WORST_CASE(?,O(n^1))
* Step 1: RestrictVarsProcessor WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  add(A,B,C,D) -> n4(A,B,C,D)                   [A >= 0]                             (1,1)
          1.  m0(A,B,C,D)  -> m1(A,B,C,D)                   True                                 (?,1)
          2.  m2(A,B,C,D)  -> m3(A,B,C,D)                   True                                 (?,1)
          3.  m5(A,B,C,D)  -> m4(E,B,C,D)                   [1 + A >= E && E >= 1 + A]           (?,1)
          4.  m3(A,B,C,D)  -> m5(A,B,C,D)                   True                                 (?,1)
          5.  m6(A,B,C,D)  -> m7(A,B,C,D)                   True                                 (?,1)
          6.  m9(A,B,C,D)  -> m8(E,B,C,D)                   [2 + A >= E && E >= 2 + A]           (?,1)
          7.  m7(A,B,C,D)  -> m9(A,B,C,D)                   True                                 (?,1)
          8.  n0(A,B,C,D)  -> n1(A,B,C,D)                   True                                 (?,1)
          9.  n3(A,B,C,D)  -> n2(E,B,C,D)                   [3 + A >= E && E >= 3 + A]           (?,1)
          10. n1(A,B,C,D)  -> n3(A,B,C,D)                   True                                 (?,1)
          11. n7(A,B,C,D)  -> m0(A,B,C,D)                   [3 + A >= B]                         (?,1)
          12. n80(A,B,C,D) -> n7(A,B,C,D)                   True                                 (?,1)
          13. n81(A,B,C,D) -> m2(C,B,C,D)                   True                                 (?,1)
          14. n8(A,B,C,D)  -> c2(n80(A,E,B,D),n81(A,E,B,D)) [A >= B && 1 + B >= E && E >= 1 + B] (?,1)
          15. n90(A,B,C,D) -> n7(A,B,C,D)                   True                                 (?,1)
          16. n91(A,B,C,D) -> m6(C,B,C,D)                   True                                 (?,1)
          17. n9(A,B,C,D)  -> c2(n90(A,E,B,D),n91(A,E,B,D)) [A >= B && 2 + B >= E && E >= 2 + B] (?,1)
          18. o00(A,B,C,D) -> n7(A,B,C,D)                   True                                 (?,1)
          19. o01(A,B,C,D) -> n0(C,B,C,D)                   True                                 (?,1)
          20. o0(A,B,C,D)  -> c2(o00(A,E,B,D),o01(A,E,B,D)) [A >= B && 3 + B >= E && E >= 3 + B] (?,1)
          21. o1(A,B,C,D)  -> c2(n5(A,0,C,D),m0(A,0,C,D))   [A >= 0]                             (?,1)
          22. n4(A,B,C,D)  -> o1(A,B,C,D)                   [A >= 0]                             (?,1)
          23. o2(A,B,C,D)  -> o3(A,B,C,D)                   [A >= B]                             (?,1)
          24. o3(A,B,C,D)  -> n8(A,B,C,D)                   True                                 (?,1)
          25. o3(A,B,C,D)  -> n9(A,B,C,D)                   True                                 (?,1)
          26. o3(A,B,C,D)  -> o0(A,B,C,D)                   True                                 (?,1)
          27. m1(A,B,C,D)  -> o2(A,B,C,D)                   True                                 (?,1)
          28. m1(A,B,C,D)  -> n6(A,B,C,B)                   True                                 (?,1)
        Signature:
          {(add,4)
          ;(m0,4)
          ;(m1,4)
          ;(m2,4)
          ;(m3,4)
          ;(m4,4)
          ;(m5,4)
          ;(m6,4)
          ;(m7,4)
          ;(m8,4)
          ;(m9,4)
          ;(n0,4)
          ;(n1,4)
          ;(n2,4)
          ;(n3,4)
          ;(n4,4)
          ;(n5,4)
          ;(n6,4)
          ;(n7,4)
          ;(n8,4)
          ;(n80,4)
          ;(n81,4)
          ;(n9,4)
          ;(n90,4)
          ;(n91,4)
          ;(o0,4)
          ;(o00,4)
          ;(o01,4)
          ;(o1,4)
          ;(o2,4)
          ;(o3,4)}
        Flow Graph:
          [0->{22},1->{27,28},2->{4},3->{},4->{3},5->{7},6->{},7->{6},8->{10},9->{},10->{9},11->{1},12->{11},13->{2}
          ,14->{12,13},15->{11},16->{5},17->{15,16},18->{11},19->{8},20->{18,19},21->{1},22->{21},23->{24,25,26}
          ,24->{14},25->{17},26->{20},27->{23},28->{}]
        
    + Applied Processor:
        RestrictVarsProcessor
    + Details:
        We removed the arguments [D] .
* Step 2: LocalSizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  add(A,B,C) -> n4(A,B,C)                 [A >= 0]                             (1,1)
          1.  m0(A,B,C)  -> m1(A,B,C)                 True                                 (?,1)
          2.  m2(A,B,C)  -> m3(A,B,C)                 True                                 (?,1)
          3.  m5(A,B,C)  -> m4(E,B,C)                 [1 + A >= E && E >= 1 + A]           (?,1)
          4.  m3(A,B,C)  -> m5(A,B,C)                 True                                 (?,1)
          5.  m6(A,B,C)  -> m7(A,B,C)                 True                                 (?,1)
          6.  m9(A,B,C)  -> m8(E,B,C)                 [2 + A >= E && E >= 2 + A]           (?,1)
          7.  m7(A,B,C)  -> m9(A,B,C)                 True                                 (?,1)
          8.  n0(A,B,C)  -> n1(A,B,C)                 True                                 (?,1)
          9.  n3(A,B,C)  -> n2(E,B,C)                 [3 + A >= E && E >= 3 + A]           (?,1)
          10. n1(A,B,C)  -> n3(A,B,C)                 True                                 (?,1)
          11. n7(A,B,C)  -> m0(A,B,C)                 [3 + A >= B]                         (?,1)
          12. n80(A,B,C) -> n7(A,B,C)                 True                                 (?,1)
          13. n81(A,B,C) -> m2(C,B,C)                 True                                 (?,1)
          14. n8(A,B,C)  -> c2(n80(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B] (?,1)
          15. n90(A,B,C) -> n7(A,B,C)                 True                                 (?,1)
          16. n91(A,B,C) -> m6(C,B,C)                 True                                 (?,1)
          17. n9(A,B,C)  -> c2(n90(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B] (?,1)
          18. o00(A,B,C) -> n7(A,B,C)                 True                                 (?,1)
          19. o01(A,B,C) -> n0(C,B,C)                 True                                 (?,1)
          20. o0(A,B,C)  -> c2(o00(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B] (?,1)
          21. o1(A,B,C)  -> c2(n5(A,0,C),m0(A,0,C))   [A >= 0]                             (?,1)
          22. n4(A,B,C)  -> o1(A,B,C)                 [A >= 0]                             (?,1)
          23. o2(A,B,C)  -> o3(A,B,C)                 [A >= B]                             (?,1)
          24. o3(A,B,C)  -> n8(A,B,C)                 True                                 (?,1)
          25. o3(A,B,C)  -> n9(A,B,C)                 True                                 (?,1)
          26. o3(A,B,C)  -> o0(A,B,C)                 True                                 (?,1)
          27. m1(A,B,C)  -> o2(A,B,C)                 True                                 (?,1)
          28. m1(A,B,C)  -> n6(A,B,C)                 True                                 (?,1)
        Signature:
          {(add,3)
          ;(m0,3)
          ;(m1,3)
          ;(m2,3)
          ;(m3,3)
          ;(m4,3)
          ;(m5,3)
          ;(m6,3)
          ;(m7,3)
          ;(m8,3)
          ;(m9,3)
          ;(n0,3)
          ;(n1,3)
          ;(n2,3)
          ;(n3,3)
          ;(n4,3)
          ;(n5,3)
          ;(n6,3)
          ;(n7,3)
          ;(n8,3)
          ;(n80,3)
          ;(n81,3)
          ;(n9,3)
          ;(n90,3)
          ;(n91,3)
          ;(o0,3)
          ;(o00,3)
          ;(o01,3)
          ;(o1,3)
          ;(o2,3)
          ;(o3,3)}
        Flow Graph:
          [0->{22},1->{27,28},2->{4},3->{},4->{3},5->{7},6->{},7->{6},8->{10},9->{},10->{9},11->{1},12->{11},13->{2}
          ,14->{12,13},15->{11},16->{5},17->{15,16},18->{11},19->{8},20->{18,19},21->{1},22->{21},23->{24,25,26}
          ,24->{14},25->{17},26->{20},27->{23},28->{}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (< 0,0,A>,     A, .= 0) (< 0,0,B>,         B, .= 0) (< 0,0,C>, C, .= 0) 
          (< 1,0,A>,     A, .= 0) (< 1,0,B>,         B, .= 0) (< 1,0,C>, C, .= 0) 
          (< 2,0,A>,     A, .= 0) (< 2,0,B>,         B, .= 0) (< 2,0,C>, C, .= 0) 
          (< 3,0,A>, 1 + A, .+ 1) (< 3,0,B>,         B, .= 0) (< 3,0,C>, C, .= 0) 
          (< 4,0,A>,     A, .= 0) (< 4,0,B>,         B, .= 0) (< 4,0,C>, C, .= 0) 
          (< 5,0,A>,     A, .= 0) (< 5,0,B>,         B, .= 0) (< 5,0,C>, C, .= 0) 
          (< 6,0,A>, 2 + A, .+ 2) (< 6,0,B>,         B, .= 0) (< 6,0,C>, C, .= 0) 
          (< 7,0,A>,     A, .= 0) (< 7,0,B>,         B, .= 0) (< 7,0,C>, C, .= 0) 
          (< 8,0,A>,     A, .= 0) (< 8,0,B>,         B, .= 0) (< 8,0,C>, C, .= 0) 
          (< 9,0,A>, 3 + A, .+ 3) (< 9,0,B>,         B, .= 0) (< 9,0,C>, C, .= 0) 
          (<10,0,A>,     A, .= 0) (<10,0,B>,         B, .= 0) (<10,0,C>, C, .= 0) 
          (<11,0,A>,     A, .= 0) (<11,0,B>,         B, .= 0) (<11,0,C>, C, .= 0) 
          (<12,0,A>,     A, .= 0) (<12,0,B>,         B, .= 0) (<12,0,C>, C, .= 0) 
          (<13,0,A>,     C, .= 0) (<13,0,B>,         B, .= 0) (<13,0,C>, C, .= 0) 
          (<14,0,A>,     A, .= 0) (<14,0,B>, 1 + A + B, .* 1) (<14,0,C>, B, .= 0) 
          (<14,1,A>,     A, .= 0) (<14,1,B>, 1 + A + B, .* 1) (<14,1,C>, B, .= 0) 
          (<15,0,A>,     A, .= 0) (<15,0,B>,         B, .= 0) (<15,0,C>, C, .= 0) 
          (<16,0,A>,     C, .= 0) (<16,0,B>,         B, .= 0) (<16,0,C>, C, .= 0) 
          (<17,0,A>,     A, .= 0) (<17,0,B>, 2 + A + B, .* 2) (<17,0,C>, B, .= 0) 
          (<17,1,A>,     A, .= 0) (<17,1,B>, 2 + A + B, .* 2) (<17,1,C>, B, .= 0) 
          (<18,0,A>,     A, .= 0) (<18,0,B>,         B, .= 0) (<18,0,C>, C, .= 0) 
          (<19,0,A>,     C, .= 0) (<19,0,B>,         B, .= 0) (<19,0,C>, C, .= 0) 
          (<20,0,A>,     A, .= 0) (<20,0,B>, 3 + A + B, .* 3) (<20,0,C>, B, .= 0) 
          (<20,1,A>,     A, .= 0) (<20,1,B>, 3 + A + B, .* 3) (<20,1,C>, B, .= 0) 
          (<21,0,A>,     A, .= 0) (<21,0,B>,         0, .= 0) (<21,0,C>, C, .= 0) 
          (<21,1,A>,     A, .= 0) (<21,1,B>,         0, .= 0) (<21,1,C>, C, .= 0) 
          (<22,0,A>,     A, .= 0) (<22,0,B>,         B, .= 0) (<22,0,C>, C, .= 0) 
          (<23,0,A>,     A, .= 0) (<23,0,B>,         B, .= 0) (<23,0,C>, C, .= 0) 
          (<24,0,A>,     A, .= 0) (<24,0,B>,         B, .= 0) (<24,0,C>, C, .= 0) 
          (<25,0,A>,     A, .= 0) (<25,0,B>,         B, .= 0) (<25,0,C>, C, .= 0) 
          (<26,0,A>,     A, .= 0) (<26,0,B>,         B, .= 0) (<26,0,C>, C, .= 0) 
          (<27,0,A>,     A, .= 0) (<27,0,B>,         B, .= 0) (<27,0,C>, C, .= 0) 
          (<28,0,A>,     A, .= 0) (<28,0,B>,         B, .= 0) (<28,0,C>, C, .= 0) 
* Step 3: SizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  add(A,B,C) -> n4(A,B,C)                 [A >= 0]                             (1,1)
          1.  m0(A,B,C)  -> m1(A,B,C)                 True                                 (?,1)
          2.  m2(A,B,C)  -> m3(A,B,C)                 True                                 (?,1)
          3.  m5(A,B,C)  -> m4(E,B,C)                 [1 + A >= E && E >= 1 + A]           (?,1)
          4.  m3(A,B,C)  -> m5(A,B,C)                 True                                 (?,1)
          5.  m6(A,B,C)  -> m7(A,B,C)                 True                                 (?,1)
          6.  m9(A,B,C)  -> m8(E,B,C)                 [2 + A >= E && E >= 2 + A]           (?,1)
          7.  m7(A,B,C)  -> m9(A,B,C)                 True                                 (?,1)
          8.  n0(A,B,C)  -> n1(A,B,C)                 True                                 (?,1)
          9.  n3(A,B,C)  -> n2(E,B,C)                 [3 + A >= E && E >= 3 + A]           (?,1)
          10. n1(A,B,C)  -> n3(A,B,C)                 True                                 (?,1)
          11. n7(A,B,C)  -> m0(A,B,C)                 [3 + A >= B]                         (?,1)
          12. n80(A,B,C) -> n7(A,B,C)                 True                                 (?,1)
          13. n81(A,B,C) -> m2(C,B,C)                 True                                 (?,1)
          14. n8(A,B,C)  -> c2(n80(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B] (?,1)
          15. n90(A,B,C) -> n7(A,B,C)                 True                                 (?,1)
          16. n91(A,B,C) -> m6(C,B,C)                 True                                 (?,1)
          17. n9(A,B,C)  -> c2(n90(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B] (?,1)
          18. o00(A,B,C) -> n7(A,B,C)                 True                                 (?,1)
          19. o01(A,B,C) -> n0(C,B,C)                 True                                 (?,1)
          20. o0(A,B,C)  -> c2(o00(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B] (?,1)
          21. o1(A,B,C)  -> c2(n5(A,0,C),m0(A,0,C))   [A >= 0]                             (?,1)
          22. n4(A,B,C)  -> o1(A,B,C)                 [A >= 0]                             (?,1)
          23. o2(A,B,C)  -> o3(A,B,C)                 [A >= B]                             (?,1)
          24. o3(A,B,C)  -> n8(A,B,C)                 True                                 (?,1)
          25. o3(A,B,C)  -> n9(A,B,C)                 True                                 (?,1)
          26. o3(A,B,C)  -> o0(A,B,C)                 True                                 (?,1)
          27. m1(A,B,C)  -> o2(A,B,C)                 True                                 (?,1)
          28. m1(A,B,C)  -> n6(A,B,C)                 True                                 (?,1)
        Signature:
          {(add,3)
          ;(m0,3)
          ;(m1,3)
          ;(m2,3)
          ;(m3,3)
          ;(m4,3)
          ;(m5,3)
          ;(m6,3)
          ;(m7,3)
          ;(m8,3)
          ;(m9,3)
          ;(n0,3)
          ;(n1,3)
          ;(n2,3)
          ;(n3,3)
          ;(n4,3)
          ;(n5,3)
          ;(n6,3)
          ;(n7,3)
          ;(n8,3)
          ;(n80,3)
          ;(n81,3)
          ;(n9,3)
          ;(n90,3)
          ;(n91,3)
          ;(o0,3)
          ;(o00,3)
          ;(o01,3)
          ;(o1,3)
          ;(o2,3)
          ;(o3,3)}
        Flow Graph:
          [0->{22},1->{27,28},2->{4},3->{},4->{3},5->{7},6->{},7->{6},8->{10},9->{},10->{9},11->{1},12->{11},13->{2}
          ,14->{12,13},15->{11},16->{5},17->{15,16},18->{11},19->{8},20->{18,19},21->{1},22->{21},23->{24,25,26}
          ,24->{14},25->{17},26->{20},27->{23},28->{}]
        Sizebounds:
          (< 0,0,A>, ?) (< 0,0,B>, ?) (< 0,0,C>, ?) 
          (< 1,0,A>, ?) (< 1,0,B>, ?) (< 1,0,C>, ?) 
          (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,C>, ?) 
          (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,C>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,C>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,0,C>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) 
          (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) 
          (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) 
          (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) 
          (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) 
          (<14,0,A>, ?) (<14,0,B>, ?) (<14,0,C>, ?) 
          (<14,1,A>, ?) (<14,1,B>, ?) (<14,1,C>, ?) 
          (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) 
          (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) 
          (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) 
          (<17,1,A>, ?) (<17,1,B>, ?) (<17,1,C>, ?) 
          (<18,0,A>, ?) (<18,0,B>, ?) (<18,0,C>, ?) 
          (<19,0,A>, ?) (<19,0,B>, ?) (<19,0,C>, ?) 
          (<20,0,A>, ?) (<20,0,B>, ?) (<20,0,C>, ?) 
          (<20,1,A>, ?) (<20,1,B>, ?) (<20,1,C>, ?) 
          (<21,0,A>, ?) (<21,0,B>, ?) (<21,0,C>, ?) 
          (<21,1,A>, ?) (<21,1,B>, ?) (<21,1,C>, ?) 
          (<22,0,A>, ?) (<22,0,B>, ?) (<22,0,C>, ?) 
          (<23,0,A>, ?) (<23,0,B>, ?) (<23,0,C>, ?) 
          (<24,0,A>, ?) (<24,0,B>, ?) (<24,0,C>, ?) 
          (<25,0,A>, ?) (<25,0,B>, ?) (<25,0,C>, ?) 
          (<26,0,A>, ?) (<26,0,B>, ?) (<26,0,C>, ?) 
          (<27,0,A>, ?) (<27,0,B>, ?) (<27,0,C>, ?) 
          (<28,0,A>, ?) (<28,0,B>, ?) (<28,0,C>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (< 0,0,A>,     A) (< 0,0,B>,     B) (< 0,0,C>,     C) 
          (< 1,0,A>,     A) (< 1,0,B>, 3 + A) (< 1,0,C>, A + C) 
          (< 2,0,A>,     A) (< 2,0,B>,     A) (< 2,0,C>,     A) 
          (< 3,0,A>, 1 + A) (< 3,0,B>,     A) (< 3,0,C>,     A) 
          (< 4,0,A>,     A) (< 4,0,B>,     A) (< 4,0,C>,     A) 
          (< 5,0,A>,     A) (< 5,0,B>,     A) (< 5,0,C>,     A) 
          (< 6,0,A>, 2 + A) (< 6,0,B>,     A) (< 6,0,C>,     A) 
          (< 7,0,A>,     A) (< 7,0,B>,     A) (< 7,0,C>,     A) 
          (< 8,0,A>,     A) (< 8,0,B>,     A) (< 8,0,C>,     A) 
          (< 9,0,A>, 3 + A) (< 9,0,B>,     A) (< 9,0,C>,     A) 
          (<10,0,A>,     A) (<10,0,B>,     A) (<10,0,C>,     A) 
          (<11,0,A>,     A) (<11,0,B>, 3 + A) (<11,0,C>,     A) 
          (<12,0,A>,     A) (<12,0,B>,     A) (<12,0,C>,     A) 
          (<13,0,A>,     A) (<13,0,B>,     A) (<13,0,C>,     A) 
          (<14,0,A>,     A) (<14,0,B>,     A) (<14,0,C>,     A) 
          (<14,1,A>,     A) (<14,1,B>,     A) (<14,1,C>,     A) 
          (<15,0,A>,     A) (<15,0,B>,     A) (<15,0,C>,     A) 
          (<16,0,A>,     A) (<16,0,B>,     A) (<16,0,C>,     A) 
          (<17,0,A>,     A) (<17,0,B>,     A) (<17,0,C>,     A) 
          (<17,1,A>,     A) (<17,1,B>,     A) (<17,1,C>,     A) 
          (<18,0,A>,     A) (<18,0,B>,     A) (<18,0,C>,     A) 
          (<19,0,A>,     A) (<19,0,B>,     A) (<19,0,C>,     A) 
          (<20,0,A>,     A) (<20,0,B>,     A) (<20,0,C>,     A) 
          (<20,1,A>,     A) (<20,1,B>,     A) (<20,1,C>,     A) 
          (<21,0,A>,     A) (<21,0,B>,     0) (<21,0,C>,     C) 
          (<21,1,A>,     A) (<21,1,B>,     0) (<21,1,C>,     C) 
          (<22,0,A>,     A) (<22,0,B>,     B) (<22,0,C>,     C) 
          (<23,0,A>,     A) (<23,0,B>,     A) (<23,0,C>, A + C) 
          (<24,0,A>,     A) (<24,0,B>,     A) (<24,0,C>, A + C) 
          (<25,0,A>,     A) (<25,0,B>,     A) (<25,0,C>, A + C) 
          (<26,0,A>,     A) (<26,0,B>,     A) (<26,0,C>, A + C) 
          (<27,0,A>,     A) (<27,0,B>, 3 + A) (<27,0,C>, A + C) 
          (<28,0,A>,     A) (<28,0,B>, 3 + A) (<28,0,C>, A + C) 
* Step 4: LeafRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  add(A,B,C) -> n4(A,B,C)                 [A >= 0]                             (1,1)
          1.  m0(A,B,C)  -> m1(A,B,C)                 True                                 (?,1)
          2.  m2(A,B,C)  -> m3(A,B,C)                 True                                 (?,1)
          3.  m5(A,B,C)  -> m4(E,B,C)                 [1 + A >= E && E >= 1 + A]           (?,1)
          4.  m3(A,B,C)  -> m5(A,B,C)                 True                                 (?,1)
          5.  m6(A,B,C)  -> m7(A,B,C)                 True                                 (?,1)
          6.  m9(A,B,C)  -> m8(E,B,C)                 [2 + A >= E && E >= 2 + A]           (?,1)
          7.  m7(A,B,C)  -> m9(A,B,C)                 True                                 (?,1)
          8.  n0(A,B,C)  -> n1(A,B,C)                 True                                 (?,1)
          9.  n3(A,B,C)  -> n2(E,B,C)                 [3 + A >= E && E >= 3 + A]           (?,1)
          10. n1(A,B,C)  -> n3(A,B,C)                 True                                 (?,1)
          11. n7(A,B,C)  -> m0(A,B,C)                 [3 + A >= B]                         (?,1)
          12. n80(A,B,C) -> n7(A,B,C)                 True                                 (?,1)
          13. n81(A,B,C) -> m2(C,B,C)                 True                                 (?,1)
          14. n8(A,B,C)  -> c2(n80(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B] (?,1)
          15. n90(A,B,C) -> n7(A,B,C)                 True                                 (?,1)
          16. n91(A,B,C) -> m6(C,B,C)                 True                                 (?,1)
          17. n9(A,B,C)  -> c2(n90(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B] (?,1)
          18. o00(A,B,C) -> n7(A,B,C)                 True                                 (?,1)
          19. o01(A,B,C) -> n0(C,B,C)                 True                                 (?,1)
          20. o0(A,B,C)  -> c2(o00(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B] (?,1)
          21. o1(A,B,C)  -> c2(n5(A,0,C),m0(A,0,C))   [A >= 0]                             (?,1)
          22. n4(A,B,C)  -> o1(A,B,C)                 [A >= 0]                             (?,1)
          23. o2(A,B,C)  -> o3(A,B,C)                 [A >= B]                             (?,1)
          24. o3(A,B,C)  -> n8(A,B,C)                 True                                 (?,1)
          25. o3(A,B,C)  -> n9(A,B,C)                 True                                 (?,1)
          26. o3(A,B,C)  -> o0(A,B,C)                 True                                 (?,1)
          27. m1(A,B,C)  -> o2(A,B,C)                 True                                 (?,1)
          28. m1(A,B,C)  -> n6(A,B,C)                 True                                 (?,1)
        Signature:
          {(add,3)
          ;(m0,3)
          ;(m1,3)
          ;(m2,3)
          ;(m3,3)
          ;(m4,3)
          ;(m5,3)
          ;(m6,3)
          ;(m7,3)
          ;(m8,3)
          ;(m9,3)
          ;(n0,3)
          ;(n1,3)
          ;(n2,3)
          ;(n3,3)
          ;(n4,3)
          ;(n5,3)
          ;(n6,3)
          ;(n7,3)
          ;(n8,3)
          ;(n80,3)
          ;(n81,3)
          ;(n9,3)
          ;(n90,3)
          ;(n91,3)
          ;(o0,3)
          ;(o00,3)
          ;(o01,3)
          ;(o1,3)
          ;(o2,3)
          ;(o3,3)}
        Flow Graph:
          [0->{22},1->{27,28},2->{4},3->{},4->{3},5->{7},6->{},7->{6},8->{10},9->{},10->{9},11->{1},12->{11},13->{2}
          ,14->{12,13},15->{11},16->{5},17->{15,16},18->{11},19->{8},20->{18,19},21->{1},22->{21},23->{24,25,26}
          ,24->{14},25->{17},26->{20},27->{23},28->{}]
        Sizebounds:
          (< 0,0,A>,     A) (< 0,0,B>,     B) (< 0,0,C>,     C) 
          (< 1,0,A>,     A) (< 1,0,B>, 3 + A) (< 1,0,C>, A + C) 
          (< 2,0,A>,     A) (< 2,0,B>,     A) (< 2,0,C>,     A) 
          (< 3,0,A>, 1 + A) (< 3,0,B>,     A) (< 3,0,C>,     A) 
          (< 4,0,A>,     A) (< 4,0,B>,     A) (< 4,0,C>,     A) 
          (< 5,0,A>,     A) (< 5,0,B>,     A) (< 5,0,C>,     A) 
          (< 6,0,A>, 2 + A) (< 6,0,B>,     A) (< 6,0,C>,     A) 
          (< 7,0,A>,     A) (< 7,0,B>,     A) (< 7,0,C>,     A) 
          (< 8,0,A>,     A) (< 8,0,B>,     A) (< 8,0,C>,     A) 
          (< 9,0,A>, 3 + A) (< 9,0,B>,     A) (< 9,0,C>,     A) 
          (<10,0,A>,     A) (<10,0,B>,     A) (<10,0,C>,     A) 
          (<11,0,A>,     A) (<11,0,B>, 3 + A) (<11,0,C>,     A) 
          (<12,0,A>,     A) (<12,0,B>,     A) (<12,0,C>,     A) 
          (<13,0,A>,     A) (<13,0,B>,     A) (<13,0,C>,     A) 
          (<14,0,A>,     A) (<14,0,B>,     A) (<14,0,C>,     A) 
          (<14,1,A>,     A) (<14,1,B>,     A) (<14,1,C>,     A) 
          (<15,0,A>,     A) (<15,0,B>,     A) (<15,0,C>,     A) 
          (<16,0,A>,     A) (<16,0,B>,     A) (<16,0,C>,     A) 
          (<17,0,A>,     A) (<17,0,B>,     A) (<17,0,C>,     A) 
          (<17,1,A>,     A) (<17,1,B>,     A) (<17,1,C>,     A) 
          (<18,0,A>,     A) (<18,0,B>,     A) (<18,0,C>,     A) 
          (<19,0,A>,     A) (<19,0,B>,     A) (<19,0,C>,     A) 
          (<20,0,A>,     A) (<20,0,B>,     A) (<20,0,C>,     A) 
          (<20,1,A>,     A) (<20,1,B>,     A) (<20,1,C>,     A) 
          (<21,0,A>,     A) (<21,0,B>,     0) (<21,0,C>,     C) 
          (<21,1,A>,     A) (<21,1,B>,     0) (<21,1,C>,     C) 
          (<22,0,A>,     A) (<22,0,B>,     B) (<22,0,C>,     C) 
          (<23,0,A>,     A) (<23,0,B>,     A) (<23,0,C>, A + C) 
          (<24,0,A>,     A) (<24,0,B>,     A) (<24,0,C>, A + C) 
          (<25,0,A>,     A) (<25,0,B>,     A) (<25,0,C>, A + C) 
          (<26,0,A>,     A) (<26,0,B>,     A) (<26,0,C>, A + C) 
          (<27,0,A>,     A) (<27,0,B>, 3 + A) (<27,0,C>, A + C) 
          (<28,0,A>,     A) (<28,0,B>, 3 + A) (<28,0,C>, A + C) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [13,16,19,2,5,8,4,7,10,3,6,9,28]
* Step 5: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  add(A,B,C) -> n4(A,B,C)                 [A >= 0]                             (1,1)
          1.  m0(A,B,C)  -> m1(A,B,C)                 True                                 (?,1)
          11. n7(A,B,C)  -> m0(A,B,C)                 [3 + A >= B]                         (?,1)
          12. n80(A,B,C) -> n7(A,B,C)                 True                                 (?,1)
          14. n8(A,B,C)  -> c2(n80(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B] (?,1)
          15. n90(A,B,C) -> n7(A,B,C)                 True                                 (?,1)
          17. n9(A,B,C)  -> c2(n90(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B] (?,1)
          18. o00(A,B,C) -> n7(A,B,C)                 True                                 (?,1)
          20. o0(A,B,C)  -> c2(o00(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B] (?,1)
          21. o1(A,B,C)  -> c2(n5(A,0,C),m0(A,0,C))   [A >= 0]                             (?,1)
          22. n4(A,B,C)  -> o1(A,B,C)                 [A >= 0]                             (?,1)
          23. o2(A,B,C)  -> o3(A,B,C)                 [A >= B]                             (?,1)
          24. o3(A,B,C)  -> n8(A,B,C)                 True                                 (?,1)
          25. o3(A,B,C)  -> n9(A,B,C)                 True                                 (?,1)
          26. o3(A,B,C)  -> o0(A,B,C)                 True                                 (?,1)
          27. m1(A,B,C)  -> o2(A,B,C)                 True                                 (?,1)
        Signature:
          {(add,3)
          ;(m0,3)
          ;(m1,3)
          ;(m2,3)
          ;(m3,3)
          ;(m4,3)
          ;(m5,3)
          ;(m6,3)
          ;(m7,3)
          ;(m8,3)
          ;(m9,3)
          ;(n0,3)
          ;(n1,3)
          ;(n2,3)
          ;(n3,3)
          ;(n4,3)
          ;(n5,3)
          ;(n6,3)
          ;(n7,3)
          ;(n8,3)
          ;(n80,3)
          ;(n81,3)
          ;(n9,3)
          ;(n90,3)
          ;(n91,3)
          ;(o0,3)
          ;(o00,3)
          ;(o01,3)
          ;(o1,3)
          ;(o2,3)
          ;(o3,3)}
        Flow Graph:
          [0->{22},1->{27},11->{1},12->{11},14->{12},15->{11},17->{15},18->{11},20->{18},21->{1},22->{21},23->{24,25
          ,26},24->{14},25->{17},26->{20},27->{23}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>,     B) (< 0,0,C>,     C) 
          (< 1,0,A>, A) (< 1,0,B>, 3 + A) (< 1,0,C>, A + C) 
          (<11,0,A>, A) (<11,0,B>, 3 + A) (<11,0,C>,     A) 
          (<12,0,A>, A) (<12,0,B>,     A) (<12,0,C>,     A) 
          (<14,0,A>, A) (<14,0,B>,     A) (<14,0,C>,     A) 
          (<14,1,A>, A) (<14,1,B>,     A) (<14,1,C>,     A) 
          (<15,0,A>, A) (<15,0,B>,     A) (<15,0,C>,     A) 
          (<17,0,A>, A) (<17,0,B>,     A) (<17,0,C>,     A) 
          (<17,1,A>, A) (<17,1,B>,     A) (<17,1,C>,     A) 
          (<18,0,A>, A) (<18,0,B>,     A) (<18,0,C>,     A) 
          (<20,0,A>, A) (<20,0,B>,     A) (<20,0,C>,     A) 
          (<20,1,A>, A) (<20,1,B>,     A) (<20,1,C>,     A) 
          (<21,0,A>, A) (<21,0,B>,     0) (<21,0,C>,     C) 
          (<21,1,A>, A) (<21,1,B>,     0) (<21,1,C>,     C) 
          (<22,0,A>, A) (<22,0,B>,     B) (<22,0,C>,     C) 
          (<23,0,A>, A) (<23,0,B>,     A) (<23,0,C>, A + C) 
          (<24,0,A>, A) (<24,0,B>,     A) (<24,0,C>, A + C) 
          (<25,0,A>, A) (<25,0,B>,     A) (<25,0,C>, A + C) 
          (<26,0,A>, A) (<26,0,B>,     A) (<26,0,C>, A + C) 
          (<27,0,A>, A) (<27,0,B>, 3 + A) (<27,0,C>, A + C) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(add) = 2
           p(m0) = 1
           p(m1) = 1
           p(n4) = 2
           p(n5) = 0
           p(n7) = 1
           p(n8) = 1
          p(n80) = 1
          p(n81) = 0
           p(n9) = 1
          p(n90) = 1
          p(n91) = 0
           p(o0) = 1
          p(o00) = 1
          p(o01) = 0
           p(o1) = 1
           p(o2) = 1
           p(o3) = 1
        
