WORST_CASE(?,O(n^1)) * Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. cons(A,B,C) -> m0(A,B,C) [A >= 0] (?,1) 1. m1(A,B,C) -> m2(A,B,C) [A >= 0] (?,1) 2. m4(A,B,C) -> m3(A,B,C) [A >= 0] (?,1) 3. m2(A,B,C) -> m4(A,B,C) [A >= 0] (?,1) 4. m5(A,B,C) -> m6(A,B,C) [A >= 1] (?,1) 5. m6(A,B,C) -> m8(A,B,C) [A >= 1] (?,1) 6. m9(A,B,C) -> n0(A,B,C) [A >= 1] (?,1) 7. n2(A,B,C) -> c2(n1(A,B,C),m5(A,B,C)) [A >= 1] (?,1) 8. n0(A,B,C) -> n2(A,B,C) [A >= 1] (?,1) 9. n4(A,B,C) -> n3(A,B,C) [B >= 0 && A >= 1 && A >= C && C >= A] (?,1) 10. n50(A,B,C) -> n4(A,C,A) True (?,1) 11. n51(A,B,C) -> cons(B,B,C) True (?,1) 12. n5(A,B,C) -> c2(n50(A,C,D),n51(A,C,D)) [D >= 1 && C >= 1 && A >= 1] (?,1) 13. n60(A,B,C) -> n4(A,C,A) True (?,1) 14. n61(A,B,C) -> m1(B,B,C) True (?,1) 15. n6(A,B,C) -> c2(n60(A,C,D),n61(A,C,D)) [C >= 0 && A >= 1 && C >= D && D >= C] (?,1) 16. n70(A,B,C) -> n8(A,B,C) True (?,1) 17. n71(A,B,C) -> m9(B,B,C) True (?,1) 18. n7(A,B,C) -> c2(n70(D,E,F),n71(D,E,F)) [E >= 1 && D >= 1 && F >= 0 && A >= 1 + F] (?,1) 19. n8(A,B,C) -> n5(A,B,C) True (?,1) 20. n8(A,B,C) -> n6(A,B,C) True (?,1) 21. m0(A,B,C) -> n7(A,B,C) [A >= 0] (?,1) 22. m8(A,B,C) -> c2(m7(A,B,C),n9(A,B,C)) [A >= 1] (?,1) 23. start(A,B,C) -> cons(A,B,C) True (1,1) Signature: {(cons,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n50,3) ;(n51,3) ;(n6,3) ;(n60,3) ;(n61,3) ;(n7,3) ;(n70,3) ;(n71,3) ;(n8,3) ;(n9,3) ;(start,3)} Flow Graph: [0->{21},1->{3},2->{},3->{2},4->{5},5->{22},6->{8},7->{4},8->{7},9->{},10->{9},11->{0},12->{10,11},13->{9} ,14->{1},15->{13,14},16->{19,20},17->{6},18->{16,17},19->{12},20->{15},21->{18},22->{},23->{0}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (< 0,0,A>, A, .= 0) (< 0,0,B>, B, .= 0) (< 0,0,C>, C, .= 0) (< 1,0,A>, A, .= 0) (< 1,0,B>, B, .= 0) (< 1,0,C>, C, .= 0) (< 2,0,A>, A, .= 0) (< 2,0,B>, B, .= 0) (< 2,0,C>, C, .= 0) (< 3,0,A>, A, .= 0) (< 3,0,B>, B, .= 0) (< 3,0,C>, C, .= 0) (< 4,0,A>, A, .= 0) (< 4,0,B>, B, .= 0) (< 4,0,C>, C, .= 0) (< 5,0,A>, A, .= 0) (< 5,0,B>, B, .= 0) (< 5,0,C>, C, .= 0) (< 6,0,A>, A, .= 0) (< 6,0,B>, B, .= 0) (< 6,0,C>, C, .= 0) (< 7,0,A>, A, .= 0) (< 7,0,B>, B, .= 0) (< 7,0,C>, C, .= 0) (< 7,1,A>, A, .= 0) (< 7,1,B>, B, .= 0) (< 7,1,C>, C, .= 0) (< 8,0,A>, A, .= 0) (< 8,0,B>, B, .= 0) (< 8,0,C>, C, .= 0) (< 9,0,A>, A, .= 0) (< 9,0,B>, B, .= 0) (< 9,0,C>, C, .= 0) (<10,0,A>, A, .= 0) (<10,0,B>, C, .= 0) (<10,0,C>, A, .= 0) (<11,0,A>, B, .= 0) (<11,0,B>, B, .= 0) (<11,0,C>, C, .= 0) (<12,0,A>, A, .= 0) (<12,0,B>, C, .= 0) (<12,0,C>, ?, .?) (<12,1,A>, A, .= 0) (<12,1,B>, C, .= 0) (<12,1,C>, ?, .?) (<13,0,A>, A, .= 0) (<13,0,B>, C, .= 0) (<13,0,C>, A, .= 0) (<14,0,A>, B, .= 0) (<14,0,B>, B, .= 0) (<14,0,C>, C, .= 0) (<15,0,A>, A, .= 0) (<15,0,B>, C, .= 0) (<15,0,C>, C, .= 0) (<15,1,A>, A, .= 0) (<15,1,B>, C, .= 0) (<15,1,C>, C, .= 0) (<16,0,A>, A, .= 0) (<16,0,B>, B, .= 0) (<16,0,C>, C, .= 0) (<17,0,A>, B, .= 0) (<17,0,B>, B, .= 0) (<17,0,C>, C, .= 0) (<18,0,A>, ?, .?) (<18,0,B>, ?, .?) (<18,0,C>, 1 + A, .+ 1) (<18,1,A>, ?, .?) (<18,1,B>, ?, .?) (<18,1,C>, 1 + A, .+ 1) (<19,0,A>, A, .= 0) (<19,0,B>, B, .= 0) (<19,0,C>, C, .= 0) (<20,0,A>, A, .= 0) (<20,0,B>, B, .= 0) (<20,0,C>, C, .= 0) (<21,0,A>, A, .= 0) (<21,0,B>, B, .= 0) (<21,0,C>, C, .= 0) (<22,0,A>, A, .= 0) (<22,0,B>, B, .= 0) (<22,0,C>, C, .= 0) (<22,1,A>, A, .= 0) (<22,1,B>, B, .= 0) (<22,1,C>, C, .= 0) (<23,0,A>, A, .= 0) (<23,0,B>, B, .= 0) (<23,0,C>, C, .