WORST_CASE(?,O(1)) * Step 1: UnsatRules WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. copypol(A,B,C,D) -> n0(A,B,C,D) [A >= 0] (1,1) 1. m0(A,B,C,D) -> m1(B,A,E,C) [B >= 0 && C >= 1 && A >= 0] (?,1) 2. m2(A,B,C,D) -> m3(A,B,C,D) [A >= 1] (?,1) 3. m3(A,B,C,D) -> m5(A,B,C,D) [A >= 1] (?,1) 4. m6(A,B,C,D) -> m7(A,B,C,D) [A >= 1] (?,1) 5. m9(A,B,C,D) -> c2(m8(A,B,C,D),m2(A,B,C,D)) [A >= 1] (?,1) 6. m7(A,B,C,D) -> m9(A,B,C,D) [A >= 1] (?,1) 7. n3(A,B,C,D) -> n2(A,B,C,D) [A >= 0 && A >= 1 + C] (?,1) 8. n4(A,B,C,D) -> n2(A,B,C,D) [0 >= 1] (?,1) 9. m1(A,B,C,D) -> n3(A,B,C,D) [A >= 1 + C] (?,1) 10. m1(A,B,C,D) -> n5(B,A,D,C) [C >= A] (?,1) 11. n60(A,B,C,D) -> n1(A,B,C,D) True (?,1) 12. n61(A,B,C,D) -> m6(A,B,C,D) True (?,1) 13. n62(A,B,C,D) -> m0(C,0,B,D) True (?,1) 14. n6(A,B,C,D) -> c3(n60(E,F,A,D),n61(E,F,A,D),n62(E,F,A,D)) [F >= 1 && E >= 1 && A >= 0] (?,1) 15. n0(A,B,C,D) -> n6(A,B,C,D) [A >= 0] (?,1) 16. n7(A,B,C,D) -> m0(A,E,C,D) [B >= 0 && A >= 0 && C >= 1 && 1 + B >= E && E >= 1 + B] (?,1) 17. n5(A,B,C,D) -> n8(B,C,A,D) [B >= 0 && A >= 0 && C >= 1 && D >= B] (?,1) 18. n8(A,B,C,D) -> n4(A,B,C,D) [A >= 11] (?,1) 19. n8(A,B,C,D) -> n7(C,A,B,D) [10 >= A] (?,1) 20. m5(A,B,C,D) -> c2(m4(A,B,C,D),n9(A,B,C,D)) [A >= 1] (?,1) Signature: {(copypol,4) ;(m0,4) ;(m1,4) ;(m2,4) ;(m3,4) ;(m4,4) ;(m5,4) ;(m6,4) ;(m7,4) ;(m8,4) ;(m9,4) ;(n0,4) ;(n1,4) ;(n2,4) ;(n3,4) ;(n4,4) ;(n5,4) ;(n6,4) ;(n60,4) ;(n61,4) ;(n62,4) ;(n7,4) ;(n8,4) ;(n9,4)} Flow Graph: [0->{15},1->{9,10},2->{3},3->{20},4->{6},5->{2},6->{5},7->{},8->{},9->{7},10->{17},11->{},12->{4},13->{1} ,14->{11,12,13},15->{14},16->{1},17->{18,19},18->{8},19->{16},20->{}] + Applied Processor: UnsatRules + Details: The following transitions have unsatisfiable constraints and are removed: [8] * Step 2: LocalSizeboundsProc WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. copypol(A,B,C,D) -> n0(A,B,C,D) [A >= 0] (1,1) 1. m0(A,B,C,D) -> m1(B,A,E,C) [B >= 0 && C >= 1 && A >= 0] (?,1) 2. m2(A,B,C,D) -> m3(A,B,C,D) [A >= 1] (?,1) 3. m3(A,B,C,D) -> m5(A,B,C,D) [A >= 1] (?,1) 4. m6(A,B,C,D) -> m7(A,B,C,D) [A >= 1] (?,1) 5. m9(A,B,C,D) -> c2(m8(A,B,C,D),m2(A,B,C,D)) [A >= 1] (?,1) 6. m7(A,B,C,D) -> m9(A,B,C,D) [A >= 1] (?,1) 7. n3(A,B,C,D) -> n2(A,B,C,D) [A >= 0 && A >= 1 + C] (?,1) 9. m1(A,B,C,D) -> n3(A,B,C,D) [A >= 1 + C] (?,1) 10. m1(A,B,C,D) -> n5(B,A,D,C) [C >= A] (?,1) 11. n60(A,B,C,D) -> n1(A,B,C,D) True (?,1) 12. n61(A,B,C,D) -> m6(A,B,C,D) True (?,1) 13. n62(A,B,C,D) -> m0(C,0,B,D) True (?,1) 14. n6(A,B,C,D) -> c3(n60(E,F,A,D),n61(E,F,A,D),n62(E,F,A,D)) [F >= 1 && E >= 1 && A >= 0] (?,1) 15. n0(A,B,C,D) -> n6(A,B,C,D) [A >= 0] (?,1) 16. n7(A,B,C,D) -> m0(A,E,C,D) [B >= 0 && A >= 0 && C >= 1 && 1 + B >= E && E >= 1 + B] (?,1) 17. n5(A,B,C,D) -> n8(B,C,A,D) [B >= 0 && A >= 0 && C >= 1 && D >= B] (?,1) 18. n8(A,B,C,D) -> n4(A,B,C,D) [A >= 11] (?,1) 19. n8(A,B,C,D) -> n7(C,A,B,D) [10 >= A] (?,1) 20. m5(A,B,C,D) -> c2(m4(A,B,C,D),n9(A,B,C,D)) [A >= 1] (?,1) Signature: {(copypol,4) ;(m0,4) ;(m1,4) ;(m2,4) ;(m3,4) ;(m4,4) ;(m5,4) ;(m6,4) ;(m7,4) ;(m8,4) ;(m9,4) ;(n0,4) ;(n1,4) ;(n2,4) ;(n3,4) ;(n4,4) ;(n5,4) ;(n6,4) ;(n60,4) ;(n61,4) ;(n62,4) ;(n7,4) ;(n8,4) ;(n9,4)} Flow Graph: [0->{15},1->{9,10},2->{3},3->{20},4->{6},5->{2},6->{5},7->{},9->{7},10->{17},11->{},12->{4},13->{1} ,14->{11,12,13},15->{14},16->{1},17->{18,19},18->{},19->{16},20->{}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (< 0,0,A>, A, .