WORST_CASE(?,O(n^2))
* Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0.  doSum(A,B) -> m9(A,B)               [A >= 0]                                       (1,1)
          1.  m0(A,B)    -> m1(A,B)               [A >= 0]                                       (?,1)
          2.  m2(A,B)    -> m3(A,B)               [1 + A >= 0]                                   (?,1)
          3.  m1(A,B)    -> m5(A,B)               [A >= 0]                                       (?,1)
          4.  m6(A,B)    -> m4(A,B)               [A >= 0 && 0 >= A]                             (?,1)
          5.  m7(A,B)    -> c2(m4(C,B),m0(C,B))   [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A] (?,1)
          6.  m5(A,B)    -> m8(A,B)               [A >= 0]                                       (?,1)
          7.  m8(A,B)    -> m7(A,B)               True                                           (?,1)
          8.  m8(A,B)    -> m6(A,B)               True                                           (?,1)
          9.  n2(A,B)    -> c2(n0(A,B),m2(A,B))   [A >= 0]                                       (?,1)
          10. m9(A,B)    -> n2(A,B)               [A >= 0]                                       (?,1)
          11. n30(A,B)   -> m2(A,B)               True                                           (?,1)
          12. n31(A,B)   -> m0(B,B)               True                                           (?,1)
          13. n3(A,B)    -> c2(n30(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A]           (?,1)
          14. m3(A,B)    -> n3(A,B)               True                                           (?,1)
          15. m3(A,B)    -> n1(A,B)               True                                           (?,1)
        Signature:
          {(doSum,2)
          ;(m0,2)
          ;(m1,2)
          ;(m2,2)
          ;(m3,2)
          ;(m4,2)
          ;(m5,2)
          ;(m6,2)
          ;(m7,2)
          ;(m8,2)
          ;(m9,2)
          ;(n0,2)
          ;(n1,2)
          ;(n2,2)
          ;(n3,2)
          ;(n30,2)
          ;(n31,2)}
        Flow Graph:
          [0->{10},1->{3},2->{14,15},3->{6},4->{},5->{1},6->{7,8},7->{5},8->{4},9->{2},10->{9},11->{2},12->{1}
          ,13->{11,12},14->{13},15->{}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (< 0,0,A>,     A, .= 0) (< 0,0,B>, B, .= 0) 
          (< 1,0,A>,     A, .= 0) (< 1,0,B>, B, .= 0) 
          (< 2,0,A>,     A, .= 0) (< 2,0,B>, B, .= 0) 
          (< 3,0,A>,     A, .= 0) (< 3,0,B>, B, .= 0) 
          (< 4,0,A>,     A, .= 0) (< 4,0,B>, B, .= 0) 
          (< 5,0,A>, 1 + A, .+ 1) (< 5,0,B>, B, .= 0) 
          (< 5,1,A>, 1 + A, .+ 1) (< 5,1,B>, B, .= 0) 
          (< 6,0,A>,     A, .= 0) (< 6,0,B>, B, .= 0) 
          (< 7,0,A>,     A, .= 0) (< 7,0,B>, B, .= 0) 
          (< 8,0,A>,     A, .= 0) (< 8,0,B>, B, .= 0) 
          (< 9,0,A>,     A, .= 0) (< 9,0,B>, B, .= 0) 
          (< 9,1,A>,     A, .= 0) (< 9,1,B>, B, .= 0) 
          (<10,0,A>,     A, .= 0) (<10,0,B>, B, .= 0) 
          (<11,0,A>,     A, .= 0) (<11,0,B>, B, .= 0) 
          (<12,0,A>,     B, .= 0) (<12,0,B>, B, .= 0) 
          (<13,0,A>, 1 + A, .+ 1) (<13,0,B>, A, .= 0) 
          (<13,1,A>, 1 + A, .+ 1) (<13,1,B>, A, .= 0) 
          (<14,0,A>,     A, .= 0) (<14,0,B>, B, .= 0) 
          (<15,0,A>,     A, .= 0) (<15,0,B>, B, .= 0) 
* Step 2: SizeboundsProc WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0.  doSum(A,B) -> m9(A,B)               [A >= 0]                                       (1,1)
          1.  m0(A,B)    -> m1(A,B)               [A >= 0]                                       (?,1)
          2.  m2(A,B)    -> m3(A,B)               [1 + A >= 0]                                   (?,1)
          3.  m1(A,B)    -> m5(A,B)               [A >= 0]                                       (?,1)
          4.  m6(A,B)    -> m4(A,B)               [A >= 0 && 0 >= A]                             (?,1)
          5.  m7(A,B)    -> c2(m4(C,B),m0(C,B))   [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A] (?,1)
          6.  m5(A,B)    -> m8(A,B)               [A >= 0]                                       (?,1)
          7.  m8(A,B)    -> m7(A,B)               True                                           (?,1)
          8.  m8(A,B)    -> m6(A,B)               True                                           (?,1)
          9.  n2(A,B)    -> c2(n0(A,B),m2(A,B))   [A >= 0]                                       (?,1)
          10. m9(A,B)    -> n2(A,B)               [A >= 0]                                       (?,1)
          11. n30(A,B)   -> m2(A,B)               True                                           (?,1)
          12. n31(A,B)   -> m0(B,B)               True                                           (?,1)
          13. n3(A,B)    -> c2(n30(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A]           (?,1)
          14. m3(A,B)    -> n3(A,B)               True                                           (?,1)
          15. m3(A,B)    -> n1(A,B)               True                                           (?,1)
        Signature:
          {(doSum,2)
          ;(m0,2)
          ;(m1,2)
          ;(m2,2)
          ;(m3,2)
          ;(m4,2)
          ;(m5,2)
          ;(m6,2)
          ;(m7,2)
          ;(m8,2)
          ;(m9,2)
          ;(n0,2)
          ;(n1,2)
          ;(n2,2)
          ;(n3,2)
          ;(n30,2)
          ;(n31,2)}
        Flow Graph:
          [0->{10},1->{3},2->{14,15},3->{6},4->{},5->{1},6->{7,8},7->{5},8->{4},9->{2},10->{9},11->{2},12->{1}
          ,13->{11,12},14->{13},15->{}]
        Sizebounds:
          (< 0,0,A>, ?) (< 0,0,B>, ?) 
          (< 1,0,A>, ?) (< 1,0,B>, ?) 
          (< 2,0,A>, ?) (< 2,0,B>, ?) 
          (< 3,0,A>, ?) (< 3,0,B>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, ?) 
          (< 5,1,A>, ?) (< 5,1,B>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, ?) 
          (< 9,1,A>, ?) (< 9,1,B>, ?) 
          (<10,0,A>, ?) (<10,0,B>, ?) 
          (<11,0,A>, ?) (<11,0,B>, ?) 
          (<12,0,A>, ?) (<12,0,B>, ?) 
          (<13,0,A>, ?) (<13,0,B>, ?) 
          (<13,1,A>, ?) (<13,1,B>, ?) 
          (<14,0,A>, ?) (<14,0,B>, ?) 
          (<15,0,A>, ?) (<15,0,B>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (< 0,0,A>, A) (< 0,0,B>, B) 
          (< 1,0,A>, ?) (< 1,0,B>, ?) 
          (< 2,0,A>, ?) (< 2,0,B>, ?) 
          (< 3,0,A>, ?) (< 3,0,B>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, ?) 
          (< 5,1,A>, ?) (< 5,1,B>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, ?) 
          (< 9,0,A>, A) (< 9,0,B>, B) 
          (< 9,1,A>, A) (< 9,1,B>, B) 
          (<10,0,A>, A) (<10,0,B>, B) 
          (<11,0,A>, ?) (<11,0,B>, ?) 
          (<12,0,A>, ?) (<12,0,B>, ?) 
          (<13,0,A>, ?) (<13,0,B>, ?) 
          (<13,1,A>, ?) (<13,1,B>, ?) 
          (<14,0,A>, ?) (<14,0,B>, ?) 
          (<15,0,A>, ?) (<15,0,B>, ?) 
* Step 3: LeafRules WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0.  doSum(A,B) -> m9(A,B)               [A >= 0]                                       (1,1)
          1.  m0(A,B)    -> m1(A,B)               [A >= 0]                                       (?,1)
          2.  m2(A,B)    -> m3(A,B)               [1 + A >= 0]                                   (?,1)
          3.  m1(A,B)    -> m5(A,B)               [A >= 0]                                       (?,1)
          4.  m6(A,B)    -> m4(A,B)               [A >= 0 && 0 >= A]                             (?,1)
          5.  m7(A,B)    -> c2(m4(C,B),m0(C,B))   [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A] (?,1)
          6.  m5(A,B)    -> m8(A,B)               [A >= 0]                                       (?,1)
          7.  m8(A,B)    -> m7(A,B)               True                                           (?,1)
          8.  m8(A,B)    -> m6(A,B)               True                                           (?,1)
          9.  n2(A,B)    -> c2(n0(A,B),m2(A,B))   [A >= 0]                                       (?,1)
          10. m9(A,B)    -> n2(A,B)               [A >= 0]                                       (?,1)
          11. n30(A,B)   -> m2(A,B)               True                                           (?,1)
          12. n31(A,B)   -> m0(B,B)               True                                           (?,1)
          13. n3(A,B)    -> c2(n30(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A]           (?,1)
          14. m3(A,B)    -> n3(A,B)               True                                           (?,1)
          15. m3(A,B)    -> n1(A,B)               True                                           (?,1)
        Signature:
          {(doSum,2)
          ;(m0,2)
          ;(m1,2)
          ;(m2,2)
          ;(m3,2)
          ;(m4,2)
          ;(m5,2)
          ;(m6,2)
          ;(m7,2)
          ;(m8,2)
          ;(m9,2)
          ;(n0,2)
          ;(n1,2)
          ;(n2,2)
          ;(n3,2)
          ;(n30,2)
          ;(n31,2)}
        Flow Graph:
          [0->{10},1->{3},2->{14,15},3->{6},4->{},5->{1},6->{7,8},7->{5},8->{4},9->{2},10->{9},11->{2},12->{1}
          ,13->{11,12},14->{13},15->{}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) 
          (< 1,0,A>, ?) (< 1,0,B>, ?) 
          (< 2,0,A>, ?) (< 2,0,B>, ?) 
          (< 3,0,A>, ?) (< 3,0,B>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, ?) 
          (< 5,1,A>, ?) (< 5,1,B>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, ?) 
          (< 9,0,A>, A) (< 9,0,B>, B) 
          (< 9,1,A>, A) (< 9,1,B>, B) 
          (<10,0,A>, A) (<10,0,B>, B) 
          (<11,0,A>, ?) (<11,0,B>, ?) 
          (<12,0,A>, ?) (<12,0,B>, ?) 
          (<13,0,A>, ?) (<13,0,B>, ?) 
          (<13,1,A>, ?) (<13,1,B>, ?) 
          (<14,0,A>, ?) (<14,0,B>, ?) 
          (<15,0,A>, ?) (<15,0,B>, ?) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [8,4,15]
* Step 4: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0.  doSum(A,B) -> m9(A,B)               [A >= 0]                                       (1,1)
          1.  m0(A,B)    -> m1(A,B)               [A >= 0]                                       (?,1)
          2.  m2(A,B)    -> m3(A,B)               [1 + A >= 0]                                   (?,1)
          3.  m1(A,B)    -> m5(A,B)               [A >= 0]                                       (?,1)
          5.  m7(A,B)    -> c2(m4(C,B),m0(C,B))   [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A] (?,1)
          6.  m5(A,B)    -> m8(A,B)               [A >= 0]                                       (?,1)
          7.  m8(A,B)    -> m7(A,B)               True                                           (?,1)
          9.  n2(A,B)    -> c2(n0(A,B),m2(A,B))   [A >= 0]                                       (?,1)
          10. m9(A,B)    -> n2(A,B)               [A >= 0]                                       (?,1)
          11. n30(A,B)   -> m2(A,B)               True                                           (?,1)
          12. n31(A,B)   -> m0(B,B)               True                                           (?,1)
          13. n3(A,B)    -> c2(n30(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A]           (?,1)
          14. m3(A,B)    -> n3(A,B)               True                                           (?,1)
        Signature:
          {(doSum,2)
          ;(m0,2)
          ;(m1,2)
          ;(m2,2)
          ;(m3,2)
          ;(m4,2)
          ;(m5,2)
          ;(m6,2)
          ;(m7,2)
          ;(m8,2)
          ;(m9,2)
          ;(n0,2)
          ;(n1,2)
          ;(n2,2)
          ;(n3,2)
          ;(n30,2)
          ;(n31,2)}
        Flow Graph:
          [0->{10},1->{3},2->{14},3->{6},5->{1},6->{7},7->{5},9->{2},10->{9},11->{2},12->{1},13->{11,12},14->{13}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) 
          (< 1,0,A>, ?) (< 1,0,B>, ?) 
          (< 2,0,A>, ?) (< 2,0,B>, ?) 
          (< 3,0,A>, ?) (< 3,0,B>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, ?) 
          (< 5,1,A>, ?) (< 5,1,B>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, ?) 
          (< 9,0,A>, A) (< 9,0,B>, B) 
          (< 9,1,A>, A) (< 9,1,B>, B) 
          (<10,0,A>, A) (<10,0,B>, B) 
          (<11,0,A>, ?) (<11,0,B>, ?) 
          (<12,0,A>, ?) (<12,0,B>, ?) 
          (<13,0,A>, ?) (<13,0,B>, ?) 
          (<13,1,A>, ?) (<13,1,B>, ?) 
          (<14,0,A>, ?) (<14,0,B>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(doSum) = 2
             p(m0) = 0
             p(m1) = 0
             p(m2) = 1
             p(m3) = 1
             p(m4) = 0
             p(m5) = 0
             p(m7) = 0
             p(m8) = 0
             p(m9) = 2
             p(n0) = 0
             p(n2) = 1
             p(n3) = 1
            p(n30) = 1
            p(n31) = 0
        