        The following rules are strictly oriented:
           [A >= 0] ==>          
          n4(A,B,C)   = 2        
                      > 1        
                      = o1(A,B,C)
        
        
        The following rules are weakly oriented:
                                    [A >= 0] ==>                          
                                  add(A,B,C)   = 2                        
                                              >= 2                        
                                               = n4(A,B,C)                
        
                                        True ==>                          
                                   m0(A,B,C)   = 1                        
                                              >= 1                        
                                               = m1(A,B,C)                
        
                                [3 + A >= B] ==>                          
                                   n7(A,B,C)   = 1                        
                                              >= 1                        
                                               = m0(A,B,C)                
        
                                        True ==>                          
                                  n80(A,B,C)   = 1                        
                                              >= 1                        
                                               = n7(A,B,C)                
        
        [A >= B && 1 + B >= E && E >= 1 + B] ==>                          
                                   n8(A,B,C)   = 1                        
                                              >= 1                        
                                               = c2(n80(A,E,B),n81(A,E,B))
        
                                        True ==>                          
                                  n90(A,B,C)   = 1                        
                                              >= 1                        
                                               = n7(A,B,C)                
        
        [A >= B && 2 + B >= E && E >= 2 + B] ==>                          
                                   n9(A,B,C)   = 1                        
                                              >= 1                        
                                               = c2(n90(A,E,B),n91(A,E,B))
        
                                        True ==>                          
                                  o00(A,B,C)   = 1                        
                                              >= 1                        
                                               = n7(A,B,C)                
        
        [A >= B && 3 + B >= E && E >= 3 + B] ==>                          
                                   o0(A,B,C)   = 1                        
                                              >= 1                        
                                               = c2(o00(A,E,B),o01(A,E,B))
        
                                    [A >= 0] ==>                          
                                   o1(A,B,C)   = 1                        
                                              >= 1                        
                                               = c2(n5(A,0,C),m0(A,0,C))  
        
                                    [A >= B] ==>                          
                                   o2(A,B,C)   = 1                        
                                              >= 1                        
                                               = o3(A,B,C)                
        
                                        True ==>                          
                                   o3(A,B,C)   = 1                        
                                              >= 1                        
                                               = n8(A,B,C)                
        
                                        True ==>                          
                                   o3(A,B,C)   = 1                        
                                              >= 1                        
                                               = n9(A,B,C)                
        
                                        True ==>                          
                                   o3(A,B,C)   = 1                        
                                              >= 1                        
                                               = o0(A,B,C)                
        
                                        True ==>                          
                                   m1(A,B,C)   = 1                        
                                              >= 1                        
                                               = o2(A,B,C)                
        
