WORST_CASE(?,O(n^3))
* Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          0.  multiply(A,B,C,D,E) -> m6(A,B,C,D,E)                     True                                                                                           (1,1)
          1.  m0(A,B,C,D,E)       -> m1(A,B,F,G,E)                     [A >= 1 && F >= 0 && A >= F && A >= G && G >= A && B >= F && F >= B]                           (?,1)
          2.  m2(A,B,C,D,E)       -> m3(A,B,F,G,E)                     [F >= 0 && A >= G && G >= A && B >= F && F >= B]                                               (?,1)
          3.  m4(A,B,C,D,E)       -> m5(A,B,C,F,G)                     [B >= G && G >= B && C >= F && F >= C]                                                         (?,1)
          4.  m6(A,B,C,D,E)       -> m7(A,B,C,D,E)                     True                                                                                           (?,1)
          5.  m5(A,B,C,D,E)       -> n2(A,B,C,D,E)                     True                                                                                           (?,1)
          6.  m5(A,B,C,D,E)       -> m9(D,E,C,D,E)                     True                                                                                           (?,1)
          7.  m3(A,B,C,D,E)       -> n3(A,B,C,D,E)                     True                                                                                           (?,1)
          8.  m3(A,B,C,D,E)       -> n0(C,D,C,D,E)                     True                                                                                           (?,1)
          9.  m1(A,B,C,D,E)       -> n4(A,B,C,D,E)                     True                                                                                           (?,1)
          10. m1(A,B,C,D,E)       -> n1(C,D,C,D,E)                     True                                                                                           (?,1)
          11. n20(A,B,C,D,E)      -> m4(A,B,C,D,E)                     True                                                                                           (?,1)
          12. n21(A,B,C,D,E)      -> m2(A,0,C,D,E)                     True                                                                                           (?,1)
          13. n2(A,B,C,D,E)       -> c2(n20(A,B,F,D,E),n21(A,B,F,D,E)) [B >= F && 1 + C >= F && F >= 1 + C && B >= E && E >= B && 1 + D >= F && F >= 1 + D]           (?,1)
          14. n30(A,B,C,D,E)      -> m2(A,B,C,D,E)                     True                                                                                           (?,1)
          15. n31(A,B,C,D,E)      -> m0(A,0,C,D,E)                     True                                                                                           (?,1)
          16. n3(A,B,C,D,E)       -> c2(n30(A,F,C,D,E),n31(A,F,C,D,E)) [F >= 1 && A >= F && 1 + C >= F && F >= 1 + C && 1 + B >= F && F >= 1 + B && A >= D && D >= A] (?,1)
          17. m7(A,B,C,D,E)       -> c2(m8(F,G,0,D,E),m4(F,G,0,D,E))   [B >= G && G >= B && A >= F && F >= A]                                                         (?,1)
          18. n4(A,B,C,D,E)       -> m0(A,F,C,D,E)                     [F >= 1 && A >= F && 1 + B >= F && F >= 1 + B && 1 + C >= F && F >= 1 + C && A >= D && D >= A] (?,1)
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(multiply,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n20,5)
          ;(n21,5)
          ;(n3,5)
          ;(n30,5)
          ;(n31,5)
          ;(n4,5)}
        Flow Graph:
          [0->{4},1->{9,10},2->{7,8},3->{5,6},4->{17},5->{13},6->{},7->{16},8->{},9->{18},10->{},11->{3},12->{2}
          ,13->{11,12},14->{2},15->{1},16->{14,15},17->{3},18->{1}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (< 0,0,A>, A, .= 0) (< 0,0,B>,     B, .= 0) (< 0,0,C>,         C, .= 0) (< 0,0,D>,     D, .= 0) (< 0,0,E>, E, .= 0) 
          (< 1,0,A>, A, .= 0) (< 1,0,B>,     B, .= 0) (< 1,0,C>,         B, .= 0) (< 1,0,D>, 1 + A, .+ 1) (< 1,0,E>, E, .= 0) 
          (< 2,0,A>, A, .= 0) (< 2,0,B>,     B, .= 0) (< 2,0,C>,         B, .= 0) (< 2,0,D>,     A, .= 0) (< 2,0,E>, E, .= 0) 
          (< 3,0,A>, A, .= 0) (< 3,0,B>,     B, .= 0) (< 3,0,C>,         C, .= 0) (< 3,0,D>,     C, .= 0) (< 3,0,E>, B, .= 0) 
          (< 4,0,A>, A, .= 0) (< 4,0,B>,     B, .= 0) (< 4,0,C>,         C, .= 0) (< 4,0,D>,     D, .= 0) (< 4,0,E>, E, .= 0) 
          (< 5,0,A>, A, .= 0) (< 5,0,B>,     B, .= 0) (< 5,0,C>,         C, .= 0) (< 5,0,D>,     D, .= 0) (< 5,0,E>, E, .= 0) 
          (< 6,0,A>, D, .= 0) (< 6,0,B>,     E, .= 0) (< 6,0,C>,         C, .= 0) (< 6,0,D>,     D, .= 0) (< 6,0,E>, E, .= 0) 
          (< 7,0,A>, A, .= 0) (< 7,0,B>,     B, .= 0) (< 7,0,C>,         C, .= 0) (< 7,0,D>,     D, .= 0) (< 7,0,E>, E, .= 0) 
          (< 8,0,A>, C, .= 0) (< 8,0,B>,     D, .= 0) (< 8,0,C>,         C, .= 0) (< 8,0,D>,     D, .= 0) (< 8,0,E>, E, .= 0) 
          (< 9,0,A>, A, .= 0) (< 9,0,B>,     B, .= 0) (< 9,0,C>,         C, .= 0) (< 9,0,D>,     D, .= 0) (< 9,0,E>, E, .= 0) 
          (<10,0,A>, C, .= 0) (<10,0,B>,     D, .= 0) (<10,0,C>,         C, .= 0) (<10,0,D>,     D, .= 0) (<10,0,E>, E, .= 0) 
          (<11,0,A>, A, .= 0) (<11,0,B>,     B, .= 0) (<11,0,C>,         C, .= 0) (<11,0,D>,     D, .= 0) (<11,0,E>, E, .= 0) 
          (<12,0,A>, A, .= 0) (<12,0,B>,     0, .= 0) (<12,0,C>,         C, .= 0) (<12,0,D>,     D, .= 0) (<12,0,E>, E, .= 0) 
          (<13,0,A>, A, .= 0) (<13,0,B>,     B, .= 0) (<13,0,C>, 1 + B + C, .* 1) (<13,0,D>,     D, .= 0) (<13,0,E>, E, .= 0) 
          (<13,1,A>, A, .= 0) (<13,1,B>,     B, .= 0) (<13,1,C>, 1 + B + C, .* 1) (<13,1,D>,     D, .= 0) (<13,1,E>, E, .= 0) 
          (<14,0,A>, A, .= 0) (<14,0,B>,     B, .= 0) (<14,0,C>,         C, .= 0) (<14,0,D>,     D, .= 0) (<14,0,E>, E, .= 0) 
          (<15,0,A>, A, .= 0) (<15,0,B>,     0, .= 0) (<15,0,C>,         C, .= 0) (<15,0,D>,     D, .= 0) (<15,0,E>, E, .= 0) 
          (<16,0,A>, A, .= 0) (<16,0,B>, 1 + A, .+ 1) (<16,0,C>,         C, .= 0) (<16,0,D>,     D, .= 0) (<16,0,E>, E, .= 0) 
          (<16,1,A>, A, .= 0) (<16,1,B>, 1 + A, .+ 1) (<16,1,C>,         C, .= 0) (<16,1,D>,     D, .= 0) (<16,1,E>, E, .= 0) 
          (<17,0,A>, A, .= 0) (<17,0,B>,     B, .= 0) (<17,0,C>,         0, .= 0) (<17,0,D>,     D, .= 0) (<17,0,E>, E, .= 0) 
          (<17,1,A>, A, .= 0) (<17,1,B>,     B, .= 0) (<17,1,C>,         0, .= 0) (<17,1,D>,     D, .= 0) (<17,1,E>, E, .= 0) 
          (<18,0,A>, A, .= 0) (<18,0,B>, 1 + A, .+ 1) (<18,0,C>,         C, .= 0) (<18,0,D>,     D, .= 0) (<18,0,E>, E, .= 0) 
* Step 2: SizeboundsProc WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          0.  multiply(A,B,C,D,E) -> m6(A,B,C,D,E)                     True                                                                                           (1,1)
          1.  m0(A,B,C,D,E)       -> m1(A,B,F,G,E)                     [A >= 1 && F >= 0 && A >= F && A >= G && G >= A && B >= F && F >= B]                           (?,1)
          2.  m2(A,B,C,D,E)       -> m3(A,B,F,G,E)                     [F >= 0 && A >= G && G >= A && B >= F && F >= B]                                               (?,1)
          3.  m4(A,B,C,D,E)       -> m5(A,B,C,F,G)                     [B >= G && G >= B && C >= F && F >= C]                                                         (?,1)
          4.  m6(A,B,C,D,E)       -> m7(A,B,C,D,E)                     True                                                                                           (?,1)
          5.  m5(A,B,C,D,E)       -> n2(A,B,C,D,E)                     True                                                                                           (?,1)
          6.  m5(A,B,C,D,E)       -> m9(D,E,C,D,E)                     True                                                                                           (?,1)
          7.  m3(A,B,C,D,E)       -> n3(A,B,C,D,E)                     True                                                                                           (?,1)
          8.  m3(A,B,C,D,E)       -> n0(C,D,C,D,E)                     True                                                                                           (?,1)
          9.  m1(A,B,C,D,E)       -> n4(A,B,C,D,E)                     True                                                                                           (?,1)
          10. m1(A,B,C,D,E)       -> n1(C,D,C,D,E)                     True                                                                                           (?,1)
          11. n20(A,B,C,D,E)      -> m4(A,B,C,D,E)                     True                                                                                           (?,1)
          12. n21(A,B,C,D,E)      -> m2(A,0,C,D,E)                     True                                                                                           (?,1)
          13. n2(A,B,C,D,E)       -> c2(n20(A,B,F,D,E),n21(A,B,F,D,E)) [B >= F && 1 + C >= F && F >= 1 + C && B >= E && E >= B && 1 + D >= F && F >= 1 + D]           (?,1)
          14. n30(A,B,C,D,E)      -> m2(A,B,C,D,E)                     True                                                                                           (?,1)
          15. n31(A,B,C,D,E)      -> m0(A,0,C,D,E)                     True                                                                                           (?,1)
          16. n3(A,B,C,D,E)       -> c2(n30(A,F,C,D,E),n31(A,F,C,D,E)) [F >= 1 && A >= F && 1 + C >= F && F >= 1 + C && 1 + B >= F && F >= 1 + B && A >= D && D >= A] (?,1)
          17. m7(A,B,C,D,E)       -> c2(m8(F,G,0,D,E),m4(F,G,0,D,E))   [B >= G && G >= B && A >= F && F >= A]                                                         (?,1)
          18. n4(A,B,C,D,E)       -> m0(A,F,C,D,E)                     [F >= 1 && A >= F && 1 + B >= F && F >= 1 + B && 1 + C >= F && F >= 1 + C && A >= D && D >= A] (?,1)
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(multiply,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n20,5)
          ;(n21,5)
          ;(n3,5)
          ;(n30,5)
          ;(n31,5)
          ;(n4,5)}
        Flow Graph:
          [0->{4},1->{9,10},2->{7,8},3->{5,6},4->{17},5->{13},6->{},7->{16},8->{},9->{18},10->{},11->{3},12->{2}
          ,13->{11,12},14->{2},15->{1},16->{14,15},17->{3},18->{1}]
        Sizebounds:
          (< 0,0,A>, ?) (< 0,0,B>, ?) (< 0,0,C>, ?) (< 0,0,D>, ?) (< 0,0,E>, ?) 
          (< 1,0,A>, ?) (< 1,0,B>, ?) (< 1,0,C>, ?) (< 1,0,D>, ?) (< 1,0,E>, ?) 
          (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, ?) (< 2,0,E>, ?) 
          (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, ?) (< 3,0,E>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
          (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
          (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) 
          (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) 
          (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) 
          (<13,1,A>, ?) (<13,1,B>, ?) (<13,1,C>, ?) (<13,1,D>, ?) (<13,1,E>, ?) 
          (<14,0,A>, ?) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, ?) 
          (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, ?) 
          (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,E>, ?) 
          (<16,1,A>, ?) (<16,1,B>, ?) (<16,1,C>, ?) (<16,1,D>, ?) (<16,1,E>, ?) 
          (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,E>, ?) 
          (<17,1,A>, ?) (<17,1,B>, ?) (<17,1,C>, ?) (<17,1,D>, ?) (<17,1,E>, ?) 
          (<18,0,A>, ?) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,E>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (< 0,0,A>,     A) (< 0,0,B>,     B) (< 0,0,C>,     C) (< 0,0,D>,     D) (< 0,0,E>, E) 
          (< 1,0,A>,     A) (< 1,0,B>, 1 + A) (< 1,0,C>, 1 + A) (< 1,0,D>, 1 + A) (< 1,0,E>, B) 
          (< 2,0,A>,     A) (< 2,0,B>, 1 + A) (< 2,0,C>, 1 + A) (< 2,0,D>,     A) (< 2,0,E>, B) 
          (< 3,0,A>,     A) (< 3,0,B>,     B) (< 3,0,C>,     ?) (< 3,0,D>,     ?) (< 3,0,E>, B) 
          (< 4,0,A>,     A) (< 4,0,B>,     B) (< 4,0,C>,     C) (< 4,0,D>,     D) (< 4,0,E>, E) 
          (< 5,0,A>,     A) (< 5,0,B>,     B) (< 5,0,C>,     ?) (< 5,0,D>,     ?) (< 5,0,E>, B) 
          (< 6,0,A>,     ?) (< 6,0,B>,     B) (< 6,0,C>,     ?) (< 6,0,D>,     ?) (< 6,0,E>, B) 
          (< 7,0,A>,     A) (< 7,0,B>, 1 + A) (< 7,0,C>, 1 + A) (< 7,0,D>,     A) (< 7,0,E>, B) 
          (< 8,0,A>, 1 + A) (< 8,0,B>,     A) (< 8,0,C>, 1 + A) (< 8,0,D>,     A) (< 8,0,E>, B) 
          (< 9,0,A>,     A) (< 9,0,B>, 1 + A) (< 9,0,C>, 1 + A) (< 9,0,D>, 1 + A) (< 9,0,E>, B) 
          (<10,0,A>, 1 + A) (<10,0,B>, 1 + A) (<10,0,C>, 1 + A) (<10,0,D>, 1 + A) (<10,0,E>, B) 
          (<11,0,A>,     A) (<11,0,B>,     B) (<11,0,C>,     ?) (<11,0,D>,     ?) (<11,0,E>, B) 
          (<12,0,A>,     A) (<12,0,B>,     0) (<12,0,C>,     ?) (<12,0,D>,     ?) (<12,0,E>, B) 
          (<13,0,A>,     A) (<13,0,B>,     B) (<13,0,C>,     ?) (<13,0,D>,     ?) (<13,0,E>, B) 
          (<13,1,A>,     A) (<13,1,B>,     B) (<13,1,C>,     ?) (<13,1,D>,     ?) (<13,1,E>, B) 
          (<14,0,A>,     A) (<14,0,B>, 1 + A) (<14,0,C>, 1 + A) (<14,0,D>,     A) (<14,0,E>, B) 
          (<15,0,A>,     A) (<15,0,B>,     0) (<15,0,C>, 1 + A) (<15,0,D>,     A) (<15,0,E>, B) 
          (<16,0,A>,     A) (<16,0,B>, 1 + A) (<16,0,C>, 1 + A) (<16,0,D>,     A) (<16,0,E>, B) 
          (<16,1,A>,     A) (<16,1,B>, 1 + A) (<16,1,C>, 1 + A) (<16,1,D>,     A) (<16,1,E>, B) 
          (<17,0,A>,     A) (<17,0,B>,     B) (<17,0,C>,     0) (<17,0,D>,     D) (<17,0,E>, E) 
          (<17,1,A>,     A) (<17,1,B>,     B) (<17,1,C>,     0) (<17,1,D>,     D) (<17,1,E>, E) 
          (<18,0,A>,     A) (<18,0,B>, 1 + A) (<18,0,C>, 1 + A) (<18,0,D>, 1 + A) (<18,0,E>, B) 
* Step 3: LeafRules WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          0.  multiply(A,B,C,D,E) -> m6(A,B,C,D,E)                     True                                                                                           (1,1)
          1.  m0(A,B,C,D,E)       -> m1(A,B,F,G,E)                     [A >= 1 && F >= 0 && A >= F && A >= G && G >= A && B >= F && F >= B]                           (?,1)
          2.  m2(A,B,C,D,E)       -> m3(A,B,F,G,E)                     [F >= 0 && A >= G && G >= A && B >= F && F >= B]                                               (?,1)
          3.  m4(A,B,C,D,E)       -> m5(A,B,C,F,G)                     [B >= G && G >= B && C >= F && F >= C]                                                         (?,1)
          4.  m6(A,B,C,D,E)       -> m7(A,B,C,D,E)                     True                                                                                           (?,1)
          5.  m5(A,B,C,D,E)       -> n2(A,B,C,D,E)                     True                                                                                           (?,1)
          6.  m5(A,B,C,D,E)       -> m9(D,E,C,D,E)                     True                                                                                           (?,1)
          7.  m3(A,B,C,D,E)       -> n3(A,B,C,D,E)                     True                                                                                           (?,1)
          8.  m3(A,B,C,D,E)       -> n0(C,D,C,D,E)                     True                                                                                           (?,1)
          9.  m1(A,B,C,D,E)       -> n4(A,B,C,D,E)                     True                                                                                           (?,1)
          10. m1(A,B,C,D,E)       -> n1(C,D,C,D,E)                     True                                                                                           (?,1)
          11. n20(A,B,C,D,E)      -> m4(A,B,C,D,E)                     True                                                                                           (?,1)
          12. n21(A,B,C,D,E)      -> m2(A,0,C,D,E)                     True                                                                                           (?,1)
          13. n2(A,B,C,D,E)       -> c2(n20(A,B,F,D,E),n21(A,B,F,D,E)) [B >= F && 1 + C >= F && F >= 1 + C && B >= E && E >= B && 1 + D >= F && F >= 1 + D]           (?,1)
          14. n30(A,B,C,D,E)      -> m2(A,B,C,D,E)                     True                                                                                           (?,1)
          15. n31(A,B,C,D,E)      -> m0(A,0,C,D,E)                     True                                                                                           (?,1)
          16. n3(A,B,C,D,E)       -> c2(n30(A,F,C,D,E),n31(A,F,C,D,E)) [F >= 1 && A >= F && 1 + C >= F && F >= 1 + C && 1 + B >= F && F >= 1 + B && A >= D && D >= A] (?,1)
          17. m7(A,B,C,D,E)       -> c2(m8(F,G,0,D,E),m4(F,G,0,D,E))   [B >= G && G >= B && A >= F && F >= A]                                                         (?,1)
          18. n4(A,B,C,D,E)       -> m0(A,F,C,D,E)                     [F >= 1 && A >= F && 1 + B >= F && F >= 1 + B && 1 + C >= F && F >= 1 + C && A >= D && D >= A] (?,1)
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(multiply,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n20,5)
          ;(n21,5)
          ;(n3,5)
          ;(n30,5)
          ;(n31,5)
          ;(n4,5)}
        Flow Graph:
          [0->{4},1->{9,10},2->{7,8},3->{5,6},4->{17},5->{13},6->{},7->{16},8->{},9->{18},10->{},11->{3},12->{2}
          ,13->{11,12},14->{2},15->{1},16->{14,15},17->{3},18->{1}]
        Sizebounds:
          (< 0,0,A>,     A) (< 0,0,B>,     B) (< 0,0,C>,     C) (< 0,0,D>,     D) (< 0,0,E>, E) 
          (< 1,0,A>,     A) (< 1,0,B>, 1 + A) (< 1,0,C>, 1 + A) (< 1,0,D>, 1 + A) (< 1,0,E>, B) 
          (< 2,0,A>,     A) (< 2,0,B>, 1 + A) (< 2,0,C>, 1 + A) (< 2,0,D>,     A) (< 2,0,E>, B) 
          (< 3,0,A>,     A) (< 3,0,B>,     B) (< 3,0,C>,     ?) (< 3,0,D>,     ?) (< 3,0,E>, B) 
          (< 4,0,A>,     A) (< 4,0,B>,     B) (< 4,0,C>,     C) (< 4,0,D>,     D) (< 4,0,E>, E) 
          (< 5,0,A>,     A) (< 5,0,B>,     B) (< 5,0,C>,     ?) (< 5,0,D>,     ?) (< 5,0,E>, B) 
          (< 6,0,A>,     ?) (< 6,0,B>,     B) (< 6,0,C>,     ?) (< 6,0,D>,     ?) (< 6,0,E>, B) 
          (< 7,0,A>,     A) (< 7,0,B>, 1 + A) (< 7,0,C>, 1 + A) (< 7,0,D>,     A) (< 7,0,E>, B) 
          (< 8,0,A>, 1 + A) (< 8,0,B>,     A) (< 8,0,C>, 1 + A) (< 8,0,D>,     A) (< 8,0,E>, B) 
          (< 9,0,A>,     A) (< 9,0,B>, 1 + A) (< 9,0,C>, 1 + A) (< 9,0,D>, 1 + A) (< 9,0,E>, B) 
          (<10,0,A>, 1 + A) (<10,0,B>, 1 + A) (<10,0,C>, 1 + A) (<10,0,D>, 1 + A) (<10,0,E>, B) 
          (<11,0,A>,     A) (<11,0,B>,     B) (<11,0,C>,     ?) (<11,0,D>,     ?) (<11,0,E>, B) 
          (<12,0,A>,     A) (<12,0,B>,     0) (<12,0,C>,     ?) (<12,0,D>,     ?) (<12,0,E>, B) 
          (<13,0,A>,     A) (<13,0,B>,     B) (<13,0,C>,     ?) (<13,0,D>,     ?) (<13,0,E>, B) 
          (<13,1,A>,     A) (<13,1,B>,     B) (<13,1,C>,     ?) (<13,1,D>,     ?) (<13,1,E>, B) 
          (<14,0,A>,     A) (<14,0,B>, 1 + A) (<14,0,C>, 1 + A) (<14,0,D>,     A) (<14,0,E>, B) 
          (<15,0,A>,     A) (<15,0,B>,     0) (<15,0,C>, 1 + A) (<15,0,D>,     A) (<15,0,E>, B) 
          (<16,0,A>,     A) (<16,0,B>, 1 + A) (<16,0,C>, 1 + A) (<16,0,D>,     A) (<16,0,E>, B) 
          (<16,1,A>,     A) (<16,1,B>, 1 + A) (<16,1,C>, 1 + A) (<16,1,D>,     A) (<16,1,E>, B) 
          (<17,0,A>,     A) (<17,0,B>,     B) (<17,0,C>,     0) (<17,0,D>,     D) (<17,0,E>, E) 
          (<17,1,A>,     A) (<17,1,B>,     B) (<17,1,C>,     0) (<17,1,D>,     D) (<17,1,E>, E) 
          (<18,0,A>,     A) (<18,0,B>, 1 + A) (<18,0,C>, 1 + A) (<18,0,D>, 1 + A) (<18,0,E>, B) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [6,8,10]
* Step 4: PolyRank WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          0.  multiply(A,B,C,D,E) -> m6(A,B,C,D,E)                     True                                                                                           (1,1)
          1.  m0(A,B,C,D,E)       -> m1(A,B,F,G,E)                     [A >= 1 && F >= 0 && A >= F && A >= G && G >= A && B >= F && F >= B]                           (?,1)
          2.  m2(A,B,C,D,E)       -> m3(A,B,F,G,E)                     [F >= 0 && A >= G && G >= A && B >= F && F >= B]                                               (?,1)
          3.  m4(A,B,C,D,E)       -> m5(A,B,C,F,G)                     [B >= G && G >= B && C >= F && F >= C]                                                         (?,1)
          4.  m6(A,B,C,D,E)       -> m7(A,B,C,D,E)                     True                                                                                           (?,1)
          5.  m5(A,B,C,D,E)       -> n2(A,B,C,D,E)                     True                                                                                           (?,1)
          7.  m3(A,B,C,D,E)       -> n3(A,B,C,D,E)                     True                                                                                           (?,1)
          9.  m1(A,B,C,D,E)       -> n4(A,B,C,D,E)                     True                                                                                           (?,1)
          11. n20(A,B,C,D,E)      -> m4(A,B,C,D,E)                     True                                                                                           (?,1)
          12. n21(A,B,C,D,E)      -> m2(A,0,C,D,E)                     True                                                                                           (?,1)
          13. n2(A,B,C,D,E)       -> c2(n20(A,B,F,D,E),n21(A,B,F,D,E)) [B >= F && 1 + C >= F && F >= 1 + C && B >= E && E >= B && 1 + D >= F && F >= 1 + D]           (?,1)
          14. n30(A,B,C,D,E)      -> m2(A,B,C,D,E)                     True                                                                                           (?,1)
          15. n31(A,B,C,D,E)      -> m0(A,0,C,D,E)                     True                                                                                           (?,1)
          16. n3(A,B,C,D,E)       -> c2(n30(A,F,C,D,E),n31(A,F,C,D,E)) [F >= 1 && A >= F && 1 + C >= F && F >= 1 + C && 1 + B >= F && F >= 1 + B && A >= D && D >= A] (?,1)
          17. m7(A,B,C,D,E)       -> c2(m8(F,G,0,D,E),m4(F,G,0,D,E))   [B >= G && G >= B && A >= F && F >= A]                                                         (?,1)
          18. n4(A,B,C,D,E)       -> m0(A,F,C,D,E)                     [F >= 1 && A >= F && 1 + B >= F && F >= 1 + B && 1 + C >= F && F >= 1 + C && A >= D && D >= A] (?,1)
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(multiply,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n20,5)
          ;(n21,5)
          ;(n3,5)
          ;(n30,5)
          ;(n31,5)
          ;(n4,5)}
        Flow Graph:
          [0->{4},1->{9},2->{7},3->{5},4->{17},5->{13},7->{16},9->{18},11->{3},12->{2},13->{11,12},14->{2},15->{1}
          ,16->{14,15},17->{3},18->{1}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>,     B) (< 0,0,C>,     C) (< 0,0,D>,     D) (< 0,0,E>, E) 
          (< 1,0,A>, A) (< 1,0,B>, 1 + A) (< 1,0,C>, 1 + A) (< 1,0,D>, 1 + A) (< 1,0,E>, B) 
          (< 2,0,A>, A) (< 2,0,B>, 1 + A) (< 2,0,C>, 1 + A) (< 2,0,D>,     A) (< 2,0,E>, B) 
          (< 3,0,A>, A) (< 3,0,B>,     B) (< 3,0,C>,     ?) (< 3,0,D>,     ?) (< 3,0,E>, B) 
          (< 4,0,A>, A) (< 4,0,B>,     B) (< 4,0,C>,     C) (< 4,0,D>,     D) (< 4,0,E>, E) 
          (< 5,0,A>, A) (< 5,0,B>,     B) (< 5,0,C>,     ?) (< 5,0,D>,     ?) (< 5,0,E>, B) 
          (< 7,0,A>, A) (< 7,0,B>, 1 + A) (< 7,0,C>, 1 + A) (< 7,0,D>,     A) (< 7,0,E>, B) 
          (< 9,0,A>, A) (< 9,0,B>, 1 + A) (< 9,0,C>, 1 + A) (< 9,0,D>, 1 + A) (< 9,0,E>, B) 
          (<11,0,A>, A) (<11,0,B>,     B) (<11,0,C>,     ?) (<11,0,D>,     ?) (<11,0,E>, B) 
          (<12,0,A>, A) (<12,0,B>,     0) (<12,0,C>,     ?) (<12,0,D>,     ?) (<12,0,E>, B) 
          (<13,0,A>, A) (<13,0,B>,     B) (<13,0,C>,     ?) (<13,0,D>,     ?) (<13,0,E>, B) 
          (<13,1,A>, A) (<13,1,B>,     B) (<13,1,C>,     ?) (<13,1,D>,     ?) (<13,1,E>, B) 
          (<14,0,A>, A) (<14,0,B>, 1 + A) (<14,0,C>, 1 + A) (<14,0,D>,     A) (<14,0,E>, B) 
          (<15,0,A>, A) (<15,0,B>,     0) (<15,0,C>, 1 + A) (<15,0,D>,     A) (<15,0,E>, B) 
          (<16,0,A>, A) (<16,0,B>, 1 + A) (<16,0,C>, 1 + A) (<16,0,D>,     A) (<16,0,E>, B) 
          (<16,1,A>, A) (<16,1,B>, 1 + A) (<16,1,C>, 1 + A) (<16,1,D>,     A) (<16,1,E>, B) 
          (<17,0,A>, A) (<17,0,B>,     B) (<17,0,C>,     0) (<17,0,D>,     D) (<17,0,E>, E) 
          (<17,1,A>, A) (<17,1,B>,     B) (<17,1,C>,     0) (<17,1,D>,     D) (<17,1,E>, E) 
          (<18,0,A>, A) (<18,0,B>, 1 + A) (<18,0,C>, 1 + A) (<18,0,D>, 1 + A) (<18,0,E>, B) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
                p(m0) = 0
                p(m1) = 0
                p(m2) = 0
                p(m3) = 0
                p(m4) = 0
                p(m5) = 0
                p(m6) = 1
                p(m7) = 1
                p(m8) = 0
          p(multiply) = 1
                p(n2) = 0
               p(n20) = 0
               p(n21) = 0
                p(n3) = 0
               p(n30) = 0
               p(n31) = 0
                p(n4) = 0
        
