WORST_CASE(?,O(n^1)) * Step 1: RestrictVarsProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. add(A,B,C,D) -> n4(A,B,C,D) [A >= 0] (1,1) 1. m0(A,B,C,D) -> m1(A,B,C,D) True (?,1) 2. m2(A,B,C,D) -> m3(A,B,C,D) True (?,1) 3. m5(A,B,C,D) -> m4(E,B,C,D) [1 + A >= E && E >= 1 + A] (?,1) 4. m3(A,B,C,D) -> m5(A,B,C,D) True (?,1) 5. m6(A,B,C,D) -> m7(A,B,C,D) True (?,1) 6. m9(A,B,C,D) -> m8(E,B,C,D) [2 + A >= E && E >= 2 + A] (?,1) 7. m7(A,B,C,D) -> m9(A,B,C,D) True (?,1) 8. n0(A,B,C,D) -> n1(A,B,C,D) True (?,1) 9. n3(A,B,C,D) -> n2(E,B,C,D) [3 + A >= E && E >= 3 + A] (?,1) 10. n1(A,B,C,D) -> n3(A,B,C,D) True (?,1) 11. n7(A,B,C,D) -> m0(A,B,C,D) [3 + A >= B] (?,1) 12. n80(A,B,C,D) -> n7(A,B,C,D) True (?,1) 13. n81(A,B,C,D) -> m2(C,B,C,D) True (?,1) 14. n8(A,B,C,D) -> c2(n80(A,E,B,D),n81(A,E,B,D)) [A >= B && 1 + B >= E && E >= 1 + B] (?,1) 15. n90(A,B,C,D) -> n7(A,B,C,D) True (?,1) 16. n91(A,B,C,D) -> m6(C,B,C,D) True (?,1) 17. n9(A,B,C,D) -> c2(n90(A,E,B,D),n91(A,E,B,D)) [A >= B && 2 + B >= E && E >= 2 + B] (?,1) 18. o00(A,B,C,D) -> n7(A,B,C,D) True (?,1) 19. o01(A,B,C,D) -> n0(C,B,C,D) True (?,1) 20. o0(A,B,C,D) -> c2(o00(A,E,B,D),o01(A,E,B,D)) [A >= B && 3 + B >= E && E >= 3 + B] (?,1) 21. o1(A,B,C,D) -> c2(n5(A,0,C,D),m0(A,0,C,D)) [A >= 0] (?,1) 22. n4(A,B,C,D) -> o1(A,B,C,D) [A >= 0] (?,1) 23. o2(A,B,C,D) -> o3(A,B,C,D) [A >= B] (?,1) 24. o3(A,B,C,D) -> n8(A,B,C,D) True (?,1) 25. o3(A,B,C,D) -> n9(A,B,C,D) True (?,1) 26. o3(A,B,C,D) -> o0(A,B,C,D) True (?,1) 27. m1(A,B,C,D) -> o2(A,B,C,D) True (?,1) 28. m1(A,B,C,D) -> n6(A,B,C,B) True (?,1) Signature: {(add,4) ;(m0,4) ;(m1,4) ;(m2,4) ;(m3,4) ;(m4,4) ;(m5,4) ;(m6,4) ;(m7,4) ;(m8,4) ;(m9,4) ;(n0,4) ;(n1,4) ;(n2,4) ;(n3,4) ;(n4,4) ;(n5,4) ;(n6,4) ;(n7,4) ;(n8,4) ;(n80,4) ;(n81,4) ;(n9,4) ;(n90,4) ;(n91,4) ;(o0,4) ;(o00,4) ;(o01,4) ;(o1,4) ;(o2,4) ;(o3,4)} Flow Graph: [0->{22},1->{27,28},2->{4},3->{},4->{3},5->{7},6->{},7->{6},8->{10},9->{},10->{9},11->{1},12->{11},13->{2} ,14->{12,13},15->{11},16->{5},17->{15,16},18->{11},19->{8},20->{18,19},21->{1},22->{21},23->{24,25,26} ,24->{14},25->{17},26->{20},27->{23},28->{}] + Applied Processor: RestrictVarsProcessor + Details: We removed the arguments [D] . * Step 2: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. add(A,B,C) -> n4(A,B,C) [A >= 0] (1,1) 1. m0(A,B,C) -> m1(A,B,C) True (?,1) 2. m2(A,B,C) -> m3(A,B,C) True (?,1) 3. m5(A,B,C) -> m4(E,B,C) [1 + A >= E && E >= 1 + A] (?,1) 4. m3(A,B,C) -> m5(A,B,C) True (?,1) 5. m6(A,B,C) -> m7(A,B,C) True (?,1) 6. m9(A,B,C) -> m8(E,B,C) [2 + A >= E && E >= 2 + A] (?,1) 7. m7(A,B,C) -> m9(A,B,C) True (?,1) 8. n0(A,B,C) -> n1(A,B,C) True (?,1) 9. n3(A,B,C) -> n2(E,B,C) [3 + A >= E && E >= 3 + A] (?,1) 10. n1(A,B,C) -> n3(A,B,C) True (?,1) 11. n7(A,B,C) -> m0(A,B,C) [3 + A >= B] (?,1) 12. n80(A,B,C) -> n7(A,B,C) True (?,1) 13. n81(A,B,C) -> m2(C,B,C) True (?,1) 14. n8(A,B,C) -> c2(n80(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B] (?,1) 15. n90(A,B,C) -> n7(A,B,C) True (?,1) 16. n91(A,B,C) -> m6(C,B,C) True (?,1) 17. n9(A,B,C) -> c2(n90(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B] (?,1) 18. o00(A,B,C) -> n7(A,B,C) True (?,1) 19. o01(A,B,C) -> n0(C,B,C) True (?,1) 20. o0(A,B,C) -> c2(o00(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B] (?,1) 21. o1(A,B,C) -> c2(n5(A,0,C),m0(A,0,C)) [A >= 0] (?,1) 22. n4(A,B,C) -> o1(A,B,C) [A >= 0] (?,1) 23. o2(A,B,C) -> o3(A,B,C) [A >= B] (?,1) 24. o3(A,B,C) -> n8(A,B,C) True (?,1) 25. o3(A,B,C) -> n9(A,B,C) True (?,1) 26. o3(A,B,C) -> o0(A,B,C) True (?,1) 27. m1(A,B,C) -> o2(A,B,C) True (?,1) 28. m1(A,B,C) -> n6(A,B,C) True (?,1) Signature: {(add,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n6,3) ;(n7,3) ;(n8,3) ;(n80,3) ;(n81,3) ;(n9,3) ;(n90,3) ;(n91,3) ;(o0,3) ;(o00,3) ;(o01,3) ;(o1,3) ;(o2,3) ;(o3,3)} Flow Graph: [0->{22},1->{27,28},2->{4},3->{},4->{3},5->{7},6->{},7->{6},8->{10},9->{},10->{9},11->{1},12->{11},13->{2} ,14->{12,13},15->{11},16->{5},17->{15,16},18->{11},19->{8},20->{18,19},21->{1},22->{21},23->{24,25,26} ,24->{14},25->{17},26->{20},27->{23},28->{}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (< 0,0,A>, A, .= 0) (< 0,0,B>, B, .= 0) (< 0,0,C>, C, .= 0) (< 1,0,A>, A, .= 0) (< 1,0,B>, B, .= 0) (< 1,0,C>, C, .= 0) (< 2,0,A>, A, .= 0) (< 2,0,B>, B, .= 0) (< 2,0,C>, C, .= 0) (< 3,0,A>, 1 + A, .+ 1) (< 3,0,B>, B, .= 0) (< 3,0,C>, C, .= 0) (< 4,0,A>, A, .= 0) (< 4,0,B>, B, .= 0) (< 4,0,C>, C, .= 0) (< 5,0,A>, A, .= 0) (< 5,0,B>, B, .= 0) (< 5,0,C>, C, .= 0) (< 6,0,A>, 2 + A, .+ 2) (< 6,0,B>, B, .= 0) (< 6,0,C>, C, .= 0) (< 7,0,A>, A, .= 0) (< 7,0,B>, B, .= 0) (< 7,0,C>, C, .= 0) (< 8,0,A>, A, .= 0) (< 8,0,B>, B, .= 0) (< 8,0,C>, C, .= 0) (< 9,0,A>, 3 + A, .+ 3) (< 9,0,B>, B, .= 0) (< 9,0,C>, C, .= 0) (<10,0,A>, A, .= 0) (<10,0,B>, B, .= 0) (<10,0,C>, C, .= 0) (<11,0,A>, A, .= 0) (<11,0,B>, B, .= 0) (<11,0,C>, C, .= 0) (<12,0,A>, A, .= 0) (<12,0,B>, B, .= 0) (<12,0,C>, C, .= 0) (<13,0,A>, C, .= 0) (<13,0,B>, B, .= 0) (<13,0,C>, C, .= 0) (<14,0,A>, A, .= 0) (<14,0,B>, 1 + A + B, .* 1) (<14,0,C>, B, .= 0) (<14,1,A>, A, .= 0) (<14,1,B>, 1 + A + B, .* 1) (<14,1,C>, B, .= 0) (<15,0,A>, A, .= 0) (<15,0,B>, B, .= 0) (<15,0,C>, C, .= 0) (<16,0,A>, C, .= 0) (<16,0,B>, B, .= 0) (<16,0,C>, C, .= 0) (<17,0,A>, A, .= 0) (<17,0,B>, 2 + A + B, .* 2) (<17,0,C>, B, .= 0) (<17,1,A>, A, .= 0) (<17,1,B>, 2 + A + B, .* 2) (<17,1,C>, B, .= 0) (<18,0,A>, A, .= 0) (<18,0,B>, B, .= 0) (<18,0,C>, C, .= 0) (<19,0,A>, C, .= 0) (<19,0,B>, B, .= 0) (<19,0,C>, C, .= 0) (<20,0,A>, A, .= 0) (<20,0,B>, 3 + A + B, .* 3) (<20,0,C>, B, .= 0) (<20,1,A>, A, .= 0) (<20,1,B>, 3 + A + B, .* 3) (<20,1,C>, B, .= 0) (<21,0,A>, A, .= 0) (<21,0,B>, 0, .= 0) (<21,0,C>, C, .= 0) (<21,1,A>, A, .= 0) (<21,1,B>, 0, .= 0) (<21,1,C>, C, .= 0) (<22,0,A>, A, .= 0) (<22,0,B>, B, .= 0) (<22,0,C>, C, .= 0) (<23,0,A>, A, .= 0) (<23,0,B>, B, .= 0) (<23,0,C>, C, .= 0) (<24,0,A>, A, .= 0) (<24,0,B>, B, .= 0) (<24,0,C>, C, .= 0) (<25,0,A>, A, .= 0) (<25,0,B>, B, .= 0) (<25,0,C>, C, .= 0) (<26,0,A>, A, .= 0) (<26,0,B>, B, .= 0) (<26,0,C>, C, .= 0) (<27,0,A>, A, .= 0) (<27,0,B>, B, .= 0) (<27,0,C>, C, .= 0) (<28,0,A>, A, .= 0) (<28,0,B>, B, .= 0) (<28,0,C>, C, .= 0) * Step 3: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. add(A,B,C) -> n4(A,B,C) [A >= 0] (1,1) 1. m0(A,B,C) -> m1(A,B,C) True (?,1) 2. m2(A,B,C) -> m3(A,B,C) True (?,1) 3. m5(A,B,C) -> m4(E,B,C) [1 + A >= E && E >= 1 + A] (?,1) 4. m3(A,B,C) -> m5(A,B,C) True (?,1) 5. m6(A,B,C) -> m7(A,B,C) True (?,1) 6. m9(A,B,C) -> m8(E,B,C) [2 + A >= E && E >= 2 + A] (?,1) 7. m7(A,B,C) -> m9(A,B,C) True (?,1) 8. n0(A,B,C) -> n1(A,B,C) True (?,1) 9. n3(A,B,C) -> n2(E,B,C) [3 + A >= E && E >= 3 + A] (?,1) 10. n1(A,B,C) -> n3(A,B,C) True (?,1) 11. n7(A,B,C) -> m0(A,B,C) [3 + A >= B] (?,1) 12. n80(A,B,C) -> n7(A,B,C) True (?,1) 13. n81(A,B,C) -> m2(C,B,C) True (?,1) 14. n8(A,B,C) -> c2(n80(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B] (?,1) 15. n90(A,B,C) -> n7(A,B,C) True (?,1) 16. n91(A,B,C) -> m6(C,B,C) True (?,1) 17. n9(A,B,C) -> c2(n90(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B] (?,1) 18. o00(A,B,C) -> n7(A,B,C) True (?,1) 19. o01(A,B,C) -> n0(C,B,C) True (?,1) 20. o0(A,B,C) -> c2(o00(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B] (?,1) 21. o1(A,B,C) -> c2(n5(A,0,C),m0(A,0,C)) [A >= 0] (?,1) 22. n4(A,B,C) -> o1(A,B,C) [A >= 0] (?,1) 23. o2(A,B,C) -> o3(A,B,C) [A >= B] (?,1) 24. o3(A,B,C) -> n8(A,B,C) True (?,1) 25. o3(A,B,C) -> n9(A,B,C) True (?,1) 26. o3(A,B,C) -> o0(A,B,C) True (?,1) 27. m1(A,B,C) -> o2(A,B,C) True (?,1) 28. m1(A,B,C) -> n6(A,B,C) True (?,1) Signature: {(add,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n6,3) ;(n7,3) ;(n8,3) ;(n80,3) ;(n81,3) ;(n9,3) ;(n90,3) ;(n91,3) ;(o0,3) ;(o00,3) ;(o01,3) ;(o1,3) ;(o2,3) ;(o3,3)} Flow Graph: [0->{22},1->{27,28},2->{4},3->{},4->{3},5->{7},6->{},7->{6},8->{10},9->{},10->{9},11->{1},12->{11},13->{2} ,14->{12,13},15->{11},16->{5},17->{15,16},18->{11},19->{8},20->{18,19},21->{1},22->{21},23->{24,25,26} ,24->{14},25->{17},26->{20},27->{23},28->{}] Sizebounds: (< 0,0,A>, ?) (< 0,0,B>, ?) (< 0,0,C>, ?) (< 1,0,A>, ?) (< 1,0,B>, ?) (< 1,0,C>, ?) (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<14,0,A>, ?) (<14,0,B>, ?) (<14,0,C>, ?) (<14,1,A>, ?) (<14,1,B>, ?) (<14,1,C>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) (<17,1,A>, ?) (<17,1,B>, ?) (<17,1,C>, ?) (<18,0,A>, ?) (<18,0,B>, ?) (<18,0,C>, ?) (<19,0,A>, ?) (<19,0,B>, ?) (<19,0,C>, ?) (<20,0,A>, ?) (<20,0,B>, ?) (<20,0,C>, ?) (<20,1,A>, ?) (<20,1,B>, ?) (<20,1,C>, ?) (<21,0,A>, ?) (<21,0,B>, ?) (<21,0,C>, ?) (<21,1,A>, ?) (<21,1,B>, ?) (<21,1,C>, ?) (<22,0,A>, ?) (<22,0,B>, ?) (<22,0,C>, ?) (<23,0,A>, ?) (<23,0,B>, ?) (<23,0,C>, ?) (<24,0,A>, ?) (<24,0,B>, ?) (<24,0,C>, ?) (<25,0,A>, ?) (<25,0,B>, ?) (<25,0,C>, ?) (<26,0,A>, ?) (<26,0,B>, ?) (<26,0,C>, ?) (<27,0,A>, ?) (<27,0,B>, ?) (<27,0,C>, ?) (<28,0,A>, ?) (<28,0,B>, ?) (<28,0,C>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 1,0,A>, A) (< 1,0,B>, 3 + A) (< 1,0,C>, A + C) (< 2,0,A>, A) (< 2,0,B>, A) (< 2,0,C>, A) (< 3,0,A>, 1 + A) (< 3,0,B>, A) (< 3,0,C>, A) (< 4,0,A>, A) (< 4,0,B>, A) (< 4,0,C>, A) (< 5,0,A>, A) (< 5,0,B>, A) (< 5,0,C>, A) (< 6,0,A>, 2 + A) (< 6,0,B>, A) (< 6,0,C>, A) (< 7,0,A>, A) (< 7,0,B>, A) (< 7,0,C>, A) (< 8,0,A>, A) (< 8,0,B>, A) (< 8,0,C>, A) (< 9,0,A>, 3 + A) (< 9,0,B>, A) (< 9,0,C>, A) (<10,0,A>, A) (<10,0,B>, A) (<10,0,C>, A) (<11,0,A>, A) (<11,0,B>, 3 + A) (<11,0,C>, A) (<12,0,A>, A) (<12,0,B>, A) (<12,0,C>, A) (<13,0,A>, A) (<13,0,B>, A) (<13,0,C>, A) (<14,0,A>, A) (<14,0,B>, A) (<14,0,C>, A) (<14,1,A>, A) (<14,1,B>, A) (<14,1,C>, A) (<15,0,A>, A) (<15,0,B>, A) (<15,0,C>, A) (<16,0,A>, A) (<16,0,B>, A) (<16,0,C>, A) (<17,0,A>, A) (<17,0,B>, A) (<17,0,C>, A) (<17,1,A>, A) (<17,1,B>, A) (<17,1,C>, A) (<18,0,A>, A) (<18,0,B>, A) (<18,0,C>, A) (<19,0,A>, A) (<19,0,B>, A) (<19,0,C>, A) (<20,0,A>, A) (<20,0,B>, A) (<20,0,C>, A) (<20,1,A>, A) (<20,1,B>, A) (<20,1,C>, A) (<21,0,A>, A) (<21,0,B>, 0) (<21,0,C>, C) (<21,1,A>, A) (<21,1,B>, 0) (<21,1,C>, C) (<22,0,A>, A) (<22,0,B>, B) (<22,0,C>, C) (<23,0,A>, A) (<23,0,B>, A) (<23,0,C>, A + C) (<24,0,A>, A) (<24,0,B>, A) (<24,0,C>, A + C) (<25,0,A>, A) (<25,0,B>, A) (<25,0,C>, A + C) (<26,0,A>, A) (<26,0,B>, A) (<26,0,C>, A + C) (<27,0,A>, A) (<27,0,B>, 3 + A) (<27,0,C>, A + C) (<28,0,A>, A) (<28,0,B>, 3 + A) (<28,0,C>, A + C) * Step 4: LeafRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. add(A,B,C) -> n4(A,B,C) [A >= 0] (1,1) 1. m0(A,B,C) -> m1(A,B,C) True (?,1) 2. m2(A,B,C) -> m3(A,B,C) True (?,1) 3. m5(A,B,C) -> m4(E,B,C) [1 + A >= E && E >= 1 + A] (?,1) 4. m3(A,B,C) -> m5(A,B,C) True (?,1) 5. m6(A,B,C) -> m7(A,B,C) True (?,1) 6. m9(A,B,C) -> m8(E,B,C) [2 + A >= E && E >= 2 + A] (?,1) 7. m7(A,B,C) -> m9(A,B,C) True (?,1) 8. n0(A,B,C) -> n1(A,B,C) True (?,1) 9. n3(A,B,C) -> n2(E,B,C) [3 + A >= E && E >= 3 + A] (?,1) 10. n1(A,B,C) -> n3(A,B,C) True (?,1) 11. n7(A,B,C) -> m0(A,B,C) [3 + A >= B] (?,1) 12. n80(A,B,C) -> n7(A,B,C) True (?,1) 13. n81(A,B,C) -> m2(C,B,C) True (?,1) 14. n8(A,B,C) -> c2(n80(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B] (?,1) 15. n90(A,B,C) -> n7(A,B,C) True (?,1) 16. n91(A,B,C) -> m6(C,B,C) True (?,1) 17. n9(A,B,C) -> c2(n90(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B] (?,1) 18. o00(A,B,C) -> n7(A,B,C) True (?,1) 19. o01(A,B,C) -> n0(C,B,C) True (?,1) 20. o0(A,B,C) -> c2(o00(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B] (?,1) 21. o1(A,B,C) -> c2(n5(A,0,C),m0(A,0,C)) [A >= 0] (?,1) 22. n4(A,B,C) -> o1(A,B,C) [A >= 0] (?,1) 23. o2(A,B,C) -> o3(A,B,C) [A >= B] (?,1) 24. o3(A,B,C) -> n8(A,B,C) True (?,1) 25. o3(A,B,C) -> n9(A,B,C) True (?,1) 26. o3(A,B,C) -> o0(A,B,C) True (?,1) 27. m1(A,B,C) -> o2(A,B,C) True (?,1) 28. m1(A,B,C) -> n6(A,B,C) True (?,1) Signature: {(add,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n6,3) ;(n7,3) ;(n8,3) ;(n80,3) ;(n81,3) ;(n9,3) ;(n90,3) ;(n91,3) ;(o0,3) ;(o00,3) ;(o01,3) ;(o1,3) ;(o2,3) ;(o3,3)} Flow Graph: [0->{22},1->{27,28},2->{4},3->{},4->{3},5->{7},6->{},7->{6},8->{10},9->{},10->{9},11->{1},12->{11},13->{2} ,14->{12,13},15->{11},16->{5},17->{15,16},18->{11},19->{8},20->{18,19},21->{1},22->{21},23->{24,25,26} ,24->{14},25->{17},26->{20},27->{23},28->{}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 1,0,A>, A) (< 1,0,B>, 3 + A) (< 1,0,C>, A + C) (< 2,0,A>, A) (< 2,0,B>, A) (< 2,0,C>, A) (< 3,0,A>, 1 + A) (< 3,0,B>, A) (< 3,0,C>, A) (< 4,0,A>, A) (< 4,0,B>, A) (< 4,0,C>, A) (< 5,0,A>, A) (< 5,0,B>, A) (< 5,0,C>, A) (< 6,0,A>, 2 + A) (< 6,0,B>, A) (< 6,0,C>, A) (< 7,0,A>, A) (< 7,0,B>, A) (< 7,0,C>, A) (< 8,0,A>, A) (< 8,0,B>, A) (< 8,0,C>, A) (< 9,0,A>, 3 + A) (< 9,0,B>, A) (< 9,0,C>, A) (<10,0,A>, A) (<10,0,B>, A) (<10,0,C>, A) (<11,0,A>, A) (<11,0,B>, 3 + A) (<11,0,C>, A) (<12,0,A>, A) (<12,0,B>, A) (<12,0,C>, A) (<13,0,A>, A) (<13,0,B>, A) (<13,0,C>, A) (<14,0,A>, A) (<14,0,B>, A) (<14,0,C>, A) (<14,1,A>, A) (<14,1,B>, A) (<14,1,C>, A) (<15,0,A>, A) (<15,0,B>, A) (<15,0,C>, A) (<16,0,A>, A) (<16,0,B>, A) (<16,0,C>, A) (<17,0,A>, A) (<17,0,B>, A) (<17,0,C>, A) (<17,1,A>, A) (<17,1,B>, A) (<17,1,C>, A) (<18,0,A>, A) (<18,0,B>, A) (<18,0,C>, A) (<19,0,A>, A) (<19,0,B>, A) (<19,0,C>, A) (<20,0,A>, A) (<20,0,B>, A) (<20,0,C>, A) (<20,1,A>, A) (<20,1,B>, A) (<20,1,C>, A) (<21,0,A>, A) (<21,0,B>, 0) (<21,0,C>, C) (<21,1,A>, A) (<21,1,B>, 0) (<21,1,C>, C) (<22,0,A>, A) (<22,0,B>, B) (<22,0,C>, C) (<23,0,A>, A) (<23,0,B>, A) (<23,0,C>, A + C) (<24,0,A>, A) (<24,0,B>, A) (<24,0,C>, A + C) (<25,0,A>, A) (<25,0,B>, A) (<25,0,C>, A + C) (<26,0,A>, A) (<26,0,B>, A) (<26,0,C>, A + C) (<27,0,A>, A) (<27,0,B>, 3 + A) (<27,0,C>, A + C) (<28,0,A>, A) (<28,0,B>, 3 + A) (<28,0,C>, A + C) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [13,16,19,2,5,8,4,7,10,3,6,9,28] * Step 5: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. add(A,B,C) -> n4(A,B,C) [A >= 0] (1,1) 1. m0(A,B,C) -> m1(A,B,C) True (?,1) 11. n7(A,B,C) -> m0(A,B,C) [3 + A >= B] (?,1) 12. n80(A,B,C) -> n7(A,B,C) True (?,1) 14. n8(A,B,C) -> c2(n80(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B] (?,1) 15. n90(A,B,C) -> n7(A,B,C) True (?,1) 17. n9(A,B,C) -> c2(n90(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B] (?,1) 