or
$$s_i \rightarrow_R s_{i+1}$$
 or $s_{i+1} \rightarrow_R s_i$

Definition

Given proof $P = s_0, s_1, \ldots, s_n$

• for substitution σ , $P\sigma = s_0\sigma$, $s_1\sigma$, ..., $s_n\sigma$

SW (IPT)

Definition

proof of $s_0 \leftrightarrow^* s_n$ in (E, R) is sequence s_0, s_1, \ldots, s_n of terms such that for all 0 < i < n

$$s_i \leftrightarrow_E s_{i+1}$$

$$s_i \rightarrow_R s_{i+1}$$

or
$$s_i \rightarrow_R s_{i+1}$$
 or $s_{i+1} \rightarrow_R s_i$

Definition

Given proof $P = s_0, s_1, \ldots, s_n$

- for substitution σ , $P\sigma = s_0\sigma$, $s_1\sigma$, ..., $s_n\sigma$
- for context C, $C[P] = C[s_0], C[s_1], ..., C[s_n]$

Definition

proof of $s_0 \leftrightarrow^* s_n$ in (E, R) is sequence s_0, s_1, \ldots, s_n of terms such that for all 0 < i < n

$$s_i \leftrightarrow_E s_{i+1}$$

$$s_i \rightarrow_R s_{i+1}$$

or
$$s_i \rightarrow_R s_{i+1}$$
 or $s_{i+1} \rightarrow_R s_i$

Definition

Given proof $P = s_0, s_1, \ldots, s_n$

- for substitution σ , $P\sigma = s_0\sigma$, $s_1\sigma$, ..., $s_n\sigma$
- for context C, $C[P] = C[s_0], C[s_1], ..., C[s_n]$
- write Q[P] if Q contains P as a subproof

Uniqueness of complete systems

Theorem Métivier 83

Let R₁ and R₂ be

- reduced and
- complete such that
- $R_1 \subseteq \succ$ and $R_2 \subseteq \succ$
- and $\leftrightarrow_{R_1}^* = \leftrightarrow_{R_2}^*$.

Then R_1 and R_2 are the same (up to renaming variables).

Uniqueness of complete systems

Theorem Métivier 83

Let R₁ and R₂ be

- reduced and
- complete such that
- $R_1 \subseteq \succ$ and $R_2 \subseteq \succ$
- and $\leftrightarrow_{R_1}^* = \leftrightarrow_{R_2}^*$.

Then R_1 and R_2 are the same (up to renaming variables).

Question

How about ground-complete systems for same theory and reduction order?

Definition

$$(E, R)$$
 is compatible with \succ
 \iff $R \subseteq \succ$ and $\succ \cap E = \varnothing$

Definition

$$(E,R)$$
 is compatible with \succ
 \iff $R \subseteq \succ$ and $\succ \cap E = \varnothing$

Corollary

Assume (E_1, R_1) and (E_2, R_2) are compatible with \succ and ground-complete wrt $>\supseteq \succ$ such that $\leftrightarrow_{E_1 \cup R_1}^*$ and $\leftrightarrow_{E_2 \cup R_2}^*$ coincide on ground terms.

Definition

$$(E,R)$$
 is compatible with \succ
 \iff $R \subseteq \succ$ and $\succ \cap E = \varnothing$

Corollary

Assume (E_1, R_1) and (E_2, R_2) are compatible with \succ and ground-complete wrt $> \supseteq \succ$ such that $\leftrightarrow_{E_1 \cup R_1}^*$ and $\leftrightarrow_{E_2 \cup R_2}^*$ coincide on ground terms.

Then reduced forms of TRSs containing all ground rules in $(E_1 \cup R_1)_>$ and $(E_2 \cup R_2)_>$ are the same (up to renaming variables).

Definition

$$(E,R)$$
 is compatible with \succ \Leftrightarrow $R \subseteq \succ$ and $\succ \cap E = \varnothing$

Corollary

Assume (E_1, R_1) and (E_2, R_2) are compatible with \succ and ground-complete wrt $>\supseteq\succ$ such that $\leftrightarrow^*_{E_1\cup R_1}$ and $\leftrightarrow^*_{E_2\cup R_2}$ coincide on ground terms.

Then reduced forms of TRSs containing all ground rules in $(E_1 \cup R_1)_>$ and $(E_2 \cup R_2)_>$ are the same (up to renaming variables).

Question

Are also (E_1, R_1) and (E_2, R_2) the same?

ground-complete systems for same theory

$$(E_1, R_1) = \begin{cases} x + y \approx y + x \\ g(x + y) \approx g(y + x) \\ f(x, x) \rightarrow g(x) \end{cases} (E_2, R_2) = \begin{cases} x + y \approx y + x \\ f(x, x) \rightarrow g(x) \\ f(x + y, y + x) \rightarrow g(x + y) \end{cases}$$

are compatible with \succ being LPO with precedence f > g

ground-complete systems for same theory

$$(E_1, R_1) = \begin{cases} x + y \approx y + x \\ g(x + y) \approx g(y + x) \\ f(x, x) \rightarrow g(x) \end{cases} (E_2, R_2) = \begin{cases} x + y \approx y + x \\ f(x, x) \rightarrow g(x) \\ f(x + y, y + x) \rightarrow g(x + y) \end{cases}$$

are compatible with \succ being LPO with precedence f > g

Problem

🌿 superfluous equations

ground-complete systems for same theory

$$(E_1, R_1) = \begin{cases} x + y \approx y + x \\ g(x + y) \approx g(y + x) \\ f(x, x) \rightarrow g(x) \end{cases} (E_2, R_2) = \begin{cases} x + y \approx y + x \\ f(x, x) \rightarrow g(x) \\ f(x + y, y + x) \rightarrow g(x + y) \end{cases}$$

are compatible with \succ being LPO with precedence f > g

Problem

🤟 superfluous equations and rules prevent uniqueness

ground-complete systems for same theory

$$(E_1, R_1) = \begin{cases} x + y \approx y + x \\ g(x + y) \approx g(y + x) \\ f(x, x) \rightarrow g(x) \end{cases} (E_2, R_2) = \begin{cases} x + y \approx y + x \\ f(x, x) \rightarrow g(x) \\ f(x + y, y + x) \rightarrow g(x + y) \end{cases}$$

are compatible with \succ being LPO with precedence f > g

Problem

🤟 superfluous equations and rules prevent uniqueness

Solution

MIL . VI . W. III

restrict to reduced systems

Definition

• cost function for proof step (s, t) in (E, R)

Definition

• cost function for proof step (s, t) in (E, R)

cost function for proof step
$$(s,t)$$
 in (E,R)
$$c(s,t) = \begin{cases} (\{s\}, s|_p, I, \{t\}) & \text{if } s \to_{I \to r}^p t \text{ for some } I \to r \text{ in } R \end{cases}$$

Definition

• cost function for proof step $\top > t$ for all terms t

$$c(s,t) = \begin{cases} (\{s\}, s|_{\rho}, I, \{t\}) & \text{if } s \to_{l \to r}^{\rho} t \text{ for some } l \to r \text{ in } R \\ (\{s\}, s|_{\rho}, I, \{t, \top\}) & \text{if } s \to_{l \to r}^{\rho} t \text{ for some } l \to r \text{ in } E_{>} \end{cases}$$

Definition

• cost function for proof step (s, t) in (E, R)

$$c(s,t) = \begin{cases} (\{s\}, s|_{\rho}, I, \{t\}) & \text{if } s \to_{l \to r}^{p} t \text{ for some } l \to r \text{ in } R \\ (\{s\}, s|_{\rho}, I, \{t, \top\}) & \text{if } s \to_{l \to r}^{p} t \text{ for some } l \to r \text{ in } E_{>} \\ (\{s, t\}, -, -, -) & \text{if } s \approx_{E} t \end{cases}$$

Definition

• cost function for proof step (s, t) in (E, R)

$$c(s,t) = \begin{cases} (\{s\}, s|_{\rho}, I, \{t\}) & \text{if } s \to_{I \to r}^{p} t \text{ for some } I \to r \text{ in } R \\ (\{s\}, s|_{\rho}, I, \{t, \top\}) & \text{if } s \to_{I \to r}^{p} t \text{ for some } I \to r \text{ in } E_{>} \\ (\{s, t\}, -, -, -) & \text{if } s \approx_{E} t \end{cases}$$

• order $>^c$ on costs is lexicographic combination of $>_{mul}$, \triangleright , \triangleright and $>_{mul}$

Definition

• cost function for proof step (s, t) in (E, R)

$$c(s,t) = \begin{cases} (\{s\}, s|_{\rho}, I, \{t\}) & \text{if } s \to_{I \to r}^{p} t \text{ for some } I \to r \text{ in } R \\ (\{s\}, s|_{\rho}, I, \{t, \top\}) & \text{if } s \to_{I \to r}^{p} t \text{ for some } I \to r \text{ in } E_{>} \\ (\{s, t\}, -, -, -) & \text{if } s \approx_{E} t \end{cases}$$

- \bullet order $>^c$ on costs is lexicographic combination of $>_{\text{mul}}$, \triangleright , \triangleright and $>_{\text{mul}}$
- order $>_{\mathcal{U}}$ on ground proofs: $(s_0, \ldots, s_n) >_{\mathcal{U}} (t_0, \ldots, t_m)$ iff $\{c(s_0, s_1), \ldots, c(s_{n-1}, s_n)\} >_{\text{mul}}^{c} \{c(t_0, t_1), \ldots, c(t_{m-1}, t_m)\}$