        The following rules are strictly oriented:
         [A >= 0] ==>        
          m9(A,B)   = 2      
                    > 1      
                    = n2(A,B)
        
        
        The following rules are weakly oriented:
                                              [A >= 0] ==>                      
                                            doSum(A,B)   = 2                    
                                                        >= 2                    
                                                         = m9(A,B)              
        
                                              [A >= 0] ==>                      
                                               m0(A,B)   = 0                    
                                                        >= 0                    
                                                         = m1(A,B)              
        
                                          [1 + A >= 0] ==>                      
                                               m2(A,B)   = 1                    
                                                        >= 1                    
                                                         = m3(A,B)              
        
                                              [A >= 0] ==>                      
                                               m1(A,B)   = 0                    
                                                        >= 0                    
                                                         = m5(A,B)              
        
        [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A] ==>                      
                                               m7(A,B)   = 0                    
                                                        >= 0                    
                                                         = c2(m4(C,B),m0(C,B))  
        
                                              [A >= 0] ==>                      
                                               m5(A,B)   = 0                    
                                                        >= 0                    
                                                         = m8(A,B)              
        
                                                  True ==>                      
                                               m8(A,B)   = 0                    
                                                        >= 0                    
                                                         = m7(A,B)              
        
                                              [A >= 0] ==>                      
                                               n2(A,B)   = 1                    
                                                        >= 1                    
                                                         = c2(n0(A,B),m2(A,B))  
        
                                                  True ==>                      
                                              n30(A,B)   = 1                    
                                                        >= 1                    
                                                         = m2(A,B)              
        
                                                  True ==>                      
                                              n31(A,B)   = 0                    
                                                        >= 0                    
                                                         = m0(B,B)              
        
                  [A >= 0 && A >= 1 + C && 1 + C >= A] ==>                      
                                               n3(A,B)   = 1                    
                                                        >= 1                    
                                                         = c2(n30(C,A),n31(C,A))
        
                                                  True ==>                      
                                               m3(A,B)   = 1                    
                                                        >= 1                    
                                                         = n3(A,B)              
        