= 0) (< 0,0,B>, B, .= 0) (< 0,0,C>, C, .= 0) (< 0,0,D>, D, .= 0) (< 1,0,A>, B, .= 0) (< 1,0,B>, A, .= 0) (< 1,0,C>, ?, .?) (< 1,0,D>, C, .= 0) (< 2,0,A>, A, .= 0) (< 2,0,B>, B, .= 0) (< 2,0,C>, C, .= 0) (< 2,0,D>, D, .= 0) (< 3,0,A>, A, .= 0) (< 3,0,B>, B, .= 0) (< 3,0,C>, C, .= 0) (< 3,0,D>, D, .= 0) (< 4,0,A>, A, .= 0) (< 4,0,B>, B, .= 0) (< 4,0,C>, C, .= 0) (< 4,0,D>, D, .= 0) (< 5,0,A>, A, .= 0) (< 5,0,B>, B, .= 0) (< 5,0,C>, C, .= 0) (< 5,0,D>, D, .= 0) (< 5,1,A>, A, .= 0) (< 5,1,B>, B, .= 0) (< 5,1,C>, C, .= 0) (< 5,1,D>, D, .= 0) (< 6,0,A>, A, .= 0) (< 6,0,B>, B, .= 0) (< 6,0,C>, C, .= 0) (< 6,0,D>, D, .= 0) (< 7,0,A>, A, .= 0) (< 7,0,B>, B, .= 0) (< 7,0,C>, C, .= 0) (< 7,0,D>, D, .= 0) (< 9,0,A>, A, .= 0) (< 9,0,B>, B, .= 0) (< 9,0,C>, C, .= 0) (< 9,0,D>, D, .= 0) (<10,0,A>, B, .= 0) (<10,0,B>, A, .= 0) (<10,0,C>, D, .= 0) (<10,0,D>, C, .= 0) (<11,0,A>, A, .= 0) (<11,0,B>, B, .= 0) (<11,0,C>, C, .= 0) (<11,0,D>, D, .= 0) (<12,0,A>, A, .= 0) (<12,0,B>, B, .= 0) (<12,0,C>, C, .= 0) (<12,0,D>, D, .= 0) (<13,0,A>, C, .= 0) (<13,0,B>, 0, .= 0) (<13,0,C>, B, .= 0) (<13,0,D>, D, .= 0) (<14,0,A>, ?, .?) (<14,0,B>, ?, .?) (<14,0,C>, A, .= 0) (<14,0,D>, D, .= 0) (<14,1,A>, ?, .?) (<14,1,B>, ?, .?) (<14,1,C>, A, .= 0) (<14,1,D>, D, .= 0) (<14,2,A>, ?, .?) (<14,2,B>, ?, .?) (<14,2,C>, A, .= 0) (<14,2,D>, D, .= 0) (<15,0,A>, A, .= 0) (<15,0,B>, B, .= 0) (<15,0,C>, C, .= 0) (<15,0,D>, D, .= 0) (<16,0,A>, A, .= 0) (<16,0,B>, 1 + B, .+ 1) (<16,0,C>, C, .= 0) (<16,0,D>, D, .= 0) (<17,0,A>, B, .= 0) (<17,0,B>, C, .= 0) (<17,0,C>, A, .= 0) (<17,0,D>, D, .= 0) (<18,0,A>, A, .= 0) (<18,0,B>, B, .= 0) (<18,0,C>, C, .= 0) (<18,0,D>, D, .= 0) (<19,0,A>, C, .= 0) (<19,0,B>, A, .= 0) (<19,0,C>, B, .= 0) (<19,0,D>, D, .= 0) (<20,0,A>, A, .= 0) (<20,0,B>, B, .= 0) (<20,0,C>, C, .= 0) (<20,0,D>, D, .= 0) (<20,1,A>, A, .= 0) (<20,1,B>, B, .= 0) (<20,1,C>, C, .= 0) (<20,1,D>, D, .= 0) * Step 3: SizeboundsProc WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. copypol(A,B,C,D) -> n0(A,B,C,D) [A >= 0] (1,1) 1. m0(A,B,C,D) -> m1(B,A,E,C) [B >= 0 && C >= 1 && A >= 0] (?,1) 2. m2(A,B,C,D) -> m3(A,B,C,D) [A >= 1] (?,1) 3. m3(A,B,C,D) -> m5(A,B,C,D) [A >= 1] (?,1) 4. m6(A,B,C,D) -> m7(A,B,C,D) [A >= 1] (?,1) 5. m9(A,B,C,D) -> c2(m8(A,B,C,D),m2(A,B,C,D)) [A >= 1] (?,1) 6. m7(A,B,C,D) -> m9(A,B,C,D) [A >= 1] (?,1) 7. n3(A,B,C,D) -> n2(A,B,C,D) [A >= 0 && A >= 1 + C] (?,1) 9. m1(A,B,C,D) -> n3(A,B,C,D) [A >= 1 + C] (?,1) 10. m1(A,B,C,D) -> n5(B,A,D,C) [C >= A] (?,1) 11. n60(A,B,C,D) -> n1(A,B,C,D) True (?,1) 12. n61(A,B,C,D) -> m6(A,B,C,D) True (?,1) 13. n62(A,B,C,D) -> m0(C,0,B,D) True (?,1) 14. n6(A,B,C,D) -> c3(n60(E,F,A,D),n61(E,F,A,D),n62(E,F,A,D)) [F >= 1 && E >= 1 && A >= 0] (?,1) 15. n0(A,B,C,D) -> n6(A,B,C,D) [A >= 0] (?,1) 16. n7(A,B,C,D) -> m0(A,E,C,D) [B >= 0 && A >= 0 && C >= 1 && 1 + B >= E && E >= 1 + B] (?,1) 17. n5(A,B,C,D) -> n8(B,C,A,D) [B >= 0 && A >= 0 && C >= 1 && D >= B] (?,1) 18. n8(A,B,C,D) -> n4(A,B,C,D) [A >= 11] (?,1) 19. n8(A,B,C,D) -> n7(C,A,B,D) [10 >= A] (?,1) 20. m5(A,B,C,D) -> c2(m4(A,B,C,D),n9(A,B,C,D)) [A >= 1] (?,1) Signature: {(copypol,4) ;(m0,4) ;(m1,4) ;(m2,4) ;(m3,4) ;(m4,4) ;(m5,4) ;(m6,4) ;(m7,4) ;(m8,4) ;(m9,4) ;(n0,4) ;(n1,4) ;(n2,4) ;(n3,4) ;(n4,4) ;(n5,4) ;(n6,4) ;(n60,4) ;(n61,4) ;(n62,4) ;(n7,4) ;(n8,4) ;(n9,4)} Flow