        
* Step 6: KnowledgePropagation WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  add(A,B,C) -> n4(A,B,C)                 [A >= 0]                             (1,1)
          1.  m0(A,B,C)  -> m1(A,B,C)                 True                                 (?,1)
          11. n7(A,B,C)  -> m0(A,B,C)                 [3 + A >= B]                         (?,1)
          12. n80(A,B,C) -> n7(A,B,C)                 True                                 (?,1)
          14. n8(A,B,C)  -> c2(n80(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B] (?,1)
          15. n90(A,B,C) -> n7(A,B,C)                 True                                 (?,1)
          17. n9(A,B,C)  -> c2(n90(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B] (?,1)
          18. o00(A,B,C) -> n7(A,B,C)                 True                                 (?,1)
          20. o0(A,B,C)  -> c2(o00(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B] (?,1)
          21. o1(A,B,C)  -> c2(n5(A,0,C),m0(A,0,C))   [A >= 0]                             (?,1)
          22. n4(A,B,C)  -> o1(A,B,C)                 [A >= 0]                             (2,1)
          23. o2(A,B,C)  -> o3(A,B,C)                 [A >= B]                             (?,1)
          24. o3(A,B,C)  -> n8(A,B,C)                 True                                 (?,1)
          25. o3(A,B,C)  -> n9(A,B,C)                 True                                 (?,1)
          26. o3(A,B,C)  -> o0(A,B,C)                 True                                 (?,1)
          27. m1(A,B,C)  -> o2(A,B,C)                 True                                 (?,1)
        Signature:
          {(add,3)
          ;(m0,3)
          ;(m1,3)
          ;(m2,3)
          ;(m3,3)
          ;(m4,3)
          ;(m5,3)
          ;(m6,3)
          ;(m7,3)
          ;(m8,3)
          ;(m9,3)
          ;(n0,3)
          ;(n1,3)
          ;(n2,3)
          ;(n3,3)
          ;(n4,3)
          ;(n5,3)
          ;(n6,3)
          ;(n7,3)
          ;(n8,3)
          ;(n80,3)
          ;(n81,3)
          ;(n9,3)
          ;(n90,3)
          ;(n91,3)
          ;(o0,3)
          ;(o00,3)
          ;(o01,3)
          ;(o1,3)
          ;(o2,3)
          ;(o3,3)}
        Flow Graph:
          [0->{22},1->{27},11->{1},12->{11},14->{12},15->{11},17->{15},18->{11},20->{18},21->{1},22->{21},23->{24,25
          ,26},24->{14},25->{17},26->{20},27->{23}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>,     B) (< 0,0,C>,     C) 
          (< 1,0,A>, A) (< 1,0,B>, 3 + A) (< 1,0,C>, A + C) 
          (<11,0,A>, A) (<11,0,B>, 3 + A) (<11,0,C>,     A) 
          (<12,0,A>, A) (<12,0,B>,     A) (<12,0,C>,     A) 
          (<14,0,A>, A) (<14,0,B>,     A) (<14,0,C>,     A) 
          (<14,1,A>, A) (<14,1,B>,     A) (<14,1,C>,     A) 
          (<15,0,A>, A) (<15,0,B>,     A) (<15,0,C>,     A) 
          (<17,0,A>, A) (<17,0,B>,     A) (<17,0,C>,     A) 
          (<17,1,A>, A) (<17,1,B>,     A) (<17,1,C>,     A) 
          (<18,0,A>, A) (<18,0,B>,     A) (<18,0,C>,     A) 
          (<20,0,A>, A) (<20,0,B>,     A) (<20,0,C>,     A) 
          (<20,1,A>, A) (<20,1,B>,     A) (<20,1,C>,     A) 
          (<21,0,A>, A) (<21,0,B>,     0) (<21,0,C>,     C) 
          (<21,1,A>, A) (<21,1,B>,     0) (<21,1,C>,     C) 
          (<22,0,A>, A) (<22,0,B>,     B) (<22,0,C>,     C) 
          (<23,0,A>, A) (<23,0,B>,     A) (<23,0,C>, A + C) 
          (<24,0,A>, A) (<24,0,B>,     A) (<24,0,C>, A + C) 
          (<25,0,A>, A) (<25,0,B>,     A) (<25,0,C>, A + C) 
          (<26,0,A>, A) (<26,0,B>,     A) (<26,0,C>, A + C) 
          (<27,0,A>, A) (<27,0,B>, 3 + A) (<27,0,C>, A + C) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 7: ChainProcessor WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  add(A,B,C) -> n4(A,B,C)                 [A >= 0]                             (1,1)
          1.  m0(A,B,C)  -> m1(A,B,C)                 True                                 (?,1)
          11. n7(A,B,C)  -> m0(A,B,C)                 [3 + A >= B]                         (?,1)
          12. n80(A,B,C) -> n7(A,B,C)                 True                                 (?,1)
          14. n8(A,B,C)  -> c2(n80(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B] (?,1)
          15. n90(A,B,C) -> n7(A,B,C)                 True                                 (?,1)
          17. n9(A,B,C)  -> c2(n90(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B] (?,1)
          18. o00(A,B,C) -> n7(A,B,C)                 True                                 (?,1)
          20. o0(A,B,C)  -> c2(o00(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B] (?,1)
          21. o1(A,B,C)  -> c2(n5(A,0,C),m0(A,0,C))   [A >= 0]                             (2,1)
          22. n4(A,B,C)  -> o1(A,B,C)                 [A >= 0]                             (2,1)
          23. o2(A,B,C)  -> o3(A,B,C)                 [A >= B]                             (?,1)
          24. o3(A,B,C)  -> n8(A,B,C)                 True                                 (?,1)
          25. o3(A,B,C)  -> n9(A,B,C)                 True                                 (?,1)
          26. o3(A,B,C)  -> o0(A,B,C)                 True                                 (?,1)
          27. m1(A,B,C)  -> o2(A,B,C)                 True                                 (?,1)
        Signature:
          {(add,3)
          ;(m0,3)
          ;(m1,3)
          ;(m2,3)
          ;(m3,3)
          ;(m4,3)
          ;(m5,3)
          ;(m6,3)
          ;(m7,3)
          ;(m8,3)
          ;(m9,3)
          ;(n0,3)
          ;(n1,3)
          ;(n2,3)
          ;(n3,3)
          ;(n4,3)
          ;(n5,3)
          ;(n6,3)
          ;(n7,3)
          ;(n8,3)
          ;(n80,3)
          ;(n81,3)
          ;(n9,3)
          ;(n90,3)
          ;(n91,3)
          ;(o0,3)
          ;(o00,3)
          ;(o01,3)
          ;(o1,3)
          ;(o2,3)
          ;(o3,3)}
        Flow Graph:
          [0->{22},1->{27},11->{1},12->{11},14->{12},15->{11},17->{15},18->{11},20->{18},21->{1},22->{21},23->{24,25
          ,26},24->{14},25->{17},26->{20},27->{23}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>,     B) (< 0,0,C>,     C) 
          (< 1,0,A>, A) (< 1,0,B>, 3 + A) (< 1,0,C>, A + C) 
          (<11,0,A>, A) (<11,0,B>, 3 + A) (<11,0,C>,     A) 
          (<12,0,A>, A) (<12,0,B>,     A) (<12,0,C>,     A) 
          (<14,0,A>, A) (<14,0,B>,     A) (<14,0,C>,     A) 
          (<14,1,A>, A) (<14,1,B>,     A) (<14,1,C>,     A) 
          (<15,0,A>, A) (<15,0,B>,     A) (<15,0,C>,     A) 
          (<17,0,A>, A) (<17,0,B>,     A) (<17,0,C>,     A) 
          (<17,1,A>, A) (<17,1,B>,     A) (<17,1,C>,     A) 
          (<18,0,A>, A) (<18,0,B>,     A) (<18,0,C>,     A) 
          (<20,0,A>, A) (<20,0,B>,     A) (<20,0,C>,     A) 
          (<20,1,A>, A) (<20,1,B>,     A) (<20,1,C>,     A) 
          (<21,0,A>, A) (<21,0,B>,     0) (<21,0,C>,     C) 
          (<21,1,A>, A) (<21,1,B>,     0) (<21,1,C>,     C) 
          (<22,0,A>, A) (<22,0,B>,     B) (<22,0,C>,     C) 
          (<23,0,A>, A) (<23,0,B>,     A) (<23,0,C>, A + C) 
          (<24,0,A>, A) (<24,0,B>,     A) (<24,0,C>, A + C) 
          (<25,0,A>, A) (<25,0,B>,     A) (<25,0,C>, A + C) 
          (<26,0,A>, A) (<26,0,B>,     A) (<26,0,C>, A + C) 
          (<27,0,A>, A) (<27,0,B>, 3 + A) (<27,0,C>, A + C) 
    + Applied Processor:
        ChainProcessor False [0,1,11,12,14,15,17,18,20,21,22,23,24,25,26,27]
    + Details:
        We chained rule 0 to obtain the rules [28] .
* Step 8: UnreachableRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          1.  m0(A,B,C)  -> m1(A,B,C)                 True                                 (?,1)
          11. n7(A,B,C)  -> m0(A,B,C)                 [3 + A >= B]                         (?,1)
          12. n80(A,B,C) -> n7(A,B,C)                 True                                 (?,1)
          14. n8(A,B,C)  -> c2(n80(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B] (?,1)
          15. n90(A,B,C) -> n7(A,B,C)                 True                                 (?,1)
          17. n9(A,B,C)  -> c2(n90(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B] (?,1)
          18. o00(A,B,C) -> n7(A,B,C)                 True                                 (?,1)
          20. o0(A,B,C)  -> c2(o00(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B] (?,1)
          21. o1(A,B,C)  -> c2(n5(A,0,C),m0(A,0,C))   [A >= 0]                             (2,1)
          22. n4(A,B,C)  -> o1(A,B,C)                 [A >= 0]                             (2,1)
          23. o2(A,B,C)  -> o3(A,B,C)                 [A >= B]                             (?,1)
          24. o3(A,B,C)  -> n8(A,B,C)                 True                                 (?,1)
          25. o3(A,B,C)  -> n9(A,B,C)                 True                                 (?,1)
          26. o3(A,B,C)  -> o0(A,B,C)                 True                                 (?,1)
          27. m1(A,B,C)  -> o2(A,B,C)                 True                                 (?,1)
          28. add(A,B,C) -> o1(A,B,C)                 [A >= 0 && A >= 0]                   (1,2)
        Signature:
          {(add,3)
          ;(m0,3)
          ;(m1,3)
          ;(m2,3)
          ;(m3,3)
          ;(m4,3)
          ;(m5,3)
          ;(m6,3)
          ;(m7,3)
          ;(m8,3)
          ;(m9,3)
          ;(n0,3)
          ;(n1,3)
          ;(n2,3)
          ;(n3,3)
          ;(n4,3)
          ;(n5,3)
          ;(n6,3)
          ;(n7,3)
          ;(n8,3)
          ;(n80,3)
          ;(n81,3)
          ;(n9,3)
          ;(n90,3)
          ;(n91,3)
          ;(o0,3)
          ;(o00,3)
          ;(o01,3)
          ;(o1,3)
          ;(o2,3)
          ;(o3,3)}
        Flow Graph:
          [1->{27},11->{1},12->{11},14->{12},15->{11},17->{15},18->{11},20->{18},21->{1},22->{21},23->{24,25,26}
          ,24->{14},25->{17},26->{20},27->{23},28->{21}]
        Sizebounds:
          (< 1,0,A>, A) (< 1,0,B>, 3 + A) (< 1,0,C>, A + C) 
          (<11,0,A>, A) (<11,0,B>, 3 + A) (<11,0,C>,     A) 
          (<12,0,A>, A) (<12,0,B>,     A) (<12,0,C>,     A) 
          (<14,0,A>, A) (<14,0,B>,     A) (<14,0,C>,     A) 
          (<14,1,A>, A) (<14,1,B>,     A) (<14,1,C>,     A) 
          (<15,0,A>, A) (<15,0,B>,     A) (<15,0,C>,     A) 
          (<17,0,A>, A) (<17,0,B>,     A) (<17,0,C>,     A) 
          (<17,1,A>, A) (<17,1,B>,     A) (<17,1,C>,     A) 
          (<18,0,A>, A) (<18,0,B>,     A) (<18,0,C>,     A) 
          (<20,0,A>, A) (<20,0,B>,     A) (<20,0,C>,     A) 
          (<20,1,A>, A) (<20,1,B>,     A) (<20,1,C>,     A) 
          (<21,0,A>, A) (<21,0,B>,     0) (<21,0,C>,     C) 
          (<21,1,A>, A) (<21,1,B>,     0) (<21,1,C>,     C) 
          (<22,0,A>, A) (<22,0,B>,     B) (<22,0,C>,     C) 
          (<23,0,A>, A) (<23,0,B>,     A) (<23,0,C>, A + C) 
          (<24,0,A>, A) (<24,0,B>,     A) (<24,0,C>, A + C) 
          (<25,0,A>, A) (<25,0,B>,     A) (<25,0,C>, A + C) 
          (<26,0,A>, A) (<26,0,B>,     A) (<26,0,C>, A + C) 
          (<27,0,A>, A) (<27,0,B>, 3 + A) (<27,0,C>, A + C) 
          (<28,0,A>, A) (<28,0,B>,     B) (<28,0,C>,     C) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [22]
* Step 9: ChainProcessor WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          1.  m0(A,B,C)  -> m1(A,B,C)                 True                                 (?,1)
          11. n7(A,B,C)  -> m0(A,B,C)                 [3 + A >= B]                         (?,1)
          12. n80(A,B,C) -> n7(A,B,C)                 True                                 (?,1)
          14. n8(A,B,C)  -> c2(n80(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B] (?,1)
          15. n90(A,B,C) -> n7(A,B,C)                 True                                 (?,1)
          17. n9(A,B,C)  -> c2(n90(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B] (?,1)
          18. o00(A,B,C) -> n7(A,B,C)                 True                                 (?,1)
          20. o0(A,B,C)  -> c2(o00(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B] (?,1)
          21. o1(A,B,C)  -> c2(n5(A,0,C),m0(A,0,C))   [A >= 0]                             (2,1)
          23. o2(A,B,C)  -> o3(A,B,C)                 [A >= B]                             (?,1)
          24. o3(A,B,C)  -> n8(A,B,C)                 True                                 (?,1)
          25. o3(A,B,C)  -> n9(A,B,C)                 True                                 (?,1)
          26. o3(A,B,C)  -> o0(A,B,C)                 True                                 (?,1)
          27. m1(A,B,C)  -> o2(A,B,C)                 True                                 (?,1)
          28. add(A,B,C) -> o1(A,B,C)                 [A >= 0 && A >= 0]                   (1,2)
        Signature:
          {(add,3)
          ;(m0,3)
          ;(m1,3)
          ;(m2,3)
          ;(m3,3)
          ;(m4,3)
          ;(m5,3)
          ;(m6,3)
          ;(m7,3)
          ;(m8,3)
          ;(m9,3)
          ;(n0,3)
          ;(n1,3)
          ;(n2,3)
          ;(n3,3)
          ;(n4,3)
          ;(n5,3)
          ;(n6,3)
          ;(n7,3)
          ;(n8,3)
          ;(n80,3)
          ;(n81,3)
          ;(n9,3)
          ;(n90,3)
          ;(n91,3)
          ;(o0,3)
          ;(o00,3)
          ;(o01,3)
          ;(o1,3)
          ;(o2,3)
          ;(o3,3)}
        Flow Graph:
          [1->{27},11->{1},12->{11},14->{12},15->{11},17->{15},18->{11},20->{18},21->{1},23->{24,25,26},24->{14}
          ,25->{17},26->{20},27->{23},28->{21}]
        Sizebounds:
          (< 1,0,A>, A) (< 1,0,B>, 3 + A) (< 1,0,C>, A + C) 
          (<11,0,A>, A) (<11,0,B>, 3 + A) (<11,0,C>,     A) 
          (<12,0,A>, A) (<12,0,B>,     A) (<12,0,C>,     A) 
          (<14,0,A>, A) (<14,0,B>,     A) (<14,0,C>,     A) 
          (<14,1,A>, A) (<14,1,B>,     A) (<14,1,C>,     A) 
          (<15,0,A>, A) (<15,0,B>,     A) (<15,0,C>,     A) 
          (<17,0,A>, A) (<17,0,B>,     A) (<17,0,C>,     A) 
          (<17,1,A>, A) (<17,1,B>,     A) (<17,1,C>,     A) 
          (<18,0,A>, A) (<18,0,B>,     A) (<18,0,C>,     A) 
          (<20,0,A>, A) (<20,0,B>,     A) (<20,0,C>,     A) 
          (<20,1,A>, A) (<20,1,B>,     A) (<20,1,C>,     A) 
          (<21,0,A>, A) (<21,0,B>,     0) (<21,0,C>,     C) 
          (<21,1,A>, A) (<21,1,B>,     0) (<21,1,C>,     C) 
          (<23,0,A>, A) (<23,0,B>,     A) (<23,0,C>, A + C) 
          (<24,0,A>, A) (<24,0,B>,     A) (<24,0,C>, A + C) 
          (<25,0,A>, A) (<25,0,B>,     A) (<25,0,C>, A + C) 
          (<26,0,A>, A) (<26,0,B>,     A) (<26,0,C>, A + C) 
          (<27,0,A>, A) (<27,0,B>, 3 + A) (<27,0,C>, A + C) 
          (<28,0,A>, A) (<28,0,B>,     B) (<28,0,C>,     C) 
    + Applied Processor:
        ChainProcessor False [1,11,12,14,15,17,18,20,21,23,24,25,26,27,28]
    + Details:
        We chained rule 1 to obtain the rules [29] .
* Step 10: UnreachableRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          11. n7(A,B,C)  -> m0(A,B,C)                 [3 + A >= B]                         (?,1)
          12. n80(A,B,C) -> n7(A,B,C)                 True                                 (?,1)
          14. n8(A,B,C)  -> c2(n80(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B] (?,1)
          15. n90(A,B,C) -> n7(A,B,C)                 True                                 (?,1)
          17. n9(A,B,C)  -> c2(n90(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B] (?,1)
          18. o00(A,B,C) -> n7(A,B,C)                 True                                 (?,1)
          20. o0(A,B,C)  -> c2(o00(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B] (?,1)
          21. o1(A,B,C)  -> c2(n5(A,0,C),m0(A,0,C))   [A >= 0]                             (2,1)
          23. o2(A,B,C)  -> o3(A,B,C)                 [A >= B]                             (?,1)
          24. o3(A,B,C)  -> n8(A,B,C)                 True                                 (?,1)
          25. o3(A,B,C)  -> n9(A,B,C)                 True                                 (?,1)
          26. o3(A,B,C)  -> o0(A,B,C)                 True                                 (?,1)
          27. m1(A,B,C)  -> o2(A,B,C)                 True                                 (?,1)
          28. add(A,B,C) -> o1(A,B,C)                 [A >= 0 && A >= 0]                   (1,2)
          29. m0(A,B,C)  -> o2(A,B,C)                 True                                 (?,2)
        Signature:
          {(add,3)
          ;(m0,3)
          ;(m1,3)
          ;(m2,3)
          ;(m3,3)
          ;(m4,3)
          ;(m5,3)
          ;(m6,3)
          ;(m7,3)
          ;(m8,3)
          ;(m9,3)
          ;(n0,3)
          ;(n1,3)
          ;(n2,3)
          ;(n3,3)
          ;(n4,3)
          ;(n5,3)
          ;(n6,3)
          ;(n7,3)
          ;(n8,3)
          ;(n80,3)
          ;(n81,3)
          ;(n9,3)
          ;(n90,3)
          ;(n91,3)
          ;(o0,3)
          ;(o00,3)
          ;(o01,3)
          ;(o1,3)
          ;(o2,3)
          ;(o3,3)}
        Flow Graph:
          [11->{29},12->{11},14->{12},15->{11},17->{15},18->{11},20->{18},21->{29},23->{24,25,26},24->{14},25->{17}
          ,26->{20},27->{23},28->{21},29->{23}]
        Sizebounds:
          (<11,0,A>, A) (<11,0,B>, 3 + A) (<11,0,C>,     A) 
          (<12,0,A>, A) (<12,0,B>,     A) (<12,0,C>,     A) 
          (<14,0,A>, A) (<14,0,B>,     A) (<14,0,C>,     A) 
          (<14,1,A>, A) (<14,1,B>,     A) (<14,1,C>,     A) 
          (<15,0,A>, A) (<15,0,B>,     A) (<15,0,C>,     A) 
          (<17,0,A>, A) (<17,0,B>,     A) (<17,0,C>,     A) 
          (<17,1,A>, A) (<17,1,B>,     A) (<17,1,C>,     A) 
          (<18,0,A>, A) (<18,0,B>,     A) (<18,0,C>,     A) 
          (<20,0,A>, A) (<20,0,B>,     A) (<20,0,C>,     A) 
          (<20,1,A>, A) (<20,1,B>,     A) (<20,1,C>,     A) 
          (<21,0,A>, A) (<21,0,B>,     0) (<21,0,C>,     C) 
          (<21,1,A>, A) (<21,1,B>,     0) (<21,1,C>,     C) 
          (<23,0,A>, A) (<23,0,B>,     A) (<23,0,C>, A + C) 
          (<24,0,A>, A) (<24,0,B>,     A) (<24,0,C>, A + C) 
          (<25,0,A>, A) (<25,0,B>,     A) (<25,0,C>, A + C) 
          (<26,0,A>, A) (<26,0,B>,     A) (<26,0,C>, A + C) 
          (<27,0,A>, A) (<27,0,B>, 3 + A) (<27,0,C>, A + C) 
          (<28,0,A>, A) (<28,0,B>,     B) (<28,0,C>,     C) 
          (<29,0,A>, A) (<29,0,B>, 3 + A) (<29,0,C>, A + C) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [27]
* Step 11: ChainProcessor WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          11. n7(A,B,C)  -> m0(A,B,C)                 [3 + A >= B]                         (?,1)
          12. n80(A,B,C) -> n7(A,B,C)                 True                                 (?,1)
          14. n8(A,B,C)  -> c2(n80(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B] (?,1)
          15. n90(A,B,C) -> n7(A,B,C)                 True                                 (?,1)
          17. n9(A,B,C)  -> c2(n90(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B] (?,1)
          18. o00(A,B,C) -> n7(A,B,C)                 True                                 (?,1)
          20. o0(A,B,C)  -> c2(o00(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B] (?,1)
          21. o1(A,B,C)  -> c2(n5(A,0,C),m0(A,0,C))   [A >= 0]                             (2,1)
          23. o2(A,B,C)  -> o3(A,B,C)                 [A >= B]                             (?,1)
          24. o3(A,B,C)  -> n8(A,B,C)                 True                                 (?,1)
          25. o3(A,B,C)  -> n9(A,B,C)                 True                                 (?,1)
          26. o3(A,B,C)  -> o0(A,B,C)                 True                                 (?,1)
          28. add(A,B,C) -> o1(A,B,C)                 [A >= 0 && A >= 0]                   (1,2)
          29. m0(A,B,C)  -> o2(A,B,C)                 True                                 (?,2)
        Signature:
          {(add,3)
          ;(m0,3)
          ;(m1,3)
          ;(m2,3)
          ;(m3,3)
          ;(m4,3)
          ;(m5,3)
          ;(m6,3)
          ;(m7,3)
          ;(m8,3)
          ;(m9,3)
          ;(n0,3)
          ;(n1,3)
          ;(n2,3)
          ;(n3,3)
          ;(n4,3)
          ;(n5,3)
          ;(n6,3)
          ;(n7,3)
          ;(n8,3)
          ;(n80,3)
          ;(n81,3)
          ;(n9,3)
          ;(n90,3)
          ;(n91,3)
          ;(o0,3)
          ;(o00,3)
          ;(o01,3)
          ;(o1,3)
          ;(o2,3)
          ;(o3,3)}
        Flow Graph:
          [11->{29},12->{11},14->{12},15->{11},17->{15},18->{11},20->{18},21->{29},23->{24,25,26},24->{14},25->{17}
          ,26->{20},28->{21},29->{23}]
        Sizebounds:
          (<11,0,A>, A) (<11,0,B>, 3 + A) (<11,0,C>,     A) 
          (<12,0,A>, A) (<12,0,B>,     A) (<12,0,C>,     A) 
          (<14,0,A>, A) (<14,0,B>,     A) (<14,0,C>,     A) 
          (<14,1,A>, A) (<14,1,B>,     A) (<14,1,C>,     A) 
          (<15,0,A>, A) (<15,0,B>,     A) (<15,0,C>,     A) 
          (<17,0,A>, A) (<17,0,B>,     A) (<17,0,C>,     A) 
          (<17,1,A>, A) (<17,1,B>,     A) (<17,1,C>,     A) 
          (<18,0,A>, A) (<18,0,B>,     A) (<18,0,C>,     A) 
          (<20,0,A>, A) (<20,0,B>,     A) (<20,0,C>,     A) 
          (<20,1,A>, A) (<20,1,B>,     A) (<20,1,C>,     A) 
          (<21,0,A>, A) (<21,0,B>,     0) (<21,0,C>,     C) 
          (<21,1,A>, A) (<21,1,B>,     0) (<21,1,C>,     C) 
          (<23,0,A>, A) (<23,0,B>,     A) (<23,0,C>, A + C) 
          (<24,0,A>, A) (<24,0,B>,     A) (<24,0,C>, A + C) 
          (<25,0,A>, A) (<25,0,B>,     A) (<25,0,C>, A + C) 
          (<26,0,A>, A) (<26,0,B>,     A) (<26,0,C>, A + C) 
          (<28,0,A>, A) (<28,0,B>,     B) (<28,0,C>,     C) 
          (<29,0,A>, A) (<29,0,B>, 3 + A) (<29,0,C>, A + C) 
    + Applied Processor:
        ChainProcessor False [11,12,14,15,17,18,20,21,23,24,25,26,28,29]
    + Details:
        We chained rule 11 to obtain the rules [30] .
* Step 12: ChainProcessor WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          12. n80(A,B,C) -> n7(A,B,C)                 True                                 (?,1)
          14. n8(A,B,C)  -> c2(n80(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B] (?,1)
          15. n90(A,B,C) -> n7(A,B,C)                 True                                 (?,1)
          17. n9(A,B,C)  -> c2(n90(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B] (?,1)
          18. o00(A,B,C) -> n7(A,B,C)                 True                                 (?,1)
          20. o0(A,B,C)  -> c2(o00(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B] (?,1)
          21. o1(A,B,C)  -> c2(n5(A,0,C),m0(A,0,C))   [A >= 0]                             (2,1)
          23. o2(A,B,C)  -> o3(A,B,C)                 [A >= B]                             (?,1)
          24. o3(A,B,C)  -> n8(A,B,C)                 True                                 (?,1)
          25. o3(A,B,C)  -> n9(A,B,C)                 True                                 (?,1)
          26. o3(A,B,C)  -> o0(A,B,C)                 True                                 (?,1)
          28. add(A,B,C) -> o1(A,B,C)                 [A >= 0 && A >= 0]                   (1,2)
          29. m0(A,B,C)  -> o2(A,B,C)                 True                                 (?,2)
          30. n7(A,B,C)  -> o2(A,B,C)                 [3 + A >= B]                         (?,3)
        Signature:
          {(add,3)
          ;(m0,3)
          ;(m1,3)
          ;(m2,3)
          ;(m3,3)
          ;(m4,3)
          ;(m5,3)
          ;(m6,3)
          ;(m7,3)
          ;(m8,3)
          ;(m9,3)
          ;(n0,3)
          ;(n1,3)
          ;(n2,3)
          ;(n3,3)
          ;(n4,3)
          ;(n5,3)
          ;(n6,3)
          ;(n7,3)
          ;(n8,3)
          ;(n80,3)
          ;(n81,3)
          ;(n9,3)
          ;(n90,3)
          ;(n91,3)
          ;(o0,3)
          ;(o00,3)
          ;(o01,3)
          ;(o1,3)
          ;(o2,3)
          ;(o3,3)}
        Flow Graph:
          [12->{30},14->{12},15->{30},17->{15},18->{30},20->{18},21->{29},23->{24,25,26},24->{14},25->{17},26->{20}
          ,28->{21},29->{23},30->{23}]
        Sizebounds:
          (<12,0,A>, A) (<12,0,B>,     A) (<12,0,C>,     A) 
          (<14,0,A>, A) (<14,0,B>,     A) (<14,0,C>,     A) 
          (<14,1,A>, A) (<14,1,B>,     A) (<14,1,C>,     A) 
          (<15,0,A>, A) (<15,0,B>,     A) (<15,0,C>,     A) 
          (<17,0,A>, A) (<17,0,B>,     A) (<17,0,C>,     A) 
          (<17,1,A>, A) (<17,1,B>,     A) (<17,1,C>,     A) 
          (<18,0,A>, A) (<18,0,B>,     A) (<18,0,C>,     A) 
          (<20,0,A>, A) (<20,0,B>,     A) (<20,0,C>,     A) 
          (<20,1,A>, A) (<20,1,B>,     A) (<20,1,C>,     A) 
          (<21,0,A>, A) (<21,0,B>,     0) (<21,0,C>,     C) 
          (<21,1,A>, A) (<21,1,B>,     0) (<21,1,C>,     C) 
          (<23,0,A>, A) (<23,0,B>,     A) (<23,0,C>, A + C) 
          (<24,0,A>, A) (<24,0,B>,     A) (<24,0,C>, A + C) 
          (<25,0,A>, A) (<25,0,B>,     A) (<25,0,C>, A + C) 
          (<26,0,A>, A) (<26,0,B>,     A) (<26,0,C>, A + C) 
          (<28,0,A>, A) (<28,0,B>,     B) (<28,0,C>,     C) 
          (<29,0,A>, A) (<29,0,B>, 3 + A) (<29,0,C>, A + C) 
          (<30,0,A>, A) (<30,0,B>, 3 + A) (<30,0,C>, A + C) 
    + Applied Processor:
        ChainProcessor False [12,14,15,17,18,20,21,23,24,25,26,28,29,30]
    + Details:
        We chained rule 12 to obtain the rules [31] .
* Step 13: ChainProcessor WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          14. n8(A,B,C)  -> c2(n80(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B] (?,1)
          15. n90(A,B,C) -> n7(A,B,C)                 True                                 (?,1)
          17. n9(A,B,C)  -> c2(n90(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B] (?,1)
          18. o00(A,B,C) -> n7(A,B,C)                 True                                 (?,1)
          20. o0(A,B,C)  -> c2(o00(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B] (?,1)
          21. o1(A,B,C)  -> c2(n5(A,0,C),m0(A,0,C))   [A >= 0]                             (2,1)
          23. o2(A,B,C)  -> o3(A,B,C)                 [A >= B]                             (?,1)
          24. o3(A,B,C)  -> n8(A,B,C)                 True                                 (?,1)
          25. o3(A,B,C)  -> n9(A,B,C)                 True                                 (?,1)
          26. o3(A,B,C)  -> o0(A,B,C)                 True                                 (?,1)
          28. add(A,B,C) -> o1(A,B,C)                 [A >= 0 && A >= 0]                   (1,2)
          29. m0(A,B,C)  -> o2(A,B,C)                 True                                 (?,2)
          30. n7(A,B,C)  -> o2(A,B,C)                 [3 + A >= B]                         (?,3)
          31. n80(A,B,C) -> o2(A,B,C)                 [3 + A >= B]                         (?,4)
        Signature:
          {(add,3)
          ;(m0,3)
          ;(m1,3)
          ;(m2,3)
          ;(m3,3)
          ;(m4,3)
          ;(m5,3)
          ;(m6,3)
          ;(m7,3)
          ;(m8,3)
          ;(m9,3)
          ;(n0,3)
          ;(n1,3)
          ;(n2,3)
          ;(n3,3)
          ;(n4,3)
          ;(n5,3)
          ;(n6,3)
          ;(n7,3)
          ;(n8,3)
          ;(n80,3)
          ;(n81,3)
          ;(n9,3)
          ;(n90,3)
          ;(n91,3)
          ;(o0,3)
          ;(o00,3)
          ;(o01,3)
          ;(o1,3)
          ;(o2,3)
          ;(o3,3)}
        Flow Graph:
          [14->{31},15->{30},17->{15},18->{30},20->{18},21->{29},23->{24,25,26},24->{14},25->{17},26->{20},28->{21}
          ,29->{23},30->{23},31->{23}]
        Sizebounds:
          (<14,0,A>, A) (<14,0,B>,     A) (<14,0,C>,     A) 
          (<14,1,A>, A) (<14,1,B>,     A) (<14,1,C>,     A) 
          (<15,0,A>, A) (<15,0,B>,     A) (<15,0,C>,     A) 
          (<17,0,A>, A) (<17,0,B>,     A) (<17,0,C>,     A) 
          (<17,1,A>, A) (<17,1,B>,     A) (<17,1,C>,     A) 
          (<18,0,A>, A) (<18,0,B>,     A) (<18,0,C>,     A) 
          (<20,0,A>, A) (<20,0,B>,     A) (<20,0,C>,     A) 
          (<20,1,A>, A) (<20,1,B>,     A) (<20,1,C>,     A) 
          (<21,0,A>, A) (<21,0,B>,     0) (<21,0,C>,     C) 
          (<21,1,A>, A) (<21,1,B>,     0) (<21,1,C>,     C) 
          (<23,0,A>, A) (<23,0,B>,     A) (<23,0,C>, A + C) 
          (<24,0,A>, A) (<24,0,B>,     A) (<24,0,C>, A + C) 
          (<25,0,A>, A) (<25,0,B>,     A) (<25,0,C>, A + C) 
          (<26,0,A>, A) (<26,0,B>,     A) (<26,0,C>, A + C) 
          (<28,0,A>, A) (<28,0,B>,     B) (<28,0,C>,     C) 
          (<29,0,A>, A) (<29,0,B>, 3 + A) (<29,0,C>, A + C) 
          (<30,0,A>, A) (<30,0,B>, 3 + A) (<30,0,C>, A + C) 
          (<31,0,A>, A) (<31,0,B>, 3 + A) (<31,0,C>, A + C) 
    + Applied Processor:
        ChainProcessor False [14,15,17,18,20,21,23,24,25,26,28,29,30,31]
    + Details:
        We chained rule 14 to obtain the rules [32] .
* Step 14: UnreachableRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          15. n90(A,B,C) -> n7(A,B,C)                 True                                               (?,1)
          17. n9(A,B,C)  -> c2(n90(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B]               (?,1)
          18. o00(A,B,C) -> n7(A,B,C)                 True                                               (?,1)
          20. o0(A,B,C)  -> c2(o00(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B]               (?,1)
          21. o1(A,B,C)  -> c2(n5(A,0,C),m0(A,0,C))   [A >= 0]                                           (2,1)
          23. o2(A,B,C)  -> o3(A,B,C)                 [A >= B]                                           (?,1)
          24. o3(A,B,C)  -> n8(A,B,C)                 True                                               (?,1)
          25. o3(A,B,C)  -> n9(A,B,C)                 True                                               (?,1)
          26. o3(A,B,C)  -> o0(A,B,C)                 True                                               (?,1)
          28. add(A,B,C) -> o1(A,B,C)                 [A >= 0 && A >= 0]                                 (1,2)
          29. m0(A,B,C)  -> o2(A,B,C)                 True                                               (?,2)
          30. n7(A,B,C)  -> o2(A,B,C)                 [3 + A >= B]                                       (?,3)
          31. n80(A,B,C) -> o2(A,B,C)                 [3 + A >= B]                                       (?,4)
          32. n8(A,B,C)  -> c2(o2(A,E,B),n81(A,E,B))  [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E] (?,5)
        Signature:
          {(add,3)
          ;(m0,3)
          ;(m1,3)
          ;(m2,3)
          ;(m3,3)
          ;(m4,3)
          ;(m5,3)
          ;(m6,3)
          ;(m7,3)
          ;(m8,3)
          ;(m9,3)
          ;(n0,3)
          ;(n1,3)
          ;(n2,3)
          ;(n3,3)
          ;(n4,3)
          ;(n5,3)
          ;(n6,3)
          ;(n7,3)
          ;(n8,3)
          ;(n80,3)
          ;(n81,3)
          ;(n9,3)
          ;(n90,3)
          ;(n91,3)
          ;(o0,3)
          ;(o00,3)
          ;(o01,3)
          ;(o1,3)
          ;(o2,3)
          ;(o3,3)}
        Flow Graph:
          [15->{30},17->{15},18->{30},20->{18},21->{29},23->{24,25,26},24->{32},25->{17},26->{20},28->{21},29->{23}
          ,30->{23},31->{23},32->{23}]
        Sizebounds:
          (<15,0,A>, A) (<15,0,B>,     A) (<15,0,C>,     A) 
          (<17,0,A>, A) (<17,0,B>,     A) (<17,0,C>,     A) 
          (<17,1,A>, A) (<17,1,B>,     A) (<17,1,C>,     A) 
          (<18,0,A>, A) (<18,0,B>,     A) (<18,0,C>,     A) 
          (<20,0,A>, A) (<20,0,B>,     A) (<20,0,C>,     A) 
          (<20,1,A>, A) (<20,1,B>,     A) (<20,1,C>,     A) 
          (<21,0,A>, A) (<21,0,B>,     0) (<21,0,C>,     C) 
          (<21,1,A>, A) (<21,1,B>,     0) (<21,1,C>,     C) 
          (<23,0,A>, A) (<23,0,B>,     A) (<23,0,C>, A + C) 
          (<24,0,A>, A) (<24,0,B>,     A) (<24,0,C>, A + C) 
          (<25,0,A>, A) (<25,0,B>,     A) (<25,0,C>, A + C) 
          (<26,0,A>, A) (<26,0,B>,     A) (<26,0,C>, A + C) 
          (<28,0,A>, A) (<28,0,B>,     B) (<28,0,C>,     C) 
          (<29,0,A>, A) (<29,0,B>, 3 + A) (<29,0,C>, A + C) 
          (<30,0,A>, A) (<30,0,B>, 3 + A) (<30,0,C>, A + C) 
          (<31,0,A>, A) (<31,0,B>, 3 + A) (<31,0,C>, A + C) 
          (<32,0,A>, A) (<32,0,B>, 3 + A) (<32,0,C>, A + C) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [31]
* Step 15: ChainProcessor WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          15. n90(A,B,C) -> n7(A,B,C)                 True                                               (?,1)