        The following rules are strictly oriented:
        [B >= G && G >= B && A >= F && F >= A] ==>                                
                                 m7(A,B,C,D,E)   = 1                              
                                                 > 0                              
                                                 = c2(m8(F,G,0,D,E),m4(F,G,0,D,E))
        
        
        The following rules are weakly oriented:
                                                                                                  True ==>                                  
                                                                                   multiply(A,B,C,D,E)   = 1                                
                                                                                                        >= 1                                
                                                                                                         = m6(A,B,C,D,E)                    
        
                                  [A >= 1 && F >= 0 && A >= F && A >= G && G >= A && B >= F && F >= B] ==>                                  
                                                                                         m0(A,B,C,D,E)   = 0                                
                                                                                                        >= 0                                
                                                                                                         = m1(A,B,F,G,E)                    
        
                                                      [F >= 0 && A >= G && G >= A && B >= F && F >= B] ==>                                  
                                                                                         m2(A,B,C,D,E)   = 0                                
                                                                                                        >= 0                                
                                                                                                         = m3(A,B,F,G,E)                    
        
                                                                [B >= G && G >= B && C >= F && F >= C] ==>                                  
                                                                                         m4(A,B,C,D,E)   = 0                                
                                                                                                        >= 0                                
                                                                                                         = m5(A,B,C,F,G)                    
        
                                                                                                  True ==>                                  
                                                                                         m6(A,B,C,D,E)   = 1                                
                                                                                                        >= 1                                
                                                                                                         = m7(A,B,C,D,E)                    
        
                                                                                                  True ==>                                  
                                                                                         m5(A,B,C,D,E)   = 0                                
                                                                                                        >= 0                                
                                                                                                         = n2(A,B,C,D,E)                    
        
                                                                                                  True ==>                                  
                                                                                         m3(A,B,C,D,E)   = 0                                
                                                                                                        >= 0                                
                                                                                                         = n3(A,B,C,D,E)                    
        
                                                                                                  True ==>                                  
                                                                                         m1(A,B,C,D,E)   = 0                                
                                                                                                        >= 0                                
                                                                                                         = n4(A,B,C,D,E)                    
        
                                                                                                  True ==>                                  
                                                                                        n20(A,B,C,D,E)   = 0                                
                                                                                                        >= 0                                
                                                                                                         = m4(A,B,C,D,E)                    
        
                                                                                                  True ==>                                  
                                                                                        n21(A,B,C,D,E)   = 0                                
                                                                                                        >= 0                                
                                                                                                         = m2(A,0,C,D,E)                    
        
                  [B >= F && 1 + C >= F && F >= 1 + C && B >= E && E >= B && 1 + D >= F && F >= 1 + D] ==>                                  
                                                                                         n2(A,B,C,D,E)   = 0                                
                                                                                                        >= 0                                
                                                                                                         = c2(n20(A,B,F,D,E),n21(A,B,F,D,E))
        
                                                                                                  True ==>                                  
                                                                                        n30(A,B,C,D,E)   = 0                                
                                                                                                        >= 0                                
                                                                                                         = m2(A,B,C,D,E)                    
        
                                                                                                  True ==>                                  
                                                                                        n31(A,B,C,D,E)   = 0                                
                                                                                                        >= 0                                
                                                                                                         = m0(A,0,C,D,E)                    
        
        [F >= 1 && A >= F && 1 + C >= F && F >= 1 + C && 1 + B >= F && F >= 1 + B && A >= D && D >= A] ==>                                  
                                                                                         n3(A,B,C,D,E)   = 0                                
                                                                                                        >= 0                                
                                                                                                         = c2(n30(A,F,C,D,E),n31(A,F,C,D,E))
        
        [F >= 1 && A >= F && 1 + B >= F && F >= 1 + B && 1 + C >= F && F >= 1 + C && A >= D && D >= A] ==>                                  
                                                                                         n4(A,B,C,D,E)   = 0                                
                                                                                                        >= 0                                
                                                                                                         = m0(A,F,C,D,E)                    
        