Graph: [0->{15},1->{9,10},2->{3},3->{20},4->{6},5->{2},6->{5},7->{},9->{7},10->{17},11->{},12->{4},13->{1} ,14->{11,12,13},15->{14},16->{1},17->{18,19},18->{},19->{16},20->{}] Sizebounds: (< 0,0,A>, ?) (< 0,0,B>, ?) (< 0,0,C>, ?) (< 0,0,D>, ?) (< 1,0,A>, ?) (< 1,0,B>, ?) (< 1,0,C>, ?) (< 1,0,D>, ?) (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, ?) (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, ?) (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,1,A>, ?) (< 5,1,B>, ?) (< 5,1,C>, ?) (< 5,1,D>, ?) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<14,0,A>, ?) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>, ?) (<14,1,A>, ?) (<14,1,B>, ?) (<14,1,C>, ?) (<14,1,D>, ?) (<14,2,A>, ?) (<14,2,B>, ?) (<14,2,C>, ?) (<14,2,D>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,D>, ?) (<18,0,A>, ?) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>, ?) (<19,0,A>, ?) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>, ?) (<20,0,A>, ?) (<20,0,B>, ?) (<20,0,C>, ?) (<20,0,D>, ?) (<20,1,A>, ?) (<20,1,B>, ?) (<20,1,C>, ?) (<20,1,D>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 1,0,A>, 1) (< 1,0,B>, A) (< 1,0,C>, ?) (< 1,0,D>, ?) (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,C>, A) (< 2,0,D>, D) (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,C>, A) (< 3,0,D>, D) (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,C>, A) (< 4,0,D>, D) (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,0,C>, A) (< 5,0,D>, D) (< 5,1,A>, ?) (< 5,1,B>, ?) (< 5,1,C>, A) (< 5,1,D>, D) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, A) (< 6,0,D>, D) (< 7,0,A>, 1) (< 7,0,B>, A) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 9,0,A>, 1) (< 9,0,B>, A) (< 9,0,C>, ?) (< 9,0,D>, ?) (<10,0,A>, A) (<10,0,B>, 1) (<10,0,C>, ?) (<10,0,D>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, A) (<11,0,D>, D) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, A) (<12,0,D>, D) (<13,0,A>, A) (<13,0,B>, 0) (<13,0,C>, ?) (<13,0,D>, D) (<14,0,A>, ?) (<14,0,B>, ?) (<14,0,C>, A) (<14,0,D>, D) (<14,1,A>, ?) (<14,1,B>, ?) (<14,1,C>, A) (<14,1,D>, D) (<14,2,A>, ?) (<14,2,B>, ?) (<14,2,C>, A) (<14,2,D>, D) (<15,0,A>, A) (<15,0,B>, B) (<15,0,C>, C) (<15,0,D>, D) (<16,0,A>, A) (<16,0,B>, 1) (<16,0,C>, 1) (<16,0,D>, ?) (<17,0,A>, 1) (<17,0,B>, 1) (<17,0,C>, A) (<17,0,D>, ?) (<18,0,A>, 1) (<18,0,B>, 1) (<18,0,C>, A) (<18,0,D>, ?) (<19,0,A>, A) (<19,0,B>, 1) (<19,0,C>, 1) (<19,0,D>, ?) (<20,0,A>, ?) (<20,0,B>, ?) (<20,0,C>, A) (<20,0,D>, D) (<20,1,A>, ?) (<20,1,B>, ?) (<20,1,C>, A) (<20,1,D>, D) * Step 4: LeafRules WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. copypol(A,B,C,D) -> n0(A,B,C,D) [A >= 0] (1,1) 1. m0(A,B,C,D) -> m1(B,A,E,C) [B >= 0 && C >= 1 && A >= 0] (?,1) 2. m2(A,B,C,D) -> m3(A,B,C,D) [A >= 1] (?,1) 3. m3(A,B,C,D) -> m5(A,B,C,D) [A >= 1] (?,1) 4. m6(A,B,C,D) -> m7(A,B,C,D) [A >= 1] (?,1) 5. m9(A,B,C,D) -> c2(m8(A,B,C,D),m2(A,B,C,D)) [A >= 1] (?,1) 6. m7(A,B,C,D) -> m9(A,B,C,D) [A >= 1] (?,1) 7. n3(A,B,C,D) -> n2(A,B,C,D) [A >= 0 && A >= 1 + C] (?,1) 9. m1(A,B,C,D) -> n3(A,B,C,D) [A >= 1 + C] (?,1) 10. m1(A,B,C,D) -> n5(B,A,D,C) [C >= A] (?,1) 11. n60(A,B,C,D) -> n1(A,B,C,D) True (?,1) 12. n61(A,B,C,D) -> m6(A,B,C,D) True (?,1) 13. n62(A,B,C,D) -> m0(C,0,B,D) True (?,1) 14. n6(A,B,C,D) -> c3(n60(E,F,A,D),n61(E,F,A,D),n62(E,F,A,D)) [F >= 1 && E >= 1 && A >= 0] (?,1) 15. n0(A,B,C,D) -> n6(A,B,C,D) [A >= 0] (?,1) 16. n7(A,B,C,D) -> m0(A,E,C,D) [B >= 0 && A >= 0 && C >= 1 && 1 + B >= E && E >= 1 + B] (?,1) 17. n5(A,B,C,D) -> n8(B,C,A,D) [B >= 0 && A >= 0 && C >= 1 && D >= B] (?,1) 18. n8(A,B,C,D) -> n4(A,B,C,D) [A >= 11] (?,1) 19. n8(A,B,C,D) -> n7(C,A,B,D) [10 >= A] (?,1) 20. m5(A,B,C,D) -> c2(m4(A,B,C,D),n9(A,B,C,D)) [A >= 1] (?,1) Signature: {(copypol,4) ;(m0,4) ;(m1,4) ;(m2,4) ;(m3,4) ;(m4,4) ;(m5,4) ;(m6,4) ;(m7,4) ;(m8,4) ;(m9,4) ;(n0,4) ;(n1,4) ;(n2,4) ;(n3,4) ;(n4,4) ;(n5,4) ;(n6,4) ;(n60,4) ;(n61,4) ;(n62,4) ;(n7,4) ;(n8,4) ;(n9,4)} Flow Graph: [0->{15},1->{9,10},2->{3},3->{20},4->{6},5->{2},6->{5},7->{},9->{7},10->{17},11->{},12->{4},13->{1} ,14->{11,12,13},15->{14},16->{1},17->{18,19},18->{},19->{16},20->{}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 1,0,A>, 1) (< 1,0,B>, A) (< 1,0,C>, ?) (< 1,0,D>, ?) (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,C>, A) (< 2,0,D>, D) (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,C>, A) (< 3,0,D>, D) (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,C>, A) (< 4,0,D>, D) (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,0,C>, A) (< 5,0,D>, D) (< 5,1,A>, ?) (< 5,1,B>, ?) (< 5,1,C>, A) (< 5,1,D>, D) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, A) (< 6,0,D>, D) (< 7,0,A>, 1) (< 7,0,B>, A) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 9,0,A>, 1) (< 9,0,B>, A) (< 9,0,C>, ?) (< 9,0,D>, ?) (<10,0,A>, A) (<10,0,B>, 1) (<10,0,C>, ?) (<10,0,D>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, A) (<11,0,D>, D) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, A) (<12,0,D>, D) (<13,0,A>, A) (<13,0,B>, 0) (<13,0,C>, ?) (<13,0,D>, D) (<14,0,A>, ?) (<14,0,B>, ?) (<14,0,C>, A) (<14,0,D>, D) (<14,1,A>, ?) (<14,1,B>, ?) (<14,1,C>, A) (<14,1,D>, D) (<14,2,A>, ?) (<14,2,B>, ?) (<14,2,C>, A) (<14,2,D>, D) (<15,0,A>, A) (<15,0,B>, B) (<15,0,C>, C) (<15,0,D>, D) (<16,0,A>, A) (<16,0,B>, 1) (<16,0,C>, 1) (<16,0,D>, ?) (<17,0,A>, 1) (<17,0,B>, 1) (<17,0,C>, A) (<17,0,D>, ?) (<18,0,A>, 1) (<18,0,B>, 1) (<18,0,C>, A) (<18,0,D>, ?) (<19,0,A>, A) (<19,0,B>, 1) (<19,0,C>, 1) (<19,0,D>, ?) (<20,0,A>, ?) (<20,0,B>, ?) (<20,0,C>, A) (<20,0,D>, D) (<20,1,A>, ?) (<20,1,B>, ?) (<20,1,C>, A) (<20,1,D>, D) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [12,4,6,5,2,3,9,7,11,18,20] * Step 5: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. copypol(A,B,C,D) -> n0(A,B,C,D) [A >= 0] (1,1) 1. m0(A,B,C,D) -> m1(B,A,E,C) [B >= 0 && C >= 1 && A >= 0] (?,1) 10. m1(A,B,C,D) -> n5(B,A,D,C) [C >= A] (?,1) 13. n62(A,B,C,D) -> m0(C,0,B,D) True (?,1) 14. n6(A,B,C,D) -> c3(n60(E,F,A,D),n61(E,F,A,D),n62(E,F,A,D)) [F >= 1 && E >= 1 && A >= 0] (?,1) 15. n0(A,B,C,D) -> n6(A,B,C,D) [A >= 0] (?,1) 16. n7(A,B,C,D) -> m0(A,E,C,D) [B >= 0 && A >= 0 && C >= 1 && 1 + B >= E && E >= 1 + B] (?,1) 17. n5(A,B,C,D) -> n8(B,C,A,D) [B >= 0 && A >= 0 && C >= 1 && D >= B] (?,1) 19. n8(A,B,C,D) -> n7(C,A,B,D) [10 >= A] (?,1) Signature: {(copypol,4) ;(m0,4) ;(m1,4) ;(m2,4) ;(m3,4) ;(m4,4) ;(m5,4) ;(m6,4) ;(m7,4) ;(m8,4) ;(m9,4) ;(n0,4) ;(n1,4) ;(n2,4) ;(n3,4) ;(n4,4) ;(n5,4) ;(n6,4) ;(n60,4) ;(n61,4) ;(n62,4) ;(n7,4) ;(n8,4) ;(n9,4)} Flow Graph: [0->{15},1->{10},10->{17},13->{1},14->{13},15->{14},16->{1},17->{19},19->{16}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 1,0,A>, 1) (< 1,0,B>, A) (< 