18. o00(A,B,C) -> n7(A,B,C) True (?,1) 20. o0(A,B,C) -> c2(o00(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B] (?,1) 21. o1(A,B,C) -> c2(n5(A,0,C),m0(A,0,C)) [A >= 0] (?,1) 22. n4(A,B,C) -> o1(A,B,C) [A >= 0] (?,1) 23. o2(A,B,C) -> o3(A,B,C) [A >= B] (?,1) 24. o3(A,B,C) -> n8(A,B,C) True (?,1) 25. o3(A,B,C) -> n9(A,B,C) True (?,1) 26. o3(A,B,C) -> o0(A,B,C) True (?,1) 27. m1(A,B,C) -> o2(A,B,C) True (?,1) Signature: {(add,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n6,3) ;(n7,3) ;(n8,3) ;(n80,3) ;(n81,3) ;(n9,3) ;(n90,3) ;(n91,3) ;(o0,3) ;(o00,3) ;(o01,3) ;(o1,3) ;(o2,3) ;(o3,3)} Flow Graph: [0->{22},1->{27},11->{1},12->{11},14->{12},15->{11},17->{15},18->{11},20->{18},21->{1},22->{21},23->{24,25 ,26},24->{14},25->{17},26->{20},27->{23}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 1,0,A>, A) (< 1,0,B>, 3 + A) (< 1,0,C>, A + C) (<11,0,A>, A) (<11,0,B>, 3 + A) (<11,0,C>, A) (<12,0,A>, A) (<12,0,B>, A) (<12,0,C>, A) (<14,0,A>, A) (<14,0,B>, A) (<14,0,C>, A) (<14,1,A>, A) (<14,1,B>, A) (<14,1,C>, A) (<15,0,A>, A) (<15,0,B>, A) (<15,0,C>, A) (<17,0,A>, A) (<17,0,B>, A) (<17,0,C>, A) (<17,1,A>, A) (<17,1,B>, A) (<17,1,C>, A) (<18,0,A>, A) (<18,0,B>, A) (<18,0,C>, A) (<20,0,A>, A) (<20,0,B>, A) (<20,0,C>, A) (<20,1,A>, A) (<20,1,B>, A) (<20,1,C>, A) (<21,0,A>, A) (<21,0,B>, 0) (<21,0,C>, C) (<21,1,A>, A) (<21,1,B>, 0) (<21,1,C>, C) (<22,0,A>, A) (<22,0,B>, B) (<22,0,C>, C) (<23,0,A>, A) (<23,0,B>, A) (<23,0,C>, A + C) (<24,0,A>, A) (<24,0,B>, A) (<24,0,C>, A + C) (<25,0,A>, A) (<25,0,B>, A) (<25,0,C>, A + C) (<26,0,A>, A) (<26,0,B>, A) (<26,0,C>, A + C) (<27,0,A>, A) (<27,0,B>, 3 + A) (<27,0,C>, A + C) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(add) = 2 p(m0) = 1 p(m1) = 1 p(n4) = 2 p(n5) = 0 p(n7) = 1 p(n8) = 1 p(n80) = 1 p(n81) = 0 p(n9) = 1 p(n90) = 1 p(n91) = 0 p(o0) = 1 p(o00) = 1 p(o01) = 0 p(o1) = 1 p(o2) = 1 p(o3) = 1 The following rules are strictly oriented: [A >= 0] ==> n4(A,B,C) = 2 > 1 = o1(A,B,C) The following rules are weakly oriented: [A >= 0] ==> add(A,B,C) = 2 >= 2 = n4(A,B,C) True ==> m0(A,B,C) = 1 >= 1 = m1(A,B,C) [3 + A >= B] ==> n7(A,B,C) = 1 >= 1 = m0(A,B,C) True ==> n80(A,B,C) = 1 >= 1 = n7(A,B,C) [A >= B && 1 + B >= E && E >= 1 + B] ==> n8(A,B,C) = 1 >= 1 = c2(n80(A,E,B),n81(A,E,B)) True ==> n90(A,B,C) = 1 >= 1 = n7(A,B,C) [A >= B && 2 + B >= E && E >= 2 + B] ==> n9(A,B,C) = 1 >= 1 = c2(n90(A,E,B),n91(A,E,B)) True ==> o00(A,B,C) = 1 >= 1 = n7(A,B,C) [A >= B && 3 + B >= E && E >= 3 + B] ==> o0(A,B,C) = 1 >= 1 = c2(o00(A,E,B),o01(A,E,B)) [A >= 0] ==> o1(A,B,C) = 1 >= 1 = c2(n5(A,0,C),m0(A,0,C)) [A >= B] ==> o2(A,B,C) = 1 >= 1 = o3(A,B,C) True ==> o3(A,B,C) = 1 >= 1 = n8(A,B,C) True ==> o3(A,B,C) = 1 >= 1 = n9(A,B,C) True ==> o3(A,B,C) = 1 >= 1 = o0(A,B,C) True ==> m1(A,B,C) = 1 >= 1 = o2(A,B,C) * Step 6: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. add(A,B,C) -> n4(A,B,C) [A >= 0] (1,1) 1. m0(A,B,C) -> m1(A,B,C) True (?,1) 11. n7(A,B,C) -> m0(A,B,C) [3 + A >= B] (?,1) 12. n80(A,B,C) -> n7(A,B,C) True (?,1) 14. n8(A,B,C) -> c2(n80(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B] (?,1) 15. n90(A,B,C) -> n7(A,B,C) True (?,1) 17. n9(A,B,C) -> c2(n90(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B] (?,1) 18. o00(A,B,C) -> n7(A,B,C) True (?,1) 20. o0(A,B,C) -> c2(o00(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B] (?,1) 21. o1(A,B,C) -> c2(n5(A,0,C),m0(A,0,C)) [A >= 0] (?,1) 22. n4(A,B,C) -> o1(A,B,C) [A >= 0] (2,1) 23. o2(A,B,C) -> o3(A,B,C) [A >= B] (?,1) 24. o3(A,B,C) -> n8(A,B,C) True (?,1) 25. o3(A,B,C) -> n9(A,B,C) True (?,1) 26. o3(A,B,C) -> o0(A,B,C) True (?,1) 27. m1(A,B,C) -> o2(A,B,C) True (?,1) Signature: {(add,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n6,3) ;(n7,3) ;(n8,3) ;(n80,3) ;(n81,3) ;(n9,3) ;(n90,3) ;(n91,3) ;(o0,3) ;(o00,3) ;(o01,3) ;(o1,3) ;(o2,3) ;(o3,3)} Flow Graph: [0->{22},1->{27},11->{1},12->{11},14->{12},15->{11},17->{15},18->{11},20->{18},21->{1},22->{21},23->{24,25 ,26},24->{14},25->{17},26->{20},27->{23}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 1,0,A>, A) (< 1,0,B>, 3 + A) (< 1,0,C>, A + C) (<11,0,A>, A) (<11,0,B>, 3 + A) (<11,0,C>, A) (<12,0,A>, A) (<12,0,B>, A) (<12,0,C>, A) (<14,0,A>, A) (<14,0,B>, A) (<14,0,C>, A) (<14,1,A>, A) (<14,1,B>, A) (<14,1,C>, A) (<15,0,A>, A) (<15,0,B>, A) (<15,0,C>, A) (<17,0,A>, A) (<17,0,B>, A) (<17,0,C>, A) (<17,1,A>, A) (<17,1,B>, A) (<17,1,C>, A) (<18,0,A>, A) (<18,0,B>, A) (<18,0,C>, A) (<20,0,A>, A) (<20,0,B>, A) (<20,0,C>, A) (<20,1,A>, A) (<20,1,B>, A) (<20,1,C>, A) (<21,0,A>, A) (<21,0,B>, 0) (<21,0,C>, C) (<21,1,A>, A) (<21,1,B>, 0) (<21,1,C>, C) (<22,0,A>, A) (<22,0,B>, B) (<22,0,C>, C) (<23,0,A>, A) (<23,0,B>, A) (<23,0,C>, A + C) (<24,0,A>, A) (<24,0,B>, A) (<24,0,C>, A + C) (<25,0,A>, A) (<25,0,B>, A) (<25,0,C>, A + C) (<26,0,A>, A) (<26,0,B>, A) (<26,0,C>, A + C) (<27,0,A>, A) (<27,0,B>, 3 + A) (<27,0,C>, A + C) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 7: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. add(A,B,C) -> n4(A,B,C) [A >= 0] (1,1) 1. m0(A,B,C) -> m1(A,B,C) True (?,1) 11. n7(A,B,C) -> m0(A,B,C) [3 + A >= B] (?,1) 12. n80(A,B,C) -> n7(A,B,C) True (?,1) 14. n8(A,B,C) -> c2(n80(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B] (?,1) 15. n90(A,B,C) -> n7(A,B,C) True (?,1) 17. n9(A,B,C) -> c2(n90(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B] (?,1) 18. o00(A,B,C) -> n7(A,B,C) True (?,1) 20. o0(A,B,C) -> c2(o00(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B] (?,1) 21. o1(A,B,C) -> c2(n5(A,0,C),m0(A,0,C)) [A >= 0] (2,1) 22. n4(A,B,C) -> o1(A,B,C) [A >= 0] (2,1) 23. o2(A,B,C) -> o3(A,B,C) [A >= B] (?,1) 24. o3(A,B,C) -> n8(A,B,C) True (?,1) 25. o3(A,B,C) -> n9(A,B,C) True (?,1) 26. o3(A,B,C) -> o0(A,B,C) True (?,1) 27. m1(A,B,C) -> o2(A,B,C) True (?,1) Signature: {(add,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n6,3) ;(n7,3) ;(n8,3) ;(n80,3) ;(n81,3) ;(n9,3) ;(n90,3) ;(n91,3) ;(o0,3) ;(o00,3) ;(o01,3) ;(o1,3) ;(o2,3) ;(o3,3)} Flow Graph: [0->{22},1->{27},11->{1},12->{11},14->{12},15->{11},17->{15},18->{11},20->{18},21->{1},22->{21},23->{24,25 ,26},24->{14},25->{17},26->{20},27->{23}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 1,0,A>, A) (< 1,0,B>, 3 + A) (< 1,0,C>, A + C) (<11,0,A>, A) (<11,0,B>, 3 + A) (<11,0,C>, A) (<12,0,A>, A) (<12,0,B>, A) (<12,0,C>, A) (<14,0,A>, A) (<14,0,B>, A) (<14,0,C>, A) (<14,1,A>, A) (<14,1,B>, A) (<14,1,C>, A) (<15,0,A>, A) (<15,0,B>, A) (<15,0,C>, A) (<17,0,A>, A) (<17,0,B>, A) (<17,0,C>, A) (<17,1,A>, A) (<17,1,B>, A) (<17,1,C>, A) (<18,0,A>, A) (<18,0,B>, A) (<18,0,C>, A) (<20,0,A>, A) (<20,0,B>, A) (<20,0,C>, A) (<20,1,A>, A) (<20,1,B>, A) (<20,1,C>, A) (<21,0,A>, A) (<21,0,B>, 0) (<21,0,C>, C) (<21,1,A>, A) (<21,1,B>, 0) (<21,1,C>, C) (<22,0,A>, A) (<22,0,B>, B) (<22,0,C>, C) (<23,0,A>, A) (<23,0,B>, A) (<23,0,C>, A + C) (<24,0,A>, A) (<24,0,B>, A) (<24,0,C>, A + C) (<25,0,A>, A) (<25,0,B>, A) (<25,0,C>, A + C) (<26,0,A>, A) (<26,0,B>, A) (<26,0,C>, A + C) (<27,0,A>, A) (<27,0,B>, 3 + A) (<27,0,C>, A + C) + Applied Processor: ChainProcessor False [0,1,11,12,14,15,17,18,20,21,22,23,24,25,26,27] + Details: We chained rule 0 to obtain the rules [28] . * Step 8: UnreachableRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 1. m0(A,B,C) -> m1(A,B,C) True (?,1) 11. n7(A,B,C) -> m0(A,B,C) [3 + A >= B] (?,1) 12. n80(A,B,C) -> n7(A,B,C) True (?,1) 14. n8(A,B,C) -> c2(n80(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B] (?,1) 15. n90(A,B,C) -> n7(A,B,C) True (?,1) 17. n9(A,B,C) -> c2(n90(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B] (?,1) 18. o00(A,B,C) -> n7(A,B,C) True (?,1) 20. o0(A,B,C) -> c2(o00(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B] (?,1) 21. o1(A,B,C) -> c2(n5(A,0,C),m0(A,0,C)) [A >= 0] (2,1) 22. n4(A,B,C) -> o1(A,B,C) [A >= 0] (2,1) 23. o2(A,B,C) -> o3(A,B,C) [A >= B] (?,1) 24. o3(A,B,C) -> n8(A,B,C) True (?,1) 25. o3(A,B,C) -> n9(A,B,C) True (?,1) 26. o3(A,B,C) -> o0(A,B,C) True (?,1) 27. m1(A,B,C) -> o2(A,B,C) True (?,1) 28. add(A,B,C) -> o1(A,B,C) [A >= 0 && A >= 0] (1,2) Signature: {(add,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n6,3) ;(n7,3) ;(n8,3) ;(n80,3) ;(n81,3) ;(n9,3) ;(n90,3) ;(n91,3) ;(o0,3) ;(o00,3) ;(o01,3) ;(o1,3) ;(o2,3) ;(o3,3)} Flow Graph: [1->{27},11->{1},12->{11},14->{12},15->{11},17->{15},18->{11},20->{18},21->{1},22->{21},23->{24,25,26} ,24->{14},25->{17},26->{20},27->{23},28->{21}] Sizebounds: (< 1,0,A>, A) (< 1,0,B>, 3 + A) (< 1,0,C>, A + C) (<11,0,A>, A) (<11,0,B>, 3 + A) (<11,0,C>, A) (<12,0,A>, A) (<12,0,B>, A) (<12,0,C>, A) (<14,0,A>, A) (<14,0,B>, A) (<14,0,C>, A) (<14,1,A>, A) (<14,1,B>, A) (<14,1,C>, A) (<15,0,A>, A) (<15,0,B>, A) (<15,0,C>, A) (<17,0,A>, A) (<17,0,B>, A) (<17,0,C>, A) (<17,1,A>, A) (<17,1,B>, A) (<17,1,C>, A) (<18,0,A>, A) (<18,0,B>, A) (<18,0,C>, A) (<20,0,A>, A) (<20,0,B>, A) (<20,0,C>, A) (<20,1,A>, A) (<20,1,B>, A) (<20,1,C>, A) (<21,0,A>, A) (<21,0,B>, 0) (<21,0,C>, C) (<21,1,A>, A) (<21,1,B>, 0) (<21,1,C>, C) (<22,0,A>, A) (<22,0,B>, B) (<22,0,C>, C) (<23,0,A>, A) (<23,0,B>, A) (<23,0,C>, A + C) (<24,0,A>, A) (<24,0,B>, A) (<24,0,C>, A + C) (<25,0,A>, A) (<25,0,B>, A) (<25,0,C>, A + C) (<26,0,A>, A) (<26,0,B>, A) (<26,0,C>, A + C) (<27,0,A>, A) (<27,0,B>, 3 + A) (<27,0,C>, A + C) (<28,0,A>, A) (<28,0,B>, B) (<28,0,C>, C) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [22] * Step 9: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 1. m0(A,B,C) -> m1(A,B,C) True (?,1) 11. n7(A,B,C) -> m0(A,B,C) [3 + A >= B] (?,1) 12. n80(A,B,C) -> n7(A,B,C) True (?,1) 14. n8(A,B,C) -> c2(n80(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B] (?,1) 15. n90(A,B,C) -> n7(A,B,C) True (?,1) 17. n9(A,B,C) -> c2(n90(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B] (?,1) 18. o00(A,B,C) -> n7(A,B,C) True (?,1) 20. o0(A,B,C) -> c2(o00(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B] (?,1) 21. o1(A,B,C) -> c2(n5(A,0,C),m0(A,0,C)) [A >= 0] (2,1) 23. o2(A,B,C) -> o3(A,B,C) [A >= B] (?,1) 24. o3(A,B,C) -> n8(A,B,C) True (?,1) 25. o3(A,B,C) -> n9(A,B,C) True (?,1) 26. o3(A,B,C) -> o0(A,B,C) True (?,1) 27. m1(A,B,C) -> o2(A,B,C) True (?,1) 28. add(A,B,C) -> o1(A,B,C) [A >= 0 && A >= 0] (1,2) Signature: {(add,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n6,3) ;(n7,3) ;(n8,3) ;(n80,3) ;(n81,3) ;(n9,3) ;(n90,3) ;(n91,3) ;(o0,3) ;(o00,3) ;(o01,3) ;(o1,3) ;(o2,3) ;(o3,3)} Flow Graph: [1->{27},11->{1},12->{11},14->{12},15->{11},17->{15},18->{11},20->{18},21->{1},23->{24,25,26},24->{14} ,25->{17},26->{20},27->{23},28->{21}] Sizebounds: (< 1,0,A>, A) (< 1,0,B>, 3 + A) (< 1,0,C>, A + C) (<11,0,A>, A) (<11,0,B>, 3 + A) (<11,0,C>, A) (<12,0,A>, A) (<12,0,B>, A) (<12,0,C>, A) (<14,0,A>, A) (<14,0,B>, A) (<14,0,C>, A) (<14,1,A>, A) (<14,1,B>, A) (<14,1,C>, A) (<15,0,A>, A) (<15,0,B>, A) (<15,0,C>, A) (<17,0,A>, A) (<17,0,B>, A) (<17,0,C>, A) (<17,1,A>, A) (<17,1,B>, A) (<17,1,C>, A) (<18,0,A>, A) (<18,0,B>, A) (<18,0,C>, A) (<20,0,A>, A) (<20,0,B>, A) (<20,0,C>, A) (<20,1,A>, A) (<20,1,B>, A) (<20,1,C>, A) (<21,0,A>, A) (<21,0,B>, 0) (<21,0,C>, C) (<21,1,A>, A) (<21,1,B>, 0) (<21,1,C>, C) (<23,0,A>, A) (<23,0,B>, A) (<23,0,C>, A + C) (<24,0,A>, A) (<24,0,B>, A) (<24,0,C>, A + C) (<25,0,A>, A) (<25,0,B>, A) (<25,0,C>, A + C) (<26,0,A>, A) (<26,0,B>, A) (<26,0,C>, A + C) (<27,0,A>, A) (<27,0,B>, 3 + A) (<27,0,C>, A + C) (<28,0,A>, A) (<28,0,B>, B) (<28,0,C>, C) + Applied Processor: ChainProcessor False [1,11,12,14,15,17,18,20,21,23,24,25,26,27,28] + Details: We chained rule 1 to obtain the rules [29] . * Step 10: UnreachableRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 11. n7(A,B,C) -> m0(A,B,C) [3 + A >= B] (?,1) 12. n80(A,B,C) -> n7(A,B,C) True (?,1) 14. n8(A,B,C) -> c2(n80(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B] (?,1) 15. n90(A,B,C) -> n7(A,B,C) True (?,1) 17. n9(A,B,C) -> c2(n90(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B] (?,1) 18. o00(A,B,C) -> n7(A,B,C) True (?,1) 20. o0(A,B,C) -> c2(o00(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B] (?,1) 21. o1(A,B,C) -> c2(n5(A,0,C),m0(A,0,C)) [A >= 0] (2,1) 23. o2(A,B,C) -> o3(A,B,C) [A >= B] (?,1) 24. o3(A,B,C) -> n8(A,B,C) True (?,1) 25. o3(A,B,C) -> n9(A,B,C) True (?,1) 26. o3(A,B,C) -> o0(A,B,C) True (?,1) 27. m1(A,B,C) -> o2(A,B,C) True (?,1) 28. add(A,B,C) -> o1(A,B,C) [A >= 0 && A >= 0] (1,2) 29. m0(A,B,C) -> o2(A,B,C) True (?,2) Signature: {(add,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n6,3) ;(n7,3) ;(n8,3) ;(n80,3) ;(n81,3) ;(n9,3) ;(n90,3) ;(n91,3) ;(o0,3) ;(o00,3) ;(o01,3) ;(o1,3) ;(o2,3) ;(o3,3)} Flow Graph: [11->{29},12->{11},14->{12},15->{11},17->{15},18->{11},20->{18},21->{29},23->{24,25,26},24->{14},25->{17} ,26->{20},27->{23},28->{21},29->{23}] Sizebounds: (<11,0,A>, A) (<11,0,B>, 3 + A) (<11,0,C>, A) (<12,0,A>, A) (<12,0,B>, A) (<12,0,C>, A) (<14,0,A>, A) (<14,0,B>, A) (<14,0,C>, A) (<14,1,A>, A) (<14,1,B>, A) (<14,1,C>, A) (<15,0,A>, A) (<15,0,B>, A) (<15,0,C>, A) (<17,0,A>, A) (<17,0,B>, A) (<17,0,C>, A) (<17,1,A>, A) (<17,1,B>, A) (<17,1,C>, A) (<18,0,A>, A) (<18,0,B>, A) (<18,0,C>, A) (<20,0,A>, A) (<20,0,B>, A) (<20,0,C>, A) (<20,1,A>, A) (<20,1,B>, A) (<20,1,C>, A) (<21,0,A>, A) (<21,0,B>, 0) (<21,0,C>, C) (<21,1,A>, A) (<21,1,B>, 0) (<21,1,C>, C) (<23,0,A>, A) (<23,0,B>, A) (<23,0,C>, A + C) (<24,0,A>, A) (<24,0,B>, A) (<24,0,C>, A + C) (<25,0,A>, A) (<25,0,B>, A) (<25,0,C>, A + C) (<26,0,A>, A) (<26,0,B>, A) (<26,0,C>, A + C) (<27,0,A>, A) (<27,0,B>, 3 + A) (<27,0,C>, A + C) (<28,0,A>, A) (<28,0,B>, B) (<28,0,C>, C) (<29,0,A>, A) (<29,0,B>, 3 + A) (<29,0,C>, A + C) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [27] * Step 11: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 11. n7(A,B,C) -> m0(A,B,C) [3 + A >= B] (?,1) 12. n80(A,B,C) -> n7(A,B,C) True (?,1) 14. n8(A,B,C) -> c2(n80(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B] (?,1) 15. n90(A,B,C) -> n7(A,B,C) True (?,1) 17. n9(A,B,C) -> c2(n90(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B] (?,1) 18. o00(A,B,C) -> n7(A,B,C) True (?,1) 20. o0(A,B,C) -> c2(o00(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B] (?,1) 21. o1(A,B,C) -> c2(n5(A,0,C),m0(A,0,C)) [A >= 0] (2,1) 23. o2(A,B,C) -> o3(A,B,C) [A >= B] (?,1) 24. o3(A,B,C) -> n8(A,B,C) True (?,1) 25. o3(A,B,C) -> n9(A,B,C) True (?,1) 26. o3(A,B,C) -> o0(A,B,C) True (?,1) 28. add(A,B,C) -> o1(A,B,C) [A >= 0 && A >= 0] (1,2) 29. m0(A,B,C) -> o2(A,B,C) True (?,2) Signature: {(add,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n6,3) ;(n7,3) ;(n8,3) ;(n80,3) ;(n81,3) ;(n9,3) ;(n90,3) ;(n91,3) ;(o0,3) ;(o00,3) ;(o01,3) ;(o1,3) ;(o2,3) ;(o3,3)} Flow Graph: [11->{29},12->{11},14->{12},15->{11},17->{15},18->{11},20->{18},21->{29},23->{24,25,26},24->{14},25->{17} ,26->{20},28->{21},29->{23}] Sizebounds: (<11,0,A>, A) (<11,0,B>, 3 + A) (<11,0,C>, A) (<12,0,A>, A) (<12,0,B>, A) (<12,0,C>, A) (<14,0,A>, A) (<14,0,B>, A) (<14,0,C>, A) (<14,1,A>, A) (<14,1,B>, A) (<14,1,C>, A) (<15,0,A>, A) (<15,0,B>, A) (<15,0,C>, A) (<17,0,A>, A) (<17,0,B>, A) (<17,0,C>, A) (<17,1,A>, A) (<17,1,B>, A) (<17,1,C>, A) (<18,0,A>, A) (<18,0,B>, A) (<18,0,C>, A) (<20,0,A>, A) (<20,0,B>, A) (<20,0,C>, A) (<20,1,A>, A) (<20,1,B>, A) (<20,1,C>, A) (<21,0,A>, A) (<21,0,B>, 0) (<21,0,C>, C) (<21,1,A>, A) (<21,1,B>, 0) (<21,1,C>, C) (<23,0,A>, A) (<23,0,B>, A) (<23,0,C>, A + C) (<24,0,A>, A) (<24,0,B>, A) (<24,0,C>, A + C) (<25,0,A>, A) (<25,0,B>, A) (<25,0,C>, A + C) (<26,0,A>, A) (<26,0,B>, A) (<26,0,C>, A + C) (<28,0,A>, A) (<28,0,B>, B) (<28,0,C>, C) (<29,0,A>, A) (<29,0,B>, 3 + A) (<29,0,C>, A + C) + Applied Processor: ChainProcessor False [11,12,14,15,17,18,20,21,23,24,25,26,28,29] + Details: We chained rule 11 to obtain the rules [30] . * Step 12: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 12. n80(A,B,C) -> n7(A,B,C) True (?,1) 14. n8(A,B,C) -> c2(n80(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B] (?,1) 15. n90(A,B,C) -> n7(A,B,C) True (?,1) 17. n9(A,B,C) -> c2(n90(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B] (?,1) 18. o00(A,B,C) -> n7(A,B,C) True (?,1) 20. o0(A,B,C) -> c2(o00(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B] (?,1) 21. o1(A,B,C) -> c2(n5(A,0,C),m0(A,0,C)) [A >= 0] (2,1) 23. o2(A,B,C) -> o3(A,B,C) [A >= B] (?,1) 24. o3(A,B,C) -> n8(A,B,C) True (?,1) 25. o3(A,B,C) -> n9(A,B,C) True (?,1) 26. o3(A,B,C) -> o0(A,B,C) True (?,1) 28. add(A,B,C) -> o1(A,B,C) [A >= 0 && A >= 0] (1,2) 29. m0(A,B,C) -> o2(A,B,C) True (?,2) 30. n7(A,B,C) -> o2(A,B,C) [3 + A >= B] (?,3) Signature: {(add,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n6,3) ;(n7,3) ;(n8,3) ;(n80,3) ;(n81,3) ;(n9,3) ;(n90,3) ;(n91,3) ;(o0,3) ;(o00,3) ;(o01,3) ;(o1,3) ;(o2,3) ;(o3,3)} Flow Graph: [12->{30},14->{12},15->{30},17->{15},18->{30},20->{18},21->{29},23->{24,25,26},24->{14},25->{17},26->{20} ,28->{21},29->{23},30->{23}] Sizebounds: (<12,0,A>, A) (<12,0,B>, A) (<12,0,C>, A) (<14,0,A>, A) (<14,0,B>, A) (<14,0,C>, A) (<14,1,A>, A) (<14,1,B>, A) (<14,1,C>, A) (<15,0,A>, A) (<15,0,B>, A) (<15,0,C>, A) (<17,0,A>, A) (<17,0,B>, A) (<17,0,C>, A) (<17,1,A>, A) (<17,1,B>, A) (<17,1,C>, A) (<18,0,A>, A) (<18,0,B>, A) (<18,0,C>, A) (<20,0,A>, A) (<20,0,B>, A) (<20,0,C>, A) (<20,1,A>, A) (<20,1,B>, A) (<20,1,C>, A) (<21,0,A>, A) (<21,0,B>, 0) (<21,0,C>, C) (<21,1,A>, A) (<21,1,B>, 0) (<21,1,C>, C) (<23,0,A>, A) (<23,0,B>, A) (<23,0,C>, A + C) (<24,0,A>, A) (<24,0,B>, A) (<24,0,C>, A + C) (<25,0,A>, A) (<25,0,B>, A) (<25,0,C>, A + C) (<26,0,A>, A) (<26,0,B>, A) (<26,0,C>, A + C) (<28,0,A>, A) (<28,0,B>, B) (<28,0,C>, C) (<29,0,A>, A) (<29,0,B>, 3 + A) (<29,0,C>, A + C) (<30,0,A>, A) (<30,0,B>, 3 + A) (<30,0,C>, A + C) + Applied Processor: ChainProcessor False [12,14,15,17,18,20,21,23,24,25,26,28,29,30] + Details: We chained rule 12 to obtain the rules [31] . * Step 13: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 14. n8(A,B,C) -> c2(n80(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B] (?,1) 15. n90(A,B,C) -> n7(A,B,C) True (?,1) 17. n9(A,B,C) -> c2(n90(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B] (?,1) 18. o00(A,B,C) -> n7(A,B,C) True (?,1) 20. o0(A,B,C) -> c2(o00(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B] (?,1) 21. o1(A,B,C) -> c2(n5(A,0,C),m0(A,0,C)) [A >= 0] (2,1) 23. o2(A,B,C) -> o3(A,B,C) [A >= B] (?,1) 24. o3(A,B,C) -> n8(A,B,C) True (?,1) 25. o3(A,B,C) -> n9(A,B,C) True (?,1) 26. o3(A,B,C) -> o0(A,B,C) True (?,1) 28. add(A,B,C) -> o1(A,B,C) [A >= 0 && A >= 0] (1,2) 29. m0(A,B,C) -> o2(A,B,C) True (?,2) 30. n7(A,B,C) -> o2(A,B,C) [3 + A >= B] (?,3) 31. n80(A,B,C) -> o2(A,B,C) [3 + A >= B] (?,4) Signature: {(add,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n6,3) ;(n7,3) ;(n8,3) ;(n80,3) ;(n81,3) ;(n9,3) ;(n90,3) ;(n91,3) ;(o0,3) ;(o00,3) ;(o01,3) ;(o1,3) ;(o2,3) ;(o3,3)} Flow Graph: [14->{31},15->{30},17->{15},18->{30},20->{18},21->{29},23->{24,25,26},24->{14},25->{17},26->{20},28->{21} ,29->{23},30->{23},31->{23}] Sizebounds: (<14,0,A>, A) (<14,0,B>, A) (<14,0,C>, A) (<14,1,A>, A) (<14,1,B>, A) (<14,1,C>, A) (<15,0,A>, A) (<15,0,B>, A) (<15,0,C>, A) (<17,0,A>, A) (<17,0,B>, A) (<17,0,C>, A) (<17,1,A>, A) (<17,1,B>, A) (<17,1,C>, A) (<18,0,A>, A) (<18,0,B>, A) (<18,0,C>, A) (<20,0,A>, A) (<20,0,B>, A) (<20,0,C>, A) (<20,1,A>, A) (<20,1,B>, A) (<20,1,C>, A) (<21,0,A>, A) (<21,0,B>, 0) (<21,0,C>, C) (<21,1,A>, A) (<21,1,B>, 0) (<21,1,C>, C) (<23,0,A>, A) (<23,0,B>, A) (<23,0,C>, A + C) (<24,0,A>, A) (<24,0,B>, A) (<24,0,C>, A + C) (<25,0,A>, A) (<25,0,B>, A) (<25,0,C>, A + C) (<26,0,A>, A) (<26,0,B>, A) (<26,0,C>, A + C) (<28,0,A>, A) (<28,0,B>, B) (<28,0,C>, C) (<29,0,A>, A) (<29,0,B>, 3 + A) (<29,0,C>, A + C) (<30,0,A>, A) (<30,0,B>, 3 + A) (<30,0,C>, A + C) (<31,0,A>, A) (<31,0,B>, 3 + A) (<31,0,C>, A + C) + Applied Processor: ChainProcessor False [14,15,17,18,20,21,23,24,25,26,28,29,30,31] + Details: We chained rule 14 to obtain the rules [32] . * Step 14: UnreachableRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 15. n90(A,B,C) -> n7(A,B,C) True (?,1) 17. n9(A,B,C) -> c2(n90(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B] (?,1) 18. o00(A,B,C) -> n7(A,B,C) True (?,1) 20. o0(A,B,C) -> c2(o00(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B] (?,1) 21. o1(A,B,C) -> c2(n5(A,0,C),m0(A,0,C)) [A >= 0] (2,1) 23. o2(A,B,C) -> o3(A,B,C) [A >= B] (?,1) 24. o3(A,B,C) -> n8(A,B,C) True (?,1) 25. o3(A,B,C) -> n9(A,B,C) True (?,1) 26. o3(A,B,C) -> o0(A,B,C) True (?,1) 28. add(A,B,C) -> o1(A,B,C) [A >= 0 && A >= 0] (1,2) 29. m0(A,B,C) -> o2(A,B,C) True (?,2) 30. n7(A,B,C) -> o2(A,B,C) [3 + A >= B] (?,3) 31. n80(A,B,C) -> o2(A,B,C) [3 + A >= B] (?,4) 32. n8(A,B,C) -> c2(o2(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E] (?,5) Signature: {(add,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n6,3) ;(n7,3) ;(n8,3) ;(n80,3) ;(n81,3) ;(n9,3) ;(n90,3) ;(n91,3) ;(o0,3) ;(o00,3) ;(o01,3) ;(o1,3) ;(o2,3) ;(o3,3)} Flow Graph: [15->{30},17->{15},18->{30},20->{18},21->{29},23->{24,25,26},24->{32},25->{17},26->{20},28->{21},29->{23} ,30->{23},31->{23},32->{23}] Sizebounds: (<15,0,A>, A) (<15,0,B>, A) (<15,0,C>, A) (<17,0,A>, A) (<17,0,B>, A) (<17,0,C>, A) (<17,1,A>, A) (<17,1,B>, A) (<17,1,C>, A) (<18,0,A>, A) (<18,0,B>, A) (<18,0,C>, A) (<20,0,A>, A) (<20,0,B>, A) (<20,0,C>, A) (<20,1,A>, A) (<20,1,B>, A) (<20,1,C>, A) (<21,0,A>, A) (<21,0,B>, 0) (<21,0,C>, C) (<21,1,A>, A) (<21,1,B>, 0) (<21,1,C>, C) (<23,0,A>, A) (<23,0,B>, A) (<23,0,C>, A + C) (<24,0,A>, A) (<24,0,B>, A) (<24,0,C>, A + C) (<25,0,A>, A) (<25,0,B>, A) (<25,0,C>, A + C) (<26,0,A>, A) (<26,0,B>, A) (<26,0,C>, A + C) (<28,0,A>, A) (<28,0,B>, B) (<28,0,C>, C) (<29,0,A>, A) (<29,0,B>, 3 + A) (<29,0,C>, A + C) (<30,0,A>, A) (<30,0,B>, 3 + A) (<30,0,C>, A + C) (<31,0,A>, A) (<31,0,B>, 3 + A) (<31,0,C>, A + C) (<32,0,A>, A) (<32,0,B>, 3 + A) (<32,0,C>, A + C) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [31] * Step 15: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 15. n90(A,B,C) -> n7(A,B,C) True (?,1) 17. n9(A,B,C) -> c2(n90(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B] (?,1) 18. o00(A,B,C) -> n7(A,B,C) True (?,1) 20. o0(A,B,C) -> c2(o00(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B] (?,1) 21. o1(A,B,C) -> c2(n5(A,0,C),m0(A,0,C)) [A >= 0] (2,1) 23. o2(A,B,C) -> o3(A,B,C) [A >= B] (?,1) 24. o3(A,B,C) -> n8(A,B,C) True (?,1) 25. o3(A,B,C) -> n9(A,B,C) True (?,1) 26. o3(A,B,C) -> o0(A,B,C) True (?,1) 28. add(A,B,C) -> o1(A,B,C) [A >= 0 && A >= 0] (1,2) 29. m0(A,B,C) -> o2(A,B,C) True (?,2) 30. n7(A,B,C) -> o2(A,B,C) [3 + A >= B] (?,3) 32. n8(A,B,C) -> c2(o2(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E] (?,5) Signature: {(add,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n6,3) ;(n7,3) ;(n8,3) ;(n80,3) ;(n81,3) ;(n9,3) ;(n90,3) ;(n91,3) ;(o0,3) ;(o00,3) ;(o01,3) ;(o1,3) ;(o2,3) ;(o3,3)} Flow Graph: [15->{30},17->{15},18->{30},20->{18},21->{29},23->{24,25,26},24->{32},25->{17},26->{20},28->{21},29->{23} ,30->{23},32->{23}] Sizebounds: (<15,0,A>, A) (<15,0,B>, A) (<15,0,C>, A) (<17,0,A>, A) (<17,0,B>, A) (<17,0,C>, A) (<17,1,A>, A) (<17,1,B>, A) (<17,1,C>, A) (<18,0,A>, A) (<18,0,B>, A) (<18,0,C>, A) (<20,0,A>, A) (<20,0,B>, A) (<20,0,C>, A) (<20,1,A>, A) (<20,1,B>, A) (<20,1,C>, A) (<21,0,A>, A) (<21,0,B>, 0) (<21,0,C>, C) (<21,1,A>, A) (<21,1,B>, 0) (<21,1,C>, C) (<23,0,A>, A) (<23,0,B>, A) (<23,0,C>, A + C) (<24,0,A>, A) (<24,0,B>, A) (<24,0,C>, A + C) (<25,0,A>, A) (<25,0,B>, A) (<25,0,C>, A + C) (<26,0,A>, A) (<26,0,B>, A) (<26,0,C>, A + C) (<28,0,A>, A) (<28,0,B>, B) (<28,0,C>, C) (<29,0,A>, A) (<29,0,B>, 3 + A) (<29,0,C>, A + C) (<30,0,A>, A) (<30,0,B>, 3 + A) (<30,0,C>, A + C) (<32,0,A>, A) (<32,0,B>, 3 + A) (<32,0,C>, A + C) + Applied Processor: ChainProcessor False [15,17,18,20,21,23,24,25,26,28,29,30,32] + Details: We chained rule 15 to obtain the rules [33] . * Step 16: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 17. n9(A,B,C) -> c2(n90(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B] (?,1) 18. o00(A,B,C) -> n7(A,B,C) True (?,1) 20. o0(A,B,C) -> c2(o00(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B] (?,1) 21. o1(A,B,C) -> c2(n5(A,0,C),m0(A,0,C)) [A >= 0] (2,1) 23. o2(A,B,C) -> o3(A,B,C) [A >= B] (?,1) 24. o3(A,B,C) -> n8(A,B,C) True (?,1) 25. o3(A,B,C) -> n9(A,B,C) True (?,1) 26. o3(A,B,C) -> o0(A,B,C) True (?,1) 28. add(A,B,C) -> o1(A,B,C) [A >= 0 && A >= 0] (1,2) 29. m0(A,B,C) -> o2(A,B,C) True (?,2) 30. n7(A,B,C) -> o2(A,B,C) [3 + A >= B] (?,3) 32. n8(A,B,C) -> c2(o2(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E] (?,5) 33. n90(A,B,C) -> o2(A,B,C) [3 + A >= B] (?,4) Signature: {(add,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n6,3) ;(n7,3) ;(n8,3) ;(n80,3) ;(n81,3) ;(n9,3) ;(n90,3) ;(n91,3) ;(o0,3) ;(o00,3) ;(o01,3) ;(o1,3) ;(o2,3) ;(o3,3)} Flow Graph: [17->{33},18->{30},20->{18},21->{29},23->{24,25,26},24->{32},25->{17},26->{20},28->{21},29->{23},30->{23} ,32->{23},33->{23}] Sizebounds: (<17,0,A>, A) (<17,0,B>, A) (<17,0,C>, A) (<17,1,A>, A) (<17,1,B>, A) (<17,1,C>, A) (<18,0,A>, A) (<18,0,B>, A) (<18,0,C>, A) (<20,0,A>, A) (<20,0,B>, A) (<20,0,C>, A) (<20,1,A>, A) (<20,1,B>, A) (<20,1,C>, A) (<21,0,A>, A) (<21,0,B>, 0) (<21,0,C>, C) (<21,1,A>, A) (<21,1,B>, 0) (<21,1,C>, C) (<23,0,A>, A) (<23,0,B>, A) (<23,0,C>, A + C) (<24,0,A>, A) (<24,0,B>, A) (<24,0,C>, A + C) (<25,0,A>, A) (<25,0,B>, A) (<25,0,C>, A + C) (<26,0,A>, A) (<26,0,B>, A) (<26,0,C>, A + C) (<28,0,A>, A) (<28,0,B>, B) (<28,0,C>, C) (<29,0,A>, A) (<29,0,B>, 3 + A) (<29,0,C>, A + C) (<30,0,A>, A) (<30,0,B>, 3 + A) (<30,0,C>, A + C) (<32,0,A>, A) (<32,0,B>, 3 + A) (<32,0,C>, A + C) (<33,0,A>, A) (<33,0,B>, 3 + A) (<33,0,C>, A + C) + Applied Processor: ChainProcessor False [17,18,20,21,23,24,25,26,28,29,30,32,33] + Details: We chained rule 17 to obtain the rules [34] . * Step 17: UnreachableRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 18. o00(A,B,C) -> n7(A,B,C) True (?,1) 20. o0(A,B,C) -> c2(o00(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B] (?,1) 21. o1(A,B,C) -> c2(n5(A,0,C),m0(A,0,C)) [A >= 0] (2,1) 23. o2(A,B,C) -> o3(A,B,C) [A >= B] (?,1) 24. o3(A,B,C) -> n8(A,B,C) True (?,1) 25. o3(A,B,C) -> n9(A,B,C) True (?,1) 26. o3(A,B,C) -> o0(A,B,C) True (?,1) 28. add(A,B,C) -> o1(A,B,C) [A >= 0 && A >= 0] (1,2) 29. m0(A,B,C) -> o2(A,B,C) True (?,2) 30. n7(A,B,C) -> o2(A,B,C) [3 + A >= B] (?,3) 32. n8(A,B,C) -> c2(o2(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E] (?,5) 33. n90(A,B,C) -> o2(A,B,C) [3 + A >= B] (?,4) 34. n9(A,B,C) -> c2(o2(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E] (?,5) Signature: {(add,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n6,3) ;(n7,3) ;(n8,3) ;(n80,3) ;(n81,3) ;(n9,3) ;(n90,3) ;(n91,3) ;(o0,3) ;(o00,3) ;(o01,3) ;(o1,3) ;(o2,3) ;(o3,3)} Flow Graph: [18->{30},20->{18},21->{29},23->{24,25,26},24->{32},25->{34},26->{20},28->{21},29->{23},30->{23},32->{23} ,33->{23},34->{23}] Sizebounds: (<18,0,A>, A) (<18,0,B>, A) (<18,0,C>, A) (<20,0,A>, A) (<20,0,B>, A) (<20,0,C>, A) (<20,1,A>, A) (<20,1,B>, A) (<20,1,C>, A) (<21,0,A>, A) (<21,0,B>, 0) (<21,0,C>, C) (<21,1,A>, A) (<21,1,B>, 0) (<21,1,C>, C) (<23,0,A>, A) (<23,0,B>, A) (<23,0,C>, A + C) (<24,0,A>, A) (<24,0,B>, A) (<24,0,C>, A + C) (<25,0,A>, A) (<25,0,B>, A) (<25,0,C>, A + C) (<26,0,A>, A) (<26,0,B>, A) (<26,0,C>, A + C) (<28,0,A>, A) (<28,0,B>, B) (<28,0,C>, C) (<29,0,A>, A) (<29,0,B>, 3 + A) (<29,0,C>, A + C) (<30,0,A>, A) (<30,0,B>, 3 + A) (<30,0,C>, A + C) (<32,0,A>, A) (<32,0,B>, 3 + A) (<32,0,C>, A + C) (<33,0,A>, A) (<33,0,B>, 3 + A) (<33,0,C>, A + C) (<34,0,A>, A) (<34,0,B>, 3 + A) (<34,0,C>, A + C) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [33] * Step 18: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 18. o00(A,B,C) -> n7(A,B,C) True (?,1) 20. o0(A,B,C) -> c2(o00(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B] (?,1) 21. o1(A,B,C) -> c2(n5(A,0,C),m0(A,0,C)) [A >= 0] (2,1) 23. o2(A,B,C) -> o3(A,B,C) [A >= B] (?,1) 24. o3(A,B,C) -> n8(A,B,C) True (?,1) 25. o3(A,B,C) -> n9(A,B,C) True (?,1) 26. o3(A,B,C) -> o0(A,B,C) True (?,1) 28. add(A,B,C) -> o1(A,B,C) [A >= 0 && A >= 0] (1,2) 29. m0(A,B,C) -> o2(A,B,C) True (?,2) 30. n7(A,B,C) -> o2(A,B,C) [3 + A >= B] (?,3) 32. n8(A,B,C) -> c2(o2(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E] (?,5) 34. n9(A,B,C) -> c2(o2(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E] (?,5) Signature: {(add,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n6,3) ;(n7,3) ;(n8,3) ;(n80,3) ;(n81,3) ;(n9,3) ;(n90,3) ;(n91,3) ;(o0,3) ;(o00,3) ;(o01,3) ;(o1,3) ;(o2,3) ;(o3,3)} Flow