Definition

• cost function for proof step (s, t) in (E, R)

$$c(s,t) = \begin{cases} (\{s\}, s|_{p}, I, \{t\}) & \text{if } s \to_{I \to r}^{p} t \text{ for some } I \to r \text{ in } R \\ (\{s\}, s|_{p}, I, \{t, \top\}) & \text{if } s \to_{I \to r}^{p} t \text{ for some } I \to r \text{ in } E_{>} \\ (\{s, t\}, -, -, -) & \text{if } s \approx_{E} t \end{cases}$$

- \bullet order $>^c$ on costs is lexicographic combination of $>_{\text{mul}}$, \triangleright , \triangleright and $>_{\text{mul}}$
- order $>_{\mathcal{U}}$ on ground proofs: $(s_0,\ldots,s_n)>_{\mathcal{U}}(t_0,\ldots,t_m)$ iff

$$\{c(s_0, s_1), \ldots, c(s_{n-1}, s_n)\} >_{\mathsf{mul}}^{c} \{c(t_0, t_1), \ldots, c(t_{m-1}, t_m)\}$$

Lemma

 $>_{\mathcal{U}}$ is well-founded ordering on proofs and for all proofs P, P' with P $>_{\mathcal{U}}$ P'

Definition

• cost function for proof step (s, t) in (E, R)

$$c(s,t) = \begin{cases} (\{s\}, s|_{\rho}, I, \{t\}) & \text{if } s \to_{I \to r}^{p} t \text{ for some } I \to r \text{ in } R \\ (\{s\}, s|_{\rho}, I, \{t, \top\}) & \text{if } s \to_{I \to r}^{p} t \text{ for some } I \to r \text{ in } E_{>} \\ (\{s, t\}, -, -, -) & \text{if } s \approx_{E} t \end{cases}$$

- \bullet order $>^c$ on costs is lexicographic combination of $>_{\text{mul}}$, \triangleright , \triangleright and $>_{\text{mul}}$
- order $>_{\mathcal{U}}$ on ground proofs: $(s_0, \ldots, s_n) >_{\mathcal{U}} (t_0, \ldots, t_m)$ iff

$$\{c(s_0, s_1), \ldots, c(s_{n-1}, s_n)\} >_{\text{mul}}^{c} \{c(t_0, t_1), \ldots, c(t_{m-1}, t_m)\}$$

Lemma

 $>_{\mathcal{U}}$ is well-founded ordering on proofs and for all proofs P, P' with P $>_{\mathcal{U}}$ P'

• $C[P\sigma] >_{\mathcal{U}} C[P'\sigma]$ for all contexts C and substitutions σ

Definition

• cost function for proof step (s, t) in (E, R)

$$c(s,t) = \begin{cases} (\{s\}, s|_{\rho}, I, \{t\}) & \text{if } s \to_{I \to r}^{\rho} t \text{ for some } I \to r \text{ in } R \\ (\{s\}, s|_{\rho}, I, \{t, \top\}) & \text{if } s \to_{I \to r}^{\rho} t \text{ for some } I \to r \text{ in } E_{>} \\ (\{s, t\}, -, -, -) & \text{if } s \approx_{E} t \end{cases}$$

- ullet order $>^c$ on costs is lexicographic combination of $>_{\text{mul}}$, \vartriangleright , \vartriangleright and $>_{\text{mul}}$
- order $>_{\mathcal{U}}$ on ground proofs: $(s_0, \ldots, s_n) >_{\mathcal{U}} (t_0, \ldots, t_m)$ iff

$$\{c(s_0, s_1), \ldots, c(s_{n-1}, s_n)\} >_{\mathsf{mul}}^{c} \{c(t_0, t_1), \ldots, c(t_{m-1}, t_m)\}$$

Lemma

 $>_{\mathcal{U}}$ is well-founded ordering on proofs and for all proofs P, P' with P $>_{\mathcal{U}}$ P'

- $C[P\sigma] >_{\mathcal{U}} C[P'\sigma]$ for all contexts C and substitutions σ
- $Q[P] >_{\mathcal{U}} Q[P']$ for all proofs Q

Definition

Löchner 04

• ground $s \leftrightarrow t$ is redundant in (E, R) with respect to > \iff \exists proof P of $s \leftrightarrow^* t$ in (E, R) such that $s \leftrightarrow t >_{\mathcal{U}} P$

- ground $s \leftrightarrow t$ is redundant in (E, R) with respect to $> \Leftrightarrow \exists \text{ proof } P \text{ of } s \leftrightarrow^* t \text{ in } (E, R) \text{ such that } s \leftrightarrow t >_{\mathcal{U}} P$
- non-ground $s \leftrightarrow t$ is redundant in (E, R) with respect to > \iff all its ground instances are redundant

- ground $s \leftrightarrow t$ is redundant in (E, R) with respect to $> \Leftrightarrow \exists \text{ proof } P \text{ of } s \leftrightarrow^* t \text{ in } (E, R) \text{ such that } s \leftrightarrow t >_{\mathcal{U}} P$
- non-ground $s \leftrightarrow t$ is redundant in (E, R) with respect to > \iff all its ground instances are redundant
- (E, R) is reduced with respect to > \iff no equation or rule in (E, R) is redundant with respect to >

- ground $s \leftrightarrow t$ is redundant in (E, R) with respect to $> \Leftrightarrow \exists \text{ proof } P \text{ of } s \leftrightarrow^* t \text{ in } (E, R) \text{ such that } s \leftrightarrow t >_{\mathcal{U}} P$
- non-ground $s \leftrightarrow t$ is redundant in (E, R) with respect to > \iff all its ground instances are redundant
- (E, R) is reduced with respect to >

 — no equation or rule in (E, R) is redundant with respect to >

Example

$$(E_2, R_2) = \begin{cases} x + y \approx y + x & (1) \\ g(x + y) \approx g(y + x) & (2) \\ f(x, x) \to g(x) & (3) \end{cases}$$

For example
$$g(a+b) \xrightarrow{(2)} g(b+a)$$
 $g(a+b) \xrightarrow{(1)} g(b+a)$

- ground $s \leftrightarrow t$ is redundant in (E, R) with respect to $> \Leftrightarrow \exists \text{ proof } P \text{ of } s \leftrightarrow^* t \text{ in } (E, R) \text{ such that } s \leftrightarrow t >_{\mathcal{U}} P$
- non-ground $s \leftrightarrow t$ is redundant in (E, R) with respect to > \iff all its ground instances are redundant
- (E, R) is reduced with respect to > \iff no equation or rule in (E, R) is redundant with respect to >

Example

$$(E_2, R_2) = \begin{cases} x + y \approx y + x & (1) \\ g(x + y) \approx g(y + x) & (2) \\ f(x, x) \to g(x) & (3) \end{cases}$$

For example $g(a+b) \xrightarrow{(2)} g(b+a) >_{\mathcal{U}} g(a+b) \xrightarrow{(1)} g(b+a)$

- ground $s \leftrightarrow t$ is redundant in (E, R) with respect to $> \Leftrightarrow \exists \text{ proof } P \text{ of } s \leftrightarrow^* t \text{ in } (E, R) \text{ such that } s \leftrightarrow t >_{\mathcal{U}} P$
- non-ground $s \leftrightarrow t$ is redundant in (E, R) with respect to > \iff all its ground instances are redundant
- (E, R) is reduced with respect to > \iff no equation or rule in (E, R) is redundant with respect to >

Example

$$(E_2, R_2) = \begin{cases} x + y \approx y + x & (1) \\ g(x + y) \approx g(y + x) & (2) \\ f(x, x) \rightarrow g(x) & (3) \end{cases}$$

For example $g(a+b) \xrightarrow{(2)} g(b+a) >_{\mathcal{U}} g(a+b) \xrightarrow{(1)} g(b+a)$ because $(\{g(a+b)\}, g(a+b), \ldots) >_{c} (\{g(a+b)\}, a+b, \ldots\})$

- ground $s \leftrightarrow t$ is redundant in (E, R) with respect to $> \iff \exists \text{ proof } P \text{ of } s \leftrightarrow^* t \text{ in } (E, R) \text{ such that } s \leftrightarrow t >_{\mathcal{U}} P$
- non-ground $s \leftrightarrow t$ is redundant in (E, R) with respect to > \iff all its ground instances are redundant
- (E, R) is reduced with respect to > \iff no equation or rule in (E, R) is redundant with respect to >

Example

$$(E_2, R_2) = \begin{cases} x + y \approx y + x & (1) \\ g(x + y) \approx g(y + x) & (2) \text{ redundant} \\ f(x, x) \rightarrow g(x) & (3) \end{cases}$$

For example
$$g(a+b) \xrightarrow{(2)} g(b+a) >_{\mathcal{U}} g(a+b) \xrightarrow{(1)} g(b+a)$$
 because $(\{g(a+b)\}, g(a+b), \ldots) >_{c} (\{g(a+b)\}, a+b, \ldots\})$

- ground $s \leftrightarrow t$ is redundant in (E, R) with respect to $> \Leftrightarrow \exists \text{ proof } P \text{ of } s \leftrightarrow^* t \text{ in } (E, R) \text{ such that } s \leftrightarrow t >_{\mathcal{U}} P$
- non-ground $s \leftrightarrow t$ is redundant in (E, R) with respect to > \iff all its ground instances are redundant
- (E, R) is reduced with respect to >

 — no equation or rule in (E, R) is redundant with respect to >

Example

$$(E_2, R_2) = \begin{cases} x + y \approx y + x & (1) \\ g(x + y) \approx g(y + x) & (2) \text{ redundant} \\ f(x, x) \rightarrow g(x) & (3) \end{cases}$$

For example
$$g(a+b) \xrightarrow{(2)} g(b+a) >_{\mathcal{U}} g(a+b) \xrightarrow{(1)} g(b+a)$$
 because $(\{g(a+b)\}, g(a+b), \ldots) >_{c} (\{g(a+b)\}, a+b, \ldots\})$