          17. n9(A,B,C)  -> c2(n90(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B]               (?,1)
          18. o00(A,B,C) -> n7(A,B,C)                 True                                               (?,1)
          20. o0(A,B,C)  -> c2(o00(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B]               (?,1)
          21. o1(A,B,C)  -> c2(n5(A,0,C),m0(A,0,C))   [A >= 0]                                           (2,1)
          23. o2(A,B,C)  -> o3(A,B,C)                 [A >= B]                                           (?,1)
          24. o3(A,B,C)  -> n8(A,B,C)                 True                                               (?,1)
          25. o3(A,B,C)  -> n9(A,B,C)                 True                                               (?,1)
          26. o3(A,B,C)  -> o0(A,B,C)                 True                                               (?,1)
          28. add(A,B,C) -> o1(A,B,C)                 [A >= 0 && A >= 0]                                 (1,2)
          29. m0(A,B,C)  -> o2(A,B,C)                 True                                               (?,2)
          30. n7(A,B,C)  -> o2(A,B,C)                 [3 + A >= B]                                       (?,3)
          32. n8(A,B,C)  -> c2(o2(A,E,B),n81(A,E,B))  [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E] (?,5)
        Signature:
          {(add,3)
          ;(m0,3)
          ;(m1,3)
          ;(m2,3)
          ;(m3,3)
          ;(m4,3)
          ;(m5,3)
          ;(m6,3)
          ;(m7,3)
          ;(m8,3)
          ;(m9,3)
          ;(n0,3)
          ;(n1,3)
          ;(n2,3)
          ;(n3,3)
          ;(n4,3)
          ;(n5,3)
          ;(n6,3)
          ;(n7,3)
          ;(n8,3)
          ;(n80,3)
          ;(n81,3)
          ;(n9,3)
          ;(n90,3)
          ;(n91,3)
          ;(o0,3)
          ;(o00,3)
          ;(o01,3)
          ;(o1,3)
          ;(o2,3)
          ;(o3,3)}
        Flow Graph:
          [15->{30},17->{15},18->{30},20->{18},21->{29},23->{24,25,26},24->{32},25->{17},26->{20},28->{21},29->{23}
          ,30->{23},32->{23}]
        Sizebounds:
          (<15,0,A>, A) (<15,0,B>,     A) (<15,0,C>,     A) 
          (<17,0,A>, A) (<17,0,B>,     A) (<17,0,C>,     A) 
          (<17,1,A>, A) (<17,1,B>,     A) (<17,1,C>,     A) 
          (<18,0,A>, A) (<18,0,B>,     A) (<18,0,C>,     A) 
          (<20,0,A>, A) (<20,0,B>,     A) (<20,0,C>,     A) 
          (<20,1,A>, A) (<20,1,B>,     A) (<20,1,C>,     A) 
          (<21,0,A>, A) (<21,0,B>,     0) (<21,0,C>,     C) 
          (<21,1,A>, A) (<21,1,B>,     0) (<21,1,C>,     C) 
          (<23,0,A>, A) (<23,0,B>,     A) (<23,0,C>, A + C) 
          (<24,0,A>, A) (<24,0,B>,     A) (<24,0,C>, A + C) 
          (<25,0,A>, A) (<25,0,B>,     A) (<25,0,C>, A + C) 
          (<26,0,A>, A) (<26,0,B>,     A) (<26,0,C>, A + C) 
          (<28,0,A>, A) (<28,0,B>,     B) (<28,0,C>,     C) 
          (<29,0,A>, A) (<29,0,B>, 3 + A) (<29,0,C>, A + C) 
          (<30,0,A>, A) (<30,0,B>, 3 + A) (<30,0,C>, A + C) 
          (<32,0,A>, A) (<32,0,B>, 3 + A) (<32,0,C>, A + C) 
    + Applied Processor:
        ChainProcessor False [15,17,18,20,21,23,24,25,26,28,29,30,32]
    + Details:
        We chained rule 15 to obtain the rules [33] .
* Step 16: ChainProcessor WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          17. n9(A,B,C)  -> c2(n90(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B]               (?,1)
          18. o00(A,B,C) -> n7(A,B,C)                 True                                               (?,1)
          20. o0(A,B,C)  -> c2(o00(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B]               (?,1)
          21. o1(A,B,C)  -> c2(n5(A,0,C),m0(A,0,C))   [A >= 0]                                           (2,1)
          23. o2(A,B,C)  -> o3(A,B,C)                 [A >= B]                                           (?,1)
          24. o3(A,B,C)  -> n8(A,B,C)                 True                                               (?,1)
          25. o3(A,B,C)  -> n9(A,B,C)                 True                                               (?,1)
          26. o3(A,B,C)  -> o0(A,B,C)                 True                                               (?,1)
          28. add(A,B,C) -> o1(A,B,C)                 [A >= 0 && A >= 0]                                 (1,2)
          29. m0(A,B,C)  -> o2(A,B,C)                 True                                               (?,2)
          30. n7(A,B,C)  -> o2(A,B,C)                 [3 + A >= B]                                       (?,3)
          32. n8(A,B,C)  -> c2(o2(A,E,B),n81(A,E,B))  [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E] (?,5)
          33. n90(A,B,C) -> o2(A,B,C)                 [3 + A >= B]                                       (?,4)
        Signature:
          {(add,3)
          ;(m0,3)
          ;(m1,3)
          ;(m2,3)
          ;(m3,3)
          ;(m4,3)
          ;(m5,3)
          ;(m6,3)
          ;(m7,3)
          ;(m8,3)
          ;(m9,3)
          ;(n0,3)
          ;(n1,3)
          ;(n2,3)
          ;(n3,3)
          ;(n4,3)
          ;(n5,3)
          ;(n6,3)
          ;(n7,3)
          ;(n8,3)
          ;(n80,3)
          ;(n81,3)
          ;(n9,3)
          ;(n90,3)
          ;(n91,3)
          ;(o0,3)
          ;(o00,3)
          ;(o01,3)
          ;(o1,3)
          ;(o2,3)
          ;(o3,3)}
        Flow Graph:
          [17->{33},18->{30},20->{18},21->{29},23->{24,25,26},24->{32},25->{17},26->{20},28->{21},29->{23},30->{23}
          ,32->{23},33->{23}]
        Sizebounds:
          (<17,0,A>, A) (<17,0,B>,     A) (<17,0,C>,     A) 
          (<17,1,A>, A) (<17,1,B>,     A) (<17,1,C>,     A) 
          (<18,0,A>, A) (<18,0,B>,     A) (<18,0,C>,     A) 
          (<20,0,A>, A) (<20,0,B>,     A) (<20,0,C>,     A) 
          (<20,1,A>, A) (<20,1,B>,     A) (<20,1,C>,     A) 
          (<21,0,A>, A) (<21,0,B>,     0) (<21,0,C>,     C) 
          (<21,1,A>, A) (<21,1,B>,     0) (<21,1,C>,     C) 
          (<23,0,A>, A) (<23,0,B>,     A) (<23,0,C>, A + C) 
          (<24,0,A>, A) (<24,0,B>,     A) (<24,0,C>, A + C) 
          (<25,0,A>, A) (<25,0,B>,     A) (<25,0,C>, A + C) 
          (<26,0,A>, A) (<26,0,B>,     A) (<26,0,C>, A + C) 
          (<28,0,A>, A) (<28,0,B>,     B) (<28,0,C>,     C) 
          (<29,0,A>, A) (<29,0,B>, 3 + A) (<29,0,C>, A + C) 
          (<30,0,A>, A) (<30,0,B>, 3 + A) (<30,0,C>, A + C) 
          (<32,0,A>, A) (<32,0,B>, 3 + A) (<32,0,C>, A + C) 
          (<33,0,A>, A) (<33,0,B>, 3 + A) (<33,0,C>, A + C) 
    + Applied Processor:
        ChainProcessor False [17,18,20,21,23,24,25,26,28,29,30,32,33]
    + Details:
        We chained rule 17 to obtain the rules [34] .
* Step 17: UnreachableRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          18. o00(A,B,C) -> n7(A,B,C)                 True                                               (?,1)
          20. o0(A,B,C)  -> c2(o00(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B]               (?,1)
          21. o1(A,B,C)  -> c2(n5(A,0,C),m0(A,0,C))   [A >= 0]                                           (2,1)
          23. o2(A,B,C)  -> o3(A,B,C)                 [A >= B]                                           (?,1)
          24. o3(A,B,C)  -> n8(A,B,C)                 True                                               (?,1)
          25. o3(A,B,C)  -> n9(A,B,C)                 True                                               (?,1)
          26. o3(A,B,C)  -> o0(A,B,C)                 True                                               (?,1)
          28. add(A,B,C) -> o1(A,B,C)                 [A >= 0 && A >= 0]                                 (1,2)
          29. m0(A,B,C)  -> o2(A,B,C)                 True                                               (?,2)
          30. n7(A,B,C)  -> o2(A,B,C)                 [3 + A >= B]                                       (?,3)
          32. n8(A,B,C)  -> c2(o2(A,E,B),n81(A,E,B))  [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E] (?,5)
          33. n90(A,B,C) -> o2(A,B,C)                 [3 + A >= B]                                       (?,4)
          34. n9(A,B,C)  -> c2(o2(A,E,B),n91(A,E,B))  [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E] (?,5)
        Signature:
          {(add,3)
          ;(m0,3)
          ;(m1,3)
          ;(m2,3)
          ;(m3,3)
          ;(m4,3)
          ;(m5,3)
          ;(m6,3)
          ;(m7,3)
          ;(m8,3)
          ;(m9,3)
          ;(n0,3)
          ;(n1,3)
          ;(n2,3)
          ;(n3,3)
          ;(n4,3)
          ;(n5,3)
          ;(n6,3)
          ;(n7,3)
          ;(n8,3)
          ;(n80,3)
          ;(n81,3)
          ;(n9,3)
          ;(n90,3)
          ;(n91,3)
          ;(o0,3)
          ;(o00,3)
          ;(o01,3)
          ;(o1,3)
          ;(o2,3)
          ;(o3,3)}
        Flow Graph:
          [18->{30},20->{18},21->{29},23->{24,25,26},24->{32},25->{34},26->{20},28->{21},29->{23},30->{23},32->{23}
          ,33->{23},34->{23}]
        Sizebounds:
          (<18,0,A>, A) (<18,0,B>,     A) (<18,0,C>,     A) 
          (<20,0,A>, A) (<20,0,B>,     A) (<20,0,C>,     A) 
          (<20,1,A>, A) (<20,1,B>,     A) (<20,1,C>,     A) 
          (<21,0,A>, A) (<21,0,B>,     0) (<21,0,C>,     C) 
          (<21,1,A>, A) (<21,1,B>,     0) (<21,1,C>,     C) 
          (<23,0,A>, A) (<23,0,B>,     A) (<23,0,C>, A + C) 
          (<24,0,A>, A) (<24,0,B>,     A) (<24,0,C>, A + C) 
          (<25,0,A>, A) (<25,0,B>,     A) (<25,0,C>, A + C) 
          (<26,0,A>, A) (<26,0,B>,     A) (<26,0,C>, A + C) 
          (<28,0,A>, A) (<28,0,B>,     B) (<28,0,C>,     C) 
          (<29,0,A>, A) (<29,0,B>, 3 + A) (<29,0,C>, A + C) 
          (<30,0,A>, A) (<30,0,B>, 3 + A) (<30,0,C>, A + C) 
          (<32,0,A>, A) (<32,0,B>, 3 + A) (<32,0,C>, A + C) 
          (<33,0,A>, A) (<33,0,B>, 3 + A) (<33,0,C>, A + C) 
          (<34,0,A>, A) (<34,0,B>, 3 + A) (<34,0,C>, A + C) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [33]
* Step 18: ChainProcessor WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          18. o00(A,B,C) -> n7(A,B,C)                 True                                               (?,1)
          20. o0(A,B,C)  -> c2(o00(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B]               (?,1)
          21. o1(A,B,C)  -> c2(n5(A,0,C),m0(A,0,C))   [A >= 0]                                           (2,1)
          23. o2(A,B,C)  -> o3(A,B,C)                 [A >= B]                                           (?,1)
          24. o3(A,B,C)  -> n8(A,B,C)                 True                                               (?,1)
          25. o3(A,B,C)  -> n9(A,B,C)                 True                                               (?,1)
          26. o3(A,B,C)  -> o0(A,B,C)                 True                                               (?,1)
          28. add(A,B,C) -> o1(A,B,C)                 [A >= 0 && A >= 0]                                 (1,2)
          29. m0(A,B,C)  -> o2(A,B,C)                 True                                               (?,2)
          30. n7(A,B,C)  -> o2(A,B,C)                 [3 + A >= B]                                       (?,3)
          32. n8(A,B,C)  -> c2(o2(A,E,B),n81(A,E,B))  [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E] (?,5)
          34. n9(A,B,C)  -> c2(o2(A,E,B),n91(A,E,B))  [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E] (?,5)
        Signature:
          {(add,3)
          ;(m0,3)
          ;(m1,3)
          ;(m2,3)
          ;(m3,3)
          ;(m4,3)
          ;(m5,3)
          ;(m6,3)
          ;(m7,3)
          ;(m8,3)
          ;(m9,3)
          ;(n0,3)
          ;(n1,3)
          ;(n2,3)
          ;(n3,3)
          ;(n4,3)
          ;(n5,3)
          ;(n6,3)
          ;(n7,3)
          ;(n8,3)
          ;(n80,3)
          ;(n81,3)
          ;(n9,3)
          ;(n90,3)
          ;(n91,3)
          ;(o0,3)
          ;(o00,3)
          ;(o01,3)
          ;(o1,3)
          ;(o2,3)
          ;(o3,3)}
        Flow Graph:
          [18->{30},20->{18},21->{29},23->{24,25,26},24->{32},25->{34},26->{20},28->{21},29->{23},30->{23},32->{23}
          ,34->{23}]
        Sizebounds:
          (<18,0,A>, A) (<18,0,B>,     A) (<18,0,C>,     A) 
          (<20,0,A>, A) (<20,0,B>,     A) (<20,0,C>,     A) 
          (<20,1,A>, A) (<20,1,B>,     A) (<20,1,C>,     A) 
          (<21,0,A>, A) (<21,0,B>,     0) (<21,0,C>,     C) 
          (<21,1,A>, A) (<21,1,B>,     0) (<21,1,C>,     C) 
          (<23,0,A>, A) (<23,0,B>,     A) (<23,0,C>, A + C) 
          (<24,0,A>, A) (<24,0,B>,     A) (<24,0,C>, A + C) 
          (<25,0,A>, A) (<25,0,B>,     A) (<25,0,C>, A + C) 
          (<26,0,A>, A) (<26,0,B>,     A) (<26,0,C>, A + C) 
          (<28,0,A>, A) (<28,0,B>,     B) (<28,0,C>,     C) 
          (<29,0,A>, A) (<29,0,B>, 3 + A) (<29,0,C>, A + C) 
          (<30,0,A>, A) (<30,0,B>, 3 + A) (<30,0,C>, A + C) 
          (<32,0,A>, A) (<32,0,B>, 3 + A) (<32,0,C>, A + C) 
          (<34,0,A>, A) (<34,0,B>, 3 + A) (<34,0,C>, A + C) 
    + Applied Processor:
        ChainProcessor False [18,20,21,23,24,25,26,28,29,30,32,34]
    + Details:
        We chained rule 18 to obtain the rules [35] .
* Step 19: UnreachableRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          20. o0(A,B,C)  -> c2(o00(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B]               (?,1)
          21. o1(A,B,C)  -> c2(n5(A,0,C),m0(A,0,C))   [A >= 0]                                           (2,1)
          23. o2(A,B,C)  -> o3(A,B,C)                 [A >= B]                                           (?,1)
          24. o3(A,B,C)  -> n8(A,B,C)                 True                                               (?,1)
          25. o3(A,B,C)  -> n9(A,B,C)                 True                                               (?,1)
          26. o3(A,B,C)  -> o0(A,B,C)                 True                                               (?,1)
          28. add(A,B,C) -> o1(A,B,C)                 [A >= 0 && A >= 0]                                 (1,2)
          29. m0(A,B,C)  -> o2(A,B,C)                 True                                               (?,2)
          30. n7(A,B,C)  -> o2(A,B,C)                 [3 + A >= B]                                       (?,3)
          32. n8(A,B,C)  -> c2(o2(A,E,B),n81(A,E,B))  [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E] (?,5)
          34. n9(A,B,C)  -> c2(o2(A,E,B),n91(A,E,B))  [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E] (?,5)
          35. o00(A,B,C) -> o2(A,B,C)                 [3 + A >= B]                                       (?,4)
        Signature:
          {(add,3)
          ;(m0,3)
          ;(m1,3)
          ;(m2,3)
          ;(m3,3)
          ;(m4,3)
          ;(m5,3)
          ;(m6,3)
          ;(m7,3)
          ;(m8,3)
          ;(m9,3)
          ;(n0,3)
          ;(n1,3)
          ;(n2,3)
          ;(n3,3)
          ;(n4,3)
          ;(n5,3)
          ;(n6,3)
          ;(n7,3)
          ;(n8,3)
          ;(n80,3)
          ;(n81,3)
          ;(n9,3)
          ;(n90,3)
          ;(n91,3)
          ;(o0,3)
          ;(o00,3)
          ;(o01,3)
          ;(o1,3)
          ;(o2,3)
          ;(o3,3)}
        Flow Graph:
          [20->{35},21->{29},23->{24,25,26},24->{32},25->{34},26->{20},28->{21},29->{23},30->{23},32->{23},34->{23}
          ,35->{23}]
        Sizebounds:
          (<20,0,A>, A) (<20,0,B>,     A) (<20,0,C>,     A) 
          (<20,1,A>, A) (<20,1,B>,     A) (<20,1,C>,     A) 
          (<21,0,A>, A) (<21,0,B>,     0) (<21,0,C>,     C) 
          (<21,1,A>, A) (<21,1,B>,     0) (<21,1,C>,     C) 
          (<23,0,A>, A) (<23,0,B>,     A) (<23,0,C>, A + C) 
          (<24,0,A>, A) (<24,0,B>,     A) (<24,0,C>, A + C) 
          (<25,0,A>, A) (<25,0,B>,     A) (<25,0,C>, A + C) 
          (<26,0,A>, A) (<26,0,B>,     A) (<26,0,C>, A + C) 
          (<28,0,A>, A) (<28,0,B>,     B) (<28,0,C>,     C) 
          (<29,0,A>, A) (<29,0,B>, 3 + A) (<29,0,C>, A + C) 
          (<30,0,A>, A) (<30,0,B>, 3 + A) (<30,0,C>, A + C) 
          (<32,0,A>, A) (<32,0,B>, 3 + A) (<32,0,C>, A + C) 
          (<34,0,A>, A) (<34,0,B>, 3 + A) (<34,0,C>, A + C) 
          (<35,0,A>, A) (<35,0,B>, 3 + A) (<35,0,C>, A + C) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [30]
* Step 20: ChainProcessor WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          20. o0(A,B,C)  -> c2(o00(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B]               (?,1)
          21. o1(A,B,C)  -> c2(n5(A,0,C),m0(A,0,C))   [A >= 0]                                           (2,1)
          23. o2(A,B,C)  -> o3(A,B,C)                 [A >= B]                                           (?,1)
          24. o3(A,B,C)  -> n8(A,B,C)                 True                                               (?,1)
          25. o3(A,B,C)  -> n9(A,B,C)                 True                                               (?,1)
          26. o3(A,B,C)  -> o0(A,B,C)                 True                                               (?,1)
          28. add(A,B,C) -> o1(A,B,C)                 [A >= 0 && A >= 0]                                 (1,2)
          29. m0(A,B,C)  -> o2(A,B,C)                 True                                               (?,2)
          32. n8(A,B,C)  -> c2(o2(A,E,B),n81(A,E,B))  [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E] (?,5)
          34. n9(A,B,C)  -> c2(o2(A,E,B),n91(A,E,B))  [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E] (?,5)
          35. o00(A,B,C) -> o2(A,B,C)                 [3 + A >= B]                                       (?,4)
        Signature:
          {(add,3)
          ;(m0,3)
          ;(m1,3)
          ;(m2,3)
          ;(m3,3)
          ;(m4,3)
          ;(m5,3)
          ;(m6,3)
          ;(m7,3)
          ;(m8,3)
          ;(m9,3)
          ;(n0,3)
          ;(n1,3)
          ;(n2,3)
          ;(n3,3)
          ;(n4,3)
          ;(n5,3)
          ;(n6,3)
          ;(n7,3)
          ;(n8,3)
          ;(n80,3)
          ;(n81,3)
          ;(n9,3)
          ;(n90,3)
          ;(n91,3)
          ;(o0,3)
          ;(o00,3)
          ;(o01,3)
          ;(o1,3)
          ;(o2,3)
          ;(o3,3)}
        Flow Graph:
          [20->{35},21->{29},23->{24,25,26},24->{32},25->{34},26->{20},28->{21},29->{23},32->{23},34->{23},35->{23}]
        Sizebounds:
          (<20,0,A>, A) (<20,0,B>,     A) (<20,0,C>,     A) 
          (<20,1,A>, A) (<20,1,B>,     A) (<20,1,C>,     A) 
          (<21,0,A>, A) (<21,0,B>,     0) (<21,0,C>,     C) 
          (<21,1,A>, A) (<21,1,B>,     0) (<21,1,C>,     C) 
          (<23,0,A>, A) (<23,0,B>,     A) (<23,0,C>, A + C) 
          (<24,0,A>, A) (<24,0,B>,     A) (<24,0,C>, A + C) 
          (<25,0,A>, A) (<25,0,B>,     A) (<25,0,C>, A + C) 
          (<26,0,A>, A) (<26,0,B>,     A) (<26,0,C>, A + C) 
          (<28,0,A>, A) (<28,0,B>,     B) (<28,0,C>,     C) 
          (<29,0,A>, A) (<29,0,B>, 3 + A) (<29,0,C>, A + C) 
          (<32,0,A>, A) (<32,0,B>, 3 + A) (<32,0,C>, A + C) 
          (<34,0,A>, A) (<34,0,B>, 3 + A) (<34,0,C>, A + C) 
          (<35,0,A>, A) (<35,0,B>, 3 + A) (<35,0,C>, A + C) 
    + Applied Processor:
        ChainProcessor False [20,21,23,24,25,26,28,29,32,34,35]
    + Details:
        We chained rule 20 to obtain the rules [36] .
* Step 21: UnreachableRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          21. o1(A,B,C)  -> c2(n5(A,0,C),m0(A,0,C))  [A >= 0]                                           (2,1)
          23. o2(A,B,C)  -> o3(A,B,C)                [A >= B]                                           (?,1)
          24. o3(A,B,C)  -> n8(A,B,C)                True                                               (?,1)
          25. o3(A,B,C)  -> n9(A,B,C)                True                                               (?,1)
          26. o3(A,B,C)  -> o0(A,B,C)                True                                               (?,1)
          28. add(A,B,C) -> o1(A,B,C)                [A >= 0 && A >= 0]                                 (1,2)
          29. m0(A,B,C)  -> o2(A,B,C)                True                                               (?,2)
          32. n8(A,B,C)  -> c2(o2(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E] (?,5)
          34. n9(A,B,C)  -> c2(o2(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E] (?,5)
          35. o00(A,B,C) -> o2(A,B,C)                [3 + A >= B]                                       (?,4)
          36. o0(A,B,C)  -> c2(o2(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E] (?,5)
        Signature:
          {(add,3)
          ;(m0,3)
          ;(m1,3)
          ;(m2,3)
          ;(m3,3)
          ;(m4,3)
          ;(m5,3)
          ;(m6,3)
          ;(m7,3)
          ;(m8,3)
          ;(m9,3)
          ;(n0,3)
          ;(n1,3)
          ;(n2,3)
          ;(n3,3)
          ;(n4,3)
          ;(n5,3)
          ;(n6,3)
          ;(n7,3)
          ;(n8,3)
          ;(n80,3)
          ;(n81,3)
          ;(n9,3)
          ;(n90,3)
          ;(n91,3)
          ;(o0,3)
          ;(o00,3)
          ;(o01,3)
          ;(o1,3)
          ;(o2,3)
          ;(o3,3)}
        Flow Graph:
          [21->{29},23->{24,25,26},24->{32},25->{34},26->{36},28->{21},29->{23},32->{23},34->{23},35->{23},36->{23}]
        Sizebounds:
          (<21,0,A>, A) (<21,0,B>,     0) (<21,0,C>,     C) 
          (<21,1,A>, A) (<21,1,B>,     0) (<21,1,C>,     C) 
          (<23,0,A>, A) (<23,0,B>,     A) (<23,0,C>, A + C) 
          (<24,0,A>, A) (<24,0,B>,     A) (<24,0,C>, A + C) 
          (<25,0,A>, A) (<25,0,B>,     A) (<25,0,C>, A + C) 
          (<26,0,A>, A) (<26,0,B>,     A) (<26,0,C>, A + C) 
          (<28,0,A>, A) (<28,0,B>,     B) (<28,0,C>,     C) 
          (<29,0,A>, A) (<29,0,B>, 3 + A) (<29,0,C>, A + C) 
          (<32,0,A>, A) (<32,0,B>, 3 + A) (<32,0,C>, A + C) 
          (<34,0,A>, A) (<34,0,B>, 3 + A) (<34,0,C>, A + C) 
          (<35,0,A>, A) (<35,0,B>, 3 + A) (<35,0,C>, A + C) 
          (<36,0,A>, A) (<36,0,B>, 3 + A) (<36,0,C>, A + C) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [35]
* Step 22: ChainProcessor WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          21. o1(A,B,C)  -> c2(n5(A,0,C),m0(A,0,C))  [A >= 0]                                           (2,1)
          23. o2(A,B,C)  -> o3(A,B,C)                [A >= B]                                           (?,1)
          24. o3(A,B,C)  -> n8(A,B,C)                True                                               (?,1)
          25. o3(A,B,C)  -> n9(A,B,C)                True                                               (?,1)
          26. o3(A,B,C)  -> o0(A,B,C)                True                                               (?,1)
          28. add(A,B,C) -> o1(A,B,C)                [A >= 0 && A >= 0]                                 (1,2)
          29. m0(A,B,C)  -> o2(A,B,C)                True                                               (?,2)
          32. n8(A,B,C)  -> c2(o2(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E] (?,5)
          34. n9(A,B,C)  -> c2(o2(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E] (?,5)
          36. o0(A,B,C)  -> c2(o2(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E] (?,5)
        Signature:
          {(add,3)
          ;(m0,3)
          ;(m1,3)
          ;(m2,3)
          ;(m3,3)
          ;(m4,3)
          ;(m5,3)
          ;(m6,3)
          ;(m7,3)
          ;(m8,3)
          ;(m9,3)
          ;(n0,3)
          ;(n1,3)
          ;(n2,3)
          ;(n3,3)
          ;(n4,3)
          ;(n5,3)
          ;(n6,3)
          ;(n7,3)
          ;(n8,3)
          ;(n80,3)
          ;(n81,3)
          ;(n9,3)
          ;(n90,3)
          ;(n91,3)
          ;(o0,3)
          ;(o00,3)
          ;(o01,3)
          ;(o1,3)
          ;(o2,3)
          ;(o3,3)}
        Flow Graph:
          [21->{29},23->{24,25,26},24->{32},25->{34},26->{36},28->{21},29->{23},32->{23},34->{23},36->{23}]
        Sizebounds:
          (<21,0,A>, A) (<21,0,B>,     0) (<21,0,C>,     C) 
          (<21,1,A>, A) (<21,1,B>,     0) (<21,1,C>,     C) 
          (<23,0,A>, A) (<23,0,B>,     A) (<23,0,C>, A + C) 
          (<24,0,A>, A) (<24,0,B>,     A) (<24,0,C>, A + C) 
          (<25,0,A>, A) (<25,0,B>,     A) (<25,0,C>, A + C) 
          (<26,0,A>, A) (<26,0,B>,     A) (<26,0,C>, A + C) 
          (<28,0,A>, A) (<28,0,B>,     B) (<28,0,C>,     C) 
          (<29,0,A>, A) (<29,0,B>, 3 + A) (<29,0,C>, A + C) 
          (<32,0,A>, A) (<32,0,B>, 3 + A) (<32,0,C>, A + C) 
          (<34,0,A>, A) (<34,0,B>, 3 + A) (<34,0,C>, A + C) 
          (<36,0,A>, A) (<36,0,B>, 3 + A) (<36,0,C>, A + C) 
    + Applied Processor:
        ChainProcessor False [21,23,24,25,26,28,29,32,34,36]
    + Details:
        We chained rule 21 to obtain the rules [37] .
* Step 23: UnreachableRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          23. o2(A,B,C)  -> o3(A,B,C)                [A >= B]                                           (?,1)
          24. o3(A,B,C)  -> n8(A,B,C)                True                                               (?,1)
          25. o3(A,B,C)  -> n9(A,B,C)                True                                               (?,1)
          26. o3(A,B,C)  -> o0(A,B,C)                True                                               (?,1)
          28. add(A,B,C) -> o1(A,B,C)                [A >= 0 && A >= 0]                                 (1,2)
          29. m0(A,B,C)  -> o2(A,B,C)                True                                               (?,2)
          32. n8(A,B,C)  -> c2(o2(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E] (?,5)
          34. n9(A,B,C)  -> c2(o2(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E] (?,5)
          36. o0(A,B,C)  -> c2(o2(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E] (?,5)
          37. o1(A,B,C)  -> c2(n5(A,0,C),o2(A,0,C))  [A >= 0]                                           (2,3)
        Signature:
          {(add,3)
          ;(m0,3)
          ;(m1,3)
          ;(m2,3)
          ;(m3,3)
          ;(m4,3)
          ;(m5,3)
          ;(m6,3)
          ;(m7,3)
          ;(m8,3)
          ;(m9,3)
          ;(n0,3)
          ;(n1,3)
          ;(n2,3)
          ;(n3,3)
          ;(n4,3)
          ;(n5,3)
          ;(n6,3)
          ;(n7,3)
          ;(n8,3)
          ;(n80,3)
          ;(n81,3)
          ;(n9,3)
          ;(n90,3)
          ;(n91,3)
          ;(o0,3)
          ;(o00,3)
          ;(o01,3)
          ;(o1,3)
          ;(o2,3)
          ;(o3,3)}
        Flow Graph:
          [23->{24,25,26},24->{32},25->{34},26->{36},28->{37},29->{23},32->{23},34->{23},36->{23},37->{23}]
        Sizebounds:
          (<23,0,A>, A) (<23,0,B>,     A) (<23,0,C>, A + C) 
          (<24,0,A>, A) (<24,0,B>,     A) (<24,0,C>, A + C) 
          (<25,0,A>, A) (<25,0,B>,     A) (<25,0,C>, A + C) 
          (<26,0,A>, A) (<26,0,B>,     A) (<26,0,C>, A + C) 
          (<28,0,A>, A) (<28,0,B>,     B) (<28,0,C>,     C) 
          (<29,0,A>, A) (<29,0,B>, 3 + A) (<29,0,C>, A + C) 
          (<32,0,A>, A) (<32,0,B>, 3 + A) (<32,0,C>, A + C) 
          (<34,0,A>, A) (<34,0,B>, 3 + A) (<34,0,C>, A + C) 
          (<36,0,A>, A) (<36,0,B>, 3 + A) (<36,0,C>, A + C) 
          (<37,0,A>, A) (<37,0,B>, 3 + A) (<37,0,C>, A + C) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [29]
* Step 24: ChainProcessor WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          23. o2(A,B,C)  -> o3(A,B,C)                [A >= B]                                           (?,1)
          24. o3(A,B,C)  -> n8(A,B,C)                True                                               (?,1)
          25. o3(A,B,C)  -> n9(A,B,C)                True                                               (?,1)
          26. o3(A,B,C)  -> o0(A,B,C)                True                                               (?,1)
          28. add(A,B,C) -> o1(A,B,C)                [A >= 0 && A >= 0]                                 (1,2)
          32. n8(A,B,C)  -> c2(o2(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E] (?,5)
          34. n9(A,B,C)  -> c2(o2(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E] (?,5)
          36. o0(A,B,C)  -> c2(o2(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E] (?,5)
          37. o1(A,B,C)  -> c2(n5(A,0,C),o2(A,0,C))  [A >= 0]                                           (2,3)
        Signature:
          {(add,3)
          ;(m0,3)
          ;(m1,3)
          ;(m2,3)
          ;(m3,3)
          ;(m4,3)
          ;(m5,3)
          ;(m6,3)
          ;(m7,3)
          ;(m8,3)
          ;(m9,3)
          ;(n0,3)
          ;(n1,3)
          ;(n2,3)
          ;(n3,3)
          ;(n4,3)
          ;(n5,3)
          ;(n6,3)
          ;(n7,3)
          ;(n8,3)
          ;(n80,3)
          ;(n81,3)
          ;(n9,3)
          ;(n90,3)
          ;(n91,3)
          ;(o0,3)
          ;(o00,3)
          ;(o01,3)
          ;(o1,3)
          ;(o2,3)
          ;(o3,3)}
        Flow Graph:
          [23->{24,25,26},24->{32},25->{34},26->{36},28->{37},32->{23},34->{23},36->{23},37->{23}]
        Sizebounds:
          (<23,0,A>, A) (<23,0,B>,     A) (<23,0,C>, A + C) 
          (<24,0,A>, A) (<24,0,B>,     A) (<24,0,C>, A + C) 
          (<25,0,A>, A) (<25,0,B>,     A) (<25,0,C>, A + C) 
          (<26,0,A>, A) (<26,0,B>,     A) (<26,0,C>, A + C) 
          (<28,0,A>, A) (<28,0,B>,     B) (<28,0,C>,     C) 
          (<32,0,A>, A) (<32,0,B>, 3 + A) (<32,0,C>, A + C) 
          (<34,0,A>, A) (<34,0,B>, 3 + A) (<34,0,C>, A + C) 
          (<36,0,A>, A) (<36,0,B>, 3 + A) (<36,0,C>, A + C) 
          (<37,0,A>, A) (<37,0,B>, 3 + A) (<37,0,C>, A + C) 
    + Applied Processor:
        ChainProcessor False [23,24,25,26,28,32,34,36,37]
    + Details:
        We chained rule 23 to obtain the rules [38,39,40] .
* Step 25: UnreachableRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          24. o3(A,B,C)  -> n8(A,B,C)                True                                               (?,1)
          25. o3(A,B,C)  -> n9(A,B,C)                True                                               (?,1)
          26. o3(A,B,C)  -> o0(A,B,C)                True                                               (?,1)
          28. add(A,B,C) -> o1(A,B,C)                [A >= 0 && A >= 0]                                 (1,2)
          32. n8(A,B,C)  -> c2(o2(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E] (?,5)
          34. n9(A,B,C)  -> c2(o2(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E] (?,5)
          36. o0(A,B,C)  -> c2(o2(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E] (?,5)
          37. o1(A,B,C)  -> c2(n5(A,0,C),o2(A,0,C))  [A >= 0]                                           (2,3)
          38. o2(A,B,C)  -> n8(A,B,C)                [A >= B]                                           (?,2)
          39. o2(A,B,C)  -> n9(A,B,C)                [A >= B]                                           (?,2)
          40. o2(A,B,C)  -> o0(A,B,C)                [A >= B]                                           (?,2)
        Signature:
          {(add,3)
          ;(m0,3)
          ;(m1,3)
          ;(m2,3)
          ;(m3,3)
          ;(m4,3)
          ;(m5,3)
          ;(m6,3)
          ;(m7,3)
          ;(m8,3)
          ;(m9,3)
          ;(n0,3)
          ;(n1,3)
          ;(n2,3)
          ;(n3,3)
          ;(n4,3)
          ;(n5,3)
          ;(n6,3)
          ;(n7,3)
          ;(n8,3)
          ;(n80,3)
          ;(n81,3)
          ;(n9,3)
          ;(n90,3)
          ;(n91,3)
          ;(o0,3)
          ;(o00,3)
          ;(o01,3)
          ;(o1,3)
          ;(o2,3)
          ;(o3,3)}
        Flow Graph:
          [24->{32},25->{34},26->{36},28->{37},32->{38,39,40},34->{38,39,40},36->{38,39,40},37->{38,39,40},38->{32}
          ,39->{34},40->{36}]
        Sizebounds:
          (<24,0,A>, A) (<24,0,B>,     A) (<24,0,C>, A + C) 
          (<25,0,A>, A) (<25,0,B>,     A) (<25,0,C>, A + C) 
          (<26,0,A>, A) (<26,0,B>,     A) (<26,0,C>, A + C) 
          (<28,0,A>, A) (<28,0,B>,     B) (<28,0,C>,     C) 
          (<32,0,A>, A) (<32,0,B>, 3 + A) (<32,0,C>, A + C) 
          (<34,0,A>, A) (<34,0,B>, 3 + A) (<34,0,C>, A + C) 
          (<36,0,A>, A) (<36,0,B>, 3 + A) (<36,0,C>, A + C) 
          (<37,0,A>, A) (<37,0,B>, 3 + A) (<37,0,C>, A + C) 
          (<38,0,A>, A) (<38,0,B>,     A) (<38,0,C>, A + C) 
          (<39,0,A>, A) (<39,0,B>,     A) (<39,0,C>, A + C) 
          (<40,0,A>, A) (<40,0,B>,     A) (<40,0,C>, A + C) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [24,25,26]