= 0) * Step 2: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. cons(A,B,C) -> m0(A,B,C) [A >= 0] (?,1) 1. m1(A,B,C) -> m2(A,B,C) [A >= 0] (?,1) 2. m4(A,B,C) -> m3(A,B,C) [A >= 0] (?,1) 3. m2(A,B,C) -> m4(A,B,C) [A >= 0] (?,1) 4. m5(A,B,C) -> m6(A,B,C) [A >= 1] (?,1) 5. m6(A,B,C) -> m8(A,B,C) [A >= 1] (?,1) 6. m9(A,B,C) -> n0(A,B,C) [A >= 1] (?,1) 7. n2(A,B,C) -> c2(n1(A,B,C),m5(A,B,C)) [A >= 1] (?,1) 8. n0(A,B,C) -> n2(A,B,C) [A >= 1] (?,1) 9. n4(A,B,C) -> n3(A,B,C) [B >= 0 && A >= 1 && A >= C && C >= A] (?,1) 10. n50(A,B,C) -> n4(A,C,A) True (?,1) 11. n51(A,B,C) -> cons(B,B,C) True (?,1) 12. n5(A,B,C) -> c2(n50(A,C,D),n51(A,C,D)) [D >= 1 && C >= 1 && A >= 1] (?,1) 13. n60(A,B,C) -> n4(A,C,A) True (?,1) 14. n61(A,B,C) -> m1(B,B,C) True (?,1) 15. n6(A,B,C) -> c2(n60(A,C,D),n61(A,C,D)) [C >= 0 && A >= 1 && C >= D && D >= C] (?,1) 16. n70(A,B,C) -> n8(A,B,C) True (?,1) 17. n71(A,B,C) -> m9(B,B,C) True (?,1) 18. n7(A,B,C) -> c2(n70(D,E,F),n71(D,E,F)) [E >= 1 && D >= 1 && F >= 0 && A >= 1 + F] (?,1) 19. n8(A,B,C) -> n5(A,B,C) True (?,1) 20. n8(A,B,C) -> n6(A,B,C) True (?,1) 21. m0(A,B,C) -> n7(A,B,C) [A >= 0] (?,1) 22. m8(A,B,C) -> c2(m7(A,B,C),n9(A,B,C)) [A >= 1] (?,1) 23. start(A,B,C) -> cons(A,B,C) True (1,1) Signature: {(cons,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n50,3) ;(n51,3) ;(n6,3) ;(n60,3) ;(n61,3) ;(n7,3) ;(n70,3) ;(n71,3) ;(n8,3) ;(n9,3) ;(start,3)} Flow Graph: [0->{21},1->{3},2->{},3->{2},4->{5},5->{22},6->{8},7->{4},8->{7},9->{},10->{9},11->{0},12->{10,11},13->{9} ,14->{1},15->{13,14},16->{19,20},17->{6},18->{16,17},19->{12},20->{15},21->{18},22->{},23->{0}] Sizebounds: (< 0,0,A>, ?) (< 0,0,B>, ?) (< 0,0,C>, ?) (< 1,0,A>, ?) (< 1,0,B>, ?) (< 1,0,C>, ?) (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,1,A>, ?) (< 7,1,B>, ?) (< 7,1,C>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,1,A>, ?) (<12,1,B>, ?) (<12,1,C>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<14,0,A>, ?) (<14,0,B>, ?) (<14,0,C>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,1,A>, ?) (<15,1,B>, ?) (<15,1,C>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) (<18,0,A>, ?) (<18,0,B>, ?) (<18,0,C>, ?) (<18,1,A>, ?) (<18,1,B>, ?) (<18,1,C>, ?) (<19,0,A>, ?) (<19,0,B>, ?) (<19,0,C>, ?) (<20,0,A>, ?) (<20,0,B>, ?) (<20,0,C>, ?) (<21,0,A>, ?) (<21,0,B>, ?) (<21,0,C>, ?) (<22,0,A>, ?) (<22,0,B>, ?) (<22,0,C>, ?) (<22,1,A>, ?) (<22,1,B>, ?) (<22,1,C>, ?) (<23,0,A>, ?) (<23,0,B>, ?) (<23,0,C>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (< 0,0,A>, ?) (< 0,0,B>, ?) (< 0,0,C>, ?) (< 1,0,A>, ?) (< 1,0,B>, ?) (< 1,0,C>, ?) (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,1,A>, ?) (< 7,1,B>, ?) (< 7,1,C>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,1,A>, ?) (<12,1,B>, ?) (<12,1,C>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<14,0,A>, ?) (<14,0,B>, ?) (<14,0,C>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,1,A>, ?) (<15,1,B>, ?) (<15,1,C>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) (<18,0,A>, ?) (<18,0,B>, ?) (<18,0,C>, ?) (<18,1,A>, ?) (<18,1,B>, ?) (<18,1,C>, ?) (<19,0,A>, ?) (<19,0,B>, ?) (<19,0,C>, ?) (<20,0,A>, ?) (<20,0,B>, ?) (<20,0,C>, ?) (<21,0,A>, ?) (<21,0,B>, ?) (<21,0,C>, ?) (<22,0,A>, ?) (<22,0,B>, ?) (<22,0,C>, ?) (<22,1,A>, ?) (<22,1,B>, ?) (<22,1,C>, ?) (<23,0,A>, A) (<23,0,B>, B) (<23,0,C>, C) * Step 3: LeafRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. cons(A,B,C) -> m0(A,B,C) [A >= 0] (?,1) 1. m1(A,B,C) -> m2(A,B,C) [A >= 0] (?,1) 2. m4(A,B,C) -> m3(A,B,C) [A >= 0] (?,1) 3. m2(A,B,C) -> m4(A,B,C) [A >= 0] (?,1) 4. m5(A,B,C) -> m6(A,B,C) [A >= 1] (?,1) 5. m6(A,B,C) -> m8(A,B,C) [A >= 1] (?,1) 6. m9(A,B,C) -> n0(A,B,C) [A >= 1] (?,1) 7. n2(A,B,C) -> c2(n1(A,B,C),m5(A,B,C)) [A >= 1] (?,1) 8. n0(A,B,C) -> n2(A,B,C) [A >= 1] (?,1) 9. n4(A,B,C) -> n3(A,B,C) [B >= 0 && A >= 1 && A >= C && C >= A] (?,1) 10. n50(A,B,C) -> n4(A,C,A) True (?,1) 11. n51(A,B,C) -> cons(B,B,C) True (?,1) 12. n5(A,B,C) -> c2(n50(A,C,D),n51(A,C,D)) [D >= 1 && C >= 1 && A >= 1] (?,1) 13. n60(A,B,C) -> n4(A,C,A) True (?,1) 14. n61(A,B,C) -> m1(B,B,C) True (?,1) 15. n6(A,B,C) -> c2(n60(A,C,D),n61(A,C,D)) [C >= 0 && A >= 1 && C >= D && D >= C] (?,1) 16. n70(A,B,C) -> n8(A,B,C) True (?,1) 17. n71(A,B,C) -> m9(B,B,C) True (?,1) 18. n7(A,B,C) -> c2(n70(D,E,F),n71(D,E,F)) [E >= 1 && D >= 1 && F >= 0 && A >= 1 + F] (?,1) 19. n8(A,B,C) -> n5(A,B,C) True (?,1) 20. n8(A,B,C) -> n6(A,B,C) True (?,1) 21. m0(A,B,C) -> n7(A,B,C) [A >= 0] (?,1) 22. m8(A,B,C) -> c2(m7(A,B,C),n9(A,B,C)) [A >= 1] (?,1) 23. start(A,B,C) -> cons(A,B,C) True (1,1) Signature: {(cons,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n50,3) ;(n51,3) ;(n6,3) ;(n60,3) ;(n61,3) ;(n7,3) ;(n70,3) ;(n71,3) ;(n8,3) ;(n9,3) ;(start,3)} Flow Graph: [0->{21},1->{3},2->{},3->{2},4->{5},5->{22},6->{8},7->{4},8->{7},9->{},10->{9},11->{0},12->{10,11},13->{9} ,14->{1},15->{13,14},16->{19,20},17->{6},18->{16,17},19->{12},20->{15},21->{18},22->{},23->{0}] Sizebounds: (< 0,0,A>, ?) (< 0,0,B>, ?) (< 0,0,C>, ?) (< 1,0,A>, ?) (< 1,0,B>, ?) (< 1,0,C>, ?) (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,1,A>, ?) (< 7,1,B>, ?) (< 7,1,C>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,1,A>, ?) (<12,1,B>, ?) (<12,1,C>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<14,0,A>, ?) (<14,0,B>, ?) (<14,0,C>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,1,A>, ?) (<15,1,B>, ?) (<15,1,C>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) (<18,0,A>, ?) (<18,0,B>, ?) (<18,0,C>, ?) (<18,1,A>, ?) (<18,1,B>, ?) (<18,1,C>, ?) (<19,0,A>, ?) (<19,0,B>, ?) (<19,0,C>, ?) (<20,0,A>, ?) (<20,0,B>, ?) (<20,0,C>, ?) (<21,0,A>, ?) (<21,0,B>, ?) (<21,0,C>, ?) (<22,0,A>, ?) (<22,0,B>, ?) (<22,0,C>, ?) (<22,1,A>, ?) (<22,1,B>, ?) (<22,1,C>, ?) (<23,0,A>, A) (<23,0,B>, B) (<23,0,C>, C) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [17 ,6 ,20 ,8 ,15 ,7 ,14 ,1 ,4 ,3 ,5 ,10 ,13 ,2 ,9 ,22] * Step 4: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. cons(A,B,C) -> m0(A,B,C) [A >= 0] (?,1) 11. n51(A,B,C) -> cons(B,B,C) True (?,1) 12. n5(A,B,C) -> c2(n50(A,C,D),n51(A,C,D)) [D >= 1 && C >= 1 && A >= 1] (?,1) 16. n70(A,B,C) -> n8(A,B,C) True (?,1) 18. n7(A,B,C) -> c2(n70(D,E,F),n71(D,E,F)) [E >= 1 && D >= 1 && F >= 0 && A >= 1 + F] (?,1) 19. n8(A,B,C) -> n5(A,B,C) True (?,1) 21. m0(A,B,C) -> n7(A,B,C) [A >= 0] (?,1) 23. start(A,B,C) -> cons(A,B,C) True (1,1) Signature: {(cons,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n50,3) ;(n51,3) ;(n6,3) ;(n60,3) ;(n61,3) ;(n7,3) ;(n70,3) ;(n71,3) ;(n8,3) ;(n9,3) ;(start,3)} Flow Graph: [0->{21},11->{0},12->{11},16->{19},18->{16},19->{12},21->{18},23->{0}] Sizebounds: (< 0,0,A>, ?) (< 0,0,B>, ?) (< 