▶ not reduced

ground-complete systems for same theory

$$(E_1, R_1) = \begin{cases} x + y \approx y + x \\ f(x, y) \rightarrow g(x + y) \end{cases} \quad (E_2, R_2) = \begin{cases} x + y \approx y + x \\ f(x, y) \rightarrow g(y + x) \end{cases}$$

compatible with \succ being LPO with precedence f > g

ground-complete systems for same theory

$$(E_1, R_1) = \begin{cases} x + y \approx y + x \\ f(x, y) \to g(x + y) \end{cases} \quad (E_2, R_2) = \begin{cases} x + y \approx y + x \\ f(x, y) \to g(y + x) \end{cases}$$

compatible with \succ being LPO with precedence f > g

Problem

different right-hand sides of rewrite rules

ground-complete systems for same theory

$$(E_1,R_1)=\left\{egin{array}{ll} g(x)
ightarrow a \ f(x)
ightarrow g(x) \ f(x)
ightarrow a \end{array}
ight. \quad (E_2,R_2)=\left\{egin{array}{ll} g(f(x))
ightarrow a \ g(g(x))
ightarrow a \ g(a)
ightarrow a \ f(x)
ightarrow g(x) \ f(x)
ightarrow a \end{array}
ight.$$

compatible with \succ being LPO where f > g

ground-complete systems for same theory

$$(E_1, R_1) = \begin{cases} g(x) \to a \\ f(x) \to g(x) \\ f(x) \to a \end{cases} \qquad (E_2, R_2) = \begin{cases} g(f(x)) \to a \\ g(g(x)) \to a \\ g(a) \to a \\ f(x) \to g(x) \\ f(x) \to a \end{cases}$$

compatible with \succ being LPO where f > g

Problem

one rule in R_1 plays role of three rules in R_2

ground-complete systems for same theory

$$(E_1, R_1) = \begin{cases} g(x) \to a \\ f(x) \to g(x) \end{cases} \quad (E_2, R_2) = \begin{cases} g(f(x)) \to a \\ g(g(x)) \to a \end{cases} \quad g(a) \to a \quad f(x) \to g(x) \quad f(x) \to a \end{cases}$$

compatible with \succ being LPO where f > g

Problem

one rule in R_1 plays role of three rules in R_2

Definition

1111 42 117 117 117 117 117

(E,R) compatible with reduction order \succ is fairly constructed \iff for every $s \leftarrow u \rightarrow t$ in $CP_{\succ}(E \cup R)$

$$\exists$$
 proof P of $s \leftrightarrow^* t$ in (E,R) such that $(s,u,t) \succ_{\mathcal{U}} P$

A (non-)result

Assume all $u \approx v$ in $E_1 \cup E_2$ satisfy Var(u) = Var(v).

A (non-)result

Assume all $u \approx v$ in $E_1 \cup E_2$ satisfy Var(u) = Var(v).

Claim

Let (E_1, R_1) and (E_2, R_2) be two systems

- compatible with reduction order ≻,
- ground-complete and reduced for total reduction order >⊇≻,and
- · fairly constructed
- such that $\leftrightarrow_{E_1 \cup R_1}^* = \leftrightarrow_{E_2 \cup R_2}^*$ on ground terms.

A (non-)result

Assume all $u \approx v$ in $E_1 \cup E_2$ satisfy Var(u) = Var(v).

Claim

Let (E_1, R_1) and (E_2, R_2) be two systems

- compatible with reduction order ≻,
- ground-complete and reduced for total reduction order >⊇≻,and
- · fairly constructed
- such that $\leftrightarrow^*_{E_1 \cup R_1} = \leftrightarrow^*_{E_2 \cup R_2}$ on ground terms.

Then

- for ground instance $\hat{u} \approx \hat{v}$ of $u \approx v$ in E_i $\exists u' \approx v'$ in E_i such that $\hat{u} \approx \hat{v}$ is instance of $u' \approx v'$
- ullet reducible ground terms in R_1 and R_2 coincide

up to renaming variables.

Proof attempt (1)

- · assume there is some
 - equation that is instance of $u \approx v$ in E_i but not of any $u' \approx v'$ in E_i
 - term reducible by $u \rightarrow v$ in R_i but not in R_i

then \exists ground instance $\hat{u} \leftrightarrow \hat{v}$ having no smaller proof in E_i, R_i

Proof attempt (1)

- assume there is some
 - equation that is instance of $u \approx v$ in E_i but not of any $u' \approx v'$ in E_i
 - term reducible by $u \rightarrow v$ in R_i but not in R_j

then \exists ground instance $\hat{u} \leftrightarrow \hat{v}$ having no smaller proof in E_i, R_i

 $\bullet \ \ \mathsf{choose} \ \mathsf{such} \ \big(\hat{u},\hat{v}\big) \ \mathsf{minimal} \ \mathsf{wrt} \ \mathsf{to} >_{\mathcal{U}} \qquad \qquad \big(\mathsf{wlog}, \ u \leftrightarrow v \ \mathsf{in} \ \big(E_1,R_1\big)\big)$

- assume there is some
 - equation that is instance of $u \approx v$ in E_i but not of any $u' \approx v'$ in E_i
 - term reducible by $u \rightarrow v$ in R_i but not in R_i

then \exists ground instance $\hat{u} \leftrightarrow \hat{v}$ having no smaller proof in E_i, R_i

• choose such (\hat{u}, \hat{v}) minimal wrt to $>_{\mathcal{U}}$ (wlog, $u \leftrightarrow v$ in (E_1, R_1))

note that \forall $(\hat{s}, \hat{t}) <_{\mathcal{U}} (\hat{u}, \hat{v})$

- if $\hat{s} \approx \hat{t}$ instance of $s \approx t$ in E_2 either $\exists s' \approx t'$ in E_1 , or \exists proof Q of $\hat{s} \leftrightarrow^* \hat{t}$ in (E_1, R_1) with $(\hat{s}, \hat{t}) >_{\mathcal{U}} Q$
- if $\hat{s} \rightarrow \hat{t}$ instance of $s \rightarrow t$ in R_2 either \hat{s} reducible in R_1 , or \exists proof Q of $\hat{s} \leftrightarrow^* \hat{t}$ in (E_1, R_1) with $(\hat{s},\hat{t})>_{\mathcal{U}}Q$

- assume there is some
 - equation that is instance of $u \approx v$ in E_i but not of any $u' \approx v'$ in E_i
 - term reducible by $u \rightarrow v$ in R_i but not in R_i

then \exists ground instance $\hat{u} \leftrightarrow \hat{v}$ having no smaller proof in E_i, R_i

• choose such (\hat{u}, \hat{v}) minimal wrt to $>_{\mathcal{U}}$ (wlog, $u \leftrightarrow v$ in (E_1, R_1))

note that \forall $(\hat{s}, \hat{t}) <_{\mathcal{U}} (\hat{u}, \hat{v})$

- if $\hat{s} \approx \hat{t}$ instance of $s \approx t$ in E_2 either $\exists s' \approx t'$ in E_1 , or \exists proof Q of $\hat{s} \leftrightarrow^* \hat{t}$ in (E_1, R_1) with $(\hat{s}, \hat{t}) >_{\mathcal{U}} Q$
- if $\hat{s} \rightarrow \hat{t}$ instance of $s \rightarrow t$ in R_2 either \hat{s} reducible in R_1 , or \exists proof Q of $\hat{s} \leftrightarrow^* \hat{t}$ in (E_1, R_1) with $(\hat{s},\hat{t})>_{\mathcal{U}}Q$
- ground-complete system (E_2, R_2) allows for proof P

$$\hat{u}
ightarrow t_1
ightarrow t_2
ightarrow \ldots
ightarrow t_k \leftarrow \ldots \leftarrow \hat{v}$$

which is minimal wrt $>_{\mathcal{U}}$

 (E_2, R_2) allows for minimal proof P

$$\hat{\textit{u}} \xrightarrow[\sigma_1]{\textit{u}_1 \leftrightarrow \textit{v}_1} p_1 \, t_1 \, \xrightarrow[\sigma_2]{\textit{u}_2 \leftrightarrow \textit{v}_2} p_2 \, t_2 \, \rightarrow \, \ldots \, \rightarrow \, t_k \, \leftarrow \, \ldots \, \leftarrow \, \hat{\textit{v}}$$

case $u \rightarrow v$ is rule in R_1

 (E_2, R_2) allows for minimal proof P

$$\hat{u} \xrightarrow[\sigma_1]{u_1 \leftrightarrow v_1}_{\rho_1} t_1 \xrightarrow[\sigma_2]{u_2 \leftrightarrow v_2}_{\rho_2} t_2 \rightarrow \ldots \rightarrow t_k \leftarrow \ldots \leftarrow \hat{v}$$

case $u \rightarrow v$ is rule in R_1

 (E_2, R_2) allows for minimal proof P

$$\hat{\textit{u}} \xrightarrow[\sigma_1]{u_1 \leftrightarrow v_1}_{\rho_1} t_1 \xrightarrow[\sigma_2]{u_2 \leftrightarrow v_2}_{\rho_2} t_2 \rightarrow \ldots \rightarrow t_k \leftarrow \ldots \leftarrow \hat{\textit{v}}$$

case $u \rightarrow v$ is rule in R_1

 assume u₁ ≈ v₁ is equation step by compatibility, P has more than one step

case
$$p_1 = \epsilon$$

 (E_2, R_2) allows for minimal proof P

$$\hat{u} \xrightarrow[\sigma_1]{u_1 \leftrightarrow v_1}_{\rho_1} t_1 \xrightarrow[\sigma_2]{u_2 \leftrightarrow v_2}_{\rho_2} t_2 \rightarrow \ldots \rightarrow t_k \leftarrow \ldots \leftarrow \hat{v}$$

case $u \rightarrow v$ is rule in R_1

 assume u₁ ≈ v₁ is equation step by compatibility, P has more than one step

case
$$p_1 = \epsilon$$
 case $p_2 \in \mathcal{P} \mathsf{os}_{\mathcal{F}}(v_1)$