* Step 26: ChainProcessor WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          28. add(A,B,C) -> o1(A,B,C)                [A >= 0 && A >= 0]                                 (1,2)
          32. n8(A,B,C)  -> c2(o2(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E] (?,5)
          34. n9(A,B,C)  -> c2(o2(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E] (?,5)
          36. o0(A,B,C)  -> c2(o2(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E] (?,5)
          37. o1(A,B,C)  -> c2(n5(A,0,C),o2(A,0,C))  [A >= 0]                                           (2,3)
          38. o2(A,B,C)  -> n8(A,B,C)                [A >= B]                                           (?,2)
          39. o2(A,B,C)  -> n9(A,B,C)                [A >= B]                                           (?,2)
          40. o2(A,B,C)  -> o0(A,B,C)                [A >= B]                                           (?,2)
        Signature:
          {(add,3)
          ;(m0,3)
          ;(m1,3)
          ;(m2,3)
          ;(m3,3)
          ;(m4,3)
          ;(m5,3)
          ;(m6,3)
          ;(m7,3)
          ;(m8,3)
          ;(m9,3)
          ;(n0,3)
          ;(n1,3)
          ;(n2,3)
          ;(n3,3)
          ;(n4,3)
          ;(n5,3)
          ;(n6,3)
          ;(n7,3)
          ;(n8,3)
          ;(n80,3)
          ;(n81,3)
          ;(n9,3)
          ;(n90,3)
          ;(n91,3)
          ;(o0,3)
          ;(o00,3)
          ;(o01,3)
          ;(o1,3)
          ;(o2,3)
          ;(o3,3)}
        Flow Graph:
          [28->{37},32->{38,39,40},34->{38,39,40},36->{38,39,40},37->{38,39,40},38->{32},39->{34},40->{36}]
        Sizebounds:
          (<28,0,A>, A) (<28,0,B>,     B) (<28,0,C>,     C) 
          (<32,0,A>, A) (<32,0,B>, 3 + A) (<32,0,C>, A + C) 
          (<34,0,A>, A) (<34,0,B>, 3 + A) (<34,0,C>, A + C) 
          (<36,0,A>, A) (<36,0,B>, 3 + A) (<36,0,C>, A + C) 
          (<37,0,A>, A) (<37,0,B>, 3 + A) (<37,0,C>, A + C) 
          (<38,0,A>, A) (<38,0,B>,     A) (<38,0,C>, A + C) 
          (<39,0,A>, A) (<39,0,B>,     A) (<39,0,C>, A + C) 
          (<40,0,A>, A) (<40,0,B>,     A) (<40,0,C>, A + C) 
    + Applied Processor:
        ChainProcessor False [28,32,34,36,37,38,39,40]
    + Details:
        We chained rule 32 to obtain the rules [41,42,43] .
* Step 27: ChainProcessor WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          28. add(A,B,C) -> o1(A,B,C)                [A >= 0 && A >= 0]                                           (1,2)
          34. n9(A,B,C)  -> c2(o2(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E]           (?,5)
          36. o0(A,B,C)  -> c2(o2(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E]           (?,5)
          37. o1(A,B,C)  -> c2(n5(A,0,C),o2(A,0,C))  [A >= 0]                                                     (2,3)
          38. o2(A,B,C)  -> n8(A,B,C)                [A >= B]                                                     (?,2)
          39. o2(A,B,C)  -> n9(A,B,C)                [A >= B]                                                     (?,2)
          40. o2(A,B,C)  -> o0(A,B,C)                [A >= B]                                                     (?,2)
          41. n8(A,B,C)  -> c2(n8(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7)
          42. n8(A,B,C)  -> c2(n9(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7)
          43. n8(A,B,C)  -> c2(o0(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7)
        Signature:
          {(add,3)
          ;(m0,3)
          ;(m1,3)
          ;(m2,3)
          ;(m3,3)
          ;(m4,3)
          ;(m5,3)
          ;(m6,3)
          ;(m7,3)
          ;(m8,3)
          ;(m9,3)
          ;(n0,3)
          ;(n1,3)
          ;(n2,3)
          ;(n3,3)
          ;(n4,3)
          ;(n5,3)
          ;(n6,3)
          ;(n7,3)
          ;(n8,3)
          ;(n80,3)
          ;(n81,3)
          ;(n9,3)
          ;(n90,3)
          ;(n91,3)
          ;(o0,3)
          ;(o00,3)
          ;(o01,3)
          ;(o1,3)
          ;(o2,3)
          ;(o3,3)}
        Flow Graph:
          [28->{37},34->{38,39,40},36->{38,39,40},37->{38,39,40},38->{41,42,43},39->{34},40->{36},41->{41,42,43}
          ,42->{34},43->{36}]
        Sizebounds:
          (<28,0,A>, A) (<28,0,B>,     B) (<28,0,C>,     C) 
          (<34,0,A>, A) (<34,0,B>, 3 + A) (<34,0,C>, A + C) 
          (<36,0,A>, A) (<36,0,B>, 3 + A) (<36,0,C>, A + C) 
          (<37,0,A>, A) (<37,0,B>, 3 + A) (<37,0,C>, A + C) 
          (<38,0,A>, A) (<38,0,B>,     A) (<38,0,C>, A + C) 
          (<39,0,A>, A) (<39,0,B>,     A) (<39,0,C>, A + C) 
          (<40,0,A>, A) (<40,0,B>,     A) (<40,0,C>, A + C) 
          (<41,0,A>, A) (<41,0,B>,     A) (<41,0,C>, A + C) 
          (<42,0,A>, A) (<42,0,B>,     A) (<42,0,C>, A + C) 
          (<43,0,A>, A) (<43,0,B>,     A) (<43,0,C>, A + C) 
    + Applied Processor:
        ChainProcessor False [28,34,36,37,38,39,40,41,42,43]
    + Details:
        We chained rule 34 to obtain the rules [44,45,46] .
* Step 28: ChainProcessor WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          28. add(A,B,C) -> o1(A,B,C)                [A >= 0 && A >= 0]                                           (1,2)
          36. o0(A,B,C)  -> c2(o2(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E]           (?,5)
          37. o1(A,B,C)  -> c2(n5(A,0,C),o2(A,0,C))  [A >= 0]                                                     (2,3)
          38. o2(A,B,C)  -> n8(A,B,C)                [A >= B]                                                     (?,2)
          39. o2(A,B,C)  -> n9(A,B,C)                [A >= B]                                                     (?,2)
          40. o2(A,B,C)  -> o0(A,B,C)                [A >= B]                                                     (?,2)
          41. n8(A,B,C)  -> c2(n8(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7)
          42. n8(A,B,C)  -> c2(n9(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7)
          43. n8(A,B,C)  -> c2(o0(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7)
          44. n9(A,B,C)  -> c2(n8(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7)
          45. n9(A,B,C)  -> c2(n9(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7)
          46. n9(A,B,C)  -> c2(o0(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7)
        Signature:
          {(add,3)
          ;(m0,3)
          ;(m1,3)
          ;(m2,3)
          ;(m3,3)
          ;(m4,3)
          ;(m5,3)
          ;(m6,3)
          ;(m7,3)
          ;(m8,3)
          ;(m9,3)
          ;(n0,3)
          ;(n1,3)
          ;(n2,3)
          ;(n3,3)
          ;(n4,3)
          ;(n5,3)
          ;(n6,3)
          ;(n7,3)
          ;(n8,3)
          ;(n80,3)
          ;(n81,3)
          ;(n9,3)
          ;(n90,3)
          ;(n91,3)
          ;(o0,3)
          ;(o00,3)
          ;(o01,3)
          ;(o1,3)
          ;(o2,3)
          ;(o3,3)}
        Flow Graph:
          [28->{37},36->{38,39,40},37->{38,39,40},38->{41,42,43},39->{44,45,46},40->{36},41->{41,42,43},42->{44,45
          ,46},43->{36},44->{41,42,43},45->{44,45,46},46->{36}]
        Sizebounds:
          (<28,0,A>, A) (<28,0,B>,     B) (<28,0,C>,     C) 
          (<36,0,A>, A) (<36,0,B>, 3 + A) (<36,0,C>, A + C) 
          (<37,0,A>, A) (<37,0,B>, 3 + A) (<37,0,C>, A + C) 
          (<38,0,A>, A) (<38,0,B>,     A) (<38,0,C>, A + C) 
          (<39,0,A>, A) (<39,0,B>,     A) (<39,0,C>, A + C) 
          (<40,0,A>, A) (<40,0,B>,     A) (<40,0,C>, A + C) 
          (<41,0,A>, A) (<41,0,B>,     A) (<41,0,C>, A + C) 
          (<42,0,A>, A) (<42,0,B>,     A) (<42,0,C>, A + C) 
          (<43,0,A>, A) (<43,0,B>,     A) (<43,0,C>, A + C) 
          (<44,0,A>, A) (<44,0,B>,     A) (<44,0,C>, A + C) 
          (<45,0,A>, A) (<45,0,B>,     A) (<45,0,C>, A + C) 
          (<46,0,A>, A) (<46,0,B>,     A) (<46,0,C>, A + C) 
    + Applied Processor:
        ChainProcessor False [28,36,37,38,39,40,41,42,43,44,45,46]
    + Details:
        We chained rule 36 to obtain the rules [47,48,49] .
* Step 29: ChainProcessor WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          28. add(A,B,C) -> o1(A,B,C)                [A >= 0 && A >= 0]                                           (1,2)
          37. o1(A,B,C)  -> c2(n5(A,0,C),o2(A,0,C))  [A >= 0]                                                     (2,3)
          38. o2(A,B,C)  -> n8(A,B,C)                [A >= B]                                                     (?,2)
          39. o2(A,B,C)  -> n9(A,B,C)                [A >= B]                                                     (?,2)
          40. o2(A,B,C)  -> o0(A,B,C)                [A >= B]                                                     (?,2)
          41. n8(A,B,C)  -> c2(n8(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7)
          42. n8(A,B,C)  -> c2(n9(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7)
          43. n8(A,B,C)  -> c2(o0(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7)
          44. n9(A,B,C)  -> c2(n8(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7)
          45. n9(A,B,C)  -> c2(n9(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7)
          46. n9(A,B,C)  -> c2(o0(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7)
          47. o0(A,B,C)  -> c2(n8(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (?,7)
          48. o0(A,B,C)  -> c2(n9(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (?,7)
          49. o0(A,B,C)  -> c2(o0(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (?,7)
        Signature:
          {(add,3)
          ;(m0,3)
          ;(m1,3)
          ;(m2,3)
          ;(m3,3)
          ;(m4,3)
          ;(m5,3)
          ;(m6,3)
          ;(m7,3)
          ;(m8,3)
          ;(m9,3)
          ;(n0,3)
          ;(n1,3)
          ;(n2,3)
          ;(n3,3)
          ;(n4,3)
          ;(n5,3)
          ;(n6,3)
          ;(n7,3)
          ;(n8,3)
          ;(n80,3)
          ;(n81,3)
          ;(n9,3)
          ;(n90,3)
          ;(n91,3)
          ;(o0,3)
          ;(o00,3)
          ;(o01,3)
          ;(o1,3)
          ;(o2,3)
          ;(o3,3)}
        Flow Graph:
          [28->{37},37->{38,39,40},38->{41,42,43},39->{44,45,46},40->{47,48,49},41->{41,42,43},42->{44,45,46}
          ,43->{47,48,49},44->{41,42,43},45->{44,45,46},46->{47,48,49},47->{41,42,43},48->{44,45,46},49->{47,48,49}]
        Sizebounds:
          (<28,0,A>, A) (<28,0,B>,     B) (<28,0,C>,     C) 
          (<37,0,A>, A) (<37,0,B>, 3 + A) (<37,0,C>, A + C) 
          (<38,0,A>, A) (<38,0,B>,     A) (<38,0,C>, A + C) 
          (<39,0,A>, A) (<39,0,B>,     A) (<39,0,C>, A + C) 
          (<40,0,A>, A) (<40,0,B>,     A) (<40,0,C>, A + C) 
          (<41,0,A>, A) (<41,0,B>,     A) (<41,0,C>, A + C) 
          (<42,0,A>, A) (<42,0,B>,     A) (<42,0,C>, A + C) 
          (<43,0,A>, A) (<43,0,B>,     A) (<43,0,C>, A + C) 
          (<44,0,A>, A) (<44,0,B>,     A) (<44,0,C>, A + C) 
          (<45,0,A>, A) (<45,0,B>,     A) (<45,0,C>, A + C) 
          (<46,0,A>, A) (<46,0,B>,     A) (<46,0,C>, A + C) 
          (<47,0,A>, A) (<47,0,B>,     A) (<47,0,C>, A + C) 
          (<48,0,A>, A) (<48,0,B>,     A) (<48,0,C>, A + C) 
          (<49,0,A>, A) (<49,0,B>,     A) (<49,0,C>, A + C) 
    + Applied Processor:
        ChainProcessor False [28,37,38,39,40,41,42,43,44,45,46,47,48,49]
    + Details:
        We chained rule 37 to obtain the rules [50,51,52] .
* Step 30: UnreachableRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          28. add(A,B,C) -> o1(A,B,C)                [A >= 0 && A >= 0]                                           (1,2)
          38. o2(A,B,C)  -> n8(A,B,C)                [A >= B]                                                     (?,2)
          39. o2(A,B,C)  -> n9(A,B,C)                [A >= B]                                                     (?,2)
          40. o2(A,B,C)  -> o0(A,B,C)                [A >= B]                                                     (?,2)
          41. n8(A,B,C)  -> c2(n8(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7)
          42. n8(A,B,C)  -> c2(n9(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7)
          43. n8(A,B,C)  -> c2(o0(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7)
          44. n9(A,B,C)  -> c2(n8(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7)
          45. n9(A,B,C)  -> c2(n9(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7)
          46. n9(A,B,C)  -> c2(o0(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7)
          47. o0(A,B,C)  -> c2(n8(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (?,7)
          48. o0(A,B,C)  -> c2(n9(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (?,7)
          49. o0(A,B,C)  -> c2(o0(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (?,7)
          50. o1(A,B,C)  -> c2(n5(A,0,C),n8(A,0,C))  [A >= 0 && A >= 0]                                           (2,5)
          51. o1(A,B,C)  -> c2(n5(A,0,C),n9(A,0,C))  [A >= 0 && A >= 0]                                           (2,5)
          52. o1(A,B,C)  -> c2(n5(A,0,C),o0(A,0,C))  [A >= 0 && A >= 0]                                           (2,5)
        Signature:
          {(add,3)
          ;(m0,3)
          ;(m1,3)
          ;(m2,3)
          ;(m3,3)
          ;(m4,3)
          ;(m5,3)
          ;(m6,3)
          ;(m7,3)
          ;(m8,3)
          ;(m9,3)
          ;(n0,3)
          ;(n1,3)
          ;(n2,3)
          ;(n3,3)
          ;(n4,3)
          ;(n5,3)
          ;(n6,3)
          ;(n7,3)
          ;(n8,3)
          ;(n80,3)
          ;(n81,3)
          ;(n9,3)
          ;(n90,3)
          ;(n91,3)
          ;(o0,3)
          ;(o00,3)
          ;(o01,3)
          ;(o1,3)
          ;(o2,3)
          ;(o3,3)}
        Flow Graph:
          [28->{50,51,52},38->{41,42,43},39->{44,45,46},40->{47,48,49},41->{41,42,43},42->{44,45,46},43->{47,48,49}
          ,44->{41,42,43},45->{44,45,46},46->{47,48,49},47->{41,42,43},48->{44,45,46},49->{47,48,49},50->{41,42,43}
          ,51->{44,45,46},52->{47,48,49}]
        Sizebounds:
          (<28,0,A>, A) (<28,0,B>, B) (<28,0,C>,     C) 
          (<38,0,A>, A) (<38,0,B>, A) (<38,0,C>, A + C) 
          (<39,0,A>, A) (<39,0,B>, A) (<39,0,C>, A + C) 
          (<40,0,A>, A) (<40,0,B>, A) (<40,0,C>, A + C) 
          (<41,0,A>, A) (<41,0,B>, A) (<41,0,C>, A + C) 
          (<42,0,A>, A) (<42,0,B>, A) (<42,0,C>, A + C) 
          (<43,0,A>, A) (<43,0,B>, A) (<43,0,C>, A + C) 
          (<44,0,A>, A) (<44,0,B>, A) (<44,0,C>, A + C) 
          (<45,0,A>, A) (<45,0,B>, A) (<45,0,C>, A + C) 
          (<46,0,A>, A) (<46,0,B>, A) (<46,0,C>, A + C) 
          (<47,0,A>, A) (<47,0,B>, A) (<47,0,C>, A + C) 
          (<48,0,A>, A) (<48,0,B>, A) (<48,0,C>, A + C) 
          (<49,0,A>, A) (<49,0,B>, A) (<49,0,C>, A + C) 
          (<50,0,A>, A) (<50,0,B>, A) (<50,0,C>, A + C) 
          (<51,0,A>, A) (<51,0,B>, A) (<51,0,C>, A + C) 
          (<52,0,A>, A) (<52,0,B>, A) (<52,0,C>, A + C) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [38,39,40]
* Step 31: LocalSizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          28. add(A,B,C) -> o1(A,B,C)                [A >= 0 && A >= 0]                                           (1,2)
          41. n8(A,B,C)  -> c2(n8(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7)
          42. n8(A,B,C)  -> c2(n9(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7)
          43. n8(A,B,C)  -> c2(o0(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7)
          44. n9(A,B,C)  -> c2(n8(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7)
          45. n9(A,B,C)  -> c2(n9(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7)
          46. n9(A,B,C)  -> c2(o0(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7)
          47. o0(A,B,C)  -> c2(n8(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (?,7)
          48. o0(A,B,C)  -> c2(n9(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (?,7)
          49. o0(A,B,C)  -> c2(o0(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (?,7)
          50. o1(A,B,C)  -> c2(n5(A,0,C),n8(A,0,C))  [A >= 0 && A >= 0]                                           (2,5)
          51. o1(A,B,C)  -> c2(n5(A,0,C),n9(A,0,C))  [A >= 0 && A >= 0]                                           (2,5)
          52. o1(A,B,C)  -> c2(n5(A,0,C),o0(A,0,C))  [A >= 0 && A >= 0]                                           (2,5)
        Signature:
          {(add,3)
          ;(m0,3)
          ;(m1,3)
          ;(m2,3)
          ;(m3,3)
          ;(m4,3)
          ;(m5,3)
          ;(m6,3)
          ;(m7,3)
          ;(m8,3)
          ;(m9,3)
          ;(n0,3)
          ;(n1,3)
          ;(n2,3)
          ;(n3,3)
          ;(n4,3)
          ;(n5,3)
          ;(n6,3)
          ;(n7,3)
          ;(n8,3)
          ;(n80,3)
          ;(n81,3)
          ;(n9,3)
          ;(n90,3)
          ;(n91,3)
          ;(o0,3)
          ;(o00,3)
          ;(o01,3)
          ;(o1,3)
          ;(o2,3)
          ;(o3,3)}
        Flow Graph:
          [28->{50,51,52},41->{41,42,43},42->{44,45,46},43->{47,48,49},44->{41,42,43},45->{44,45,46},46->{47,48,49}
          ,47->{41,42,43},48->{44,45,46},49->{47,48,49},50->{41,42,43},51->{44,45,46},52->{47,48,49}]
        Sizebounds:
          (<28,0,A>, A) (<28,0,B>, B) (<28,0,C>,     C) 
          (<41,0,A>, A) (<41,0,B>, A) (<41,0,C>, A + C) 
          (<42,0,A>, A) (<42,0,B>, A) (<42,0,C>, A + C) 
          (<43,0,A>, A) (<43,0,B>, A) (<43,0,C>, A + C) 
          (<44,0,A>, A) (<44,0,B>, A) (<44,0,C>, A + C) 
          (<45,0,A>, A) (<45,0,B>, A) (<45,0,C>, A + C) 
          (<46,0,A>, A) (<46,0,B>, A) (<46,0,C>, A + C) 
          (<47,0,A>, A) (<47,0,B>, A) (<47,0,C>, A + C) 
          (<48,0,A>, A) (<48,0,B>, A) (<48,0,C>, A + C) 
          (<49,0,A>, A) (<49,0,B>, A) (<49,0,C>, A + C) 
          (<50,0,A>, A) (<50,0,B>, A) (<50,0,C>, A + C) 
          (<51,0,A>, A) (<51,0,B>, A) (<51,0,C>, A + C) 
          (<52,0,A>, A) (<52,0,B>, A) (<52,0,C>, A + C) 
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (<28,0,A>, A, .= 0) (<28,0,B>,         B, .= 0) (<28,0,C>, C, .= 0) 
          (<41,0,A>, A, .= 0) (<41,0,B>, 1 + A + B, .* 1) (<41,0,C>, B, .= 0) 
          (<41,1,A>, A, .= 0) (<41,1,B>, 1 + A + B, .* 1) (<41,1,C>, B, .= 0) 
          (<42,0,A>, A, .= 0) (<42,0,B>, 1 + A + B, .* 1) (<42,0,C>, B, .= 0) 
          (<42,1,A>, A, .= 0) (<42,1,B>, 1 + A + B, .* 1) (<42,1,C>, B, .= 0) 
          (<43,0,A>, A, .= 0) (<43,0,B>, 1 + A + B, .* 1) (<43,0,C>, B, .= 0) 
          (<43,1,A>, A, .= 0) (<43,1,B>, 1 + A + B, .* 1) (<43,1,C>, B, .= 0) 
          (<44,0,A>, A, .= 0) (<44,0,B>, 2 + A + B, .* 2) (<44,0,C>, B, .= 0) 
          (<44,1,A>, A, .= 0) (<44,1,B>, 2 + A + B, .* 2) (<44,1,C>, B, .= 0) 
          (<45,0,A>, A, .= 0) (<45,0,B>, 2 + A + B, .* 2) (<45,0,C>, B, .= 0) 
          (<45,1,A>, A, .= 0) (<45,1,B>, 2 + A + B, .* 2) (<45,1,C>, B, .= 0) 
          (<46,0,A>, A, .= 0) (<46,0,B>, 2 + A + B, .* 2) (<46,0,C>, B, .= 0) 
          (<46,1,A>, A, .= 0) (<46,1,B>, 2 + A + B, .* 2) (<46,1,C>, B, .= 0) 
          (<47,0,A>, A, .= 0) (<47,0,B>, 3 + A + B, .* 3) (<47,0,C>, B, .= 0) 
          (<47,1,A>, A, .= 0) (<47,1,B>, 3 + A + B, .* 3) (<47,1,C>, B, .= 0) 
          (<48,0,A>, A, .= 0) (<48,0,B>, 3 + A + B, .* 3) (<48,0,C>, B, .= 0) 
          (<48,1,A>, A, .= 0) (<48,1,B>, 3 + A + B, .* 3) (<48,1,C>, B, .= 0) 
          (<49,0,A>, A, .= 0) (<49,0,B>, 3 + A + B, .* 3) (<49,0,C>, B, .= 0) 
          (<49,1,A>, A, .= 0) (<49,1,B>, 3 + A + B, .* 3) (<49,1,C>, B, .= 0) 
          (<50,0,A>, A, .= 0) (<50,0,B>,         0, .= 0) (<50,0,C>, C, .= 0) 
          (<50,1,A>, A, .= 0) (<50,1,B>,         0, .= 0) (<50,1,C>, C, .= 0) 
          (<51,0,A>, A, .= 0) (<51,0,B>,         0, .= 0) (<51,0,C>, C, .= 0) 
          (<51,1,A>, A, .= 0) (<51,1,B>,         0, .= 0) (<51,1,C>, C, .= 0) 
          (<52,0,A>, A, .= 0) (<52,0,B>,         0, .= 0) (<52,0,C>, C, .= 0) 
          (<52,1,A>, A, .= 0) (<52,1,B>,         0, .= 0) (<52,1,C>, C, .= 0) 
* Step 32: SizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          28. add(A,B,C) -> o1(A,B,C)                [A >= 0 && A >= 0]                                           (1,2)
          41. n8(A,B,C)  -> c2(n8(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7)
          42. n8(A,B,C)  -> c2(n9(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7)
          43. n8(A,B,C)  -> c2(o0(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7)
          44. n9(A,B,C)  -> c2(n8(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7)
          45. n9(A,B,C)  -> c2(n9(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7)
          46. n9(A,B,C)  -> c2(o0(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7)
          47. o0(A,B,C)  -> c2(n8(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (?,7)
          48. o0(A,B,C)  -> c2(n9(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (?,7)
          49. o0(A,B,C)  -> c2(o0(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (?,7)
          50. o1(A,B,C)  -> c2(n5(A,0,C),n8(A,0,C))  [A >= 0 && A >= 0]                                           (2,5)
          51. o1(A,B,C)  -> c2(n5(A,0,C),n9(A,0,C))  [A >= 0 && A >= 0]                                           (2,5)
          52. o1(A,B,C)  -> c2(n5(A,0,C),o0(A,0,C))  [A >= 0 && A >= 0]                                           (2,5)
        Signature:
          {(add,3)
          ;(m0,3)
          ;(m1,3)
          ;(m2,3)
          ;(m3,3)
          ;(m4,3)
          ;(m5,3)
          ;(m6,3)
          ;(m7,3)
          ;(m8,3)
          ;(m9,3)
          ;(n0,3)
          ;(n1,3)
          ;(n2,3)
          ;(n3,3)
          ;(n4,3)
          ;(n5,3)
          ;(n6,3)
          ;(n7,3)
          ;(n8,3)
          ;(n80,3)
          ;(n81,3)
          ;(n9,3)
          ;(n90,3)
          ;(n91,3)
          ;(o0,3)
          ;(o00,3)
          ;(o01,3)
          ;(o1,3)
          ;(o2,3)
          ;(o3,3)}
        Flow Graph:
          [28->{50,51,52},41->{41,42,43},42->{44,45,46},43->{47,48,49},44->{41,42,43},45->{44,45,46},46->{47,48,49}
          ,47->{41,42,43},48->{44,45,46},49->{47,48,49},50->{41,42,43},51->{44,45,46},52->{47,48,49}]
        Sizebounds:
          (<28,0,A>, ?) (<28,0,B>, ?) (<28,0,C>, ?) 
          (<41,0,A>, ?) (<41,0,B>, ?) (<41,0,C>, ?) 
          (<41,1,A>, ?) (<41,1,B>, ?) (<41,1,C>, ?) 
          (<42,0,A>, ?) (<42,0,B>, ?) (<42,0,C>, ?) 
          (<42,1,A>, ?) (<42,1,B>, ?) (<42,1,C>, ?) 
          (<43,0,A>, ?) (<43,0,B>, ?) (<43,0,C>, ?) 
          (<43,1,A>, ?) (<43,1,B>, ?) (<43,1,C>, ?) 
          (<44,0,A>, ?) (<44,0,B>, ?) (<44,0,C>, ?) 
          (<44,1,A>, ?) (<44,1,B>, ?) (<44,1,C>, ?) 
          (<45,0,A>, ?) (<45,0,B>, ?) (<45,0,C>, ?) 
          (<45,1,A>, ?) (<45,1,B>, ?) (<45,1,C>, ?) 
          (<46,0,A>, ?) (<46,0,B>, ?) (<46,0,C>, ?) 
          (<46,1,A>, ?) (<46,1,B>, ?) (<46,1,C>, ?) 
          (<47,0,A>, ?) (<47,0,B>, ?) (<47,0,C>, ?) 
          (<47,1,A>, ?) (<47,1,B>, ?) (<47,1,C>, ?) 
          (<48,0,A>, ?) (<48,0,B>, ?) (<48,0,C>, ?) 
          (<48,1,A>, ?) (<48,1,B>, ?) (<48,1,C>, ?) 
          (<49,0,A>, ?) (<49,0,B>, ?) (<49,0,C>, ?) 
          (<49,1,A>, ?) (<49,1,B>, ?) (<49,1,C>, ?) 
          (<50,0,A>, ?) (<50,0,B>, ?) (<50,0,C>, ?) 
          (<50,1,A>, ?) (<50,1,B>, ?) (<50,1,C>, ?) 
          (<51,0,A>, ?) (<51,0,B>, ?) (<51,0,C>, ?) 
          (<51,1,A>, ?) (<51,1,B>, ?) (<51,1,C>, ?) 
          (<52,0,A>, ?) (<52,0,B>, ?) (<52,0,C>, ?) 
          (<52,1,A>, ?) (<52,1,B>, ?) (<52,1,C>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (<28,0,A>, A) (<28,0,B>, B) (<28,0,C>, C) 
          (<41,0,A>, A) (<41,0,B>, ?) (<41,0,C>, ?) 
          (<41,1,A>, A) (<41,1,B>, ?) (<41,1,C>, ?) 
          (<42,0,A>, A) (<42,0,B>, ?) (<42,0,C>, ?) 
          (<42,1,A>, A) (<42,1,B>, ?) (<42,1,C>, ?) 
          (<43,0,A>, A) (<43,0,B>, ?) (<43,0,C>, ?) 
          (<43,1,A>, A) (<43,1,B>, ?) (<43,1,C>, ?) 
          (<44,0,A>, A) (<44,0,B>, ?) (<44,0,C>, ?) 
          (<44,1,A>, A) (<44,1,B>, ?) (<44,1,C>, ?) 
          (<45,0,A>, A) (<45,0,B>, ?) (<45,0,C>, ?) 
          (<45,1,A>, A) (<45,1,B>, ?) (<45,1,C>, ?) 
          (<46,0,A>, A) (<46,0,B>, ?) (<46,0,C>, ?) 
          (<46,1,A>, A) (<46,1,B>, ?) (<46,1,C>, ?) 
          (<47,0,A>, A) (<47,0,B>, ?) (<47,0,C>, ?) 
          (<47,1,A>, A) (<47,1,B>, ?) (<47,1,C>, ?) 
          (<48,0,A>, A) (<48,0,B>, ?) (<48,0,C>, ?) 
          (<48,1,A>, A) (<48,1,B>, ?) (<48,1,C>, ?) 
          (<49,0,A>, A) (<49,0,B>, ?) (<49,0,C>, ?) 
          (<49,1,A>, A) (<49,1,B>, ?) (<49,1,C>, ?) 
          (<50,0,A>, A) (<50,0,B>, 0) (<50,0,C>, C) 
          (<50,1,A>, A) (<50,1,B>, 0) (<50,1,C>, C) 
          (<51,0,A>, A) (<51,0,B>, 0) (<51,0,C>, C) 
          (<51,1,A>, A) (<51,1,B>, 0) (<51,1,C>, C) 
          (<52,0,A>, A) (<52,0,B>, 0) (<52,0,C>, C) 
          (<52,1,A>, A) (<52,1,B>, 0) (<52,1,C>, C) 
* Step 33: LocationConstraintsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          28. add(A,B,C) -> o1(A,B,C)                [A >= 0 && A >= 0]                                           (1,2)
          41. n8(A,B,C)  -> c2(n8(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7)
          42. n8(A,B,C)  -> c2(n9(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7)
          43. n8(A,B,C)  -> c2(o0(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7)
          44. n9(A,B,C)  -> c2(n8(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7)
          45. n9(A,B,C)  -> c2(n9(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7)
          46. n9(A,B,C)  -> c2(o0(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7)
          47. o0(A,B,C)  -> c2(n8(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (?,7)
          48. o0(A,B,C)  -> c2(n9(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (?,7)
          49. o0(A,B,C)  -> c2(o0(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (?,7)
          50. o1(A,B,C)  -> c2(n5(A,0,C),n8(A,0,C))  [A >= 0 && A >= 0]                                           (2,5)
          51. o1(A,B,C)  -> c2(n5(A,0,C),n9(A,0,C))  [A >= 0 && A >= 0]                                           (2,5)
          52. o1(A,B,C)  -> c2(n5(A,0,C),o0(A,0,C))  [A >= 0 && A >= 0]                                           (2,5)
        Signature:
          {(add,3)
          ;(m0,3)
          ;(m1,3)
          ;(m2,3)
          ;(m3,3)
          ;(m4,3)
          ;(m5,3)
          ;(m6,3)
          ;(m7,3)
          ;(m8,3)
          ;(m9,3)
          ;(n0,3)
          ;(n1,3)
          ;(n2,3)
          ;(n3,3)
          ;(n4,3)
          ;(n5,3)
          ;(n6,3)
          ;(n7,3)
          ;(n8,3)
          ;(n80,3)
          ;(n81,3)
          ;(n9,3)
          ;(n90,3)
          ;(n91,3)
          ;(o0,3)
          ;(o00,3)
          ;(o01,3)
          ;(o1,3)
          ;(o2,3)
          ;(o3,3)}
        Flow Graph:
          [28->{50,51,52},41->{41,42,43},42->{44,45,46},43->{47,48,49},44->{41,42,43},45->{44,45,46},46->{47,48,49}
          ,47->{41,42,43},48->{44,45,46},49->{47,48,49},50->{41,42,43},51->{44,45,46},52->{47,48,49}]
        Sizebounds:
          (<28,0,A>, A) (<28,0,B>, B) (<28,0,C>, C) 
          (<41,0,A>, A) (<41,0,B>, ?) (<41,0,C>, ?) 
          (<41,1,A>, A) (<41,1,B>, ?) (<41,1,C>, ?) 
          (<42,0,A>, A) (<42,0,B>, ?) (<42,0,C>, ?) 
          (<42,1,A>, A) (<42,1,B>, ?) (<42,1,C>, ?) 
          (<43,0,A>, A) (<43,0,B>, ?) (<43,0,C>, ?) 
          (<43,1,A>, A) (<43,1,B>, ?) (<43,1,C>, ?) 
          (<44,0,A>, A) (<44,0,B>, ?) (<44,0,C>, ?) 
          (<44,1,A>, A) (<44,1,B>, ?) (<44,1,C>, ?) 
          (<45,0,A>, A) (<45,0,B>, ?) (<45,0,C>, ?) 
          (<45,1,A>, A) (<45,1,B>, ?) (<45,1,C>, ?) 
          (<46,0,A>, A) (<46,0,B>, ?) (<46,0,C>, ?) 
          (<46,1,A>, A) (<46,1,B>, ?) (<46,1,C>, ?) 
          (<47,0,A>, A) (<47,0,B>, ?) (<47,0,C>, ?) 
          (<47,1,A>, A) (<47,1,B>, ?) (<47,1,C>, ?) 
          (<48,0,A>, A) (<48,0,B>, ?) (<48,0,C>, ?) 
          (<48,1,A>, A) (<48,1,B>, ?) (<48,1,C>, ?) 
          (<49,0,A>, A) (<49,0,B>, ?) (<49,0,C>, ?) 
          (<49,1,A>, A) (<49,1,B>, ?) (<49,1,C>, ?) 
          (<50,0,A>, A) (<50,0,B>, 0) (<50,0,C>, C) 
          (<50,1,A>, A) (<50,1,B>, 0) (<50,1,C>, C) 
          (<51,0,A>, A) (<51,0,B>, 0) (<51,0,C>, C) 
          (<51,1,A>, A) (<51,1,B>, 0) (<51,1,C>, C) 
          (<52,0,A>, A) (<52,0,B>, 0) (<52,0,C>, C) 
          (<52,1,A>, A) (<52,1,B>, 0) (<52,1,C>, C) 
    + Applied Processor:
        LocationConstraintsProc
    + Details:
        We computed the location constraints  28 :  True 41 :  True 42 :  True 43 :  True 44 :  True 45 :  True 46 :  True 47 :  True 48 :  True 49 :  True 50 :  [A >= 0] 51 :  [A >= 0] 52 :  [A >= 0] .
* Step 34: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          28. add(A,B,C) -> o1(A,B,C)                [A >= 0 && A >= 0]                                           (1,2)
          41. n8(A,B,C)  -> c2(n8(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7)
          42. n8(A,B,C)  -> c2(n9(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7)
          43. n8(A,B,C)  -> c2(o0(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7)
          44. n9(A,B,C)  -> c2(n8(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7)
          45. n9(A,B,C)  -> c2(n9(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7)
          46. n9(A,B,C)  -> c2(o0(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7)
          47. o0(A,B,C)  -> c2(n8(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (?,7)
          48. o0(A,B,C)  -> c2(n9(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (?,7)
          49. o0(A,B,C)  -> c2(o0(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (?,7)
          50. o1(A,B,C)  -> c2(n5(A,0,C),n8(A,0,C))  [A >= 0 && A >= 0]                                           (2,5)
          51. o1(A,B,C)  -> c2(n5(A,0,C),n9(A,0,C))  [A >= 0 && A >= 0]                                           (2,5)
          52. o1(A,B,C)  -> c2(n5(A,0,C),o0(A,0,C))  [A >= 0 && A >= 0]                                           (2,5)
        Signature:
          {(add,3)
          ;(m0,3)
          ;(m1,3)
          ;(m2,3)
          ;(m3,3)
          ;(m4,3)
          ;(m5,3)
          ;(m6,3)
          ;(m7,3)
          ;(m8,3)
          ;(m9,3)
          ;(n0,3)
          ;(n1,3)
          ;(n2,3)
          ;(n3,3)
          ;(n4,3)
          ;(n5,3)
          ;(n6,3)
          ;(n7,3)
          ;(n8,3)
          ;(n80,3)
          ;(n81,3)
          ;(n9,3)
          ;(n90,3)
          ;(n91,3)
          ;(o0,3)
          ;(o00,3)
          ;(o01,3)
          ;(o1,3)
          ;(o2,3)
          ;(o3,3)}
        Flow Graph:
          [28->{50,51,52},41->{41,42,43},42->{44,45,46},43->{47,48,49},44->{41,42,43},45->{44,45,46},46->{47,48,49}
          ,47->{41,42,43},48->{44,45,46},49->{47,48,49},50->{41,42,43},51->{44,45,46},52->{47,48,49}]
        Sizebounds:
          (<28,0,A>, A) (<28,0,B>, B) (<28,0,C>, C) 
          (<41,0,A>, A) (<41,0,B>, ?) (<41,0,C>, ?) 
          (<41,1,A>, A) (<41,1,B>, ?) (<41,1,C>, ?) 
          (<42,0,A>, A) (<42,0,B>, ?) (<42,0,C>, ?) 
          (<42,1,A>, A) (<42,1,B>, ?) (<42,1,C>, ?) 
          (<43,0,A>, A) (<43,0,B>, ?) (<43,0,C>, ?) 
          (<43,1,A>, A) (<43,1,B>, ?) (<43,1,C>, ?) 
          (<44,0,A>, A) (<44,0,B>, ?) (<44,0,C>, ?) 
          (<44,1,A>, A) (<44,1,B>, ?) (<44,1,C>, ?) 
          (<45,0,A>, A) (<45,0,B>, ?) (<45,0,C>, ?) 
          (<45,1,A>, A) (<45,1,B>, ?) (<45,1,C>, ?) 
          (<46,0,A>, A) (<46,0,B>, ?) (<46,0,C>, ?) 
          (<46,1,A>, A) (<46,1,B>, ?) (<46,1,C>, ?) 
          (<47,0,A>, A) (<47,0,B>, ?) (<47,0,C>, ?) 
          (<47,1,A>, A) (<47,1,B>, ?) (<47,1,C>, ?) 
          (<48,0,A>, A) (<48,0,B>, ?) (<48,0,C>, ?) 
          (<48,1,A>, A) (<48,1,B>, ?) (<48,1,C>, ?) 
          (<49,0,A>, A) (<49,0,B>, ?) (<49,0,C>, ?) 
          (<49,1,A>, A) (<49,1,B>, ?) (<49,1,C>, ?) 
          (<50,0,A>, A) (<50,0,B>, 0) (<50,0,C>, C) 
          (<50,1,A>, A) (<50,1,B>, 0) (<50,1,C>, C) 
          (<51,0,A>, A) (<51,0,B>, 0) (<51,0,C>, C) 
          (<51,1,A>, A) (<51,1,B>, 0) (<51,1,C>, C) 
          (<52,0,A>, A) (<52,0,B>, 0) (<52,0,C>, C) 
          (<52,1,A>, A) (<52,1,B>, 0) (<52,1,C>, C) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(add) = 2*x1        
           p(n5) = 0           
           p(n8) = 2*x1 + -2*x2
          p(n81) = 0           
           p(n9) = 2*x1 + -2*x2
          p(n91) = 0           
           p(o0) = 2*x1 + -2*x2
          p(o01) = 0           
           p(o1) = 2*x1        
        