        
* Step 5: KnowledgePropagation WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0.  doSum(A,B) -> m9(A,B)               [A >= 0]                                       (1,1)
          1.  m0(A,B)    -> m1(A,B)               [A >= 0]                                       (?,1)
          2.  m2(A,B)    -> m3(A,B)               [1 + A >= 0]                                   (?,1)
          3.  m1(A,B)    -> m5(A,B)               [A >= 0]                                       (?,1)
          5.  m7(A,B)    -> c2(m4(C,B),m0(C,B))   [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A] (?,1)
          6.  m5(A,B)    -> m8(A,B)               [A >= 0]                                       (?,1)
          7.  m8(A,B)    -> m7(A,B)               True                                           (?,1)
          9.  n2(A,B)    -> c2(n0(A,B),m2(A,B))   [A >= 0]                                       (?,1)
          10. m9(A,B)    -> n2(A,B)               [A >= 0]                                       (2,1)
          11. n30(A,B)   -> m2(A,B)               True                                           (?,1)
          12. n31(A,B)   -> m0(B,B)               True                                           (?,1)
          13. n3(A,B)    -> c2(n30(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A]           (?,1)
          14. m3(A,B)    -> n3(A,B)               True                                           (?,1)
        Signature:
          {(doSum,2)
          ;(m0,2)
          ;(m1,2)
          ;(m2,2)
          ;(m3,2)
          ;(m4,2)
          ;(m5,2)
          ;(m6,2)
          ;(m7,2)
          ;(m8,2)
          ;(m9,2)
          ;(n0,2)
          ;(n1,2)
          ;(n2,2)
          ;(n3,2)
          ;(n30,2)
          ;(n31,2)}
        Flow Graph:
          [0->{10},1->{3},2->{14},3->{6},5->{1},6->{7},7->{5},9->{2},10->{9},11->{2},12->{1},13->{11,12},14->{13}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) 
          (< 1,0,A>, ?) (< 1,0,B>, ?) 
          (< 2,0,A>, ?) (< 2,0,B>, ?) 
          (< 3,0,A>, ?) (< 3,0,B>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, ?) 
          (< 5,1,A>, ?) (< 5,1,B>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, ?) 
          (< 9,0,A>, A) (< 9,0,B>, B) 
          (< 9,1,A>, A) (< 9,1,B>, B) 
          (<10,0,A>, A) (<10,0,B>, B) 
          (<11,0,A>, ?) (<11,0,B>, ?) 
          (<12,0,A>, ?) (<12,0,B>, ?) 
          (<13,0,A>, ?) (<13,0,B>, ?) 
          (<13,1,A>, ?) (<13,1,B>, ?) 
          (<14,0,A>, ?) (<14,0,B>, ?) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 6: ChainProcessor WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0.  doSum(A,B) -> m9(A,B)               [A >= 0]                                       (1,1)
          1.  m0(A,B)    -> m1(A,B)               [A >= 0]                                       (?,1)
          2.  m2(A,B)    -> m3(A,B)               [1 + A >= 0]                                   (?,1)
          3.  m1(A,B)    -> m5(A,B)               [A >= 0]                                       (?,1)
          5.  m7(A,B)    -> c2(m4(C,B),m0(C,B))   [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A] (?,1)
          6.  m5(A,B)    -> m8(A,B)               [A >= 0]                                       (?,1)
          7.  m8(A,B)    -> m7(A,B)               True                                           (?,1)
          9.  n2(A,B)    -> c2(n0(A,B),m2(A,B))   [A >= 0]                                       (2,1)
          10. m9(A,B)    -> n2(A,B)               [A >= 0]                                       (2,1)
          11. n30(A,B)   -> m2(A,B)               True                                           (?,1)
          12. n31(A,B)   -> m0(B,B)               True                                           (?,1)
          13. n3(A,B)    -> c2(n30(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A]           (?,1)
          14. m3(A,B)    -> n3(A,B)               True                                           (?,1)
        Signature:
          {(doSum,2)
          ;(m0,2)
          ;(m1,2)
          ;(m2,2)
          ;(m3,2)
          ;(m4,2)
          ;(m5,2)
          ;(m6,2)
          ;(m7,2)
          ;(m8,2)
          ;(m9,2)
          ;(n0,2)
          ;(n1,2)
          ;(n2,2)
          ;(n3,2)
          ;(n30,2)
          ;(n31,2)}
        Flow Graph:
          [0->{10},1->{3},2->{14},3->{6},5->{1},6->{7},7->{5},9->{2},10->{9},11->{2},12->{1},13->{11,12},14->{13}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) 
          (< 1,0,A>, ?) (< 1,0,B>, ?) 
          (< 2,0,A>, ?) (< 2,0,B>, ?) 
          (< 3,0,A>, ?) (< 3,0,B>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, ?) 
          (< 5,1,A>, ?) (< 5,1,B>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, ?) 
          (< 9,0,A>, A) (< 9,0,B>, B) 
          (< 9,1,A>, A) (< 9,1,B>, B) 
          (<10,0,A>, A) (<10,0,B>, B) 
          (<11,0,A>, ?) (<11,0,B>, ?) 
          (<12,0,A>, ?) (<12,0,B>, ?) 
          (<13,0,A>, ?) (<13,0,B>, ?) 
          (<13,1,A>, ?) (<13,1,B>, ?) 
          (<14,0,A>, ?) (<14,0,B>, ?) 
    + Applied Processor:
        ChainProcessor False [0,1,2,3,5,6,7,9,10,11,12,13,14]
    + Details:
        We chained rule 0 to obtain the rules [15] .
* Step 7: UnreachableRules WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          1.  m0(A,B)    -> m1(A,B)               [A >= 0]                                       (?,1)
          2.  m2(A,B)    -> m3(A,B)               [1 + A >= 0]                                   (?,1)
          3.  m1(A,B)    -> m5(A,B)               [A >= 0]                                       (?,1)
          5.  m7(A,B)    -> c2(m4(C,B),m0(C,B))   [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A] (?,1)
          6.  m5(A,B)    -> m8(A,B)               [A >= 0]                                       (?,1)
          7.  m8(A,B)    -> m7(A,B)               True                                           (?,1)
          9.  n2(A,B)    -> c2(n0(A,B),m2(A,B))   [A >= 0]                                       (2,1)
          10. m9(A,B)    -> n2(A,B)               [A >= 0]                                       (2,1)
          11. n30(A,B)   -> m2(A,B)               True                                           (?,1)
          12. n31(A,B)   -> m0(B,B)               True                                           (?,1)
          13. n3(A,B)    -> c2(n30(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A]           (?,1)
          14. m3(A,B)    -> n3(A,B)               True                                           (?,1)
          15. doSum(A,B) -> n2(A,B)               [A >= 0 && A >= 0]                             (1,2)
        Signature:
          {(doSum,2)
          ;(m0,2)
          ;(m1,2)
          ;(m2,2)
          ;(m3,2)
          ;(m4,2)
          ;(m5,2)
          ;(m6,2)
          ;(m7,2)
          ;(m8,2)
          ;(m9,2)
          ;(n0,2)
          ;(n1,2)
          ;(n2,2)
          ;(n3,2)
          ;(n30,2)
          ;(n31,2)}
        Flow Graph:
          [1->{3},2->{14},3->{6},5->{1},6->{7},7->{5},9->{2},10->{9},11->{2},12->{1},13->{11,12},14->{13},15->{9}]
        Sizebounds:
          (< 1,0,A>, ?) (< 1,0,B>, ?) 
          (< 2,0,A>, ?) (< 2,0,B>, ?) 
          (< 3,0,A>, ?) (< 3,0,B>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, ?) 
          (< 5,1,A>, ?) (< 5,1,B>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, ?) 
          (< 9,0,A>, A) (< 9,0,B>, B) 
          (< 9,1,A>, A) (< 9,1,B>, B) 
          (<10,0,A>, A) (<10,0,B>, B) 
          (<11,0,A>, ?) (<11,0,B>, ?) 
          (<12,0,A>, ?) (<12,0,B>, ?) 
          (<13,0,A>, ?) (<13,0,B>, ?) 
          (<13,1,A>, ?) (<13,1,B>, ?) 
          (<14,0,A>, ?) (<14,0,B>, ?) 
          (<15,0,A>, A) (<15,0,B>, B) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [10]
* Step 8: ChainProcessor WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          1.  m0(A,B)    -> m1(A,B)               [A >= 0]                                       (?,1)
          2.  m2(A,B)    -> m3(A,B)               [1 + A >= 0]                                   (?,1)
          3.  m1(A,B)    -> m5(A,B)               [A >= 0]                                       (?,1)
          5.  m7(A,B)    -> c2(m4(C,B),m0(C,B))   [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A] (?,1)
          6.  m5(A,B)    -> m8(A,B)               [A >= 0]                                       (?,1)
          7.  m8(A,B)    -> m7(A,B)               True                                           (?,1)
          9.  n2(A,B)    -> c2(n0(A,B),m2(A,B))   [A >= 0]                                       (2,1)
          11. n30(A,B)   -> m2(A,B)               True                                           (?,1)
          12. n31(A,B)   -> m0(B,B)               True                                           (?,1)
          13. n3(A,B)    -> c2(n30(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A]           (?,1)
          14. m3(A,B)    -> n3(A,B)               True                                           (?,1)
          15. doSum(A,B) -> n2(A,B)               [A >= 0 && A >= 0]                             (1,2)
        Signature:
          {(doSum,2)
          ;(m0,2)
          ;(m1,2)
          ;(m2,2)
          ;(m3,2)
          ;(m4,2)
          ;(m5,2)
          ;(m6,2)
          ;(m7,2)
          ;(m8,2)
          ;(m9,2)
          ;(n0,2)
          ;(n1,2)
          ;(n2,2)
          ;(n3,2)
          ;(n30,2)
          ;(n31,2)}
        Flow Graph:
          [1->{3},2->{14},3->{6},5->{1},6->{7},7->{5},9->{2},11->{2},12->{1},13->{11,12},14->{13},15->{9}]
        Sizebounds:
          (< 1,0,A>, ?) (< 1,0,B>, ?) 
          (< 2,0,A>, ?) (< 2,0,B>, ?) 
          (< 3,0,A>, ?) (< 3,0,B>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, ?) 
          (< 5,1,A>, ?) (< 5,1,B>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, ?) 
          (< 9,0,A>, A) (< 9,0,B>, B) 
          (< 9,1,A>, A) (< 9,1,B>, B) 
          (<11,0,A>, ?) (<11,0,B>, ?) 
          (<12,0,A>, ?) (<12,0,B>, ?) 
          (<13,0,A>, ?) (<13,0,B>, ?) 
          (<13,1,A>, ?) (<13,1,B>, ?) 
          (<14,0,A>, ?) (<14,0,B>, ?) 
          (<15,0,A>, A) (<15,0,B>, B) 
    + Applied Processor:
        ChainProcessor False [1,2,3,5,6,7,9,11,12,13,14,15]
    + Details:
        We chained rule 1 to obtain the rules [16] .
* Step 9: UnreachableRules WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          2.  m2(A,B)    -> m3(A,B)               [1 + A >= 0]                                   (?,1)
          3.  m1(A,B)    -> m5(A,B)               [A >= 0]                                       (?,1)
          5.  m7(A,B)    -> c2(m4(C,B),m0(C,B))   [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A] (?,1)
          6.  m5(A,B)    -> m8(A,B)               [A >= 0]                                       (?,1)
          7.  m8(A,B)    -> m7(A,B)               True                                           (?,1)
          9.  n2(A,B)    -> c2(n0(A,B),m2(A,B))   [A >= 0]                                       (2,1)
          11. n30(A,B)   -> m2(A,B)               True                                           (?,1)
          12. n31(A,B)   -> m0(B,B)               True                                           (?,1)
          13. n3(A,B)    -> c2(n30(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A]           (?,1)
          14. m3(A,B)    -> n3(A,B)               True                                           (?,1)
          15. doSum(A,B) -> n2(A,B)               [A >= 0 && A >= 0]                             (1,2)
          16. m0(A,B)    -> m5(A,B)               [A >= 0 && A >= 0]                             (?,2)
        Signature:
          {(doSum,2)
          ;(m0,2)
          ;(m1,2)
          ;(m2,2)
          ;(m3,2)
          ;(m4,2)
          ;(m5,2)
          ;(m6,2)
          ;(m7,2)
          ;(m8,2)
          ;(m9,2)
          ;(n0,2)
          ;(n1,2)
          ;(n2,2)
          ;(n3,2)
          ;(n30,2)
          ;(n31,2)}
        Flow Graph:
