WORST_CASE(?,O(n^2)) * Step 1: UnreachableRules WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. eratos0(A,B) -> eratos(-1 + A,B) True (?,1) 1. eratos1(A,B) -> filter(B,-1 + A) True (?,1) 2. eratos(A,B) -> c2(eratos0(A,C),eratos1(A,C)) [A >= 1] (?,1) 3. outfilter(A,B) -> outfilter(A,-1 + B) [B >= 1] (?,1) 4. filter(A,B) -> filter(A,-1 + B) [B >= 1] (?,1) 5. start(A,B) -> eratos(A,B) True (1,1) Signature: {(eratos,2);(eratos0,2);(eratos1,2);(filter,2);(outfilter,2);(start,2)} Flow Graph: [0->{2},1->{4},2->{0,1},3->{3},4->{4},5->{2}] + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [3] * Step 2: LocalSizeboundsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. eratos0(A,B) -> eratos(-1 + A,B) True (?,1) 1. eratos1(A,B) -> filter(B,-1 + A) True (?,1) 2. eratos(A,B) -> c2(eratos0(A,C),eratos1(A,C)) [A >= 1] (?,1) 4. filter(A,B) -> filter(A,-1 + B) [B >= 1] (?,1) 5. start(A,B) -> eratos(A,B) True (1,1) Signature: {(eratos,2);(eratos0,2);(eratos1,2);(filter,2);(outfilter,2);(start,2)} Flow Graph: [0->{2},1->{4},2->{0,1},4->{4},5->{2}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<0,0,A>, 1 + A, .+ 1) (<0,0,B>, B, .= 0) (<1,0,A>, B, .= 0) (<1,0,B>, 1 + A, .+ 1) (<2,0,A>, A, .= 0) (<2,0,B>, ?, .?) (<2,1,A>, A, .= 0) (<2,1,B>, ?, .?) (<4,0,A>, A, .= 0) (<4,0,B>, 1 + B, .+ 1) (<5,0,A>, A, .= 0) (<5,0,B>, B, .= 0) * Step 3: SizeboundsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. eratos0(A,B) -> eratos(-1 + A,B) True (?,1) 1. eratos1(A,B) -> filter(B,-1 + A) True (?,1) 2. eratos(A,B) -> c2(eratos0(A,C),eratos1(A,C)) [A >= 1] (?,1) 4. filter(A,B) -> filter(A,-1 + B) [B >= 1] (?,1) 5. start(A,B) -> eratos(A,B) True (1,1) Signature: {(eratos,2);(eratos0,2);(eratos1,2);(filter,2);(outfilter,2);(start,2)} Flow Graph: [0->{2},1->{4},2->{0,1},4->{4},5->{2}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<1,0,A>, ?) (<1,0,B>, ?) (<2,0,A>, ?) (<2,0,B>, ?) (<2,1,A>, ?) (<2,1,B>, ?) (<4,0,A>, ?) (<4,0,B>, ?) (<5,0,A>, ?) (<5,0,B>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<0,0,A>, ?) (<0,0,B>, ?) (<1,0,A>, ?) (<1,0,B>, ?) (<2,0,A>, ?) (<2,0,B>, ?) (<2,1,A>, ?) (<2,1,B>, ?) (<4,0,A>, ?) (<4,0,B>, ?) (<5,0,A>, A) (<5,0,B>, B) * Step 4: ChainProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. eratos0(A,B) -> eratos(-1 + A,B) True (?,1) 1. eratos1(A,B) -> filter(B,-1 + A) True (?,1) 2. eratos(A,B) -> c2(eratos0(A,C),eratos1(A,C)) [A >= 1] (?,1) 4. filter(A,B) -> filter(A,-1 + B) [B >= 1] (?,1) 5. start(A,B) -> eratos(A,B) True (1,1) Signature: {(eratos,2);(eratos0,2);(eratos1,2);(filter,2);(outfilter,2);(start,2)} Flow Graph: [0->{2},1->{4},2->{0,1},4->{4},5->{2}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<1,0,A>, ?) (<1,0,B>, ?) (<2,0,A>, ?) (<2,0,B>, ?) (<2,1,A>, ?) (<2,1,B>, ?) (<4,0,A>, ?) (<4,0,B>, ?) (<5,0,A>, A) (<5,0,B>, B) + Applied Processor: ChainProcessor