        The following rules are strictly oriented:
        [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] ==>                         
                                                           o0(A,B,C)   = 2*A + -2*B              
                                                                       > 2*A + -2*E              
                                                                       = c2(o0(A,E,B),o01(A,E,B))
        
        
        The following rules are weakly oriented:
                                                  [A >= 0 && A >= 0] ==>                         
                                                          add(A,B,C)   = 2*A                     
                                                                      >= 2*A                     
                                                                       = o1(A,B,C)               
        
        [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] ==>                         
                                                           n8(A,B,C)   = 2*A + -2*B              
                                                                      >= 2*A + -2*E              
                                                                       = c2(n8(A,E,B),n81(A,E,B))
        
        [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] ==>                         
                                                           n8(A,B,C)   = 2*A + -2*B              
                                                                      >= 2*A + -2*E              
                                                                       = c2(n9(A,E,B),n81(A,E,B))
        
        [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] ==>                         
                                                           n8(A,B,C)   = 2*A + -2*B              
                                                                      >= 2*A + -2*E              
                                                                       = c2(o0(A,E,B),n81(A,E,B))
        
        [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] ==>                         
                                                           n9(A,B,C)   = 2*A + -2*B              
                                                                      >= 2*A + -2*E              
                                                                       = c2(n8(A,E,B),n91(A,E,B))
        
        [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] ==>                         
                                                           n9(A,B,C)   = 2*A + -2*B              
                                                                      >= 2*A + -2*E              
                                                                       = c2(n9(A,E,B),n91(A,E,B))
        
        [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] ==>                         
                                                           n9(A,B,C)   = 2*A + -2*B              
                                                                      >= 2*A + -2*E              
                                                                       = c2(o0(A,E,B),n91(A,E,B))
        
        [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] ==>                         
                                                           o0(A,B,C)   = 2*A + -2*B              
                                                                      >= 2*A + -2*E              
                                                                       = c2(n8(A,E,B),o01(A,E,B))
        
        [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] ==>                         
                                                           o0(A,B,C)   = 2*A + -2*B              
                                                                      >= 2*A + -2*E              
                                                                       = c2(n9(A,E,B),o01(A,E,B))
        
                                                  [A >= 0 && A >= 0] ==>                         
                                                           o1(A,B,C)   = 2*A                     
                                                                      >= 2*A                     
                                                                       = c2(n5(A,0,C),n8(A,0,C)) 
        
                                                  [A >= 0 && A >= 0] ==>                         
                                                           o1(A,B,C)   = 2*A                     
                                                                      >= 2*A                     
                                                                       = c2(n5(A,0,C),n9(A,0,C)) 
        
                                                  [A >= 0 && A >= 0] ==>                         
                                                           o1(A,B,C)   = 2*A                     
                                                                      >= 2*A                     
                                                                       = c2(n5(A,0,C),o0(A,0,C)) 
        
        
* Step 35: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          28. add(A,B,C) -> o1(A,B,C)                [A >= 0 && A >= 0]                                           (1,2)  
          41. n8(A,B,C)  -> c2(n8(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7)  
          42. n8(A,B,C)  -> c2(n9(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7)  
          43. n8(A,B,C)  -> c2(o0(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7)  
          44. n9(A,B,C)  -> c2(n8(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7)  
          45. n9(A,B,C)  -> c2(n9(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7)  
          46. n9(A,B,C)  -> c2(o0(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7)  
          47. o0(A,B,C)  -> c2(n8(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (?,7)  
          48. o0(A,B,C)  -> c2(n9(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (?,7)  
          49. o0(A,B,C)  -> c2(o0(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (2*A,7)
          50. o1(A,B,C)  -> c2(n5(A,0,C),n8(A,0,C))  [A >= 0 && A >= 0]                                           (2,5)  
          51. o1(A,B,C)  -> c2(n5(A,0,C),n9(A,0,C))  [A >= 0 && A >= 0]                                           (2,5)  
          52. o1(A,B,C)  -> c2(n5(A,0,C),o0(A,0,C))  [A >= 0 && A >= 0]                                           (2,5)  
        Signature:
          {(add,3)
          ;(m0,3)
          ;(m1,3)
          ;(m2,3)
          ;(m3,3)
          ;(m4,3)
          ;(m5,3)
          ;(m6,3)
          ;(m7,3)
          ;(m8,3)
          ;(m9,3)
          ;(n0,3)
          ;(n1,3)
          ;(n2,3)
          ;(n3,3)
          ;(n4,3)
          ;(n5,3)
          ;(n6,3)
          ;(n7,3)
          ;(n8,3)
          ;(n80,3)
          ;(n81,3)
          ;(n9,3)
          ;(n90,3)
          ;(n91,3)
          ;(o0,3)
          ;(o00,3)
          ;(o01,3)
          ;(o1,3)
          ;(o2,3)
          ;(o3,3)}
        Flow Graph:
          [28->{50,51,52},41->{41,42,43},42->{44,45,46},43->{47,48,49},44->{41,42,43},45->{44,45,46},46->{47,48,49}
          ,47->{41,42,43},48->{44,45,46},49->{47,48,49},50->{41,42,43},51->{44,45,46},52->{47,48,49}]
        Sizebounds:
          (<28,0,A>, A) (<28,0,B>, B) (<28,0,C>, C) 
          (<41,0,A>, A) (<41,0,B>, ?) (<41,0,C>, ?) 
          (<41,1,A>, A) (<41,1,B>, ?) (<41,1,C>, ?) 
          (<42,0,A>, A) (<42,0,B>, ?) (<42,0,C>, ?) 
          (<42,1,A>, A) (<42,1,B>, ?) (<42,1,C>, ?) 
          (<43,0,A>, A) (<43,0,B>, ?) (<43,0,C>, ?) 
          (<43,1,A>, A) (<43,1,B>, ?) (<43,1,C>, ?) 
          (<44,0,A>, A) (<44,0,B>, ?) (<44,0,C>, ?) 
          (<44,1,A>, A) (<44,1,B>, ?) (<44,1,C>, ?) 
          (<45,0,A>, A) (<45,0,B>, ?) (<45,0,C>, ?) 
          (<45,1,A>, A) (<45,1,B>, ?) (<45,1,C>, ?) 
          (<46,0,A>, A) (<46,0,B>, ?) (<46,0,C>, ?) 
          (<46,1,A>, A) (<46,1,B>, ?) (<46,1,C>, ?) 
          (<47,0,A>, A) (<47,0,B>, ?) (<47,0,C>, ?) 
          (<47,1,A>, A) (<47,1,B>, ?) (<47,1,C>, ?) 
          (<48,0,A>, A) (<48,0,B>, ?) (<48,0,C>, ?) 
          (<48,1,A>, A) (<48,1,B>, ?) (<48,1,C>, ?) 
          (<49,0,A>, A) (<49,0,B>, ?) (<49,0,C>, ?) 
          (<49,1,A>, A) (<49,1,B>, ?) (<49,1,C>, ?) 
          (<50,0,A>, A) (<50,0,B>, 0) (<50,0,C>, C) 
          (<50,1,A>, A) (<50,1,B>, 0) (<50,1,C>, C) 
          (<51,0,A>, A) (<51,0,B>, 0) (<51,0,C>, C) 
          (<51,1,A>, A) (<51,1,B>, 0) (<51,1,C>, C) 
          (<52,0,A>, A) (<52,0,B>, 0) (<52,0,C>, C) 
          (<52,1,A>, A) (<52,1,B>, 0) (<52,1,C>, C) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(add) = 2*x1        
           p(n5) = 0           
           p(n8) = 2*x1 + -2*x2
          p(n81) = 0           
           p(n9) = 2*x1 + -2*x2
          p(n91) = 0           
           p(o0) = 2*x1 + -2*x2
          p(o01) = 0           
           p(o1) = 2*x1        
        
        The following rules are strictly oriented:
        [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] ==>                         
                                                           o0(A,B,C)   = 2*A + -2*B              
                                                                       > 2*A + -2*E              
                                                                       = c2(n9(A,E,B),o01(A,E,B))
        
        [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] ==>                         
                                                           o0(A,B,C)   = 2*A + -2*B              
                                                                       > 2*A + -2*E              
                                                                       = c2(o0(A,E,B),o01(A,E,B))
        
        
        The following rules are weakly oriented:
                                                  [A >= 0 && A >= 0] ==>                         
                                                          add(A,B,C)   = 2*A                     
                                                                      >= 2*A                     
                                                                       = o1(A,B,C)               
        
        [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] ==>                         
                                                           n8(A,B,C)   = 2*A + -2*B              
                                                                      >= 2*A + -2*E              
                                                                       = c2(n8(A,E,B),n81(A,E,B))
        
        [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] ==>                         
                                                           n8(A,B,C)   = 2*A + -2*B              
                                                                      >= 2*A + -2*E              
                                                                       = c2(n9(A,E,B),n81(A,E,B))
        
        [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] ==>                         
                                                           n8(A,B,C)   = 2*A + -2*B              
                                                                      >= 2*A + -2*E              
                                                                       = c2(o0(A,E,B),n81(A,E,B))
        
        [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] ==>                         
                                                           n9(A,B,C)   = 2*A + -2*B              
                                                                      >= 2*A + -2*E              
                                                                       = c2(n8(A,E,B),n91(A,E,B))
        
        [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] ==>                         
                                                           n9(A,B,C)   = 2*A + -2*B              
                                                                      >= 2*A + -2*E              
                                                                       = c2(n9(A,E,B),n91(A,E,B))
        
        [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] ==>                         
                                                           n9(A,B,C)   = 2*A + -2*B              
                                                                      >= 2*A + -2*E              
                                                                       = c2(o0(A,E,B),n91(A,E,B))
        
        [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] ==>                         
                                                           o0(A,B,C)   = 2*A + -2*B              
                                                                      >= 2*A + -2*E              
                                                                       = c2(n8(A,E,B),o01(A,E,B))
        
                                                  [A >= 0 && A >= 0] ==>                         
                                                           o1(A,B,C)   = 2*A                     
                                                                      >= 2*A                     
                                                                       = c2(n5(A,0,C),n8(A,0,C)) 
        
                                                  [A >= 0 && A >= 0] ==>                         
                                                           o1(A,B,C)   = 2*A                     
                                                                      >= 2*A                     
                                                                       = c2(n5(A,0,C),n9(A,0,C)) 
        
                                                  [A >= 0 && A >= 0] ==>                         
                                                           o1(A,B,C)   = 2*A                     
                                                                      >= 2*A                     
                                                                       = c2(n5(A,0,C),o0(A,0,C)) 
        
        
* Step 36: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          28. add(A,B,C) -> o1(A,B,C)                [A >= 0 && A >= 0]                                           (1,2)  
          41. n8(A,B,C)  -> c2(n8(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7)  
          42. n8(A,B,C)  -> c2(n9(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7)  
          43. n8(A,B,C)  -> c2(o0(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7)  
          44. n9(A,B,C)  -> c2(n8(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7)  
          45. n9(A,B,C)  -> c2(n9(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7)  
          46. n9(A,B,C)  -> c2(o0(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7)  
          47. o0(A,B,C)  -> c2(n8(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (?,7)  
          48. o0(A,B,C)  -> c2(n9(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (2*A,7)
          49. o0(A,B,C)  -> c2(o0(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (2*A,7)
          50. o1(A,B,C)  -> c2(n5(A,0,C),n8(A,0,C))  [A >= 0 && A >= 0]                                           (2,5)  
          51. o1(A,B,C)  -> c2(n5(A,0,C),n9(A,0,C))  [A >= 0 && A >= 0]                                           (2,5)  
          52. o1(A,B,C)  -> c2(n5(A,0,C),o0(A,0,C))  [A >= 0 && A >= 0]                                           (2,5)  
        Signature:
          {(add,3)
          ;(m0,3)
          ;(m1,3)
          ;(m2,3)
          ;(m3,3)
          ;(m4,3)
          ;(m5,3)
          ;(m6,3)
          ;(m7,3)
          ;(m8,3)
          ;(m9,3)
          ;(n0,3)
          ;(n1,3)
          ;(n2,3)
          ;(n3,3)
          ;(n4,3)
          ;(n5,3)
          ;(n6,3)
          ;(n7,3)
          ;(n8,3)
          ;(n80,3)
          ;(n81,3)
          ;(n9,3)
          ;(n90,3)
          ;(n91,3)
          ;(o0,3)
          ;(o00,3)
          ;(o01,3)
          ;(o1,3)
          ;(o2,3)
          ;(o3,3)}
        Flow Graph:
          [28->{50,51,52},41->{41,42,43},42->{44,45,46},43->{47,48,49},44->{41,42,43},45->{44,45,46},46->{47,48,49}
          ,47->{41,42,43},48->{44,45,46},49->{47,48,49},50->{41,42,43},51->{44,45,46},52->{47,48,49}]
        Sizebounds:
          (<28,0,A>, A) (<28,0,B>, B) (<28,0,C>, C) 
          (<41,0,A>, A) (<41,0,B>, ?) (<41,0,C>, ?) 
          (<41,1,A>, A) (<41,1,B>, ?) (<41,1,C>, ?) 
          (<42,0,A>, A) (<42,0,B>, ?) (<42,0,C>, ?) 
          (<42,1,A>, A) (<42,1,B>, ?) (<42,1,C>, ?) 
          (<43,0,A>, A) (<43,0,B>, ?) (<43,0,C>, ?) 
          (<43,1,A>, A) (<43,1,B>, ?) (<43,1,C>, ?) 
          (<44,0,A>, A) (<44,0,B>, ?) (<44,0,C>, ?) 
          (<44,1,A>, A) (<44,1,B>, ?) (<44,1,C>, ?) 
          (<45,0,A>, A) (<45,0,B>, ?) (<45,0,C>, ?) 
          (<45,1,A>, A) (<45,1,B>, ?) (<45,1,C>, ?) 
          (<46,0,A>, A) (<46,0,B>, ?) (<46,0,C>, ?) 
          (<46,1,A>, A) (<46,1,B>, ?) (<46,1,C>, ?) 
          (<47,0,A>, A) (<47,0,B>, ?) (<47,0,C>, ?) 
          (<47,1,A>, A) (<47,1,B>, ?) (<47,1,C>, ?) 
          (<48,0,A>, A) (<48,0,B>, ?) (<48,0,C>, ?) 
          (<48,1,A>, A) (<48,1,B>, ?) (<48,1,C>, ?) 
          (<49,0,A>, A) (<49,0,B>, ?) (<49,0,C>, ?) 
          (<49,1,A>, A) (<49,1,B>, ?) (<49,1,C>, ?) 
          (<50,0,A>, A) (<50,0,B>, 0) (<50,0,C>, C) 
          (<50,1,A>, A) (<50,1,B>, 0) (<50,1,C>, C) 
          (<51,0,A>, A) (<51,0,B>, 0) (<51,0,C>, C) 
          (<51,1,A>, A) (<51,1,B>, 0) (<51,1,C>, C) 
          (<52,0,A>, A) (<52,0,B>, 0) (<52,0,C>, C) 
          (<52,1,A>, A) (<52,1,B>, 0) (<52,1,C>, C) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(add) = 3*x1        
           p(n5) = 0           
           p(n8) = 3*x1 + -3*x2
          p(n81) = 0           
           p(n9) = 3*x1 + -3*x2
          p(n91) = 0           
           p(o0) = 3*x1 + -3*x2
          p(o01) = 0           
           p(o1) = 3*x1        
        