 (E_2, R_2) allows for minimal proof P

$$\hat{u} \xrightarrow[\sigma_1]{u_1 \leftrightarrow v_1}_{\rho_1} t_1 \xrightarrow[\sigma_2]{u_2 \leftrightarrow v_2}_{\rho_2} t_2 \rightarrow \ldots \rightarrow t_k \leftarrow \ldots \leftarrow \hat{v}$$

case $u \rightarrow v$ is rule in R_1

• assume $u_1 \approx v_1$ is equation step by compatibility, P has more than one step

case
$$p_1 = \epsilon$$
 case $p_2 \in \mathcal{P}$ os $_{\mathcal{F}}(v_1)$

• $u_1 \approx v_1$ and $u_2 \leftrightarrow v_2$ form extended critical pair in $CP_{\succ}(E_2, R_2)$

 (E_2, R_2) allows for minimal proof P

$$\hat{u} \xrightarrow[\sigma_1]{u_1 \leftrightarrow v_1} p_1 t_1 \xrightarrow[\sigma_2]{u_2 \leftrightarrow v_2} p_2 t_2 \rightarrow \ldots \rightarrow t_k \leftarrow \ldots \leftarrow \hat{v}$$

case $u \rightarrow v$ is rule in R_1

```
case p_1 = \epsilon case p_2 \in \mathcal{P}os_{\mathcal{F}}(v_1)
```

- $u_1 \approx v_1$ and $u_2 \leftrightarrow v_2$ form extended critical pair in $CP_{\succ}(E_2, R_2)$
- P not minimal as (E_2, R_2) fairly constructed

 (E_2, R_2) allows for minimal proof P

$$\hat{u} \xrightarrow[\sigma_1]{u_1 \leftrightarrow v_1}_{\rho_1} t_1 \xrightarrow[\sigma_2]{u_2 \leftrightarrow v_2}_{\rho_2} t_2 \rightarrow \ldots \rightarrow t_k \leftarrow \ldots \leftarrow \hat{v}$$

case $u \rightarrow v$ is rule in R_1

 assume u₁ ≈ v₁ is equation step by compatibility, P has more than one step

case
$$p_1 = \epsilon$$

case $p_2 \in \mathcal{P}os_{\mathcal{F}}(v_1)$;
case $p_2 = q_0q_1$ for $q_0 \in \mathcal{P}os_{\mathcal{V}}(v_1)$

 (E_2, R_2) allows for minimal proof P

$$\hat{u} \xrightarrow[\sigma_1]{u_1 \leftrightarrow v_1} p_1 t_1 \xrightarrow[\sigma_2]{u_2 \leftrightarrow v_2} p_2 t_2 \rightarrow \ldots \rightarrow t_k \leftarrow \ldots \leftarrow \hat{v}$$

case $u \rightarrow v$ is rule in R_1

• assume $u_1 \approx v_1$ is equation step by compatibility, P has more than one step

 $\exists \hat{u}'$ such that $\hat{u} \xrightarrow{u_2 \leftrightarrow v_2} \hat{u}'$ (as u_1, v_1 have same variables)

SW (IPT)

 (E_2, R_2) allows for minimal proof P

$$\hat{u} \xrightarrow[\sigma_1]{u_1 \leftrightarrow v_1} p_1 t_1 \xrightarrow[\sigma_2]{u_2 \leftrightarrow v_2} p_2 t_2 \rightarrow \ldots \rightarrow t_k \leftarrow \ldots \leftarrow \hat{v}$$

case $u \rightarrow v$ is rule in R_1

```
case p_1 = \epsilon
      case p_2 \in \mathcal{P}os_{\mathcal{F}}(v_1)
       case p_2 = q_0 q_1 for q_0 \in \mathcal{P}os_{\mathcal{V}}(v_1)
```

- $\exists \hat{u}'$ such that $\hat{u} \xrightarrow{u_2 \leftrightarrow v_2} \hat{u}'$
- (as u_1, v_1 have same variables)
 - $(\hat{u}, \hat{v}) >_{1} (u_2 \sigma_2, v_2 \sigma_2)$
 - so some proof of $u_2\sigma_2 \leftrightarrow^* v_2\sigma_2$ in (E_1, R_1) is $\leq_{\mathcal{U}} (u_2\sigma_2, v_2\sigma_2)$ (\bigstar)

 (E_2, R_2) allows for minimal proof P

$$\hat{u} \xrightarrow[\sigma_1]{u_1 \leftrightarrow v_1} p_1 t_1 \xrightarrow[\sigma_2]{u_2 \leftrightarrow v_2} p_2 t_2 \rightarrow \ldots \rightarrow t_k \leftarrow \ldots \leftarrow \hat{v}$$

case $u \rightarrow v$ is rule in R_1

 assume u₁ ≈ v₁ is equation step by compatibility, P has more than one step

- $\exists \hat{u}' \text{ such that } \hat{u} \xrightarrow{u_2 \leftrightarrow v_2} \hat{u}'$
- (as u_1, v_1 have same variables)
 - $(\hat{u}, \hat{v}) >_{\mathcal{U}} (u_2 \sigma_2, v_2 \sigma_2)$
 - so some proof of $u_2\sigma_2 \leftrightarrow^* v_2\sigma_2$ in (E_1, R_1) is $\leq_{\mathcal{U}} (u_2\sigma_2, v_2\sigma_2)$ (\bigstar)
 - ground-complete (E_1, R_1) has valley proof for $\hat{u}' \leftrightarrow^* \hat{v}$

 (E_2, R_2) allows for minimal proof P

$$\hat{u} \xrightarrow[\sigma_1]{u_1 \leftrightarrow v_1} \rho_1 t_1 \xrightarrow[\sigma_2]{u_2 \leftrightarrow v_2} \rho_2 t_2 \rightarrow \ldots \rightarrow t_k \leftarrow \ldots \leftarrow \hat{v}$$

case $u \rightarrow v$ is rule in R_1

```
case p_1 = \epsilon
      case p_2 \in \mathcal{P}os_{\mathcal{F}}(v_1)
      case p_2 = q_0 q_1 for q_0 \in \mathcal{P}os_{\mathcal{V}}(v_1)
```

- $\exists \hat{u}'$ such that $\hat{u} \xrightarrow{u_2 \leftrightarrow v_2} \hat{u}'$
- (as u_1, v_1 have same variables)
 - $(\hat{u}, \hat{v}) >_{1} (u_2 \sigma_2, v_2 \sigma_2)$
 - so some proof of $u_2\sigma_2 \leftrightarrow^* v_2\sigma_2$ in (E_1, R_1) is $\leq_{\mathcal{U}} (u_2\sigma_2, v_2\sigma_2)$ (\bigstar)
 - ground-complete (E_1, R_1) has valley proof for $\hat{u}' \leftrightarrow^* \hat{v}$
 - $\hat{u} \leftrightarrow^* \hat{u}' \leftrightarrow^* \hat{v}$ is smaller proof of (\hat{u}, \hat{v}) in (E_1, R_1) , contradicting choice of (\hat{u}, \hat{v})

 (E_2, R_2) allows for minimal proof P

$$\hat{u} \xrightarrow[\sigma_1]{u_1 \leftrightarrow v_1} p_1 t_1 \xrightarrow[\sigma_2]{u_2 \leftrightarrow v_2} p_2 t_2 \rightarrow \ldots \rightarrow t_k \leftarrow \ldots \leftarrow \hat{v}$$

case $u \rightarrow v$ is rule in R_1

- $\exists \hat{u}'$ such that $\hat{u} \xrightarrow{u_2 \leftrightarrow v_2} \hat{u}'$
- (as u_1, v_1 have same variables)
 - $(\hat{u}, \hat{v}) >_{\mathcal{U}} (u_2 \sigma_2, v_2 \sigma_2)$
 - so some proof of $u_2\sigma_2 \leftrightarrow^* v_2\sigma_2$ in (E_1, R_1) is $\leq_{\mathcal{U}} (u_2\sigma_2, v_2\sigma_2)$ (\bigstar)
 - ground-complete (E_1, R_1) has valley proof for $\hat{u}' \leftrightarrow^* \hat{v}$
 - $\hat{u} \leftrightarrow^* \hat{u}' \leftrightarrow^* \hat{v}$ is smaller proof of (\hat{u}, \hat{v}) in (E_1, R_1) , contradicting choice of (\hat{u}, \hat{v})

 (E_2, R_2) allows for minimal proof P

$$\hat{u} \xrightarrow[\sigma_1]{u_1 \leftrightarrow v_1}_{\rho_1} t_1 \xrightarrow[\sigma_2]{u_2 \leftrightarrow v_2}_{\rho_2} t_2 \rightarrow \ldots \rightarrow t_k \leftarrow \ldots \leftarrow \hat{v}$$

case $u \rightarrow v$ is rule in R_1

 assume u₁ ≈ v₁ is equation step by compatibility, P has more than one step

case
$$p_1 = \epsilon$$
 the case $p > \epsilon$

 (E_2, R_2) allows for minimal proof P

$$\hat{u} \xrightarrow[\sigma_1]{u_1 \leftrightarrow v_1}_{\rho_1} t_1 \xrightarrow[\sigma_2]{u_2 \leftrightarrow v_2}_{\rho_2} t_2 \rightarrow \ldots \rightarrow t_k \leftarrow \ldots \leftarrow \hat{v}$$

case $u \rightarrow v$ is rule in R_1

case
$$p_1 = \epsilon$$
 case $p > \epsilon$

 (E_2, R_2) allows for minimal proof P

$$\hat{u} \xrightarrow[\sigma_1]{u_1 \leftrightarrow v_1} p_1 t_1 \xrightarrow[\sigma_2]{u_2 \leftrightarrow v_2} p_2 t_2 \rightarrow \ldots \rightarrow t_k \leftarrow \ldots \leftarrow \hat{v}$$

case $u \rightarrow v$ is rule in R_1

case
$$p_1 = \epsilon$$
 that case $p > \epsilon$

- *u* ⊳ *u*₁
- $(\hat{u}, \hat{v}) >_{\mathcal{U}} (\hat{u}, t_1)$ as $(\{\hat{u}\}, \hat{u}, u, ...) >_{c} (\{\hat{u}\}, u_1 \sigma_1, u_1, ...)$