        
* Step 5: KnowledgePropagation WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          0.  multiply(A,B,C,D,E) -> m6(A,B,C,D,E)                     True                                                                                           (1,1)
          1.  m0(A,B,C,D,E)       -> m1(A,B,F,G,E)                     [A >= 1 && F >= 0 && A >= F && A >= G && G >= A && B >= F && F >= B]                           (?,1)
          2.  m2(A,B,C,D,E)       -> m3(A,B,F,G,E)                     [F >= 0 && A >= G && G >= A && B >= F && F >= B]                                               (?,1)
          3.  m4(A,B,C,D,E)       -> m5(A,B,C,F,G)                     [B >= G && G >= B && C >= F && F >= C]                                                         (?,1)
          4.  m6(A,B,C,D,E)       -> m7(A,B,C,D,E)                     True                                                                                           (?,1)
          5.  m5(A,B,C,D,E)       -> n2(A,B,C,D,E)                     True                                                                                           (?,1)
          7.  m3(A,B,C,D,E)       -> n3(A,B,C,D,E)                     True                                                                                           (?,1)
          9.  m1(A,B,C,D,E)       -> n4(A,B,C,D,E)                     True                                                                                           (?,1)
          11. n20(A,B,C,D,E)      -> m4(A,B,C,D,E)                     True                                                                                           (?,1)
          12. n21(A,B,C,D,E)      -> m2(A,0,C,D,E)                     True                                                                                           (?,1)
          13. n2(A,B,C,D,E)       -> c2(n20(A,B,F,D,E),n21(A,B,F,D,E)) [B >= F && 1 + C >= F && F >= 1 + C && B >= E && E >= B && 1 + D >= F && F >= 1 + D]           (?,1)
          14. n30(A,B,C,D,E)      -> m2(A,B,C,D,E)                     True                                                                                           (?,1)
          15. n31(A,B,C,D,E)      -> m0(A,0,C,D,E)                     True                                                                                           (?,1)
          16. n3(A,B,C,D,E)       -> c2(n30(A,F,C,D,E),n31(A,F,C,D,E)) [F >= 1 && A >= F && 1 + C >= F && F >= 1 + C && 1 + B >= F && F >= 1 + B && A >= D && D >= A] (?,1)
          17. m7(A,B,C,D,E)       -> c2(m8(F,G,0,D,E),m4(F,G,0,D,E))   [B >= G && G >= B && A >= F && F >= A]                                                         (1,1)
          18. n4(A,B,C,D,E)       -> m0(A,F,C,D,E)                     [F >= 1 && A >= F && 1 + B >= F && F >= 1 + B && 1 + C >= F && F >= 1 + C && A >= D && D >= A] (?,1)
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(multiply,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n20,5)
          ;(n21,5)
          ;(n3,5)
          ;(n30,5)
          ;(n31,5)
          ;(n4,5)}
        Flow Graph:
          [0->{4},1->{9},2->{7},3->{5},4->{17},5->{13},7->{16},9->{18},11->{3},12->{2},13->{11,12},14->{2},15->{1}
          ,16->{14,15},17->{3},18->{1}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>,     B) (< 0,0,C>,     C) (< 0,0,D>,     D) (< 0,0,E>, E) 
          (< 1,0,A>, A) (< 1,0,B>, 1 + A) (< 1,0,C>, 1 + A) (< 1,0,D>, 1 + A) (< 1,0,E>, B) 
          (< 2,0,A>, A) (< 2,0,B>, 1 + A) (< 2,0,C>, 1 + A) (< 2,0,D>,     A) (< 2,0,E>, B) 
          (< 3,0,A>, A) (< 3,0,B>,     B) (< 3,0,C>,     ?) (< 3,0,D>,     ?) (< 3,0,E>, B) 
          (< 4,0,A>, A) (< 4,0,B>,     B) (< 4,0,C>,     C) (< 4,0,D>,     D) (< 4,0,E>, E) 
          (< 5,0,A>, A) (< 5,0,B>,     B) (< 5,0,C>,     ?) (< 5,0,D>,     ?) (< 5,0,E>, B) 
          (< 7,0,A>, A) (< 7,0,B>, 1 + A) (< 7,0,C>, 1 + A) (< 7,0,D>,     A) (< 7,0,E>, B) 
          (< 9,0,A>, A) (< 9,0,B>, 1 + A) (< 9,0,C>, 1 + A) (< 9,0,D>, 1 + A) (< 9,0,E>, B) 
          (<11,0,A>, A) (<11,0,B>,     B) (<11,0,C>,     ?) (<11,0,D>,     ?) (<11,0,E>, B) 
          (<12,0,A>, A) (<12,0,B>,     0) (<12,0,C>,     ?) (<12,0,D>,     ?) (<12,0,E>, B) 
          (<13,0,A>, A) (<13,0,B>,     B) (<13,0,C>,     ?) (<13,0,D>,     ?) (<13,0,E>, B) 
          (<13,1,A>, A) (<13,1,B>,     B) (<13,1,C>,     ?) (<13,1,D>,     ?) (<13,1,E>, B) 
          (<14,0,A>, A) (<14,0,B>, 1 + A) (<14,0,C>, 1 + A) (<14,0,D>,     A) (<14,0,E>, B) 
          (<15,0,A>, A) (<15,0,B>,     0) (<15,0,C>, 1 + A) (<15,0,D>,     A) (<15,0,E>, B) 
          (<16,0,A>, A) (<16,0,B>, 1 + A) (<16,0,C>, 1 + A) (<16,0,D>,     A) (<16,0,E>, B) 
          (<16,1,A>, A) (<16,1,B>, 1 + A) (<16,1,C>, 1 + A) (<16,1,D>,     A) (<16,1,E>, B) 
          (<17,0,A>, A) (<17,0,B>,     B) (<17,0,C>,     0) (<17,0,D>,     D) (<17,0,E>, E) 
          (<17,1,A>, A) (<17,1,B>,     B) (<17,1,C>,     0) (<17,1,D>,     D) (<17,1,E>, E) 
          (<18,0,A>, A) (<18,0,B>, 1 + A) (<18,0,C>, 1 + A) (<18,0,D>, 1 + A) (<18,0,E>, B) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 6: ChainProcessor WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          0.  multiply(A,B,C,D,E) -> m6(A,B,C,D,E)                     True                                                                                           (1,1)
          1.  m0(A,B,C,D,E)       -> m1(A,B,F,G,E)                     [A >= 1 && F >= 0 && A >= F && A >= G && G >= A && B >= F && F >= B]                           (?,1)
          2.  m2(A,B,C,D,E)       -> m3(A,B,F,G,E)                     [F >= 0 && A >= G && G >= A && B >= F && F >= B]                                               (?,1)
          3.  m4(A,B,C,D,E)       -> m5(A,B,C,F,G)                     [B >= G && G >= B && C >= F && F >= C]                                                         (?,1)
          4.  m6(A,B,C,D,E)       -> m7(A,B,C,D,E)                     True                                                                                           (1,1)
          5.  m5(A,B,C,D,E)       -> n2(A,B,C,D,E)                     True                                                                                           (?,1)
          7.  m3(A,B,C,D,E)       -> n3(A,B,C,D,E)                     True                                                                                           (?,1)
          9.  m1(A,B,C,D,E)       -> n4(A,B,C,D,E)                     True                                                                                           (?,1)
          11. n20(A,B,C,D,E)      -> m4(A,B,C,D,E)                     True                                                                                           (?,1)
          12. n21(A,B,C,D,E)      -> m2(A,0,C,D,E)                     True                                                                                           (?,1)
          13. n2(A,B,C,D,E)       -> c2(n20(A,B,F,D,E),n21(A,B,F,D,E)) [B >= F && 1 + C >= F && F >= 1 + C && B >= E && E >= B && 1 + D >= F && F >= 1 + D]           (?,1)
          14. n30(A,B,C,D,E)      -> m2(A,B,C,D,E)                     True                                                                                           (?,1)
          15. n31(A,B,C,D,E)      -> m0(A,0,C,D,E)                     True                                                                                           (?,1)
          16. n3(A,B,C,D,E)       -> c2(n30(A,F,C,D,E),n31(A,F,C,D,E)) [F >= 1 && A >= F && 1 + C >= F && F >= 1 + C && 1 + B >= F && F >= 1 + B && A >= D && D >= A] (?,1)
          17. m7(A,B,C,D,E)       -> c2(m8(F,G,0,D,E),m4(F,G,0,D,E))   [B >= G && G >= B && A >= F && F >= A]                                                         (1,1)
          18. n4(A,B,C,D,E)       -> m0(A,F,C,D,E)                     [F >= 1 && A >= F && 1 + B >= F && F >= 1 + B && 1 + C >= F && F >= 1 + C && A >= D && D >= A] (?,1)
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(multiply,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n20,5)
          ;(n21,5)
          ;(n3,5)
          ;(n30,5)
          ;(n31,5)
          ;(n4,5)}
        Flow Graph:
          [0->{4},1->{9},2->{7},3->{5},4->{17},5->{13},7->{16},9->{18},11->{3},12->{2},13->{11,12},14->{2},15->{1}
          ,16->{14,15},17->{3},18->{1}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>,     B) (< 0,0,C>,     C) (< 0,0,D>,     D) (< 0,0,E>, E) 
          (< 1,0,A>, A) (< 1,0,B>, 1 + A) (< 1,0,C>, 1 + A) (< 1,0,D>, 1 + A) (< 1,0,E>, B) 
          (< 2,0,A>, A) (< 2,0,B>, 1 + A) (< 2,0,C>, 1 + A) (< 2,0,D>,     A) (< 2,0,E>, B) 
          (< 3,0,A>, A) (< 3,0,B>,     B) (< 3,0,C>,     ?) (< 3,0,D>,     ?) (< 3,0,E>, B) 
          (< 4,0,A>, A) (< 4,0,B>,     B) (< 4,0,C>,     C) (< 4,0,D>,     D) (< 4,0,E>, E) 
          (< 5,0,A>, A) (< 5,0,B>,     B) (< 5,0,C>,     ?) (< 5,0,D>,     ?) (< 5,0,E>, B) 
          (< 7,0,A>, A) (< 7,0,B>, 1 + A) (< 7,0,C>, 1 + A) (< 7,0,D>,     A) (< 7,0,E>, B) 
          (< 9,0,A>, A) (< 9,0,B>, 1 + A) (< 9,0,C>, 1 + A) (< 9,0,D>, 1 + A) (< 9,0,E>, B) 
          (<11,0,A>, A) (<11,0,B>,     B) (<11,0,C>,     ?) (<11,0,D>,     ?) (<11,0,E>, B) 
          (<12,0,A>, A) (<12,0,B>,     0) (<12,0,C>,     ?) (<12,0,D>,     ?) (<12,0,E>, B) 
          (<13,0,A>, A) (<13,0,B>,     B) (<13,0,C>,     ?) (<13,0,D>,     ?) (<13,0,E>, B) 
          (<13,1,A>, A) (<13,1,B>,     B) (<13,1,C>,     ?) (<13,1,D>,     ?) (<13,1,E>, B) 
          (<14,0,A>, A) (<14,0,B>, 1 + A) (<14,0,C>, 1 + A) (<14,0,D>,     A) (<14,0,E>, B) 
          (<15,0,A>, A) (<15,0,B>,     0) (<15,0,C>, 1 + A) (<15,0,D>,     A) (<15,0,E>, B) 
          (<16,0,A>, A) (<16,0,B>, 1 + A) (<16,0,C>, 1 + A) (<16,0,D>,     A) (<16,0,E>, B) 
          (<16,1,A>, A) (<16,1,B>, 1 + A) (<16,1,C>, 1 + A) (<16,1,D>,     A) (<16,1,E>, B) 
          (<17,0,A>, A) (<17,0,B>,     B) (<17,0,C>,     0) (<17,0,D>,     D) (<17,0,E>, E) 
          (<17,1,A>, A) (<17,1,B>,     B) (<17,1,C>,     0) (<17,1,D>,     D) (<17,1,E>, E) 
          (<18,0,A>, A) (<18,0,B>, 1 + A) (<18,0,C>, 1 + A) (<18,0,D>, 1 + A) (<18,0,E>, B) 
    + Applied Processor:
        ChainProcessor False [0,1,2,3,4,5,7,9,11,12,13,14,15,16,17,18]
    + Details:
        We chained rule 0 to obtain the rules [19] .
* Step 7: UnreachableRules WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          1.  m0(A,B,C,D,E)       -> m1(A,B,F,G,E)                     [A >= 1 && F >= 0 && A >= F && A >= G && G >= A && B >= F && F >= B]                           (?,1)
          2.  m2(A,B,C,D,E)       -> m3(A,B,F,G,E)                     [F >= 0 && A >= G && G >= A && B >= F && F >= B]                                               (?,1)
          3.  m4(A,B,C,D,E)       -> m5(A,B,C,F,G)                     [B >= G && G >= B && C >= F && F >= C]                                                         (?,1)
          4.  m6(A,B,C,D,E)       -> m7(A,B,C,D,E)                     True                                                                                           (1,1)
          5.  m5(A,B,C,D,E)       -> n2(A,B,C,D,E)                     True                                                                                           (?,1)
          7.  m3(A,B,C,D,E)       -> n3(A,B,C,D,E)                     True                                                                                           (?,1)
          9.  m1(A,B,C,D,E)       -> n4(A,B,C,D,E)                     True                                                                                           (?,1)
          11. n20(A,B,C,D,E)      -> m4(A,B,C,D,E)                     True                                                                                           (?,1)
          12. n21(A,B,C,D,E)      -> m2(A,0,C,D,E)                     True                                                                                           (?,1)
          13. n2(A,B,C,D,E)       -> c2(n20(A,B,F,D,E),n21(A,B,F,D,E)) [B >= F && 1 + C >= F && F >= 1 + C && B >= E && E >= B && 1 + D >= F && F >= 1 + D]           (?,1)
          14. n30(A,B,C,D,E)      -> m2(A,B,C,D,E)                     True                                                                                           (?,1)
          15. n31(A,B,C,D,E)      -> m0(A,0,C,D,E)                     True                                                                                           (?,1)
          16. n3(A,B,C,D,E)       -> c2(n30(A,F,C,D,E),n31(A,F,C,D,E)) [F >= 1 && A >= F && 1 + C >= F && F >= 1 + C && 1 + B >= F && F >= 1 + B && A >= D && D >= A] (?,1)
          17. m7(A,B,C,D,E)       -> c2(m8(F,G,0,D,E),m4(F,G,0,D,E))   [B >= G && G >= B && A >= F && F >= A]                                                         (1,1)
          18. n4(A,B,C,D,E)       -> m0(A,F,C,D,E)                     [F >= 1 && A >= F && 1 + B >= F && F >= 1 + B && 1 + C >= F && F >= 1 + C && A >= D && D >= A] (?,1)
          19. multiply(A,B,C,D,E) -> m7(A,B,C,D,E)                     True                                                                                           (1,2)
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(multiply,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n20,5)
          ;(n21,5)
          ;(n3,5)
          ;(n30,5)
          ;(n31,5)
          ;(n4,5)}
        Flow Graph:
          [1->{9},2->{7},3->{5},4->{17},5->{13},7->{16},9->{18},11->{3},12->{2},13->{11,12},14->{2},15->{1},16->{14
          ,15},17->{3},18->{1},19->{17}]
        Sizebounds:
          (< 1,0,A>, A) (< 1,0,B>, 1 + A) (< 1,0,C>, 1 + A) (< 1,0,D>, 1 + A) (< 1,0,E>, B) 
          (< 2,0,A>, A) (< 2,0,B>, 1 + A) (< 2,0,C>, 1 + A) (< 2,0,D>,     A) (< 2,0,E>, B) 
          (< 3,0,A>, A) (< 3,0,B>,     B) (< 3,0,C>,     ?) (< 3,0,D>,     ?) (< 3,0,E>, B) 
          (< 4,0,A>, A) (< 4,0,B>,     B) (< 4,0,C>,     C) (< 4,0,D>,     D) (< 4,0,E>, E) 
          (< 5,0,A>, A) (< 5,0,B>,     B) (< 5,0,C>,     ?) (< 5,0,D>,     ?) (< 5,0,E>, B) 
          (< 7,0,A>, A) (< 7,0,B>, 1 + A) (< 7,0,C>, 1 + A) (< 7,0,D>,     A) (< 7,0,E>, B) 
          (< 9,0,A>, A) (< 9,0,B>, 1 + A) (< 9,0,C>, 1 + A) (< 9,0,D>, 1 + A) (< 9,0,E>, B) 
          (<11,0,A>, A) (<11,0,B>,     B) (<11,0,C>,     ?) (<11,0,D>,     ?) (<11,0,E>, B) 
          (<12,0,A>, A) (<12,0,B>,     0) (<12,0,C>,     ?) (<12,0,D>,     ?) (<12,0,E>, B) 
          (<13,0,A>, A) (<13,0,B>,     B) (<13,0,C>,     ?) (<13,0,D>,     ?) (<13,0,E>, B) 
          (<13,1,A>, A) (<13,1,B>,     B) (<13,1,C>,     ?) (<13,1,D>,     ?) (<13,1,E>, B) 
          (<14,0,A>, A) (<14,0,B>, 1 + A) (<14,0,C>, 1 + A) (<14,0,D>,     A) (<14,0,E>, B) 
          (<15,0,A>, A) (<15,0,B>,     0) (<15,0,C>, 1 + A) (<15,0,D>,     A) (<15,0,E>, B) 
          (<16,0,A>, A) (<16,0,B>, 1 + A) (<16,0,C>, 1 + A) (<16,0,D>,     A) (<16,0,E>, B) 
          (<16,1,A>, A) (<16,1,B>, 1 + A) (<16,1,C>, 1 + A) (<16,1,D>,     A) (<16,1,E>, B) 
          (<17,0,A>, A) (<17,0,B>,     B) (<17,0,C>,     0) (<17,0,D>,     D) (<17,0,E>, E) 
          (<17,1,A>, A) (<17,1,B>,     B) (<17,1,C>,     0) (<17,1,D>,     D) (<17,1,E>, E) 
          (<18,0,A>, A) (<18,0,B>, 1 + A) (<18,0,C>, 1 + A) (<18,0,D>, 1 + A) (<18,0,E>, B) 
          (<19,0,A>, A) (<19,0,B>,     B) (<19,0,C>,     C) (<19,0,D>,     D) (<19,0,E>, E) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [4]
* Step 8: ChainProcessor WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          1.  m0(A,B,C,D,E)       -> m1(A,B,F,G,E)                     [A >= 1 && F >= 0 && A >= F && A >= G && G >= A && B >= F && F >= B]                           (?,1)
          2.  m2(A,B,C,D,E)       -> m3(A,B,F,G,E)                     [F >= 0 && A >= G && G >= A && B >= F && F >= B]                                               (?,1)
          3.  m4(A,B,C,D,E)       -> m5(A,B,C,F,G)                     [B >= G && G >= B && C >= F && F >= C]                                                         (?,1)
          5.  m5(A,B,C,D,E)       -> n2(A,B,C,D,E)                     True                                                                                           (?,1)
          7.  m3(A,B,C,D,E)       -> n3(A,B,C,D,E)                     True                                                                                           (?,1)
          9.  m1(A,B,C,D,E)       -> n4(A,B,C,D,E)                     True                                                                                           (?,1)
          11. n20(A,B,C,D,E)      -> m4(A,B,C,D,E)                     True                                                                                           (?,1)
          12. n21(A,B,C,D,E)      -> m2(A,0,C,D,E)                     True                                                                                           (?,1)
          13. n2(A,B,C,D,E)       -> c2(n20(A,B,F,D,E),n21(A,B,F,D,E)) [B >= F && 1 + C >= F && F >= 1 + C && B >= E && E >= B && 1 + D >= F && F >= 1 + D]           (?,1)