1,0,C>, ?) (< 1,0,D>, ?) (<10,0,A>, A) (<10,0,B>, 1) (<10,0,C>, ?) (<10,0,D>, ?) (<13,0,A>, A) (<13,0,B>, 0) (<13,0,C>, ?) (<13,0,D>, D) (<14,0,A>, ?) (<14,0,B>, ?) (<14,0,C>, A) (<14,0,D>, D) (<14,1,A>, ?) (<14,1,B>, ?) (<14,1,C>, A) (<14,1,D>, D) (<14,2,A>, ?) (<14,2,B>, ?) (<14,2,C>, A) (<14,2,D>, D) (<15,0,A>, A) (<15,0,B>, B) (<15,0,C>, C) (<15,0,D>, D) (<16,0,A>, A) (<16,0,B>, 1) (<16,0,C>, 1) (<16,0,D>, ?) (<17,0,A>, 1) (<17,0,B>, 1) (<17,0,C>, A) (<17,0,D>, ?) (<19,0,A>, A) (<19,0,B>, 1) (<19,0,C>, 1) (<19,0,D>, ?) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(copypol) = 1 p(m0) = 0 p(m1) = 0 p(n0) = 1 p(n5) = 0 p(n6) = 0 p(n60) = 0 p(n61) = 0 p(n62) = 0 p(n7) = 0 p(n8) = 0 The following rules are strictly oriented: [A >= 0] ==> n0(A,B,C,D) = 1 > 0 = n6(A,B,C,D) The following rules are weakly oriented: [A >= 0] ==> copypol(A,B,C,D) = 1 >= 1 = n0(A,B,C,D) [B >= 0 && C >= 1 && A >= 0] ==> m0(A,B,C,D) = 0 >= 0 = m1(B,A,E,C) [C >= A] ==> m1(A,B,C,D) = 0 >= 0 = n5(B,A,D,C) True ==> n62(A,B,C,D) = 0 >= 0 = m0(C,0,B,D) [F >= 1 && E >= 1 && A >= 0] ==> n6(A,B,C,D) = 0 >= 0 = c3(n60(E,F,A,D),n61(E,F,A,D),n62(E,F,A,D)) [B >= 0 && A >= 0 && C >= 1 && 1 + B >= E && E >= 1 + B] ==> n7(A,B,C,D) = 0 >= 0 = m0(A,E,C,D) [B >= 0 && A >= 0 && C >= 1 && D >= B] ==> n5(A,B,C,D) = 0 >= 0 = n8(B,C,A,D) [10 >= A] ==> n8(A,B,C,D) = 0 >= 0 = n7(C,A,B,D) * Step 6: KnowledgePropagation WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. copypol(A,B,C,D) -> n0(A,B,C,D) [A >= 0] (1,1) 1. m0(A,B,C,D) -> m1(B,A,E,C) [B >= 0 && C >= 1 && A >= 0] (?,1) 10. m1(A,B,C,D) -> n5(B,A,D,C) [C >= A] (?,1) 13. n62(A,B,C,D) -> m0(C,0,B,D) True (?,1) 14. n6(A,B,C,D) -> c3(n60(E,F,A,D),n61(E,F,A,D),n62(E,F,A,D)) [F >= 1 && E >= 1 && A >= 0] (?,1) 15. n0(A,B,C,D) -> n6(A,B,C,D) [A >= 0] (1,1) 16. n7(A,B,C,D) -> m0(A,E,C,D) [B >= 0 && A >= 0 && C >= 1 && 1 + B >= E && E >= 1 + B] (?,1) 17. n5(A,B,C,D) -> n8(B,C,A,D) [B >= 0 && A >= 0 && C >= 1 && D >= B] (?,1) 19. n8(A,B,C,D) -> n7(C,A,B,D) [10 >= A] (?,1) Signature: {(copypol,4) ;(m0,4) ;(m1,4) ;(m2,4) ;(m3,4) ;(m4,4) ;(m5,4) ;(m6,4) ;(m7,4) ;(m8,4) ;(m9,4) ;(n0,4) ;(n1,4) ;(n2,4) ;(n3,4) ;(n4,4) ;(n5,4) ;(n6,4) ;(n60,4) ;(n61,4) ;(n62,4) ;(n7,4) ;(n8,4) ;(n9,4)} Flow Graph: [0->{15},1->{10},10->{17},13->{1},14->{13},15->{14},16->{1},17->{19},19->{16}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 1,0,A>, 1) (< 1,0,B>, A) (< 1,0,C>, ?) (< 1,0,D>, ?) (<10,0,A>, A) (<10,0,B>, 1) (<10,0,C>, ?) (<10,0,D>, ?) (<13,0,A>, A) (<13,0,B>, 0) (<13,0,C>, ?) (<13,0,D>, D) (<14,0,A>, ?) (<14,0,B>, ?) (<14,0,C>, A) (<14,0,D>, D) (<14,1,A>, ?) (<14,1,B>, ?) (<14,1,C>, A) (<14,1,D>, D) (<14,2,A>, ?) (<14,2,B>, ?) (<14,2,C>, A) (<14,2,D>, D) (<15,0,A>, A) (<15,0,B>, B) (<15,0,C>, C) (<15,0,D>, D) (<16,0,A>, A) (<16,0,B>, 1) (<16,0,C>, 1) (<16,0,D>, ?) (<17,0,A>, 1) (<17,0,B>, 1) (<17,0,C>, A) (<17,0,D>, ?) (<19,0,A>, A) (<19,0,B>, 1) (<19,0,C>, 1) (<19,0,D>, ?) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 7: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. copypol(A,B,C,D) -> n0(A,B,C,D) [A >= 0] (1,1) 1. m0(A,B,C,D) -> m1(B,A,E,C) [B >= 0 && C >= 1 && A >= 0] (?,1) 10. m1(A,B,C,D) -> n5(B,A,D,C) [C >= A] (?,1) 13. n62(A,B,C,D) -> m0(C,0,B,D) True (1,1) 14. n6(A,B,C,D) -> c3(n60(E,F,A,D),n61(E,F,A,D),n62(E,F,A,D)) [F >= 1 && E >= 1 && A >= 0] (1,1) 15. n0(A,B,C,D) -> n6(A,B,C,D) [A >= 0] (1,1) 16. n7(A,B,C,D) -> m0(A,E,C,D) [B >= 0 && A >= 0 && C >= 1 && 1 + B >= E && E >= 1 + B] (?,1) 17. n5(A,B,C,D) -> n8(B,C,A,D) [B >= 0 && A >= 0 && C >= 1 && D >= B] (?,1) 19. n8(A,B,C,D) -> n7(C,A,B,D) [10 >= A] (?,1) Signature: {(copypol,4) ;(m0,4) ;(m1,4) ;(m2,4) ;(m3,4) ;(m4,4) ;(m5,4) ;(m6,4) ;(m7,4) ;(m8,4) ;(m9,4) ;(n0,4) ;(n1,4) ;(n2,4) ;(n3,4) ;(n4,4) ;(n5,4) ;(n6,4) ;(n60,4) ;(n61,4) ;(n62,4) ;(n7,4) ;(n8,4) ;(n9,4)} Flow Graph: [0->{15},1->{10},10->{17},13->{1},14->{13},15->{14},16->{1},17->{19},19->{16}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 1,0,A>, 1) (< 1,0,B>, A) (< 1,0,C>, ?) (< 1,0,D>, ?) (<10,0,A>, A) (<10,0,B>, 1) (<10,0,C>, ?) (<10,0,D>, ?) (<13,0,A>, A) (<13,0,B>, 0) (<13,0,C>, ?) (<13,0,D>, D) (<14,0,A>, ?) (<14,0,B>, ?) (<14,0,C>, A) (<14,0,D>, D) (<14,1,A>, ?) (<14,1,B>, ?) (<14,1,C>, A) (<14,1,D>, D) (<14,2,A>, ?) (<14,2,B>, ?) (<14,2,C>, A) (<14,2,D>, D) (<15,0,A>, A) (<15,0,B>, B) (<15,0,C>, C) (<15,0,D>, D) (<16,0,A>, A) (<16,0,B>, 1) (<16,0,C>, 1) (<16,0,D>, ?) (<17,0,A>, 1) (<17,0,B>, 1) (<17,0,C>, A) (<17,0,D>, ?) (<19,0,A>, A) (<19,0,B>, 1) (<19,0,C>, 1) (<19,0,D>, ?) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [1,16,19,17,10], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(m0) = 11 + -1*x2 p(m1) = 11 + -1*x1 p(n5) = 11 + -1*x2 p(n7) = 10 + -1*x2 p(n8) = 11 + -1*x1 The following rules are strictly oriented: [10 >= A] ==> n8(A,B,C,D) = 11 + -1*A > 10 + -1*A = n7(C,A,B,D) The following rules are weakly oriented: [B >= 0 && C >= 1 && A >= 0] ==> m0(A,B,C,D) = 11 + -1*B >= 11 + -1*B = m1(B,A,E,C) [C >= A] ==> m1(A,B,C,D) = 11 + -1*A >= 11 + -1*A = n5(B,A,D,C) [B >= 0 && A >= 0 && C >= 1 && 1 + B >= E && E >= 1 + B] ==> n7(A,B,C,D) = 10 + -1*B >= 11 + -1*E = m0(A,E,C,D) [B >= 0 && A >= 0 && C >= 1 && D >= B] ==> n5(A,B,C,D) = 11 + -1*B >= 11 + -1*B = n8(B,C,A,D) We use the following global sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 1,0,A>, 1) (< 1,0,B>, A) (< 1,0,C>, ?) (< 1,0,D>, ?) (<10,0,A>, A) (<10,0,B>, 1) (<10,0,C>, ?) (<10,0,D>, ?) (<13,0,A>, A) (<13,0,B>, 0) (<13,0,C>, ?) (<13,0,D>, D) (<14,0,A>, ?) (<14,0,B>, ?) (<14,0,C>, A) (<14,0,D>, D) (<14,1,A>, ?) (<14,1,B>, ?) (<14,1,C>, A) (<14,1,D>, D) (<14,2,A>, ?) (<14,2,B>, ?) (<14,2,C>, A) (<14,2,D>, D) (<15,0,A>, A) (<15,0,B>, B) (<15,0,C>, C) (<15,0,D>, D) (<16,0,A>, A) (<16,0,B>, 1) (<16,0,C>, 1) (<16,0,D>, ?) (<17,0,A>, 1) (<17,0,B>, 1) (<17,0,C>, A) (<17,0,D>, ?) (<19,0,A>, A) (<19,0,B>, 1) (<19,0,C>, 1) (<19,0,D>, ?) * Step 8: KnowledgePropagation WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. copypol(A,B,C,D) -> n0(A,B,C,D) [A >= 0] (1,1) 1. m0(A,B,C,D) -> m1(B,A,E,C) [B >= 0 && C >= 1 && A >= 0] (?,1) 10. m1(A,B,C,D) -> n5(B,A,D,C) [C >= A] (?,1) 13. n62(A,B,C,D) -> m0(C,0,B,D) True (1,1) 14. n6(A,B,C,D) -> c3(n60(E,F,A,D),n61(E,F,A,D),n62(E,F,A,D)) [F >= 1 && E >= 1 && A >= 0] (1,1) 15. n0(A,B,C,D) -> n6(A,B,C,D) [A >= 0] (1,1) 16. n7(A,B,C,D) -> m0(A,E,C,D) [B >= 0 && A >= 0 && C >= 1 && 1 + B >= E && E >= 1 + B] (?,1) 17. n5(A,B,C,D) -> n8(B,C,A,D) [B >= 0 && A >= 0 && C >= 1 && D >= B] (?,1) 19. n8(A,B,C,D) -> n7(C,A,B,D) [10 >= A] (11,1) Signature: {(copypol,4) ;(m0,4) ;(m1,4) ;(m2,4) ;(m3,4) ;(m4,4) ;(m5,4) ;(m6,4) ;(m7,4) ;(m8,4) ;(m9,4) ;(n0,4) ;(n1,4) ;(n2,4) ;(n3,4) ;(n4,4) ;(n5,4) ;(n6,4) ;(n60,4) ;(n61,4) ;(n62,4) ;(n7,4) ;(n8,4) ;(n9,4)} Flow