Graph: [18->{30},20->{18},21->{29},23->{24,25,26},24->{32},25->{34},26->{20},28->{21},29->{23},30->{23},32->{23} ,34->{23}] Sizebounds: (<18,0,A>, A) (<18,0,B>, A) (<18,0,C>, A) (<20,0,A>, A) (<20,0,B>, A) (<20,0,C>, A) (<20,1,A>, A) (<20,1,B>, A) (<20,1,C>, A) (<21,0,A>, A) (<21,0,B>, 0) (<21,0,C>, C) (<21,1,A>, A) (<21,1,B>, 0) (<21,1,C>, C) (<23,0,A>, A) (<23,0,B>, A) (<23,0,C>, A + C) (<24,0,A>, A) (<24,0,B>, A) (<24,0,C>, A + C) (<25,0,A>, A) (<25,0,B>, A) (<25,0,C>, A + C) (<26,0,A>, A) (<26,0,B>, A) (<26,0,C>, A + C) (<28,0,A>, A) (<28,0,B>, B) (<28,0,C>, C) (<29,0,A>, A) (<29,0,B>, 3 + A) (<29,0,C>, A + C) (<30,0,A>, A) (<30,0,B>, 3 + A) (<30,0,C>, A + C) (<32,0,A>, A) (<32,0,B>, 3 + A) (<32,0,C>, A + C) (<34,0,A>, A) (<34,0,B>, 3 + A) (<34,0,C>, A + C) + Applied Processor: ChainProcessor False [18,20,21,23,24,25,26,28,29,30,32,34] + Details: We chained rule 18 to obtain the rules [35] . * Step 19: UnreachableRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 20. o0(A,B,C) -> c2(o00(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B] (?,1) 21. o1(A,B,C) -> c2(n5(A,0,C),m0(A,0,C)) [A >= 0] (2,1) 23. o2(A,B,C) -> o3(A,B,C) [A >= B] (?,1) 24. o3(A,B,C) -> n8(A,B,C) True (?,1) 25. o3(A,B,C) -> n9(A,B,C) True (?,1) 26. o3(A,B,C) -> o0(A,B,C) True (?,1) 28. add(A,B,C) -> o1(A,B,C) [A >= 0 && A >= 0] (1,2) 29. m0(A,B,C) -> o2(A,B,C) True (?,2) 30. n7(A,B,C) -> o2(A,B,C) [3 + A >= B] (?,3) 32. n8(A,B,C) -> c2(o2(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E] (?,5) 34. n9(A,B,C) -> c2(o2(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E] (?,5) 35. o00(A,B,C) -> o2(A,B,C) [3 + A >= B] (?,4) Signature: {(add,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n6,3) ;(n7,3) ;(n8,3) ;(n80,3) ;(n81,3) ;(n9,3) ;(n90,3) ;(n91,3) ;(o0,3) ;(o00,3) ;(o01,3) ;(o1,3) ;(o2,3) ;(o3,3)} Flow Graph: [20->{35},21->{29},23->{24,25,26},24->{32},25->{34},26->{20},28->{21},29->{23},30->{23},32->{23},34->{23} ,35->{23}] Sizebounds: (<20,0,A>, A) (<20,0,B>, A) (<20,0,C>, A) (<20,1,A>, A) (<20,1,B>, A) (<20,1,C>, A) (<21,0,A>, A) (<21,0,B>, 0) (<21,0,C>, C) (<21,1,A>, A) (<21,1,B>, 0) (<21,1,C>, C) (<23,0,A>, A) (<23,0,B>, A) (<23,0,C>, A + C) (<24,0,A>, A) (<24,0,B>, A) (<24,0,C>, A + C) (<25,0,A>, A) (<25,0,B>, A) (<25,0,C>, A + C) (<26,0,A>, A) (<26,0,B>, A) (<26,0,C>, A + C) (<28,0,A>, A) (<28,0,B>, B) (<28,0,C>, C) (<29,0,A>, A) (<29,0,B>, 3 + A) (<29,0,C>, A + C) (<30,0,A>, A) (<30,0,B>, 3 + A) (<30,0,C>, A + C) (<32,0,A>, A) (<32,0,B>, 3 + A) (<32,0,C>, A + C) (<34,0,A>, A) (<34,0,B>, 3 + A) (<34,0,C>, A + C) (<35,0,A>, A) (<35,0,B>, 3 + A) (<35,0,C>, A + C) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [30] * Step 20: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 20. o0(A,B,C) -> c2(o00(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B] (?,1) 21. o1(A,B,C) -> c2(n5(A,0,C),m0(A,0,C)) [A >= 0] (2,1) 23. o2(A,B,C) -> o3(A,B,C) [A >= B] (?,1) 24. o3(A,B,C) -> n8(A,B,C) True (?,1) 25. o3(A,B,C) -> n9(A,B,C) True (?,1) 26. o3(A,B,C) -> o0(A,B,C) True (?,1) 28. add(A,B,C) -> o1(A,B,C) [A >= 0 && A >= 0] (1,2) 29. m0(A,B,C) -> o2(A,B,C) True (?,2) 32. n8(A,B,C) -> c2(o2(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E] (?,5) 34. n9(A,B,C) -> c2(o2(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E] (?,5) 35. o00(A,B,C) -> o2(A,B,C) [3 + A >= B] (?,4) Signature: {(add,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n6,3) ;(n7,3) ;(n8,3) ;(n80,3) ;(n81,3) ;(n9,3) ;(n90,3) ;(n91,3) ;(o0,3) ;(o00,3) ;(o01,3) ;(o1,3) ;(o2,3) ;(o3,3)} Flow Graph: [20->{35},21->{29},23->{24,25,26},24->{32},25->{34},26->{20},28->{21},29->{23},32->{23},34->{23},35->{23}] Sizebounds: (<20,0,A>, A) (<20,0,B>, A) (<20,0,C>, A) (<20,1,A>, A) (<20,1,B>, A) (<20,1,C>, A) (<21,0,A>, A) (<21,0,B>, 0) (<21,0,C>, C) (<21,1,A>, A) (<21,1,B>, 0) (<21,1,C>, C) (<23,0,A>, A) (<23,0,B>, A) (<23,0,C>, A + C) (<24,0,A>, A) (<24,0,B>, A) (<24,0,C>, A + C) (<25,0,A>, A) (<25,0,B>, A) (<25,0,C>, A + C) (<26,0,A>, A) (<26,0,B>, A) (<26,0,C>, A + C) (<28,0,A>, A) (<28,0,B>, B) (<28,0,C>, C) (<29,0,A>, A) (<29,0,B>, 3 + A) (<29,0,C>, A + C) (<32,0,A>, A) (<32,0,B>, 3 + A) (<32,0,C>, A + C) (<34,0,A>, A) (<34,0,B>, 3 + A) (<34,0,C>, A + C) (<35,0,A>, A) (<35,0,B>, 3 + A) (<35,0,C>, A + C) + Applied Processor: ChainProcessor False [20,21,23,24,25,26,28,29,32,34,35] + Details: We chained rule 20 to obtain the rules [36] . * Step 21: UnreachableRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 21. o1(A,B,C) -> c2(n5(A,0,C),m0(A,0,C)) [A >= 0] (2,1) 23. o2(A,B,C) -> o3(A,B,C) [A >= B] (?,1) 24. o3(A,B,C) -> n8(A,B,C) True (?,1) 25. o3(A,B,C) -> n9(A,B,C) True (?,1) 26. o3(A,B,C) -> o0(A,B,C) True (?,1) 28. add(A,B,C) -> o1(A,B,C) [A >= 0 && A >= 0] (1,2) 29. m0(A,B,C) -> o2(A,B,C) True (?,2) 32. n8(A,B,C) -> c2(o2(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E] (?,5) 34. n9(A,B,C) -> c2(o2(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E] (?,5) 35. o00(A,B,C) -> o2(A,B,C) [3 + A >= B] (?,4) 36. o0(A,B,C) -> c2(o2(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E] (?,5) Signature: {(add,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n6,3) ;(n7,3) ;(n8,3) ;(n80,3) ;(n81,3) ;(n9,3) ;(n90,3) ;(n91,3) ;(o0,3) ;(o00,3) ;(o01,3) ;(o1,3) ;(o2,3) ;(o3,3)} Flow Graph: [21->{29},23->{24,25,26},24->{32},25->{34},26->{36},28->{21},29->{23},32->{23},34->{23},35->{23},36->{23}] Sizebounds: (<21,0,A>, A) (<21,0,B>, 0) (<21,0,C>, C) (<21,1,A>, A) (<21,1,B>, 0) (<21,1,C>, C) (<23,0,A>, A) (<23,0,B>, A) (<23,0,C>, A + C) (<24,0,A>, A) (<24,0,B>, A) (<24,0,C>, A + C) (<25,0,A>, A) (<25,0,B>, A) (<25,0,C>, A + C) (<26,0,A>, A) (<26,0,B>, A) (<26,0,C>, A + C) (<28,0,A>, A) (<28,0,B>, B) (<28,0,C>, C) (<29,0,A>, A) (<29,0,B>, 3 + A) (<29,0,C>, A + C) (<32,0,A>, A) (<32,0,B>, 3 + A) (<32,0,C>, A + C) (<34,0,A>, A) (<34,0,B>, 3 + A) (<34,0,C>, A + C) (<35,0,A>, A) (<35,0,B>, 3 + A) (<35,0,C>, A + C) (<36,0,A>, A) (<36,0,B>, 3 + A) (<36,0,C>, A + C) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [35] * Step 22: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 21. o1(A,B,C) -> c2(n5(A,0,C),m0(A,0,C)) [A >= 0] (2,1) 23. o2(A,B,C) -> o3(A,B,C) [A >= B] (?,1) 24. o3(A,B,C) -> n8(A,B,C) True (?,1) 25. o3(A,B,C) -> n9(A,B,C) True (?,1) 26. o3(A,B,C) -> o0(A,B,C) True (?,1) 28. add(A,B,C) -> o1(A,B,C) [A >= 0 && A >= 0] (1,2) 29. m0(A,B,C) -> o2(A,B,C) True (?,2) 32. n8(A,B,C) -> c2(o2(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E] (?,5) 34. n9(A,B,C) -> c2(o2(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E] (?,5) 36. o0(A,B,C) -> c2(o2(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E] (?,5) Signature: {(add,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n6,3) ;(n7,3) ;(n8,3) ;(n80,3) ;(n81,3) ;(n9,3) ;(n90,3) ;(n91,3) ;(o0,3) ;(o00,3) ;(o01,3) ;(o1,3) ;(o2,3) ;(o3,3)} Flow Graph: [21->{29},23->{24,25,26},24->{32},25->{34},26->{36},28->{21},29->{23},32->{23},34->{23},36->{23}] Sizebounds: (<21,0,A>, A) (<21,0,B>, 0) (<21,0,C>, C) (<21,1,A>, A) (<21,1,B>, 0) (<21,1,C>, C) (<23,0,A>, A) (<23,0,B>, A) (<23,0,C>, A + C) (<24,0,A>, A) (<24,0,B>, A) (<24,0,C>, A + C) (<25,0,A>, A) (<25,0,B>, A) (<25,0,C>, A + C) (<26,0,A>, A) (<26,0,B>, A) (<26,0,C>, A + C) (<28,0,A>, A) (<28,0,B>, B) (<28,0,C>, C) (<29,0,A>, A) (<29,0,B>, 3 + A) (<29,0,C>, A + C) (<32,0,A>, A) (<32,0,B>, 3 + A) (<32,0,C>, A + C) (<34,0,A>, A) (<34,0,B>, 3 + A) (<34,0,C>, A + C) (<36,0,A>, A) (<36,0,B>, 3 + A) (<36,0,C>, A + C) + Applied Processor: ChainProcessor False [21,23,24,25,26,28,29,32,34,36] + Details: We chained rule 21 to obtain the rules [37] . * Step 23: UnreachableRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 23. o2(A,B,C) -> o3(A,B,C) [A >= B] (?,1) 24. o3(A,B,C) -> n8(A,B,C) True (?,1) 25. o3(A,B,C) -> n9(A,B,C) True (?,1) 26. o3(A,B,C) -> o0(A,B,C) True (?,1) 28. add(A,B,C) -> o1(A,B,C) [A >= 0 && A >= 0] (1,2) 29. m0(A,B,C) -> o2(A,B,C) True (?,2) 32. n8(A,B,C) -> c2(o2(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E] (?,5) 34. n9(A,B,C) -> c2(o2(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E] (?,5) 36. o0(A,B,C) -> c2(o2(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E] (?,5) 37. o1(A,B,C) -> c2(n5(A,0,C),o2(A,0,C)) [A >= 0] (2,3) Signature: {(add,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n6,3) ;(n7,3) ;(n8,3) ;(n80,3) ;(n81,3) ;(n9,3) ;(n90,3) ;(n91,3) ;(o0,3) ;(o00,3) ;(o01,3) ;(o1,3) ;(o2,3) ;(o3,3)} Flow Graph: [23->{24,25,26},24->{32},25->{34},26->{36},28->{37},29->{23},32->{23},34->{23},36->{23},37->{23}] Sizebounds: (<23,0,A>, A) (<23,0,B>, A) (<23,0,C>, A + C) (<24,0,A>, A) (<24,0,B>, A) (<24,0,C>, A + C) (<25,0,A>, A) (<25,0,B>, A) (<25,0,C>, A + C) (<26,0,A>, A) (<26,0,B>, A) (<26,0,C>, A + C) (<28,0,A>, A) (<28,0,B>, B) (<28,0,C>, C) (<29,0,A>, A) (<29,0,B>, 3 + A) (<29,0,C>, A + C) (<32,0,A>, A) (<32,0,B>, 3 + A) (<32,0,C>, A + C) (<34,0,A>, A) (<34,0,B>, 3 + A) (<34,0,C>, A + C) (<36,0,A>, A) (<36,0,B>, 3 + A) (<36,0,C>, A + C) (<37,0,A>, A) (<37,0,B>, 3 + A) (<37,0,C>, A + C) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [29] * Step 24: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 23. o2(A,B,C) -> o3(A,B,C) [A >= B] (?,1) 24. o3(A,B,C) -> n8(A,B,C) True (?,1) 25. o3(A,B,C) -> n9(A,B,C) True (?,1) 26. o3(A,B,C) -> o0(A,B,C) True (?,1) 28. add(A,B,C) -> o1(A,B,C) [A >= 0 && A >= 0] (1,2) 32. n8(A,B,C) -> c2(o2(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E] (?,5) 34. n9(A,B,C) -> c2(o2(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E] (?,5) 36. o0(A,B,C) -> c2(o2(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E] (?,5) 37. o1(A,B,C) -> c2(n5(A,0,C),o2(A,0,C)) [A >= 0] (2,3) Signature: {(add,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n6,3) ;(n7,3) ;(n8,3) ;(n80,3) ;(n81,3) ;(n9,3) ;(n90,3) ;(n91,3) ;(o0,3) ;(o00,3) ;(o01,3) ;(o1,3) ;(o2,3) ;(o3,3)} Flow Graph: [23->{24,25,26},24->{32},25->{34},26->{36},28->{37},32->{23},34->{23},36->{23},37->{23}] Sizebounds: (<23,0,A>, A) (<23,0,B>, A) (<23,0,C>, A + C) (<24,0,A>, A) (<24,0,B>, A) (<24,0,C>, A + C) (<25,0,A>, A) (<25,0,B>, A) (<25,0,C>, A + C) (<26,0,A>, A) (<26,0,B>, A) (<26,0,C>, A + C) (<28,0,A>, A) (<28,0,B>, B) (<28,0,C>, C) (<32,0,A>, A) (<32,0,B>, 3 + A) (<32,0,C>, A + C) (<34,0,A>, A) (<34,0,B>, 3 + A) (<34,0,C>, A + C) (<36,0,A>, A) (<36,0,B>, 3 + A) (<36,0,C>, A + C) (<37,0,A>, A) (<37,0,B>, 3 + A) (<37,0,C>, A + C) + Applied Processor: ChainProcessor False [23,24,25,26,28,32,34,36,37] + Details: We chained rule 23 to obtain the rules [38,39,40] . * Step 25: UnreachableRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 24. o3(A,B,C) -> n8(A,B,C) True (?,1) 25. o3(A,B,C) -> n9(A,B,C) True (?,1) 26. o3(A,B,C) -> o0(A,B,C) True (?,1) 28. add(A,B,C) -> o1(A,B,C) [A >= 0 && A >= 0] (1,2) 32. n8(A,B,C) -> c2(o2(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E] (?,5) 34. n9(A,B,C) -> c2(o2(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E] (?,5) 36. o0(A,B,C) -> c2(o2(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E] (?,5) 37. o1(A,B,C) -> c2(n5(A,0,C),o2(A,0,C)) [A >= 0] (2,3) 38. o2(A,B,C) -> n8(A,B,C) [A >= B] (?,2) 39. o2(A,B,C) -> n9(A,B,C) [A >= B] (?,2) 40. o2(A,B,C) -> o0(A,B,C) [A >= B] (?,2) Signature: {(add,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n6,3) ;(n7,3) ;(n8,3) ;(n80,3) ;(n81,3) ;(n9,3) ;(n90,3) ;(n91,3) ;(o0,3) ;(o00,3) ;(o01,3) ;(o1,3) ;(o2,3) ;(o3,3)} Flow Graph: [24->{32},25->{34},26->{36},28->{37},32->{38,39,40},34->{38,39,40},36->{38,39,40},37->{38,39,40},38->{32} ,39->{34},40->{36}] Sizebounds: (<24,0,A>, A) (<24,0,B>, A) (<24,0,C>, A + C) (<25,0,A>, A) (<25,0,B>, A) (<25,0,C>, A + C) (<26,0,A>, A) (<26,0,B>, A) (<26,0,C>, A + C) (<28,0,A>, A) (<28,0,B>, B) (<28,0,C>, C) (<32,0,A>, A) (<32,0,B>, 3 + A) (<32,0,C>, A + C) (<34,0,A>, A) (<34,0,B>, 3 + A) (<34,0,C>, A + C) (<36,0,A>, A) (<36,0,B>, 3 + A) (<36,0,C>, A + C) (<37,0,A>, A) (<37,0,B>, 3 + A) (<37,0,C>, A + C) (<38,0,A>, A) (<38,0,B>, A) (<38,0,C>, A + C) (<39,0,A>, A) (<39,0,B>, A) (<39,0,C>, A + C) (<40,0,A>, A) (<40,0,B>, A) (<40,0,C>, A + C) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [24,25,26] * Step 26: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 28. add(A,B,C) -> o1(A,B,C) [A >= 0 && A >= 0] (1,2) 32. n8(A,B,C) -> c2(o2(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E] (?,5) 34. n9(A,B,C) -> c2(o2(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E] (?,5) 36. o0(A,B,C) -> c2(o2(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E] (?,5) 37. o1(A,B,C) -> c2(n5(A,0,C),o2(A,0,C)) [A >= 0] (2,3) 38. o2(A,B,C) -> n8(A,B,C) [A >= B] (?,2) 39. o2(A,B,C) -> n9(A,B,C) [A >= B] (?,2) 40. o2(A,B,C) -> o0(A,B,C) [A >= B] (?,2) Signature: {(add,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n6,3) ;(n7,3) ;(n8,3) ;(n80,3) ;(n81,3) ;(n9,3) ;(n90,3) ;(n91,3) ;(o0,3) ;(o00,3) ;(o01,3) ;(o1,3) ;(o2,3) ;(o3,3)} Flow Graph: [28->{37},32->{38,39,40},34->{38,39,40},36->{38,39,40},37->{38,39,40},38->{32},39->{34},40->{36}] Sizebounds: (<28,0,A>, A) (<28,0,B>, B) (<28,0,C>, C) (<32,0,A>, A) (<32,0,B>, 3 + A) (<32,0,C>, A + C) (<34,0,A>, A) (<34,0,B>, 3 + A) (<34,0,C>, A + C) (<36,0,A>, A) (<36,0,B>, 3 + A) (<36,0,C>, A + C) (<37,0,A>, A) (<37,0,B>, 3 + A) (<37,0,C>, A + C) (<38,0,A>, A) (<38,0,B>, A) (<38,0,C>, A + C) (<39,0,A>, A) (<39,0,B>, A) (<39,0,C>, A + C) (<40,0,A>, A) (<40,0,B>, A) (<40,0,C>, A + C) + Applied Processor: ChainProcessor False [28,32,34,36,37,38,39,40] + Details: We chained rule 32 to obtain the rules [41,42,43] . * Step 27: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 28. add(A,B,C) -> o1(A,B,C) [A >= 0 && A >= 0] (1,2) 34. n9(A,B,C) -> c2(o2(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E] (?,5) 36. o0(A,B,C) -> c2(o2(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E] (?,5) 37. o1(A,B,C) -> c2(n5(A,0,C),o2(A,0,C)) [A >= 0] (2,3) 38. o2(A,B,C) -> n8(A,B,C) [A >= B] (?,2) 39. o2(A,B,C) -> n9(A,B,C) [A >= B] (?,2) 40. o2(A,B,C) -> o0(A,B,C) [A >= B] (?,2) 41. n8(A,B,C) -> c2(n8(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7) 42. n8(A,B,C) -> c2(n9(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7) 