          14. n30(A,B,C,D,E)      -> m2(A,B,C,D,E)                     True                                                                                           (?,1)
          15. n31(A,B,C,D,E)      -> m0(A,0,C,D,E)                     True                                                                                           (?,1)
          16. n3(A,B,C,D,E)       -> c2(n30(A,F,C,D,E),n31(A,F,C,D,E)) [F >= 1 && A >= F && 1 + C >= F && F >= 1 + C && 1 + B >= F && F >= 1 + B && A >= D && D >= A] (?,1)
          17. m7(A,B,C,D,E)       -> c2(m8(F,G,0,D,E),m4(F,G,0,D,E))   [B >= G && G >= B && A >= F && F >= A]                                                         (1,1)
          18. n4(A,B,C,D,E)       -> m0(A,F,C,D,E)                     [F >= 1 && A >= F && 1 + B >= F && F >= 1 + B && 1 + C >= F && F >= 1 + C && A >= D && D >= A] (?,1)
          19. multiply(A,B,C,D,E) -> m7(A,B,C,D,E)                     True                                                                                           (1,2)
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(multiply,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n20,5)
          ;(n21,5)
          ;(n3,5)
          ;(n30,5)
          ;(n31,5)
          ;(n4,5)}
        Flow Graph:
          [1->{9},2->{7},3->{5},5->{13},7->{16},9->{18},11->{3},12->{2},13->{11,12},14->{2},15->{1},16->{14,15}
          ,17->{3},18->{1},19->{17}]
        Sizebounds:
          (< 1,0,A>, A) (< 1,0,B>, 1 + A) (< 1,0,C>, 1 + A) (< 1,0,D>, 1 + A) (< 1,0,E>, B) 
          (< 2,0,A>, A) (< 2,0,B>, 1 + A) (< 2,0,C>, 1 + A) (< 2,0,D>,     A) (< 2,0,E>, B) 
          (< 3,0,A>, A) (< 3,0,B>,     B) (< 3,0,C>,     ?) (< 3,0,D>,     ?) (< 3,0,E>, B) 
          (< 5,0,A>, A) (< 5,0,B>,     B) (< 5,0,C>,     ?) (< 5,0,D>,     ?) (< 5,0,E>, B) 
          (< 7,0,A>, A) (< 7,0,B>, 1 + A) (< 7,0,C>, 1 + A) (< 7,0,D>,     A) (< 7,0,E>, B) 
          (< 9,0,A>, A) (< 9,0,B>, 1 + A) (< 9,0,C>, 1 + A) (< 9,0,D>, 1 + A) (< 9,0,E>, B) 
          (<11,0,A>, A) (<11,0,B>,     B) (<11,0,C>,     ?) (<11,0,D>,     ?) (<11,0,E>, B) 
          (<12,0,A>, A) (<12,0,B>,     0) (<12,0,C>,     ?) (<12,0,D>,     ?) (<12,0,E>, B) 
          (<13,0,A>, A) (<13,0,B>,     B) (<13,0,C>,     ?) (<13,0,D>,     ?) (<13,0,E>, B) 
          (<13,1,A>, A) (<13,1,B>,     B) (<13,1,C>,     ?) (<13,1,D>,     ?) (<13,1,E>, B) 
          (<14,0,A>, A) (<14,0,B>, 1 + A) (<14,0,C>, 1 + A) (<14,0,D>,     A) (<14,0,E>, B) 
          (<15,0,A>, A) (<15,0,B>,     0) (<15,0,C>, 1 + A) (<15,0,D>,     A) (<15,0,E>, B) 
          (<16,0,A>, A) (<16,0,B>, 1 + A) (<16,0,C>, 1 + A) (<16,0,D>,     A) (<16,0,E>, B) 
          (<16,1,A>, A) (<16,1,B>, 1 + A) (<16,1,C>, 1 + A) (<16,1,D>,     A) (<16,1,E>, B) 
          (<17,0,A>, A) (<17,0,B>,     B) (<17,0,C>,     0) (<17,0,D>,     D) (<17,0,E>, E) 
          (<17,1,A>, A) (<17,1,B>,     B) (<17,1,C>,     0) (<17,1,D>,     D) (<17,1,E>, E) 
          (<18,0,A>, A) (<18,0,B>, 1 + A) (<18,0,C>, 1 + A) (<18,0,D>, 1 + A) (<18,0,E>, B) 
          (<19,0,A>, A) (<19,0,B>,     B) (<19,0,C>,     C) (<19,0,D>,     D) (<19,0,E>, E) 
    + Applied Processor:
        ChainProcessor False [1,2,3,5,7,9,11,12,13,14,15,16,17,18,19]
    + Details:
        We chained rule 1 to obtain the rules [20] .
* Step 9: UnreachableRules WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          2.  m2(A,B,C,D,E)       -> m3(A,B,F,G,E)                     [F >= 0 && A >= G && G >= A && B >= F && F >= B]                                               (?,1)
          3.  m4(A,B,C,D,E)       -> m5(A,B,C,F,G)                     [B >= G && G >= B && C >= F && F >= C]                                                         (?,1)
          5.  m5(A,B,C,D,E)       -> n2(A,B,C,D,E)                     True                                                                                           (?,1)
          7.  m3(A,B,C,D,E)       -> n3(A,B,C,D,E)                     True                                                                                           (?,1)
          9.  m1(A,B,C,D,E)       -> n4(A,B,C,D,E)                     True                                                                                           (?,1)
          11. n20(A,B,C,D,E)      -> m4(A,B,C,D,E)                     True                                                                                           (?,1)
          12. n21(A,B,C,D,E)      -> m2(A,0,C,D,E)                     True                                                                                           (?,1)
          13. n2(A,B,C,D,E)       -> c2(n20(A,B,F,D,E),n21(A,B,F,D,E)) [B >= F && 1 + C >= F && F >= 1 + C && B >= E && E >= B && 1 + D >= F && F >= 1 + D]           (?,1)
          14. n30(A,B,C,D,E)      -> m2(A,B,C,D,E)                     True                                                                                           (?,1)
          15. n31(A,B,C,D,E)      -> m0(A,0,C,D,E)                     True                                                                                           (?,1)
          16. n3(A,B,C,D,E)       -> c2(n30(A,F,C,D,E),n31(A,F,C,D,E)) [F >= 1 && A >= F && 1 + C >= F && F >= 1 + C && 1 + B >= F && F >= 1 + B && A >= D && D >= A] (?,1)
          17. m7(A,B,C,D,E)       -> c2(m8(F,G,0,D,E),m4(F,G,0,D,E))   [B >= G && G >= B && A >= F && F >= A]                                                         (1,1)
          18. n4(A,B,C,D,E)       -> m0(A,F,C,D,E)                     [F >= 1 && A >= F && 1 + B >= F && F >= 1 + B && 1 + C >= F && F >= 1 + C && A >= D && D >= A] (?,1)
          19. multiply(A,B,C,D,E) -> m7(A,B,C,D,E)                     True                                                                                           (1,2)
          20. m0(A,B,C,D,E)       -> n4(A,B,F,G,E)                     [A >= 1 && F >= 0 && A >= F && A >= G && G >= A && B >= F && F >= B]                           (?,2)
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(multiply,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n20,5)
          ;(n21,5)
          ;(n3,5)
          ;(n30,5)
          ;(n31,5)
          ;(n4,5)}
        Flow Graph:
          [2->{7},3->{5},5->{13},7->{16},9->{18},11->{3},12->{2},13->{11,12},14->{2},15->{20},16->{14,15},17->{3}
          ,18->{20},19->{17},20->{18}]
        Sizebounds:
          (< 2,0,A>, A) (< 2,0,B>, 1 + A) (< 2,0,C>, 1 + A) (< 2,0,D>,     A) (< 2,0,E>, B) 
          (< 3,0,A>, A) (< 3,0,B>,     B) (< 3,0,C>,     ?) (< 3,0,D>,     ?) (< 3,0,E>, B) 
          (< 5,0,A>, A) (< 5,0,B>,     B) (< 5,0,C>,     ?) (< 5,0,D>,     ?) (< 5,0,E>, B) 
          (< 7,0,A>, A) (< 7,0,B>, 1 + A) (< 7,0,C>, 1 + A) (< 7,0,D>,     A) (< 7,0,E>, B) 
          (< 9,0,A>, A) (< 9,0,B>, 1 + A) (< 9,0,C>, 1 + A) (< 9,0,D>, 1 + A) (< 9,0,E>, B) 
          (<11,0,A>, A) (<11,0,B>,     B) (<11,0,C>,     ?) (<11,0,D>,     ?) (<11,0,E>, B) 
          (<12,0,A>, A) (<12,0,B>,     0) (<12,0,C>,     ?) (<12,0,D>,     ?) (<12,0,E>, B) 
          (<13,0,A>, A) (<13,0,B>,     B) (<13,0,C>,     ?) (<13,0,D>,     ?) (<13,0,E>, B) 
          (<13,1,A>, A) (<13,1,B>,     B) (<13,1,C>,     ?) (<13,1,D>,     ?) (<13,1,E>, B) 
          (<14,0,A>, A) (<14,0,B>, 1 + A) (<14,0,C>, 1 + A) (<14,0,D>,     A) (<14,0,E>, B) 
          (<15,0,A>, A) (<15,0,B>,     0) (<15,0,C>, 1 + A) (<15,0,D>,     A) (<15,0,E>, B) 
          (<16,0,A>, A) (<16,0,B>, 1 + A) (<16,0,C>, 1 + A) (<16,0,D>,     A) (<16,0,E>, B) 
          (<16,1,A>, A) (<16,1,B>, 1 + A) (<16,1,C>, 1 + A) (<16,1,D>,     A) (<16,1,E>, B) 
          (<17,0,A>, A) (<17,0,B>,     B) (<17,0,C>,     0) (<17,0,D>,     D) (<17,0,E>, E) 
          (<17,1,A>, A) (<17,1,B>,     B) (<17,1,C>,     0) (<17,1,D>,     D) (<17,1,E>, E) 
          (<18,0,A>, A) (<18,0,B>, 1 + A) (<18,0,C>, 1 + A) (<18,0,D>, 1 + A) (<18,0,E>, B) 
          (<19,0,A>, A) (<19,0,B>,     B) (<19,0,C>,     C) (<19,0,D>,     D) (<19,0,E>, E) 
          (<20,0,A>, A) (<20,0,B>, 1 + A) (<20,0,C>, 1 + A) (<20,0,D>, 1 + A) (<20,0,E>, B) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [9]
* Step 10: ChainProcessor WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          2.  m2(A,B,C,D,E)       -> m3(A,B,F,G,E)                     [F >= 0 && A >= G && G >= A && B >= F && F >= B]                                               (?,1)
          3.  m4(A,B,C,D,E)       -> m5(A,B,C,F,G)                     [B >= G && G >= B && C >= F && F >= C]                                                         (?,1)
          5.  m5(A,B,C,D,E)       -> n2(A,B,C,D,E)                     True                                                                                           (?,1)
          7.  m3(A,B,C,D,E)       -> n3(A,B,C,D,E)                     True                                                                                           (?,1)
          11. n20(A,B,C,D,E)      -> m4(A,B,C,D,E)                     True                                                                                           (?,1)
          12. n21(A,B,C,D,E)      -> m2(A,0,C,D,E)                     True                                                                                           (?,1)
          13. n2(A,B,C,D,E)       -> c2(n20(A,B,F,D,E),n21(A,B,F,D,E)) [B >= F && 1 + C >= F && F >= 1 + C && B >= E && E >= B && 1 + D >= F && F >= 1 + D]           (?,1)
          14. n30(A,B,C,D,E)      -> m2(A,B,C,D,E)                     True                                                                                           (?,1)
          15. n31(A,B,C,D,E)      -> m0(A,0,C,D,E)                     True                                                                                           (?,1)
          16. n3(A,B,C,D,E)       -> c2(n30(A,F,C,D,E),n31(A,F,C,D,E)) [F >= 1 && A >= F && 1 + C >= F && F >= 1 + C && 1 + B >= F && F >= 1 + B && A >= D && D >= A] (?,1)
          17. m7(A,B,C,D,E)       -> c2(m8(F,G,0,D,E),m4(F,G,0,D,E))   [B >= G && G >= B && A >= F && F >= A]                                                         (1,1)
          18. n4(A,B,C,D,E)       -> m0(A,F,C,D,E)                     [F >= 1 && A >= F && 1 + B >= F && F >= 1 + B && 1 + C >= F && F >= 1 + C && A >= D && D >= A] (?,1)
          19. multiply(A,B,C,D,E) -> m7(A,B,C,D,E)                     True                                                                                           (1,2)
          20. m0(A,B,C,D,E)       -> n4(A,B,F,G,E)                     [A >= 1 && F >= 0 && A >= F && A >= G && G >= A && B >= F && F >= B]                           (?,2)
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(multiply,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n20,5)
          ;(n21,5)
          ;(n3,5)
          ;(n30,5)
          ;(n31,5)
          ;(n4,5)}
        Flow Graph:
          [2->{7},3->{5},5->{13},7->{16},11->{3},12->{2},13->{11,12},14->{2},15->{20},16->{14,15},17->{3},18->{20}
          ,19->{17},20->{18}]
        Sizebounds:
          (< 2,0,A>, A) (< 2,0,B>, 1 + A) (< 2,0,C>, 1 + A) (< 2,0,D>,     A) (< 2,0,E>, B) 
          (< 3,0,A>, A) (< 3,0,B>,     B) (< 3,0,C>,     ?) (< 3,0,D>,     ?) (< 3,0,E>, B) 
          (< 5,0,A>, A) (< 5,0,B>,     B) (< 5,0,C>,     ?) (< 5,0,D>,     ?) (< 5,0,E>, B) 
          (< 7,0,A>, A) (< 7,0,B>, 1 + A) (< 7,0,C>, 1 + A) (< 7,0,D>,     A) (< 7,0,E>, B) 
          (<11,0,A>, A) (<11,0,B>,     B) (<11,0,C>,     ?) (<11,0,D>,     ?) (<11,0,E>, B) 
          (<12,0,A>, A) (<12,0,B>,     0) (<12,0,C>,     ?) (<12,0,D>,     ?) (<12,0,E>, B) 
          (<13,0,A>, A) (<13,0,B>,     B) (<13,0,C>,     ?) (<13,0,D>,     ?) (<13,0,E>, B) 
          (<13,1,A>, A) (<13,1,B>,     B) (<13,1,C>,     ?) (<13,1,D>,     ?) (<13,1,E>, B) 
          (<14,0,A>, A) (<14,0,B>, 1 + A) (<14,0,C>, 1 + A) (<14,0,D>,     A) (<14,0,E>, B) 
          (<15,0,A>, A) (<15,0,B>,     0) (<15,0,C>, 1 + A) (<15,0,D>,     A) (<15,0,E>, B) 
          (<16,0,A>, A) (<16,0,B>, 1 + A) (<16,0,C>, 1 + A) (<16,0,D>,     A) (<16,0,E>, B) 
          (<16,1,A>, A) (<16,1,B>, 1 + A) (<16,1,C>, 1 + A) (<16,1,D>,     A) (<16,1,E>, B) 
          (<17,0,A>, A) (<17,0,B>,     B) (<17,0,C>,     0) (<17,0,D>,     D) (<17,0,E>, E) 
          (<17,1,A>, A) (<17,1,B>,     B) (<17,1,C>,     0) (<17,1,D>,     D) (<17,1,E>, E) 
          (<18,0,A>, A) (<18,0,B>, 1 + A) (<18,0,C>, 1 + A) (<18,0,D>, 1 + A) (<18,0,E>, B) 
          (<19,0,A>, A) (<19,0,B>,     B) (<19,0,C>,     C) (<19,0,D>,     D) (<19,0,E>, E) 
          (<20,0,A>, A) (<20,0,B>, 1 + A) (<20,0,C>, 1 + A) (<20,0,D>, 1 + A) (<20,0,E>, B) 
    + Applied Processor:
        ChainProcessor False [2,3,5,7,11,12,13,14,15,16,17,18,19,20]
    + Details:
        We chained rule 2 to obtain the rules [21] .
* Step 11: UnreachableRules WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          3.  m4(A,B,C,D,E)       -> m5(A,B,C,F,G)                     [B >= G && G >= B && C >= F && F >= C]                                                         (?,1)
          5.  m5(A,B,C,D,E)       -> n2(A,B,C,D,E)                     True                                                                                           (?,1)
          7.  m3(A,B,C,D,E)       -> n3(A,B,C,D,E)                     True                                                                                           (?,1)
          11. n20(A,B,C,D,E)      -> m4(A,B,C,D,E)                     True                                                                                           (?,1)
          12. n21(A,B,C,D,E)      -> m2(A,0,C,D,E)                     True                                                                                           (?,1)
          13. n2(A,B,C,D,E)       -> c2(n20(A,B,F,D,E),n21(A,B,F,D,E)) [B >= F && 1 + C >= F && F >= 1 + C && B >= E && E >= B && 1 + D >= F && F >= 1 + D]           (?,1)
          14. n30(A,B,C,D,E)      -> m2(A,B,C,D,E)                     True                                                                                           (?,1)
          15. n31(A,B,C,D,E)      -> m0(A,0,C,D,E)                     True                                                                                           (?,1)
          16. n3(A,B,C,D,E)       -> c2(n30(A,F,C,D,E),n31(A,F,C,D,E)) [F >= 1 && A >= F && 1 + C >= F && F >= 1 + C && 1 + B >= F && F >= 1 + B && A >= D && D >= A] (?,1)
          17. m7(A,B,C,D,E)       -> c2(m8(F,G,0,D,E),m4(F,G,0,D,E))   [B >= G && G >= B && A >= F && F >= A]                                                         (1,1)
          18. n4(A,B,C,D,E)       -> m0(A,F,C,D,E)                     [F >= 1 && A >= F && 1 + B >= F && F >= 1 + B && 1 + C >= F && F >= 1 + C && A >= D && D >= A] (?,1)
          19. multiply(A,B,C,D,E) -> m7(A,B,C,D,E)                     True                                                                                           (1,2)
          20. m0(A,B,C,D,E)       -> n4(A,B,F,G,E)                     [A >= 1 && F >= 0 && A >= F && A >= G && G >= A && B >= F && F >= B]                           (?,2)
          21. m2(A,B,C,D,E)       -> n3(A,B,F,G,E)                     [F >= 0 && A >= G && G >= A && B >= F && F >= B]                                               (?,2)
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(multiply,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n20,5)
          ;(n21,5)
          ;(n3,5)
          ;(n30,5)
          ;(n31,5)
          ;(n4,5)}
        Flow Graph:
          [3->{5},5->{13},7->{16},11->{3},12->{21},13->{11,12},14->{21},15->{20},16->{14,15},17->{3},18->{20}
          ,19->{17},20->{18},21->{16}]
        Sizebounds:
          (< 3,0,A>, A) (< 3,0,B>,     B) (< 3,0,C>,     ?) (< 3,0,D>,     ?) (< 3,0,E>, B) 
          (< 5,0,A>, A) (< 5,0,B>,     B) (< 5,0,C>,     ?) (< 5,0,D>,     ?) (< 5,0,E>, B) 
          (< 7,0,A>, A) (< 7,0,B>, 1 + A) (< 7,0,C>, 1 + A) (< 7,0,D>,     A) (< 7,0,E>, B) 
          (<11,0,A>, A) (<11,0,B>,     B) (<11,0,C>,     ?) (<11,0,D>,     ?) (<11,0,E>, B) 
          (<12,0,A>, A) (<12,0,B>,     0) (<12,0,C>,     ?) (<12,0,D>,     ?) (<12,0,E>, B) 
          (<13,0,A>, A) (<13,0,B>,     B) (<13,0,C>,     ?) (<13,0,D>,     ?) (<13,0,E>, B) 
          (<13,1,A>, A) (<13,1,B>,     B) (<13,1,C>,     ?) (<13,1,D>,     ?) (<13,1,E>, B) 
          (<14,0,A>, A) (<14,0,B>, 1 + A) (<14,0,C>, 1 + A) (<14,0,D>,     A) (<14,0,E>, B) 
          (<15,0,A>, A) (<15,0,B>,     0) (<15,0,C>, 1 + A) (<15,0,D>,     A) (<15,0,E>, B) 
          (<16,0,A>, A) (<16,0,B>, 1 + A) (<16,0,C>, 1 + A) (<16,0,D>,     A) (<16,0,E>, B) 
          (<16,1,A>, A) (<16,1,B>, 1 + A) (<16,1,C>, 1 + A) (<16,1,D>,     A) (<16,1,E>, B) 
          (<17,0,A>, A) (<17,0,B>,     B) (<17,0,C>,     0) (<17,0,D>,     D) (<17,0,E>, E) 
          (<17,1,A>, A) (<17,1,B>,     B) (<17,1,C>,     0) (<17,1,D>,     D) (<17,1,E>, E) 
          (<18,0,A>, A) (<18,0,B>, 1 + A) (<18,0,C>, 1 + A) (<18,0,D>, 1 + A) (<18,0,E>, B) 
