WORST_CASE(?,O(n^2))
* Step 1: UnreachableRules WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0. eratos0(A,B)   -> eratos(-1 + A,B)              True     (?,1)
          1. eratos1(A,B)   -> filter(B,-1 + A)              True     (?,1)
          2. eratos(A,B)    -> c2(eratos0(A,C),eratos1(A,C)) [A >= 1] (?,1)
          3. outfilter(A,B) -> outfilter(A,-1 + B)           [B >= 1] (?,1)
          4. filter(A,B)    -> filter(A,-1 + B)              [B >= 1] (?,1)
          5. start(A,B)     -> eratos(A,B)                   True     (1,1)
        Signature:
          {(eratos,2);(eratos0,2);(eratos1,2);(filter,2);(outfilter,2);(start,2)}
        Flow Graph:
          [0->{2},1->{4},2->{0,1},3->{3},4->{4},5->{2}]
        
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [3]
* Step 2: LocalSizeboundsProc WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0. eratos0(A,B) -> eratos(-1 + A,B)              True     (?,1)
          1. eratos1(A,B) -> filter(B,-1 + A)              True     (?,1)
          2. eratos(A,B)  -> c2(eratos0(A,C),eratos1(A,C)) [A >= 1] (?,1)
          4. filter(A,B)  -> filter(A,-1 + B)              [B >= 1] (?,1)
          5. start(A,B)   -> eratos(A,B)                   True     (1,1)
        Signature:
          {(eratos,2);(eratos0,2);(eratos1,2);(filter,2);(outfilter,2);(start,2)}
        Flow Graph:
          [0->{2},1->{4},2->{0,1},4->{4},5->{2}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (<0,0,A>, 1 + A, .+ 1) (<0,0,B>,     B, .= 0) 
          (<1,0,A>,     B, .= 0) (<1,0,B>, 1 + A, .+ 1) 
          (<2,0,A>,     A, .= 0) (<2,0,B>,     ?,   .?) 
          (<2,1,A>,     A, .= 0) (<2,1,B>,     ?,   .?) 
          (<4,0,A>,     A, .= 0) (<4,0,B>, 1 + B, .+ 1) 
          (<5,0,A>,     A, .= 0) (<5,0,B>,     B, .= 0) 
* Step 3: SizeboundsProc WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0. eratos0(A,B) -> eratos(-1 + A,B)              True     (?,1)
          1. eratos1(A,B) -> filter(B,-1 + A)              True     (?,1)
          2. eratos(A,B)  -> c2(eratos0(A,C),eratos1(A,C)) [A >= 1] (?,1)
          4. filter(A,B)  -> filter(A,-1 + B)              [B >= 1] (?,1)
          5. start(A,B)   -> eratos(A,B)                   True     (1,1)
        Signature:
          {(eratos,2);(eratos0,2);(eratos1,2);(filter,2);(outfilter,2);(start,2)}
        Flow Graph:
          [0->{2},1->{4},2->{0,1},4->{4},5->{2}]
        Sizebounds:
          (<0,0,A>, ?) (<0,0,B>, ?) 
          (<1,0,A>, ?) (<1,0,B>, ?) 
          (<2,0,A>, ?) (<2,0,B>, ?) 
          (<2,1,A>, ?) (<2,1,B>, ?) 
          (<4,0,A>, ?) (<4,0,B>, ?) 
          (<5,0,A>, ?) (<5,0,B>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (<0,0,A>, ?) (<0,0,B>, ?) 
          (<1,0,A>, ?) (<1,0,B>, ?) 
          (<2,0,A>, ?) (<2,0,B>, ?) 
          (<2,1,A>, ?) (<2,1,B>, ?) 
          (<4,0,A>, ?) (<4,0,B>, ?) 
          (<5,0,A>, A) (<5,0,B>, B) 
* Step 4: ChainProcessor WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0. eratos0(A,B) -> eratos(-1 + A,B)              True     (?,1)
          1. eratos1(A,B) -> filter(B,-1 + A)              True     (?,1)
          2. eratos(A,B)  -> c2(eratos0(A,C),eratos1(A,C)) [A >= 1] (?,1)
          4. filter(A,B)  -> filter(A,-1 + B)              [B >= 1] (?,1)
          5. start(A,B)   -> eratos(A,B)                   True     (1,1)
        Signature:
          {(eratos,2);(eratos0,2);(eratos1,2);(filter,2);(outfilter,2);(start,2)}
        Flow Graph:
          [0->{2},1->{4},2->{0,1},4->{4},5->{2}]
        Sizebounds:
          (<0,0,A>, ?) (<0,0,B>, ?) 
          (<1,0,A>, ?) (<1,0,B>, ?) 
          (<2,0,A>, ?) (<2,0,B>, ?) 
          (<2,1,A>, ?) (<2,1,B>, ?) 