          [2->{14},3->{6},5->{16},6->{7},7->{5},9->{2},11->{2},12->{16},13->{11,12},14->{13},15->{9},16->{6}]
        Sizebounds:
          (< 2,0,A>, ?) (< 2,0,B>, ?) 
          (< 3,0,A>, ?) (< 3,0,B>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, ?) 
          (< 5,1,A>, ?) (< 5,1,B>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, ?) 
          (< 9,0,A>, A) (< 9,0,B>, B) 
          (< 9,1,A>, A) (< 9,1,B>, B) 
          (<11,0,A>, ?) (<11,0,B>, ?) 
          (<12,0,A>, ?) (<12,0,B>, ?) 
          (<13,0,A>, ?) (<13,0,B>, ?) 
          (<13,1,A>, ?) (<13,1,B>, ?) 
          (<14,0,A>, ?) (<14,0,B>, ?) 
          (<15,0,A>, A) (<15,0,B>, B) 
          (<16,0,A>, ?) (<16,0,B>, ?) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [3]
* Step 10: ChainProcessor WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          2.  m2(A,B)    -> m3(A,B)               [1 + A >= 0]                                   (?,1)
          5.  m7(A,B)    -> c2(m4(C,B),m0(C,B))   [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A] (?,1)
          6.  m5(A,B)    -> m8(A,B)               [A >= 0]                                       (?,1)
          7.  m8(A,B)    -> m7(A,B)               True                                           (?,1)
          9.  n2(A,B)    -> c2(n0(A,B),m2(A,B))   [A >= 0]                                       (2,1)
          11. n30(A,B)   -> m2(A,B)               True                                           (?,1)
          12. n31(A,B)   -> m0(B,B)               True                                           (?,1)
          13. n3(A,B)    -> c2(n30(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A]           (?,1)
          14. m3(A,B)    -> n3(A,B)               True                                           (?,1)
          15. doSum(A,B) -> n2(A,B)               [A >= 0 && A >= 0]                             (1,2)
          16. m0(A,B)    -> m5(A,B)               [A >= 0 && A >= 0]                             (?,2)
        Signature:
          {(doSum,2)
          ;(m0,2)
          ;(m1,2)
          ;(m2,2)
          ;(m3,2)
          ;(m4,2)
          ;(m5,2)
          ;(m6,2)
          ;(m7,2)
          ;(m8,2)
          ;(m9,2)
          ;(n0,2)
          ;(n1,2)
          ;(n2,2)
          ;(n3,2)
          ;(n30,2)
          ;(n31,2)}
        Flow Graph:
          [2->{14},5->{16},6->{7},7->{5},9->{2},11->{2},12->{16},13->{11,12},14->{13},15->{9},16->{6}]
        Sizebounds:
          (< 2,0,A>, ?) (< 2,0,B>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, ?) 
          (< 5,1,A>, ?) (< 5,1,B>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, ?) 
          (< 9,0,A>, A) (< 9,0,B>, B) 
          (< 9,1,A>, A) (< 9,1,B>, B) 
          (<11,0,A>, ?) (<11,0,B>, ?) 
          (<12,0,A>, ?) (<12,0,B>, ?) 
          (<13,0,A>, ?) (<13,0,B>, ?) 
          (<13,1,A>, ?) (<13,1,B>, ?) 
          (<14,0,A>, ?) (<14,0,B>, ?) 
          (<15,0,A>, A) (<15,0,B>, B) 
          (<16,0,A>, ?) (<16,0,B>, ?) 
    + Applied Processor:
        ChainProcessor False [2,5,6,7,9,11,12,13,14,15,16]
    + Details:
        We chained rule 2 to obtain the rules [17] .
* Step 11: UnreachableRules WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          5.  m7(A,B)    -> c2(m4(C,B),m0(C,B))   [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A] (?,1)
          6.  m5(A,B)    -> m8(A,B)               [A >= 0]                                       (?,1)
          7.  m8(A,B)    -> m7(A,B)               True                                           (?,1)
          9.  n2(A,B)    -> c2(n0(A,B),m2(A,B))   [A >= 0]                                       (2,1)
          11. n30(A,B)   -> m2(A,B)               True                                           (?,1)
          12. n31(A,B)   -> m0(B,B)               True                                           (?,1)
          13. n3(A,B)    -> c2(n30(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A]           (?,1)
          14. m3(A,B)    -> n3(A,B)               True                                           (?,1)
          15. doSum(A,B) -> n2(A,B)               [A >= 0 && A >= 0]                             (1,2)
          16. m0(A,B)    -> m5(A,B)               [A >= 0 && A >= 0]                             (?,2)
          17. m2(A,B)    -> n3(A,B)               [1 + A >= 0]                                   (?,2)
        Signature:
          {(doSum,2)
          ;(m0,2)
          ;(m1,2)
          ;(m2,2)
          ;(m3,2)
          ;(m4,2)
          ;(m5,2)
          ;(m6,2)
          ;(m7,2)
          ;(m8,2)
          ;(m9,2)
          ;(n0,2)
          ;(n1,2)
          ;(n2,2)
          ;(n3,2)
          ;(n30,2)
          ;(n31,2)}
        Flow Graph:
          [5->{16},6->{7},7->{5},9->{17},11->{17},12->{16},13->{11,12},14->{13},15->{9},16->{6},17->{13}]
        Sizebounds:
          (< 5,0,A>, ?) (< 5,0,B>, ?) 
          (< 5,1,A>, ?) (< 5,1,B>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, ?) 
          (< 9,0,A>, A) (< 9,0,B>, B) 
          (< 9,1,A>, A) (< 9,1,B>, B) 
          (<11,0,A>, ?) (<11,0,B>, ?) 
          (<12,0,A>, ?) (<12,0,B>, ?) 
          (<13,0,A>, ?) (<13,0,B>, ?) 
          (<13,1,A>, ?) (<13,1,B>, ?) 
          (<14,0,A>, ?) (<14,0,B>, ?) 
          (<15,0,A>, A) (<15,0,B>, B) 
          (<16,0,A>, ?) (<16,0,B>, ?) 
          (<17,0,A>, ?) (<17,0,B>, ?) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [14]
* Step 12: ChainProcessor WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          5.  m7(A,B)    -> c2(m4(C,B),m0(C,B))   [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A] (?,1)
          6.  m5(A,B)    -> m8(A,B)               [A >= 0]                                       (?,1)
          7.  m8(A,B)    -> m7(A,B)               True                                           (?,1)
          9.  n2(A,B)    -> c2(n0(A,B),m2(A,B))   [A >= 0]                                       (2,1)
          11. n30(A,B)   -> m2(A,B)               True                                           (?,1)
          12. n31(A,B)   -> m0(B,B)               True                                           (?,1)
          13. n3(A,B)    -> c2(n30(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A]           (?,1)
          15. doSum(A,B) -> n2(A,B)               [A >= 0 && A >= 0]                             (1,2)
          16. m0(A,B)    -> m5(A,B)               [A >= 0 && A >= 0]                             (?,2)
          17. m2(A,B)    -> n3(A,B)               [1 + A >= 0]                                   (?,2)
        Signature:
          {(doSum,2)
          ;(m0,2)
          ;(m1,2)
          ;(m2,2)
          ;(m3,2)
          ;(m4,2)
          ;(m5,2)
          ;(m6,2)
          ;(m7,2)
          ;(m8,2)
          ;(m9,2)
          ;(n0,2)
          ;(n1,2)
          ;(n2,2)
          ;(n3,2)
          ;(n30,2)
          ;(n31,2)}
        Flow Graph:
          [5->{16},6->{7},7->{5},9->{17},11->{17},12->{16},13->{11,12},15->{9},16->{6},17->{13}]
        Sizebounds:
          (< 5,0,A>, ?) (< 5,0,B>, ?) 
          (< 5,1,A>, ?) (< 5,1,B>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, ?) 
          (< 9,0,A>, A) (< 9,0,B>, B) 
          (< 9,1,A>, A) (< 9,1,B>, B) 
          (<11,0,A>, ?) (<11,0,B>, ?) 
          (<12,0,A>, ?) (<12,0,B>, ?) 
          (<13,0,A>, ?) (<13,0,B>, ?) 
          (<13,1,A>, ?) (<13,1,B>, ?) 
          (<15,0,A>, A) (<15,0,B>, B) 
          (<16,0,A>, ?) (<16,0,B>, ?) 
          (<17,0,A>, ?) (<17,0,B>, ?) 
    + Applied Processor:
        ChainProcessor False [5,6,7,9,11,12,13,15,16,17]
    + Details:
        We chained rule 5 to obtain the rules [18] .
* Step 13: ChainProcessor WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          6.  m5(A,B)    -> m8(A,B)               [A >= 0]                                                           (?,1)
          7.  m8(A,B)    -> m7(A,B)               True                                                               (?,1)
          9.  n2(A,B)    -> c2(n0(A,B),m2(A,B))   [A >= 0]                                                           (2,1)
          11. n30(A,B)   -> m2(A,B)               True                                                               (?,1)
          12. n31(A,B)   -> m0(B,B)               True                                                               (?,1)
          13. n3(A,B)    -> c2(n30(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A]                               (?,1)
          15. doSum(A,B) -> n2(A,B)               [A >= 0 && A >= 0]                                                 (1,2)
          16. m0(A,B)    -> m5(A,B)               [A >= 0 && A >= 0]                                                 (?,2)
          17. m2(A,B)    -> n3(A,B)               [1 + A >= 0]                                                       (?,2)
          18. m7(A,B)    -> c2(m4(C,B),m5(C,B))   [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A && C >= 0 && C >= 0] (?,3)
        Signature:
          {(doSum,2)
          ;(m0,2)
          ;(m1,2)
          ;(m2,2)
          ;(m3,2)
          ;(m4,2)
          ;(m5,2)
          ;(m6,2)
          ;(m7,2)
          ;(m8,2)
          ;(m9,2)
          ;(n0,2)
          ;(n1,2)
          ;(n2,2)
          ;(n3,2)
          ;(n30,2)
          ;(n31,2)}
        Flow Graph:
          [6->{7},7->{18},9->{17},11->{17},12->{16},13->{11,12},15->{9},16->{6},17->{13},18->{6}]
        Sizebounds:
          (< 6,0,A>, ?) (< 6,0,B>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, ?) 
          (< 9,0,A>, A) (< 9,0,B>, B) 
          (< 9,1,A>, A) (< 9,1,B>, B) 
          (<11,0,A>, ?) (<11,0,B>, ?) 
          (<12,0,A>, ?) (<12,0,B>, ?) 
          (<13,0,A>, ?) (<13,0,B>, ?) 
          (<13,1,A>, ?) (<13,1,B>, ?) 
          (<15,0,A>, A) (<15,0,B>, B) 
          (<16,0,A>, ?) (<16,0,B>, ?) 
          (<17,0,A>, ?) (<17,0,B>, ?) 
          (<18,0,A>, ?) (<18,0,B>, ?) 
    + Applied Processor:
        ChainProcessor False [6,7,9,11,12,13,15,16,17,18]
    + Details:
        We chained rule 6 to obtain the rules [19] .
* Step 14: UnreachableRules WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          7.  m8(A,B)    -> m7(A,B)               True                                                               (?,1)
          9.  n2(A,B)    -> c2(n0(A,B),m2(A,B))   [A >= 0]                                                           (2,1)
          11. n30(A,B)   -> m2(A,B)               True                                                               (?,1)
          12. n31(A,B)   -> m0(B,B)               True                                                               (?,1)
          13. n3(A,B)    -> c2(n30(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A]                               (?,1)
          15. doSum(A,B) -> n2(A,B)               [A >= 0 && A >= 0]                                                 (1,2)
          16. m0(A,B)    -> m5(A,B)               [A >= 0 && A >= 0]                                                 (?,2)
          17. m2(A,B)    -> n3(A,B)               [1 + A >= 0]                                                       (?,2)
          18. m7(A,B)    -> c2(m4(C,B),m5(C,B))   [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A && C >= 0 && C >= 0] (?,3)
          19. m5(A,B)    -> m7(A,B)               [A >= 0]                                                           (?,2)
        Signature:
          {(doSum,2)
          ;(m0,2)
          ;(m1,2)
          ;(m2,2)
          ;(m3,2)
          ;(m4,2)
          ;(m5,2)
          ;(m6,2)
          ;(m7,2)
          ;(m8,2)
          ;(m9,2)
          ;(n0,2)
          ;(n1,2)
          ;(n2,2)
          ;(n3,2)
          ;(n30,2)
          ;(n31,2)}
        Flow Graph:
          [7->{18},9->{17},11->{17},12->{16},13->{11,12},15->{9},16->{19},17->{13},18->{19},19->{18}]
        Sizebounds:
          (< 7,0,A>, ?) (< 7,0,B>, ?) 
          (< 9,0,A>, A) (< 9,0,B>, B) 
          (< 9,1,A>, A) (< 9,1,B>, B) 
          (<11,0,A>, ?) (<11,0,B>, ?) 
          (<12,0,A>, ?) (<12,0,B>, ?) 