 (E_2, R_2) allows for minimal proof P

$$\hat{u} \xrightarrow[\sigma_1]{u_1 \leftrightarrow v_1} p_1 t_1 \xrightarrow[\sigma_2]{u_2 \leftrightarrow v_2} p_2 t_2 \rightarrow \ldots \rightarrow t_k \leftarrow \ldots \leftarrow \hat{v}$$

case $u \rightarrow v$ is rule in R_1

```
case p_1 = \epsilon 

case p > \epsilon

• u \triangleright u_1

• (\hat{u}, \hat{v}) >_{\mathcal{U}} (\hat{u}, t_1) as (\{\hat{u}\}, \hat{u}, u, \ldots) >_{c} (\{\hat{u}\}, u_1 \sigma_1, u_1, \ldots)

• (\hat{u}, \hat{v}) >_{\mathcal{U}} (u_1 \sigma_1, v_1 \sigma_1)

so some proof of u_1 \sigma_1 \leftrightarrow^* v_1 \sigma_1 in (E_1, R_1) is \leq_{\mathcal{U}} (u_1 \sigma_1, v_1 \sigma_1) (\bigstar)
```

 (E_2, R_2) allows for minimal proof P

$$\hat{u} \xrightarrow[\sigma_1]{u_1 \leftrightarrow v_1} p_1 t_1 \xrightarrow[\sigma_2]{u_2 \leftrightarrow v_2} p_2 t_2 \rightarrow \ldots \rightarrow t_k \leftarrow \ldots \leftarrow \hat{v}$$

case $u \rightarrow v$ is rule in R_1

```
case p_1 = \epsilon case p > \epsilon
```

- U ▷ U1
- $(\hat{u}, \hat{v}) >_{\mathcal{U}} (\hat{u}, t_1)$ as $(\{\hat{u}\}, \hat{u}, u, ...) >_{c} (\{\hat{u}\}, u_1 \sigma_1, u_1, ...)$
- $(\hat{u}, \hat{v}) >_{\mathcal{U}} (u_1 \sigma_1, v_1 \sigma_1)$
 - so some proof of $u_1\sigma_1 \leftrightarrow^* v_1\sigma_1$ in (E_1, R_1) is $\leq_{\mathcal{U}} (u_1\sigma_1, v_1\sigma_1)$ (\bigstar)
 - ground-complete (E_1,R_1) has valley proof for $t_1 \leftrightarrow^* \hat{v}$

 (E_2, R_2) allows for minimal proof P

$$\hat{u} \xrightarrow[\sigma_1]{u_1 \leftrightarrow v_1} p_1 t_1 \xrightarrow[\sigma_2]{u_2 \leftrightarrow v_2} p_2 t_2 \rightarrow \ldots \rightarrow t_k \leftarrow \ldots \leftarrow \hat{v}$$

case $u \rightarrow v$ is rule in R_1

case
$$p_1 = \epsilon$$
 case $p > \epsilon$

- U ▷ U1
- $\bullet \ (\hat{u},\hat{v})>_{\mathcal{U}} (\hat{u},t_1) \text{ as } (\{\hat{u}\},\hat{u},u,\ldots)>_c (\{\hat{u}\},u_1\sigma_1,u_1,\ldots)$
- $(\hat{u}, \hat{v}) >_{\mathcal{U}} (u_1 \sigma_1, v_1 \sigma_1)$
 - so some proof of $u_1\sigma_1 \leftrightarrow^* v_1\sigma_1$ in (E_1, R_1) is $\leq_{\mathcal{U}} (u_1\sigma_1, v_1\sigma_1)$ (\bigstar)
 - ground-complete (E_1, R_1) has valley proof for $t_1 \leftrightarrow^* \hat{v}$
 - $\hat{u} \leftrightarrow^* t_1 \leftrightarrow^* \hat{v}$ yields proof Q in (E_1,R_1) such that $Q <_{\mathcal{U}} (\hat{u},\hat{v})$

 (E_2, R_2) allows for minimal proof P

$$\hat{u} \xrightarrow[\sigma_1]{u_1 \leftrightarrow v_1} p_1 t_1 \xrightarrow[\sigma_2]{u_2 \leftrightarrow v_2} p_2 t_2 \rightarrow \ldots \rightarrow t_k \leftarrow \ldots \leftarrow \hat{v}$$

case $u \rightarrow v$ is rule in R_1

case
$$p_1 = \epsilon$$
 to case $p > \epsilon$

- U ▷ U1
- $(\hat{u}, \hat{v}) >_{\mathcal{U}} (\hat{u}, t_1)$ as $(\{\hat{u}\}, \hat{u}, u, \ldots) >_{c} (\{\hat{u}\}, u_1 \sigma_1, u_1, \ldots)$
- $(\hat{u},\hat{v})>_{\mathcal{U}}(u_{1}\sigma_{1},v_{1}\sigma_{1})$
 - so some proof of $u_1\sigma_1 \leftrightarrow^* v_1\sigma_1$ in (E_1, R_1) is $\leq_{\mathcal{U}} (u_1\sigma_1, v_1\sigma_1)$ (\bigstar)
 - ground-complete (E_1, R_1) has valley proof for $t_1 \leftrightarrow^* \hat{v}$
 - $\hat{u} \leftrightarrow^* t_1 \leftrightarrow^* \hat{v}$ yields proof Q in (E_1, R_1) such that $Q <_{\mathcal{U}} (\hat{u}, \hat{v})$
 - contradicts choice of (\hat{u}, \hat{v})

 (E_2, R_2) allows for minimal proof P

$$\hat{u} \xrightarrow[\sigma_1]{u_1 \leftrightarrow v_1}_{\rho_1} t_1 \xrightarrow[\sigma_2]{u_2 \leftrightarrow v_2}_{\rho_2} t_2 \rightarrow \ldots \rightarrow t_k \leftarrow \ldots \leftarrow \hat{v}$$

case $u \rightarrow v$ is rule in R_1

• assume $u_1 \approx v_1$ is equation step $\frac{1}{2}$

 (E_2, R_2) allows for minimal proof P

$$\hat{u} \xrightarrow[\sigma_1]{u_1 \leftrightarrow v_1}_{\rho_1} t_1 \xrightarrow[\sigma_2]{u_2 \leftrightarrow v_2}_{\rho_2} t_2 \rightarrow \ldots \rightarrow t_k \leftarrow \ldots \leftarrow \hat{v}$$

case $u \rightarrow v$ is rule in R_1

- assume $u_1 \approx v_1$ is equation step $\frac{1}{2}$
- $u_1 \rightarrow v_1$ must be rewrite step

 (E_2, R_2) allows for minimal proof P

$$\hat{u} \xrightarrow[\sigma_1]{u_1 \leftrightarrow v_1} p_1 t_1 \xrightarrow[\sigma_2]{u_2 \leftrightarrow v_2} p_2 t_2 \rightarrow \ldots \rightarrow t_k \leftarrow \ldots \leftarrow \hat{v}$$

case $u \rightarrow v$ is rule in R_1

- assume $u_1 \approx v_1$ is equation step $\frac{1}{2}$
- $u_1 \rightarrow v_1$ must be rewrite step
- reducible ground terms in R₁, R₂ coincide

 (E_2, R_2) allows for minimal proof P

$$\hat{u} \xrightarrow[\sigma_1]{u_1 \leftrightarrow v_1} p_1 t_1 \xrightarrow[\sigma_2]{u_2 \leftrightarrow v_2} p_1 t_2 \rightarrow \ldots \rightarrow t_k \leftarrow \ldots \leftarrow \hat{v}$$

case $u \approx v$ is equation in E_1

 (E_2, R_2) allows for minimal proof P

$$\hat{u} \xrightarrow[\sigma_1]{u_1 \leftrightarrow v_1} p_1 t_1 \xrightarrow[\sigma_2]{u_2 \leftrightarrow v_2} p_1 t_2 \rightarrow \ldots \rightarrow t_k \leftarrow \ldots \leftarrow \hat{v}$$

case $u \approx v$ is equation in E_1

 $(\text{wlog}, \hat{u} > \hat{v})$

 (E_2, R_2) allows for minimal proof P

$$\hat{u} \xrightarrow[\sigma_1]{u_1 \leftrightarrow v_1} p_1 t_1 \xrightarrow[\sigma_2]{u_2 \leftrightarrow v_2} p_1 t_2 \rightarrow \ldots \rightarrow t_k \leftarrow \ldots \leftarrow \hat{v}$$

case $u \approx v$ is equation in E_1

 $(\text{wlog}, \hat{u} > \hat{v})$

case
$$p_1 > \epsilon$$

 (E_2, R_2) allows for minimal proof P

$$\hat{u} \xrightarrow[\sigma_1]{u_1 \leftrightarrow v_1} p_1 t_1 \xrightarrow[\sigma_2]{u_2 \leftrightarrow v_2} p_1 t_2 \rightarrow \ldots \rightarrow t_k \leftarrow \ldots \leftarrow \hat{v}$$

case $u \approx v$ is equation in E_1

(wlog, $\hat{u} > \hat{v}$)

case
$$p_1 > \epsilon$$

• have
$$(\hat{u}, \hat{v}) >_{\mathcal{U}} (\hat{u}, t_1)$$
 as $(\{\hat{u}\}, \hat{u}, \ldots) >_{c} (\{\hat{u}\}, u_1 \sigma_1, \ldots)$