43. n8(A,B,C) -> c2(o0(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7) Signature: {(add,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n6,3) ;(n7,3) ;(n8,3) ;(n80,3) ;(n81,3) ;(n9,3) ;(n90,3) ;(n91,3) ;(o0,3) ;(o00,3) ;(o01,3) ;(o1,3) ;(o2,3) ;(o3,3)} Flow Graph: [28->{37},34->{38,39,40},36->{38,39,40},37->{38,39,40},38->{41,42,43},39->{34},40->{36},41->{41,42,43} ,42->{34},43->{36}] Sizebounds: (<28,0,A>, A) (<28,0,B>, B) (<28,0,C>, C) (<34,0,A>, A) (<34,0,B>, 3 + A) (<34,0,C>, A + C) (<36,0,A>, A) (<36,0,B>, 3 + A) (<36,0,C>, A + C) (<37,0,A>, A) (<37,0,B>, 3 + A) (<37,0,C>, A + C) (<38,0,A>, A) (<38,0,B>, A) (<38,0,C>, A + C) (<39,0,A>, A) (<39,0,B>, A) (<39,0,C>, A + C) (<40,0,A>, A) (<40,0,B>, A) (<40,0,C>, A + C) (<41,0,A>, A) (<41,0,B>, A) (<41,0,C>, A + C) (<42,0,A>, A) (<42,0,B>, A) (<42,0,C>, A + C) (<43,0,A>, A) (<43,0,B>, A) (<43,0,C>, A + C) + Applied Processor: ChainProcessor False [28,34,36,37,38,39,40,41,42,43] + Details: We chained rule 34 to obtain the rules [44,45,46] . * Step 28: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 28. add(A,B,C) -> o1(A,B,C) [A >= 0 && A >= 0] (1,2) 36. o0(A,B,C) -> c2(o2(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E] (?,5) 37. o1(A,B,C) -> c2(n5(A,0,C),o2(A,0,C)) [A >= 0] (2,3) 38. o2(A,B,C) -> n8(A,B,C) [A >= B] (?,2) 39. o2(A,B,C) -> n9(A,B,C) [A >= B] (?,2) 40. o2(A,B,C) -> o0(A,B,C) [A >= B] (?,2) 41. n8(A,B,C) -> c2(n8(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7) 42. n8(A,B,C) -> c2(n9(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7) 43. n8(A,B,C) -> c2(o0(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7) 44. n9(A,B,C) -> c2(n8(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7) 45. n9(A,B,C) -> c2(n9(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7) 46. n9(A,B,C) -> c2(o0(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7) Signature: {(add,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n6,3) ;(n7,3) ;(n8,3) ;(n80,3) ;(n81,3) ;(n9,3) ;(n90,3) ;(n91,3) ;(o0,3) ;(o00,3) ;(o01,3) ;(o1,3) ;(o2,3) ;(o3,3)} Flow Graph: [28->{37},36->{38,39,40},37->{38,39,40},38->{41,42,43},39->{44,45,46},40->{36},41->{41,42,43},42->{44,45 ,46},43->{36},44->{41,42,43},45->{44,45,46},46->{36}] Sizebounds: (<28,0,A>, A) (<28,0,B>, B) (<28,0,C>, C) (<36,0,A>, A) (<36,0,B>, 3 + A) (<36,0,C>, A + C) (<37,0,A>, A) (<37,0,B>, 3 + A) (<37,0,C>, A + C) (<38,0,A>, A) (<38,0,B>, A) (<38,0,C>, A + C) (<39,0,A>, A) (<39,0,B>, A) (<39,0,C>, A + C) (<40,0,A>, A) (<40,0,B>, A) (<40,0,C>, A + C) (<41,0,A>, A) (<41,0,B>, A) (<41,0,C>, A + C) (<42,0,A>, A) (<42,0,B>, A) (<42,0,C>, A + C) (<43,0,A>, A) (<43,0,B>, A) (<43,0,C>, A + C) (<44,0,A>, A) (<44,0,B>, A) (<44,0,C>, A + C) (<45,0,A>, A) (<45,0,B>, A) (<45,0,C>, A + C) (<46,0,A>, A) (<46,0,B>, A) (<46,0,C>, A + C) + Applied Processor: ChainProcessor False [28,36,37,38,39,40,41,42,43,44,45,46] + Details: We chained rule 36 to obtain the rules [47,48,49] . * Step 29: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 28. add(A,B,C) -> o1(A,B,C) [A >= 0 && A >= 0] (1,2) 37. o1(A,B,C) -> c2(n5(A,0,C),o2(A,0,C)) [A >= 0] (2,3) 38. o2(A,B,C) -> n8(A,B,C) [A >= B] (?,2) 39. o2(A,B,C) -> n9(A,B,C) [A >= B] (?,2) 40. o2(A,B,C) -> o0(A,B,C) [A >= B] (?,2) 41. n8(A,B,C) -> c2(n8(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7) 42. n8(A,B,C) -> c2(n9(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7) 43. n8(A,B,C) -> c2(o0(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7) 44. n9(A,B,C) -> c2(n8(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7) 45. n9(A,B,C) -> c2(n9(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7) 46. n9(A,B,C) -> c2(o0(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7) 47. o0(A,B,C) -> c2(n8(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (?,7) 48. o0(A,B,C) -> c2(n9(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (?,7) 49. o0(A,B,C) -> c2(o0(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (?,7) Signature: {(add,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n6,3) ;(n7,3) ;(n8,3) ;(n80,3) ;(n81,3) ;(n9,3) ;(n90,3) ;(n91,3) ;(o0,3) ;(o00,3) ;(o01,3) ;(o1,3) ;(o2,3) ;(o3,3)} Flow Graph: [28->{37},37->{38,39,40},38->{41,42,43},39->{44,45,46},40->{47,48,49},41->{41,42,43},42->{44,45,46} ,43->{47,48,49},44->{41,42,43},45->{44,45,46},46->{47,48,49},47->{41,42,43},48->{44,45,46},49->{47,48,49}] Sizebounds: (<28,0,A>, A) (<28,0,B>, B) (<28,0,C>, C) (<37,0,A>, A) (<37,0,B>, 3 + A) (<37,0,C>, A + C) (<38,0,A>, A) (<38,0,B>, A) (<38,0,C>, A + C) (<39,0,A>, A) (<39,0,B>, A) (<39,0,C>, A + C) (<40,0,A>, A) (<40,0,B>, A) (<40,0,C>, A + C) (<41,0,A>, A) (<41,0,B>, A) (<41,0,C>, A + C) (<42,0,A>, A) (<42,0,B>, A) (<42,0,C>, A + C) (<43,0,A>, A) (<43,0,B>, A) (<43,0,C>, A + C) (<44,0,A>, A) (<44,0,B>, A) (<44,0,C>, A + C) (<45,0,A>, A) (<45,0,B>, A) (<45,0,C>, A + C) (<46,0,A>, A) (<46,0,B>, A) (<46,0,C>, A + C) (<47,0,A>, A) (<47,0,B>, A) (<47,0,C>, A + C) (<48,0,A>, A) (<48,0,B>, A) (<48,0,C>, A + C) (<49,0,A>, A) (<49,0,B>, A) (<49,0,C>, A + C) + Applied Processor: ChainProcessor False [28,37,38,39,40,41,42,43,44,45,46,47,48,49] + Details: We chained rule 37 to obtain the rules [50,51,52] . * Step 30: UnreachableRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 28. add(A,B,C) -> o1(A,B,C) [A >= 0 && A >= 0] (1,2) 38. o2(A,B,C) -> n8(A,B,C) [A >= B] (?,2) 39. o2(A,B,C) -> n9(A,B,C) [A >= B] (?,2) 40. o2(A,B,C) -> o0(A,B,C) [A >= B] (?,2) 41. n8(A,B,C) -> c2(n8(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7) 42. n8(A,B,C) -> c2(n9(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7) 43. n8(A,B,C) -> c2(o0(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7) 44. n9(A,B,C) -> c2(n8(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7) 45. n9(A,B,C) -> c2(n9(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7) 46. n9(A,B,C) -> c2(o0(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7) 47. o0(A,B,C) -> c2(n8(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (?,7) 48. o0(A,B,C) -> c2(n9(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (?,7) 49. o0(A,B,C) -> c2(o0(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (?,7) 50. o1(A,B,C) -> c2(n5(A,0,C),n8(A,0,C)) [A >= 0 && A >= 0] (2,5) 51. o1(A,B,C) -> c2(n5(A,0,C),n9(A,0,C)) [A >= 0 && A >= 0] (2,5) 52. o1(A,B,C) -> c2(n5(A,0,C),o0(A,0,C)) [A >= 0 && A >= 0] (2,5) Signature: {(add,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n6,3) ;(n7,3) ;(n8,3) ;(n80,3) ;(n81,3) ;(n9,3) ;(n90,3) ;(n91,3) ;(o0,3) ;(o00,3) ;(o01,3) ;(o1,3) ;(o2,3) ;(o3,3)} Flow Graph: [28->{50,51,52},38->{41,42,43},39->{44,45,46},40->{47,48,49},41->{41,42,43},42->{44,45,46},43->{47,48,49} ,44->{41,42,43},45->{44,45,46},46->{47,48,49},47->{41,42,43},48->{44,45,46},49->{47,48,49},50->{41,42,43} ,51->{44,45,46},52->{47,48,49}] Sizebounds: (<28,0,A>, A) (<28,0,B>, B) (<28,0,C>, C) (<38,0,A>, A) (<38,0,B>, A) (<38,0,C>, A + C) (<39,0,A>, A) (<39,0,B>, A) (<39,0,C>, A + C) (<40,0,A>, A) (<40,0,B>, A) (<40,0,C>, A + C) (<41,0,A>, A) (<41,0,B>, A) (<41,0,C>, A + C) (<42,0,A>, A) (<42,0,B>, A) (<42,0,C>, A + C) (<43,0,A>, A) (<43,0,B>, A) (<43,0,C>, A + C) (<44,0,A>, A) (<44,0,B>, A) (<44,0,C>, A + C) (<45,0,A>, A) (<45,0,B>, A) (<45,0,C>, A + C) (<46,0,A>, A) (<46,0,B>, A) (<46,0,C>, A + C) (<47,0,A>, A) (<47,0,B>, A) (<47,0,C>, A + C) (<48,0,A>, A) (<48,0,B>, A) (<48,0,C>, A + C) (<49,0,A>, A) (<49,0,B>, A) (<49,0,C>, A + C) (<50,0,A>, A) (<50,0,B>, A) (<50,0,C>, A + C) (<51,0,A>, A) (<51,0,B>, A) (<51,0,C>, A + C) (<52,0,A>, A) (<52,0,B>, A) (<52,0,C>, A + C) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [38,39,40] * Step 31: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 28. add(A,B,C) -> o1(A,B,C) [A >= 0 && A >= 0] (1,2) 41. n8(A,B,C) -> c2(n8(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7) 42. n8(A,B,C) -> c2(n9(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7) 43. n8(A,B,C) -> c2(o0(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7) 44. n9(A,B,C) -> c2(n8(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7) 45. n9(A,B,C) -> c2(n9(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7) 46. n9(A,B,C) -> c2(o0(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7) 47. o0(A,B,C) -> c2(n8(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (?,7) 48. o0(A,B,C) -> c2(n9(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (?,7) 49. o0(A,B,C) -> c2(o0(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (?,7) 50. o1(A,B,C) -> c2(n5(A,0,C),n8(A,0,C)) [A >= 0 && A >= 0] (2,5) 51. o1(A,B,C) -> c2(n5(A,0,C),n9(A,0,C)) [A >= 0 && A >= 0] (2,5) 52. o1(A,B,C) -> c2(n5(A,0,C),o0(A,0,C)) [A >= 0 && A >= 0] (2,5) Signature: {(add,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n6,3) ;(n7,3) ;(n8,3) ;(n80,3) ;(n81,3) ;(n9,3) ;(n90,3) ;(n91,3) ;(o0,3) ;(o00,3) ;(o01,3) ;(o1,3) ;(o2,3) ;(o3,3)} Flow Graph: [28->{50,51,52},41->{41,42,43},42->{44,45,46},43->{47,48,49},44->{41,42,43},45->{44,45,46},46->{47,48,49} ,47->{41,42,43},48->{44,45,46},49->{47,48,49},50->{41,42,43},51->{44,45,46},52->{47,48,49}] Sizebounds: (<28,0,A>, A) (<28,0,B>, B) (<28,0,C>, C) (<41,0,A>, A) (<41,0,B>, A) (<41,0,C>, A + C) (<42,0,A>, A) (<42,0,B>, A) (<42,0,C>, A + C) (<43,0,A>, A) (<43,0,B>, A) (<43,0,C>, A + C) (<44,0,A>, A) (<44,0,B>, A) (<44,0,C>, A + C) (<45,0,A>, A) (<45,0,B>, A) (<45,0,C>, A + C) (<46,0,A>, A) (<46,0,B>, A) (<46,0,C>, A + C) (<47,0,A>, A) (<47,0,B>, A) (<47,0,C>, A + C) (<48,0,A>, A) (<48,0,B>, A) (<48,0,C>, A + C) (<49,0,A>, A) (<49,0,B>, A) (<49,0,C>, A + C) (<50,0,A>, A) (<50,0,B>, A) (<50,0,C>, A + C) (<51,0,A>, A) (<51,0,B>, A) (<51,0,C>, A + C) (<52,0,A>, A) (<52,0,B>, A) (<52,0,C>, A + C) + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<28,0,A>, A, .= 0) (<28,0,B>, B, .= 0) (<28,0,C>, C, .= 0) (<41,0,A>, A, .= 0) (<41,0,B>, 1 + A + B, .* 1) (<41,0,C>, B, .= 0) (<41,1,A>, A, .= 0) (<41,1,B>, 1 + A + B, .* 1) (<41,1,C>, B, .= 0) (<42,0,A>, A, .= 0) (<42,0,B>, 1 + A + B, .* 1) (<42,0,C>, B, .= 0) (<42,1,A>, A, .= 0) (<42,1,B>, 1 + A + B, .* 1) (<42,1,C>, B, .= 0) (<43,0,A>, A, .= 0) (<43,0,B>, 1 + A + B, .* 1) (<43,0,C>, B, .= 0) (<43,1,A>, A, .= 0) (<43,1,B>, 1 + A + B, .* 1) (<43,1,C>, B, .= 0) (<44,0,A>, A, .= 0) (<44,0,B>, 2 + A + B, .* 2) (<44,0,C>, B, .= 0) (<44,1,A>, A, .= 0) (<44,1,B>, 2 + A + B, .* 2) (<44,1,C>, B, .= 0) (<45,0,A>, A, .= 0) (<45,0,B>, 2 + A + B, .* 2) (<45,0,C>, B, .= 0) (<45,1,A>, A, .= 0) (<45,1,B>, 2 + A + B, .* 2) (<45,1,C>, B, .= 0) (<46,0,A>, A, .= 0) (<46,0,B>, 2 + A + B, .* 2) (<46,0,C>, B, .= 0) (<46,1,A>, A, .= 0) (<46,1,B>, 2 + A + B, .* 2) (<46,1,C>, B, .= 0) (<47,0,A>, A, .= 0) (<47,0,B>, 3 + A + B, .* 3) (<47,0,C>, B, .= 0) (<47,1,A>, A, .= 0) (<47,1,B>, 3 + A + B, .* 3) (<47,1,C>, B, .= 0) (<48,0,A>, A, .= 0) (<48,0,B>, 3 + A + B, .* 3) (<48,0,C>, B, .= 0) (<48,1,A>, A, .= 0) (<48,1,B>, 3 + A + B, .* 3) (<48,1,C>, B, .= 0) (<49,0,A>, A, .= 0) (<49,0,B>, 3 + A + B, .* 3) (<49,0,C>, B, .= 0) (<49,1,A>, A, .= 0) (<49,1,B>, 3 + A + B, .* 3) (<49,1,C>, B, .= 0) (<50,0,A>, A, .= 0) (<50,0,B>, 0, .= 0) (<50,0,C>, C, .= 0) (<50,1,A>, A, .= 0) (<50,1,B>, 0, .= 0) (<50,1,C>, C, .= 0) (<51,0,A>, A, .= 0) (<51,0,B>, 0, .= 0) (<51,0,C>, C, .= 0) (<51,1,A>, A, .= 0) (<51,1,B>, 0, .= 0) (<51,1,C>, C, .= 0) (<52,0,A>, A, .= 0) (<52,0,B>, 0, .= 0) (<52,0,C>, C, .= 0) (<52,1,A>, A, .= 0) (<52,1,B>, 0, .= 0) (<52,1,C>, C, .= 0) * Step 32: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 28. add(A,B,C) -> o1(A,B,C) [A >= 0 && A >= 0] (1,2) 41. n8(A,B,C) -> c2(n8(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7) 42. n8(A,B,C) -> c2(n9(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7) 43. n8(A,B,C) -> c2(o0(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7) 44. n9(A,B,C) -> c2(n8(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7) 45. n9(A,B,C) -> c2(n9(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7) 46. n9(A,B,C) -> c2(o0(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7) 47. o0(A,B,C) -> c2(n8(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (?,7) 48. o0(A,B,C) -> c2(n9(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (?,7) 49. o0(A,B,C) -> c2(o0(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (?,7) 50. o1(A,B,C) -> c2(n5(A,0,C),n8(A,0,C)) [A >= 0 && A >= 0] (2,5) 51. o1(A,B,C) -> c2(n5(A,0,C),n9(A,0,C)) [A >= 0 && A >= 0] (2,5) 52. o1(A,B,C) -> c2(n5(A,0,C),o0(A,0,C)) [A >= 0 && A >= 0] (2,5) Signature: {(add,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n6,3) ;(n7,3) ;(n8,3) ;(n80,3) ;(n81,3) ;(n9,3) ;(n90,3) ;(n91,3) ;(o0,3) ;(o00,3) ;(o01,3) ;(o1,3) ;(o2,3) ;(o3,3)} Flow Graph: [28->{50,51,52},41->{41,42,43},42->{44,45,46},43->{47,48,49},44->{41,42,43},45->{44,45,46},46->{47,48,49} ,47->{41,42,43},48->{44,45,46},49->{47,48,49},50->{41,42,43},51->{44,45,46},52->{47,48,49}] Sizebounds: (<28,0,A>, ?) (<28,0,B>, ?) (<28,0,C>, ?) (<41,0,A>, ?) (<41,0,B>, ?) (<41,0,C>, ?) (<41,1,A>, ?) (<41,1,B>, ?) (<41,1,C>, ?) (<42,0,A>, ?) (<42,0,B>, ?) (<42,0,C>, ?) (<42,1,A>, ?) (<42,1,B>, ?) (<42,1,C>, ?) (<43,0,A>, ?) (<43,0,B>, ?) (<43,0,C>, ?) (<43,1,A>, ?) (<43,1,B>, ?) (<43,1,C>, ?) (<44,0,A>, ?) (<44,0,B>, ?) (<44,0,C>, ?) (<44,1,A>, ?) (<44,1,B>, ?) (<44,1,C>, ?) (<45,0,A>, ?) (<45,0,B>, ?) (<45,0,C>, ?) (<45,1,A>, ?) (<45,1,B>, ?) (<45,1,C>, ?) (<46,0,A>, ?) (<46,0,B>, ?) (<46,0,C>, ?) (<46,1,A>, ?) (<46,1,B>, ?) (<46,1,C>, ?) (<47,0,A>, ?) (<47,0,B>, ?) (<47,0,C>, ?) (<47,1,A>, ?) (<47,1,B>, ?) (<47,1,C>, ?) (<48,0,A>, ?) (<48,0,B>, ?) (<48,0,C>, ?) (<48,1,A>, ?) (<48,1,B>, ?) (<48,1,C>, ?) (<49,0,A>, ?) (<49,0,B>, ?) (<49,0,C>, ?) (<49,1,A>, ?) (<49,1,B>, ?) (<49,1,C>, ?) (<50,0,A>, ?) (<50,0,B>, ?) (<50,0,C>, ?) (<50,1,A>, ?) (<50,1,B>, ?) (<50,1,C>, ?) (<51,0,A>, ?) (<51,0,B>, ?) (<51,0,C>, ?) (<51,1,A>, ?) (<51,1,B>, ?) (<51,1,C>, ?) (<52,0,A>, ?) (<52,0,B>, ?) (<52,0,C>, ?) (<52,1,A>, ?) (<52,1,B>, ?) (<52,1,C>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<28,0,A>, A) (<28,0,B>, B) (<28,0,C>, C) (<41,0,A>, A) (<41,0,B>, ?) (<41,0,C>, ?) (<41,1,A>, A) (<41,1,B>, ?) (<41,1,C>, ?) (<42,0,A>, A) (<42,0,B>, ?) (<42,0,C>, ?) (<42,1,A>, A) (<42,1,B>, ?) (<42,1,C>, ?) (<43,0,A>, A) (<43,0,B>, ?) (<43,0,C>, ?) (<43,1,A>, A) (<43,1,B>, ?) (<43,1,C>, ?) (<44,0,A>, A) (<44,0,B>, ?) (<44,0,C>, ?) (<44,1,A>, A) (<44,1,B>, ?) (<44,1,C>, ?) (<45,0,A>, A) (<45,0,B>, ?) (<45,0,C>, ?) (<45,1,A>, A) (<45,1,B>, ?) (<45,1,C>, ?) (<46,0,A>, A) (<46,0,B>, ?) (<46,0,C>, ?) (<46,1,A>, A) (<46,1,B>, ?) (<46,1,C>, ?) (<47,0,A>, A) (<47,0,B>, ?) (<47,0,C>, ?) (<47,1,A>, A) (<47,1,B>, ?) (<47,1,C>, ?) (<48,0,A>, A) (<48,0,B>, ?) (<48,0,C>, ?) (<48,1,A>, A) (<48,1,B>, ?) (<48,1,C>, ?) (<49,0,A>, A) (<49,0,B>, ?) (<49,0,C>, ?) (<49,1,A>, A) (<49,1,B>, ?) (<49,1,C>, ?) (<50,0,A>, A) (<50,0,B>, 