Graph: [0->{15},1->{10},10->{17},13->{1},14->{13},15->{14},16->{1},17->{19},19->{16}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 1,0,A>, 1) (< 1,0,B>, A) (< 1,0,C>, ?) (< 1,0,D>, ?) (<10,0,A>, A) (<10,0,B>, 1) (<10,0,C>, ?) (<10,0,D>, ?) (<13,0,A>, A) (<13,0,B>, 0) (<13,0,C>, ?) (<13,0,D>, D) (<14,0,A>, ?) (<14,0,B>, ?) (<14,0,C>, A) (<14,0,D>, D) (<14,1,A>, ?) (<14,1,B>, ?) (<14,1,C>, A) (<14,1,D>, D) (<14,2,A>, ?) (<14,2,B>, ?) (<14,2,C>, A) (<14,2,D>, D) (<15,0,A>, A) (<15,0,B>, B) (<15,0,C>, C) (<15,0,D>, D) (<16,0,A>, A) (<16,0,B>, 1) (<16,0,C>, 1) (<16,0,D>, ?) (<17,0,A>, 1) (<17,0,B>, 1) (<17,0,C>, A) (<17,0,D>, ?) (<19,0,A>, A) (<19,0,B>, 1) (<19,0,C>, 1) (<19,0,D>, ?) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 9: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. copypol(A,B,C,D) -> n0(A,B,C,D) [A >= 0] (1,1) 1. m0(A,B,C,D) -> m1(B,A,E,C) [B >= 0 && C >= 1 && A >= 0] (?,1) 10. m1(A,B,C,D) -> n5(B,A,D,C) [C >= A] (?,1) 13. n62(A,B,C,D) -> m0(C,0,B,D) True (1,1) 14. n6(A,B,C,D) -> c3(n60(E,F,A,D),n61(E,F,A,D),n62(E,F,A,D)) [F >= 1 && E >= 1 && A >= 0] (1,1) 15. n0(A,B,C,D) -> n6(A,B,C,D) [A >= 0] (1,1) 16. n7(A,B,C,D) -> m0(A,E,C,D) [B >= 0 && A >= 0 && C >= 1 && 1 + B >= E && E >= 1 + B] (11,1) 17. n5(A,B,C,D) -> n8(B,C,A,D) [B >= 0 && A >= 0 && C >= 1 && D >= B] (?,1) 19. n8(A,B,C,D) -> n7(C,A,B,D) [10 >= A] (11,1) Signature: {(copypol,4) ;(m0,4) ;(m1,4) ;(m2,4) ;(m3,4) ;(m4,4) ;(m5,4) ;(m6,4) ;(m7,4) ;(m8,4) ;(m9,4) ;(n0,4) ;(n1,4) ;(n2,4) ;(n3,4) ;(n4,4) ;(n5,4) ;(n6,4) ;(n60,4) ;(n61,4) ;(n62,4) ;(n7,4) ;(n8,4) ;(n9,4)} Flow Graph: [0->{15},1->{10},10->{17},13->{1},14->{13},15->{14},16->{1},17->{19},19->{16}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 1,0,A>, 1) (< 1,0,B>, A) (< 1,0,C>, ?) (< 1,0,D>, ?) (<10,0,A>, A) (<10,0,B>, 1) (<10,0,C>, ?) (<10,0,D>, ?) (<13,0,A>, A) (<13,0,B>, 0) (<13,0,C>, ?) (<13,0,D>, D) (<14,0,A>, ?) (<14,0,B>, ?) (<14,0,C>, A) (<14,0,D>, D) (<14,1,A>, ?) (<14,1,B>, ?) (<14,1,C>, A) (<14,1,D>, D) (<14,2,A>, ?) (<14,2,B>, ?) (<14,2,C>, A) (<14,2,D>, D) (<15,0,A>, A) (<15,0,B>, B) (<15,0,C>, C) (<15,0,D>, D) (<16,0,A>, A) (<16,0,B>, 1) (<16,0,C>, 1) (<16,0,D>, ?) (<17,0,A>, 1) (<17,0,B>, 1) (<17,0,C>, A) (<17,0,D>, ?) (<19,0,A>, A) (<19,0,B>, 1) (<19,0,C>, 1) (<19,0,D>, ?) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [1,19,17,10], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(m0) = 1 p(m1) = 1 p(n5) = 1 p(n7) = 0 p(n8) = 0 The following rules are strictly oriented: [B >= 0 && A >= 0 && C >= 1 && D >= B] ==> n5(A,B,C,D) = 1 > 0 = n8(B,C,A,D) The following rules are weakly oriented: [B >= 0 && C >= 1 && A >= 0] ==> m0(A,B,C,D) = 1 >= 1 = m1(B,A,E,C) [C >= A] ==> m1(A,B,C,D) = 1 >= 1 = n5(B,A,D,C) [10 >= A] ==> n8(A,B,C,D) = 0 >= 0 = n7(C,A,B,D) We use the following global sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 1,0,A>, 1) (< 1,0,B>, A) (< 1,0,C>, ?) (< 1,0,D>, ?) (<10,0,A>, A) (<10,0,B>, 1) (<10,0,C>, ?) (<10,0,D>, ?) (<13,0,A>, A) (<13,0,B>, 0) (<13,0,C>, ?) (<13,0,D>, D) (<14,0,A>, ?) (<14,0,B>, ?) (<14,0,C>, A) (<14,0,D>, D) (<14,1,A>, ?) (<14,1,B>, ?) (<14,1,C>, A) (<14,1,D>, D) (<14,2,A>, ?) (<14,2,B>, ?) (<14,2,C>, A) (<14,2,D>, D) (<15,0,A>, A) (<15,0,B>, B) (<15,0,C>, C) (<15,0,D>, D) (<16,0,A>, A) (<16,0,B>, 1) (<16,0,C>, 1) (<16,0,D>, ?) (<17,0,A>, 1) (<17,0,B>, 