WORST_CASE(?,O(n^2)) * Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. doSum(A,B) -> m9(A,B) [A >= 0] (1,1) 1. m0(A,B) -> m1(A,B) [A >= 0] (?,1) 2. m2(A,B) -> m3(A,B) [1 + A >= 0] (?,1) 3. m1(A,B) -> m5(A,B) [A >= 0] (?,1) 4. m6(A,B) -> m4(A,B) [A >= 0 && 0 >= A] (?,1) 5. m7(A,B) -> c2(m4(C,B),m0(C,B)) [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A] (?,1) 6. m5(A,B) -> m8(A,B) [A >= 0] (?,1) 7. m8(A,B) -> m7(A,B) True (?,1) 8. m8(A,B) -> m6(A,B) True (?,1) 9. n2(A,B) -> c2(n0(A,B),m2(A,B)) [A >= 0] (?,1) 10. m9(A,B) -> n2(A,B) [A >= 0] (?,1) 11. n30(A,B) -> m2(A,B) True (?,1) 12. n31(A,B) -> m0(B,B) True (?,1) 13. n3(A,B) -> c2(n30(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A] (?,1) 14. m3(A,B) -> n3(A,B) True (?,1) 15. m3(A,B) -> n1(A,B) True (?,1) Signature: {(doSum,2) ;(m0,2) ;(m1,2) ;(m2,2) ;(m3,2) ;(m4,2) ;(m5,2) ;(m6,2) ;(m7,2) ;(m8,2) ;(m9,2) ;(n0,2) ;(n1,2) ;(n2,2) ;(n3,2) ;(n30,2) ;(n31,2)} Flow Graph: [0->{10},1->{3},2->{14,15},3->{6},4->{},5->{1},6->{7,8},7->{5},8->{4},9->{2},10->{9},11->{2},12->{1} ,13->{11,12},14->{13},15->{}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (< 0,0,A>, A, .= 0) (< 0,0,B>, B, .= 0) (< 1,0,A>, A, .= 0) (< 1,0,B>, B, .= 0) (< 2,0,A>, A, .= 0) (< 2,0,B>, B, .= 0) (< 3,0,A>, A, .= 0) (< 3,0,B>, B, .= 0) (< 4,0,A>, A, .= 0) (< 4,0,B>, B, .= 0) (< 5,0,A>, 1 + A, .+ 1) (< 5,0,B>, B, .= 0) (< 5,1,A>, 1 + A, .+ 1) (< 5,1,B>, B, .= 0) (< 6,0,A>, A, .= 0) (< 6,0,B>, B, .= 0) (< 7,0,A>, A, .= 0) (< 7,0,B>, B, .= 0) (< 8,0,A>, A, .= 0) (< 8,0,B>, B, .= 0) (< 9,0,A>, A, .= 0) (< 9,0,B>, B, .= 0) (< 9,1,A>, A, .= 0) (< 9,1,B>, B, .= 0) (<10,0,A>, A, .= 0) (<10,0,B>, B, .= 0) (<11,0,A>, A, .= 0) (<11,0,B>, B, .= 0) (<12,0,A>, B, .= 0) (<12,0,B>, B, .= 0) (<13,0,A>, 1 + A, .+ 1) (<13,0,B>, A, .= 0) (<13,1,A>, 1 + A, .+ 1) (<13,1,B>, A, .= 0) (<14,0,A>, A, .= 0) (<14,0,B>, B, .= 0) (<15,0,A>, A, .= 0) (<15,0,B>, B, .= 0) * Step 2: SizeboundsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. doSum(A,B) -> m9(A,B) [A >= 0] (1,1) 1. m0(A,B) -> m1(A,B) [A >= 0] (?,1) 2. m2(A,B) -> m3(A,B) [1 + A >= 0] (?,1) 3. m1(A,B) -> m5(A,B) [A >= 0] (?,1) 4. m6(A,B) -> m4(A,B) [A >= 0 && 0 >= A] (?,1) 5. m7(A,B) -> c2(m4(C,B),m0(C,B)) [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A] (?,1) 6. m5(A,B) -> m8(A,B) [A >= 0] (?,1) 7. m8(A,B) -> m7(A,B) True (?,1) 8. m8(A,B) -> m6(A,B) True (?,1) 9. n2(A,B) -> c2(n0(A,B),m2(A,B)) [A >= 0] (?,1) 10. m9(A,B) -> n2(A,B) [A >= 0] (?,1) 11. n30(A,B) -> m2(A,B) True (?,1) 12. n31(A,B) -> m0(B,B) True (?,1) 13. n3(A,B) -> c2(n30(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A] (?,1) 14. m3(A,B) -> n3(A,B) True (?,1) 15. m3(A,B) -> n1(A,B) True (?,1) Signature: {(doSum,2) ;(m0,2) ;(m1,2) ;(m2,2) ;(m3,2) ;(m4,2) ;(m5,2) ;(m6,2) ;(m7,2) ;(m8,2) ;(m9,2) ;(n0,2) ;(n1,2) ;(n2,2) ;(n3,2) ;(n30,2) ;(n31,2)} Flow Graph: [0->{10},1->{3},2->{14,15},3->{6},4->{},5->{1},6->{7,8},7->{5},8->{4},9->{2},10->{9},11->{2},12->{1} ,13->{11,12},14->{13},15->{}] Sizebounds: (< 0,0,A>, ?) (< 0,0,B>, ?) (< 1,0,A>, ?) (< 1,0,B>, ?) (< 2,0,A>, ?) (< 2,0,B>, ?) (< 3,0,A>, ?) (< 3,0,B>, ?) (< 4,0,A>, ?) (< 4,0,B>, ?) (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,1,A>, ?) (< 5,1,B>, ?) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,1,A>, ?) (< 9,1,B>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,1,A>, ?) (<13,1,B>, ?) (<14,0,A>, ?) (<14,0,B>, ?) (<15,0,A>, ?) (<15,0,B>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (< 0,0,A>, A) (< 0,0,B>, B) (< 1,0,A>, ?) (< 1,0,B>, ?) (< 2,0,A>, ?) (< 2,0,B>, ?) (< 3,0,A>, ?) (< 3,0,B>, ?) (< 4,0,A>, ?) (< 4,0,B>, ?) (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,1,A>, ?) (< 5,1,B>, ?) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 9,0,A>, A) (< 9,0,B>, B) (< 9,1,A>, A) (< 9,1,B>, B) (<10,0,A>, A) (<10,0,B>, B) (<11,0,A>, ?) (<11,0,B>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,1,A>, ?) (<13,1,B>, ?) (<14,0,A>, ?) (<14,0,B>, ?) (<15,0,A>, ?) (<15,0,B>, ?) * Step 3: LeafRules WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. doSum(A,B) -> m9(A,B) [A >= 0] (1,1) 1. m0(A,B) -> m1(A,B) [A >= 0] (?,1) 2. m2(A,B) -> m3(A,B) [1 + A >= 0] (?,1) 3. m1(A,B) -> m5(A,B) [A >= 0] (?,1) 4. m6(A,B) -> m4(A,B) [A >= 0 && 0 >= A] (?,1) 5. m7(A,B) -> c2(m4(C,B),m0(C,B)) [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A] (?,1) 6. m5(A,B) -> m8(A,B) [A >= 0] (?,1) 7. m8(A,B) -> m7(A,B) True (?,1) 8. m8(A,B) -> m6(A,B) True (?,1) 9. n2(A,B) -> c2(n0(A,B),m2(A,B)) [A >= 0] (?,1) 10. m9(A,B) -> n2(A,B) [A >= 0] (?,1) 11. n30(A,B) -> m2(A,B) True (?,1) 12. n31(A,B) -> m0(B,B) True (?,1) 13. n3(A,B) -> c2(n30(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A] (?,1) 14. m3(A,B) -> n3(A,B) True (?,1) 15. m3(A,B) -> n1(A,B) True (?,1) Signature: {(doSum,2) ;(m0,2) ;(m1,2) ;(m2,2) ;(m3,2) ;(m4,2) ;(m5,2) ;(m6,2) ;(m7,2) ;(m8,2) ;(m9,2) ;(n0,2) ;(n1,2) ;(n2,2) ;(n3,2) ;(n30,2) ;(n31,2)} Flow Graph: [0->{10},1->{3},2->{14,15},3->{6},4->{},5->{1},6->{7,8},7->{5},8->{4},9->{2},10->{9},11->{2},12->{1} ,13->{11,12},14->{13},15->{}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 1,0,A>, ?) (< 1,0,B>, ?) (< 2,0,A>, ?) (< 2,0,B>, ?) (< 3,0,A>, ?) (< 3,0,B>, ?) (< 4,0,A>, ?) (< 4,0,B>, ?) (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,1,A>, ?) (< 5,1,B>, ?) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 9,0,A>, A) (< 9,0,B>, B) (< 9,1,A>, A) (< 9,1,B>, B) (<10,0,A>, A) (<10,0,B>, B) (<11,0,A>, ?) (<11,0,B>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,1,A>, ?) (<13,1,B>, ?) (<14,0,A>, ?) (<14,0,B>, ?) (<15,0,A>, ?) (<15,0,B>, ?) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [8,4,15] * Step 4: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. doSum(A,B) -> m9(A,B) [A >= 0] (1,1) 1. m0(A,B) -> m1(A,B) [A >= 0] (?,1) 2. m2(A,B) -> m3(A,B) [1 + A >= 0] (?,1) 3. m1(A,B) -> m5(A,B) [A >= 0] (?,1) 5. m7(A,B) -> c2(m4(C,B),m0(C,B)) [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A] (?,1) 6. m5(A,B) -> m8(A,B) [A >= 0] (?,1) 7. m8(A,B) -> m7(A,B) True (?,1) 9. n2(A,B) -> c2(n0(A,B),m2(A,B)) [A >= 0] (?,1) 10. m9(A,B) -> n2(A,B) [A >= 0] (?,1) 11. n30(A,B) -> m2(A,B) True (?,1) 12. n31(A,B) -> m0(B,B) True (?,1) 13. n3(A,B) -> c2(n30(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A] (?,1) 14. m3(A,B) -> n3(A,B) True (?,1) Signature: {(doSum,2) ;(m0,2) ;(m1,2) ;(m2,2) ;(m3,2) ;(m4,2) ;(m5,2) ;(m6,2) ;(m7,2) ;(m8,2) ;(m9,2) ;(n0,2) ;(n1,2) ;(n2,2) ;(n3,2) ;(n30,2) ;(n31,2)} Flow Graph: [0->{10},1->{3},2->{14},3->{6},5->{1},6->{7},7->{5},9->{2},10->{9},11->{2},12->{1},13->{11,12},14->{13}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 1,0,A>, ?) (< 1,0,B>, ?) (< 2,0,A>, ?) (< 2,0,B>, ?) (< 3,0,A>, ?) (< 3,0,B>, ?) (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,1,A>, ?) (< 5,1,B>, ?) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 9,0,A>, A) (< 9,0,B>, B) (< 9,1,A>, A) (< 9,1,B>, B) (<10,0,A>, A) (<10,0,B>, B) (<11,0,A>, ?) (<11,0,B>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,1,A>, ?) (<13,1,B>, ?) (<14,0,A>, ?) (<14,0,B>, ?) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(doSum) = 2 p(m0) = 0 p(m1) = 0 p(m2) = 1 p(m3) = 1 p(m4) = 0 p(m5) = 0 p(m7) = 0 p(m8) = 0 p(m9) = 2 p(n0) = 0 p(n2) = 1 p(n3) = 1 p(n30) = 1 p(n31) = 0 The following rules are strictly oriented: [A >= 0] ==> m9(A,B) = 2 > 1 = n2(A,B) The following rules are weakly oriented: [A >= 0] ==> doSum(A,B) = 2 >= 2 = m9(A,B) [A >= 0] ==> m0(A,B) = 0 >= 0 = m1(A,B) [1 + A >= 0] ==> m2(A,B) = 1 >= 1 = m3(A,B) [A >= 0] ==> m1(A,B) = 0 >= 0 = m5(A,B) [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A] ==> m7(A,B) = 0 >= 0 = c2(m4(C,B),m0(C,B)) [A >= 0] ==> m5(A,B) = 0 >= 0 = m8(A,B) True ==> m8(A,B) = 0 >= 0 = m7(A,B) [A >= 0] ==> n2(A,B) = 1 >= 1 = c2(n0(A,B),m2(A,B)) True ==> n30(A,B) = 1 >= 1 = m2(A,B) True ==> n31(A,B) = 0 >= 0 = m0(B,B) [A >= 0 && A >= 1 + C && 1 + C >= A] ==> n3(A,B) = 1 >= 1 = c2(n30(C,A),n31(C,A)) True ==> m3(A,B) = 1 >= 1 = n3(A,B) * Step 5: KnowledgePropagation WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. doSum(A,B) -> m9(A,B) [A >= 0] (1,1) 1. m0(A,B) -> m1(A,B) [A >= 0] (?,1) 2. m2(A,B) -> m3(A,B) [1 + A >= 0] (?,1) 3. m1(A,B) -> m5(A,B) [A >= 0] (?,1) 5. m7(A,B) -> c2(m4(C,B),m0(C,B)) [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A] (?,1) 6. m5(A,B) -> m8(A,B) [A >= 0] (?,1) 7. m8(A,B) -> m7(A,B) True (?,1) 9. n2(A,B) -> c2(n0(A,B),m2(A,B)) [A >= 0] (?,1) 10. m9(A,B) -> n2(A,B) [A >= 0] (2,1) 11. n30(A,B) -> m2(A,B) True (?,1) 12. n31(A,B) -> m0(B,B) True (?,1) 13. n3(A,B) -> c2(n30(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A] (?,1) 14. m3(A,B) -> n3(A,B) True (?,1) Signature: {(doSum,2) ;(m0,2) ;(m1,2) ;(m2,2) ;(m3,2) ;(m4,2) ;(m5,2) ;(m6,2) ;(m7,2) ;(m8,2) ;(m9,2) ;(n0,2) ;(n1,2) ;(n2,2) ;(n3,2) ;(n30,2) ;(n31,2)} Flow Graph: [0->{10},1->{3},2->{14},3->{6},5->{1},6->{7},7->{5},9->{2},10->{9},11->{2},12->{1},13->{11,12},14->{13}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 1,0,A>, ?) (< 1,0,B>, ?) (< 2,0,A>, ?) (< 2,0,B>, ?) (< 3,0,A>, ?) (< 3,0,B>, ?) (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,1,A>, ?) (< 5,1,B>, ?) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 9,0,A>, A) (< 9,0,B>, B) (< 9,1,A>, A) (< 9,1,B>, B) (<10,0,A>, A) (<10,0,B>, B) (<11,0,A>, ?) (<11,0,B>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,1,A>, ?) (<13,1,B>, ?) (<14,0,A>, ?) (<14,0,B>, ?) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 6: ChainProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. doSum(A,B) -> m9(A,B) [A >= 0] (1,1) 1. m0(A,B) -> m1(A,B) [A >= 0] (?,1) 2. m2(A,B) -> m3(A,B) [1 + A >= 0] (?,1) 3. m1(A,B) -> m5(A,B) [A >= 0] (?,1) 5. m7(A,B) -> c2(m4(C,B),m0(C,B)) [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A] (?,1) 6. m5(A,B) -> m8(A,B) [A >= 0] (?,1) 7. m8(A,B) -> m7(A,B) True (?,1) 9. n2(A,B) -> c2(n0(A,B),m2(A,B)) [A >= 0] (2,1) 10. m9(A,B) -> n2(A,B) [A >= 0] (2,1) 11. n30(A,B) -> m2(A,B) True (?,1) 12. n31(A,B) -> m0(B,B) True (?,1) 13. n3(A,B) -> c2(n30(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A] (?,1) 14. m3(A,B) -> n3(A,B) True (?,1) Signature: {(doSum,2) ;(m0,2) ;(m1,2) ;(m2,2) ;(m3,2) ;(m4,2) ;(m5,2) ;(m6,2) ;(m7,2) ;(m8,2) ;(m9,2) ;(n0,2) ;(n1,2) ;(n2,2) ;(n3,2) ;(n30,2) ;(n31,2)} Flow Graph: [0->{10},1->{3},2->{14},3->{6},5->{1},6->{7},7->{5},9->{2},10->{9},11->{2},12->{1},13->{11,12},14->{13}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 1,0,A>, ?) (< 1,0,B>, ?) (< 2,0,A>, ?) (< 2,0,B>, ?) (< 3,0,A>, ?) (< 3,0,B>, ?) (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,1,A>, ?) (< 5,1,B>, ?) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 9,0,A>, A) (< 9,0,B>, B) (< 9,1,A>, A) (< 9,1,B>, B) (<10,0,A>, A) (<10,0,B>, B) (<11,0,A>, ?) (<11,0,B>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,1,A>, ?) (<13,1,B>, ?) (<14,0,A>, ?) (<14,0,B>, ?) + Applied Processor: ChainProcessor False [0,1,2,3,5,6,7,9,10,11,12,13,14] + Details: We chained rule 0 to obtain the rules [15] . * Step 7: UnreachableRules WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 1. m0(A,B) -> m1(A,B) [A >= 0] (?,1) 2. m2(A,B) -> m3(A,B) [1 + A >= 0] (?,1) 3. m1(A,B) -> m5(A,B) [A >= 0] (?,1) 5. m7(A,B) -> c2(m4(C,B),m0(C,B)) [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A] (?,1) 6. m5(A,B) -> m8(A,B) [A >= 0] (?,1) 7. m8(A,B) -> m7(A,B) True (?,1) 9. n2(A,B) -> c2(n0(A,B),m2(A,B)) [A >= 0] (2,1) 10. m9(A,B) -> n2(A,B) [A >= 0] (2,1) 11. n30(A,B) -> m2(A,B) True (?,1) 12. n31(A,B) -> m0(B,B) True (?,1) 13. n3(A,B) -> c2(n30(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A] (?,1) 14. m3(A,B) -> n3(A,B) True (?,1) 15. doSum(A,B) -> n2(A,B) [A >= 0 && A >= 0] (1,2) Signature: {(doSum,2) ;(m0,2) ;(m1,2) ;(m2,2) ;(m3,2) ;(m4,2) ;(m5,2) ;(m6,2) ;(m7,2) ;(m8,2) ;(m9,2) ;(n0,2) ;(n1,2) ;(n2,2) ;(n3,2) ;(n30,2) ;(n31,2)} Flow Graph: [1->{3},2->{14},3->{6},5->{1},6->{7},7->{5},9->{2},10->{9},11->{2},12->{1},13->{11,12},14->{13},15->{9}] Sizebounds: (< 1,0,A>, ?) (< 1,0,B>, ?) (< 2,0,A>, ?) (< 2,0,B>, ?) (< 3,0,A>, ?) (< 3,0,B>, ?) (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,1,A>, ?) (< 5,1,B>, ?) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 9,0,A>, A) (< 9,0,B>, B) (< 9,1,A>, A) (< 9,1,B>, B) (<10,0,A>, A) (<10,0,B>, B) (<11,0,A>, ?) (<11,0,B>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,1,A>, ?) (<13,1,B>, ?) (<14,0,A>, ?) (<14,0,B>, ?) (<15,0,A>, A) (<15,0,B>, B) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [10] * Step 8: ChainProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 1. m0(A,B) -> m1(A,B) [A >= 0] (?,1) 2. m2(A,B) -> m3(A,B) [1 + A >= 0] (?,1) 3. m1(A,B) -> m5(A,B) [A >= 0] (?,1) 5. m7(A,B) -> c2(m4(C,B),m0(C,B)) [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A] (?,1) 6. m5(A,B) -> m8(A,B) [A >= 0] (?,1) 7. m8(A,B) -> m7(A,B) True (?,1) 9. n2(A,B) -> c2(n0(A,B),m2(A,B)) [A >= 0] (2,1) 11. n30(A,B) -> m2(A,B) True (?,1) 12. n31(A,B) -> m0(B,B) True (?,1) 13. n3(A,B) -> c2(n30(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A] (?,1) 14. m3(A,B) -> n3(A,B) True (?,1) 15. doSum(A,B) -> n2(A,B) [A >= 0 && A >= 0] (1,2) Signature: {(doSum,2) ;(m0,2) ;(m1,2) ;(m2,2) ;(m3,2) ;(m4,2) ;(m5,2) ;(m6,2) ;(m7,2) ;(m8,2) ;(m9,2) ;(n0,2) ;(n1,2) ;(n2,2) ;(n3,2) ;(n30,2) ;(n31,2)} Flow Graph: [1->{3},2->{14},3->{6},5->{1},6->{7},7->{5},9->{2},11->{2},12->{1},13->{11,12},14->{13},15->{9}] Sizebounds: (< 1,0,A>, ?) (< 1,0,B>, ?) (< 2,0,A>, ?) (< 2,0,B>, ?) (< 3,0,A>, ?) (< 3,0,B>, ?) (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,1,A>, ?) (< 5,1,B>, ?) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 9,0,A>, A) (< 9,0,B>, B) (< 9,1,A>, A) (< 9,1,B>, B) (<11,0,A>, ?) (<11,0,B>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,1,A>, ?) (<13,1,B>, ?) (<14,0,A>, ?) (<14,0,B>, ?) (<15,0,A>, A) (<15,0,B>, B) + Applied Processor: ChainProcessor False [1,2,3,5,6,7,9,11,12,13,14,15] + Details: We chained rule 1 to obtain the rules [16] . * Step 9: UnreachableRules WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 2. m2(A,B) -> m3(A,B) [1 + A >= 0] (?,1) 3. m1(A,B) -> m5(A,B) [A >= 0] (?,1) 5. m7(A,B) -> c2(m4(C,B),m0(C,B)) [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A] (?,1) 6. m5(A,B) -> m8(A,B) [A >= 0] (?,1) 7. m8(A,B) -> m7(A,B) True (?,1) 9. n2(A,B) -> c2(n0(A,B),m2(A,B)) [A >= 0] (2,1) 11. n30(A,B) -> m2(A,B) True (?,1) 12. n31(A,B) -> m0(B,B) True (?,1) 13. n3(A,B) -> c2(n30(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A] (?,1) 14. m3(A,B) -> n3(A,B) True (?,1) 15. doSum(A,B) -> n2(A,B) [A >= 0 && A >= 0] (1,2) 16. m0(A,B) -> m5(A,B) [A >= 0 && A >= 0] (?,2) Signature: {(doSum,2) ;(m0,2) ;(m1,2) ;(m2,2) ;(m3,2) ;(m4,2) ;(m5,2) ;(m6,2) ;(m7,2) ;(m8,2) ;(m9,2) ;(n0,2) ;(n1,2) ;(n2,2) ;(n3,2) ;(n30,2) ;(n31,2)} Flow Graph: [2->{14},3->{6},5->{16},6->{7},7->{5},9->{2},11->{2},12->{16},13->{11,12},14->{13},15->{9},16->{6}] Sizebounds: (< 2,0,A>, ?) (< 2,0,B>, ?) (< 3,0,A>, ?) (< 3,0,B>, ?) (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,1,A>, ?) (< 5,1,B>, ?) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 9,0,A>, A) (< 9,0,B>, B) (< 9,1,A>, A) (< 9,1,B>, B) (<11,0,A>, ?) (<11,0,B>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,1,A>, ?) (<13,1,B>, ?) (<14,0,A>, ?) (<14,0,B>, ?) (<15,0,A>, A) (<15,0,B>, B) (<16,0,A>, ?) (<16,0,B>, ?) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [3] * Step 10: ChainProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 2. m2(A,B) -> m3(A,B) [1 + A >= 0] (?,1) 5. m7(A,B) -> c2(m4(C,B),m0(C,B)) [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A] (?,1) 6. m5(A,B) -> m8(A,B) [A >= 0] (?,1) 7. m8(A,B) -> m7(A,B) True (?,1) 9. n2(A,B) -> c2(n0(A,B),m2(A,B)) [A >= 0] (2,1) 11. n30(A,B) -> m2(A,B) True (?,1) 12. n31(A,B) -> m0(B,B) True (?,1) 13. n3(A,B) -> c2(n30(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A] (?,1) 14. m3(A,B) -> n3(A,B) True (?,1) 15. doSum(A,B) -> n2(A,B) [A >= 0 && A >= 0] (1,2) 16. m0(A,B) -> m5(A,B) [A >= 0 && A >= 0] (?,2) Signature: {(doSum,2) ;(m0,2) ;(m1,2) ;(m2,2) ;(m3,2) ;(m4,2) ;(m5,2) ;(m6,2) ;(m7,2) ;(m8,2) ;(m9,2) ;(n0,2) ;(n1,2) ;(n2,2) ;(n3,2) ;(n30,2) ;(n31,2)} Flow Graph: [2->{14},5->{16},6->{7},7->{5},9->{2},11->{2},12->{16},13->{11,12},14->{13},15->{9},16->{6}] Sizebounds: (< 2,0,A>, ?) (< 2,0,B>, ?) (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,1,A>, ?) (< 5,1,B>, ?) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 9,0,A>, A) (< 9,0,B>, B) (< 9,1,A>, A) (< 9,1,B>, B) (<11,0,A>, ?) (<11,0,B>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,1,A>, ?) (<13,1,B>, ?) (<14,0,A>, ?) (<14,0,B>, ?) (<15,0,A>, A) (<15,0,B>, B) (<16,0,A>, ?) (<16,0,B>, ?) + Applied Processor: ChainProcessor False [2,5,6,7,9,11,12,13,14,15,16] + Details: We chained rule 2 to obtain the rules [17] . * Step 11: UnreachableRules WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 5. m7(A,B) -> c2(m4(C,B),m0(C,B)) [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A] (?,1) 6. m5(A,B) -> m8(A,B) [A >= 0] (?,1) 7. m8(A,B) -> m7(A,B) True (?,1) 9. n2(A,B) -> c2(n0(A,B),m2(A,B)) [A >= 0] (2,1) 11. n30(A,B) -> m2(A,B) True (?,1) 12. n31(A,B) -> m0(B,B) True (?,1) 13. n3(A,B) -> c2(n30(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A] (?,1) 14. m3(A,B) -> n3(A,B) True (?,1) 15. doSum(A,B) -> n2(A,B) [A >= 0 && A >= 0] (1,2) 16. m0(A,B) -> m5(A,B) [A >= 0 && A >= 0] (?,2) 17. m2(A,B) -> n3(A,B) [1 + A >= 0] (?,2) Signature: {(doSum,2) ;(m0,2) ;(m1,2) ;(m2,2) ;(m3,2) ;(m4,2) ;(m5,2) ;(m6,2) ;(m7,2) ;(m8,2) ;(m9,2) ;(n0,2) ;(n1,2) ;(n2,2) ;(n3,2) ;(n30,2) ;(n31,2)} Flow Graph: [5->{16},6->{7},7->{5},9->{17},11->{17},12->{16},13->{11,12},14->{13},15->{9},16->{6},17->{13}] Sizebounds: (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,1,A>, ?) (< 5,1,B>, ?) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 9,0,A>, A) (< 9,0,B>, B) (< 9,1,A>, A) (< 9,1,B>, B) (<11,0,A>, ?) (<11,0,B>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,1,A>, ?) (<13,1,B>, ?) (<14,0,A>, ?) (<14,0,B>, ?) (<15,0,A>, A) (<15,0,B>, B) (<16,0,A>, ?) (<16,0,B>, ?) (<17,0,A>, ?) (<17,0,B>, ?) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [14] * Step 12: ChainProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 5. m7(A,B) -> c2(m4(C,B),m0(C,B)) [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A] (?,1) 6. m5(A,B) -> m8(A,B) [A >= 0] (?,1) 7. m8(A,B) -> m7(A,B) True (?,1) 9. n2(A,B) -> c2(n0(A,B),m2(A,B)) [A >= 0] (2,1) 11. n30(A,B) -> m2(A,B) True (?,1) 12. n31(A,B) -> m0(B,B) True (?,1) 13. n3(A,B) -> c2(n30(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A] (?,1) 15. doSum(A,B) -> n2(A,B) [A >= 0 && A >= 0] (1,2) 16. m0(A,B) -> m5(A,B) [A >= 0 && A >= 0] (?,2) 17. m2(A,B) -> n3(A,B) [1 + A >= 0] (?,2) Signature: {(doSum,2) ;(m0,2) ;(m1,2) ;(m2,2) ;(m3,2) ;(m4,2) ;(m5,2) ;(m6,2) ;(m7,2) ;(m8,2) ;(m9,2) ;(n0,2) ;(n1,2) ;(n2,2) ;(n3,2) ;(n30,2) ;(n31,2)} Flow Graph: [5->{16},6->{7},7->{5},9->{17},11->{17},12->{16},13->{11,12},15->{9},16->{6},17->{13}] Sizebounds: (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,1,A>, ?) (< 5,1,B>, ?) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 9,0,A>, A) (< 9,0,B>, B) (< 9,1,A>, A) (< 9,1,B>, B) (<11,0,A>, ?) (<11,0,B>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,1,A>, ?) (<13,1,B>, ?) (<15,0,A>, A) (<15,0,B>, B) (<16,0,A>, ?) (<16,0,B>, ?) (<17,0,A>, ?) (<17,0,B>, ?) + Applied Processor: ChainProcessor False [5,6,7,9,11,12,13,15,16,17] + Details: We chained rule 5 to obtain the rules [18] . * Step 13: ChainProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 6. m5(A,B) -> m8(A,B) [A >= 0] (?,1) 7. m8(A,B) -> m7(A,B) True (?,1) 9. n2(A,B) -> c2(n0(A,B),m2(A,B)) [A >= 0] (2,1) 11. n30(A,B) -> m2(A,B) True (?,1) 12. n31(A,B) -> m0(B,B) True (?,1) 13. n3(A,B) -> c2(n30(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A] (?,1) 15. doSum(A,B) -> n2(A,B) [A >= 0 && A >= 0] (1,2) 16. m0(A,B) -> m5(A,B) [A >= 0 && A >= 0] (?,2) 17. m2(A,B) -> n3(A,B) [1 + A >= 0] (?,2) 18. m7(A,B) -> c2(m4(C,B),m5(C,B)) [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A && C >= 0 && C >= 0] (?,3) Signature: {(doSum,2) ;(m0,2) ;(m1,2) ;(m2,2) ;(m3,2) ;(m4,2) ;(m5,2) ;(m6,2) ;(m7,2) ;(m8,2) ;(m9,2) ;(n0,2) ;(n1,2) ;(n2,2) ;(n3,2) ;(n30,2) ;(n31,2)} Flow Graph: [6->{7},7->{18},9->{17},11->{17},12->{16},13->{11,12},15->{9},16->{6},17->{13},18->{6}] Sizebounds: (< 6,0,A>, ?) (< 6,0,B>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 9,0,A>, A) (< 9,0,B>, B) (< 9,1,A>, A) (< 9,1,B>, B) (<11,0,A>, ?) (<11,0,B>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,1,A>, ?) (<13,1,B>, ?) (<15,0,A>, A) (<15,0,B>, B) (<16,0,A>, ?) (<16,0,B>, ?) (<17,0,A>, ?) (<17,0,B>, ?) (<18,0,A>, ?) (<18,0,B>, ?) + Applied Processor: ChainProcessor False [6,7,9,11,12,13,15,16,17,18] + Details: We chained rule 6 to obtain the rules [19] . * Step 14: UnreachableRules WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 7. m8(A,B) -> m7(A,B) True (?,1) 9. n2(A,B) -> c2(n0(A,B),m2(A,B)) [A >= 0] (2,1) 11. n30(A,B) -> m2(A,B) True (?,1) 12. n31(A,B) -> m0(B,B) True (?,1) 13. n3(A,B) -> c2(n30(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A] (?,1) 15. doSum(A,B) -> n2(A,B) [A >= 0 && A >= 0] (1,2) 16. m0(A,B) -> m5(A,B) [A >= 0 && A >= 0] (?,2) 17. m2(A,B) -> n3(A,B) [1 + A >= 0] (?,2) 18. m7(A,B) -> c2(m4(C,B),m5(C,B)) [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A && C >= 0 && C >= 0] (?,3) 19. m5(A,B) -> m7(A,B) [A >= 0] (?,2) Signature: {(doSum,2) ;(m0,2) ;(m1,2) ;(m2,2) ;(m3,2) ;(m4,2) ;(m5,2) ;(m6,2) ;(m7,2) ;(m8,2) ;(m9,2) ;(n0,2) ;(n1,2) ;(n2,2) ;(n3,2) ;(n30,2) ;(n31,2)} Flow Graph: [7->{18},9->{17},11->{17},12->{16},13->{11,12},15->{9},16->{19},17->{13},18->{19},19->{18}] Sizebounds: (< 7,0,A>, ?) (< 7,0,B>, ?) (< 9,0,A>, A) (< 9,0,B>, B) (< 9,1,A>, A) (< 9,1,B>, B) (<11,0,A>, ?) (<11,0,B>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,1,A>, ?) (<13,1,B>, ?) (<15,0,A>, A) (<15,0,B>, B) (<16,0,A>, ?) (<16,0,B>, ?) (<17,0,A>, ?) (<17,0,B>, ?) (<18,0,A>, ?) (<18,0,B>, ?) (<19,0,A>, ?) (<19,0,B>, ?) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [7] * Step 15: ChainProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 9. n2(A,B) -> c2(n0(A,B),m2(A,B)) [A >= 0] (2,1) 11. n30(A,B) -> m2(A,B) True (?,1) 12. n31(A,B) -> m0(B,B) True (?,1) 13. n3(A,B) -> c2(n30(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A] (?,1) 15. doSum(A,B) -> n2(A,B) [A >= 0 && A >= 0] (1,2) 16. m0(A,B) -> m5(A,B) [A >= 0 && A >= 0] (?,2) 17. m2(A,B) -> n3(A,B) [1 + A >= 0] (?,2) 18. m7(A,B) -> c2(m4(C,B),m5(C,B)) [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A && C >= 0 && C >= 0] (?,3) 19. m5(A,B) -> m7(A,B) [A >= 0] (?,2) Signature: {(doSum,2) ;(m0,2) ;(m1,2) ;(m2,2) ;(m3,2) ;(m4,2) ;(m5,2) ;(m6,2) ;(m7,2) ;(m8,2) ;(m9,2) ;(n0,2) ;(n1,2) ;(n2,2) ;(n3,2) ;(n30,2) ;(n31,2)} Flow Graph: [9->{17},11->{17},12->{16},13->{11,12},15->{9},16->{19},17->{13},18->{19},19->{18}] Sizebounds: (< 9,0,A>, A) (< 9,0,B>, B) (< 9,1,A>, A) (< 9,1,B>, B) (<11,0,A>, ?) (<11,0,B>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,1,A>, ?) (<13,1,B>, ?) (<15,0,A>, A) (<15,0,B>, B) (<16,0,A>, ?) (<16,0,B>, ?) (<17,0,A>, ?) (<17,0,B>, ?) (<18,0,A>, ?) (<18,0,B>, ?) (<19,0,A>, ?) (<19,0,B>, ?) + Applied Processor: ChainProcessor False [9,11,12,13,15,16,17,18,19] + Details: We chained rule 9 to obtain the rules [20] . * Step 16: ChainProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 11. n30(A,B) -> m2(A,B) True (?,1) 12. n31(A,B) -> m0(B,B) True (?,1) 13. n3(A,B) -> c2(n30(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A] (?,1) 15. doSum(A,B) -> n2(A,B) [A >= 0 && A >= 0] (1,2) 16. m0(A,B) -> m5(A,B) [A >= 0 && A >= 0] (?,2) 17. m2(A,B) -> n3(A,B) [1 + A >= 0] (?,2) 18. m7(A,B) -> c2(m4(C,B),m5(C,B)) [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A && C >= 0 && C >= 0] (?,3) 19. m5(A,B) -> m7(A,B) [A >= 0] (?,2) 20. n2(A,B) -> c2(n0(A,B),n3(A,B)) [A >= 0 && 1 + A >= 0] (2,3) Signature: {(doSum,2) ;(m0,2) ;(m1,2) ;(m2,2) ;(m3,2) ;(m4,2) ;(m5,2) ;(m6,2) ;(m7,2) ;(m8,2) ;(m9,2) ;(n0,2) ;(n1,2) ;(n2,2) ;(n3,2) ;(n30,2) ;(n31,2)} Flow Graph: [11->{17},12->{16},13->{11,12},15->{20},16->{19},17->{13},18->{19},19->{18},20->{13}] Sizebounds: (<11,0,A>, ?) (<11,0,B>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,1,A>, ?) (<13,1,B>, ?) (<15,0,A>, A) (<15,0,B>, B) (<16,0,A>, ?) (<16,0,B>, ?) (<17,0,A>, ?) (<17,0,B>, ?) (<18,0,A>, ?) (<18,0,B>, ?) (<19,0,A>, ?) (<19,0,B>, ?) (<20,0,A>, ?) (<20,0,B>, ?) + Applied Processor: ChainProcessor False [11,12,13,15,16,17,18,19,20] + Details: We chained rule 11 to obtain the rules [21] . * Step 17: UnreachableRules WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 12. n31(A,B) -> m0(B,B) True (?,1) 13. n3(A,B) -> c2(n30(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A] (?,1) 15. doSum(A,B) -> n2(A,B) [A >= 0 && A >= 0] (1,2) 16. m0(A,B) -> m5(A,B) [A >= 0 && A >= 0] (?,2) 17. m2(A,B) -> n3(A,B) [1 + A >= 0] (?,2) 18. m7(A,B) -> c2(m4(C,B),m5(C,B)) [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A && C >= 0 && C >= 0] (?,3) 19. m5(A,B) -> m7(A,B) [A >= 0] (?,2) 20. n2(A,B) -> c2(n0(A,B),n3(A,B)) [A >= 0 && 1 + A >= 0] (2,3) 21. n30(A,B) -> n3(A,B) [1 + A >= 0] (?,3) Signature: {(doSum,2) ;(m0,2) ;(m1,2) ;(m2,2) ;(m3,2) ;(m4,2) ;(m5,2) ;(m6,2) ;(m7,2) ;(m8,2) ;(m9,2) ;(n0,2) ;(n1,2) ;(n2,2) ;(n3,2) ;(n30,2) ;(n31,2)} Flow Graph: [12->{16},13->{12,21},15->{20},16->{19},17->{13},18->{19},19->{18},20->{13},21->{13}] Sizebounds: (<12,0,A>, ?) (<12,0,B>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,1,A>, ?) (<13,1,B>, ?) (<15,0,A>, A) (<15,0,B>, B) (<16,0,A>, ?) (<16,0,B>, ?) (<17,0,A>, ?) (<17,0,B>, ?) (<18,0,A>, ?) (<18,0,B>, ?) (<19,0,A>, ?) (<19,0,B>, ?) (<20,0,A>, ?) (<20,0,B>, ?) (<21,0,A>, ?) (<21,0,B>, ?) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [17] * Step 18: ChainProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 12. n31(A,B) -> m0(B,B) True (?,1) 13. n3(A,B) -> c2(n30(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A] (?,1) 15. doSum(A,B) -> n2(A,B) [A >= 0 && A >= 0] (1,2) 16. m0(A,B) -> m5(A,B) [A >= 0 && A >= 0] (?,2) 18. m7(A,B) -> c2(m4(C,B),m5(C,B)) [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A && C >= 0 && C >= 0] (?,3) 19. m5(A,B) -> m7(A,B) [A >= 0] (?,2) 20. n2(A,B) -> c2(n0(A,B),n3(A,B)) [A >= 0 && 1 + A >= 0] (2,3) 21. n30(A,B) -> n3(A,B) [1 + A >= 0] (?,3) Signature: {(doSum,2) ;(m0,2) ;(m1,2) ;(m2,2) ;(m3,2) ;(m4,2) ;(m5,2) ;(m6,2) ;(m7,2) ;(m8,2) ;(m9,2) ;(n0,2) ;(n1,2) ;(n2,2) ;(n3,2) ;(n30,2) ;(n31,2)} Flow Graph: [12->{16},13->{12,21},15->{20},16->{19},18->{19},19->{18},20->{13},21->{13}] Sizebounds: (<12,0,A>, ?) (<12,0,B>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,1,A>, ?) (<13,1,B>, ?) (<15,0,A>, A) (<15,0,B>, B) (<16,0,A>, ?) (<16,0,B>, ?) (<18,0,A>, ?) (<18,0,B>, ?) (<19,0,A>, ?) (<19,0,B>, ?) (<20,0,A>, ?) (<20,0,B>, ?) (<21,0,A>, ?) (<21,0,B>, ?) + Applied Processor: ChainProcessor False [12,13,15,16,18,19,20,21] + Details: We chained rule 12 to obtain the rules [22] . * Step 19: UnreachableRules WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 13. n3(A,B) -> c2(n30(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A] (?,1) 15. doSum(A,B) -> n2(A,B) [A >= 0 && A >= 0] (1,2) 16. m0(A,B) -> m5(A,B) [A >= 0 && A >= 0] (?,2) 18. m7(A,B) -> c2(m4(C,B),m5(C,B)) [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A && C >= 0 && C >= 0] (?,3) 19. m5(A,B) -> m7(A,B) [A >= 0] (?,2) 20. n2(A,B) -> c2(n0(A,B),n3(A,B)) [A >= 0 && 1 + A >= 0] (2,3) 21. n30(A,B) -> n3(A,B) [1 + A >= 0] (?,3) 22. n31(A,B) -> m5(B,B) [B >= 0 && B >= 0] (?,3) Signature: {(doSum,2) ;(m0,2) ;(m1,2) ;(m2,2) ;(m3,2) ;(m4,2) ;(m5,2) ;(m6,2) ;(m7,2) ;(m8,2) ;(m9,2) ;(n0,2) ;(n1,2) ;(n2,2) ;(n3,2) ;(n30,2) ;(n31,2)} Flow Graph: [13->{21,22},15->{20},16->{19},18->{19},19->{18},20->{13},21->{13},22->{19}] Sizebounds: (<13,0,A>, ?) (<13,0,B>, ?) (<13,1,A>, ?) (<13,1,B>, ?) (<15,0,A>, A) (<15,0,B>, B) (<16,0,A>, ?) (<16,0,B>, ?) (<18,0,A>, ?) (<18,0,B>, ?) (<19,0,A>, ?) (<19,0,B>, ?) (<20,0,A>, ?) (<20,0,B>, ?) (<21,0,A>, ?) (<21,0,B>, ?) (<22,0,A>, ?) (<22,0,B>, ?) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [16] * Step 20: ChainProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 13. n3(A,B) -> c2(n30(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A] (?,1) 15. doSum(A,B) -> n2(A,B) [A >= 0 && A >= 0] (1,2) 18. m7(A,B) -> c2(m4(C,B),m5(C,B)) [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A && C >= 0 && C >= 0] (?,3) 19. m5(A,B) -> m7(A,B) [A >= 0] (?,2) 20. n2(A,B) -> c2(n0(A,B),n3(A,B)) [A >= 0 && 1 + A >= 0] (2,3) 21. n30(A,B) -> n3(A,B) [1 + A >= 0] (?,3) 22. n31(A,B) -> m5(B,B) [B >= 0 && B >= 0] (?,3) Signature: {(doSum,2) ;(m0,2) ;(m1,2) ;(m2,2) ;(m3,2) ;(m4,2) ;(m5,2) ;(m6,2) ;(m7,2) ;(m8,2) ;(m9,2) ;(n0,2) ;(n1,2) ;(n2,2) ;(n3,2) ;(n30,2) ;(n31,2)} Flow Graph: [13->{21,22},15->{20},18->{19},19->{18},20->{13},21->{13},22->{19}] Sizebounds: (<13,0,A>, ?) (<13,0,B>, ?) (<13,1,A>, ?) (<13,1,B>, ?) (<15,0,A>, A) (<15,0,B>, B) (<18,0,A>, ?) (<18,0,B>, ?) (<19,0,A>, ?) (<19,0,B>, ?) (<20,0,A>, ?) (<20,0,B>, ?) (<21,0,A>, ?) (<21,0,B>, ?) (<22,0,A>, ?) (<22,0,B>, ?) + Applied Processor: ChainProcessor False [13,15,18,19,20,21,22] + Details: We chained rule 13 to obtain the rules [23] . * Step 21: UnreachableRules WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 15. doSum(A,B) -> n2(A,B) [A >= 0 && A >= 0] (1,2) 18. m7(A,B) -> c2(m4(C,B),m5(C,B)) [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A && C >= 0 && C >= 0] (?,3) 19. m5(A,B) -> m7(A,B) [A >= 0] (?,2) 20. n2(A,B) -> c2(n0(A,B),n3(A,B)) [A >= 0 && 1 + A >= 0] (2,3) 21. n30(A,B) -> n3(A,B) [1 + A >= 0] (?,3) 22. n31(A,B) -> m5(B,B) [B >= 0 && B >= 0] (?,3) 23. n3(A,B) -> c2(n3(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A && 1 + C >= 0] (?,4) Signature: {(doSum,2) ;(m0,2) ;(m1,2) ;(m2,2) ;(m3,2) ;(m4,2) ;(m5,2) ;(m6,2) ;(m7,2) ;(m8,2) ;(m9,2) ;(n0,2) ;(n1,2) ;(n2,2) ;(n3,2) ;(n30,2) ;(n31,2)} Flow Graph: [15->{20},18->{19},19->{18},20->{23},21->{23},22->{19},23->{22,23}] Sizebounds: (<15,0,A>, A) (<15,0,B>, B) (<18,0,A>, ?) (<18,0,B>, ?) (<19,0,A>, ?) (<19,0,B>, ?) (<20,0,A>, ?) (<20,0,B>, ?) (<21,0,A>, ?) (<21,0,B>, ?) (<22,0,A>, ?) (<22,0,B>, ?) (<23,0,A>, ?) (<23,0,B>, ?) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [21] * Step 22: ChainProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 15. doSum(A,B) -> n2(A,B) [A >= 0 && A >= 0] (1,2) 18. m7(A,B) -> c2(m4(C,B),m5(C,B)) [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A && C >= 0 && C >= 0] (?,3) 19. m5(A,B) -> m7(A,B) [A >= 0] (?,2) 20. n2(A,B) -> c2(n0(A,B),n3(A,B)) [A >= 0 && 1 + A >= 0] (2,3) 22. n31(A,B) -> m5(B,B) [B >= 0 && B >= 0] (?,3) 23. n3(A,B) -> c2(n3(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A && 1 + C >= 0] (?,4) Signature: {(doSum,2) ;(m0,2) ;(m1,2) ;(m2,2) ;(m3,2) ;(m4,2) ;(m5,2) ;(m6,2) ;(m7,2) ;(m8,2) ;(m9,2) ;(n0,2) ;(n1,2) ;(n2,2) ;(n3,2) ;(n30,2) ;(n31,2)} Flow Graph: [15->{20},18->{19},19->{18},20->{23},22->{19},23->{22,23}] Sizebounds: (<15,0,A>, A) (<15,0,B>, B) (<18,0,A>, ?) (<18,0,B>, ?) (<19,0,A>, ?) (<19,0,B>, ?) (<20,0,A>, ?) (<20,0,B>, ?) (<22,0,A>, ?) (<22,0,B>, ?) (<23,0,A>, ?) (<23,0,B>, ?) + Applied Processor: ChainProcessor False [15,18,19,20,22,23] + Details: We chained rule 18 to obtain the rules [24] . * Step 23: LocalSizeboundsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 15. doSum(A,B) -> n2(A,B) [A >= 0 && A >= 0] (1,2) 19. m5(A,B) -> m7(A,B) [A >= 0] (?,2) 20. n2(A,B) -> c2(n0(A,B),n3(A,B)) [A >= 0 && 1 + A >= 0] (2,3) 22. n31(A,B) -> m5(B,B) [B >= 0 && B >= 0] (?,3) 23. n3(A,B) -> c2(n3(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A && 1 + C >= 0] (?,4) 24. m7(A,B) -> c2(m4(C,B),m7(C,B)) [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A && C >= 0 && C >= 0 && C >= 0] (?,5) Signature: {(doSum,2) ;(m0,2) ;(m1,2) ;(m2,2) ;(m3,2) ;(m4,2) ;(m5,2) ;(m6,2) ;(m7,2) ;(m8,2) ;(m9,2) ;(n0,2) ;(n1,2) ;(n2,2) ;(n3,2) ;(n30,2) ;(n31,2)} Flow Graph: [15->{20},19->{24},20->{23},22->{19},23->{22,23},24->{24}] Sizebounds: (<15,0,A>, A) (<15,0,B>, B) (<19,0,A>, ?) (<19,0,B>, ?) (<20,0,A>, ?) (<20,0,B>, ?) (<22,0,A>, ?) (<22,0,B>, ?) (<23,0,A>, ?) (<23,0,B>, ?) (<24,0,A>, ?) (<24,0,B>, ?) + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<15,0,A>, A, .= 0) (<15,0,B>, B, .= 0) (<19,0,A>, A, .= 0) (<19,0,B>, B, .= 0) (<20,0,A>, A, .= 0) (<20,0,B>, B, .= 0) (<20,1,A>, A, .= 0) (<20,1,B>, B, .= 0) (<22,0,A>, B, .= 0) (<22,0,B>, B, .= 0) (<23,0,A>, 1 + A, .+ 1) (<23,0,B>, A, .= 0) (<23,1,A>, 1 + A, .+ 1) (<23,1,B>, A, .= 0) (<24,0,A>, 1 + A, .+ 1) (<24,0,B>, B, .= 0) (<24,1,A>, 1 + A, .+ 1) (<24,1,B>, B, .