          (<19,0,A>, A) (<19,0,B>,     B) (<19,0,C>,     C) (<19,0,D>,     D) (<19,0,E>, E) 
          (<20,0,A>, A) (<20,0,B>, 1 + A) (<20,0,C>, 1 + A) (<20,0,D>, 1 + A) (<20,0,E>, B) 
          (<21,0,A>, A) (<21,0,B>, 1 + A) (<21,0,C>, 1 + A) (<21,0,D>,     A) (<21,0,E>, B) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [7]
* Step 12: ChainProcessor WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          3.  m4(A,B,C,D,E)       -> m5(A,B,C,F,G)                     [B >= G && G >= B && C >= F && F >= C]                                                         (?,1)
          5.  m5(A,B,C,D,E)       -> n2(A,B,C,D,E)                     True                                                                                           (?,1)
          11. n20(A,B,C,D,E)      -> m4(A,B,C,D,E)                     True                                                                                           (?,1)
          12. n21(A,B,C,D,E)      -> m2(A,0,C,D,E)                     True                                                                                           (?,1)
          13. n2(A,B,C,D,E)       -> c2(n20(A,B,F,D,E),n21(A,B,F,D,E)) [B >= F && 1 + C >= F && F >= 1 + C && B >= E && E >= B && 1 + D >= F && F >= 1 + D]           (?,1)
          14. n30(A,B,C,D,E)      -> m2(A,B,C,D,E)                     True                                                                                           (?,1)
          15. n31(A,B,C,D,E)      -> m0(A,0,C,D,E)                     True                                                                                           (?,1)
          16. n3(A,B,C,D,E)       -> c2(n30(A,F,C,D,E),n31(A,F,C,D,E)) [F >= 1 && A >= F && 1 + C >= F && F >= 1 + C && 1 + B >= F && F >= 1 + B && A >= D && D >= A] (?,1)
          17. m7(A,B,C,D,E)       -> c2(m8(F,G,0,D,E),m4(F,G,0,D,E))   [B >= G && G >= B && A >= F && F >= A]                                                         (1,1)
          18. n4(A,B,C,D,E)       -> m0(A,F,C,D,E)                     [F >= 1 && A >= F && 1 + B >= F && F >= 1 + B && 1 + C >= F && F >= 1 + C && A >= D && D >= A] (?,1)
          19. multiply(A,B,C,D,E) -> m7(A,B,C,D,E)                     True                                                                                           (1,2)
          20. m0(A,B,C,D,E)       -> n4(A,B,F,G,E)                     [A >= 1 && F >= 0 && A >= F && A >= G && G >= A && B >= F && F >= B]                           (?,2)
          21. m2(A,B,C,D,E)       -> n3(A,B,F,G,E)                     [F >= 0 && A >= G && G >= A && B >= F && F >= B]                                               (?,2)
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(multiply,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n20,5)
          ;(n21,5)
          ;(n3,5)
          ;(n30,5)
          ;(n31,5)
          ;(n4,5)}
        Flow Graph:
          [3->{5},5->{13},11->{3},12->{21},13->{11,12},14->{21},15->{20},16->{14,15},17->{3},18->{20},19->{17}
          ,20->{18},21->{16}]
        Sizebounds:
          (< 3,0,A>, A) (< 3,0,B>,     B) (< 3,0,C>,     ?) (< 3,0,D>,     ?) (< 3,0,E>, B) 
          (< 5,0,A>, A) (< 5,0,B>,     B) (< 5,0,C>,     ?) (< 5,0,D>,     ?) (< 5,0,E>, B) 
          (<11,0,A>, A) (<11,0,B>,     B) (<11,0,C>,     ?) (<11,0,D>,     ?) (<11,0,E>, B) 
          (<12,0,A>, A) (<12,0,B>,     0) (<12,0,C>,     ?) (<12,0,D>,     ?) (<12,0,E>, B) 
          (<13,0,A>, A) (<13,0,B>,     B) (<13,0,C>,     ?) (<13,0,D>,     ?) (<13,0,E>, B) 
          (<13,1,A>, A) (<13,1,B>,     B) (<13,1,C>,     ?) (<13,1,D>,     ?) (<13,1,E>, B) 
          (<14,0,A>, A) (<14,0,B>, 1 + A) (<14,0,C>, 1 + A) (<14,0,D>,     A) (<14,0,E>, B) 
          (<15,0,A>, A) (<15,0,B>,     0) (<15,0,C>, 1 + A) (<15,0,D>,     A) (<15,0,E>, B) 
          (<16,0,A>, A) (<16,0,B>, 1 + A) (<16,0,C>, 1 + A) (<16,0,D>,     A) (<16,0,E>, B) 
          (<16,1,A>, A) (<16,1,B>, 1 + A) (<16,1,C>, 1 + A) (<16,1,D>,     A) (<16,1,E>, B) 
          (<17,0,A>, A) (<17,0,B>,     B) (<17,0,C>,     0) (<17,0,D>,     D) (<17,0,E>, E) 
          (<17,1,A>, A) (<17,1,B>,     B) (<17,1,C>,     0) (<17,1,D>,     D) (<17,1,E>, E) 
          (<18,0,A>, A) (<18,0,B>, 1 + A) (<18,0,C>, 1 + A) (<18,0,D>, 1 + A) (<18,0,E>, B) 
          (<19,0,A>, A) (<19,0,B>,     B) (<19,0,C>,     C) (<19,0,D>,     D) (<19,0,E>, E) 
          (<20,0,A>, A) (<20,0,B>, 1 + A) (<20,0,C>, 1 + A) (<20,0,D>, 1 + A) (<20,0,E>, B) 
          (<21,0,A>, A) (<21,0,B>, 1 + A) (<21,0,C>, 1 + A) (<21,0,D>,     A) (<21,0,E>, B) 
    + Applied Processor:
        ChainProcessor False [3,5,11,12,13,14,15,16,17,18,19,20,21]
    + Details:
        We chained rule 3 to obtain the rules [22] .
* Step 13: UnreachableRules WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          5.  m5(A,B,C,D,E)       -> n2(A,B,C,D,E)                     True                                                                                           (?,1)
          11. n20(A,B,C,D,E)      -> m4(A,B,C,D,E)                     True                                                                                           (?,1)
          12. n21(A,B,C,D,E)      -> m2(A,0,C,D,E)                     True                                                                                           (?,1)
          13. n2(A,B,C,D,E)       -> c2(n20(A,B,F,D,E),n21(A,B,F,D,E)) [B >= F && 1 + C >= F && F >= 1 + C && B >= E && E >= B && 1 + D >= F && F >= 1 + D]           (?,1)
          14. n30(A,B,C,D,E)      -> m2(A,B,C,D,E)                     True                                                                                           (?,1)
          15. n31(A,B,C,D,E)      -> m0(A,0,C,D,E)                     True                                                                                           (?,1)
          16. n3(A,B,C,D,E)       -> c2(n30(A,F,C,D,E),n31(A,F,C,D,E)) [F >= 1 && A >= F && 1 + C >= F && F >= 1 + C && 1 + B >= F && F >= 1 + B && A >= D && D >= A] (?,1)
          17. m7(A,B,C,D,E)       -> c2(m8(F,G,0,D,E),m4(F,G,0,D,E))   [B >= G && G >= B && A >= F && F >= A]                                                         (1,1)
          18. n4(A,B,C,D,E)       -> m0(A,F,C,D,E)                     [F >= 1 && A >= F && 1 + B >= F && F >= 1 + B && 1 + C >= F && F >= 1 + C && A >= D && D >= A] (?,1)
          19. multiply(A,B,C,D,E) -> m7(A,B,C,D,E)                     True                                                                                           (1,2)
          20. m0(A,B,C,D,E)       -> n4(A,B,F,G,E)                     [A >= 1 && F >= 0 && A >= F && A >= G && G >= A && B >= F && F >= B]                           (?,2)
          21. m2(A,B,C,D,E)       -> n3(A,B,F,G,E)                     [F >= 0 && A >= G && G >= A && B >= F && F >= B]                                               (?,2)
          22. m4(A,B,C,D,E)       -> n2(A,B,C,F,G)                     [B >= G && G >= B && C >= F && F >= C]                                                         (?,2)
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(multiply,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n20,5)
          ;(n21,5)
          ;(n3,5)
          ;(n30,5)
          ;(n31,5)
          ;(n4,5)}
        Flow Graph:
          [5->{13},11->{22},12->{21},13->{11,12},14->{21},15->{20},16->{14,15},17->{22},18->{20},19->{17},20->{18}
          ,21->{16},22->{13}]
        Sizebounds:
          (< 5,0,A>, A) (< 5,0,B>,     B) (< 5,0,C>,     ?) (< 5,0,D>,     ?) (< 5,0,E>, B) 
          (<11,0,A>, A) (<11,0,B>,     B) (<11,0,C>,     ?) (<11,0,D>,     ?) (<11,0,E>, B) 
          (<12,0,A>, A) (<12,0,B>,     0) (<12,0,C>,     ?) (<12,0,D>,     ?) (<12,0,E>, B) 
          (<13,0,A>, A) (<13,0,B>,     B) (<13,0,C>,     ?) (<13,0,D>,     ?) (<13,0,E>, B) 
          (<13,1,A>, A) (<13,1,B>,     B) (<13,1,C>,     ?) (<13,1,D>,     ?) (<13,1,E>, B) 
          (<14,0,A>, A) (<14,0,B>, 1 + A) (<14,0,C>, 1 + A) (<14,0,D>,     A) (<14,0,E>, B) 
          (<15,0,A>, A) (<15,0,B>,     0) (<15,0,C>, 1 + A) (<15,0,D>,     A) (<15,0,E>, B) 
          (<16,0,A>, A) (<16,0,B>, 1 + A) (<16,0,C>, 1 + A) (<16,0,D>,     A) (<16,0,E>, B) 
          (<16,1,A>, A) (<16,1,B>, 1 + A) (<16,1,C>, 1 + A) (<16,1,D>,     A) (<16,1,E>, B) 
          (<17,0,A>, A) (<17,0,B>,     B) (<17,0,C>,     0) (<17,0,D>,     D) (<17,0,E>, E) 
          (<17,1,A>, A) (<17,1,B>,     B) (<17,1,C>,     0) (<17,1,D>,     D) (<17,1,E>, E) 
          (<18,0,A>, A) (<18,0,B>, 1 + A) (<18,0,C>, 1 + A) (<18,0,D>, 1 + A) (<18,0,E>, B) 
          (<19,0,A>, A) (<19,0,B>,     B) (<19,0,C>,     C) (<19,0,D>,     D) (<19,0,E>, E) 
          (<20,0,A>, A) (<20,0,B>, 1 + A) (<20,0,C>, 1 + A) (<20,0,D>, 1 + A) (<20,0,E>, B) 
          (<21,0,A>, A) (<21,0,B>, 1 + A) (<21,0,C>, 1 + A) (<21,0,D>,     A) (<21,0,E>, B) 
          (<22,0,A>, A) (<22,0,B>,     B) (<22,0,C>,     ?) (<22,0,D>,     ?) (<22,0,E>, B) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [5]
* Step 14: ChainProcessor WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          11. n20(A,B,C,D,E)      -> m4(A,B,C,D,E)                     True                                                                                           (?,1)
          12. n21(A,B,C,D,E)      -> m2(A,0,C,D,E)                     True                                                                                           (?,1)
          13. n2(A,B,C,D,E)       -> c2(n20(A,B,F,D,E),n21(A,B,F,D,E)) [B >= F && 1 + C >= F && F >= 1 + C && B >= E && E >= B && 1 + D >= F && F >= 1 + D]           (?,1)
          14. n30(A,B,C,D,E)      -> m2(A,B,C,D,E)                     True                                                                                           (?,1)
          15. n31(A,B,C,D,E)      -> m0(A,0,C,D,E)                     True                                                                                           (?,1)
          16. n3(A,B,C,D,E)       -> c2(n30(A,F,C,D,E),n31(A,F,C,D,E)) [F >= 1 && A >= F && 1 + C >= F && F >= 1 + C && 1 + B >= F && F >= 1 + B && A >= D && D >= A] (?,1)
          17. m7(A,B,C,D,E)       -> c2(m8(F,G,0,D,E),m4(F,G,0,D,E))   [B >= G && G >= B && A >= F && F >= A]                                                         (1,1)
          18. n4(A,B,C,D,E)       -> m0(A,F,C,D,E)                     [F >= 1 && A >= F && 1 + B >= F && F >= 1 + B && 1 + C >= F && F >= 1 + C && A >= D && D >= A] (?,1)
          19. multiply(A,B,C,D,E) -> m7(A,B,C,D,E)                     True                                                                                           (1,2)
          20. m0(A,B,C,D,E)       -> n4(A,B,F,G,E)                     [A >= 1 && F >= 0 && A >= F && A >= G && G >= A && B >= F && F >= B]                           (?,2)
          21. m2(A,B,C,D,E)       -> n3(A,B,F,G,E)                     [F >= 0 && A >= G && G >= A && B >= F && F >= B]                                               (?,2)
          22. m4(A,B,C,D,E)       -> n2(A,B,C,F,G)                     [B >= G && G >= B && C >= F && F >= C]                                                         (?,2)
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(multiply,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n20,5)
          ;(n21,5)
          ;(n3,5)
          ;(n30,5)
          ;(n31,5)
          ;(n4,5)}
        Flow Graph:
          [11->{22},12->{21},13->{11,12},14->{21},15->{20},16->{14,15},17->{22},18->{20},19->{17},20->{18},21->{16}
          ,22->{13}]
        Sizebounds:
          (<11,0,A>, A) (<11,0,B>,     B) (<11,0,C>,     ?) (<11,0,D>,     ?) (<11,0,E>, B) 
          (<12,0,A>, A) (<12,0,B>,     0) (<12,0,C>,     ?) (<12,0,D>,     ?) (<12,0,E>, B) 
          (<13,0,A>, A) (<13,0,B>,     B) (<13,0,C>,     ?) (<13,0,D>,     ?) (<13,0,E>, B) 
          (<13,1,A>, A) (<13,1,B>,     B) (<13,1,C>,     ?) (<13,1,D>,     ?) (<13,1,E>, B) 
          (<14,0,A>, A) (<14,0,B>, 1 + A) (<14,0,C>, 1 + A) (<14,0,D>,     A) (<14,0,E>, B) 
          (<15,0,A>, A) (<15,0,B>,     0) (<15,0,C>, 1 + A) (<15,0,D>,     A) (<15,0,E>, B) 
          (<16,0,A>, A) (<16,0,B>, 1 + A) (<16,0,C>, 1 + A) (<16,0,D>,     A) (<16,0,E>, B) 
          (<16,1,A>, A) (<16,1,B>, 1 + A) (<16,1,C>, 1 + A) (<16,1,D>,     A) (<16,1,E>, B) 
          (<17,0,A>, A) (<17,0,B>,     B) (<17,0,C>,     0) (<17,0,D>,     D) (<17,0,E>, E) 
          (<17,1,A>, A) (<17,1,B>,     B) (<17,1,C>,     0) (<17,1,D>,     D) (<17,1,E>, E) 
          (<18,0,A>, A) (<18,0,B>, 1 + A) (<18,0,C>, 1 + A) (<18,0,D>, 1 + A) (<18,0,E>, B) 
          (<19,0,A>, A) (<19,0,B>,     B) (<19,0,C>,     C) (<19,0,D>,     D) (<19,0,E>, E) 
          (<20,0,A>, A) (<20,0,B>, 1 + A) (<20,0,C>, 1 + A) (<20,0,D>, 1 + A) (<20,0,E>, B) 
          (<21,0,A>, A) (<21,0,B>, 1 + A) (<21,0,C>, 1 + A) (<21,0,D>,     A) (<21,0,E>, B) 
          (<22,0,A>, A) (<22,0,B>,     B) (<22,0,C>,     ?) (<22,0,D>,     ?) (<22,0,E>, B) 
    + Applied Processor:
        ChainProcessor False [11,12,13,14,15,16,17,18,19,20,21,22]
    + Details:
        We chained rule 11 to obtain the rules [23] .
* Step 15: ChainProcessor WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          12. n21(A,B,C,D,E)      -> m2(A,0,C,D,E)                     True                                                                                           (?,1)
          13. n2(A,B,C,D,E)       -> c2(n20(A,B,F,D,E),n21(A,B,F,D,E)) [B >= F && 1 + C >= F && F >= 1 + C && B >= E && E >= B && 1 + D >= F && F >= 1 + D]           (?,1)
          14. n30(A,B,C,D,E)      -> m2(A,B,C,D,E)                     True                                                                                           (?,1)
          15. n31(A,B,C,D,E)      -> m0(A,0,C,D,E)                     True                                                                                           (?,1)
          16. n3(A,B,C,D,E)       -> c2(n30(A,F,C,D,E),n31(A,F,C,D,E)) [F >= 1 && A >= F && 1 + C >= F && F >= 1 + C && 1 + B >= F && F >= 1 + B && A >= D && D >= A] (?,1)
          17. m7(A,B,C,D,E)       -> c2(m8(F,G,0,D,E),m4(F,G,0,D,E))   [B >= G && G >= B && A >= F && F >= A]                                                         (1,1)
          18. n4(A,B,C,D,E)       -> m0(A,F,C,D,E)                     [F >= 1 && A >= F && 1 + B >= F && F >= 1 + B && 1 + C >= F && F >= 1 + C && A >= D && D >= A] (?,1)
          19. multiply(A,B,C,D,E) -> m7(A,B,C,D,E)                     True                                                                                           (1,2)
          20. m0(A,B,C,D,E)       -> n4(A,B,F,G,E)                     [A >= 1 && F >= 0 && A >= F && A >= G && G >= A && B >= F && F >= B]                           (?,2)
          21. m2(A,B,C,D,E)       -> n3(A,B,F,G,E)                     [F >= 0 && A >= G && G >= A && B >= F && F >= B]                                               (?,2)
          22. m4(A,B,C,D,E)       -> n2(A,B,C,F,G)                     [B >= G && G >= B && C >= F && F >= C]                                                         (?,2)
          23. n20(A,B,C,D,E)      -> n2(A,B,C,F$,G$)                   [B >= G$ && G$ >= B && C >= F$ && F$ >= C]                                                     (?,3)
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(multiply,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n20,5)
          ;(n21,5)
          ;(n3,5)
          ;(n30,5)
          ;(n31,5)
          ;(n4,5)}
        Flow Graph:
          [12->{21},13->{12,23},14->{21},15->{20},16->{14,15},17->{22},18->{20},19->{17},20->{18},21->{16},22->{13}
          ,23->{13}]
        Sizebounds:
          (<12,0,A>, A) (<12,0,B>,     0) (<12,0,C>,     ?) (<12,0,D>,     ?) (<12,0,E>, B) 
          (<13,0,A>, A) (<13,0,B>,     B) (<13,0,C>,     ?) (<13,0,D>,     ?) (<13,0,E>, B) 
          (<13,1,A>, A) (<13,1,B>,     B) (<13,1,C>,     ?) (<13,1,D>,     ?) (<13,1,E>, B) 
          (<14,0,A>, A) (<14,0,B>, 1 + A) (<14,0,C>, 1 + A) (<14,0,D>,     A) (<14,0,E>, B) 
          (<15,0,A>, A) (<15,0,B>,     0) (<15,0,C>, 1 + A) (<15,0,D>,     A) (<15,0,E>, B) 
          (<16,0,A>, A) (<16,0,B>, 1 + A) (<16,0,C>, 1 + A) (<16,0,D>,     A) (<16,0,E>, B) 
          (<16,1,A>, A) (<16,1,B>, 1 + A) (<16,1,C>, 1 + A) (<16,1,D>,     A) (<16,1,E>, B) 
          (<17,0,A>, A) (<17,0,B>,     B) (<17,0,C>,     0) (<17,0,D>,     D) (<17,0,E>, E) 
          (<17,1,A>, A) (<17,1,B>,     B) (<17,1,C>,     0) (<17,1,D>,     D) (<17,1,E>, E) 
          (<18,0,A>, A) (<18,0,B>, 1 + A) (<18,0,C>, 1 + A) (<18,0,D>, 1 + A) (<18,0,E>, B) 
          (<19,0,A>, A) (<19,0,B>,     B) (<19,0,C>,     C) (<19,0,D>,     D) (<19,0,E>, E) 
          (<20,0,A>, A) (<20,0,B>, 1 + A) (<20,0,C>, 1 + A) (<20,0,D>, 1 + A) (<20,0,E>, B) 
          (<21,0,A>, A) (<21,0,B>, 1 + A) (<21,0,C>, 1 + A) (<21,0,D>,     A) (<21,0,E>, B) 
          (<22,0,A>, A) (<22,0,B>,     B) (<22,0,C>,     ?) (<22,0,D>,     ?) (<22,0,E>, B) 
          (<23,0,A>, A) (<23,0,B>,     B) (<23,0,C>,     ?) (<23,0,D>,     ?) (<23,0,E>, B) 