1) (<17,0,C>, A) (<17,0,D>, ?) (<19,0,A>, A) (<19,0,B>, 1) (<19,0,C>, 1) (<19,0,D>, ?) * Step 10: KnowledgePropagation WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. copypol(A,B,C,D) -> n0(A,B,C,D) [A >= 0] (1,1) 1. m0(A,B,C,D) -> m1(B,A,E,C) [B >= 0 && C >= 1 && A >= 0] (?,1) 10. m1(A,B,C,D) -> n5(B,A,D,C) [C >= A] (?,1) 13. n62(A,B,C,D) -> m0(C,0,B,D) True (1,1) 14. n6(A,B,C,D) -> c3(n60(E,F,A,D),n61(E,F,A,D),n62(E,F,A,D)) [F >= 1 && E >= 1 && A >= 0] (1,1) 15. n0(A,B,C,D) -> n6(A,B,C,D) [A >= 0] (1,1) 16. n7(A,B,C,D) -> m0(A,E,C,D) [B >= 0 && A >= 0 && C >= 1 && 1 + B >= E && E >= 1 + B] (11,1) 17. n5(A,B,C,D) -> n8(B,C,A,D) [B >= 0 && A >= 0 && C >= 1 && D >= B] (12,1) 19. n8(A,B,C,D) -> n7(C,A,B,D) [10 >= A] (11,1) Signature: {(copypol,4) ;(m0,4) ;(m1,4) ;(m2,4) ;(m3,4) ;(m4,4) ;(m5,4) ;(m6,4) ;(m7,4) ;(m8,4) ;(m9,4) ;(n0,4) ;(n1,4) ;(n2,4) ;(n3,4) ;(n4,4) ;(n5,4) ;(n6,4) ;(n60,4) ;(n61,4) ;(n62,4) ;(n7,4) ;(n8,4) ;(n9,4)} Flow Graph: [0->{15},1->{10},10->{17},13->{1},14->{13},15->{14},16->{1},17->{19},19->{16}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 1,0,A>, 1) (< 1,0,B>, A) (< 1,0,C>, ?) (< 1,0,D>, ?) (<10,0,A>, A) (<10,0,B>, 1) (<10,0,C>, ?) (<10,0,D>, ?) (<13,0,A>, A) (<13,0,B>, 0) (<13,0,C>, ?) (<13,0,D>, D) (<14,0,A>, ?) (<14,0,B>, ?) (<14,0,C>, A) (<14,0,D>, D) (<14,1,A>, ?) (<14,1,B>, ?) (<14,1,C>, A) (<14,1,D>, D) (<14,2,A>, ?) (<14,2,B>, ?) (<14,2,C>, A) (<14,2,D>, D) (<15,0,A>, A) (<15,0,B>, B) (<15,0,C>, C) (<15,0,D>, D) (<16,0,A>, A) (<16,0,B>, 1) (<16,0,C>, 1) (<16,0,D>, ?) (<17,0,A>, 1) (<17,0,B>, 1) (<17,0,C>, A) (<17,0,D>, ?) (<19,0,A>, A) (<19,0,B>, 1) (<19,0,C>, 1) (<19,0,D>, ?) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 11: LocalSizeboundsProc WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. copypol(A,B,C,D) -> n0(A,B,C,D) [A >= 0] (1,1) 1. m0(A,B,C,D) -> m1(B,A,E,C) [B >= 0 && C >= 1 && A >= 0] (12,1) 10. m1(A,B,C,D) -> n5(B,A,D,C) [C >= A] (12,1) 13. n62(A,B,C,D) -> m0(C,0,B,D) True (1,1) 14. n6(A,B,C,D) -> c3(n60(E,F,A,D),n61(E,F,A,D),n62(E,F,A,D)) [F >= 1 && E >= 1 && A >= 0] (1,1) 15. n0(A,B,C,D) -> n6(A,B,C,D) [A >= 0] (1,1) 16. n7(A,B,C,D) -> m0(A,E,C,D) [B >= 0 && A >= 0 && C >= 1 && 1 + B >= E && E >= 1 + B] (11,1) 17. n5(A,B,C,D) -> n8(B,C,A,D) [B >= 0 && A >= 0 && C >= 1 && D >= B] (12,1) 19. n8(A,B,C,D) -> n7(C,A,B,D) [10 >= A] (11,1) Signature: {(copypol,4) ;(m0,4) ;(m1,4) ;(m2,4) ;(m3,4) ;(m4,4) ;(m5,4) ;(m6,4) ;(m7,4) ;(m8,4) ;(m9,4) ;(n0,4) ;(n1,4) ;(n2,4) ;(n3,4) ;(n4,4) ;(n5,4) ;(n6,4) ;(n60,4) ;(n61,4) ;(n62,4) ;(n7,4) ;(n8,4) ;(n9,4)} Flow Graph: [0->{15},1->{10},10->{17},13->{1},14->{13},15->{14},16->{1},17->{19},19->{16}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 1,0,A>, 1) (< 1,0,B>, A) (< 1,0,C>, ?) (< 1,0,D>, ?) (<10,0,A>, A) (<10,0,B>, 1) (<10,0,C>, ?) (<10,0,D>, ?) (<13,0,A>, A) (<13,0,B>, 0) (<13,0,C>, ?) (<13,0,D>, D) (<14,0,A>, ?) (<14,0,B>, ?) (<14,0,C>, A) (<14,0,D>, D) (<14,1,A>, ?) (<14,1,B>, ?) (<14,1,C>, A) (<14,1,D>, D) (<14,2,A>, ?) (<14,2,B>, ?) (<14,2,C>, A) (<14,2,D>, D) (<15,0,A>, A) (<15,0,B>, B) (<15,0,C>, C) (<15,0,D>, D) (<16,0,A>, A) (<16,0,B>, 1) (<16,0,C>, 1) (<16,0,D>, ?) (<17,0,A>, 1) (<17,0,B>, 1) (<17,0,C>, A) (<17,0,D>, ?) (<19,0,A>, A) (<19,0,B>, 1) (<19,0,C>, 1) (<19,0,D>, ?) + Applied Processor: LocalSizeboundsProc + Details: The problem is already solved. WORST_CASE(?,O(1))