          (<13,0,A>, ?) (<13,0,B>, ?) 
          (<13,1,A>, ?) (<13,1,B>, ?) 
          (<15,0,A>, A) (<15,0,B>, B) 
          (<16,0,A>, ?) (<16,0,B>, ?) 
          (<17,0,A>, ?) (<17,0,B>, ?) 
          (<18,0,A>, ?) (<18,0,B>, ?) 
          (<19,0,A>, ?) (<19,0,B>, ?) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [7]
* Step 15: ChainProcessor WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          9.  n2(A,B)    -> c2(n0(A,B),m2(A,B))   [A >= 0]                                                           (2,1)
          11. n30(A,B)   -> m2(A,B)               True                                                               (?,1)
          12. n31(A,B)   -> m0(B,B)               True                                                               (?,1)
          13. n3(A,B)    -> c2(n30(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A]                               (?,1)
          15. doSum(A,B) -> n2(A,B)               [A >= 0 && A >= 0]                                                 (1,2)
          16. m0(A,B)    -> m5(A,B)               [A >= 0 && A >= 0]                                                 (?,2)
          17. m2(A,B)    -> n3(A,B)               [1 + A >= 0]                                                       (?,2)
          18. m7(A,B)    -> c2(m4(C,B),m5(C,B))   [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A && C >= 0 && C >= 0] (?,3)
          19. m5(A,B)    -> m7(A,B)               [A >= 0]                                                           (?,2)
        Signature:
          {(doSum,2)
          ;(m0,2)
          ;(m1,2)
          ;(m2,2)
          ;(m3,2)
          ;(m4,2)
          ;(m5,2)
          ;(m6,2)
          ;(m7,2)
          ;(m8,2)
          ;(m9,2)
          ;(n0,2)
          ;(n1,2)
          ;(n2,2)
          ;(n3,2)
          ;(n30,2)
          ;(n31,2)}
        Flow Graph:
          [9->{17},11->{17},12->{16},13->{11,12},15->{9},16->{19},17->{13},18->{19},19->{18}]
        Sizebounds:
          (< 9,0,A>, A) (< 9,0,B>, B) 
          (< 9,1,A>, A) (< 9,1,B>, B) 
          (<11,0,A>, ?) (<11,0,B>, ?) 
          (<12,0,A>, ?) (<12,0,B>, ?) 
          (<13,0,A>, ?) (<13,0,B>, ?) 
          (<13,1,A>, ?) (<13,1,B>, ?) 
          (<15,0,A>, A) (<15,0,B>, B) 
          (<16,0,A>, ?) (<16,0,B>, ?) 
          (<17,0,A>, ?) (<17,0,B>, ?) 
          (<18,0,A>, ?) (<18,0,B>, ?) 
          (<19,0,A>, ?) (<19,0,B>, ?) 
    + Applied Processor:
        ChainProcessor False [9,11,12,13,15,16,17,18,19]
    + Details:
        We chained rule 9 to obtain the rules [20] .
* Step 16: ChainProcessor WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          11. n30(A,B)   -> m2(A,B)               True                                                               (?,1)
          12. n31(A,B)   -> m0(B,B)               True                                                               (?,1)
          13. n3(A,B)    -> c2(n30(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A]                               (?,1)
          15. doSum(A,B) -> n2(A,B)               [A >= 0 && A >= 0]                                                 (1,2)
          16. m0(A,B)    -> m5(A,B)               [A >= 0 && A >= 0]                                                 (?,2)
          17. m2(A,B)    -> n3(A,B)               [1 + A >= 0]                                                       (?,2)
          18. m7(A,B)    -> c2(m4(C,B),m5(C,B))   [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A && C >= 0 && C >= 0] (?,3)
          19. m5(A,B)    -> m7(A,B)               [A >= 0]                                                           (?,2)
          20. n2(A,B)    -> c2(n0(A,B),n3(A,B))   [A >= 0 && 1 + A >= 0]                                             (2,3)
        Signature:
          {(doSum,2)
          ;(m0,2)
          ;(m1,2)
          ;(m2,2)
          ;(m3,2)
          ;(m4,2)
          ;(m5,2)
          ;(m6,2)
          ;(m7,2)
          ;(m8,2)
          ;(m9,2)
          ;(n0,2)
          ;(n1,2)
          ;(n2,2)
          ;(n3,2)
          ;(n30,2)
          ;(n31,2)}
        Flow Graph:
          [11->{17},12->{16},13->{11,12},15->{20},16->{19},17->{13},18->{19},19->{18},20->{13}]
        Sizebounds:
          (<11,0,A>, ?) (<11,0,B>, ?) 
          (<12,0,A>, ?) (<12,0,B>, ?) 
          (<13,0,A>, ?) (<13,0,B>, ?) 
          (<13,1,A>, ?) (<13,1,B>, ?) 
          (<15,0,A>, A) (<15,0,B>, B) 
          (<16,0,A>, ?) (<16,0,B>, ?) 
          (<17,0,A>, ?) (<17,0,B>, ?) 
          (<18,0,A>, ?) (<18,0,B>, ?) 
          (<19,0,A>, ?) (<19,0,B>, ?) 
          (<20,0,A>, ?) (<20,0,B>, ?) 
    + Applied Processor:
        ChainProcessor False [11,12,13,15,16,17,18,19,20]
    + Details:
        We chained rule 11 to obtain the rules [21] .
* Step 17: UnreachableRules WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          12. n31(A,B)   -> m0(B,B)               True                                                               (?,1)
          13. n3(A,B)    -> c2(n30(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A]                               (?,1)
          15. doSum(A,B) -> n2(A,B)               [A >= 0 && A >= 0]                                                 (1,2)
          16. m0(A,B)    -> m5(A,B)               [A >= 0 && A >= 0]                                                 (?,2)
          17. m2(A,B)    -> n3(A,B)               [1 + A >= 0]                                                       (?,2)
          18. m7(A,B)    -> c2(m4(C,B),m5(C,B))   [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A && C >= 0 && C >= 0] (?,3)
          19. m5(A,B)    -> m7(A,B)               [A >= 0]                                                           (?,2)
          20. n2(A,B)    -> c2(n0(A,B),n3(A,B))   [A >= 0 && 1 + A >= 0]                                             (2,3)
          21. n30(A,B)   -> n3(A,B)               [1 + A >= 0]                                                       (?,3)
        Signature:
          {(doSum,2)
          ;(m0,2)
          ;(m1,2)
          ;(m2,2)
          ;(m3,2)
          ;(m4,2)
          ;(m5,2)
          ;(m6,2)
          ;(m7,2)
          ;(m8,2)
          ;(m9,2)
          ;(n0,2)
          ;(n1,2)
          ;(n2,2)
          ;(n3,2)
          ;(n30,2)
          ;(n31,2)}
        Flow Graph:
          [12->{16},13->{12,21},15->{20},16->{19},17->{13},18->{19},19->{18},20->{13},21->{13}]
        Sizebounds:
          (<12,0,A>, ?) (<12,0,B>, ?) 
          (<13,0,A>, ?) (<13,0,B>, ?) 
          (<13,1,A>, ?) (<13,1,B>, ?) 
          (<15,0,A>, A) (<15,0,B>, B) 
          (<16,0,A>, ?) (<16,0,B>, ?) 
          (<17,0,A>, ?) (<17,0,B>, ?) 
          (<18,0,A>, ?) (<18,0,B>, ?) 
          (<19,0,A>, ?) (<19,0,B>, ?) 
          (<20,0,A>, ?) (<20,0,B>, ?) 
          (<21,0,A>, ?) (<21,0,B>, ?) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [17]
* Step 18: ChainProcessor WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          12. n31(A,B)   -> m0(B,B)               True                                                               (?,1)
          13. n3(A,B)    -> c2(n30(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A]                               (?,1)
          15. doSum(A,B) -> n2(A,B)               [A >= 0 && A >= 0]                                                 (1,2)
          16. m0(A,B)    -> m5(A,B)               [A >= 0 && A >= 0]                                                 (?,2)
          18. m7(A,B)    -> c2(m4(C,B),m5(C,B))   [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A && C >= 0 && C >= 0] (?,3)
          19. m5(A,B)    -> m7(A,B)               [A >= 0]                                                           (?,2)
          20. n2(A,B)    -> c2(n0(A,B),n3(A,B))   [A >= 0 && 1 + A >= 0]                                             (2,3)
          21. n30(A,B)   -> n3(A,B)               [1 + A >= 0]                                                       (?,3)
        Signature:
          {(doSum,2)
          ;(m0,2)
          ;(m1,2)
          ;(m2,2)
          ;(m3,2)
          ;(m4,2)
          ;(m5,2)
          ;(m6,2)
          ;(m7,2)
          ;(m8,2)
          ;(m9,2)
          ;(n0,2)
          ;(n1,2)
          ;(n2,2)
          ;(n3,2)
          ;(n30,2)
          ;(n31,2)}
        Flow Graph:
          [12->{16},13->{12,21},15->{20},16->{19},18->{19},19->{18},20->{13},21->{13}]
        Sizebounds:
          (<12,0,A>, ?) (<12,0,B>, ?) 
          (<13,0,A>, ?) (<13,0,B>, ?) 
          (<13,1,A>, ?) (<13,1,B>, ?) 
          (<15,0,A>, A) (<15,0,B>, B) 
          (<16,0,A>, ?) (<16,0,B>, ?) 
          (<18,0,A>, ?) (<18,0,B>, ?) 
          (<19,0,A>, ?) (<19,0,B>, ?) 
          (<20,0,A>, ?) (<20,0,B>, ?) 
          (<21,0,A>, ?) (<21,0,B>, ?) 
    + Applied Processor:
        ChainProcessor False [12,13,15,16,18,19,20,21]
    + Details:
        We chained rule 12 to obtain the rules [22] .
* Step 19: UnreachableRules WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          13. n3(A,B)    -> c2(n30(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A]                               (?,1)
          15. doSum(A,B) -> n2(A,B)               [A >= 0 && A >= 0]                                                 (1,2)
          16. m0(A,B)    -> m5(A,B)               [A >= 0 && A >= 0]                                                 (?,2)
          18. m7(A,B)    -> c2(m4(C,B),m5(C,B))   [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A && C >= 0 && C >= 0] (?,3)
          19. m5(A,B)    -> m7(A,B)               [A >= 0]                                                           (?,2)
          20. n2(A,B)    -> c2(n0(A,B),n3(A,B))   [A >= 0 && 1 + A >= 0]                                             (2,3)
          21. n30(A,B)   -> n3(A,B)               [1 + A >= 0]                                                       (?,3)
          22. n31(A,B)   -> m5(B,B)               [B >= 0 && B >= 0]                                                 (?,3)
        Signature:
          {(doSum,2)
          ;(m0,2)
          ;(m1,2)
          ;(m2,2)
          ;(m3,2)
          ;(m4,2)
          ;(m5,2)
          ;(m6,2)
          ;(m7,2)
          ;(m8,2)
          ;(m9,2)
          ;(n0,2)
          ;(n1,2)
          ;(n2,2)
          ;(n3,2)
          ;(n30,2)
          ;(n31,2)}
        Flow Graph:
          [13->{21,22},15->{20},16->{19},18->{19},19->{18},20->{13},21->{13},22->{19}]
        Sizebounds:
          (<13,0,A>, ?) (<13,0,B>, ?) 
          (<13,1,A>, ?) (<13,1,B>, ?) 
          (<15,0,A>, A) (<15,0,B>, B) 
          (<16,0,A>, ?) (<16,0,B>, ?) 
          (<18,0,A>, ?) (<18,0,B>, ?) 
          (<19,0,A>, ?) (<19,0,B>, ?) 
          (<20,0,A>, ?) (<20,0,B>, ?) 
          (<21,0,A>, ?) (<21,0,B>, ?) 
          (<22,0,A>, ?) (<22,0,B>, ?) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [16]
* Step 20: ChainProcessor WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          13. n3(A,B)    -> c2(n30(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A]                               (?,1)
          15. doSum(A,B) -> n2(A,B)               [A >= 0 && A >= 0]                                                 (1,2)
          18. m7(A,B)    -> c2(m4(C,B),m5(C,B))   [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A && C >= 0 && C >= 0] (?,3)
          19. m5(A,B)    -> m7(A,B)               [A >= 0]                                                           (?,2)
          20. n2(A,B)    -> c2(n0(A,B),n3(A,B))   [A >= 0 && 1 + A >= 0]                                             (2,3)
          21. n30(A,B)   -> n3(A,B)               [1 + A >= 0]                                                       (?,3)
          22. n31(A,B)   -> m5(B,B)               [B >= 0 && B >= 0]                                                 (?,3)
        Signature:
          {(doSum,2)
          ;(m0,2)
          ;(m1,2)
          ;(m2,2)
          ;(m3,2)
          ;(m4,2)
          ;(m5,2)
          ;(m6,2)
          ;(m7,2)
          ;(m8,2)