0) (<50,0,C>, C) (<50,1,A>, A) (<50,1,B>, 0) (<50,1,C>, C) (<51,0,A>, A) (<51,0,B>, 0) (<51,0,C>, C) (<51,1,A>, A) (<51,1,B>, 0) (<51,1,C>, C) (<52,0,A>, A) (<52,0,B>, 0) (<52,0,C>, C) (<52,1,A>, A) (<52,1,B>, 0) (<52,1,C>, C) * Step 33: LocationConstraintsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 28. add(A,B,C) -> o1(A,B,C) [A >= 0 && A >= 0] (1,2) 41. n8(A,B,C) -> c2(n8(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7) 42. n8(A,B,C) -> c2(n9(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7) 43. n8(A,B,C) -> c2(o0(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7) 44. n9(A,B,C) -> c2(n8(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7) 45. n9(A,B,C) -> c2(n9(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7) 46. n9(A,B,C) -> c2(o0(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7) 47. o0(A,B,C) -> c2(n8(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (?,7) 48. o0(A,B,C) -> c2(n9(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (?,7) 49. o0(A,B,C) -> c2(o0(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (?,7) 50. o1(A,B,C) -> c2(n5(A,0,C),n8(A,0,C)) [A >= 0 && A >= 0] (2,5) 51. o1(A,B,C) -> c2(n5(A,0,C),n9(A,0,C)) [A >= 0 && A >= 0] (2,5) 52. o1(A,B,C) -> c2(n5(A,0,C),o0(A,0,C)) [A >= 0 && A >= 0] (2,5) Signature: {(add,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n6,3) ;(n7,3) ;(n8,3) ;(n80,3) ;(n81,3) ;(n9,3) ;(n90,3) ;(n91,3) ;(o0,3) ;(o00,3) ;(o01,3) ;(o1,3) ;(o2,3) ;(o3,3)} Flow Graph: [28->{50,51,52},41->{41,42,43},42->{44,45,46},43->{47,48,49},44->{41,42,43},45->{44,45,46},46->{47,48,49} ,47->{41,42,43},48->{44,45,46},49->{47,48,49},50->{41,42,43},51->{44,45,46},52->{47,48,49}] Sizebounds: (<28,0,A>, A) (<28,0,B>, B) (<28,0,C>, C) (<41,0,A>, A) (<41,0,B>, ?) (<41,0,C>, ?) (<41,1,A>, A) (<41,1,B>, ?) (<41,1,C>, ?) (<42,0,A>, A) (<42,0,B>, ?) (<42,0,C>, ?) (<42,1,A>, A) (<42,1,B>, ?) (<42,1,C>, ?) (<43,0,A>, A) (<43,0,B>, ?) (<43,0,C>, ?) (<43,1,A>, A) (<43,1,B>, ?) (<43,1,C>, ?) (<44,0,A>, A) (<44,0,B>, ?) (<44,0,C>, ?) (<44,1,A>, A) (<44,1,B>, ?) (<44,1,C>, ?) (<45,0,A>, A) (<45,0,B>, ?) (<45,0,C>, ?) (<45,1,A>, A) (<45,1,B>, ?) (<45,1,C>, ?) (<46,0,A>, A) (<46,0,B>, ?) (<46,0,C>, ?) (<46,1,A>, A) (<46,1,B>, ?) (<46,1,C>, ?) (<47,0,A>, A) (<47,0,B>, ?) (<47,0,C>, ?) (<47,1,A>, A) (<47,1,B>, ?) (<47,1,C>, ?) (<48,0,A>, A) (<48,0,B>, ?) (<48,0,C>, ?) (<48,1,A>, A) (<48,1,B>, ?) (<48,1,C>, ?) (<49,0,A>, A) (<49,0,B>, ?) (<49,0,C>, ?) (<49,1,A>, A) (<49,1,B>, ?) (<49,1,C>, ?) (<50,0,A>, A) (<50,0,B>, 0) (<50,0,C>, C) (<50,1,A>, A) (<50,1,B>, 0) (<50,1,C>, C) (<51,0,A>, A) (<51,0,B>, 0) (<51,0,C>, C) (<51,1,A>, A) (<51,1,B>, 0) (<51,1,C>, C) (<52,0,A>, A) (<52,0,B>, 0) (<52,0,C>, C) (<52,1,A>, A) (<52,1,B>, 0) (<52,1,C>, C) + Applied Processor: LocationConstraintsProc + Details: We computed the location constraints 28 : True 41 : True 42 : True 43 : True 44 : True 45 : True 46 : True 47 : True 48 : True 49 : True 50 : [A >= 0] 51 : [A >= 0] 52 : [A >= 0] . * Step 34: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 28. add(A,B,C) -> o1(A,B,C) [A >= 0 && A >= 0] (1,2) 41. n8(A,B,C) -> c2(n8(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7) 42. n8(A,B,C) -> c2(n9(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7) 43. n8(A,B,C) -> c2(o0(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7) 44. n9(A,B,C) -> c2(n8(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7) 45. n9(A,B,C) -> c2(n9(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7) 46. n9(A,B,C) -> c2(o0(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7) 47. o0(A,B,C) -> c2(n8(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (?,7) 48. o0(A,B,C) -> c2(n9(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (?,7) 49. o0(A,B,C) -> c2(o0(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (?,7) 50. o1(A,B,C) -> c2(n5(A,0,C),n8(A,0,C)) [A >= 0 && A >= 0] (2,5) 51. o1(A,B,C) -> c2(n5(A,0,C),n9(A,0,C)) [A >= 0 && A >= 0] (2,5) 52. o1(A,B,C) -> c2(n5(A,0,C),o0(A,0,C)) [A >= 0 && A >= 0] (2,5) Signature: {(add,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n6,3) ;(n7,3) ;(n8,3) ;(n80,3) ;(n81,3) ;(n9,3) ;(n90,3) ;(n91,3) ;(o0,3) ;(o00,3) ;(o01,3) ;(o1,3) ;(o2,3) ;(o3,3)} Flow Graph: [28->{50,51,52},41->{41,42,43},42->{44,45,46},43->{47,48,49},44->{41,42,43},45->{44,45,46},46->{47,48,49} ,47->{41,42,43},48->{44,45,46},49->{47,48,49},50->{41,42,43},51->{44,45,46},52->{47,48,49}] Sizebounds: (<28,0,A>, A) (<28,0,B>, B) (<28,0,C>, C) (<41,0,A>, A) (<41,0,B>, ?) (<41,0,C>, ?) (<41,1,A>, A) (<41,1,B>, ?) (<41,1,C>, ?) (<42,0,A>, A) (<42,0,B>, ?) (<42,0,C>, ?) (<42,1,A>, A) (<42,1,B>, ?) (<42,1,C>, ?) (<43,0,A>, A) (<43,0,B>, ?) (<43,0,C>, ?) (<43,1,A>, A) (<43,1,B>, ?) (<43,1,C>, ?) (<44,0,A>, A) (<44,0,B>, ?) (<44,0,C>, ?) (<44,1,A>, A) (<44,1,B>, ?) (<44,1,C>, ?) (<45,0,A>, A) (<45,0,B>, ?) (<45,0,C>, ?) (<45,1,A>, A) (<45,1,B>, ?) (<45,1,C>, ?) (<46,0,A>, A) (<46,0,B>, ?) (<46,0,C>, ?) (<46,1,A>, A) (<46,1,B>, ?) (<46,1,C>, ?) (<47,0,A>, A) (<47,0,B>, ?) (<47,0,C>, ?) (<47,1,A>, A) (<47,1,B>, ?) (<47,1,C>, ?) (<48,0,A>, A) (<48,0,B>, ?) (<48,0,C>, ?) (<48,1,A>, A) (<48,1,B>, ?) (<48,1,C>, ?) (<49,0,A>, A) (<49,0,B>, ?) (<49,0,C>, ?) (<49,1,A>, A) (<49,1,B>, ?) (<49,1,C>, ?) (<50,0,A>, A) (<50,0,B>, 0) (<50,0,C>, C) (<50,1,A>, A) (<50,1,B>, 0) (<50,1,C>, C) (<51,0,A>, A) (<51,0,B>, 0) (<51,0,C>, C) (<51,1,A>, A) (<51,1,B>, 0) (<51,1,C>, C) (<52,0,A>, A) (<52,0,B>, 0) (<52,0,C>, C) (<52,1,A>, A) (<52,1,B>, 0) (<52,1,C>, C) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(add) = 2*x1 p(n5) = 0 p(n8) = 2*x1 + -2*x2 p(n81) = 0 p(n9) = 2*x1 + -2*x2 p(n91) = 0 p(o0) = 2*x1 + -2*x2 p(o01) = 0 p(o1) = 2*x1 The following rules are strictly oriented: [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] ==> o0(A,B,C) = 2*A + -2*B > 2*A + -2*E = c2(o0(A,E,B),o01(A,E,B)) The following rules are weakly oriented: [A >= 0 && A >= 0] ==> add(A,B,C) = 2*A >= 2*A = o1(A,B,C) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] ==> n8(A,B,C) = 2*A + -2*B >= 2*A + -2*E = c2(n8(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] ==> n8(A,B,C) = 2*A + -2*B >= 2*A + -2*E = c2(n9(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] ==> n8(A,B,C) = 2*A + -2*B >= 2*A + -2*E = c2(o0(A,E,B),n81(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] ==> n9(A,B,C) = 2*A + -2*B >= 2*A + -2*E = c2(n8(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] ==> n9(A,B,C) = 2*A + -2*B >= 2*A + -2*E = c2(n9(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] ==> n9(A,B,C) = 2*A + -2*B >= 2*A + -2*E = c2(o0(A,E,B),n91(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] ==> o0(A,B,C) = 2*A + -2*B >= 2*A + -2*E = c2(n8(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] ==> o0(A,B,C) = 2*A + -2*B >= 2*A + -2*E = c2(n9(A,E,B),o01(A,E,B)) [A >= 0 && A >= 0] ==> o1(A,B,C) = 2*A >= 2*A = c2(n5(A,0,C),n8(A,0,C)) [A >= 0 && A >= 0] ==> o1(A,B,C) = 2*A >= 2*A = c2(n5(A,0,C),n9(A,0,C)) [A >= 0 && A >= 0] ==> o1(A,B,C) = 2*A >= 2*A = c2(n5(A,0,C),o0(A,0,C)) * Step 35: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 28. add(A,B,C) -> o1(A,B,C) [A >= 0 && A >= 0] (1,2) 41. n8(A,B,C) -> c2(n8(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7) 42. n8(A,B,C) -> c2(n9(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7) 43. n8(A,B,C) -> c2(o0(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7) 44. n9(A,B,C) -> c2(n8(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7) 45. n9(A,B,C) -> c2(n9(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7) 46. n9(A,B,C) -> c2(o0(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7) 47. o0(A,B,C) -> c2(n8(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (?,7) 48. o0(A,B,C) -> c2(n9(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (?,7) 49. o0(A,B,C) -> c2(o0(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (2*A,7) 50. o1(A,B,C) -> c2(n5(A,0,C),n8(A,0,C)) [A >= 0 && A >= 0] (2,5) 51. o1(A,B,C) -> c2(n5(A,0,C),n9(A,0,C)) [A >= 0 && A >= 0] (2,5) 52. o1(A,B,C) -> c2(n5(A,0,C),o0(A,0,C)) [A >= 0 && A >= 0] (2,5) Signature: {(add,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n6,3) ;(n7,3) ;(n8,3) ;(n80,3) ;(n81,3) ;(n9,3) ;(n90,3) ;(n91,3) ;(o0,3) ;(o00,3) ;(o01,3) ;(o1,3) ;(o2,3) ;(o3,3)} Flow Graph: [28->{50,51,52},41->{41,42,43},42->{44,45,46},43->{47,48,49},44->{41,42,43},45->{44,45,46},46->{47,48,49} ,47->{41,42,43},48->{44,45,46},49->{47,48,49},50->{41,42,43},51->{44,45,46},52->{47,48,49}] Sizebounds: (<28,0,A>, A) (<28,0,B>, B) (<28,0,C>, C) (<41,0,A>, A) (<41,0,B>, ?) (<41,0,C>, ?) (<41,1,A>, A) (<41,1,B>, ?) (<41,1,C>, ?) (<42,0,A>, A) (<42,0,B>, ?) (<42,0,C>, ?) (<42,1,A>, A) (<42,1,B>, ?) (<42,1,C>, ?) (<43,0,A>, A) (<43,0,B>, ?) (<43,0,C>, ?) (<43,1,A>, A) (<43,1,B>, ?) (<43,1,C>, ?) (<44,0,A>, A) (<44,0,B>, ?) (<44,0,C>, ?) (<44,1,A>, A) (<44,1,B>, ?) (<44,1,C>, ?) (<45,0,A>, A) (<45,0,B>, ?) (<45,0,C>, ?) (<45,1,A>, A) (<45,1,B>, ?) (<45,1,C>, ?) (<46,0,A>, A) (<46,0,B>, ?) (<46,0,C>, ?) (<46,1,A>, A) (<46,1,B>, ?) (<46,1,C>, ?) (<47,0,A>, A) (<47,0,B>, ?) (<47,0,C>, ?) (<47,1,A>, A) (<47,1,B>, ?) (<47,1,C>, ?) (<48,0,A>, A) (<48,0,B>, ?) (<48,0,C>, ?) (<48,1,A>, A) (<48,1,B>, ?) (<48,1,C>, ?) (<49,0,A>, A) (<49,0,B>, ?) (<49,0,C>, ?) (<49,1,A>, A) (<49,1,B>, ?) (<49,1,C>, ?) (<50,0,A>, A) (<50,0,B>, 0) (<50,0,C>, C) (<50,1,A>, A) (<50,1,B>, 0) (<50,1,C>, C) (<51,0,A>, A) (<51,0,B>, 0) (<51,0,C>, C) (<51,1,A>, A) (<51,1,B>, 0) (<51,1,C>, C) (<52,0,A>, A) (<52,0,B>, 0) (<52,0,C>, C) (<52,1,A>, A) (<52,1,B>, 0) (<52,1,C>, C) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(add) = 2*x1 p(n5) = 0 p(n8) = 2*x1 + -2*x2 p(n81) = 0 p(n9) = 2*x1 + -2*x2 p(n91) = 0 p(o0) = 2*x1 + -2*x2 p(o01) = 0 p(o1) = 2*x1 The following rules are strictly oriented: [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] ==> o0(A,B,C) = 2*A + -2*B > 2*A + -2*E = c2(n9(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] ==> o0(A,B,C) = 2*A + -2*B > 2*A + -2*E = c2(o0(A,E,B),o01(A,E,B)) The following rules are weakly oriented: [A >= 0 && A >= 0] ==> add(A,B,C) = 2*A >= 2*A = o1(A,B,C) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] ==> n8(A,B,C) = 2*A + -2*B >= 2*A + -2*E = c2(n8(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] ==> n8(A,B,C) = 2*A + -2*B >= 2*A + -2*E = c2(n9(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] ==> n8(A,B,C) = 2*A + -2*B >= 2*A + -2*E = c2(o0(A,E,B),n81(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] ==> n9(A,B,C) = 2*A + -2*B >= 2*A + -2*E = c2(n8(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] ==> n9(A,B,C) = 2*A + -2*B >= 2*A + -2*E = c2(n9(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] ==> n9(A,B,C) = 2*A + -2*B >= 2*A + -2*E = c2(o0(A,E,B),n91(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] ==> o0(A,B,C) = 2*A + -2*B >= 2*A + -2*E = c2(n8(A,E,B),o01(A,E,B)) [A >= 0 && A >= 0] ==> o1(A,B,C) = 2*A >= 2*A = c2(n5(A,0,C),n8(A,0,C)) [A >= 0 && A >= 0] ==> o1(A,B,C) = 2*A >= 2*A = c2(n5(A,0,C),n9(A,0,C)) [A >= 0 && A >= 0] ==> o1(A,B,C) = 2*A >= 2*A = c2(n5(A,0,C),o0(A,0,C)) * Step 36: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 28. add(A,B,C) -> o1(A,B,C) [A >= 0 && A >= 0] (1,2) 41. n8(A,B,C) -> c2(n8(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7) 42. n8(A,B,C) -> c2(n9(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7) 43. n8(A,B,C) -> c2(o0(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7) 44. n9(A,B,C) -> c2(n8(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7) 45. n9(A,B,C) -> c2(n9(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7) 46. n9(A,B,C) -> c2(o0(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7) 47. o0(A,B,C) -> c2(n8(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (?,7) 48. o0(A,B,C) -> c2(n9(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (2*A,7) 49. o0(A,B,C) -> c2(o0(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (2*A,7) 50. o1(A,B,C) -> c2(n5(A,0,C),n8(A,0,C)) [A >= 0 && A >= 0] (2,5) 51. o1(A,B,C) -> c2(n5(A,0,C),n9(A,0,C)) [A >= 0 && A >= 0] (2,5) 52. o1(A,B,C) -> c2(n5(A,0,C),o0(A,0,C)) [A >= 0 && A >= 0] (2,5) Signature: {(add,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n6,3) ;(n7,3) ;(n8,3) ;(n80,3) ;(n81,3) ;(n9,3) ;(n90,3) ;(n91,3) ;(o0,3) ;(o00,3) ;(o01,3) ;(o1,3) ;(o2,3) ;(o3,3)} Flow Graph: [28->{50,51,52},41->{41,42,43},42->{44,45,46},43->{47,48,49},44->{41,42,43},45->{44,45,46},46->{47,48,49} ,47->{41,42,43},48->{44,45,46},49->{47,48,49},50->{41,42,43},51->{44,45,46},52->{47,48,49}] Sizebounds: (<28,0,A>, A) (<28,0,B>, B) (<28,0,C>, C) (<41,0,A>, A) (<41,0,B>, ?) (<41,0,C>, ?) (<41,1,A>, A) (<41,1,B>, ?) (<41,1,C>, ?) (<42,0,A>, A) (<42,0,B>, ?) (<42,0,C>, ?) (<42,1,A>, A) (<42,1,B>, ?) (<42,1,C>, ?) (<43,0,A>, A) (<43,0,B>, ?) (<43,0,C>, ?) (<43,1,A>, A) (<43,1,B>, ?) (<43,1,C>, ?) (<44,0,A>, A) (<44,0,B>, ?) (<44,0,C>, ?) (<44,1,A>, A) (<44,1,B>, ?) (<44,1,C>, ?) (<45,0,A>, A) (<45,0,B>, ?) (<45,0,C>, ?) (<45,1,A>, A) (<45,1,B>, ?) (<45,1,C>, ?) (<46,0,A>, A) (<46,0,B>, ?) (<46,0,C>, ?) (<46,1,A>, A) (<46,1,B>, ?) (<46,1,C>, ?) (<47,0,A>, A) (<47,0,B>, ?) (<47,0,C>, ?) (<47,1,A>, A) (<47,1,B>, ?) (<47,1,C>, ?) (<48,0,A>, A) (<48,0,B>, ?) (<48,0,C>, ?) (<48,1,A>, A) (<48,1,B>, ?) (<48,1,C>, ?) (<49,0,A>, A) (<49,0,B>, ?) (<49,0,C>, ?) (<49,1,A>, A) (<49,1,B>, ?) (<49,1,C>, ?) (<50,0,A>, A) (<50,0,B>, 0) (<50,0,C>, C) (<50,1,A>, A) (<50,1,B>, 0) (<50,1,C>, C) (<51,0,A>, A) (<51,0,B>, 0) (<51,0,C>, C) (<51,1,A>, A) (<51,1,B>, 0) (<51,1,C>, C) (<52,0,A>, A) (<52,0,B>, 0) (<52,0,C>, C) (<52,1,A>, A) (<52,1,B>, 0) (<52,1,C>, C) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(add) = 3*x1 p(n5) = 0 p(n8) = 3*x1 + -3*x2 p(n81) = 0 p(n9) = 3*x1 + -3*x2 