0,0,C>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,1,A>, ?) (<12,1,B>, ?) (<12,1,C>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<18,0,A>, ?) (<18,0,B>, ?) (<18,0,C>, ?) (<18,1,A>, ?) (<18,1,B>, ?) (<18,1,C>, ?) (<19,0,A>, ?) (<19,0,B>, ?) (<19,0,C>, ?) (<21,0,A>, ?) (<21,0,B>, ?) (<21,0,C>, ?) (<23,0,A>, A) (<23,0,B>, B) (<23,0,C>, C) + Applied Processor: ChainProcessor False [0,11,12,16,18,19,21,23] + Details: We chained rule 0 to obtain the rules [24] . * Step 5: UnreachableRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 11. n51(A,B,C) -> cons(B,B,C) True (?,1) 12. n5(A,B,C) -> c2(n50(A,C,D),n51(A,C,D)) [D >= 1 && C >= 1 && A >= 1] (?,1) 16. n70(A,B,C) -> n8(A,B,C) True (?,1) 18. n7(A,B,C) -> c2(n70(D,E,F),n71(D,E,F)) [E >= 1 && D >= 1 && F >= 0 && A >= 1 + F] (?,1) 19. n8(A,B,C) -> n5(A,B,C) True (?,1) 21. m0(A,B,C) -> n7(A,B,C) [A >= 0] (?,1) 23. start(A,B,C) -> cons(A,B,C) True (1,1) 24. cons(A,B,C) -> n7(A,B,C) [A >= 0 && A >= 0] (?,2) Signature: {(cons,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n50,3) ;(n51,3) ;(n6,3) ;(n60,3) ;(n61,3) ;(n7,3) ;(n70,3) ;(n71,3) ;(n8,3) ;(n9,3) ;(start,3)} Flow Graph: [11->{24},12->{11},16->{19},18->{16},19->{12},21->{18},23->{24},24->{18}] Sizebounds: (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,1,A>, ?) (<12,1,B>, ?) (<12,1,C>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<18,0,A>, ?) (<18,0,B>, ?) (<18,0,C>, ?) (<18,1,A>, ?) (<18,1,B>, ?) (<18,1,C>, ?) (<19,0,A>, ?) (<19,0,B>, ?) (<19,0,C>, ?) (<21,0,A>, ?) (<21,0,B>, ?) (<21,0,C>, ?) (<23,0,A>, A) (<23,0,B>, B) (<23,0,C>, C) (<24,0,A>, ?) (<24,0,B>, ?) (<24,0,C>, ?) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [21] * Step 6: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 11. n51(A,B,C) -> cons(B,B,C) True (?,1) 12. n5(A,B,C) -> c2(n50(A,C,D),n51(A,C,D)) [D >= 1 && C >= 1 && A >= 1] (?,1) 16. n70(A,B,C) -> n8(A,B,C) True (?,1) 18. n7(A,B,C) -> c2(n70(D,E,F),n71(D,E,F)) [E >= 1 && D >= 1 && F >= 0 && A >= 1 + F] (?,1) 19. n8(A,B,C) -> n5(A,B,C) True (?,1) 23. start(A,B,C) -> cons(A,B,C) True (1,1) 24. cons(A,B,C) -> n7(A,B,C) [A >= 0 && A >= 0] (?,2) Signature: {(cons,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n50,3) ;(n51,3) ;(n6,3) ;(n60,3) ;(n61,3) ;(n7,3) ;(n70,3) ;(n71,3) ;(n8,3) ;(n9,3) ;(start,3)} Flow Graph: [11->{24},12->{11},16->{19},18->{16},19->{12},23->{24},24->{18}] Sizebounds: (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,1,A>, ?) (<12,1,B>, ?) (<12,1,C>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<18,0,A>, ?) (<18,0,B>, ?) (<18,0,C>, ?) (<18,1,A>, ?) (<18,1,B>, ?) (<18,1,C>, ?) (<19,0,A>, ?) (<19,0,B>, ?) (<19,0,C>, ?) (<23,0,A>, A) (<23,0,B>, B) (<23,0,C>, C) (<24,0,A>, ?) (<24,0,B>, ?) (<24,0,C>, ?) + Applied Processor: ChainProcessor False [11,12,16,18,19,23,24] + Details: We chained rule 11 to obtain the rules [25] . * Step 7: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 12. n5(A,B,C) -> c2(n50(A,C,D),n51(A,C,D)) [D >= 1 && C >= 1 && A >= 1] (?,1) 16. n70(A,B,C) -> n8(A,B,C) True (?,1) 18. n7(A,B,C) -> c2(n70(D,E,F),n71(D,E,F)) [E >= 1 && D >= 1 && F >= 0 && A >= 1 + F] (?,1) 19. n8(A,B,C) -> n5(A,B,C) True (?,1) 23. start(A,B,C) -> cons(A,B,C) True (1,1) 24. cons(A,B,C) -> n7(A,B,C) [A >= 0 && A >= 0] (?,2) 25. n51(A,B,C) -> n7(B,B,C) [B >= 0 && B >= 0] (?,3) Signature: {(cons,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n50,3) ;(n51,3) ;(n6,3) ;(n60,3) ;(n61,3) ;(n7,3) ;(n70,3) ;(n71,3) ;(n8,3) ;(n9,3) ;(start,3)} Flow Graph: [12->{25},16->{19},18->{16},19->{12},23->{24},24->{18},25->{18}] Sizebounds: (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,1,A>, ?) (<12,1,B>, ?) (<12,1,C>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<18,0,A>, ?) (<18,0,B>, ?) (<18,0,C>, ?) (<18,1,A>, ?) (<18,1,B>, ?) (<18,1,C>, ?) (<19,0,A>, ?) (<19,0,B>, ?) (<19,0,C>, ?) (<23,0,A>, A) (<23,0,B>, B) (<23,0,C>, C) (<24,0,A>, ?) (<24,0,B>, ?) (<24,0,C>, ?) (<25,0,A>, ?) (<25,0,B>, ?) (<25,0,C>, ?) + Applied Processor: ChainProcessor False [12,16,18,19,23,24,25] + Details: We chained rule 12 to obtain the rules [26] . * Step 8: UnreachableRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 16. n70(A,B,C) -> n8(A,B,C) True (?,1) 18. n7(A,B,C) -> c2(n70(D,E,F),n71(D,E,F)) [E >= 1 && D >= 1 && F >= 0 && A >= 1 + F] (?,1) 19. n8(A,B,C) -> n5(A,B,C) True (?,1) 23. start(A,B,C) -> cons(A,B,C) True (1,1) 24. cons(A,B,C) -> n7(A,B,C) [A >= 0 && A >= 0] (?,2) 25. n51(A,B,C) -> n7(B,B,C) [B >= 0 && B >= 0] (?,3) 26. n5(A,B,C) -> c2(n50(A,C,D),n7(C,C,D)) [D >= 1 && C >= 1 && A >= 1 && C >= 0 && C >= 0] (?,4) Signature: {(cons,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n50,3) ;(n51,3) ;(n6,3) ;(n60,3) ;(n61,3) ;(n7,3) ;(n70,3) ;(n71,3) ;(n8,3) ;(n9,3) ;(start,3)} Flow Graph: [16->{19},18->{16},19->{26},23->{24},24->{18},25->{18},26->{18}] Sizebounds: (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<18,0,A>, ?) (<18,0,B>, ?) (<18,0,C>, ?) (<18,1,A>, ?) (<18,1,B>, ?) (<18,1,C>, ?) (<19,0,A>, ?) (<19,0,B>, ?) (<19,0,C>, ?) (<23,0,A>, A) (<23,0,B>, B) (<23,0,C>, C) (<24,0,A>, ?) (<24,0,B>, ?) (<24,0,C>, ?) (<25,0,A>, ?) (<25,0,B>, ?) (<25,0,C>, ?) (<26,0,A>, ?) (<26,0,B>, ?) (<26,0,C>, ?) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [25] * Step 9: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 16. n70(A,B,C) -> n8(A,B,C) True (?,1) 18. n7(A,B,C) -> c2(n70(D,E,F),n71(D,E,F)) [E >= 1 && D >= 1 && F >= 0 && A >= 1 + F] (?,1) 19. n8(A,B,C) -> n5(A,B,C) True (?,1) 23. start(A,B,C) -> cons(A,B,C) True (1,1) 24. cons(A,B,C) -> n7(A,B,C) [A >= 0 && A >= 0] (?,2) 26. n5(A,B,C) -> c2(n50(A,C,D),n7(C,C,D)) [D >= 1 && C >= 1 && A >= 1 && C >= 0 && C >= 0] (?,4) Signature: {(cons,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n50,3) ;(n51,3) ;(n6,3) ;(n60,3) ;(n61,3) ;(n7,3) ;(n70,3) ;(n71,3) ;(n8,3) ;(n9,3) ;(start,3)} Flow Graph: [16->{19},18->{16},19->{26},23->{24},24->{18},26->{18}] Sizebounds: (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<18,0,A>, ?) (<18,0,B>, ?) (<18,0,C>, ?) (<18,1,A>, ?) (<18,1,B>, ?) (<18,1,C>, ?) (<19,0,A>, ?) (<19,0,B>, ?) (<19,0,C>, ?) (<23,0,A>, A) (<23,0,B>, B) (<23,0,C>, C) (<24,0,A>, ?) (<24,0,B>, ?) (<24,0,C>, ?) (<26,0,A>, ?) (<26,0,B>, ?) (<26,0,C>, ?) + Applied Processor: ChainProcessor False [16,18,19,23,24,26] + Details: We chained rule 16 to obtain the rules [27] . * Step 10: UnreachableRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 18. n7(A,B,C) -> c2(n70(D,E,F),n71(D,E,F)) [E >= 1 && D >= 1 && F >= 0 && A >= 1 + F] (?,1) 19. n8(A,B,C) -> n5(A,B,C) True (?,1) 23. start(A,B,C) -> cons(A,B,C) True (1,1) 24. cons(A,B,C) -> n7(A,B,C) [A >= 0 && A >= 0] (?,2) 26. n5(A,B,C) -> c2(n50(A,C,D),n7(C,C,D)) [D >= 1 && C >= 1 && A >= 1 && C >= 0 && C >= 0] (?,4) 27. n70(A,B,C) -> n5(A,B,C) True (?,2) Signature: {(cons,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n50,3) ;(n51,3) ;(n6,3) ;(n60,3) ;(n61,3) ;(n7,3) ;(n70,3) ;(n71,3) ;(n8,3) ;(n9,3) ;(start,3)} Flow Graph: [18->{27},19->{26},23->{24},24->{18},26->{18},27->{26}] Sizebounds: (<18,0,A>, ?) (<18,0,B>, ?) (<18,0,C>, ?) (<18,1,A>, ?) (<18,1,B>, ?) (<18,1,C>, ?) (<19,0,A>, ?) (<19,0,B>, ?) (<19,0,C>, ?) (<23,0,A>, A) (<23,0,B>, B) (<23,0,C>, C) (<24,0,A>, ?) (<24,0,B>, ?) (<24,0,C>, ?) (<26,0,A>, ?) (<26,0,B>, ?) (<26,0,C>, ?) (<27,0,A>, ?) (<27,0,B>, ?) (<27,0,C>, ?) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [19] * Step 11: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 18. n7(A,B,C) -> c2(n70(D,E,F),n71(D,E,F)) [E >= 1 && D >= 1 && F >= 0 && A >= 1 + F] (?,1) 23. start(A,B,C) -> cons(A,B,C) True (1,1) 24. cons(A,B,C) -> n7(A,B,C) [A >= 0 && A >= 0] (?,2) 26. n5(A,B,C) -> c2(n50(A,C,D),n7(C,C,D)) [D >= 1 && C >= 1 && A >= 1 && C >= 0 && C >= 0] (?,4) 27. n70(A,B,C) -> n5(A,B,C) True (?,2) Signature: {(cons,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n50,3) ;(n51,3) ;(n6,3) ;(n60,3) ;(n61,3) ;(n7,3) ;(n70,3) ;(n71,3) ;(n8,3) ;(n9,3) ;(start,3)} Flow Graph: [18->{27},23->{24},24->{18},26->{18},27->{26}] Sizebounds: (<18,0,A>, ?) (<18,0,B>, ?) (<18,0,C>, ?) (<18,1,A>, ?) (<18,1,B>, ?) (<18,1,C>, ?) (<23,0,A>, A) (<23,0,B>, B) (<23,0,C>, C) (<24,0,A>, ?) (<24,0,B>, ?) (<24,0,C>, ?) (<26,0,A>, ?) (<26,0,B>, ?) (<26,0,C>, ?) (<27,0,A>, ?) (<27,0,B>, ?) (<27,0,C>, ?) + Applied Processor: ChainProcessor False [18,23,24,26,27] + Details: We chained rule 18 to obtain the rules [28] . * Step 12: UnreachableRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 23. start(A,B,C) -> cons(A,B,C) True (1,1) 24. cons(A,B,C) -> n7(A,B,C) [A >= 0 && A >= 0] (?,2) 26. n5(A,B,C) -> c2(n50(A,C,D),n7(C,C,D)) [D >= 1 && C >= 1 && A >= 1 && C >= 0 && C >= 0] (?,4) 27. n70(A,B,C) -> n5(A,B,C) True (?,2) 28. n7(A,B,C) -> c2(n5(D,E,F),n71(D,E,F)) [E >= 1 && D >= 1 && F >= 0 && A >= 1 + F] (?,3) Signature: {(cons,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n50,3) ;(n51,3) ;(n6,3) ;(n60,3) ;(n61,3) ;(n7,3) ;(n70,3) ;(n71,3) ;(n8,3) ;(n9,3) ;(start,3)} Flow Graph: [23->{24},24->{28},26->{28},27->{26},28->{26}] Sizebounds: (<23,0,A>, A) (<23,0,B>, B) (<23,0,C>, C) (<24,0,A>, ?) (<24,0,B>, ?) (<24,0,C>, ?) (<26,0,A>, ?) (<26,0,B>, ?) (<26,0,C>, ?) (<27,0,A>, ?) (<27,0,B>, ?) (<27,0,C>, ?) (<28,0,A>, ?) (<28,0,B>, ?) (<28,0,C>, ?) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [27] * Step 13: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 23. start(A,B,C) -> cons(A,B,C) True (1,1) 24. cons(A,B,C) -> n7(A,B,C) [A >= 0 && A >= 0] (?,2) 26. n5(A,B,C) -> c2(n50(A,C,D),n7(C,C,D)) [D >= 1 && C >= 1 && A >= 1 && C >= 0 && C >= 0] (?,4) 28. n7(A,B,C) -> c2(n5(D,E,F),n71(D,E,F)) [E >= 1 && D >= 1 && F >= 0 && A >= 1 + F] (?,3) Signature: {(cons,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n50,3) ;(n51,3) ;(n6,3) ;(n60,3) ;(n61,3) ;(n7,3) ;(n70,3) ;(n71,3) ;(n8,3) ;(n9,3) ;(start,3)} Flow Graph: [23->{24},24->{28},26->{28},28->{26}] Sizebounds: (<23,0,A>, A) (<23,0,B>, B) (<23,0,C>, C) (<24,0,A>, ?) (<24,0,B>, ?) (<24,0,C>, ?) (<26,0,A>, ?) (<26,0,B>, ?) (<26,0,C>, ?) (<28,0,A>, ?) (<28,0,B>, ?) (<28,0,C>, ?) + Applied Processor: ChainProcessor False [23,24,26,28] + Details: We chained rule 23 to obtain the rules [29] . * Step 14: UnreachableRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 24. cons(A,B,C) -> n7(A,B,C) [A >= 0 && A >= 0] (?,2) 26. n5(A,B,C) -> c2(n50(A,C,D),n7(C,C,D)) [D >= 1 && C >= 