= 0) * Step 24: SizeboundsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 15. doSum(A,B) -> n2(A,B) [A >= 0 && A >= 0] (1,2) 19. m5(A,B) -> m7(A,B) [A >= 0] (?,2) 20. n2(A,B) -> c2(n0(A,B),n3(A,B)) [A >= 0 && 1 + A >= 0] (2,3) 22. n31(A,B) -> m5(B,B) [B >= 0 && B >= 0] (?,3) 23. n3(A,B) -> c2(n3(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A && 1 + C >= 0] (?,4) 24. m7(A,B) -> c2(m4(C,B),m7(C,B)) [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A && C >= 0 && C >= 0 && C >= 0] (?,5) Signature: {(doSum,2) ;(m0,2) ;(m1,2) ;(m2,2) ;(m3,2) ;(m4,2) ;(m5,2) ;(m6,2) ;(m7,2) ;(m8,2) ;(m9,2) ;(n0,2) ;(n1,2) ;(n2,2) ;(n3,2) ;(n30,2) ;(n31,2)} Flow Graph: [15->{20},19->{24},20->{23},22->{19},23->{22,23},24->{24}] Sizebounds: (<15,0,A>, ?) (<15,0,B>, ?) (<19,0,A>, ?) (<19,0,B>, ?) (<20,0,A>, ?) (<20,0,B>, ?) (<20,1,A>, ?) (<20,1,B>, ?) (<22,0,A>, ?) (<22,0,B>, ?) (<23,0,A>, ?) (<23,0,B>, ?) (<23,1,A>, ?) (<23,1,B>, ?) (<24,0,A>, ?) (<24,0,B>, ?) (<24,1,A>, ?) (<24,1,B>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<15,0,A>, A) (<15,0,B>, B) (<19,0,A>, ?) (<19,0,B>, ?) (<20,0,A>, A) (<20,0,B>, B) (<20,1,A>, A) (<20,1,B>, B) (<22,0,A>, ?) (<22,0,B>, ?) (<23,0,A>, ?) (<23,0,B>, ?) (<23,1,A>, ?) (<23,1,B>, ?) (<24,0,A>, ?) (<24,0,B>, ?) (<24,1,A>, ?) (<24,1,B>, ?) * Step 25: LocationConstraintsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 15. doSum(A,B) -> n2(A,B) [A >= 0 && A >= 0] (1,2) 19. m5(A,B) -> m7(A,B) [A >= 0] (?,2) 20. n2(A,B) -> c2(n0(A,B),n3(A,B)) [A >= 0 && 1 + A >= 0] (2,3) 22. n31(A,B) -> m5(B,B) [B >= 0 && B >= 0] (?,3) 23. n3(A,B) -> c2(n3(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A && 1 + C >= 0] (?,4) 24. m7(A,B) -> c2(m4(C,B),m7(C,B)) [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A && C >= 0 && C >= 0 && C >= 0] (?,5) Signature: {(doSum,2) ;(m0,2) ;(m1,2) ;(m2,2) ;(m3,2) ;(m4,2) ;(m5,2) ;(m6,2) ;(m7,2) ;(m8,2) ;(m9,2) ;(n0,2) ;(n1,2) ;(n2,2) ;(n3,2) ;(n30,2) ;(n31,2)} Flow Graph: [15->{20},19->{24},20->{23},22->{19},23->{22,23},24->{24}] Sizebounds: (<15,0,A>, A) (<15,0,B>, B) (<19,0,A>, ?) (<19,0,B>, ?) (<20,0,A>, A) (<20,0,B>, B) (<20,1,A>, A) (<20,1,B>, B) (<22,0,A>, ?) (<22,0,B>, ?) (<23,0,A>, ?) (<23,0,B>, ?) (<23,1,A>, ?) (<23,1,B>, ?) (<24,0,A>, ?) (<24,0,B>, ?) (<24,1,A>, ?) (<24,1,B>, ?) + Applied Processor: LocationConstraintsProc + Details: We computed the location constraints 15 : True 19 : [B >= 0] 20 : [A >= 0] 22 : True 23 : True 24 : [A >= 0] . * Step 26: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 15. doSum(A,B) -> n2(A,B) [A >= 0 && A >= 0] (1,2) 19. m5(A,B) -> m7(A,B) [A >= 0] (?,2) 20. n2(A,B) -> c2(n0(A,B),n3(A,B)) [A >= 0 && 1 + A >= 0] (2,3) 22. n31(A,B) -> m5(B,B) [B >= 0 && B >= 0] (?,3) 23. n3(A,B) -> c2(n3(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A && 1 + C >= 0] (?,4) 24. m7(A,B) -> c2(m4(C,B),m7(C,B)) [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A && C >= 0 && C >= 0 && C >= 0] (?,5) Signature: {(doSum,2) ;(m0,2) ;(m1,2) ;(m2,2) ;(m3,2) ;(m4,2) ;(m5,2) ;(m6,2) ;(m7,2) ;(m8,2) ;(m9,2) ;(n0,2) ;(n1,2) ;(n2,2) ;(n3,2) ;(n30,2) ;(n31,2)} Flow Graph: [15->{20},19->{24},20->{23},22->{19},23->{22,23},24->{24}] Sizebounds: (<15,0,A>, A) (<15,0,B>, B) (<19,0,A>, ?) (<19,0,B>, ?) (<20,0,A>, A) (<20,0,B>, B) (<20,1,A>, A) (<20,1,B>, B) (<22,0,A>, ?) (<22,0,B>, ?) (<23,0,A>, ?) (<23,0,B>, ?) (<23,1,A>, ?) (<23,1,B>, ?) (<24,0,A>, ?) (<24,0,B>, ?) (<24,1,A>, ?) (<24,1,B>, ?) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(doSum) = 1 + x1 p(m4) = 0 p(m5) = 0 p(m7) = 0 p(n0) = 0 p(n2) = 1 + x1 p(n3) = 1 + x1 p(n31) = 0 The following rules are strictly oriented: [A >= 0 && A >= 1 + C && 1 + C >= A && 1 + C >= 0] ==> n3(A,B) = 1 + A > 1 + C = c2(n3(C,A),n31(C,A)) The following rules are weakly oriented: [A >= 0 && A >= 0] ==> doSum(A,B) = 1 + A >= 1 + A = n2(A,B) [A >= 0] ==> m5(A,B) = 0 >= 0 = m7(A,B) [A >= 0 && 1 + A >= 0] ==> n2(A,B) = 1 + A >= 1 + A = c2(n0(A,B),n3(A,B)) [B >= 0 && B >= 0] ==> n31(A,B) = 0 >= 0 = m5(B,B) [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A && C >= 0 && C >= 0 && C >= 0] ==> m7(A,B) = 0 >= 0 = c2(m4(C,B),m7(C,B)) * Step 27: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 15. doSum(A,B) -> n2(A,B) [A >= 0 && A >= 0] (1,2) 19. m5(A,B) -> m7(A,B) [A >= 0] (?,2) 20. n2(A,B) -> c2(n0(A,B),n3(A,B)) [A >= 0 && 1 + A >= 0] (2,3) 22. n31(A,B) -> m5(B,B) [B >= 0 && B >= 0] (?,3) 23. n3(A,B) -> c2(n3(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A && 1 + C >= 0] (1 + A,4) 24. m7(A,B) -> c2(m4(C,B),m7(C,B)) [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A && C >= 0 && C >= 0 && C >= 0] (?,5) Signature: {(doSum,2) ;(m0,2) ;(m1,2) ;(m2,2) ;(m3,2) ;(m4,2) ;(m5,2) ;(m6,2) ;(m7,2) ;(m8,2) ;(m9,2) ;(n0,2) ;(n1,2) ;(n2,2) ;(n3,2) ;(n30,2) ;(n31,2)} Flow Graph: [15->{20},19->{24},20->{23},22->{19},23->{22,23},24->{24}] Sizebounds: (<15,0,A>, A) (<15,0,B>, B) (<19,0,A>, ?) (<19,0,B>, ?) (<20,0,A>, A) (<20,0,B>, B) (<20,1,A>, A) (<20,1,B>, B) (<22,0,A>, ?) (<22,0,B>, ?) (<23,0,A>, ?) (<23,0,B>, ?) (<23,1,A>, ?) (<23,1,B>, ?) (<24,0,A>, ?) (<24,0,B>, ?) (<24,1,A>, ?) (<24,1,B>, ?) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(doSum) = 1 + x1 p(m4) = 0 p(m5) = 0 p(m7) = 0 p(n0) = 0 p(n2) = 1 + x1 p(n3) = 1 + x1 p(n31) = 1 The following rules are strictly oriented: [B >= 0 && B >= 0] ==> n31(A,B) = 1 > 0 = m5(B,B) The following rules are weakly oriented: [A >= 0 && A >= 0] ==> doSum(A,B) = 1 + A >= 1 + A = n2(A,B) [A >= 0] ==> m5(A,B) = 0 >= 0 = m7(A,B) [A >= 0 && 1 + A >= 0] ==> n2(A,B) = 1 + A >= 1 + A = c2(n0(A,B),n3(A,B)) [A >= 0 && A >= 1 + C && 1 + C >= A && 1 + C >= 0] ==> n3(A,B) = 1 + A >= 2 + C = c2(n3(C,A),n31(C,A)) [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A && C >= 0 && C >= 0 && C >= 0] ==> m7(A,B) = 0 >= 0 = c2(m4(C,B),m7(C,B)) * Step 28: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 15. doSum(A,B) -> n2(A,B) [A >= 0 && A >= 0] (1,2) 19. m5(A,B) -> m7(A,B) [A >= 0] (?,2) 20. n2(A,B) -> c2(n0(A,B),n3(A,B)) [A >= 0 && 1 + A >= 0] (2,3) 22. n31(A,B) -> m5(B,B) [B >= 0 && B >= 0] (1 + A,3) 23. n3(A,B) -> c2(n3(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A && 1 + C >= 0] (1 + A,4) 24. m7(A,B) -> c2(m4(C,B),m7(C,B)) [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A && C >= 0 && C >= 0 && C >= 0] (?,5) Signature: {(doSum,2) ;(m0,2) ;(m1,2) ;(m2,2) ;(m3,2) ;(m4,2) ;(m5,2) ;(m6,2) ;(m7,2) ;(m8,2) ;(m9,2) ;(n0,2) ;(n1,2) ;(n2,2) ;(n3,2) ;(n30,2) ;(n31,2)} Flow Graph: [15->{20},19->{24},20->{23},22->{19},23->{22,23},24->{24}] Sizebounds: (<15,0,A>, A) (<15,0,B>, B) (<19,0,A>, ?) (<19,0,B>, ?) (<20,0,A>, A) (<20,0,B>, B) (<20,1,A>, A) (<20,1,B>, B) (<22,0,A>, ?) (<22,0,B>, ?) (<23,0,A>, ?) (<23,0,B>, ?) (<23,1,A>, ?) (<23,1,B>, ?) (<24,0,A>, ?) (<24,0,B>, ?) (<24,1,A>, ?) (<24,1,B>, ?) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(doSum) = 1 + x1 p(m4) = 0 p(m5) = 1 p(m7) = 0 p(n0) = 0 p(n2) = 1 + x1 p(n3) = 1 + x1 p(n31) = 1 The following rules are strictly oriented: [A >= 0] ==> m5(A,B) = 1 > 0 = m7(A,B) The following rules are weakly oriented: [A >= 0 && A >= 0] ==> doSum(A,B) = 1 + A >= 1 + A = n2(A,B) [A >= 0 && 1 + A >= 0] ==> n2(A,B) = 1 + A >= 1 + A = c2(n0(A,B),n3(A,B)) [B >= 0 && B >= 0] ==> n31(A,B) = 1 >= 1 = m5(B,B) [A >= 0 && A >= 1 + C && 1 + C >= A && 1 + C >= 0] ==> n3(A,B) = 1 + A >= 2 + C = c2(n3(C,A),n31(C,A)) [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A && C >= 0 && C >= 0 && C >= 0] ==> m7(A,B) = 0 >= 0 = c2(m4(C,B),m7(C,B)) * Step 29: LoopRecurrenceProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 15. doSum(A,B) -> n2(A,B) [A >= 0 && A >= 0] (1,2) 19. m5(A,B) -> m7(A,B) [A >= 0] (1 + A,2) 20. n2(A,B) -> c2(n0(A,B),n3(A,B)) [A >= 0 && 1 + A >= 0] (2,3) 22. n31(A,B) -> m5(B,B) [B >= 0 && B >= 0] (1 + A,3) 23. n3(A,B) -> c2(n3(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A && 1 + C >= 0] (1 + A,4) 24. m7(A,B) -> c2(m4(C,B),m7(C,B)) [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A && C >= 0 && C >= 0 && C >= 0] (?,5) Signature: {(doSum,2) ;(m0,2) ;(m1,2) ;(m2,2) ;(m3,2) ;(m4,2) ;(m5,2) ;(m6,2) ;(m7,2) ;(m8,2) ;(m9,2) ;(n0,2) ;(n1,2) ;(n2,2) ;(n3,2) ;(n30,2) ;(n31,2)} Flow Graph: [15->{20},19->{24},20->{23},22->{19},23->{22,23},24->{24}] Sizebounds: (<15,0,A>, A) (<15,0,B>, B) (<19,0,A>, ?) (<19,0,B>, ?) (<20,0,A>, A) (<20,0,B>, B) (<20,1,A>, A) (<20,1,B>, B) (<22,0,A>, ?) (<22,0,B>, ?) (<23,0,A>, ?) (<23,0,B>, ?) (<23,1,A>, ?) (<23,1,B>, ?) (<24,0,A>, ?) (<24,0,B>, ?) (<24,1,A>, ?) (<24,1,B>, ?) + Applied Processor: LoopRecurrenceProcessor [23] + Details: Applying the recurrence pattern linear * f to the expression A yields the solution 3*A + A^2 . * Step 30: LoopRecurrenceProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 15. doSum(A,B) -> n2(A,B) [A >= 0 && A >= 0] (1,2) 19. m5(A,B) -> m7(A,B) [A >= 0] (1 + A,2) 20. n2(A,B) -> c2(n0(A,B),n3(A,B)) [A >= 0 && 1 + A >= 0] (2,3) 22. n31(A,B) -> m5(B,B) [B >= 0 && B >= 0] (1 + A,3) 23. n3(A,B) -> c2(n3(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A && 1 + C >= 0] (1 + A,4) 24. m7(A,B) -> c2(m4(C,B),m7(C,B)) [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A && C >= 0 && C >= 0 && C >= 0] (6*A + 2*A^2,5) Signature: {(doSum,2) ;(m0,2) ;(m1,2) ;(m2,2) ;(m3,2) ;(m4,2) ;(m5,2) ;(m6,2) ;(m7,2) ;(m8,2) ;(m9,2) ;(n0,2) ;(n1,2) ;(n2,2) ;(n3,2) ;(n30,2) ;(n31,2)} Flow Graph: [15->{20},19->{24},20->{23},22->{19},23->{22,23},24->{24}] Sizebounds: (<15,0,A>, A) (<15,0,B>, B) (<19,0,A>, ?) (<19,0,B>, ?) (<20,0,A>, A) (<20,0,B>, B) (<20,1,A>, A) (<20,1,B>, B) (<22,0,A>, ?) (<22,0,B>, ?) (<23,0,A>, ?) (<23,0,B>, ?) (<23,1,A>, ?) (<23,1,B>, ?) (<24,0,A>, ?) (<24,0,B>, ?) (<24,1,A>, ?) (<24,1,B>, ?) + Applied Processor: LoopRecurrenceProcessor [24] + Details: Applying the recurrence pattern linear * f to the expression A yields the solution A . * Step 31: UnsatPaths WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 15. doSum(A,B) -> n2(A,B) [A >= 0 && A >= 0] (1,2) 19. m5(A,B) -> m7(A,B) [A >= 0] (1 + A,2) 20. n2(A,B) -> c2(n0(A,B),n3(A,B)) [A >= 0 && 1 + A >= 0] (2,3) 22. n31(A,B) -> m5(B,B) [B >= 0 && B >= 0] (1 + A,3) 23. n3(A,B) -> c2(n3(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A && 1 + C >= 0] (1 + A,4) 24. m7(A,B) -> c2(m4(C,B),m7(C,B)) [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A && C >= 0 && C >= 0 && C >= 0] (6*A + 2*A^2,5) Signature: {(doSum,2) ;(m0,2) ;(m1,2) ;(m2,2) ;(m3,2) ;(m4,2) ;(m5,2) ;(m6,2) ;(m7,2) ;(m8,2) ;(m9,2) ;(n0,2) ;(n1,2) ;(n2,2) ;(n3,2) ;(n30,2) ;(n31,2)} Flow Graph: [15->{20},19->{24},20->{23},22->{19},23->{22,23},24->{24}] Sizebounds: (<15,0,A>, A) (<15,0,B>, B) (<19,0,A>, ?) (<19,0,B>, ?) (<20,0,A>, A) (<20,0,B>, B) (<20,1,A>, A) (<20,1,B>, B) (<22,0,A>, ?) (<22,0,B>, ?) (<23,0,A>, ?) (<23,0,B>, ?) (<23,1,A>, ?) (<23,1,B>, ?) (<24,0,A>, ?) (<24,0,B>, ?) (<24,1,A>, ?) (<24,1,B>, ?) + Applied Processor: UnsatPaths + Details: The problem is already solved. WORST_CASE(?,O(n^2))