    + Applied Processor:
        ChainProcessor False [12,13,14,15,16,17,18,19,20,21,22,23]
    + Details:
        We chained rule 12 to obtain the rules [24] .
* Step 16: ChainProcessor WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          13. n2(A,B,C,D,E)       -> c2(n20(A,B,F,D,E),n21(A,B,F,D,E)) [B >= F && 1 + C >= F && F >= 1 + C && B >= E && E >= B && 1 + D >= F && F >= 1 + D]           (?,1)
          14. n30(A,B,C,D,E)      -> m2(A,B,C,D,E)                     True                                                                                           (?,1)
          15. n31(A,B,C,D,E)      -> m0(A,0,C,D,E)                     True                                                                                           (?,1)
          16. n3(A,B,C,D,E)       -> c2(n30(A,F,C,D,E),n31(A,F,C,D,E)) [F >= 1 && A >= F && 1 + C >= F && F >= 1 + C && 1 + B >= F && F >= 1 + B && A >= D && D >= A] (?,1)
          17. m7(A,B,C,D,E)       -> c2(m8(F,G,0,D,E),m4(F,G,0,D,E))   [B >= G && G >= B && A >= F && F >= A]                                                         (1,1)
          18. n4(A,B,C,D,E)       -> m0(A,F,C,D,E)                     [F >= 1 && A >= F && 1 + B >= F && F >= 1 + B && 1 + C >= F && F >= 1 + C && A >= D && D >= A] (?,1)
          19. multiply(A,B,C,D,E) -> m7(A,B,C,D,E)                     True                                                                                           (1,2)
          20. m0(A,B,C,D,E)       -> n4(A,B,F,G,E)                     [A >= 1 && F >= 0 && A >= F && A >= G && G >= A && B >= F && F >= B]                           (?,2)
          21. m2(A,B,C,D,E)       -> n3(A,B,F,G,E)                     [F >= 0 && A >= G && G >= A && B >= F && F >= B]                                               (?,2)
          22. m4(A,B,C,D,E)       -> n2(A,B,C,F,G)                     [B >= G && G >= B && C >= F && F >= C]                                                         (?,2)
          23. n20(A,B,C,D,E)      -> n2(A,B,C,F$,G$)                   [B >= G$ && G$ >= B && C >= F$ && F$ >= C]                                                     (?,3)
          24. n21(A,B,C,D,E)      -> n3(A,0,F$,G$,E)                   [F$ >= 0 && A >= G$ && G$ >= A && 0 >= F$ && F$ >= 0]                                          (?,3)
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(multiply,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n20,5)
          ;(n21,5)
          ;(n3,5)
          ;(n30,5)
          ;(n31,5)
          ;(n4,5)}
        Flow Graph:
          [13->{23,24},14->{21},15->{20},16->{14,15},17->{22},18->{20},19->{17},20->{18},21->{16},22->{13},23->{13}
          ,24->{16}]
        Sizebounds:
          (<13,0,A>, A) (<13,0,B>,     B) (<13,0,C>,     ?) (<13,0,D>,     ?) (<13,0,E>, B) 
          (<13,1,A>, A) (<13,1,B>,     B) (<13,1,C>,     ?) (<13,1,D>,     ?) (<13,1,E>, B) 
          (<14,0,A>, A) (<14,0,B>, 1 + A) (<14,0,C>, 1 + A) (<14,0,D>,     A) (<14,0,E>, B) 
          (<15,0,A>, A) (<15,0,B>,     0) (<15,0,C>, 1 + A) (<15,0,D>,     A) (<15,0,E>, B) 
          (<16,0,A>, A) (<16,0,B>, 1 + A) (<16,0,C>, 1 + A) (<16,0,D>,     A) (<16,0,E>, B) 
          (<16,1,A>, A) (<16,1,B>, 1 + A) (<16,1,C>, 1 + A) (<16,1,D>,     A) (<16,1,E>, B) 
          (<17,0,A>, A) (<17,0,B>,     B) (<17,0,C>,     0) (<17,0,D>,     D) (<17,0,E>, E) 
          (<17,1,A>, A) (<17,1,B>,     B) (<17,1,C>,     0) (<17,1,D>,     D) (<17,1,E>, E) 
          (<18,0,A>, A) (<18,0,B>, 1 + A) (<18,0,C>, 1 + A) (<18,0,D>, 1 + A) (<18,0,E>, B) 
          (<19,0,A>, A) (<19,0,B>,     B) (<19,0,C>,     C) (<19,0,D>,     D) (<19,0,E>, E) 
          (<20,0,A>, A) (<20,0,B>, 1 + A) (<20,0,C>, 1 + A) (<20,0,D>, 1 + A) (<20,0,E>, B) 
          (<21,0,A>, A) (<21,0,B>, 1 + A) (<21,0,C>, 1 + A) (<21,0,D>,     A) (<21,0,E>, B) 
          (<22,0,A>, A) (<22,0,B>,     B) (<22,0,C>,     ?) (<22,0,D>,     ?) (<22,0,E>, B) 
          (<23,0,A>, A) (<23,0,B>,     B) (<23,0,C>,     ?) (<23,0,D>,     ?) (<23,0,E>, B) 
          (<24,0,A>, A) (<24,0,B>, 1 + A) (<24,0,C>, 1 + A) (<24,0,D>,     A) (<24,0,E>, B) 
    + Applied Processor:
        ChainProcessor False [13,14,15,16,17,18,19,20,21,22,23,24]
    + Details:
        We chained rule 13 to obtain the rules [25] .
* Step 17: UnreachableRules WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          14. n30(A,B,C,D,E)      -> m2(A,B,C,D,E)                        True                                                                                           (?,1)
          15. n31(A,B,C,D,E)      -> m0(A,0,C,D,E)                        True                                                                                           (?,1)
          16. n3(A,B,C,D,E)       -> c2(n30(A,F,C,D,E),n31(A,F,C,D,E))    [F >= 1 && A >= F && 1 + C >= F && F >= 1 + C && 1 + B >= F && F >= 1 + B && A >= D && D >= A] (?,1)
          17. m7(A,B,C,D,E)       -> c2(m8(F,G,0,D,E),m4(F,G,0,D,E))      [B >= G && G >= B && A >= F && F >= A]                                                         (1,1)
          18. n4(A,B,C,D,E)       -> m0(A,F,C,D,E)                        [F >= 1 && A >= F && 1 + B >= F && F >= 1 + B && 1 + C >= F && F >= 1 + C && A >= D && D >= A] (?,1)
          19. multiply(A,B,C,D,E) -> m7(A,B,C,D,E)                        True                                                                                           (1,2)
          20. m0(A,B,C,D,E)       -> n4(A,B,F,G,E)                        [A >= 1 && F >= 0 && A >= F && A >= G && G >= A && B >= F && F >= B]                           (?,2)
          21. m2(A,B,C,D,E)       -> n3(A,B,F,G,E)                        [F >= 0 && A >= G && G >= A && B >= F && F >= B]                                               (?,2)
          22. m4(A,B,C,D,E)       -> n2(A,B,C,F,G)                        [B >= G && G >= B && C >= F && F >= C]                                                         (?,2)
          23. n20(A,B,C,D,E)      -> n2(A,B,C,F$,G$)                      [B >= G$ && G$ >= B && C >= F$ && F$ >= C]                                                     (?,3)
          24. n21(A,B,C,D,E)      -> n3(A,0,F$,G$,E)                      [F$ >= 0 && A >= G$ && G$ >= A && 0 >= F$ && F$ >= 0]                                          (?,3)
          25. n2(A,B,C,D,E)       -> c2(n2(A,B,F,F$$,G$$),n21(A,B,F,D,E)) [B >= F                                                                                        (?,4)
                                                                           && 1 + C >= F                                                                                      
                                                                           && F >= 1 + C                                                                                      
                                                                           && B >= E                                                                                          
                                                                           && E >= B                                                                                          
                                                                           && 1 + D >= F                                                                                      
                                                                           && F >= 1 + D                                                                                      
                                                                           && B >= G$$                                                                                        
                                                                           && G$$ >= B                                                                                        
                                                                           && F >= F$$                                                                                        
                                                                           && F$$ >= F]                                                                                       
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(multiply,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n20,5)
          ;(n21,5)
          ;(n3,5)
          ;(n30,5)
          ;(n31,5)
          ;(n4,5)}
        Flow Graph:
          [14->{21},15->{20},16->{14,15},17->{22},18->{20},19->{17},20->{18},21->{16},22->{25},23->{25},24->{16}
          ,25->{24,25}]
        Sizebounds:
          (<14,0,A>, A) (<14,0,B>, 1 + A) (<14,0,C>, 1 + A) (<14,0,D>,     A) (<14,0,E>, B) 
          (<15,0,A>, A) (<15,0,B>,     0) (<15,0,C>, 1 + A) (<15,0,D>,     A) (<15,0,E>, B) 
          (<16,0,A>, A) (<16,0,B>, 1 + A) (<16,0,C>, 1 + A) (<16,0,D>,     A) (<16,0,E>, B) 
          (<16,1,A>, A) (<16,1,B>, 1 + A) (<16,1,C>, 1 + A) (<16,1,D>,     A) (<16,1,E>, B) 
          (<17,0,A>, A) (<17,0,B>,     B) (<17,0,C>,     0) (<17,0,D>,     D) (<17,0,E>, E) 
          (<17,1,A>, A) (<17,1,B>,     B) (<17,1,C>,     0) (<17,1,D>,     D) (<17,1,E>, E) 
          (<18,0,A>, A) (<18,0,B>, 1 + A) (<18,0,C>, 1 + A) (<18,0,D>, 1 + A) (<18,0,E>, B) 
          (<19,0,A>, A) (<19,0,B>,     B) (<19,0,C>,     C) (<19,0,D>,     D) (<19,0,E>, E) 
          (<20,0,A>, A) (<20,0,B>, 1 + A) (<20,0,C>, 1 + A) (<20,0,D>, 1 + A) (<20,0,E>, B) 
          (<21,0,A>, A) (<21,0,B>, 1 + A) (<21,0,C>, 1 + A) (<21,0,D>,     A) (<21,0,E>, B) 
          (<22,0,A>, A) (<22,0,B>,     B) (<22,0,C>,     ?) (<22,0,D>,     ?) (<22,0,E>, B) 
          (<23,0,A>, A) (<23,0,B>,     B) (<23,0,C>,     ?) (<23,0,D>,     ?) (<23,0,E>, B) 
          (<24,0,A>, A) (<24,0,B>, 1 + A) (<24,0,C>, 1 + A) (<24,0,D>,     A) (<24,0,E>, B) 
          (<25,0,A>, A) (<25,0,B>,     B) (<25,0,C>,     ?) (<25,0,D>,     ?) (<25,0,E>, B) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [23]
* Step 18: ChainProcessor WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          14. n30(A,B,C,D,E)      -> m2(A,B,C,D,E)                        True                                                                                           (?,1)
          15. n31(A,B,C,D,E)      -> m0(A,0,C,D,E)                        True                                                                                           (?,1)
          16. n3(A,B,C,D,E)       -> c2(n30(A,F,C,D,E),n31(A,F,C,D,E))    [F >= 1 && A >= F && 1 + C >= F && F >= 1 + C && 1 + B >= F && F >= 1 + B && A >= D && D >= A] (?,1)
          17. m7(A,B,C,D,E)       -> c2(m8(F,G,0,D,E),m4(F,G,0,D,E))      [B >= G && G >= B && A >= F && F >= A]                                                         (1,1)
          18. n4(A,B,C,D,E)       -> m0(A,F,C,D,E)                        [F >= 1 && A >= F && 1 + B >= F && F >= 1 + B && 1 + C >= F && F >= 1 + C && A >= D && D >= A] (?,1)
          19. multiply(A,B,C,D,E) -> m7(A,B,C,D,E)                        True                                                                                           (1,2)
          20. m0(A,B,C,D,E)       -> n4(A,B,F,G,E)                        [A >= 1 && F >= 0 && A >= F && A >= G && G >= A && B >= F && F >= B]                           (?,2)
          21. m2(A,B,C,D,E)       -> n3(A,B,F,G,E)                        [F >= 0 && A >= G && G >= A && B >= F && F >= B]                                               (?,2)
          22. m4(A,B,C,D,E)       -> n2(A,B,C,F,G)                        [B >= G && G >= B && C >= F && F >= C]                                                         (?,2)
          24. n21(A,B,C,D,E)      -> n3(A,0,F$,G$,E)                      [F$ >= 0 && A >= G$ && G$ >= A && 0 >= F$ && F$ >= 0]                                          (?,3)
          25. n2(A,B,C,D,E)       -> c2(n2(A,B,F,F$$,G$$),n21(A,B,F,D,E)) [B >= F                                                                                        (?,4)
                                                                           && 1 + C >= F                                                                                      
                                                                           && F >= 1 + C                                                                                      
                                                                           && B >= E                                                                                          
                                                                           && E >= B                                                                                          
                                                                           && 1 + D >= F                                                                                      
                                                                           && F >= 1 + D                                                                                      
                                                                           && B >= G$$                                                                                        
                                                                           && G$$ >= B                                                                                        
                                                                           && F >= F$$                                                                                        
                                                                           && F$$ >= F]                                                                                       
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(multiply,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n20,5)
          ;(n21,5)
          ;(n3,5)
          ;(n30,5)
          ;(n31,5)
          ;(n4,5)}
        Flow Graph:
          [14->{21},15->{20},16->{14,15},17->{22},18->{20},19->{17},20->{18},21->{16},22->{25},24->{16},25->{24,25}]
        Sizebounds:
          (<14,0,A>, A) (<14,0,B>, 1 + A) (<14,0,C>, 1 + A) (<14,0,D>,     A) (<14,0,E>, B) 
          (<15,0,A>, A) (<15,0,B>,     0) (<15,0,C>, 1 + A) (<15,0,D>,     A) (<15,0,E>, B) 
          (<16,0,A>, A) (<16,0,B>, 1 + A) (<16,0,C>, 1 + A) (<16,0,D>,     A) (<16,0,E>, B) 
          (<16,1,A>, A) (<16,1,B>, 1 + A) (<16,1,C>, 1 + A) (<16,1,D>,     A) (<16,1,E>, B) 
          (<17,0,A>, A) (<17,0,B>,     B) (<17,0,C>,     0) (<17,0,D>,     D) (<17,0,E>, E) 
          (<17,1,A>, A) (<17,1,B>,     B) (<17,1,C>,     0) (<17,1,D>,     D) (<17,1,E>, E) 
          (<18,0,A>, A) (<18,0,B>, 1 + A) (<18,0,C>, 1 + A) (<18,0,D>, 1 + A) (<18,0,E>, B) 
          (<19,0,A>, A) (<19,0,B>,     B) (<19,0,C>,     C) (<19,0,D>,     D) (<19,0,E>, E) 
          (<20,0,A>, A) (<20,0,B>, 1 + A) (<20,0,C>, 1 + A) (<20,0,D>, 1 + A) (<20,0,E>, B) 
          (<21,0,A>, A) (<21,0,B>, 1 + A) (<21,0,C>, 1 + A) (<21,0,D>,     A) (<21,0,E>, B) 
          (<22,0,A>, A) (<22,0,B>,     B) (<22,0,C>,     ?) (<22,0,D>,     ?) (<22,0,E>, B) 
          (<24,0,A>, A) (<24,0,B>, 1 + A) (<24,0,C>, 1 + A) (<24,0,D>,     A) (<24,0,E>, B) 
          (<25,0,A>, A) (<25,0,B>,     B) (<25,0,C>,     ?) (<25,0,D>,     ?) (<25,0,E>, B) 
    + Applied Processor:
        ChainProcessor False [14,15,16,17,18,19,20,21,22,24,25]
    + Details:
        We chained rule 14 to obtain the rules [26] .
* Step 19: UnreachableRules WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          15. n31(A,B,C,D,E)      -> m0(A,0,C,D,E)                        True                                                                                           (?,1)
          16. n3(A,B,C,D,E)       -> c2(n30(A,F,C,D,E),n31(A,F,C,D,E))    [F >= 1 && A >= F && 1 + C >= F && F >= 1 + C && 1 + B >= F && F >= 1 + B && A >= D && D >= A] (?,1)
          17. m7(A,B,C,D,E)       -> c2(m8(F,G,0,D,E),m4(F,G,0,D,E))      [B >= G && G >= B && A >= F && F >= A]                                                         (1,1)
          18. n4(A,B,C,D,E)       -> m0(A,F,C,D,E)                        [F >= 1 && A >= F && 1 + B >= F && F >= 1 + B && 1 + C >= F && F >= 1 + C && A >= D && D >= A] (?,1)
          19. multiply(A,B,C,D,E) -> m7(A,B,C,D,E)                        True                                                                                           (1,2)
          20. m0(A,B,C,D,E)       -> n4(A,B,F,G,E)                        [A >= 1 && F >= 0 && A >= F && A >= G && G >= A && B >= F && F >= B]                           (?,2)
          21. m2(A,B,C,D,E)       -> n3(A,B,F,G,E)                        [F >= 0 && A >= G && G >= A && B >= F && F >= B]                                               (?,2)
          22. m4(A,B,C,D,E)       -> n2(A,B,C,F,G)                        [B >= G && G >= B && C >= F && F >= C]                                                         (?,2)