        The following rules are strictly oriented:
        [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] ==>                         
                                                           o0(A,B,C)   = 3*A + -3*B              
                                                                       > 3*A + -3*E              
                                                                       = c2(n8(A,E,B),o01(A,E,B))
        
        [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] ==>                         
                                                           o0(A,B,C)   = 3*A + -3*B              
                                                                       > 3*A + -3*E              
                                                                       = c2(n9(A,E,B),o01(A,E,B))
        
        [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] ==>                         
                                                           o0(A,B,C)   = 3*A + -3*B              
                                                                       > 3*A + -3*E              
                                                                       = c2(o0(A,E,B),o01(A,E,B))
        
        
        The following rules are weakly oriented:
                                                  [A >= 0 && A >= 0] ==>                         
                                                          add(A,B,C)   = 3*A                     
                                                                      >= 3*A                     
                                                                       = o1(A,B,C)               
        
        [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] ==>                         
                                                           n8(A,B,C)   = 3*A + -3*B              
                                                                      >= 3*A + -3*E              
                                                                       = c2(n8(A,E,B),n81(A,E,B))
        
        [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] ==>                         
                                                           n8(A,B,C)   = 3*A + -3*B              
                                                                      >= 3*A + -3*E              
                                                                       = c2(n9(A,E,B),n81(A,E,B))
        
        [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] ==>                         
                                                           n8(A,B,C)   = 3*A + -3*B              
                                                                      >= 3*A + -3*E              
                                                                       = c2(o0(A,E,B),n81(A,E,B))
        
        [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] ==>                         
                                                           n9(A,B,C)   = 3*A + -3*B              
                                                                      >= 3*A + -3*E              
                                                                       = c2(n8(A,E,B),n91(A,E,B))
        
        [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] ==>                         
                                                           n9(A,B,C)   = 3*A + -3*B              
                                                                      >= 3*A + -3*E              
                                                                       = c2(n9(A,E,B),n91(A,E,B))
        
        [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] ==>                         
                                                           n9(A,B,C)   = 3*A + -3*B              
                                                                      >= 3*A + -3*E              
                                                                       = c2(o0(A,E,B),n91(A,E,B))
        
                                                  [A >= 0 && A >= 0] ==>                         
                                                           o1(A,B,C)   = 3*A                     
                                                                      >= 3*A                     
                                                                       = c2(n5(A,0,C),n8(A,0,C)) 
        
                                                  [A >= 0 && A >= 0] ==>                         
                                                           o1(A,B,C)   = 3*A                     
                                                                      >= 3*A                     
                                                                       = c2(n5(A,0,C),n9(A,0,C)) 
        
                                                  [A >= 0 && A >= 0] ==>                         
                                                           o1(A,B,C)   = 3*A                     
                                                                      >= 3*A                     
                                                                       = c2(n5(A,0,C),o0(A,0,C)) 
        
        
* Step 37: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          28. add(A,B,C) -> o1(A,B,C)                [A >= 0 && A >= 0]                                           (1,2)  
          41. n8(A,B,C)  -> c2(n8(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7)  
          42. n8(A,B,C)  -> c2(n9(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7)  
          43. n8(A,B,C)  -> c2(o0(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7)  
          44. n9(A,B,C)  -> c2(n8(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7)  
          45. n9(A,B,C)  -> c2(n9(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7)  
          46. n9(A,B,C)  -> c2(o0(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7)  
          47. o0(A,B,C)  -> c2(n8(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (3*A,7)
          48. o0(A,B,C)  -> c2(n9(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (2*A,7)
          49. o0(A,B,C)  -> c2(o0(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (2*A,7)
          50. o1(A,B,C)  -> c2(n5(A,0,C),n8(A,0,C))  [A >= 0 && A >= 0]                                           (2,5)  
          51. o1(A,B,C)  -> c2(n5(A,0,C),n9(A,0,C))  [A >= 0 && A >= 0]                                           (2,5)  
          52. o1(A,B,C)  -> c2(n5(A,0,C),o0(A,0,C))  [A >= 0 && A >= 0]                                           (2,5)  
        Signature:
          {(add,3)
          ;(m0,3)
          ;(m1,3)
          ;(m2,3)
          ;(m3,3)
          ;(m4,3)
          ;(m5,3)
          ;(m6,3)
          ;(m7,3)
          ;(m8,3)
          ;(m9,3)
          ;(n0,3)
          ;(n1,3)
          ;(n2,3)
          ;(n3,3)
          ;(n4,3)
          ;(n5,3)
          ;(n6,3)
          ;(n7,3)
          ;(n8,3)
          ;(n80,3)
          ;(n81,3)
          ;(n9,3)
          ;(n90,3)
          ;(n91,3)
          ;(o0,3)
          ;(o00,3)
          ;(o01,3)
          ;(o1,3)
          ;(o2,3)
          ;(o3,3)}
        Flow Graph:
          [28->{50,51,52},41->{41,42,43},42->{44,45,46},43->{47,48,49},44->{41,42,43},45->{44,45,46},46->{47,48,49}
          ,47->{41,42,43},48->{44,45,46},49->{47,48,49},50->{41,42,43},51->{44,45,46},52->{47,48,49}]
        Sizebounds:
          (<28,0,A>, A) (<28,0,B>, B) (<28,0,C>, C) 
          (<41,0,A>, A) (<41,0,B>, ?) (<41,0,C>, ?) 
          (<41,1,A>, A) (<41,1,B>, ?) (<41,1,C>, ?) 
          (<42,0,A>, A) (<42,0,B>, ?) (<42,0,C>, ?) 
          (<42,1,A>, A) (<42,1,B>, ?) (<42,1,C>, ?) 
          (<43,0,A>, A) (<43,0,B>, ?) (<43,0,C>, ?) 
          (<43,1,A>, A) (<43,1,B>, ?) (<43,1,C>, ?) 
          (<44,0,A>, A) (<44,0,B>, ?) (<44,0,C>, ?) 
          (<44,1,A>, A) (<44,1,B>, ?) (<44,1,C>, ?) 
          (<45,0,A>, A) (<45,0,B>, ?) (<45,0,C>, ?) 
          (<45,1,A>, A) (<45,1,B>, ?) (<45,1,C>, ?) 
          (<46,0,A>, A) (<46,0,B>, ?) (<46,0,C>, ?) 
          (<46,1,A>, A) (<46,1,B>, ?) (<46,1,C>, ?) 
          (<47,0,A>, A) (<47,0,B>, ?) (<47,0,C>, ?) 
          (<47,1,A>, A) (<47,1,B>, ?) (<47,1,C>, ?) 
          (<48,0,A>, A) (<48,0,B>, ?) (<48,0,C>, ?) 
          (<48,1,A>, A) (<48,1,B>, ?) (<48,1,C>, ?) 
          (<49,0,A>, A) (<49,0,B>, ?) (<49,0,C>, ?) 
          (<49,1,A>, A) (<49,1,B>, ?) (<49,1,C>, ?) 
          (<50,0,A>, A) (<50,0,B>, 0) (<50,0,C>, C) 
          (<50,1,A>, A) (<50,1,B>, 0) (<50,1,C>, C) 
          (<51,0,A>, A) (<51,0,B>, 0) (<51,0,C>, C) 
          (<51,1,A>, A) (<51,1,B>, 0) (<51,1,C>, C) 
          (<52,0,A>, A) (<52,0,B>, 0) (<52,0,C>, C) 
          (<52,1,A>, A) (<52,1,B>, 0) (<52,1,C>, C) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(add) = 2*x1        
           p(n5) = 0           
           p(n8) = 2*x1 + -2*x2
          p(n81) = 1           
           p(n9) = 2*x1 + -2*x2
          p(n91) = 0           
           p(o0) = 2*x1 + -2*x2
          p(o01) = 0           
           p(o1) = 2*x1        
        
        The following rules are strictly oriented:
        [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] ==>                         
                                                           n9(A,B,C)   = 2*A + -2*B              
                                                                       > 2*A + -2*E              
                                                                       = c2(o0(A,E,B),n91(A,E,B))
        
        [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] ==>                         
                                                           o0(A,B,C)   = 2*A + -2*B              
                                                                       > 2*A + -2*E              
                                                                       = c2(n8(A,E,B),o01(A,E,B))
        
        [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] ==>                         
                                                           o0(A,B,C)   = 2*A + -2*B              
                                                                       > 2*A + -2*E              
                                                                       = c2(n9(A,E,B),o01(A,E,B))
        
        [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] ==>                         
                                                           o0(A,B,C)   = 2*A + -2*B              
                                                                       > 2*A + -2*E              
                                                                       = c2(o0(A,E,B),o01(A,E,B))
        
        
        The following rules are weakly oriented:
                                                  [A >= 0 && A >= 0] ==>                         
                                                          add(A,B,C)   = 2*A                     
                                                                      >= 2*A                     
                                                                       = o1(A,B,C)               
        
        [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] ==>                         
                                                           n8(A,B,C)   = 2*A + -2*B              
                                                                      >= 1 + 2*A + -2*E          
                                                                       = c2(n8(A,E,B),n81(A,E,B))
        
        [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] ==>                         
                                                           n8(A,B,C)   = 2*A + -2*B              
                                                                      >= 1 + 2*A + -2*E          
                                                                       = c2(n9(A,E,B),n81(A,E,B))
        
        [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] ==>                         
                                                           n8(A,B,C)   = 2*A + -2*B              
                                                                      >= 1 + 2*A + -2*E          
                                                                       = c2(o0(A,E,B),n81(A,E,B))
        
        [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] ==>                         
                                                           n9(A,B,C)   = 2*A + -2*B              
                                                                      >= 2*A + -2*E              
                                                                       = c2(n8(A,E,B),n91(A,E,B))
        
        [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] ==>                         
                                                           n9(A,B,C)   = 2*A + -2*B              
                                                                      >= 2*A + -2*E              
                                                                       = c2(n9(A,E,B),n91(A,E,B))
        
                                                  [A >= 0 && A >= 0] ==>                         
                                                           o1(A,B,C)   = 2*A                     
                                                                      >= 2*A                     
                                                                       = c2(n5(A,0,C),n8(A,0,C)) 
        
                                                  [A >= 0 && A >= 0] ==>                         
                                                           o1(A,B,C)   = 2*A                     
                                                                      >= 2*A                     
                                                                       = c2(n5(A,0,C),n9(A,0,C)) 
        
                                                  [A >= 0 && A >= 0] ==>                         
                                                           o1(A,B,C)   = 2*A                     
                                                                      >= 2*A                     
                                                                       = c2(n5(A,0,C),o0(A,0,C)) 
        
        
* Step 38: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          28. add(A,B,C) -> o1(A,B,C)                [A >= 0 && A >= 0]                                           (1,2)  
          41. n8(A,B,C)  -> c2(n8(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7)  
          42. n8(A,B,C)  -> c2(n9(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7)  
          43. n8(A,B,C)  -> c2(o0(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7)  
          44. n9(A,B,C)  -> c2(n8(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7)  
          45. n9(A,B,C)  -> c2(n9(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7)  
          46. n9(A,B,C)  -> c2(o0(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (2*A,7)
          47. o0(A,B,C)  -> c2(n8(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (2*A,7)
          48. o0(A,B,C)  -> c2(n9(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (2*A,7)
          49. o0(A,B,C)  -> c2(o0(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (2*A,7)
          50. o1(A,B,C)  -> c2(n5(A,0,C),n8(A,0,C))  [A >= 0 && A >= 0]                                           (2,5)  
          51. o1(A,B,C)  -> c2(n5(A,0,C),n9(A,0,C))  [A >= 0 && A >= 0]                                           (2,5)  
          52. o1(A,B,C)  -> c2(n5(A,0,C),o0(A,0,C))  [A >= 0 && A >= 0]                                           (2,5)  
        Signature:
          {(add,3)
          ;(m0,3)
          ;(m1,3)
          ;(m2,3)
          ;(m3,3)
          ;(m4,3)
          ;(m5,3)
          ;(m6,3)
          ;(m7,3)
          ;(m8,3)
          ;(m9,3)
          ;(n0,3)
          ;(n1,3)
          ;(n2,3)
          ;(n3,3)
          ;(n4,3)
          ;(n5,3)
          ;(n6,3)
          ;(n7,3)
          ;(n8,3)
          ;(n80,3)
          ;(n81,3)
          ;(n9,3)
          ;(n90,3)
          ;(n91,3)
          ;(o0,3)
          ;(o00,3)
          ;(o01,3)
          ;(o1,3)
          ;(o2,3)
          ;(o3,3)}
        Flow Graph:
          [28->{50,51,52},41->{41,42,43},42->{44,45,46},43->{47,48,49},44->{41,42,43},45->{44,45,46},46->{47,48,49}
          ,47->{41,42,43},48->{44,45,46},49->{47,48,49},50->{41,42,43},51->{44,45,46},52->{47,48,49}]
        Sizebounds:
          (<28,0,A>, A) (<28,0,B>, B) (<28,0,C>, C) 
          (<41,0,A>, A) (<41,0,B>, ?) (<41,0,C>, ?) 
          (<41,1,A>, A) (<41,1,B>, ?) (<41,1,C>, ?) 
          (<42,0,A>, A) (<42,0,B>, ?) (<42,0,C>, ?) 
          (<42,1,A>, A) (<42,1,B>, ?) (<42,1,C>, ?) 
          (<43,0,A>, A) (<43,0,B>, ?) (<43,0,C>, ?) 
          (<43,1,A>, A) (<43,1,B>, ?) (<43,1,C>, ?) 
          (<44,0,A>, A) (<44,0,B>, ?) (<44,0,C>, ?) 
          (<44,1,A>, A) (<44,1,B>, ?) (<44,1,C>, ?) 
          (<45,0,A>, A) (<45,0,B>, ?) (<45,0,C>, ?) 
          (<45,1,A>, A) (<45,1,B>, ?) (<45,1,C>, ?) 
          (<46,0,A>, A) (<46,0,B>, ?) (<46,0,C>, ?) 
          (<46,1,A>, A) (<46,1,B>, ?) (<46,1,C>, ?) 
          (<47,0,A>, A) (<47,0,B>, ?) (<47,0,C>, ?) 
          (<47,1,A>, A) (<47,1,B>, ?) (<47,1,C>, ?) 
          (<48,0,A>, A) (<48,0,B>, ?) (<48,0,C>, ?) 
          (<48,1,A>, A) (<48,1,B>, ?) (<48,1,C>, ?) 
          (<49,0,A>, A) (<49,0,B>, ?) (<49,0,C>, ?) 
          (<49,1,A>, A) (<49,1,B>, ?) (<49,1,C>, ?) 
          (<50,0,A>, A) (<50,0,B>, 0) (<50,0,C>, C) 
          (<50,1,A>, A) (<50,1,B>, 0) (<50,1,C>, C) 
          (<51,0,A>, A) (<51,0,B>, 0) (<51,0,C>, C) 
          (<51,1,A>, A) (<51,1,B>, 0) (<51,1,C>, C) 
          (<52,0,A>, A) (<52,0,B>, 0) (<52,0,C>, C) 
          (<52,1,A>, A) (<52,1,B>, 0) (<52,1,C>, C) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(add) = 3*x1        
           p(n5) = 0           
           p(n8) = 3*x1 + -3*x2
          p(n81) = 0           
           p(n9) = 3*x1 + -3*x2
          p(n91) = 0           
           p(o0) = 3*x1 + -3*x2
          p(o01) = 0           
           p(o1) = 3*x1        
        
        The following rules are strictly oriented:
        [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] ==>                         
                                                           n9(A,B,C)   = 3*A + -3*B              
                                                                       > 3*A + -3*E              
                                                                       = c2(n9(A,E,B),n91(A,E,B))
        
        [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] ==>                         
                                                           n9(A,B,C)   = 3*A + -3*B              
                                                                       > 3*A + -3*E              
                                                                       = c2(o0(A,E,B),n91(A,E,B))
        
        [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] ==>                         
                                                           o0(A,B,C)   = 3*A + -3*B              
                                                                       > 3*A + -3*E              
                                                                       = c2(n8(A,E,B),o01(A,E,B))
        
        [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] ==>                         
                                                           o0(A,B,C)   = 3*A + -3*B              
                                                                       > 3*A + -3*E              
                                                                       = c2(n9(A,E,B),o01(A,E,B))
        
        [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] ==>                         
                                                           o0(A,B,C)   = 3*A + -3*B              
                                                                       > 3*A + -3*E              
                                                                       = c2(o0(A,E,B),o01(A,E,B))
        
        
        The following rules are weakly oriented:
                                                  [A >= 0 && A >= 0] ==>                         
                                                          add(A,B,C)   = 3*A                     
                                                                      >= 3*A                     
                                                                       = o1(A,B,C)               
        
        [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] ==>                         
                                                           n8(A,B,C)   = 3*A + -3*B              
                                                                      >= 3*A + -3*E              
                                                                       = c2(n8(A,E,B),n81(A,E,B))
        
        [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] ==>                         
                                                           n8(A,B,C)   = 3*A + -3*B              
                                                                      >= 3*A + -3*E              
                                                                       = c2(n9(A,E,B),n81(A,E,B))
        
        [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] ==>                         
                                                           n8(A,B,C)   = 3*A + -3*B              
                                                                      >= 3*A + -3*E              
                                                                       = c2(o0(A,E,B),n81(A,E,B))
        
        [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] ==>                         
                                                           n9(A,B,C)   = 3*A + -3*B              
                                                                      >= 3*A + -3*E              
                                                                       = c2(n8(A,E,B),n91(A,E,B))
        
                                                  [A >= 0 && A >= 0] ==>                         
                                                           o1(A,B,C)   = 3*A                     
                                                                      >= 3*A                     
                                                                       = c2(n5(A,0,C),n8(A,0,C)) 
        
                                                  [A >= 0 && A >= 0] ==>                         
                                                           o1(A,B,C)   = 3*A                     
                                                                      >= 3*A                     
                                                                       = c2(n5(A,0,C),n9(A,0,C)) 
        
                                                  [A >= 0 && A >= 0] ==>                         
                                                           o1(A,B,C)   = 3*A                     
                                                                      >= 3*A                     
                                                                       = c2(n5(A,0,C),o0(A,0,C)) 
        
        
* Step 39: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          28. add(A,B,C) -> o1(A,B,C)                [A >= 0 && A >= 0]                                           (1,2)  
          41. n8(A,B,C)  -> c2(n8(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7)  
          42. n8(A,B,C)  -> c2(n9(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7)  
          43. n8(A,B,C)  -> c2(o0(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7)  
          44. n9(A,B,C)  -> c2(n8(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (?,7)  
          45. n9(A,B,C)  -> c2(n9(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (3*A,7)
          46. n9(A,B,C)  -> c2(o0(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (2*A,7)
          47. o0(A,B,C)  -> c2(n8(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (2*A,7)
          48. o0(A,B,C)  -> c2(n9(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (2*A,7)
          49. o0(A,B,C)  -> c2(o0(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (2*A,7)
          50. o1(A,B,C)  -> c2(n5(A,0,C),n8(A,0,C))  [A >= 0 && A >= 0]                                           (2,5)  
          51. o1(A,B,C)  -> c2(n5(A,0,C),n9(A,0,C))  [A >= 0 && A >= 0]                                           (2,5)  
          52. o1(A,B,C)  -> c2(n5(A,0,C),o0(A,0,C))  [A >= 0 && A >= 0]                                           (2,5)  
        Signature:
          {(add,3)
          ;(m0,3)
          ;(m1,3)
          ;(m2,3)
          ;(m3,3)
          ;(m4,3)
          ;(m5,3)
          ;(m6,3)
          ;(m7,3)
          ;(m8,3)
          ;(m9,3)
          ;(n0,3)
          ;(n1,3)
          ;(n2,3)
          ;(n3,3)
          ;(n4,3)
          ;(n5,3)
          ;(n6,3)
          ;(n7,3)
          ;(n8,3)
          ;(n80,3)
          ;(n81,3)
          ;(n9,3)
          ;(n90,3)
          ;(n91,3)
          ;(o0,3)
          ;(o00,3)
          ;(o01,3)
          ;(o1,3)
          ;(o2,3)
          ;(o3,3)}
        Flow Graph:
          [28->{50,51,52},41->{41,42,43},42->{44,45,46},43->{47,48,49},44->{41,42,43},45->{44,45,46},46->{47,48,49}
          ,47->{41,42,43},48->{44,45,46},49->{47,48,49},50->{41,42,43},51->{44,45,46},52->{47,48,49}]
        Sizebounds:
          (<28,0,A>, A) (<28,0,B>, B) (<28,0,C>, C) 
          (<41,0,A>, A) (<41,0,B>, ?) (<41,0,C>, ?) 
          (<41,1,A>, A) (<41,1,B>, ?) (<41,1,C>, ?) 
          (<42,0,A>, A) (<42,0,B>, ?) (<42,0,C>, ?) 
          (<42,1,A>, A) (<42,1,B>, ?) (<42,1,C>, ?) 
          (<43,0,A>, A) (<43,0,B>, ?) (<43,0,C>, ?) 
          (<43,1,A>, A) (<43,1,B>, ?) (<43,1,C>, ?) 
          (<44,0,A>, A) (<44,0,B>, ?) (<44,0,C>, ?) 
          (<44,1,A>, A) (<44,1,B>, ?) (<44,1,C>, ?) 
          (<45,0,A>, A) (<45,0,B>, ?) (<45,0,C>, ?) 
          (<45,1,A>, A) (<45,1,B>, ?) (<45,1,C>, ?) 
          (<46,0,A>, A) (<46,0,B>, ?) (<46,0,C>, ?) 
          (<46,1,A>, A) (<46,1,B>, ?) (<46,1,C>, ?) 
          (<47,0,A>, A) (<47,0,B>, ?) (<47,0,C>, ?) 
          (<47,1,A>, A) (<47,1,B>, ?) (<47,1,C>, ?) 
          (<48,0,A>, A) (<48,0,B>, ?) (<48,0,C>, ?) 
          (<48,1,A>, A) (<48,1,B>, ?) (<48,1,C>, ?) 
          (<49,0,A>, A) (<49,0,B>, ?) (<49,0,C>, ?) 
          (<49,1,A>, A) (<49,1,B>, ?) (<49,1,C>, ?) 
          (<50,0,A>, A) (<50,0,B>, 0) (<50,0,C>, C) 
          (<50,1,A>, A) (<50,1,B>, 0) (<50,1,C>, C) 
          (<51,0,A>, A) (<51,0,B>, 0) (<51,0,C>, C) 
          (<51,1,A>, A) (<51,1,B>, 0) (<51,1,C>, C) 
          (<52,0,A>, A) (<52,0,B>, 0) (<52,0,C>, C) 
          (<52,1,A>, A) (<52,1,B>, 0) (<52,1,C>, C) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(add) = 4*x1        
           p(n5) = 0           
           p(n8) = 4*x1 + -4*x2
          p(n81) = 0           
           p(n9) = 4*x1 + -4*x2
          p(n91) = 0           
           p(o0) = 4*x1 + -4*x2
          p(o01) = 0           
           p(o1) = 4*x1        
        
        The following rules are strictly oriented:
        [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] ==>                         
                                                           n9(A,B,C)   = 4*A + -4*B              
                                                                       > 4*A + -4*E              
                                                                       = c2(n8(A,E,B),n91(A,E,B))
        
        [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] ==>                         
                                                           n9(A,B,C)   = 4*A + -4*B              
                                                                       > 4*A + -4*E              
                                                                       = c2(n9(A,E,B),n91(A,E,B))
        
        [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] ==>                         
                                                           n9(A,B,C)   = 4*A + -4*B              
                                                                       > 4*A + -4*E              
                                                                       = c2(o0(A,E,B),n91(A,E,B))
        
        [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] ==>                         
                                                           o0(A,B,C)   = 4*A + -4*B              
                                                                       > 4*A + -4*E              
                                                                       = c2(n8(A,E,B),o01(A,E,B))
        
        [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] ==>                         
                                                           o0(A,B,C)   = 4*A + -4*B              
                                                                       > 4*A + -4*E              
                                                                       = c2(n9(A,E,B),o01(A,E,B))
        
        [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] ==>                         
                                                           o0(A,B,C)   = 4*A + -4*B              
                                                                       > 4*A + -4*E              
                                                                       = c2(o0(A,E,B),o01(A,E,B))
        
        
        The following rules are weakly oriented:
                                                  [A >= 0 && A >= 0] ==>                         
                                                          add(A,B,C)   = 4*A                     
                                                                      >= 4*A                     
                                                                       = o1(A,B,C)               
        
        [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] ==>                         
                                                           n8(A,B,C)   = 4*A + -4*B              
                                                                      >= 4*A + -4*E              
                                                                       = c2(n8(A,E,B),n81(A,E,B))
        
        [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] ==>                         
                                                           n8(A,B,C)   = 4*A + -4*B              
                                                                      >= 4*A + -4*E              
                                                                       = c2(n9(A,E,B),n81(A,E,B))
        
        [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] ==>                         
                                                           n8(A,B,C)   = 4*A + -4*B              
                                                                      >= 4*A + -4*E              
                                                                       = c2(o0(A,E,B),n81(A,E,B))
        
                                                  [A >= 0 && A >= 0] ==>                         
                                                           o1(A,B,C)   = 4*A                     
                                                                      >= 4*A                     
                                                                       = c2(n5(A,0,C),n8(A,0,C)) 
        
                                                  [A >= 0 && A >= 0] ==>                         
                                                           o1(A,B,C)   = 4*A                     
                                                                      >= 4*A                     
                                                                       = c2(n5(A,0,C),n9(A,0,C)) 
        
                                                  [A >= 0 && A >= 0] ==>                         
                                                           o1(A,B,C)   = 4*A                     
                                                                      >= 4*A                     
                                                                       = c2(n5(A,0,C),o0(A,0,C)) 
        