1 && A >= 1 && C >= 0 && C >= 0] (?,4) 28. n7(A,B,C) -> c2(n5(D,E,F),n71(D,E,F)) [E >= 1 && D >= 1 && F >= 0 && A >= 1 + F] (?,3) 29. start(A,B,C) -> n7(A,B,C) [A >= 0 && A >= 0] (1,3) Signature: {(cons,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n50,3) ;(n51,3) ;(n6,3) ;(n60,3) ;(n61,3) ;(n7,3) ;(n70,3) ;(n71,3) ;(n8,3) ;(n9,3) ;(start,3)} Flow Graph: [24->{28},26->{28},28->{26},29->{28}] Sizebounds: (<24,0,A>, ?) (<24,0,B>, ?) (<24,0,C>, ?) (<26,0,A>, ?) (<26,0,B>, ?) (<26,0,C>, ?) (<28,0,A>, ?) (<28,0,B>, ?) (<28,0,C>, ?) (<29,0,A>, ?) (<29,0,B>, ?) (<29,0,C>, ?) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [24] * Step 15: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 26. n5(A,B,C) -> c2(n50(A,C,D),n7(C,C,D)) [D >= 1 && C >= 1 && A >= 1 && C >= 0 && C >= 0] (?,4) 28. n7(A,B,C) -> c2(n5(D,E,F),n71(D,E,F)) [E >= 1 && D >= 1 && F >= 0 && A >= 1 + F] (?,3) 29. start(A,B,C) -> n7(A,B,C) [A >= 0 && A >= 0] (1,3) Signature: {(cons,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n50,3) ;(n51,3) ;(n6,3) ;(n60,3) ;(n61,3) ;(n7,3) ;(n70,3) ;(n71,3) ;(n8,3) ;(n9,3) ;(start,3)} Flow Graph: [26->{28},28->{26},29->{28}] Sizebounds: (<26,0,A>, ?) (<26,0,B>, ?) (<26,0,C>, ?) (<28,0,A>, ?) (<28,0,B>, ?) (<28,0,C>, ?) (<29,0,A>, ?) (<29,0,B>, ?) (<29,0,C>, ?) + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<26,0,A>, A, .= 0) (<26,0,B>, C, .= 0) (<26,0,C>, ?, .?) (<26,1,A>, C, .= 0) (<26,1,B>, C, .= 0) (<26,1,C>, ?, .?) (<28,0,A>, ?, .?) (<28,0,B>, ?, .?) (<28,0,C>, 1 + A, .+ 1) (<28,1,A>, ?, .?) (<28,1,B>, ?, .?) (<28,1,C>, 1 + A, .+ 1) (<29,0,A>, A, .= 0) (<29,0,B>, B, .= 0) (<29,0,C>, C, .= 0) * Step 16: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 26. n5(A,B,C) -> c2(n50(A,C,D),n7(C,C,D)) [D >= 1 && C >= 1 && A >= 1 && C >= 0 && C >= 0] (?,4) 28. n7(A,B,C) -> c2(n5(D,E,F),n71(D,E,F)) [E >= 1 && D >= 1 && F >= 0 && A >= 1 + F] (?,3) 29. start(A,B,C) -> n7(A,B,C) [A >= 0 && A >= 0] (1,3) Signature: {(cons,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n50,3) ;(n51,3) ;(n6,3) ;(n60,3) ;(n61,3) ;(n7,3) ;(n70,3) ;(n71,3) ;(n8,3) ;(n9,3) ;(start,3)} Flow Graph: [26->{28},28->{26},29->{28}] Sizebounds: (<26,0,A>, ?) (<26,0,B>, ?) (<26,0,C>, ?) (<26,1,A>, ?) (<26,1,B>, ?) (<26,1,C>, ?) (<28,0,A>, ?) (<28,0,B>, ?) (<28,0,C>, ?) (<28,1,A>, ?) (<28,1,B>, ?) (<28,1,C>, ?) (<29,0,A>, ?) (<29,0,B>, ?) (<29,0,C>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<26,0,A>, ?) (<26,0,B>, ?) (<26,0,C>, ?) (<26,1,A>, ?) (<26,1,B>, ?) (<26,1,C>, ?) (<28,0,A>, ?) (<28,0,B>, ?) (<28,0,C>, ?) (<28,1,A>, ?) (<28,1,B>, ?) (<28,1,C>, ?) (<29,0,A>, A) (<29,0,B>, B) (<29,0,C>, C) * Step 17: LocationConstraintsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 26. n5(A,B,C) -> c2(n50(A,C,D),n7(C,C,D)) [D >= 1 && C >= 1 && A >= 1 && C >= 0 && C >= 0] (?,4) 28. n7(A,B,C) -> c2(n5(D,E,F),n71(D,E,F)) [E >= 1 && D >= 1 && F >= 0 && A >= 1 + F] (?,3) 29. start(A,B,C) -> n7(A,B,C) [A >= 0 && A >= 0] (1,3) Signature: {(cons,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n50,3) ;(n51,3) ;(n6,3) ;(n60,3) ;(n61,3) ;(n7,3) ;(n70,3) ;(n71,3) ;(n8,3) ;(n9,3) ;(start,3)} Flow Graph: [26->{28},28->{26},29->{28}] Sizebounds: (<26,0,A>, ?) (<26,0,B>, ?) (<26,0,C>, ?) (<26,1,A>, ?) (<26,1,B>, ?) (<26,1,C>, ?) (<28,0,A>, ?) (<28,0,B>, ?) (<28,0,C>, ?) (<28,1,A>, ?) (<28,1,B>, ?) (<28,1,C>, ?) (<29,0,A>, A) (<29,0,B>, B) (<29,0,C>, C) + Applied