 (E_2, R_2) allows for minimal proof P

$$\hat{u} \xrightarrow[\sigma_1]{u_1 \leftrightarrow v_1} p_1 t_1 \xrightarrow[\sigma_2]{u_2 \leftrightarrow v_2} p_1 t_2 \rightarrow \ldots \rightarrow t_k \leftarrow \ldots \leftarrow \hat{v}$$

case $u \approx v$ is equation in E_1

(wlog, $\hat{u} > \hat{v}$)

case
$$p_1 > \epsilon$$

- have $(\hat{u}, \hat{v}) >_{\mathcal{U}} (\hat{u}, t_1)$ as $(\{\hat{u}\}, \hat{u}, \ldots) >_{c} (\{\hat{u}\}, u_1 \sigma_1, \ldots)$
- hence also $(\hat{u}, \hat{v}) >_{\mathcal{U}} (u_1 \sigma_1, v_1 \sigma_1)$
 - so some proof of $u_1\sigma_1 \leftrightarrow^* v_1\sigma_1$ in (E_1, R_1) is $\leq_{\mathcal{U}} (u_1\sigma_1, v_1\sigma_1)$ (\bigstar)

 (E_2, R_2) allows for minimal proof P

$$\hat{u} \xrightarrow[\sigma_1]{u_1 \leftrightarrow v_1} \rho_1 t_1 \xrightarrow[\sigma_2]{u_2 \leftrightarrow v_2} \rho_1 t_2 \rightarrow \ldots \rightarrow t_k \leftarrow \ldots \leftarrow \hat{v}$$

case $u \approx v$ is equation in E_1

(wlog, $\hat{u} > \hat{v}$)

case
$$p_1 > \epsilon$$

- have $(\hat{u}, \hat{v}) >_{1/2} (\hat{u}, t_1)$ as $(\{\hat{u}\}, \hat{u}, \ldots) >_{c} (\{\hat{u}\}, u_{1}\sigma_{1}, \ldots)$
- hence also $(\hat{u}, \hat{v}) >_{\mathcal{U}} (u_1 \sigma_1, v_1 \sigma_1)$
- so some proof of $u_1\sigma_1 \leftrightarrow^* v_1\sigma_1$ in (E_1, R_1) is $\leq_{\mathcal{U}} (u_1\sigma_1, v_1\sigma_1)$ (\bigstar) case $u_1 \approx v_1$ is equation

 (E_2, R_2) allows for minimal proof P

$$\hat{u} \xrightarrow[\sigma_1]{u_1 \leftrightarrow v_1} \rho_1 t_1 \xrightarrow[\sigma_2]{u_2 \leftrightarrow v_2} \rho_1 t_2 \rightarrow \ldots \rightarrow t_k \leftarrow \ldots \leftarrow \hat{v}$$

case $u \approx v$ is equation in E_1

(wlog, $\hat{u} > \hat{v}$)

case
$$p_1 > \epsilon$$

- have $(\hat{u}, \hat{v}) >_{1/2} (\hat{u}, t_1)$ as $(\{\hat{u}\}, \hat{u}, \ldots) >_{c} (\{\hat{u}\}, u_{1}\sigma_{1}, \ldots)$
- hence also $(\hat{u}, \hat{v}) >_{\mathcal{U}} (u_1 \sigma_1, v_1 \sigma_1)$
- so some proof of $u_1\sigma_1 \leftrightarrow^* v_1\sigma_1$ in (E_1, R_1) is $\leq_{\mathcal{U}} (u_1\sigma_1, v_1\sigma_1)$ (\bigstar) case $u_1 \approx v_1$ is equation

•
$$\hat{u} \mapsto^* t_1 \leftrightarrow^* \hat{v}$$
 yields proof Q in (E_1, R_1) such that $Q <_{\mathcal{U}} (\hat{u}, \hat{v})$

 (E_2, R_2) allows for minimal proof P

$$\hat{u} \xrightarrow[\sigma_1]{u_1 \leftrightarrow v_1} \rho_1 t_1 \xrightarrow[\sigma_2]{u_2 \leftrightarrow v_2} \rho_1 t_2 \rightarrow \ldots \rightarrow t_k \leftarrow \ldots \leftarrow \hat{v}$$

case $u \approx v$ is equation in E_1

(wlog, $\hat{u} > \hat{v}$)

case
$$p_1 > \epsilon$$

- have $(\hat{u}, \hat{v}) >_{1/2} (\hat{u}, t_1)$ as $(\{\hat{u}\}, \hat{u}, \ldots) >_{c} (\{\hat{u}\}, u_{1}\sigma_{1}, \ldots)$
- \bullet hence also $(\hat{u}, \hat{v}) >_{\mathcal{U}} (u_1 \sigma_1, v_1 \sigma_1)$
- so some proof of $u_1\sigma_1 \leftrightarrow^* v_1\sigma_1$ in (E_1, R_1) is $\leq_{\mathcal{U}} (u_1\sigma_1, v_1\sigma_1)$ (\bigstar) case $u_1 \approx v_1$ is equation

- $\hat{u} \leftrightarrow^* t_1 \leftrightarrow^* \hat{v}$ yields proof Q in (E_1, R_1) such that $Q <_{\mathcal{U}} (\hat{u}, \hat{v})$
- ground-complete (E_1, R_1) has valley proof for $t_1 \leftrightarrow^* \hat{v}$

 (E_2, R_2) allows for minimal proof P

$$\hat{u} \xrightarrow[\sigma_1]{u_1 \leftrightarrow v_1} p_1 t_1 \xrightarrow[\sigma_2]{u_2 \leftrightarrow v_2} p_1 t_2 \rightarrow \ldots \rightarrow t_k \leftarrow \ldots \leftarrow \hat{v}$$

case $u \approx v$ is equation in E_1

(wlog, $\hat{u} > \hat{v}$)

case
$$p_1 > \epsilon$$

- have $(\hat{u}, \hat{v}) >_{1/2} (\hat{u}, t_1)$ as $(\{\hat{u}\}, \hat{u}, \ldots) >_{c} (\{\hat{u}\}, u_{1}\sigma_{1}, \ldots)$
- hence also $(\hat{u}, \hat{v}) >_{\mathcal{U}} (u_1 \sigma_1, v_1 \sigma_1)$
- so some proof of $u_1\sigma_1 \leftrightarrow^* v_1\sigma_1$ in (E_1, R_1) is $\leq_{\mathcal{U}} (u_1\sigma_1, v_1\sigma_1)$ (\bigstar) case $u_1 \approx v_1$ is equation

- $\hat{u} \leftrightarrow^* t_1 \leftrightarrow^* \hat{v}$ yields proof Q in (E_1, R_1) such that $Q <_{\mathcal{U}} (\hat{u}, \hat{v})$
- ground-complete (E_1, R_1) has valley proof for $t_1 \leftrightarrow^* \hat{v}$
- $\hat{u} \leftrightarrow^* t_1 \leftrightarrow^* \hat{v}$ yields proof Q in (E_1, R_1) such that $Q <_{\mathcal{U}} (\hat{u}, \hat{v})$

 (E_2, R_2) allows for minimal proof P

$$\hat{u} \xrightarrow[\sigma_1]{u_1 \leftrightarrow v_1} \rho_1 t_1 \xrightarrow[\sigma_2]{u_2 \leftrightarrow v_2} \rho_1 t_2 \rightarrow \ldots \rightarrow t_k \leftarrow \ldots \leftarrow \hat{v}$$

case $u \approx v$ is equation in E_1

(wlog, $\hat{u} > \hat{v}$)

case
$$p_1 > \epsilon$$

- have $(\hat{u}, \hat{v}) >_{1/2} (\hat{u}, t_1)$ as $(\{\hat{u}\}, \hat{u}, \ldots) >_{c} (\{\hat{u}\}, u_{1}\sigma_{1}, \ldots)$
- \bullet hence also $(\hat{u}, \hat{v}) >_{\mathcal{U}} (u_1 \sigma_1, v_1 \sigma_1)$
- so some proof of $u_1\sigma_1 \leftrightarrow^* v_1\sigma_1$ in (E_1, R_1) is $\leq_{\mathcal{U}} (u_1\sigma_1, v_1\sigma_1)$ (\bigstar) case $u_1 \approx v_1$ is equation $\frac{1}{2}$

- $\hat{m{u}} \leftrightarrow^* t_1 \leftrightarrow^* \hat{v}$ yields proof Q in (E_1,R_1) such that $Q <_{\mathcal{U}} (\hat{u},\hat{v})$
- ground-complete (E_1, R_1) has valley proof for $t_1 \leftrightarrow^* \hat{v}$
- $\hat{u} \longleftrightarrow^* t_1 \longleftrightarrow^* \hat{v}$ yields proof Q in (E_1, R_1) such that $Q <_{\mathcal{U}} (\hat{u}, \hat{v})$
 - contradicts choice of (û, î)