          ;(m9,2)
          ;(n0,2)
          ;(n1,2)
          ;(n2,2)
          ;(n3,2)
          ;(n30,2)
          ;(n31,2)}
        Flow Graph:
          [13->{21,22},15->{20},18->{19},19->{18},20->{13},21->{13},22->{19}]
        Sizebounds:
          (<13,0,A>, ?) (<13,0,B>, ?) 
          (<13,1,A>, ?) (<13,1,B>, ?) 
          (<15,0,A>, A) (<15,0,B>, B) 
          (<18,0,A>, ?) (<18,0,B>, ?) 
          (<19,0,A>, ?) (<19,0,B>, ?) 
          (<20,0,A>, ?) (<20,0,B>, ?) 
          (<21,0,A>, ?) (<21,0,B>, ?) 
          (<22,0,A>, ?) (<22,0,B>, ?) 
    + Applied Processor:
        ChainProcessor False [13,15,18,19,20,21,22]
    + Details:
        We chained rule 13 to obtain the rules [23] .
* Step 21: UnreachableRules WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          15. doSum(A,B) -> n2(A,B)              [A >= 0 && A >= 0]                                                 (1,2)
          18. m7(A,B)    -> c2(m4(C,B),m5(C,B))  [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A && C >= 0 && C >= 0] (?,3)
          19. m5(A,B)    -> m7(A,B)              [A >= 0]                                                           (?,2)
          20. n2(A,B)    -> c2(n0(A,B),n3(A,B))  [A >= 0 && 1 + A >= 0]                                             (2,3)
          21. n30(A,B)   -> n3(A,B)              [1 + A >= 0]                                                       (?,3)
          22. n31(A,B)   -> m5(B,B)              [B >= 0 && B >= 0]                                                 (?,3)
          23. n3(A,B)    -> c2(n3(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A && 1 + C >= 0]                 (?,4)
        Signature:
          {(doSum,2)
          ;(m0,2)
          ;(m1,2)
          ;(m2,2)
          ;(m3,2)
          ;(m4,2)
          ;(m5,2)
          ;(m6,2)
          ;(m7,2)
          ;(m8,2)
          ;(m9,2)
          ;(n0,2)
          ;(n1,2)
          ;(n2,2)
          ;(n3,2)
          ;(n30,2)
          ;(n31,2)}
        Flow Graph:
          [15->{20},18->{19},19->{18},20->{23},21->{23},22->{19},23->{22,23}]
        Sizebounds:
          (<15,0,A>, A) (<15,0,B>, B) 
          (<18,0,A>, ?) (<18,0,B>, ?) 
          (<19,0,A>, ?) (<19,0,B>, ?) 
          (<20,0,A>, ?) (<20,0,B>, ?) 
          (<21,0,A>, ?) (<21,0,B>, ?) 
          (<22,0,A>, ?) (<22,0,B>, ?) 
          (<23,0,A>, ?) (<23,0,B>, ?) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [21]
* Step 22: ChainProcessor WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          15. doSum(A,B) -> n2(A,B)              [A >= 0 && A >= 0]                                                 (1,2)
          18. m7(A,B)    -> c2(m4(C,B),m5(C,B))  [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A && C >= 0 && C >= 0] (?,3)
          19. m5(A,B)    -> m7(A,B)              [A >= 0]                                                           (?,2)
          20. n2(A,B)    -> c2(n0(A,B),n3(A,B))  [A >= 0 && 1 + A >= 0]                                             (2,3)
          22. n31(A,B)   -> m5(B,B)              [B >= 0 && B >= 0]                                                 (?,3)
          23. n3(A,B)    -> c2(n3(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A && 1 + C >= 0]                 (?,4)
        Signature:
          {(doSum,2)
          ;(m0,2)
          ;(m1,2)
          ;(m2,2)
          ;(m3,2)
          ;(m4,2)
          ;(m5,2)
          ;(m6,2)
          ;(m7,2)
          ;(m8,2)
          ;(m9,2)
          ;(n0,2)
          ;(n1,2)
          ;(n2,2)
          ;(n3,2)
          ;(n30,2)
          ;(n31,2)}
        Flow Graph:
          [15->{20},18->{19},19->{18},20->{23},22->{19},23->{22,23}]
        Sizebounds:
          (<15,0,A>, A) (<15,0,B>, B) 
          (<18,0,A>, ?) (<18,0,B>, ?) 
          (<19,0,A>, ?) (<19,0,B>, ?) 
          (<20,0,A>, ?) (<20,0,B>, ?) 
          (<22,0,A>, ?) (<22,0,B>, ?) 
          (<23,0,A>, ?) (<23,0,B>, ?) 
    + Applied Processor:
        ChainProcessor False [15,18,19,20,22,23]
    + Details:
        We chained rule 18 to obtain the rules [24] .
* Step 23: LocalSizeboundsProc WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          15. doSum(A,B) -> n2(A,B)              [A >= 0 && A >= 0]                                                           (1,2)
          19. m5(A,B)    -> m7(A,B)              [A >= 0]                                                                     (?,2)
          20. n2(A,B)    -> c2(n0(A,B),n3(A,B))  [A >= 0 && 1 + A >= 0]                                                       (2,3)
          22. n31(A,B)   -> m5(B,B)              [B >= 0 && B >= 0]                                                           (?,3)
          23. n3(A,B)    -> c2(n3(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A && 1 + C >= 0]                           (?,4)
          24. m7(A,B)    -> c2(m4(C,B),m7(C,B))  [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A && C >= 0 && C >= 0 && C >= 0] (?,5)
        Signature:
          {(doSum,2)
          ;(m0,2)
          ;(m1,2)
          ;(m2,2)
          ;(m3,2)
          ;(m4,2)
          ;(m5,2)
          ;(m6,2)
          ;(m7,2)
          ;(m8,2)
          ;(m9,2)
          ;(n0,2)
          ;(n1,2)
          ;(n2,2)
          ;(n3,2)
          ;(n30,2)
          ;(n31,2)}
        Flow Graph:
          [15->{20},19->{24},20->{23},22->{19},23->{22,23},24->{24}]
        Sizebounds:
          (<15,0,A>, A) (<15,0,B>, B) 
          (<19,0,A>, ?) (<19,0,B>, ?) 
          (<20,0,A>, ?) (<20,0,B>, ?) 
          (<22,0,A>, ?) (<22,0,B>, ?) 
          (<23,0,A>, ?) (<23,0,B>, ?) 
          (<24,0,A>, ?) (<24,0,B>, ?) 
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (<15,0,A>,     A, .= 0) (<15,0,B>, B, .= 0) 
          (<19,0,A>,     A, .= 0) (<19,0,B>, B, .= 0) 
          (<20,0,A>,     A, .= 0) (<20,0,B>, B, .= 0) 
          (<20,1,A>,     A, .= 0) (<20,1,B>, B, .= 0) 
          (<22,0,A>,     B, .= 0) (<22,0,B>, B, .= 0) 
          (<23,0,A>, 1 + A, .+ 1) (<23,0,B>, A, .= 0) 
          (<23,1,A>, 1 + A, .+ 1) (<23,1,B>, A, .= 0) 
          (<24,0,A>, 1 + A, .+ 1) (<24,0,B>, B, .= 0) 
          (<24,1,A>, 1 + A, .+ 1) (<24,1,B>, B, .= 0) 
* Step 24: SizeboundsProc WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          15. doSum(A,B) -> n2(A,B)              [A >= 0 && A >= 0]                                                           (1,2)
          19. m5(A,B)    -> m7(A,B)              [A >= 0]                                                                     (?,2)
          20. n2(A,B)    -> c2(n0(A,B),n3(A,B))  [A >= 0 && 1 + A >= 0]                                                       (2,3)
          22. n31(A,B)   -> m5(B,B)              [B >= 0 && B >= 0]                                                           (?,3)
          23. n3(A,B)    -> c2(n3(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A && 1 + C >= 0]                           (?,4)
          24. m7(A,B)    -> c2(m4(C,B),m7(C,B))  [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A && C >= 0 && C >= 0 && C >= 0] (?,5)
        Signature:
          {(doSum,2)
          ;(m0,2)
          ;(m1,2)
          ;(m2,2)
          ;(m3,2)
          ;(m4,2)
          ;(m5,2)
          ;(m6,2)
          ;(m7,2)
          ;(m8,2)
          ;(m9,2)
          ;(n0,2)
          ;(n1,2)
          ;(n2,2)
          ;(n3,2)
          ;(n30,2)
          ;(n31,2)}
        Flow Graph:
          [15->{20},19->{24},20->{23},22->{19},23->{22,23},24->{24}]
        Sizebounds:
          (<15,0,A>, ?) (<15,0,B>, ?) 
          (<19,0,A>, ?) (<19,0,B>, ?) 
          (<20,0,A>, ?) (<20,0,B>, ?) 
          (<20,1,A>, ?) (<20,1,B>, ?) 
          (<22,0,A>, ?) (<22,0,B>, ?) 
          (<23,0,A>, ?) (<23,0,B>, ?) 
          (<23,1,A>, ?) (<23,1,B>, ?) 
          (<24,0,A>, ?) (<24,0,B>, ?) 
          (<24,1,A>, ?) (<24,1,B>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (<15,0,A>, A) (<15,0,B>, B) 
          (<19,0,A>, ?) (<19,0,B>, ?) 
          (<20,0,A>, A) (<20,0,B>, B) 
          (<20,1,A>, A) (<20,1,B>, B) 
          (<22,0,A>, ?) (<22,0,B>, ?) 
          (<23,0,A>, ?) (<23,0,B>, ?) 
          (<23,1,A>, ?) (<23,1,B>, ?) 
          (<24,0,A>, ?) (<24,0,B>, ?) 
          (<24,1,A>, ?) (<24,1,B>, ?) 
* Step 25: LocationConstraintsProc WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          15. doSum(A,B) -> n2(A,B)              [A >= 0 && A >= 0]                                                           (1,2)
          19. m5(A,B)    -> m7(A,B)              [A >= 0]                                                                     (?,2)
          20. n2(A,B)    -> c2(n0(A,B),n3(A,B))  [A >= 0 && 1 + A >= 0]                                                       (2,3)
          22. n31(A,B)   -> m5(B,B)              [B >= 0 && B >= 0]                                                           (?,3)
          23. n3(A,B)    -> c2(n3(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A && 1 + C >= 0]                           (?,4)
          24. m7(A,B)    -> c2(m4(C,B),m7(C,B))  [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A && C >= 0 && C >= 0 && C >= 0] (?,5)
        Signature:
          {(doSum,2)
          ;(m0,2)
          ;(m1,2)
          ;(m2,2)
          ;(m3,2)
          ;(m4,2)
          ;(m5,2)
          ;(m6,2)
          ;(m7,2)
          ;(m8,2)
          ;(m9,2)
          ;(n0,2)
          ;(n1,2)
          ;(n2,2)
          ;(n3,2)
          ;(n30,2)
          ;(n31,2)}
        Flow Graph:
          [15->{20},19->{24},20->{23},22->{19},23->{22,23},24->{24}]
        Sizebounds:
          (<15,0,A>, A) (<15,0,B>, B) 
          (<19,0,A>, ?) (<19,0,B>, ?) 
          (<20,0,A>, A) (<20,0,B>, B) 
          (<20,1,A>, A) (<20,1,B>, B) 
          (<22,0,A>, ?) (<22,0,B>, ?) 
          (<23,0,A>, ?) (<23,0,B>, ?) 
          (<23,1,A>, ?) (<23,1,B>, ?) 
          (<24,0,A>, ?) (<24,0,B>, ?) 
          (<24,1,A>, ?) (<24,1,B>, ?) 
    + Applied Processor:
        LocationConstraintsProc
    + Details:
        We computed the location constraints  15 :  True 19 :  [B >= 0] 20 :  [A >= 0] 22 :  True 23 :  True 24 :  [A >= 0] .
* Step 26: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          15. doSum(A,B) -> n2(A,B)              [A >= 0 && A >= 0]                                                           (1,2)
          19. m5(A,B)    -> m7(A,B)              [A >= 0]                                                                     (?,2)
          20. n2(A,B)    -> c2(n0(A,B),n3(A,B))  [A >= 0 && 1 + A >= 0]                                                       (2,3)
          22. n31(A,B)   -> m5(B,B)              [B >= 0 && B >= 0]                                                           (?,3)
          23. n3(A,B)    -> c2(n3(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A && 1 + C >= 0]                           (?,4)
          24. m7(A,B)    -> c2(m4(C,B),m7(C,B))  [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A && C >= 0 && C >= 0 && C >= 0] (?,5)
        Signature:
          {(doSum,2)
          ;(m0,2)
          ;(m1,2)
          ;(m2,2)
          ;(m3,2)
          ;(m4,2)
          ;(m5,2)
          ;(m6,2)
          ;(m7,2)
          ;(m8,2)
          ;(m9,2)
          ;(n0,2)
          ;(n1,2)
          ;(n2,2)
          ;(n3,2)
          ;(n30,2)
          ;(n31,2)}
        Flow Graph:
          [15->{20},19->{24},20->{23},22->{19},23->{22,23},24->{24}]
        Sizebounds:
          (<15,0,A>, A) (<15,0,B>, B) 
          (<19,0,A>, ?) (<19,0,B>, ?) 
          (<20,0,A>, A) (<20,0,B>, B) 
          (<20,1,A>, A) (<20,1,B>, B) 
          (<22,0,A>, ?) (<22,0,B>, ?) 
          (<23,0,A>, ?) (<23,0,B>, ?) 
          (<23,1,A>, ?) (<23,1,B>, ?) 
          (<24,0,A>, ?) (<24,0,B>, ?) 
          (<24,1,A>, ?) (<24,1,B>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(doSum) = 1 + x1
             p(m4) = 0     
             p(m5) = 0     
             p(m7) = 0     
             p(n0) = 0     
             p(n2) = 1 + x1
             p(n3) = 1 + x1
            p(n31) = 0     
        