          (<4,0,A>, ?) (<4,0,B>, ?) 
          (<5,0,A>, A) (<5,0,B>, B) 
    + Applied Processor:
        ChainProcessor False [0,1,2,4,5]
    + Details:
        We chained rule 2 to obtain the rules [6] .
* Step 5: UnreachableRules WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0. eratos0(A,B) -> eratos(-1 + A,B)                  True     (?,1)
          1. eratos1(A,B) -> filter(B,-1 + A)                  True     (?,1)
          4. filter(A,B)  -> filter(A,-1 + B)                  [B >= 1] (?,1)
          5. start(A,B)   -> eratos(A,B)                       True     (1,1)
          6. eratos(A,B)  -> c2(eratos(-1 + A,C),eratos1(A,C)) [A >= 1] (?,2)
        Signature:
          {(eratos,2);(eratos0,2);(eratos1,2);(filter,2);(outfilter,2);(start,2)}
        Flow Graph:
          [0->{6},1->{4},4->{4},5->{6},6->{1,6}]
        Sizebounds:
          (<0,0,A>, ?) (<0,0,B>, ?) 
          (<1,0,A>, ?) (<1,0,B>, ?) 
          (<4,0,A>, ?) (<4,0,B>, ?) 
          (<5,0,A>, A) (<5,0,B>, B) 
          (<6,0,A>, ?) (<6,0,B>, ?) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [0]
* Step 6: ChainProcessor WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          1. eratos1(A,B) -> filter(B,-1 + A)                  True     (?,1)
          4. filter(A,B)  -> filter(A,-1 + B)                  [B >= 1] (?,1)
          5. start(A,B)   -> eratos(A,B)                       True     (1,1)
          6. eratos(A,B)  -> c2(eratos(-1 + A,C),eratos1(A,C)) [A >= 1] (?,2)
        Signature:
          {(eratos,2);(eratos0,2);(eratos1,2);(filter,2);(outfilter,2);(start,2)}
        Flow Graph:
          [1->{4},4->{4},5->{6},6->{1,6}]
        Sizebounds:
          (<1,0,A>, ?) (<1,0,B>, ?) 
          (<4,0,A>, ?) (<4,0,B>, ?) 
          (<5,0,A>, A) (<5,0,B>, B) 
          (<6,0,A>, ?) (<6,0,B>, ?) 
    + Applied Processor:
        ChainProcessor False [1,4,5,6]
    + Details:
        We chained rule 6 to obtain the rules [7] .
* Step 7: UnreachableRules WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          1. eratos1(A,B) -> filter(B,-1 + A)                      True     (?,1)
          4. filter(A,B)  -> filter(A,-1 + B)                      [B >= 1] (?,1)
          5. start(A,B)   -> eratos(A,B)                           True     (1,1)
          7. eratos(A,B)  -> c2(eratos(-1 + A,C),filter(C,-2 + A)) [A >= 1] (?,3)
        Signature:
          {(eratos,2);(eratos0,2);(eratos1,2);(filter,2);(outfilter,2);(start,2)}
        Flow Graph:
          [1->{4},4->{4},5->{7},7->{4,7}]
        Sizebounds:
          (<1,0,A>, ?) (<1,0,B>, ?) 
          (<4,0,A>, ?) (<4,0,B>, ?) 
          (<5,0,A>, A) (<5,0,B>, B) 
          (<7,0,A>, ?) (<7,0,B>, ?) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [1]
* Step 8: LocalSizeboundsProc WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          4. filter(A,B) -> filter(A,-1 + B)                      [B >= 1] (?,1)
          5. start(A,B)  -> eratos(A,B)                           True     (1,1)
          7. eratos(A,B) -> c2(eratos(-1 + A,C),filter(C,-2 + A)) [A >= 1] (?,3)
        Signature:
          {(eratos,2);(eratos0,2);(eratos1,2);(filter,2);(outfilter,2);(start,2)}
        Flow Graph:
          [4->{4},5->{7},7->{4,7}]
        Sizebounds:
          (<4,0,A>, ?) (<4,0,B>, ?) 
          (<5,0,A>, A) (<5,0,B>, B) 
          (<7,0,A>, ?) (<7,0,B>, ?) 
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (<4,0,A>,     A, .= 0) (<4,0,B>, 1 + B, .+ 1) 
          (<5,0,A>,     A, .= 0) (<5,0,B>,     B, .= 0) 
          (<7,0,A>, 1 + A, .+ 1) (<7,0,B>,     ?,   .?) 
          (<7,1,A>,     ?,   .?) (<7,1,B>, 2 + A, .+ 2) 
* Step 9: SizeboundsProc WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          4. filter(A,B) -> filter(A,-1 + B)                      [B >= 1] (?,1)
          5. start(A,B)  -> eratos(A,B)                           True     (1,1)
          7. eratos(A,B) -> c2(eratos(-1 + A,C),filter(C,-2 + A)) [A >= 1] (?,3)
        Signature:
          {(eratos,2);(eratos0,2);(eratos1,2);(filter,2);(outfilter,2);(start,2)}
        Flow Graph:
          [4->{4},5->{7},7->{4,7}]
        Sizebounds:
          (<4,0,A>, ?) (<4,0,B>, ?) 