        
* Step 40: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          28. add(A,B,C) -> o1(A,B,C)                [A >= 0 && A >= 0]                                           (1,2)  
          41. n8(A,B,C)  -> c2(n8(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7)  
          42. n8(A,B,C)  -> c2(n9(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7)  
          43. n8(A,B,C)  -> c2(o0(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7)  
          44. n9(A,B,C)  -> c2(n8(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (4*A,7)
          45. n9(A,B,C)  -> c2(n9(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (3*A,7)
          46. n9(A,B,C)  -> c2(o0(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (2*A,7)
          47. o0(A,B,C)  -> c2(n8(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (2*A,7)
          48. o0(A,B,C)  -> c2(n9(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (2*A,7)
          49. o0(A,B,C)  -> c2(o0(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (2*A,7)
          50. o1(A,B,C)  -> c2(n5(A,0,C),n8(A,0,C))  [A >= 0 && A >= 0]                                           (2,5)  
          51. o1(A,B,C)  -> c2(n5(A,0,C),n9(A,0,C))  [A >= 0 && A >= 0]                                           (2,5)  
          52. o1(A,B,C)  -> c2(n5(A,0,C),o0(A,0,C))  [A >= 0 && A >= 0]                                           (2,5)  
        Signature:
          {(add,3)
          ;(m0,3)
          ;(m1,3)
          ;(m2,3)
          ;(m3,3)
          ;(m4,3)
          ;(m5,3)
          ;(m6,3)
          ;(m7,3)
          ;(m8,3)
          ;(m9,3)
          ;(n0,3)
          ;(n1,3)
          ;(n2,3)
          ;(n3,3)
          ;(n4,3)
          ;(n5,3)
          ;(n6,3)
          ;(n7,3)
          ;(n8,3)
          ;(n80,3)
          ;(n81,3)
          ;(n9,3)
          ;(n90,3)
          ;(n91,3)
          ;(o0,3)
          ;(o00,3)
          ;(o01,3)
          ;(o1,3)
          ;(o2,3)
          ;(o3,3)}
        Flow Graph:
          [28->{50,51,52},41->{41,42,43},42->{44,45,46},43->{47,48,49},44->{41,42,43},45->{44,45,46},46->{47,48,49}
          ,47->{41,42,43},48->{44,45,46},49->{47,48,49},50->{41,42,43},51->{44,45,46},52->{47,48,49}]
        Sizebounds:
          (<28,0,A>, A) (<28,0,B>, B) (<28,0,C>, C) 
          (<41,0,A>, A) (<41,0,B>, ?) (<41,0,C>, ?) 
          (<41,1,A>, A) (<41,1,B>, ?) (<41,1,C>, ?) 
          (<42,0,A>, A) (<42,0,B>, ?) (<42,0,C>, ?) 
          (<42,1,A>, A) (<42,1,B>, ?) (<42,1,C>, ?) 
          (<43,0,A>, A) (<43,0,B>, ?) (<43,0,C>, ?) 
          (<43,1,A>, A) (<43,1,B>, ?) (<43,1,C>, ?) 
          (<44,0,A>, A) (<44,0,B>, ?) (<44,0,C>, ?) 
          (<44,1,A>, A) (<44,1,B>, ?) (<44,1,C>, ?) 
          (<45,0,A>, A) (<45,0,B>, ?) (<45,0,C>, ?) 
          (<45,1,A>, A) (<45,1,B>, ?) (<45,1,C>, ?) 
          (<46,0,A>, A) (<46,0,B>, ?) (<46,0,C>, ?) 
          (<46,1,A>, A) (<46,1,B>, ?) (<46,1,C>, ?) 
          (<47,0,A>, A) (<47,0,B>, ?) (<47,0,C>, ?) 
          (<47,1,A>, A) (<47,1,B>, ?) (<47,1,C>, ?) 
          (<48,0,A>, A) (<48,0,B>, ?) (<48,0,C>, ?) 
          (<48,1,A>, A) (<48,1,B>, ?) (<48,1,C>, ?) 
          (<49,0,A>, A) (<49,0,B>, ?) (<49,0,C>, ?) 
          (<49,1,A>, A) (<49,1,B>, ?) (<49,1,C>, ?) 
          (<50,0,A>, A) (<50,0,B>, 0) (<50,0,C>, C) 
          (<50,1,A>, A) (<50,1,B>, 0) (<50,1,C>, C) 
          (<51,0,A>, A) (<51,0,B>, 0) (<51,0,C>, C) 
          (<51,1,A>, A) (<51,1,B>, 0) (<51,1,C>, C) 
          (<52,0,A>, A) (<52,0,B>, 0) (<52,0,C>, C) 
          (<52,1,A>, A) (<52,1,B>, 0) (<52,1,C>, C) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(add) = 5*x1        
           p(n5) = 0           
           p(n8) = 5*x1 + -5*x2
          p(n81) = 4           
           p(n9) = 5*x1 + -5*x2
          p(n91) = 0           
           p(o0) = 5*x1 + -5*x2
          p(o01) = 2           
           p(o1) = 5*x1        
        
        The following rules are strictly oriented:
        [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] ==>                         
                                                           n8(A,B,C)   = 5*A + -5*B              
                                                                       > 4 + 5*A + -5*E          
                                                                       = c2(o0(A,E,B),n81(A,E,B))
        
        [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] ==>                         
                                                           n9(A,B,C)   = 5*A + -5*B              
                                                                       > 5*A + -5*E              
                                                                       = c2(n8(A,E,B),n91(A,E,B))
        
        [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] ==>                         
                                                           n9(A,B,C)   = 5*A + -5*B              
                                                                       > 5*A + -5*E              
                                                                       = c2(n9(A,E,B),n91(A,E,B))
        
        [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] ==>                         
                                                           n9(A,B,C)   = 5*A + -5*B              
                                                                       > 5*A + -5*E              
                                                                       = c2(o0(A,E,B),n91(A,E,B))
        
        [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] ==>                         
                                                           o0(A,B,C)   = 5*A + -5*B              
                                                                       > 2 + 5*A + -5*E          
                                                                       = c2(n8(A,E,B),o01(A,E,B))
        
        [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] ==>                         
                                                           o0(A,B,C)   = 5*A + -5*B              
                                                                       > 2 + 5*A + -5*E          
                                                                       = c2(n9(A,E,B),o01(A,E,B))
        
        [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] ==>                         
                                                           o0(A,B,C)   = 5*A + -5*B              
                                                                       > 2 + 5*A + -5*E          
                                                                       = c2(o0(A,E,B),o01(A,E,B))
        
        
        The following rules are weakly oriented:
                                                  [A >= 0 && A >= 0] ==>                         
                                                          add(A,B,C)   = 5*A                     
                                                                      >= 5*A                     
                                                                       = o1(A,B,C)               
        
        [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] ==>                         
                                                           n8(A,B,C)   = 5*A + -5*B              
                                                                      >= 4 + 5*A + -5*E          
                                                                       = c2(n8(A,E,B),n81(A,E,B))
        
        [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] ==>                         
                                                           n8(A,B,C)   = 5*A + -5*B              
                                                                      >= 4 + 5*A + -5*E          
                                                                       = c2(n9(A,E,B),n81(A,E,B))
        
                                                  [A >= 0 && A >= 0] ==>                         
                                                           o1(A,B,C)   = 5*A                     
                                                                      >= 5*A                     
                                                                       = c2(n5(A,0,C),n8(A,0,C)) 
        
                                                  [A >= 0 && A >= 0] ==>                         
                                                           o1(A,B,C)   = 5*A                     
                                                                      >= 5*A                     
                                                                       = c2(n5(A,0,C),n9(A,0,C)) 
        
                                                  [A >= 0 && A >= 0] ==>                         
                                                           o1(A,B,C)   = 5*A                     
                                                                      >= 5*A                     
                                                                       = c2(n5(A,0,C),o0(A,0,C)) 
        
        
* Step 41: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          28. add(A,B,C) -> o1(A,B,C)                [A >= 0 && A >= 0]                                           (1,2)  
          41. n8(A,B,C)  -> c2(n8(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7)  
          42. n8(A,B,C)  -> c2(n9(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7)  
          43. n8(A,B,C)  -> c2(o0(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (5*A,7)
          44. n9(A,B,C)  -> c2(n8(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (4*A,7)
          45. n9(A,B,C)  -> c2(n9(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (3*A,7)
          46. n9(A,B,C)  -> c2(o0(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (2*A,7)
          47. o0(A,B,C)  -> c2(n8(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (2*A,7)
          48. o0(A,B,C)  -> c2(n9(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (2*A,7)
          49. o0(A,B,C)  -> c2(o0(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (2*A,7)
          50. o1(A,B,C)  -> c2(n5(A,0,C),n8(A,0,C))  [A >= 0 && A >= 0]                                           (2,5)  
          51. o1(A,B,C)  -> c2(n5(A,0,C),n9(A,0,C))  [A >= 0 && A >= 0]                                           (2,5)  
          52. o1(A,B,C)  -> c2(n5(A,0,C),o0(A,0,C))  [A >= 0 && A >= 0]                                           (2,5)  
        Signature:
          {(add,3)
          ;(m0,3)
          ;(m1,3)
          ;(m2,3)
          ;(m3,3)
          ;(m4,3)
          ;(m5,3)
          ;(m6,3)
          ;(m7,3)
          ;(m8,3)
          ;(m9,3)
          ;(n0,3)
          ;(n1,3)
          ;(n2,3)
          ;(n3,3)
          ;(n4,3)
          ;(n5,3)
          ;(n6,3)
          ;(n7,3)
          ;(n8,3)
          ;(n80,3)
          ;(n81,3)
          ;(n9,3)
          ;(n90,3)
          ;(n91,3)
          ;(o0,3)
          ;(o00,3)
          ;(o01,3)
          ;(o1,3)
          ;(o2,3)
          ;(o3,3)}
        Flow Graph:
          [28->{50,51,52},41->{41,42,43},42->{44,45,46},43->{47,48,49},44->{41,42,43},45->{44,45,46},46->{47,48,49}
          ,47->{41,42,43},48->{44,45,46},49->{47,48,49},50->{41,42,43},51->{44,45,46},52->{47,48,49}]
        Sizebounds:
          (<28,0,A>, A) (<28,0,B>, B) (<28,0,C>, C) 
          (<41,0,A>, A) (<41,0,B>, ?) (<41,0,C>, ?) 
          (<41,1,A>, A) (<41,1,B>, ?) (<41,1,C>, ?) 
          (<42,0,A>, A) (<42,0,B>, ?) (<42,0,C>, ?) 
          (<42,1,A>, A) (<42,1,B>, ?) (<42,1,C>, ?) 
          (<43,0,A>, A) (<43,0,B>, ?) (<43,0,C>, ?) 
          (<43,1,A>, A) (<43,1,B>, ?) (<43,1,C>, ?) 
          (<44,0,A>, A) (<44,0,B>, ?) (<44,0,C>, ?) 
          (<44,1,A>, A) (<44,1,B>, ?) (<44,1,C>, ?) 
          (<45,0,A>, A) (<45,0,B>, ?) (<45,0,C>, ?) 
          (<45,1,A>, A) (<45,1,B>, ?) (<45,1,C>, ?) 
          (<46,0,A>, A) (<46,0,B>, ?) (<46,0,C>, ?) 
          (<46,1,A>, A) (<46,1,B>, ?) (<46,1,C>, ?) 
          (<47,0,A>, A) (<47,0,B>, ?) (<47,0,C>, ?) 
          (<47,1,A>, A) (<47,1,B>, ?) (<47,1,C>, ?) 
          (<48,0,A>, A) (<48,0,B>, ?) (<48,0,C>, ?) 
          (<48,1,A>, A) (<48,1,B>, ?) (<48,1,C>, ?) 
          (<49,0,A>, A) (<49,0,B>, ?) (<49,0,C>, ?) 
          (<49,1,A>, A) (<49,1,B>, ?) (<49,1,C>, ?) 
          (<50,0,A>, A) (<50,0,B>, 0) (<50,0,C>, C) 
          (<50,1,A>, A) (<50,1,B>, 0) (<50,1,C>, C) 
          (<51,0,A>, A) (<51,0,B>, 0) (<51,0,C>, C) 
          (<51,1,A>, A) (<51,1,B>, 0) (<51,1,C>, C) 
          (<52,0,A>, A) (<52,0,B>, 0) (<52,0,C>, C) 
          (<52,1,A>, A) (<52,1,B>, 0) (<52,1,C>, C) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(add) = 7*x1        
           p(n5) = 0           
           p(n8) = 7*x1 + -7*x2
          p(n81) = 6           
           p(n9) = 7*x1 + -7*x2
          p(n91) = 0           
           p(o0) = 7*x1 + -7*x2
          p(o01) = 5           
           p(o1) = 7*x1        
        
        The following rules are strictly oriented:
        [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] ==>                         
                                                           n8(A,B,C)   = 7*A + -7*B              
                                                                       > 6 + 7*A + -7*E          
                                                                       = c2(n9(A,E,B),n81(A,E,B))
        
        [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] ==>                         
                                                           n8(A,B,C)   = 7*A + -7*B              
                                                                       > 6 + 7*A + -7*E          
                                                                       = c2(o0(A,E,B),n81(A,E,B))
        
        [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] ==>                         
                                                           n9(A,B,C)   = 7*A + -7*B              
                                                                       > 7*A + -7*E              
                                                                       = c2(n8(A,E,B),n91(A,E,B))
        
        [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] ==>                         
                                                           n9(A,B,C)   = 7*A + -7*B              
                                                                       > 7*A + -7*E              
                                                                       = c2(n9(A,E,B),n91(A,E,B))
        
        [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] ==>                         
                                                           n9(A,B,C)   = 7*A + -7*B              
                                                                       > 7*A + -7*E              
                                                                       = c2(o0(A,E,B),n91(A,E,B))
        
        [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] ==>                         
                                                           o0(A,B,C)   = 7*A + -7*B              
                                                                       > 5 + 7*A + -7*E          
                                                                       = c2(n8(A,E,B),o01(A,E,B))
        
        [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] ==>                         
                                                           o0(A,B,C)   = 7*A + -7*B              
                                                                       > 5 + 7*A + -7*E          
                                                                       = c2(n9(A,E,B),o01(A,E,B))
        
        [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] ==>                         
                                                           o0(A,B,C)   = 7*A + -7*B              
                                                                       > 5 + 7*A + -7*E          
                                                                       = c2(o0(A,E,B),o01(A,E,B))
        
        
        The following rules are weakly oriented:
                                                  [A >= 0 && A >= 0] ==>                         
                                                          add(A,B,C)   = 7*A                     
                                                                      >= 7*A                     
                                                                       = o1(A,B,C)               
        
        [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] ==>                         
                                                           n8(A,B,C)   = 7*A + -7*B              
                                                                      >= 6 + 7*A + -7*E          
                                                                       = c2(n8(A,E,B),n81(A,E,B))
        
                                                  [A >= 0 && A >= 0] ==>                         
                                                           o1(A,B,C)   = 7*A                     
                                                                      >= 7*A                     
                                                                       = c2(n5(A,0,C),n8(A,0,C)) 
        
                                                  [A >= 0 && A >= 0] ==>                         
                                                           o1(A,B,C)   = 7*A                     
                                                                      >= 7*A                     
                                                                       = c2(n5(A,0,C),n9(A,0,C)) 
        
                                                  [A >= 0 && A >= 0] ==>                         
                                                           o1(A,B,C)   = 7*A                     
                                                                      >= 7*A                     
                                                                       = c2(n5(A,0,C),o0(A,0,C)) 
        
        
* Step 42: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          28. add(A,B,C) -> o1(A,B,C)                [A >= 0 && A >= 0]                                           (1,2)  
          41. n8(A,B,C)  -> c2(n8(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (?,7)  
          42. n8(A,B,C)  -> c2(n9(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (7*A,7)
          43. n8(A,B,C)  -> c2(o0(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (5*A,7)
          44. n9(A,B,C)  -> c2(n8(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (4*A,7)
          45. n9(A,B,C)  -> c2(n9(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (3*A,7)
          46. n9(A,B,C)  -> c2(o0(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (2*A,7)
          47. o0(A,B,C)  -> c2(n8(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (2*A,7)
          48. o0(A,B,C)  -> c2(n9(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (2*A,7)
          49. o0(A,B,C)  -> c2(o0(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (2*A,7)
          50. o1(A,B,C)  -> c2(n5(A,0,C),n8(A,0,C))  [A >= 0 && A >= 0]                                           (2,5)  
          51. o1(A,B,C)  -> c2(n5(A,0,C),n9(A,0,C))  [A >= 0 && A >= 0]                                           (2,5)  
          52. o1(A,B,C)  -> c2(n5(A,0,C),o0(A,0,C))  [A >= 0 && A >= 0]                                           (2,5)  
        Signature:
          {(add,3)
          ;(m0,3)
          ;(m1,3)
          ;(m2,3)
          ;(m3,3)
          ;(m4,3)
          ;(m5,3)
          ;(m6,3)
          ;(m7,3)
          ;(m8,3)
          ;(m9,3)
          ;(n0,3)
          ;(n1,3)
          ;(n2,3)
          ;(n3,3)
          ;(n4,3)
          ;(n5,3)
          ;(n6,3)
          ;(n7,3)
          ;(n8,3)
          ;(n80,3)
          ;(n81,3)
          ;(n9,3)
          ;(n90,3)
          ;(n91,3)
          ;(o0,3)
          ;(o00,3)
          ;(o01,3)
          ;(o1,3)
          ;(o2,3)
          ;(o3,3)}
        Flow Graph:
          [28->{50,51,52},41->{41,42,43},42->{44,45,46},43->{47,48,49},44->{41,42,43},45->{44,45,46},46->{47,48,49}
          ,47->{41,42,43},48->{44,45,46},49->{47,48,49},50->{41,42,43},51->{44,45,46},52->{47,48,49}]
        Sizebounds:
          (<28,0,A>, A) (<28,0,B>, B) (<28,0,C>, C) 
          (<41,0,A>, A) (<41,0,B>, ?) (<41,0,C>, ?) 
          (<41,1,A>, A) (<41,1,B>, ?) (<41,1,C>, ?) 
          (<42,0,A>, A) (<42,0,B>, ?) (<42,0,C>, ?) 
          (<42,1,A>, A) (<42,1,B>, ?) (<42,1,C>, ?) 
          (<43,0,A>, A) (<43,0,B>, ?) (<43,0,C>, ?) 
          (<43,1,A>, A) (<43,1,B>, ?) (<43,1,C>, ?) 
          (<44,0,A>, A) (<44,0,B>, ?) (<44,0,C>, ?) 
          (<44,1,A>, A) (<44,1,B>, ?) (<44,1,C>, ?) 
          (<45,0,A>, A) (<45,0,B>, ?) (<45,0,C>, ?) 
          (<45,1,A>, A) (<45,1,B>, ?) (<45,1,C>, ?) 
          (<46,0,A>, A) (<46,0,B>, ?) (<46,0,C>, ?) 
          (<46,1,A>, A) (<46,1,B>, ?) (<46,1,C>, ?) 
          (<47,0,A>, A) (<47,0,B>, ?) (<47,0,C>, ?) 
          (<47,1,A>, A) (<47,1,B>, ?) (<47,1,C>, ?) 
          (<48,0,A>, A) (<48,0,B>, ?) (<48,0,C>, ?) 
          (<48,1,A>, A) (<48,1,B>, ?) (<48,1,C>, ?) 
          (<49,0,A>, A) (<49,0,B>, ?) (<49,0,C>, ?) 
          (<49,1,A>, A) (<49,1,B>, ?) (<49,1,C>, ?) 
          (<50,0,A>, A) (<50,0,B>, 0) (<50,0,C>, C) 
          (<50,1,A>, A) (<50,1,B>, 0) (<50,1,C>, C) 
          (<51,0,A>, A) (<51,0,B>, 0) (<51,0,C>, C) 
          (<51,1,A>, A) (<51,1,B>, 0) (<51,1,C>, C) 
          (<52,0,A>, A) (<52,0,B>, 0) (<52,0,C>, C) 
          (<52,1,A>, A) (<52,1,B>, 0) (<52,1,C>, C) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(add) = 2*x1        
           p(n5) = 0           
           p(n8) = 2*x1 + -2*x2
          p(n81) = 1           
           p(n9) = 2*x1 + -2*x2
          p(n91) = 0           
           p(o0) = 2*x1 + -2*x2
          p(o01) = 0           
           p(o1) = 2*x1        
        
        The following rules are strictly oriented:
        [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] ==>                         
                                                           n8(A,B,C)   = 2*A + -2*B              
                                                                       > 1 + 2*A + -2*E          
                                                                       = c2(n8(A,E,B),n81(A,E,B))
        
        [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] ==>                         
                                                           n8(A,B,C)   = 2*A + -2*B              
                                                                       > 1 + 2*A + -2*E          
                                                                       = c2(n9(A,E,B),n81(A,E,B))
        
        [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] ==>                         
                                                           n8(A,B,C)   = 2*A + -2*B              
                                                                       > 1 + 2*A + -2*E          
                                                                       = c2(o0(A,E,B),n81(A,E,B))
        
        [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] ==>                         
                                                           n9(A,B,C)   = 2*A + -2*B              
                                                                       > 2*A + -2*E              
                                                                       = c2(n8(A,E,B),n91(A,E,B))
        
        [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] ==>                         
                                                           n9(A,B,C)   = 2*A + -2*B              
                                                                       > 2*A + -2*E              
                                                                       = c2(n9(A,E,B),n91(A,E,B))
        
        [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] ==>                         
                                                           n9(A,B,C)   = 2*A + -2*B              
                                                                       > 2*A + -2*E              
                                                                       = c2(o0(A,E,B),n91(A,E,B))
        
        [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] ==>                         
                                                           o0(A,B,C)   = 2*A + -2*B              
                                                                       > 2*A + -2*E              
                                                                       = c2(n8(A,E,B),o01(A,E,B))
        
        [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] ==>                         
                                                           o0(A,B,C)   = 2*A + -2*B              
                                                                       > 2*A + -2*E              
                                                                       = c2(n9(A,E,B),o01(A,E,B))
        
        [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] ==>                         
                                                           o0(A,B,C)   = 2*A + -2*B              
                                                                       > 2*A + -2*E              
                                                                       = c2(o0(A,E,B),o01(A,E,B))
        
        
        The following rules are weakly oriented:
        [A >= 0 && A >= 0] ==>                        
                add(A,B,C)   = 2*A                    
                            >= 2*A                    
                             = o1(A,B,C)              
        
        [A >= 0 && A >= 0] ==>                        
                 o1(A,B,C)   = 2*A                    
                            >= 2*A                    
                             = c2(n5(A,0,C),n8(A,0,C))
        
        [A >= 0 && A >= 0] ==>                        
                 o1(A,B,C)   = 2*A                    
                            >= 2*A                    
                             = c2(n5(A,0,C),n9(A,0,C))
        
        [A >= 0 && A >= 0] ==>                        
                 o1(A,B,C)   = 2*A                    
                            >= 2*A                    
                             = c2(n5(A,0,C),o0(A,0,C))
        
        
* Step 43: UnsatPaths WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          28. add(A,B,C) -> o1(A,B,C)                [A >= 0 && A >= 0]                                           (1,2)  
          41. n8(A,B,C)  -> c2(n8(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (2*A,7)
          42. n8(A,B,C)  -> c2(n9(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (2*A,7)
          43. n8(A,B,C)  -> c2(o0(A,E,B),n81(A,E,B)) [A >= B && 1 + B >= E && E >= 1 + B && 3 + A >= E && A >= E] (2*A,7)
          44. n9(A,B,C)  -> c2(n8(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (2*A,7)
          45. n9(A,B,C)  -> c2(n9(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (2*A,7)
          46. n9(A,B,C)  -> c2(o0(A,E,B),n91(A,E,B)) [A >= B && 2 + B >= E && E >= 2 + B && 3 + A >= E && A >= E] (2*A,7)
          47. o0(A,B,C)  -> c2(n8(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (2*A,7)
          48. o0(A,B,C)  -> c2(n9(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (2*A,7)
          49. o0(A,B,C)  -> c2(o0(A,E,B),o01(A,E,B)) [A >= B && 3 + B >= E && E >= 3 + B && 3 + A >= E && A >= E] (2*A,7)
          50. o1(A,B,C)  -> c2(n5(A,0,C),n8(A,0,C))  [A >= 0 && A >= 0]                                           (2,5)  
          51. o1(A,B,C)  -> c2(n5(A,0,C),n9(A,0,C))  [A >= 0 && A >= 0]                                           (2,5)  
          52. o1(A,B,C)  -> c2(n5(A,0,C),o0(A,0,C))  [A >= 0 && A >= 0]                                           (2,5)  
        Signature:
          {(add,3)
          ;(m0,3)
          ;(m1,3)
          ;(m2,3)
          ;(m3,3)
          ;(m4,3)
          ;(m5,3)
          ;(m6,3)
          ;(m7,3)
          ;(m8,3)
          ;(m9,3)
          ;(n0,3)
          ;(n1,3)
          ;(n2,3)
          ;(n3,3)
          ;(n4,3)
          ;(n5,3)
          ;(n6,3)
          ;(n7,3)
          ;(n8,3)
          ;(n80,3)
          ;(n81,3)
          ;(n9,3)
          ;(n90,3)
          ;(n91,3)
          ;(o0,3)
          ;(o00,3)
          ;(o01,3)
          ;(o1,3)
          ;(o2,3)
          ;(o3,3)}
        Flow Graph:
          [28->{50,51,52},41->{41,42,43},42->{44,45,46},43->{47,48,49},44->{41,42,43},45->{44,45,46},46->{47,48,49}
          ,47->{41,42,43},48->{44,45,46},49->{47,48,49},50->{41,42,43},51->{44,45,46},52->{47,48,49}]
        Sizebounds:
          (<28,0,A>, A) (<28,0,B>, B) (<28,0,C>, C) 
          (<41,0,A>, A) (<41,0,B>, ?) (<41,0,C>, ?) 
          (<41,1,A>, A) (<41,1,B>, ?) (<41,1,C>, ?) 
          (<42,0,A>, A) (<42,0,B>, ?) (<42,0,C>, ?) 
          (<42,1,A>, A) (<42,1,B>, ?) (<42,1,C>, ?) 
          (<43,0,A>, A) (<43,0,B>, ?) (<43,0,C>, ?) 
          (<43,1,A>, A) (<43,1,B>, ?) (<43,1,C>, ?) 
          (<44,0,A>, A) (<44,0,B>, ?) (<44,0,C>, ?) 
          (<44,1,A>, A) (<44,1,B>, ?) (<44,1,C>, ?) 
          (<45,0,A>, A) (<45,0,B>, ?) (<45,0,C>, ?) 
          (<45,1,A>, A) (<45,1,B>, ?) (<45,1,C>, ?) 
          (<46,0,A>, A) (<46,0,B>, ?) (<46,0,C>, ?) 
          (<46,1,A>, A) (<46,1,B>, ?) (<46,1,C>, ?) 
          (<47,0,A>, A) (<47,0,B>, ?) (<47,0,C>, ?) 
          (<47,1,A>, A) (<47,1,B>, ?) (<47,1,C>, ?) 
          (<48,0,A>, A) (<48,0,B>, ?) (<48,0,C>, ?) 
          (<48,1,A>, A) (<48,1,B>, ?) (<48,1,C>, ?) 
          (<49,0,A>, A) (<49,0,B>, ?) (<49,0,C>, ?) 
          (<49,1,A>, A) (<49,1,B>, ?) (<49,1,C>, ?) 
          (<50,0,A>, A) (<50,0,B>, 0) (<50,0,C>, C) 
          (<50,1,A>, A) (<50,1,B>, 0) (<50,1,C>, C) 
          (<51,0,A>, A) (<51,0,B>, 0) (<51,0,C>, C) 
          (<51,1,A>, A) (<51,1,B>, 0) (<51,1,C>, C) 
          (<52,0,A>, A) (<52,0,B>, 0) (<52,0,C>, C) 
          (<52,1,A>, A) (<52,1,B>, 0) (<52,1,C>, C) 
    + Applied Processor:
        UnsatPaths
    + Details:
        The problem is already solved.

WORST_CASE(?,O(n^1))