False [0,1,2,4,5] + Details: We chained rule 2 to obtain the rules [6] . * Step 5: UnreachableRules WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. eratos0(A,B) -> eratos(-1 + A,B) True (?,1) 1. eratos1(A,B) -> filter(B,-1 + A) True (?,1) 4. filter(A,B) -> filter(A,-1 + B) [B >= 1] (?,1) 5. start(A,B) -> eratos(A,B) True (1,1) 6. eratos(A,B) -> c2(eratos(-1 + A,C),eratos1(A,C)) [A >= 1] (?,2) Signature: {(eratos,2);(eratos0,2);(eratos1,2);(filter,2);(outfilter,2);(start,2)} Flow Graph: [0->{6},1->{4},4->{4},5->{6},6->{1,6}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<1,0,A>, ?) (<1,0,B>, ?) (<4,0,A>, ?) (<4,0,B>, ?) (<5,0,A>, A) (<5,0,B>, B) (<6,0,A>, ?) (<6,0,B>, ?) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [0] * Step 6: ChainProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 1. eratos1(A,B) -> filter(B,-1 + A) True (?,1) 4. filter(A,B) -> filter(A,-1 + B) [B >= 1] (?,1) 5. start(A,B) -> eratos(A,B) True (1,1) 6. eratos(A,B) -> c2(eratos(-1 + A,C),eratos1(A,C)) [A >= 1] (?,2) Signature: {(eratos,2);(eratos0,2);(eratos1,2);(filter,2);(outfilter,2);(start,2)} Flow Graph: [1->{4},4->{4},5->{6},6->{1,6}] Sizebounds: (<1,0,A>, ?) (<1,0,B>, ?) (<4,0,A>, ?) (<4,0,B>, ?) (<5,0,A>, A) (<5,0,B>, B) (<6,0,A>, ?) (<6,0,B>, ?) + Applied Processor: ChainProcessor False [1,4,5,6] + Details: We chained rule 6 to obtain the rules [7] . * Step 7: UnreachableRules WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 1. eratos1(A,B) -> filter(B,-1 + A) True (?,1) 4. filter(A,B) -> filter(A,-1 + B) [B >= 1] (?,1) 5. start(A,B) -> eratos(A,B) True (1,1) 7. eratos(A,B) -> c2(eratos(-1 + A,C),filter(C,-2 + A)) [A >= 1] (?,3) Signature: {(eratos,2);(eratos0,2);(eratos1,2);(filter,2);(outfilter,2);(start,2)} Flow Graph: [1->{4},4->{4},5->{7},7->{4,7}] Sizebounds: (<1,0,A>, ?) (<1,0,B>, ?) (<4,0,A>, ?) (<4,0,B>, ?) (<5,0,A>, A) (<5,0,B>, B) (<7,0,A>, ?) (<7,0,B>, ?) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [1] * Step 8: LocalSizeboundsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 4. filter(A,B) -> filter(A,-1 + B) [B >= 1] (?,1) 5. start(A,B) -> eratos(A,B) True (1,1) 7. eratos(A,B) -> c2(eratos(-1 + A,C),filter(C,-2 + A)) [A >= 1] (?,3) Signature: {(eratos,2);(eratos0,2);(eratos1,2);(filter,2);(outfilter,2);(start,2)} Flow Graph: [4->{4},5->{7},7->{4,7}] Sizebounds: (<4,0,A>, ?) (<4,0,B>, ?) (<5,0,A>, A) (<5,0,B>, B) (<7,0,A>, ?) (<7,0,B>, ?) + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<4,0,A>, A, .= 0) (<4,0,B>, 1 + B, .+ 1) (<5,0,A>, A, .= 0) (<5,0,B>, B, .= 0) (<7,0,A>, 1 + A, .+ 1) (<7,0,B>, ?, .?) (<7,1,A>, ?, .?) (<7,1,B>, 2 + A, .