        The following rules are strictly oriented:
        [A >= 0 && A >= 1 + C && 1 + C >= A && 1 + C >= 0] ==>                     
                                                   n3(A,B)   = 1 + A               
                                                             > 1 + C               
                                                             = c2(n3(C,A),n31(C,A))
        
        
        The following rules are weakly oriented:
                                                                  [A >= 0 && A >= 0] ==>                    
                                                                          doSum(A,B)   = 1 + A              
                                                                                      >= 1 + A              
                                                                                       = n2(A,B)            
        
                                                                            [A >= 0] ==>                    
                                                                             m5(A,B)   = 0                  
                                                                                      >= 0                  
                                                                                       = m7(A,B)            
        
                                                              [A >= 0 && 1 + A >= 0] ==>                    
                                                                             n2(A,B)   = 1 + A              
                                                                                      >= 1 + A              
                                                                                       = c2(n0(A,B),n3(A,B))
        
                                                                  [B >= 0 && B >= 0] ==>                    
                                                                            n31(A,B)   = 0                  
                                                                                      >= 0                  
                                                                                       = m5(B,B)            
        
        [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A && C >= 0 && C >= 0 && C >= 0] ==>                    
                                                                             m7(A,B)   = 0                  
                                                                                      >= 0                  
                                                                                       = c2(m4(C,B),m7(C,B))
        
        
* Step 27: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          15. doSum(A,B) -> n2(A,B)              [A >= 0 && A >= 0]                                                           (1,2)    
          19. m5(A,B)    -> m7(A,B)              [A >= 0]                                                                     (?,2)    
          20. n2(A,B)    -> c2(n0(A,B),n3(A,B))  [A >= 0 && 1 + A >= 0]                                                       (2,3)    
          22. n31(A,B)   -> m5(B,B)              [B >= 0 && B >= 0]                                                           (?,3)    
          23. n3(A,B)    -> c2(n3(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A && 1 + C >= 0]                           (1 + A,4)
          24. m7(A,B)    -> c2(m4(C,B),m7(C,B))  [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A && C >= 0 && C >= 0 && C >= 0] (?,5)    
        Signature:
          {(doSum,2)
          ;(m0,2)
          ;(m1,2)
          ;(m2,2)
          ;(m3,2)
          ;(m4,2)
          ;(m5,2)
          ;(m6,2)
          ;(m7,2)
          ;(m8,2)
          ;(m9,2)
          ;(n0,2)
          ;(n1,2)
          ;(n2,2)
          ;(n3,2)
          ;(n30,2)
          ;(n31,2)}
        Flow Graph:
          [15->{20},19->{24},20->{23},22->{19},23->{22,23},24->{24}]
        Sizebounds:
          (<15,0,A>, A) (<15,0,B>, B) 
          (<19,0,A>, ?) (<19,0,B>, ?) 
          (<20,0,A>, A) (<20,0,B>, B) 
          (<20,1,A>, A) (<20,1,B>, B) 
          (<22,0,A>, ?) (<22,0,B>, ?) 
          (<23,0,A>, ?) (<23,0,B>, ?) 
          (<23,1,A>, ?) (<23,1,B>, ?) 
          (<24,0,A>, ?) (<24,0,B>, ?) 
          (<24,1,A>, ?) (<24,1,B>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(doSum) = 1 + x1
             p(m4) = 0     
             p(m5) = 0     
             p(m7) = 0     
             p(n0) = 0     
             p(n2) = 1 + x1
             p(n3) = 1 + x1
            p(n31) = 1     
        
        The following rules are strictly oriented:
        [B >= 0 && B >= 0] ==>        
                  n31(A,B)   = 1      
                             > 0      
                             = m5(B,B)
        
        
        The following rules are weakly oriented:
                                                                  [A >= 0 && A >= 0] ==>                     
                                                                          doSum(A,B)   = 1 + A               
                                                                                      >= 1 + A               
                                                                                       = n2(A,B)             
        
                                                                            [A >= 0] ==>                     
                                                                             m5(A,B)   = 0                   
                                                                                      >= 0                   
                                                                                       = m7(A,B)             
        
                                                              [A >= 0 && 1 + A >= 0] ==>                     
                                                                             n2(A,B)   = 1 + A               
                                                                                      >= 1 + A               
                                                                                       = c2(n0(A,B),n3(A,B)) 
        