          24. n21(A,B,C,D,E)      -> n3(A,0,F$,G$,E)                      [F$ >= 0 && A >= G$ && G$ >= A && 0 >= F$ && F$ >= 0]                                          (?,3)
          25. n2(A,B,C,D,E)       -> c2(n2(A,B,F,F$$,G$$),n21(A,B,F,D,E)) [B >= F                                                                                        (?,4)
                                                                           && 1 + C >= F                                                                                      
                                                                           && F >= 1 + C                                                                                      
                                                                           && B >= E                                                                                          
                                                                           && E >= B                                                                                          
                                                                           && 1 + D >= F                                                                                      
                                                                           && F >= 1 + D                                                                                      
                                                                           && B >= G$$                                                                                        
                                                                           && G$$ >= B                                                                                        
                                                                           && F >= F$$                                                                                        
                                                                           && F$$ >= F]                                                                                       
          26. n30(A,B,C,D,E)      -> n3(A,B,F$,G$,E)                      [F$ >= 0 && A >= G$ && G$ >= A && B >= F$ && F$ >= B]                                          (?,3)
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(multiply,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n20,5)
          ;(n21,5)
          ;(n3,5)
          ;(n30,5)
          ;(n31,5)
          ;(n4,5)}
        Flow Graph:
          [15->{20},16->{15,26},17->{22},18->{20},19->{17},20->{18},21->{16},22->{25},24->{16},25->{24,25},26->{16}]
        Sizebounds:
          (<15,0,A>, A) (<15,0,B>,     0) (<15,0,C>, 1 + A) (<15,0,D>,     A) (<15,0,E>, B) 
          (<16,0,A>, A) (<16,0,B>, 1 + A) (<16,0,C>, 1 + A) (<16,0,D>,     A) (<16,0,E>, B) 
          (<16,1,A>, A) (<16,1,B>, 1 + A) (<16,1,C>, 1 + A) (<16,1,D>,     A) (<16,1,E>, B) 
          (<17,0,A>, A) (<17,0,B>,     B) (<17,0,C>,     0) (<17,0,D>,     D) (<17,0,E>, E) 
          (<17,1,A>, A) (<17,1,B>,     B) (<17,1,C>,     0) (<17,1,D>,     D) (<17,1,E>, E) 
          (<18,0,A>, A) (<18,0,B>, 1 + A) (<18,0,C>, 1 + A) (<18,0,D>, 1 + A) (<18,0,E>, B) 
          (<19,0,A>, A) (<19,0,B>,     B) (<19,0,C>,     C) (<19,0,D>,     D) (<19,0,E>, E) 
          (<20,0,A>, A) (<20,0,B>, 1 + A) (<20,0,C>, 1 + A) (<20,0,D>, 1 + A) (<20,0,E>, B) 
          (<21,0,A>, A) (<21,0,B>, 1 + A) (<21,0,C>, 1 + A) (<21,0,D>,     A) (<21,0,E>, B) 
          (<22,0,A>, A) (<22,0,B>,     B) (<22,0,C>,     ?) (<22,0,D>,     ?) (<22,0,E>, B) 
          (<24,0,A>, A) (<24,0,B>, 1 + A) (<24,0,C>, 1 + A) (<24,0,D>,     A) (<24,0,E>, B) 
          (<25,0,A>, A) (<25,0,B>,     B) (<25,0,C>,     ?) (<25,0,D>,     ?) (<25,0,E>, B) 
          (<26,0,A>, A) (<26,0,B>, 1 + A) (<26,0,C>, 1 + A) (<26,0,D>,     A) (<26,0,E>, B) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [21]
* Step 20: ChainProcessor WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          15. n31(A,B,C,D,E)      -> m0(A,0,C,D,E)                        True                                                                                           (?,1)
          16. n3(A,B,C,D,E)       -> c2(n30(A,F,C,D,E),n31(A,F,C,D,E))    [F >= 1 && A >= F && 1 + C >= F && F >= 1 + C && 1 + B >= F && F >= 1 + B && A >= D && D >= A] (?,1)
          17. m7(A,B,C,D,E)       -> c2(m8(F,G,0,D,E),m4(F,G,0,D,E))      [B >= G && G >= B && A >= F && F >= A]                                                         (1,1)
          18. n4(A,B,C,D,E)       -> m0(A,F,C,D,E)                        [F >= 1 && A >= F && 1 + B >= F && F >= 1 + B && 1 + C >= F && F >= 1 + C && A >= D && D >= A] (?,1)
          19. multiply(A,B,C,D,E) -> m7(A,B,C,D,E)                        True                                                                                           (1,2)
          20. m0(A,B,C,D,E)       -> n4(A,B,F,G,E)                        [A >= 1 && F >= 0 && A >= F && A >= G && G >= A && B >= F && F >= B]                           (?,2)
          22. m4(A,B,C,D,E)       -> n2(A,B,C,F,G)                        [B >= G && G >= B && C >= F && F >= C]                                                         (?,2)
          24. n21(A,B,C,D,E)      -> n3(A,0,F$,G$,E)                      [F$ >= 0 && A >= G$ && G$ >= A && 0 >= F$ && F$ >= 0]                                          (?,3)
          25. n2(A,B,C,D,E)       -> c2(n2(A,B,F,F$$,G$$),n21(A,B,F,D,E)) [B >= F                                                                                        (?,4)
                                                                           && 1 + C >= F                                                                                      
                                                                           && F >= 1 + C                                                                                      
                                                                           && B >= E                                                                                          
                                                                           && E >= B                                                                                          
                                                                           && 1 + D >= F                                                                                      
                                                                           && F >= 1 + D                                                                                      
                                                                           && B >= G$$                                                                                        
                                                                           && G$$ >= B                                                                                        
                                                                           && F >= F$$                                                                                        
                                                                           && F$$ >= F]                                                                                       
          26. n30(A,B,C,D,E)      -> n3(A,B,F$,G$,E)                      [F$ >= 0 && A >= G$ && G$ >= A && B >= F$ && F$ >= B]                                          (?,3)
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(multiply,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n20,5)
          ;(n21,5)
          ;(n3,5)
          ;(n30,5)
          ;(n31,5)
          ;(n4,5)}
        Flow Graph:
          [15->{20},16->{15,26},17->{22},18->{20},19->{17},20->{18},22->{25},24->{16},25->{24,25},26->{16}]
        Sizebounds:
          (<15,0,A>, A) (<15,0,B>,     0) (<15,0,C>, 1 + A) (<15,0,D>,     A) (<15,0,E>, B) 
          (<16,0,A>, A) (<16,0,B>, 1 + A) (<16,0,C>, 1 + A) (<16,0,D>,     A) (<16,0,E>, B) 
          (<16,1,A>, A) (<16,1,B>, 1 + A) (<16,1,C>, 1 + A) (<16,1,D>,     A) (<16,1,E>, B) 
          (<17,0,A>, A) (<17,0,B>,     B) (<17,0,C>,     0) (<17,0,D>,     D) (<17,0,E>, E) 
          (<17,1,A>, A) (<17,1,B>,     B) (<17,1,C>,     0) (<17,1,D>,     D) (<17,1,E>, E) 
          (<18,0,A>, A) (<18,0,B>, 1 + A) (<18,0,C>, 1 + A) (<18,0,D>, 1 + A) (<18,0,E>, B) 
          (<19,0,A>, A) (<19,0,B>,     B) (<19,0,C>,     C) (<19,0,D>,     D) (<19,0,E>, E) 
          (<20,0,A>, A) (<20,0,B>, 1 + A) (<20,0,C>, 1 + A) (<20,0,D>, 1 + A) (<20,0,E>, B) 
          (<22,0,A>, A) (<22,0,B>,     B) (<22,0,C>,     ?) (<22,0,D>,     ?) (<22,0,E>, B) 
          (<24,0,A>, A) (<24,0,B>, 1 + A) (<24,0,C>, 1 + A) (<24,0,D>,     A) (<24,0,E>, B) 
          (<25,0,A>, A) (<25,0,B>,     B) (<25,0,C>,     ?) (<25,0,D>,     ?) (<25,0,E>, B) 
          (<26,0,A>, A) (<26,0,B>, 1 + A) (<26,0,C>, 1 + A) (<26,0,D>,     A) (<26,0,E>, B) 
    + Applied Processor:
        ChainProcessor False [15,16,17,18,19,20,22,24,25,26]
    + Details:
        We chained rule 15 to obtain the rules [27] .
* Step 21: ChainProcessor WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          16. n3(A,B,C,D,E)       -> c2(n30(A,F,C,D,E),n31(A,F,C,D,E))    [F >= 1 && A >= F && 1 + C >= F && F >= 1 + C && 1 + B >= F && F >= 1 + B && A >= D && D >= A] (?,1)
          17. m7(A,B,C,D,E)       -> c2(m8(F,G,0,D,E),m4(F,G,0,D,E))      [B >= G && G >= B && A >= F && F >= A]                                                         (1,1)
          18. n4(A,B,C,D,E)       -> m0(A,F,C,D,E)                        [F >= 1 && A >= F && 1 + B >= F && F >= 1 + B && 1 + C >= F && F >= 1 + C && A >= D && D >= A] (?,1)
          19. multiply(A,B,C,D,E) -> m7(A,B,C,D,E)                        True                                                                                           (1,2)
          20. m0(A,B,C,D,E)       -> n4(A,B,F,G,E)                        [A >= 1 && F >= 0 && A >= F && A >= G && G >= A && B >= F && F >= B]                           (?,2)
          22. m4(A,B,C,D,E)       -> n2(A,B,C,F,G)                        [B >= G && G >= B && C >= F && F >= C]                                                         (?,2)
          24. n21(A,B,C,D,E)      -> n3(A,0,F$,G$,E)                      [F$ >= 0 && A >= G$ && G$ >= A && 0 >= F$ && F$ >= 0]                                          (?,3)
          25. n2(A,B,C,D,E)       -> c2(n2(A,B,F,F$$,G$$),n21(A,B,F,D,E)) [B >= F                                                                                        (?,4)
                                                                           && 1 + C >= F                                                                                      
                                                                           && F >= 1 + C                                                                                      
                                                                           && B >= E                                                                                          
                                                                           && E >= B                                                                                          
                                                                           && 1 + D >= F                                                                                      
                                                                           && F >= 1 + D                                                                                      
                                                                           && B >= G$$                                                                                        
                                                                           && G$$ >= B                                                                                        
                                                                           && F >= F$$                                                                                        
                                                                           && F$$ >= F]                                                                                       
          26. n30(A,B,C,D,E)      -> n3(A,B,F$,G$,E)                      [F$ >= 0 && A >= G$ && G$ >= A && B >= F$ && F$ >= B]                                          (?,3)
          27. n31(A,B,C,D,E)      -> n4(A,0,F$,G$,E)                      [A >= 1 && F$ >= 0 && A >= F$ && A >= G$ && G$ >= A && 0 >= F$ && F$ >= 0]                     (?,3)
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(multiply,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n20,5)
          ;(n21,5)
          ;(n3,5)
          ;(n30,5)
          ;(n31,5)
          ;(n4,5)}
        Flow Graph:
          [16->{26,27},17->{22},18->{20},19->{17},20->{18},22->{25},24->{16},25->{24,25},26->{16},27->{18}]
        Sizebounds:
          (<16,0,A>, A) (<16,0,B>, 1 + A) (<16,0,C>, 1 + A) (<16,0,D>,     A) (<16,0,E>, B) 
          (<16,1,A>, A) (<16,1,B>, 1 + A) (<16,1,C>, 1 + A) (<16,1,D>,     A) (<16,1,E>, B) 
          (<17,0,A>, A) (<17,0,B>,     B) (<17,0,C>,     0) (<17,0,D>,     D) (<17,0,E>, E) 
          (<17,1,A>, A) (<17,1,B>,     B) (<17,1,C>,     0) (<17,1,D>,     D) (<17,1,E>, E) 
          (<18,0,A>, A) (<18,0,B>, 1 + A) (<18,0,C>, 1 + A) (<18,0,D>, 1 + A) (<18,0,E>, B) 
          (<19,0,A>, A) (<19,0,B>,     B) (<19,0,C>,     C) (<19,0,D>,     D) (<19,0,E>, E) 
          (<20,0,A>, A) (<20,0,B>, 1 + A) (<20,0,C>, 1 + A) (<20,0,D>, 1 + A) (<20,0,E>, B) 
          (<22,0,A>, A) (<22,0,B>,     B) (<22,0,C>,     ?) (<22,0,D>,     ?) (<22,0,E>, B) 
          (<24,0,A>, A) (<24,0,B>, 1 + A) (<24,0,C>, 1 + A) (<24,0,D>,     A) (<24,0,E>, B) 
          (<25,0,A>, A) (<25,0,B>,     B) (<25,0,C>,     ?) (<25,0,D>,     ?) (<25,0,E>, B) 
          (<26,0,A>, A) (<26,0,B>, 1 + A) (<26,0,C>, 1 + A) (<26,0,D>,     A) (<26,0,E>, B) 
          (<27,0,A>, A) (<27,0,B>, 1 + A) (<27,0,C>, 1 + A) (<27,0,D>, 1 + A) (<27,0,E>, B) 
    + Applied Processor:
        ChainProcessor False [16,17,18,19,20,22,24,25,26,27]
    + Details:
        We chained rule 16 to obtain the rules [28] .
* Step 22: UnreachableRules WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          17. m7(A,B,C,D,E)       -> c2(m8(F,G,0,D,E),m4(F,G,0,D,E))      [B >= G && G >= B && A >= F && F >= A]                                                         (1,1)
          18. n4(A,B,C,D,E)       -> m0(A,F,C,D,E)                        [F >= 1 && A >= F && 1 + B >= F && F >= 1 + B && 1 + C >= F && F >= 1 + C && A >= D && D >= A] (?,1)
          19. multiply(A,B,C,D,E) -> m7(A,B,C,D,E)                        True                                                                                           (1,2)
          20. m0(A,B,C,D,E)       -> n4(A,B,F,G,E)                        [A >= 1 && F >= 0 && A >= F && A >= G && G >= A && B >= F && F >= B]                           (?,2)
          22. m4(A,B,C,D,E)       -> n2(A,B,C,F,G)                        [B >= G && G >= B && C >= F && F >= C]                                                         (?,2)
          24. n21(A,B,C,D,E)      -> n3(A,0,F$,G$,E)                      [F$ >= 0 && A >= G$ && G$ >= A && 0 >= F$ && F$ >= 0]                                          (?,3)
          25. n2(A,B,C,D,E)       -> c2(n2(A,B,F,F$$,G$$),n21(A,B,F,D,E)) [B >= F                                                                                        (?,4)
                                                                           && 1 + C >= F                                                                                      
                                                                           && F >= 1 + C                                                                                      
                                                                           && B >= E                                                                                          
                                                                           && E >= B                                                                                          
                                                                           && 1 + D >= F                                                                                      
                                                                           && F >= 1 + D                                                                                      
                                                                           && B >= G$$                                                                                        