Processor: LocationConstraintsProc + Details: We computed the location constraints 26 : True 28 : True 29 : True . * Step 18: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 26. n5(A,B,C) -> c2(n50(A,C,D),n7(C,C,D)) [D >= 1 && C >= 1 && A >= 1 && C >= 0 && C >= 0] (?,4) 28. n7(A,B,C) -> c2(n5(D,E,F),n71(D,E,F)) [E >= 1 && D >= 1 && F >= 0 && A >= 1 + F] (?,3) 29. start(A,B,C) -> n7(A,B,C) [A >= 0 && A >= 0] (1,3) Signature: {(cons,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n50,3) ;(n51,3) ;(n6,3) ;(n60,3) ;(n61,3) ;(n7,3) ;(n70,3) ;(n71,3) ;(n8,3) ;(n9,3) ;(start,3)} Flow Graph: [26->{28},28->{26},29->{28}] Sizebounds: (<26,0,A>, ?) (<26,0,B>, ?) (<26,0,C>, ?) (<26,1,A>, ?) (<26,1,B>, ?) (<26,1,C>, ?) (<28,0,A>, ?) (<28,0,B>, ?) (<28,0,C>, ?) (<28,1,A>, ?) (<28,1,B>, ?) (<28,1,C>, ?) (<29,0,A>, A) (<29,0,B>, B) (<29,0,C>, C) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(n5) = x3 p(n50) = 0 p(n7) = x1 p(n71) = 0 p(start) = x1 The following rules are strictly oriented: [E >= 1 && D >= 1 && F >= 0 && A >= 1 + F] ==> n7(A,B,C) = A > F = c2(n5(D,E,F),n71(D,E,F)) The following rules are weakly oriented: [D >= 1 && C >= 1 && A >= 1 && C >= 0 && C >= 0] ==> n5(A,B,C) = C >= C = c2(n50(A,C,D),n7(C,C,D)) [A >= 0 && A >= 0] ==> start(A,B,C) = A >= A = n7(A,B,C) * Step 19: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 26. n5(A,B,C) -> c2(n50(A,C,D),n7(C,C,D)) [D >= 1 && C >= 1 && A >= 1 && C >= 0 && C >= 0] (?,4) 28. n7(A,B,C) -> c2(n5(D,E,F),n71(D,E,F)) [E >= 1 && D >= 1 && F >= 0 && A >= 1 + F] (A,3) 29. start(A,B,C) -> n7(A,B,C) [A >= 0 && A >= 0] (1,3) Signature: {(cons,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n50,3) ;(n51,3) ;(n6,3) ;(n60,3) ;(n61,3) ;(n7,3) ;(n70,3) ;(n71,3) ;(n8,3) ;(n9,3) ;(start,3)} Flow Graph: [26->{28},28->{26},29->{28}] Sizebounds: (<26,0,A>, ?) (<26,0,B>, ?) (<26,0,C>, ?) (<26,1,A>, ?) (<26,1,B>, ?) (<26,1,C>, ?) (<28,0,A>, ?) (<28,0,B>, ?) (<28,0,C>, ?) (<28,1,A>, ?) (<28,1,B>, ?) (<28,1,C>, ?) (<29,0,A>, A) (<29,0,B>, B) (<29,0,C>, C) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(n5) = 1 + x3 p(n50) = 0 p(n7) = x1 p(n71) = 0 p(start) = x1 The following rules are strictly oriented: [D >= 1 && C >= 1 && A >= 1 && C >= 0 && C >= 0] ==> n5(A,B,C) = 1 + C > C = c2(n50(A,C,D),n7(C,C,D)) The following rules are weakly oriented: [E >= 1 && D >= 1 && F >= 0 && A >= 1 + F] ==> n7(A,B,C) = A >= 1 + F = c2(n5(D,E,F),n71(D,E,F)) [A >= 0 && A >= 0] ==> start(A,B,C) = A >= A = n7(A,B,C) * Step 20: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 26. n5(A,B,C) -> c2(n50(A,C,D),n7(C,C,D)) [D >= 1 && C >= 1 && A >= 1 && C >= 0 && C >= 0] (A,4) 28. n7(A,B,C) -> c2(n5(D,E,F),n71(D,E,F)) [E >= 1 && D >= 1 && F >= 0 && A >= 1 + F] (A,3) 29. start(A,B,C) -> n7(A,B,C) [A >= 0 && A >= 0] (1,3) Signature: {(cons,3) ;(m0,3) ;(m1,3) ;(m2,3) ;(m3,3) ;(m4,3) ;(m5,3) ;(m6,3) ;(m7,3) ;(m8,3) ;(m9,3) ;(n0,3) ;(n1,3) ;(n2,3) ;(n3,3) ;(n4,3) ;(n5,3) ;(n50,3) ;(n51,3) ;(n6,3) ;(n60,3) ;(n61,3) ;(n7,3) ;(n70,3) ;(n71,3) ;(n8,3) ;(n9,3) ;(start,3)} Flow Graph: [26->{28},28->{26},29->{28}] Sizebounds: (<26,0,A>, ?) (<26,0,B>, ?) (<26,0,C>, ?) (<26,1,A>, ?) (<26,1,B>, ?) (<26,1,C>, ?) (<28,0,A>, ?) (<28,0,B>, ?) (<28,0,C>, ?) (<28,1,A>, ?) (<28,1,B>, ?) (<28,1,C>, ?) (<29,0,A>, A) (<29,0,B>, B) (<29,0,C>, C) + Applied Processor: UnsatPaths + Details: The problem is already solved. WORST_CASE(?,O(n^1))