+ 2) * Step 9: SizeboundsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 4. filter(A,B) -> filter(A,-1 + B) [B >= 1] (?,1) 5. start(A,B) -> eratos(A,B) True (1,1) 7. eratos(A,B) -> c2(eratos(-1 + A,C),filter(C,-2 + A)) [A >= 1] (?,3) Signature: {(eratos,2);(eratos0,2);(eratos1,2);(filter,2);(outfilter,2);(start,2)} Flow Graph: [4->{4},5->{7},7->{4,7}] Sizebounds: (<4,0,A>, ?) (<4,0,B>, ?) (<5,0,A>, ?) (<5,0,B>, ?) (<7,0,A>, ?) (<7,0,B>, ?) (<7,1,A>, ?) (<7,1,B>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<4,0,A>, ?) (<4,0,B>, ?) (<5,0,A>, A) (<5,0,B>, B) (<7,0,A>, ?) (<7,0,B>, ?) (<7,1,A>, ?) (<7,1,B>, ?) * Step 10: LocationConstraintsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 4. filter(A,B) -> filter(A,-1 + B) [B >= 1] (?,1) 5. start(A,B) -> eratos(A,B) True (1,1) 7. eratos(A,B) -> c2(eratos(-1 + A,C),filter(C,-2 + A)) [A >= 1] (?,3) Signature: {(eratos,2);(eratos0,2);(eratos1,2);(filter,2);(outfilter,2);(start,2)} Flow Graph: [4->{4},5->{7},7->{4,7}] Sizebounds: (<4,0,A>, ?) (<4,0,B>, ?) (<5,0,A>, A) (<5,0,B>, B) (<7,0,A>, ?) (<7,0,B>, ?) (<7,1,A>, ?) (<7,1,B>, ?) + Applied Processor: LocationConstraintsProc + Details: We computed the location constraints 4 : True 5 : True 7 : True . * Step 11: LoopRecurrenceProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 4. filter(A,B) -> filter(A,-1 + B) [B >= 1] (?,1) 5. start(A,B) -> eratos(A,B) True (1,1) 7. eratos(A,B) -> c2(eratos(-1 + A,C),filter(C,-2 + A)) [A >= 1] (?,3) Signature: {(eratos,2);(eratos0,2);(eratos1,2);(filter,2);(outfilter,2);(start,2)} Flow Graph: [4->{4},5->{7},7->{4,7}] Sizebounds: (<4,0,A>, ?) (<4,0,B>, ?) (<5,0,A>, A) (<5,0,B>, B) (<7,0,A>, ?) (<7,0,B>, ?) (<7,1,A>, ?) (<7,1,B>, ?) + Applied Processor: LoopRecurrenceProcessor [7] + Details: Applying the recurrence pattern linear * f to the expression A yields the solution A + A^2 . * Step 12: LoopRecurrenceProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 4. filter(A,B) -> filter(A,-1 + B) [B >= 1] (A + A^2,1) 5. start(A,B) -> eratos(A,B) True (1,1) 7. eratos(A,B) -> c2(eratos(-1 + A,C),filter(C,-2 + A)) [A >= 1] (A + A^2,3) Signature: {(eratos,2);(eratos0,2);(eratos1,2);(filter,2);(outfilter,2);(start,2)} Flow Graph: [4->{4},5->{7},7->{4,7}] Sizebounds: (<4,0,A>, ?) (<4,0,B>, ?) (<5,0,A>, A) (<5,0,B>, B) (<7,0,A>, ?) (<7,0,B>, ?) (<7,1,A>, ?) (<7,1,B>, ?) + Applied Processor: LoopRecurrenceProcessor [4] + Details: Applying the recurrence pattern linear * f to the expression B yields the solution B . * Step 13: UnsatPaths WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 4. filter(A,B) -> filter(A,-1 + B) [B >= 1] (A + A^2,1) 5. start(A,B) -> eratos(A,B) True (1,1) 7. eratos(A,B) -> c2(eratos(-1 + A,C),filter(C,-2 + A)) [A >= 1] (A + A^2,3) Signature: {(eratos,2);(eratos0,2);(eratos1,2);(filter,2);(outfilter,2);(start,2)} Flow Graph: [4->{4},5->{7},7->{4,7}] Sizebounds: (<4,0,A>, ?) (<4,0,B>, ?) (<5,0,A>, A) (<5,0,B>, B) (<7,0,A>, ?) (<7,0,B>, ?) (<7,1,A>, ?) (<7,1,B>, ?) + Applied Processor: UnsatPaths + Details: The problem is already solved. WORST_CASE(?,O(n^2))