p(n91) = 0 p(o0) = 3*x1 + -3*x2 p(o01) = 0 p(o1) = 3*x1 The following rules are strictly oriented: [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] ==> o0(A,B,C) = 3*A + -3*B > 3*A + -3*E = c2(n8(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] ==> o0(A,B,C) = 3*A + -3*B > 3*A + -3*E = c2(n9(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] ==> o0(A,B,C) = 3*A + -3*B > 3*A + -3*E = c2(o0(A,E,B),o01(A,E,B)) The following rules are weakly oriented: [A >= 0 && A >= 0] ==> add(A,B,C) = 3*A >= 3*A = o1(A,B,C) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] ==> n8(A,B,C) = 3*A + -3*B >= 3*A + -3*E = c2(n8(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] ==> n8(A,B,C) = 3*A + -3*B >= 3*A + -3*E = c2(n9(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] ==> n8(A,B,C) = 3*A + -3*B >= 3*A + -3*E = c2(o0(A,E,B),n81(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] ==> n9(A,B,C) = 3*A + -3*B >= 3*A + -3*E = c2(n8(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] ==> n9(A,B,C) = 3*A + -3*B >= 3*A + -3*E = c2(n9(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] ==> n9(A,B,C) = 3*A + -3*B >= 3*A + -3*E = c2(o0(A,E,B),n91(A,E,B)) [A >= 0 && A >= 0] ==> o1(A,B,C) = 3*A >= 3*A = c2(n5(A,0,C),n8(A,0,C)) [A >= 0 && A >= 0] ==> o1(A,B,C) = 3*A >= 3*A = c2(n5(A,0,C),n9(A,0,C)) [A >= 0 && A >= 0] ==> o1(A,B,C) = 3*A >= 3*A = c2(n5(A,0,C),o0(A,0,C)) * Step 37: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 28. add(A,B,C) -> o1(A,B,C) [A >= 0 && A >= 0] (1,2) 41. n8(A,B,C) -> c2(n8(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7) 42. n8(A,B,C) -> c2(n9(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7) 43. n8(A,B,C) -> c2(o0(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7) 44. n9(A,B,C) -> c2(n8(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7) 45. n9(A,B,C) -> c2(n9(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7) 46. n9(A,B,C) -> c2(o0(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7) 47. o0(A,B,C) -> c2(n8(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (3*A,7) 48. o0(A,B,C) -> c2(n9(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (2*A,7) 49. o0(A,B,C) -> c2(o0(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (2*A,7) 50. o1(A,B,C) -> c2(n5(A,0,C),n8(A,0,C)) [A >= 0 && A >= 0] (2,5) 51. o1(A,B,C) -> c2(n5(A,0,C),n9(A,0,C)) [A >= 0 && A >= 0] (2,5) 52. o1(A,B,C) -> c2(n5(A,0,C),o0(A,0,C)) [A >= 0 && A >= 0] (2,5) Signature: {(add,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n6,3) ;(n7,3) ;(n8,3) ;(n80,3) ;(n81,3) ;(n9,3) ;(n90,3) ;(n91,3) ;(o0,3) ;(o00,3) ;(o01,3) ;(o1,3) ;(o2,3) ;(o3,3)} Flow Graph: [28->{50,51,52},41->{41,42,43},42->{44,45,46},43->{47,48,49},44->{41,42,43},45->{44,45,46},46->{47,48,49} ,47->{41,42,43},48->{44,45,46},49->{47,48,49},50->{41,42,43},51->{44,45,46},52->{47,48,49}] Sizebounds: (<28,0,A>, A) (<28,0,B>, B) (<28,0,C>, C) (<41,0,A>, A) (<41,0,B>, ?) (<41,0,C>, ?) (<41,1,A>, A) (<41,1,B>, ?) (<41,1,C>, ?) (<42,0,A>, A) (<42,0,B>, ?) (<42,0,C>, ?) (<42,1,A>, A) (<42,1,B>, ?) (<42,1,C>, ?) (<43,0,A>, A) (<43,0,B>, ?) (<43,0,C>, ?) (<43,1,A>, A) (<43,1,B>, ?) (<43,1,C>, ?) (<44,0,A>, A) (<44,0,B>, ?) (<44,0,C>, ?) (<44,1,A>, A) (<44,1,B>, ?) (<44,1,C>, ?) (<45,0,A>, A) (<45,0,B>, ?) (<45,0,C>, ?) (<45,1,A>, A) (<45,1,B>, ?) (<45,1,C>, ?) (<46,0,A>, A) (<46,0,B>, ?) (<46,0,C>, ?) (<46,1,A>, A) (<46,1,B>, ?) (<46,1,C>, ?) (<47,0,A>, A) (<47,0,B>, ?) (<47,0,C>, ?) (<47,1,A>, A) (<47,1,B>, ?) (<47,1,C>, ?) (<48,0,A>, A) (<48,0,B>, ?) (<48,0,C>, ?) (<48,1,A>, A) (<48,1,B>, ?) (<48,1,C>, ?) (<49,0,A>, A) (<49,0,B>, ?) (<49,0,C>, ?) (<49,1,A>, A) (<49,1,B>, ?) (<49,1,C>, ?) (<50,0,A>, A) (<50,0,B>, 0) (<50,0,C>, C) (<50,1,A>, A) (<50,1,B>, 0) (<50,1,C>, C) (<51,0,A>, A) (<51,0,B>, 0) (<51,0,C>, C) (<51,1,A>, A) (<51,1,B>, 0) (<51,1,C>, C) (<52,0,A>, A) (<52,0,B>, 0) (<52,0,C>, C) (<52,1,A>, A) (<52,1,B>, 0) (<52,1,C>, C) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(add) = 2*x1 p(n5) = 0 p(n8) = 2*x1 + -2*x2 p(n81) = 1 p(n9) = 2*x1 + -2*x2 p(n91) = 0 p(o0) = 2*x1 + -2*x2 p(o01) = 0 p(o1) = 2*x1 The following rules are strictly oriented: [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] ==> n9(A,B,C) = 2*A + -2*B > 2*A + -2*E = c2(o0(A,E,B),n91(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] ==> o0(A,B,C) = 2*A + -2*B > 2*A + -2*E = c2(n8(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] ==> o0(A,B,C) = 2*A + -2*B > 2*A + -2*E = c2(n9(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] ==> o0(A,B,C) = 2*A + -2*B > 2*A + -2*E = c2(o0(A,E,B),o01(A,E,B)) The following rules are weakly oriented: [A >= 0 && A >= 0] ==> add(A,B,C) = 2*A >= 2*A = o1(A,B,C) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] ==> n8(A,B,C) = 2*A + -2*B >= 1 + 2*A + -2*E = c2(n8(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] ==> n8(A,B,C) = 2*A + -2*B >= 1 + 2*A + -2*E = c2(n9(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] ==> n8(A,B,C) = 2*A + -2*B >= 1 + 2*A + -2*E = c2(o0(A,E,B),n81(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] ==> n9(A,B,C) = 2*A + -2*B >= 2*A + -2*E = c2(n8(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] ==> n9(A,B,C) = 2*A + -2*B >= 2*A + -2*E = c2(n9(A,E,B),n91(A,E,B)) [A >= 0 && A >= 0] ==> o1(A,B,C) = 2*A >= 2*A = c2(n5(A,0,C),n8(A,0,C)) [A >= 0 && A >= 0] ==> o1(A,B,C) = 2*A >= 2*A = c2(n5(A,0,C),n9(A,0,C)) [A >= 0 && A >= 0] ==> o1(A,B,C) = 2*A >= 2*A = c2(n5(A,0,C),o0(A,0,C)) * Step 38: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 28. add(A,B,C) -> o1(A,B,C) [A >= 0 && A >= 0] (1,2) 41. n8(A,B,C) -> c2(n8(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7) 42. n8(A,B,C) -> c2(n9(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7) 43. n8(A,B,C) -> c2(o0(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7) 44. n9(A,B,C) -> c2(n8(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7) 45. n9(A,B,C) -> c2(n9(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7) 46. n9(A,B,C) -> c2(o0(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (2*A,7) 47. o0(A,B,C) -> c2(n8(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (2*A,7) 48. o0(A,B,C) -> c2(n9(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (2*A,7) 49. o0(A,B,C) -> c2(o0(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (2*A,7) 50. o1(A,B,C) -> c2(n5(A,0,C),n8(A,0,C)) [A >= 0 && A >= 0] (2,5) 51. o1(A,B,C) -> c2(n5(A,0,C),n9(A,0,C)) [A >= 0 && A >= 0] (2,5) 52. o1(A,B,C) -> c2(n5(A,0,C),o0(A,0,C)) [A >= 0 && A >= 0] (2,5) Signature: {(add,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n6,3) ;(n7,3) ;(n8,3) ;(n80,3) ;(n81,3) ;(n9,3) ;(n90,3) ;(n91,3) ;(o0,3) ;(o00,3) ;(o01,3) ;(o1,3) ;(o2,3) ;(o3,3)} Flow Graph: [28->{50,51,52},41->{41,42,43},42->{44,45,46},43->{47,48,49},44->{41,42,43},45->{44,45,46},46->{47,48,49} ,47->{41,42,43},48->{44,45,46},49->{47,48,49},50->{41,42,43},51->{44,45,46},52->{47,48,49}] Sizebounds: (<28,0,A>, A) (<28,0,B>, B) (<28,0,C>, C) (<41,0,A>, A) (<41,0,B>, ?) (<41,0,C>, ?) (<41,1,A>, A) (<41,1,B>, ?) (<41,1,C>, ?) (<42,0,A>, A) (<42,0,B>, ?) (<42,0,C>, ?) (<42,1,A>, A) (<42,1,B>, ?) (<42,1,C>, ?) (<43,0,A>, A) (<43,0,B>, ?) (<43,0,C>, ?) (<43,1,A>, A) (<43,1,B>, ?) (<43,1,C>, ?) (<44,0,A>, A) (<44,0,B>, ?) (<44,0,C>, ?) (<44,1,A>, A) (<44,1,B>, ?) (<44,1,C>, ?) (<45,0,A>, A) (<45,0,B>, ?) (<45,0,C>, ?) (<45,1,A>, A) (<45,1,B>, ?) (<45,1,C>, ?) (<46,0,A>, A) (<46,0,B>, ?) (<46,0,C>, ?) (<46,1,A>, A) (<46,1,B>, ?) (<46,1,C>, ?) (<47,0,A>, A) (<47,0,B>, ?) (<47,0,C>, ?) (<47,1,A>, A) (<47,1,B>, ?) (<47,1,C>, ?) (<48,0,A>, A) (<48,0,B>, ?) (<48,0,C>, ?) (<48,1,A>, A) (<48,1,B>, ?) (<48,1,C>, ?) (<49,0,A>, A) (<49,0,B>, ?) (<49,0,C>, ?) (<49,1,A>, A) (<49,1,B>, ?) (<49,1,C>, ?) (<50,0,A>, A) (<50,0,B>, 0) (<50,0,C>, C) (<50,1,A>, A) (<50,1,B>, 0) (<50,1,C>, C) (<51,0,A>, A) (<51,0,B>, 0) (<51,0,C>, C) (<51,1,A>, A) (<51,1,B>, 0) (<51,1,C>, C) (<52,0,A>, A) (<52,0,B>, 0) (<52,0,C>, C) (<52,1,A>, A) (<52,1,B>, 0) (<52,1,C>, C) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(add) = 3*x1 p(n5) = 0 p(n8) = 3*x1 + -3*x2 p(n81) = 0 p(n9) = 3*x1 + -3*x2 p(n91) = 0 p(o0) = 3*x1 + -3*x2 p(o01) = 0 p(o1) = 3*x1 The following rules are strictly oriented: [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] ==> n9(A,B,C) = 3*A + -3*B > 3*A + -3*E = c2(n9(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] ==> n9(A,B,C) = 3*A + -3*B > 3*A + -3*E = c2(o0(A,E,B),n91(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] ==> o0(A,B,C) = 3*A + -3*B > 3*A + -3*E = c2(n8(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] ==> o0(A,B,C) = 3*A + -3*B > 3*A + -3*E = c2(n9(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] ==> o0(A,B,C) = 3*A + -3*B > 3*A + -3*E = c2(o0(A,E,B),o01(A,E,B)) The following rules are weakly oriented: [A >= 0 && A >= 0] ==> add(A,B,C) = 3*A >= 3*A = o1(A,B,C) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] ==> n8(A,B,C) = 3*A + -3*B >= 3*A + -3*E = c2(n8(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] ==> n8(A,B,C) = 3*A + -3*B >= 3*A + -3*E = c2(n9(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] ==> n8(A,B,C) = 3*A + -3*B >= 3*A + -3*E = c2(o0(A,E,B),n81(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] ==> n9(A,B,C) = 3*A + -3*B >= 3*A + -3*E = c2(n8(A,E,B),n91(A,E,B)) [A >= 0 && A >= 0] ==> o1(A,B,C) = 3*A >= 3*A = c2(n5(A,0,C),n8(A,0,C)) [A >= 0 && A >= 0] ==> o1(A,B,C) = 3*A >= 3*A = c2(n5(A,0,C),n9(A,0,C)) [A >= 0 && A >= 0] ==> o1(A,B,C) = 3*A >= 3*A = c2(n5(A,0,C),o0(A,0,C)) * Step 39: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 28. add(A,B,C) -> o1(A,B,C) [A >= 0 && A >= 0] (1,2) 41. n8(A,B,C) -> c2(n8(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7) 42. n8(A,B,C) -> c2(n9(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7) 43. n8(A,B,C) -> c2(o0(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7) 44. n9(A,B,C) -> c2(n8(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7) 45. n9(A,B,C) -> c2(n9(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (3*A,7) 46. n9(A,B,C) -> c2(o0(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (2*A,7) 47. o0(A,B,C) -> c2(n8(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (2*A,7) 48. o0(A,B,C) -> c2(n9(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (2*A,7) 49. o0(A,B,C) -> c2(o0(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (2*A,7) 50. o1(A,B,C) -> c2(n5(A,0,C),n8(A,0,C)) [A >= 0 && A >= 0] (2,5) 51. o1(A,B,C) -> c2(n5(A,0,C),n9(A,0,C)) [A >= 0 && A >= 0] (2,5) 52. o1(A,B,C) -> c2(n5(A,0,C),o0(A,0,C)) [A >= 0 && A >= 0] (2,5) Signature: {(add,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n6,3) ;(n7,3) ;(n8,3) ;(n80,3) ;(n81,3) ;(n9,3) ;(n90,3) ;(n91,3) ;(o0,3) ;(o00,3) ;(o01,3) ;(o1,3) ;(o2,3) ;(o3,3)} Flow Graph: [28->{50,51,52},41->{41,42,43},42->{44,45,46},43->{47,48,49},44->{41,42,43},45->{44,45,46},46->{47,48,49} ,47->{41,42,43},48->{44,45,46},49->{47,48,49},50->{41,42,43},51->{44,45,46},52->{47,48,49}] Sizebounds: (<28,0,A>, A) (<28,0,B>, B) (<28,0,C>, C) (<41,0,A>, A) (<41,0,B>, ?) (<41,0,C>, ?) (<41,1,A>, A) (<41,1,B>, ?) (<41,1,C>, ?) (<42,0,A>, A) (<42,0,B>, ?) (<42,0,C>, ?) (<42,1,A>, A) (<42,1,B>, ?) (<42,1,C>, ?) (<43,0,A>, A) (<43,0,B>, ?) (<43,0,C>, ?) (<43,1,A>, A) (<43,1,B>, ?) (<43,1,C>, ?) (<44,0,A>, A) (<44,0,B>, ?) (<44,0,C>, ?) (<44,1,A>, A) (<44,1,B>, ?) (<44,1,C>, ?) (<45,0,A>, A) (<45,0,B>, ?) (<45,0,C>, ?) (<45,1,A>, A) (<45,1,B>, ?) (<45,1,C>, ?) (<46,0,A>, A) (<46,0,B>, ?) (<46,0,C>, ?) (<46,1,A>, A) (<46,1,B>, ?) (<46,1,C>, ?) (<47,0,A>, A) (<47,0,B>, ?) (<47,0,C>, ?) (<47,1,A>, A) (<47,1,B>, ?) (<47,1,C>, ?) (<48,0,A>, A) (<48,0,B>, ?) (<48,0,C>, ?) (<48,1,A>, A) (<48,1,B>, ?) (<48,1,C>, ?) (<49,0,A>, A) (<49,0,B>, ?) (<49,0,C>, ?) (<49,1,A>, A) (<49,1,B>, ?) (<49,1,C>, ?) (<50,0,A>, A) (<50,0,B>, 0) (<50,0,C>, C) (<50,1,A>, A) (<50,1,B>, 0) (<50,1,C>, C) (<51,0,A>, A) (<51,0,B>, 0) (<51,0,C>, C) (<51,1,A>, A) (<51,1,B>, 0) (<51,1,C>, C) (<52,0,A>, A) (<52,0,B>, 0) (<52,0,C>, C) (<52,1,A>, A) (<52,1,B>, 0) (<52,1,C>, C) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(add) = 4*x1 p(n5) = 0 p(n8) = 4*x1 + -4*x2 p(n81) = 0 p(n9) = 4*x1 + -4*x2 p(n91) = 0 p(o0) = 4*x1 + -4*x2 p(o01) = 0 p(o1) = 4*x1 The following rules are strictly oriented: [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] ==> n9(A,B,C) = 4*A + -4*B > 4*A + -4*E = c2(n8(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] ==> n9(A,B,C) = 4*A + -4*B > 4*A + -4*E = c2(n9(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] ==> n9(A,B,C) = 4*A + -4*B > 4*A + -4*E = c2(o0(A,E,B),n91(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] ==> o0(A,B,C) = 4*A + -4*B > 4*A + -4*E = c2(n8(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] ==> o0(A,B,C) = 4*A + -4*B > 4*A + -4*E = c2(n9(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] ==> o0(A,B,C) = 4*A + -4*B > 4*A + -4*E = c2(o0(A,E,B),o01(A,E,B)) The following rules are weakly oriented: [A >= 0 && A >= 0] ==> add(A,B,C) = 4*A >= 4*A = o1(A,B,C) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] ==> n8(A,B,C) = 4*A + -4*B >= 4*A + -4*E = c2(n8(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] ==> n8(A,B,C) = 4*A + -4*B >= 4*A + -4*E = c2(n9(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] ==> n8(A,B,C) = 4*A + -4*B >= 4*A + -4*E = c2(o0(A,E,B),n81(A,E,B)) [A >= 0 && A >= 0] ==> o1(A,B,C) = 4*A >= 4*A = c2(n5(A,0,C),n8(A,0,C)) [A >= 0 && A >= 0] ==> o1(A,B,C) = 4*A >= 4*A = c2(n5(A,0,C),n9(A,0,C)) [A >= 0 && A >= 0] ==> o1(A,B,C) = 4*A >= 4*A = c2(n5(A,0,C),o0(A,0,C)) * Step 40: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 28. add(A,B,C) -> o1(A,B,C) [A >= 0 && A >= 0] (1,2) 41. n8(A,B,C) -> c2(n8(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7) 42. n8(A,B,C) -> c2(n9(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7) 43. n8(A,B,C) -> c2(o0(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7) 44. n9(A,B,C) -> c2(n8(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (4*A,7) 45. n9(A,B,C) -> c2(n9(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (3*A,7) 46. n9(A,B,C) -> c2(o0(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (2*A,7) 47. o0(A,B,C) -> c2(n8(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (2*A,7) 