          (<5,0,A>, ?) (<5,0,B>, ?) 
          (<7,0,A>, ?) (<7,0,B>, ?) 
          (<7,1,A>, ?) (<7,1,B>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (<4,0,A>, ?) (<4,0,B>, ?) 
          (<5,0,A>, A) (<5,0,B>, B) 
          (<7,0,A>, ?) (<7,0,B>, ?) 
          (<7,1,A>, ?) (<7,1,B>, ?) 
* Step 10: LocationConstraintsProc WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          4. filter(A,B) -> filter(A,-1 + B)                      [B >= 1] (?,1)
          5. start(A,B)  -> eratos(A,B)                           True     (1,1)
          7. eratos(A,B) -> c2(eratos(-1 + A,C),filter(C,-2 + A)) [A >= 1] (?,3)
        Signature:
          {(eratos,2);(eratos0,2);(eratos1,2);(filter,2);(outfilter,2);(start,2)}
        Flow Graph:
          [4->{4},5->{7},7->{4,7}]
        Sizebounds:
          (<4,0,A>, ?) (<4,0,B>, ?) 
          (<5,0,A>, A) (<5,0,B>, B) 
          (<7,0,A>, ?) (<7,0,B>, ?) 
          (<7,1,A>, ?) (<7,1,B>, ?) 
    + Applied Processor:
        LocationConstraintsProc
    + Details:
        We computed the location constraints  4 :  True 5 :  True 7 :  True .
* Step 11: LoopRecurrenceProcessor WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          4. filter(A,B) -> filter(A,-1 + B)                      [B >= 1] (?,1)
          5. start(A,B)  -> eratos(A,B)                           True     (1,1)
          7. eratos(A,B) -> c2(eratos(-1 + A,C),filter(C,-2 + A)) [A >= 1] (?,3)
        Signature:
          {(eratos,2);(eratos0,2);(eratos1,2);(filter,2);(outfilter,2);(start,2)}
        Flow Graph:
          [4->{4},5->{7},7->{4,7}]
        Sizebounds:
          (<4,0,A>, ?) (<4,0,B>, ?) 
          (<5,0,A>, A) (<5,0,B>, B) 
          (<7,0,A>, ?) (<7,0,B>, ?) 
          (<7,1,A>, ?) (<7,1,B>, ?) 
    + Applied Processor:
        LoopRecurrenceProcessor [7]
    + Details:
        Applying the recurrence pattern linear * f to the expression A yields the solution A + A^2 .
* Step 12: LoopRecurrenceProcessor WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          4. filter(A,B) -> filter(A,-1 + B)                      [B >= 1] (A + A^2,1)
          5. start(A,B)  -> eratos(A,B)                           True     (1,1)      
          7. eratos(A,B) -> c2(eratos(-1 + A,C),filter(C,-2 + A)) [A >= 1] (A + A^2,3)
        Signature:
          {(eratos,2);(eratos0,2);(eratos1,2);(filter,2);(outfilter,2);(start,2)}
        Flow Graph:
          [4->{4},5->{7},7->{4,7}]
        Sizebounds:
          (<4,0,A>, ?) (<4,0,B>, ?) 
          (<5,0,A>, A) (<5,0,B>, B) 
          (<7,0,A>, ?) (<7,0,B>, ?) 
          (<7,1,A>, ?) (<7,1,B>, ?) 
    + Applied Processor:
        LoopRecurrenceProcessor [4]
    + Details:
        Applying the recurrence pattern linear * f to the expression B yields the solution B .
* Step 13: UnsatPaths WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          4. filter(A,B) -> filter(A,-1 + B)                      [B >= 1] (A + A^2,1)
          5. start(A,B)  -> eratos(A,B)                           True     (1,1)      
          7. eratos(A,B) -> c2(eratos(-1 + A,C),filter(C,-2 + A)) [A >= 1] (A + A^2,3)
        Signature:
          {(eratos,2);(eratos0,2);(eratos1,2);(filter,2);(outfilter,2);(start,2)}
        Flow Graph:
          [4->{4},5->{7},7->{4,7}]
        Sizebounds:
          (<4,0,A>, ?) (<4,0,B>, ?) 
          (<5,0,A>, A) (<5,0,B>, B) 
          (<7,0,A>, ?) (<7,0,B>, ?) 
          (<7,1,A>, ?) (<7,1,B>, ?) 
    + Applied Processor:
        UnsatPaths
    + Details:
        The problem is already solved.

WORST_CASE(?,O(n^2))