                                  [A >= 0 && A >= 1 + C && 1 + C >= A && 1 + C >= 0] ==>                     
                                                                             n3(A,B)   = 1 + A               
                                                                                      >= 2 + C               
                                                                                       = c2(n3(C,A),n31(C,A))
        
        [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A && C >= 0 && C >= 0 && C >= 0] ==>                     
                                                                             m7(A,B)   = 0                   
                                                                                      >= 0                   
                                                                                       = c2(m4(C,B),m7(C,B)) 
        
        
* Step 28: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          15. doSum(A,B) -> n2(A,B)              [A >= 0 && A >= 0]                                                           (1,2)    
          19. m5(A,B)    -> m7(A,B)              [A >= 0]                                                                     (?,2)    
          20. n2(A,B)    -> c2(n0(A,B),n3(A,B))  [A >= 0 && 1 + A >= 0]                                                       (2,3)    
          22. n31(A,B)   -> m5(B,B)              [B >= 0 && B >= 0]                                                           (1 + A,3)
          23. n3(A,B)    -> c2(n3(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A && 1 + C >= 0]                           (1 + A,4)
          24. m7(A,B)    -> c2(m4(C,B),m7(C,B))  [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A && C >= 0 && C >= 0 && C >= 0] (?,5)    
        Signature:
          {(doSum,2)
          ;(m0,2)
          ;(m1,2)
          ;(m2,2)
          ;(m3,2)
          ;(m4,2)
          ;(m5,2)
          ;(m6,2)
          ;(m7,2)
          ;(m8,2)
          ;(m9,2)
          ;(n0,2)
          ;(n1,2)
          ;(n2,2)
          ;(n3,2)
          ;(n30,2)
          ;(n31,2)}
        Flow Graph:
          [15->{20},19->{24},20->{23},22->{19},23->{22,23},24->{24}]
        Sizebounds:
          (<15,0,A>, A) (<15,0,B>, B) 
          (<19,0,A>, ?) (<19,0,B>, ?) 
          (<20,0,A>, A) (<20,0,B>, B) 
          (<20,1,A>, A) (<20,1,B>, B) 
          (<22,0,A>, ?) (<22,0,B>, ?) 
          (<23,0,A>, ?) (<23,0,B>, ?) 
          (<23,1,A>, ?) (<23,1,B>, ?) 
          (<24,0,A>, ?) (<24,0,B>, ?) 
          (<24,1,A>, ?) (<24,1,B>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(doSum) = 1 + x1
             p(m4) = 0     
             p(m5) = 1     
             p(m7) = 0     
             p(n0) = 0     
             p(n2) = 1 + x1
             p(n3) = 1 + x1
            p(n31) = 1     
        
        The following rules are strictly oriented:
         [A >= 0] ==>        
          m5(A,B)   = 1      
                    > 0      
                    = m7(A,B)
        
        
        The following rules are weakly oriented:
                                                                  [A >= 0 && A >= 0] ==>                     
                                                                          doSum(A,B)   = 1 + A               
                                                                                      >= 1 + A               
                                                                                       = n2(A,B)             
        
                                                              [A >= 0 && 1 + A >= 0] ==>                     
                                                                             n2(A,B)   = 1 + A               
                                                                                      >= 1 + A               
                                                                                       = c2(n0(A,B),n3(A,B)) 
        
                                                                  [B >= 0 && B >= 0] ==>                     
                                                                            n31(A,B)   = 1                   
                                                                                      >= 1                   
                                                                                       = m5(B,B)             
        
                                  [A >= 0 && A >= 1 + C && 1 + C >= A && 1 + C >= 0] ==>                     
                                                                             n3(A,B)   = 1 + A               
                                                                                      >= 2 + C               
                                                                                       = c2(n3(C,A),n31(C,A))
        
        [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A && C >= 0 && C >= 0 && C >= 0] ==>                     
                                                                             m7(A,B)   = 0                   
                                                                                      >= 0                   
                                                                                       = c2(m4(C,B),m7(C,B)) 
        
        
* Step 29: LoopRecurrenceProcessor WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          15. doSum(A,B) -> n2(A,B)              [A >= 0 && A >= 0]                                                           (1,2)    
          19. m5(A,B)    -> m7(A,B)              [A >= 0]                                                                     (1 + A,2)
          20. n2(A,B)    -> c2(n0(A,B),n3(A,B))  [A >= 0 && 1 + A >= 0]                                                       (2,3)    
          22. n31(A,B)   -> m5(B,B)              [B >= 0 && B >= 0]                                                           (1 + A,3)
          23. n3(A,B)    -> c2(n3(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A && 1 + C >= 0]                           (1 + A,4)
          24. m7(A,B)    -> c2(m4(C,B),m7(C,B))  [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A && C >= 0 && C >= 0 && C >= 0] (?,5)    
        Signature:
          {(doSum,2)
          ;(m0,2)
          ;(m1,2)
          ;(m2,2)
          ;(m3,2)
          ;(m4,2)
          ;(m5,2)
          ;(m6,2)
          ;(m7,2)
          ;(m8,2)
          ;(m9,2)
          ;(n0,2)
          ;(n1,2)
          ;(n2,2)
          ;(n3,2)
          ;(n30,2)
          ;(n31,2)}
        Flow Graph:
          [15->{20},19->{24},20->{23},22->{19},23->{22,23},24->{24}]
        Sizebounds:
          (<15,0,A>, A) (<15,0,B>, B) 
          (<19,0,A>, ?) (<19,0,B>, ?) 
          (<20,0,A>, A) (<20,0,B>, B) 
          (<20,1,A>, A) (<20,1,B>, B) 
          (<22,0,A>, ?) (<22,0,B>, ?) 
          (<23,0,A>, ?) (<23,0,B>, ?) 
          (<23,1,A>, ?) (<23,1,B>, ?) 
          (<24,0,A>, ?) (<24,0,B>, ?) 
          (<24,1,A>, ?) (<24,1,B>, ?) 
    + Applied Processor:
        LoopRecurrenceProcessor [23]
    + Details:
        Applying the recurrence pattern linear * f to the expression A yields the solution 3*A + A^2 .
* Step 30: LoopRecurrenceProcessor WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          15. doSum(A,B) -> n2(A,B)              [A >= 0 && A >= 0]                                                           (1,2)          
          19. m5(A,B)    -> m7(A,B)              [A >= 0]                                                                     (1 + A,2)      
          20. n2(A,B)    -> c2(n0(A,B),n3(A,B))  [A >= 0 && 1 + A >= 0]                                                       (2,3)          
          22. n31(A,B)   -> m5(B,B)              [B >= 0 && B >= 0]                                                           (1 + A,3)      
          23. n3(A,B)    -> c2(n3(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A && 1 + C >= 0]                           (1 + A,4)      
          24. m7(A,B)    -> c2(m4(C,B),m7(C,B))  [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A && C >= 0 && C >= 0 && C >= 0] (6*A + 2*A^2,5)
        Signature:
          {(doSum,2)
          ;(m0,2)
          ;(m1,2)
          ;(m2,2)
          ;(m3,2)
          ;(m4,2)
          ;(m5,2)
          ;(m6,2)
          ;(m7,2)
          ;(m8,2)
          ;(m9,2)
          ;(n0,2)
          ;(n1,2)
          ;(n2,2)
          ;(n3,2)
          ;(n30,2)
          ;(n31,2)}
        Flow Graph:
          [15->{20},19->{24},20->{23},22->{19},23->{22,23},24->{24}]
        Sizebounds:
          (<15,0,A>, A) (<15,0,B>, B) 
          (<19,0,A>, ?) (<19,0,B>, ?) 
          (<20,0,A>, A) (<20,0,B>, B) 
          (<20,1,A>, A) (<20,1,B>, B) 
          (<22,0,A>, ?) (<22,0,B>, ?) 
          (<23,0,A>, ?) (<23,0,B>, ?) 
          (<23,1,A>, ?) (<23,1,B>, ?) 
          (<24,0,A>, ?) (<24,0,B>, ?) 
          (<24,1,A>, ?) (<24,1,B>, ?) 
    + Applied Processor:
        LoopRecurrenceProcessor [24]
    + Details:
        Applying the recurrence pattern linear * f to the expression A yields the solution A .
* Step 31: UnsatPaths WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          15. doSum(A,B) -> n2(A,B)              [A >= 0 && A >= 0]                                                           (1,2)          
          19. m5(A,B)    -> m7(A,B)              [A >= 0]                                                                     (1 + A,2)      
          20. n2(A,B)    -> c2(n0(A,B),n3(A,B))  [A >= 0 && 1 + A >= 0]                                                       (2,3)          
          22. n31(A,B)   -> m5(B,B)              [B >= 0 && B >= 0]                                                           (1 + A,3)      
          23. n3(A,B)    -> c2(n3(C,A),n31(C,A)) [A >= 0 && A >= 1 + C && 1 + C >= A && 1 + C >= 0]                           (1 + A,4)      
          24. m7(A,B)    -> c2(m4(C,B),m7(C,B))  [A >= 0 && A >= 1 && A >= 1 + C && 1 + C >= A && C >= 0 && C >= 0 && C >= 0] (6*A + 2*A^2,5)
        Signature:
          {(doSum,2)
          ;(m0,2)
          ;(m1,2)
          ;(m2,2)
          ;(m3,2)
          ;(m4,2)
          ;(m5,2)
          ;(m6,2)
          ;(m7,2)
          ;(m8,2)
          ;(m9,2)
          ;(n0,2)
          ;(n1,2)
          ;(n2,2)
          ;(n3,2)
          ;(n30,2)
          ;(n31,2)}
        Flow Graph:
          [15->{20},19->{24},20->{23},22->{19},23->{22,23},24->{24}]
        Sizebounds:
          (<15,0,A>, A) (<15,0,B>, B) 
          (<19,0,A>, ?) (<19,0,B>, ?) 
          (<20,0,A>, A) (<20,0,B>, B) 
          (<20,1,A>, A) (<20,1,B>, B) 
          (<22,0,A>, ?) (<22,0,B>, ?) 
          (<23,0,A>, ?) (<23,0,B>, ?) 
          (<23,1,A>, ?) (<23,1,B>, ?) 
          (<24,0,A>, ?) (<24,0,B>, ?) 
          (<24,1,A>, ?) (<24,1,B>, ?) 
    + Applied Processor:
        UnsatPaths
    + Details:
        The problem is already solved.

WORST_CASE(?,O(n^2))