 (E_2, R_2) allows for minimal proof P

$$\hat{u} \xrightarrow[\sigma_1]{u_1 \leftrightarrow v_1} \rho_1 t_1 \xrightarrow[\sigma_2]{u_2 \leftrightarrow v_2} \rho_1 t_2 \rightarrow \ldots \rightarrow t_k \leftarrow \ldots \leftarrow \hat{v}$$

case $u \approx v$ is equation in E_1

(wlog, $\hat{u} > \hat{v}$)

case P consists of more than one step

case
$$p_1 > \epsilon$$

- have $(\hat{u}, \hat{v}) >_{1/2} (\hat{u}, t_1)$ as
 - $(\{\hat{u}\}, \hat{u}, \ldots) >_{c} (\{\hat{u}\}, u_{1}\sigma_{1}, \ldots)$
- hence also $(\hat{u}, \hat{v}) >_{\mathcal{U}} (u_1 \sigma_1, v_1 \sigma_1)$
- so some proof of $u_1\sigma_1 \leftrightarrow^* v_1\sigma_1$ in (E_1, R_1) is $\leq_{\mathcal{U}} (u_1\sigma_1, v_1\sigma_1)$ (\bigstar) case $u_1 \approx v_1$ is equation \d

case $u_1 \rightarrow v_1$ is rule

 (E_2, R_2) allows for minimal proof P

$$\hat{u} \xrightarrow[\sigma_1]{u_1 \leftrightarrow v_1} p_1 t_1 \xrightarrow[\sigma_2]{u_2 \leftrightarrow v_2} p_1 t_2 \rightarrow \ldots \rightarrow t_k \leftarrow \ldots \leftarrow \hat{v}$$

case $u \approx v$ is equation in E_1

(wlog, $\hat{u} > \hat{v}$)

case P consists of more than one step

case
$$p_1 > \epsilon$$

- have $(\hat{u}, \hat{v}) >_{1/2} (\hat{u}, t_1)$ as
 - $(\{\hat{u}\}, \hat{u}, \ldots) >_{c} (\{\hat{u}\}, u_1 \sigma_1, \ldots)$
- \bullet hence also $(\hat{u}, \hat{v}) >_{\mathcal{U}} (u_1 \sigma_1, v_1 \sigma_1)$
- so some proof of $u_1\sigma_1 \leftrightarrow^* v_1\sigma_1$ in (E_1, R_1) is $\leq_{\mathcal{U}} (u_1\sigma_1, v_1\sigma_1)$ (\bigstar) case $u_1 \approx v_1$ is equation $\frac{1}{2}$

case $u_1 \rightarrow v_1$ is rule

• \hat{u} reduces to t'_1 in (E_1, R_1)

 (E_2, R_2) allows for minimal proof P

$$\hat{u} \xrightarrow[\sigma_1]{u_1 \leftrightarrow v_1} \rho_1 t_1 \xrightarrow[\sigma_2]{u_2 \leftrightarrow v_2} \rho_1 t_2 \rightarrow \ldots \rightarrow t_k \leftarrow \ldots \leftarrow \hat{v}$$

case $u \approx v$ is equation in E_1

(wlog, $\hat{u} > \hat{v}$)

case P consists of more than one step

case
$$p_1 > \epsilon$$

- have $(\hat{u}, \hat{v}) >_{1/2} (\hat{u}, t_1)$ as
- $(\{\hat{u}\}, \hat{u}, \ldots) >_{c} (\{\hat{u}\}, u_1 \sigma_1, \ldots)$ \bullet hence also $(\hat{u}, \hat{v}) >_{\mathcal{U}} (u_1 \sigma_1, v_1 \sigma_1)$

so some proof of
$$u_1\sigma_1 \leftrightarrow^* v_1\sigma_1$$
 in (E_1, R_1) is $\leq_{\mathcal{U}} (u_1\sigma_1, v_1\sigma_1)$ (\bigstar) case $u_1 \approx v_1$ is equation $\frac{1}{2}$

case $u_1 \rightarrow v_1$ is rule

- \hat{u} reduces to t'_1 in (E_1, R_1)
- ground-complete (E_1,R_1) has valley proof for $t_1'\leftrightarrow^*\hat{v}$

 (E_2, R_2) allows for minimal proof P

$$\hat{u} \xrightarrow[\sigma_1]{u_1 \leftrightarrow v_1} \rho_1 t_1 \xrightarrow[\sigma_2]{u_2 \leftrightarrow v_2} \rho_1 t_2 \rightarrow \ldots \rightarrow t_k \leftarrow \ldots \leftarrow \hat{v}$$

case $u \approx v$ is equation in E_1

(wlog, $\hat{u} > \hat{v}$)

case P consists of more than one step

case
$$p_1 > \epsilon$$

- have $(\hat{u}, \hat{v}) >_{1/2} (\hat{u}, t_1)$ as $(\{\hat{u}\}, \hat{u}, \ldots) >_{c} (\{\hat{u}\}, u_1 \sigma_1, \ldots)$
- hence also $(\hat{u}, \hat{v}) >_{\mathcal{U}} (u_1 \sigma_1, v_1 \sigma_1)$
- so some proof of $u_1\sigma_1 \leftrightarrow^* v_1\sigma_1$ in (E_1, R_1) is $\leq_{\mathcal{U}} (u_1\sigma_1, v_1\sigma_1)$ (\bigstar) case $u_1 \approx v_1$ is equation $\frac{1}{2}$

case
$$u_1 \approx v_1$$
 is equation

case $u_1 \rightarrow v_1$ is rule

- \hat{u} reduces to t'_1 in (E_1, R_1)
- ground-complete (E_1, R_1) has valley proof for $t'_1 \leftrightarrow^* \hat{v}$
- $\hat{u} \leftrightarrow^* t_1 \leftrightarrow^* \hat{v}$ yields proof Q in (E_1, R_1) such that $Q <_{\mathcal{U}} (\hat{u}, \hat{v})$

 (E_2, R_2) allows for minimal proof P

$$\hat{u} \xrightarrow[\sigma_1]{u_1 \leftrightarrow v_1} p_1 t_1 \xrightarrow[\sigma_2]{u_2 \leftrightarrow v_2} p_1 t_2 \rightarrow \ldots \rightarrow t_k \leftarrow \ldots \leftarrow \hat{v}$$

case $u \approx v$ is equation in E_1

(wlog, $\hat{u} > \hat{v}$)

case P consists of more than one step

case
$$p_1 > \epsilon$$

- have $(\hat{u}, \hat{v}) >_{1/2} (\hat{u}, t_1)$ as $(\{\hat{u}\}, \hat{u}, \ldots) >_{c} (\{\hat{u}\}, u_1 \sigma_1, \ldots)$
- \bullet hence also $(\hat{u}, \hat{v}) >_{\mathcal{U}} (u_1 \sigma_1, v_1 \sigma_1)$
- so some proof of $u_1\sigma_1 \leftrightarrow^* v_1\sigma_1$ in (E_1, R_1) is $\leq_{\mathcal{U}} (u_1\sigma_1, v_1\sigma_1)$ (\bigstar) case $u_1 \approx v_1$ is equation $\frac{1}{2}$

case
$$u_1 pprox v_1$$
 is equation $rac{1}{2}$

case $u_1 \rightarrow v_1$ is rule $\frac{1}{2}$

- \hat{u} reduces to t'_1 in (E_1, R_1)
- ground-complete (E_1, R_1) has valley proof for $t'_1 \leftrightarrow^* \hat{v}$
- $\hat{u} \leftrightarrow^* t_1 \leftrightarrow^* \hat{v}$ yields proof Q in (E_1, R_1) such that $Q <_{\mathcal{U}} (\hat{u}, \hat{v})$
- contradicts choice of (û, î)

 (E_2, R_2) allows for minimal proof P

$$\hat{u} \xrightarrow[\sigma_1]{u_1 \leftrightarrow v_1} \rho_1 t_1 \xrightarrow[\sigma_2]{u_2 \leftrightarrow v_2} \rho_1 t_2 \rightarrow \ldots \rightarrow t_k \leftarrow \ldots \leftarrow \hat{v}$$

case $u \approx v$ is equation in E_1

(wlog, $\hat{u} > \hat{v}$)

case P consists of more than one step

case
$$p_1 > \epsilon$$

- have $(\hat{u}, \hat{v}) >_{1/2} (\hat{u}, t_1)$ as $(\{\hat{u}\}, \hat{u}, \ldots) >_{c} (\{\hat{u}\}, u_1 \sigma_1, \ldots)$
- hence also $(\hat{u}, \hat{v}) >_{\mathcal{U}} (u_1 \sigma_1, v_1 \sigma_1)$
- so some proof of $u_1\sigma_1 \leftrightarrow^* v_1\sigma_1$ in (E_1, R_1) is $\leq_{\mathcal{U}} (u_1\sigma_1, v_1\sigma_1)$ (\bigstar) case $u_1 \approx v_1$ is equation

case $u_1 \rightarrow v_1$ is rule $\frac{1}{2}$

 (E_2, R_2) allows for minimal proof P

$$\hat{u} \xrightarrow[\sigma_1]{u_1 \leftrightarrow v_1} \rho_1 t_1 \xrightarrow[\sigma_2]{u_2 \leftrightarrow v_2} \rho_1 t_2 \rightarrow \ldots \rightarrow t_k \leftarrow \ldots \leftarrow \hat{v}$$

case $u \approx v$ is equation in E_1

 $(\text{wlog}, \hat{u} > \hat{v})$

case P consists of more than one step

case
$$p_1 > \epsilon$$
 case $p_1 = \epsilon$

 (E_2, R_2) allows for minimal proof P

$$\hat{u} \xrightarrow[\sigma_1]{u_1 \leftrightarrow v_1} \rho_1 t_1 \xrightarrow[\sigma_2]{u_2 \leftrightarrow v_2} \rho_1 t_2 \rightarrow \ldots \rightarrow t_k \leftarrow \ldots \leftarrow \hat{v}$$

case $u \approx v$ is equation in E_1

 $(\text{wlog}, \hat{u} > \hat{v})$

case P consists of more than one step

case
$$p_1 > \epsilon$$
; case $p_1 = \epsilon$

case $u_1 \approx v_1$ is equation $\frac{1}{2}$ argument as before

 (E_2, R_2) allows for minimal proof P

$$\hat{u} \xrightarrow[\sigma_1]{u_1 \leftrightarrow v_1} p_1 t_1 \xrightarrow[\sigma_2]{u_2 \leftrightarrow v_2} p_1 t_2 \rightarrow \ldots \rightarrow t_k \leftarrow \ldots \leftarrow \hat{v}$$

case $u \approx v$ is equation in E_1

 $(wlog, \hat{u} > \hat{v})$

case P consists of more than one step

case
$$p_1 > \epsilon$$
; case $p_1 = \epsilon$

case $u_1 \approx v_1$ is equation v_1 argument as before case $u_1 \rightarrow v_1$ is rule