48. o0(A,B,C) -> c2(n9(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (2*A,7) 49. o0(A,B,C) -> c2(o0(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (2*A,7) 50. o1(A,B,C) -> c2(n5(A,0,C),n8(A,0,C)) [A >= 0 && A >= 0] (2,5) 51. o1(A,B,C) -> c2(n5(A,0,C),n9(A,0,C)) [A >= 0 && A >= 0] (2,5) 52. o1(A,B,C) -> c2(n5(A,0,C),o0(A,0,C)) [A >= 0 && A >= 0] (2,5) Signature: {(add,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n6,3) ;(n7,3) ;(n8,3) ;(n80,3) ;(n81,3) ;(n9,3) ;(n90,3) ;(n91,3) ;(o0,3) ;(o00,3) ;(o01,3) ;(o1,3) ;(o2,3) ;(o3,3)} Flow Graph: [28->{50,51,52},41->{41,42,43},42->{44,45,46},43->{47,48,49},44->{41,42,43},45->{44,45,46},46->{47,48,49} ,47->{41,42,43},48->{44,45,46},49->{47,48,49},50->{41,42,43},51->{44,45,46},52->{47,48,49}] Sizebounds: (<28,0,A>, A) (<28,0,B>, B) (<28,0,C>, C) (<41,0,A>, A) (<41,0,B>, ?) (<41,0,C>, ?) (<41,1,A>, A) (<41,1,B>, ?) (<41,1,C>, ?) (<42,0,A>, A) (<42,0,B>, ?) (<42,0,C>, ?) (<42,1,A>, A) (<42,1,B>, ?) (<42,1,C>, ?) (<43,0,A>, A) (<43,0,B>, ?) (<43,0,C>, ?) (<43,1,A>, A) (<43,1,B>, ?) (<43,1,C>, ?) (<44,0,A>, A) (<44,0,B>, ?) (<44,0,C>, ?) (<44,1,A>, A) (<44,1,B>, ?) (<44,1,C>, ?) (<45,0,A>, A) (<45,0,B>, ?) (<45,0,C>, ?) (<45,1,A>, A) (<45,1,B>, ?) (<45,1,C>, ?) (<46,0,A>, A) (<46,0,B>, ?) (<46,0,C>, ?) (<46,1,A>, A) (<46,1,B>, ?) (<46,1,C>, ?) (<47,0,A>, A) (<47,0,B>, ?) (<47,0,C>, ?) (<47,1,A>, A) (<47,1,B>, ?) (<47,1,C>, ?) (<48,0,A>, A) (<48,0,B>, ?) (<48,0,C>, ?) (<48,1,A>, A) (<48,1,B>, ?) (<48,1,C>, ?) (<49,0,A>, A) (<49,0,B>, ?) (<49,0,C>, ?) (<49,1,A>, A) (<49,1,B>, ?) (<49,1,C>, ?) (<50,0,A>, A) (<50,0,B>, 0) (<50,0,C>, C) (<50,1,A>, A) (<50,1,B>, 0) (<50,1,C>, C) (<51,0,A>, A) (<51,0,B>, 0) (<51,0,C>, C) (<51,1,A>, A) (<51,1,B>, 0) (<51,1,C>, C) (<52,0,A>, A) (<52,0,B>, 0) (<52,0,C>, C) (<52,1,A>, A) (<52,1,B>, 0) (<52,1,C>, C) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(add) = 5*x1 p(n5) = 0 p(n8) = 5*x1 + -5*x2 p(n81) = 4 p(n9) = 5*x1 + -5*x2 p(n91) = 0 p(o0) = 5*x1 + -5*x2 p(o01) = 2 p(o1) = 5*x1 The following rules are strictly oriented: [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] ==> n8(A,B,C) = 5*A + -5*B > 4 + 5*A + -5*E = c2(o0(A,E,B),n81(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] ==> n9(A,B,C) = 5*A + -5*B > 5*A + -5*E = c2(n8(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] ==> n9(A,B,C) = 5*A + -5*B > 5*A + -5*E = c2(n9(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] ==> n9(A,B,C) = 5*A + -5*B > 5*A + -5*E = c2(o0(A,E,B),n91(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] ==> o0(A,B,C) = 5*A + -5*B > 2 + 5*A + -5*E = c2(n8(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] ==> o0(A,B,C) = 5*A + -5*B > 2 + 5*A + -5*E = c2(n9(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] ==> o0(A,B,C) = 5*A + -5*B > 2 + 5*A + -5*E = c2(o0(A,E,B),o01(A,E,B)) The following rules are weakly oriented: [A >= 0 && A >= 0] ==> add(A,B,C) = 5*A >= 5*A = o1(A,B,C) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] ==> n8(A,B,C) = 5*A + -5*B >= 4 + 5*A + -5*E = c2(n8(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] ==> n8(A,B,C) = 5*A + -5*B >= 4 + 5*A + -5*E = c2(n9(A,E,B),n81(A,E,B)) [A >= 0 && A >= 0] ==> o1(A,B,C) = 5*A >= 5*A = c2(n5(A,0,C),n8(A,0,C)) [A >= 0 && A >= 0] ==> o1(A,B,C) = 5*A >= 5*A = c2(n5(A,0,C),n9(A,0,C)) [A >= 0 && A >= 0] ==> o1(A,B,C) = 5*A >= 5*A = c2(n5(A,0,C),o0(A,0,C)) * Step 41: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 28. add(A,B,C) -> o1(A,B,C) [A >= 0 && A >= 0] (1,2) 41. n8(A,B,C) -> c2(n8(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7) 42. n8(A,B,C) -> c2(n9(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7) 43. n8(A,B,C) -> c2(o0(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (5*A,7) 44. n9(A,B,C) -> c2(n8(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (4*A,7) 45. n9(A,B,C) -> c2(n9(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (3*A,7) 46. n9(A,B,C) -> c2(o0(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (2*A,7) 47. o0(A,B,C) -> c2(n8(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (2*A,7) 48. o0(A,B,C) -> c2(n9(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (2*A,7) 49. o0(A,B,C) -> c2(o0(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (2*A,7) 50. o1(A,B,C) -> c2(n5(A,0,C),n8(A,0,C)) [A >= 0 && A >= 0] (2,5) 51. o1(A,B,C) -> c2(n5(A,0,C),n9(A,0,C)) [A >= 0 && A >= 0] (2,5) 52. o1(A,B,C) -> c2(n5(A,0,C),o0(A,0,C)) [A >= 0 && A >= 0] (2,5) Signature: {(add,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n6,3) ;(n7,3) ;(n8,3) ;(n80,3) ;(n81,3) ;(n9,3) ;(n90,3) ;(n91,3) ;(o0,3) ;(o00,3) ;(o01,3) ;(o1,3) ;(o2,3) ;(o3,3)} Flow Graph: [28->{50,51,52},41->{41,42,43},42->{44,45,46},43->{47,48,49},44->{41,42,43},45->{44,45,46},46->{47,48,49} ,47->{41,42,43},48->{44,45,46},49->{47,48,49},50->{41,42,43},51->{44,45,46},52->{47,48,49}] Sizebounds: (<28,0,A>, A) (<28,0,B>, B) (<28,0,C>, C) (<41,0,A>, A) (<41,0,B>, ?) (<41,0,C>, ?) (<41,1,A>, A) (<41,1,B>, ?) (<41,1,C>, ?) (<42,0,A>, A) (<42,0,B>, ?) (<42,0,C>, ?) (<42,1,A>, A) (<42,1,B>, ?) (<42,1,C>, ?) (<43,0,A>, A) (<43,0,B>, ?) (<43,0,C>, ?) (<43,1,A>, A) (<43,1,B>, ?) (<43,1,C>, ?) (<44,0,A>, A) (<44,0,B>, ?) (<44,0,C>, ?) (<44,1,A>, A) (<44,1,B>, ?) (<44,1,C>, ?) (<45,0,A>, A) (<45,0,B>, ?) (<45,0,C>, ?) (<45,1,A>, A) (<45,1,B>, ?) (<45,1,C>, ?) (<46,0,A>, A) (<46,0,B>, ?) (<46,0,C>, ?) (<46,1,A>, A) (<46,1,B>, ?) (<46,1,C>, ?) (<47,0,A>, A) (<47,0,B>, ?) (<47,0,C>, ?) (<47,1,A>, A) (<47,1,B>, ?) (<47,1,C>, ?) (<48,0,A>, A) (<48,0,B>, ?) (<48,0,C>, ?) (<48,1,A>, A) (<48,1,B>, ?) (<48,1,C>, ?) (<49,0,A>, A) (<49,0,B>, ?) (<49,0,C>, ?) (<49,1,A>, A) (<49,1,B>, ?) (<49,1,C>, ?) (<50,0,A>, A) (<50,0,B>, 0) (<50,0,C>, C) (<50,1,A>, A) (<50,1,B>, 0) (<50,1,C>, C) (<51,0,A>, A) (<51,0,B>, 0) (<51,0,C>, C) (<51,1,A>, A) (<51,1,B>, 0) (<51,1,C>, C) (<52,0,A>, A) (<52,0,B>, 0) (<52,0,C>, C) (<52,1,A>, A) (<52,1,B>, 0) (<52,1,C>, C) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(add) = 7*x1 p(n5) = 0 p(n8) = 7*x1 + -7*x2 p(n81) = 6 p(n9) = 7*x1 + -7*x2 p(n91) = 0 p(o0) = 7*x1 + -7*x2 p(o01) = 5 p(o1) = 7*x1 The following rules are strictly oriented: [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] ==> n8(A,B,C) = 7*A + -7*B > 6 + 7*A + -7*E = c2(n9(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] ==> n8(A,B,C) = 7*A + -7*B > 6 + 7*A + -7*E = c2(o0(A,E,B),n81(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] ==> n9(A,B,C) = 7*A + -7*B > 7*A + -7*E = c2(n8(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] ==> n9(A,B,C) = 7*A + -7*B > 7*A + -7*E = c2(n9(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] ==> n9(A,B,C) = 7*A + -7*B > 7*A + -7*E = c2(o0(A,E,B),n91(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] ==> o0(A,B,C) = 7*A + -7*B > 5 + 7*A + -7*E = c2(n8(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] ==> o0(A,B,C) = 7*A + -7*B > 5 + 7*A + -7*E = c2(n9(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] ==> o0(A,B,C) = 7*A + -7*B > 5 + 7*A + -7*E = c2(o0(A,E,B),o01(A,E,B)) The following rules are weakly oriented: [A >= 0 && A >= 0] ==> add(A,B,C) = 7*A >= 7*A = o1(A,B,C) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] ==> n8(A,B,C) = 7*A + -7*B >= 6 + 7*A + -7*E = c2(n8(A,E,B),n81(A,E,B)) [A >= 0 && A >= 0] ==> o1(A,B,C) = 7*A >= 7*A = c2(n5(A,0,C),n8(A,0,C)) [A >= 0 && A >= 0] ==> o1(A,B,C) = 7*A >= 7*A = c2(n5(A,0,C),n9(A,0,C)) [A >= 0 && A >= 0] ==> o1(A,B,C) = 7*A >= 7*A = c2(n5(A,0,C),o0(A,0,C)) * Step 42: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 28. add(A,B,C) -> o1(A,B,C) [A >= 0 && A >= 0] (1,2) 41. n8(A,B,C) -> c2(n8(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7) 42. n8(A,B,C) -> c2(n9(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (7*A,7) 43. n8(A,B,C) -> c2(o0(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (5*A,7) 44. n9(A,B,C) -> c2(n8(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (4*A,7) 45. n9(A,B,C) -> c2(n9(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (3*A,7) 46. n9(A,B,C) -> c2(o0(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (2*A,7) 47. o0(A,B,C) -> c2(n8(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (2*A,7) 48. o0(A,B,C) -> c2(n9(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (2*A,7) 49. o0(A,B,C) -> c2(o0(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (2*A,7) 50. o1(A,B,C) -> c2(n5(A,0,C),n8(A,0,C)) [A >= 0 && A >= 0] (2,5) 51. o1(A,B,C) -> c2(n5(A,0,C),n9(A,0,C)) [A >= 0 && A >= 0] (2,5) 52. o1(A,B,C) -> c2(n5(A,0,C),o0(A,0,C)) [A >= 0 && A >= 0] (2,5) Signature: {(add,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n6,3) ;(n7,3) ;(n8,3) ;(n80,3) ;(n81,3) ;(n9,3) ;(n90,3) ;(n91,3) ;(o0,3) ;(o00,3) ;(o01,3) ;(o1,3) ;(o2,3) ;(o3,3)} Flow Graph: [28->{50,51,52},41->{41,42,43},42->{44,45,46},43->{47,48,49},44->{41,42,43},45->{44,45,46},46->{47,48,49} ,47->{41,42,43},48->{44,45,46},49->{47,48,49},50->{41,42,43},51->{44,45,46},52->{47,48,49}] Sizebounds: (<28,0,A>, A) (<28,0,B>, B) (<28,0,C>, C) (<41,0,A>, A) (<41,0,B>, ?) (<41,0,C>, ?) (<41,1,A>, A) (<41,1,B>, ?) (<41,1,C>, ?) (<42,0,A>, A) (<42,0,B>, ?) (<42,0,C>, ?) (<42,1,A>, A) (<42,1,B>, ?) (<42,1,C>, ?) (<43,0,A>, A) (<43,0,B>, ?) (<43,0,C>, ?) (<43,1,A>, A) (<43,1,B>, ?) (<43,1,C>, ?) (<44,0,A>, A) (<44,0,B>, ?) (<44,0,C>, ?) (<44,1,A>, A) (<44,1,B>, ?) (<44,1,C>, ?) (<45,0,A>, A) (<45,0,B>, ?) (<45,0,C>, ?) (<45,1,A>, A) (<45,1,B>, ?) (<45,1,C>, ?) (<46,0,A>, A) (<46,0,B>, ?) (<46,0,C>, ?) (<46,1,A>, A) (<46,1,B>, ?) (<46,1,C>, ?) (<47,0,A>, A) (<47,0,B>, ?) (<47,0,C>, ?) (<47,1,A>, A) (<47,1,B>, ?) (<47,1,C>, ?) (<48,0,A>, A) (<48,0,B>, ?) (<48,0,C>, ?) (<48,1,A>, A) (<48,1,B>, ?) (<48,1,C>, ?) (<49,0,A>, A) (<49,0,B>, ?) (<49,0,C>, ?) (<49,1,A>, A) (<49,1,B>, ?) (<49,1,C>, ?) (<50,0,A>, A) (<50,0,B>, 0) (<50,0,C>, C) (<50,1,A>, A) (<50,1,B>, 0) (<50,1,C>, C) (<51,0,A>, A) (<51,0,B>, 0) (<51,0,C>, C) (<51,1,A>, A) (<51,1,B>, 0) (<51,1,C>, C) (<52,0,A>, A) (<52,0,B>, 0) (<52,0,C>, C) (<52,1,A>, A) (<52,1,B>, 0) (<52,1,C>, C) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(add) = 2*x1 p(n5) = 0 p(n8) = 2*x1 + -2*x2 p(n81) = 1 p(n9) = 2*x1 + -2*x2 p(n91) = 0 p(o0) = 2*x1 + -2*x2 p(o01) = 0 p(o1) = 2*x1 The following rules are strictly oriented: [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] ==> n8(A,B,C) = 2*A + -2*B > 1 + 2*A + -2*E = c2(n8(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] ==> n8(A,B,C) = 2*A + -2*B > 1 + 2*A + -2*E = c2(n9(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] ==> n8(A,B,C) = 2*A + -2*B > 1 + 2*A + -2*E = c2(o0(A,E,B),n81(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] ==> n9(A,B,C) = 2*A + -2*B > 2*A + -2*E = c2(n8(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] ==> n9(A,B,C) = 2*A + -2*B > 2*A + -2*E = c2(n9(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] ==> n9(A,B,C) = 2*A + -2*B > 2*A + -2*E = c2(o0(A,E,B),n91(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] ==> o0(A,B,C) = 2*A + -2*B > 2*A + -2*E = c2(n8(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] ==> o0(A,B,C) = 2*A + -2*B > 2*A + -2*E = c2(n9(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] ==> o0(A,B,C) = 2*A + -2*B > 2*A + -2*E = c2(o0(A,E,B),o01(A,E,B)) The following rules are weakly oriented: [A >= 0 && A >= 0] ==> add(A,B,C) = 2*A >= 2*A = o1(A,B,C) [A >= 0 && A >= 0] ==> o1(A,B,C) = 2*A >= 2*A = c2(n5(A,0,C),n8(A,0,C)) [A >= 0 && A >= 0] ==> o1(A,B,C) = 2*A >= 2*A = c2(n5(A,0,C),n9(A,0,C)) [A >= 0 && A >= 0] ==> o1(A,B,C) = 2*A >= 2*A = c2(n5(A,0,C),o0(A,0,C)) * Step 43: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 28. add(A,B,C) -> o1(A,B,C) [A >= 0 && A >= 0] (1,2) 41. n8(A,B,C) -> c2(n8(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (2*A,7) 42. n8(A,B,C) -> c2(n9(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (2*A,7) 43. n8(A,B,C) -> c2(o0(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (2*A,7) 44. n9(A,B,C) -> c2(n8(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (2*A,7) 45. n9(A,B,C) -> c2(n9(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (2*A,7) 46. n9(A,B,C) -> c2(o0(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (2*A,7) 47. o0(A,B,C) -> c2(n8(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (2*A,7) 48. o0(A,B,C) -> c2(n9(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (2*A,7) 49. o0(A,B,C) -> c2(o0(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (2*A,7) 50. o1(A,B,C) -> c2(n5(A,0,C),n8(A,0,C)) [A >= 0 && A >= 0] (2,5) 51. o1(A,B,C) -> c2(n5(A,0,C),n9(A,0,C)) [A >= 0 && A >= 0] (2,5) 52. o1(A,B,C) -> c2(n5(A,0,C),o0(A,0,C)) [A >= 0 && A >= 0] (2,5) Signature: {(add,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n6,3) ;(n7,3) ;(n8,3) ;(n80,3) ;(n81,3) ;(n9,3) ;(n90,3) ;(n91,3) ;(o0,3) ;(o00,3) ;(o01,3) ;(o1,3) ;(o2,3) ;(o3,3)} Flow Graph: [28->{50,51,52},41->{41,42,43},42->{44,45,46},43->{47,48,49},44->{41,42,43},45->{44,45,46},46->{47,48,49} ,47->{41,42,43},48->{44,45,46},49->{47,48,49},50->{41,42,43},51->{44,45,46},52->{47,48,49}] Sizebounds: (<28,0,A>, A) (<28,0,B>, B) (<28,0,C>, C) (<41,0,A>, A) (<41,0,B>, ?) (<41,0,C>, ?) (<41,1,A>, A) (<41,1,B>, ?) (<41,1,C>, ?) (<42,0,A>, A) (<42,0,B>, ?) (<42,0,C>, ?) (<42,1,A>, A) (<42,1,B>, ?) (<42,1,C>, ?) (<43,0,A>, A) (<43,0,B>, ?) (<43,0,C>, ?) (<43,1,A>, A) (<43,1,B>, ?) (<43,1,C>, ?) (<44,0,A>, A) (<44,0,B>, ?) (<44,0,C>, ?) (<44,1,A>, A) (<44,1,B>, ?) (<44,1,C>, ?) (<45,0,A>, A) (<45,0,B>, ?) (<45,0,C>, ?) (<45,1,A>, A) (<45,1,B>, ?) (<45,1,C>, ?) (<46,0,A>, A) (<46,0,B>, ?) (<46,0,C>, ?) (<46,1,A>, A) (<46,1,B>, ?) (<46,1,C>, ?) (<47,0,A>, A) (<47,0,B>, ?) (<47,0,C>, ?) (<47,1,A>, A) (<47,1,B>, ?) (<47,1,C>, ?) (<48,0,A>, A) (<48,0,B>, ?) (<48,0,C>, ?) (<48,1,A>, A) (<48,1,B>, ?) (<48,1,C>, ?) (<49,0,A>, A) (<49,0,B>, ?) (<49,0,C>, ?) (<49,1,A>, A) (<49,1,B>, ?) (<49,1,C>, ?) (<50,0,A>, A) (<50,0,B>, 0) (<50,0,C>, C) (<50,1,A>, A) (<50,1,B>, 0) (<50,1,C>, C) (<51,0,A>, A) (<51,0,B>, 0) (<51,0,C>, C) (<51,1,A>, A) (<51,1,B>, 0) (<51,1,C>, C) (<52,0,A>, A) (<52,0,B>, 0) (<52,0,C>, C) (<52,1,A>, A) (<52,1,B>, 0) (<52,1,C>, C) + Applied Processor: UnsatPaths + Details: The problem is already solved. WORST_CASE(?,O(n^1))