 (E_2, R_2) allows for minimal proof P

$$\hat{u} \xrightarrow[\sigma_1]{u_1 \leftrightarrow v_1} p_1 t_1 \xrightarrow[\sigma_2]{u_2 \leftrightarrow v_2} p_1 t_2 \rightarrow \ldots \rightarrow t_k \leftarrow \ldots \leftarrow \hat{v}$$

case $u \approx v$ is equation in E_1

 $(\text{wlog}, \hat{u} > \hat{v})$

case P consists of more than one step

case
$$p_1 > \epsilon$$
; case $p_1 = \epsilon$

case $u_1 \approx v_1$ is equation $rac{1}{2}$ argument as before

case $u_1 \rightarrow v_1$ is rule

 $16734SIG//case u \triangleright u_1$

 (E_2, R_2) allows for minimal proof P

$$\hat{u} \xrightarrow[\sigma_1]{u_1 \leftrightarrow v_1} \rho_1 t_1 \xrightarrow[\sigma_2]{u_2 \leftrightarrow v_2} \rho_1 t_2 \rightarrow \ldots \rightarrow t_k \leftarrow \ldots \leftarrow \hat{v}$$

case $u \approx v$ is equation in E_1

 $(wlog, \hat{u} > \hat{v})$

case P consists of more than one step

case
$$p_1 > \epsilon$$
; case $p_1 = \epsilon$

case $u_1 \approx v_1$ is equation $\frac{1}{2}$ argument as before case $u_1 \rightarrow v_1$ is rule

•
$$(\hat{u}, \hat{v}) >_{\mathcal{U}} (\hat{u}, t_1)$$
 as $(\{\hat{u}\}, \hat{u}, u, \ldots) >_{c} (\{\hat{u}\}, \hat{u}, u_1, \ldots)$

 (E_2, R_2) allows for minimal proof P

$$\hat{u} \xrightarrow[\sigma_1]{u_1 \leftrightarrow v_1} p_1 t_1 \xrightarrow[\sigma_2]{u_2 \leftrightarrow v_2} p_1 t_2 \rightarrow \ldots \rightarrow t_k \leftarrow \ldots \leftarrow \hat{v}$$

case $u \approx v$ is equation in E_1

 $(wlog, \hat{u} > \hat{v})$

case P consists of more than one step

case
$$p_1 > \epsilon$$
; case $p_1 = \epsilon$

case $u_1 \approx v_1$ is equation $\frac{1}{2}$ argument as before case $u_1 \rightarrow v_1$ is rule

1673+SIGI/case u⊳u₁

$$\bullet$$
 $(\hat{u}, \hat{v}) >_{\mathcal{U}} (\hat{u}, t_1)$ as

$$(\{\hat{u}\},\hat{u},u,\ldots)>_{c}(\{\hat{u}\},\hat{u},u_{1},\ldots)$$

• hence also
$$(\hat{u}, \hat{v}) >_{\mathcal{U}} (u_1\sigma_1, v_1\sigma_1)$$

 (E_2, R_2) allows for minimal proof P

$$\hat{u} \xrightarrow[\sigma_1]{u_1 \leftrightarrow v_1} p_1 t_1 \xrightarrow[\sigma_2]{u_2 \leftrightarrow v_2} p_1 t_2 \rightarrow \ldots \rightarrow t_k \leftarrow \ldots \leftarrow \hat{v}$$

case $u \approx v$ is equation in E_1

 $(wlog, \hat{u} > \hat{v})$

case P consists of more than one step

case
$$p_1 > \epsilon$$
; case $p_1 = \epsilon$

case $u_1 \approx v_1$ is equation $\frac{1}{2}$ argument as before case $u_1 \rightarrow v_1$ is rule

1673+SIG/, case u⊳u1

$$ullet$$
 $(\hat{u},\hat{v})>_{\mathcal{U}}(\hat{u},t_1)$ as

$$(\{\hat{u}\}, \hat{u}, u, \ldots) >_{c} (\{\hat{u}\}, \hat{u}, u_{1}, \ldots)$$

- hence also $(\hat{u}, \hat{v}) >_{\mathcal{U}} (u_1 \sigma_1, v_1 \sigma_1)$
- so $\exists t_1'$ such that $\hat{u} \leftrightarrow^* t_1'$ in (E_1,R_1) and $(\hat{u},\hat{v})>_{\mathcal{U}} (\hat{u},t_1')i$ (\bigstar)

 (E_2, R_2) allows for minimal proof P

$$\hat{u} \xrightarrow[\sigma_1]{u_1 \leftrightarrow v_1} \rho_1 t_1 \xrightarrow[\sigma_2]{u_2 \leftrightarrow v_2} \rho_1 t_2 \rightarrow \ldots \rightarrow t_k \leftarrow \ldots \leftarrow \hat{v}$$

case $u \approx v$ is equation in E_1

 $(wlog, \hat{u} > \hat{v})$

case P consists of more than one step

case
$$p_1 > \epsilon$$
; case $p_1 = \epsilon$

case $u_1 \approx v_1$ is equation $\frac{1}{2}$ argument as before case $u_1 \rightarrow v_1$ is rule

1673+SIG/, case u⊳u1

$$ullet$$
 $(\hat{u},\hat{v})>_{\mathcal{U}}(\hat{u},t_1)$ as

$$(\{\hat{u}\}, \hat{u}, u, \ldots) >_{c} (\{\hat{u}\}, \hat{u}, u_{1}, \ldots)$$

- hence also $(\hat{u}, \hat{v}) >_{\mathcal{U}} (u_1 \sigma_1, v_1 \sigma_1)$
- so $\exists t_1'$ such that $\hat{u} \leftrightarrow^* t_1'$ in (E_1, R_1) and $(\hat{u}, \hat{v}) >_{\mathcal{U}} (\hat{u}, t_1')i$ (\bigstar)
- (E_1, R_1) allows for proof $(\hat{u} \leftrightarrow^* t_1' \leftrightarrow^* \hat{v}) <_{\mathcal{U}} (\hat{u}, \hat{v})$

 (E_2, R_2) allows for minimal proof P

$$\hat{u} \xrightarrow[\sigma_1]{u_1 \leftrightarrow v_1} \rho_1 t_1 \xrightarrow[\sigma_2]{u_2 \leftrightarrow v_2} \rho_1 t_2 \rightarrow \ldots \rightarrow t_k \leftarrow \ldots \leftarrow \hat{v}$$

case $u \approx v$ is equation in E_1

 $(\text{wlog}, \hat{u} > \hat{v})$

case P consists of more than one step

case
$$p_1 > \epsilon$$
; case $p_1 = \epsilon$

case $u_1 \approx v_1$ is equation $\frac{1}{2}$ argument as before

case $u_1 \rightarrow v_1$ is rule

$$ullet$$
 $(\hat{u},\hat{v})>_{\mathcal{U}}(\hat{u},t_1)$ as

$$(\{\hat{u}\}, \hat{u}, u, \ldots) >_{c} (\{\hat{u}\}, \hat{u}, u_{1}, \ldots)$$

- hence also $(\hat{u}, \hat{v}) >_{\mathcal{U}} (u_1 \sigma_1, v_1 \sigma_1)$
- so $\exists t_1'$ such that $\hat{u} \leftrightarrow^* t_1'$ in (E_1,R_1) and $(\hat{u},\hat{v})>_{\mathcal{U}} (\hat{u},t_1')i$ (\bigstar)
- (E_1,R_1) allows for proof $(\hat{u}\leftrightarrow^*t'_1\leftrightarrow^*\hat{v})<_{\mathcal{U}}(\hat{u},\hat{v})$
- contradicts choice of (û, î)

 (E_2, R_2) allows for minimal proof P

$$\hat{u} \xrightarrow[\sigma_1]{u_1 \leftrightarrow v_1} p_1 t_1 \xrightarrow[\sigma_2]{u_2 \leftrightarrow v_2} p_1 t_2 \rightarrow \ldots \rightarrow t_k \leftarrow \ldots \leftarrow \hat{v}$$

case $u \approx v$ is equation in E_1

 $(wlog, \hat{u} > \hat{v})$

case P consists of more than one step

case
$$p_1 > \epsilon$$
; case $p_1 = \epsilon$

case $u_1 \approx v_1$ is equation $rac{1}{2}$ argument as before

case $u_1 o v_1$ is rule

case *u*₁⊳*u*

Example

yet another pair of ground-complete systems for same theory

$$(E_1, R_1) = \begin{cases} 0' + y \approx y + 0 \\ 0 + 0 \to 0 \end{cases} \qquad (E_2, R_2) = \begin{cases} 0' + (x + y) \approx (x + y) + 0 \\ 0 + 0 \to 0 \\ 0' + 0 \to 0 \end{cases}$$

compatible with simplification order

Conclusion

- ground-complete systems are "less unique" than complete ones
- reducedness becomes undecidable property

Conclusion

- ground-complete systems are "less unique" than complete ones
- reducedness becomes undecidable property

Further work

fix proof