                                                                           && G$$ >= B                                                                                        
                                                                           && F >= F$$                                                                                        
                                                                           && F$$ >= F]                                                                                       
          26. n30(A,B,C,D,E)      -> n3(A,B,F$,G$,E)                      [F$ >= 0 && A >= G$ && G$ >= A && B >= F$ && F$ >= B]                                          (?,3)
          27. n31(A,B,C,D,E)      -> n4(A,0,F$,G$,E)                      [A >= 1 && F$ >= 0 && A >= F$ && A >= G$ && G$ >= A && 0 >= F$ && F$ >= 0]                     (?,3)
          28. n3(A,B,C,D,E)       -> c2(n3(A,F,F$$,G$$,E),n31(A,F,C,D,E)) [F >= 1                                                                                        (?,4)
                                                                           && A >= F                                                                                          
                                                                           && 1 + C >= F                                                                                      
                                                                           && F >= 1 + C                                                                                      
                                                                           && 1 + B >= F                                                                                      
                                                                           && F >= 1 + B                                                                                      
                                                                           && A >= D                                                                                          
                                                                           && D >= A                                                                                          
                                                                           && F$$ >= 0                                                                                        
                                                                           && A >= G$$                                                                                        
                                                                           && G$$ >= A                                                                                        
                                                                           && F >= F$$                                                                                        
                                                                           && F$$ >= F]                                                                                       
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(multiply,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n20,5)
          ;(n21,5)
          ;(n3,5)
          ;(n30,5)
          ;(n31,5)
          ;(n4,5)}
        Flow Graph:
          [17->{22},18->{20},19->{17},20->{18},22->{25},24->{28},25->{24,25},26->{28},27->{18},28->{27,28}]
        Sizebounds:
          (<17,0,A>, A) (<17,0,B>,     B) (<17,0,C>,     0) (<17,0,D>,     D) (<17,0,E>, E) 
          (<17,1,A>, A) (<17,1,B>,     B) (<17,1,C>,     0) (<17,1,D>,     D) (<17,1,E>, E) 
          (<18,0,A>, A) (<18,0,B>, 1 + A) (<18,0,C>, 1 + A) (<18,0,D>, 1 + A) (<18,0,E>, B) 
          (<19,0,A>, A) (<19,0,B>,     B) (<19,0,C>,     C) (<19,0,D>,     D) (<19,0,E>, E) 
          (<20,0,A>, A) (<20,0,B>, 1 + A) (<20,0,C>, 1 + A) (<20,0,D>, 1 + A) (<20,0,E>, B) 
          (<22,0,A>, A) (<22,0,B>,     B) (<22,0,C>,     ?) (<22,0,D>,     ?) (<22,0,E>, B) 
          (<24,0,A>, A) (<24,0,B>, 1 + A) (<24,0,C>, 1 + A) (<24,0,D>,     A) (<24,0,E>, B) 
          (<25,0,A>, A) (<25,0,B>,     B) (<25,0,C>,     ?) (<25,0,D>,     ?) (<25,0,E>, B) 
          (<26,0,A>, A) (<26,0,B>, 1 + A) (<26,0,C>, 1 + A) (<26,0,D>,     A) (<26,0,E>, B) 
          (<27,0,A>, A) (<27,0,B>, 1 + A) (<27,0,C>, 1 + A) (<27,0,D>, 1 + A) (<27,0,E>, B) 
          (<28,0,A>, A) (<28,0,B>, 1 + A) (<28,0,C>, 1 + A) (<28,0,D>,     A) (<28,0,E>, B) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [26]
* Step 23: ChainProcessor WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          17. m7(A,B,C,D,E)       -> c2(m8(F,G,0,D,E),m4(F,G,0,D,E))      [B >= G && G >= B && A >= F && F >= A]                                                         (1,1)
          18. n4(A,B,C,D,E)       -> m0(A,F,C,D,E)                        [F >= 1 && A >= F && 1 + B >= F && F >= 1 + B && 1 + C >= F && F >= 1 + C && A >= D && D >= A] (?,1)
          19. multiply(A,B,C,D,E) -> m7(A,B,C,D,E)                        True                                                                                           (1,2)
          20. m0(A,B,C,D,E)       -> n4(A,B,F,G,E)                        [A >= 1 && F >= 0 && A >= F && A >= G && G >= A && B >= F && F >= B]                           (?,2)
          22. m4(A,B,C,D,E)       -> n2(A,B,C,F,G)                        [B >= G && G >= B && C >= F && F >= C]                                                         (?,2)
          24. n21(A,B,C,D,E)      -> n3(A,0,F$,G$,E)                      [F$ >= 0 && A >= G$ && G$ >= A && 0 >= F$ && F$ >= 0]                                          (?,3)
          25. n2(A,B,C,D,E)       -> c2(n2(A,B,F,F$$,G$$),n21(A,B,F,D,E)) [B >= F                                                                                        (?,4)
                                                                           && 1 + C >= F                                                                                      
                                                                           && F >= 1 + C                                                                                      
                                                                           && B >= E                                                                                          
                                                                           && E >= B                                                                                          
                                                                           && 1 + D >= F                                                                                      
                                                                           && F >= 1 + D                                                                                      
                                                                           && B >= G$$                                                                                        
                                                                           && G$$ >= B                                                                                        
                                                                           && F >= F$$                                                                                        
                                                                           && F$$ >= F]                                                                                       
          27. n31(A,B,C,D,E)      -> n4(A,0,F$,G$,E)                      [A >= 1 && F$ >= 0 && A >= F$ && A >= G$ && G$ >= A && 0 >= F$ && F$ >= 0]                     (?,3)
          28. n3(A,B,C,D,E)       -> c2(n3(A,F,F$$,G$$,E),n31(A,F,C,D,E)) [F >= 1                                                                                        (?,4)
                                                                           && A >= F                                                                                          
                                                                           && 1 + C >= F                                                                                      
                                                                           && F >= 1 + C                                                                                      
                                                                           && 1 + B >= F                                                                                      
                                                                           && F >= 1 + B                                                                                      
                                                                           && A >= D                                                                                          
                                                                           && D >= A                                                                                          
                                                                           && F$$ >= 0                                                                                        
                                                                           && A >= G$$                                                                                        
                                                                           && G$$ >= A                                                                                        
                                                                           && F >= F$$                                                                                        
                                                                           && F$$ >= F]                                                                                       
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(multiply,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n20,5)
          ;(n21,5)
          ;(n3,5)
          ;(n30,5)
          ;(n31,5)
          ;(n4,5)}
        Flow Graph:
          [17->{22},18->{20},19->{17},20->{18},22->{25},24->{28},25->{24,25},27->{18},28->{27,28}]
        Sizebounds:
          (<17,0,A>, A) (<17,0,B>,     B) (<17,0,C>,     0) (<17,0,D>,     D) (<17,0,E>, E) 
          (<17,1,A>, A) (<17,1,B>,     B) (<17,1,C>,     0) (<17,1,D>,     D) (<17,1,E>, E) 
          (<18,0,A>, A) (<18,0,B>, 1 + A) (<18,0,C>, 1 + A) (<18,0,D>, 1 + A) (<18,0,E>, B) 
          (<19,0,A>, A) (<19,0,B>,     B) (<19,0,C>,     C) (<19,0,D>,     D) (<19,0,E>, E) 
          (<20,0,A>, A) (<20,0,B>, 1 + A) (<20,0,C>, 1 + A) (<20,0,D>, 1 + A) (<20,0,E>, B) 
          (<22,0,A>, A) (<22,0,B>,     B) (<22,0,C>,     ?) (<22,0,D>,     ?) (<22,0,E>, B) 
          (<24,0,A>, A) (<24,0,B>, 1 + A) (<24,0,C>, 1 + A) (<24,0,D>,     A) (<24,0,E>, B) 
          (<25,0,A>, A) (<25,0,B>,     B) (<25,0,C>,     ?) (<25,0,D>,     ?) (<25,0,E>, B) 
          (<27,0,A>, A) (<27,0,B>, 1 + A) (<27,0,C>, 1 + A) (<27,0,D>, 1 + A) (<27,0,E>, B) 
          (<28,0,A>, A) (<28,0,B>, 1 + A) (<28,0,C>, 1 + A) (<28,0,D>,     A) (<28,0,E>, B) 
    + Applied Processor:
        ChainProcessor False [17,18,19,20,22,24,25,27,28]
    + Details:
        We chained rule 17 to obtain the rules [29] .
* Step 24: UnreachableRules WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          18. n4(A,B,C,D,E)       -> m0(A,F,C,D,E)                        [F >= 1 && A >= F && 1 + B >= F && F >= 1 + B && 1 + C >= F && F >= 1 + C && A >= D && D >= A] (?,1)
          19. multiply(A,B,C,D,E) -> m7(A,B,C,D,E)                        True                                                                                           (1,2)
          20. m0(A,B,C,D,E)       -> n4(A,B,F,G,E)                        [A >= 1 && F >= 0 && A >= F && A >= G && G >= A && B >= F && F >= B]                           (?,2)
          22. m4(A,B,C,D,E)       -> n2(A,B,C,F,G)                        [B >= G && G >= B && C >= F && F >= C]                                                         (?,2)
          24. n21(A,B,C,D,E)      -> n3(A,0,F$,G$,E)                      [F$ >= 0 && A >= G$ && G$ >= A && 0 >= F$ && F$ >= 0]                                          (?,3)
          25. n2(A,B,C,D,E)       -> c2(n2(A,B,F,F$$,G$$),n21(A,B,F,D,E)) [B >= F                                                                                        (?,4)
                                                                           && 1 + C >= F                                                                                      
                                                                           && F >= 1 + C                                                                                      
                                                                           && B >= E                                                                                          
                                                                           && E >= B                                                                                          
                                                                           && 1 + D >= F                                                                                      
                                                                           && F >= 1 + D                                                                                      
                                                                           && B >= G$$                                                                                        
                                                                           && G$$ >= B                                                                                        
                                                                           && F >= F$$                                                                                        
                                                                           && F$$ >= F]                                                                                       
          27. n31(A,B,C,D,E)      -> n4(A,0,F$,G$,E)                      [A >= 1 && F$ >= 0 && A >= F$ && A >= G$ && G$ >= A && 0 >= F$ && F$ >= 0]                     (?,3)
          28. n3(A,B,C,D,E)       -> c2(n3(A,F,F$$,G$$,E),n31(A,F,C,D,E)) [F >= 1                                                                                        (?,4)
                                                                           && A >= F                                                                                          
                                                                           && 1 + C >= F                                                                                      
                                                                           && F >= 1 + C                                                                                      
                                                                           && 1 + B >= F                                                                                      
                                                                           && F >= 1 + B                                                                                      
                                                                           && A >= D                                                                                          
                                                                           && D >= A                                                                                          
                                                                           && F$$ >= 0                                                                                        
                                                                           && A >= G$$                                                                                        
                                                                           && G$$ >= A                                                                                        
                                                                           && F >= F$$                                                                                        
                                                                           && F$$ >= F]                                                                                       
          29. m7(A,B,C,D,E)       -> c2(m8(F,G,0,D,E),n2(F,G,0,F$,G$))    [B >= G && G >= B && A >= F && F >= A && G >= G$ && G$ >= G && 0 >= F$ && F$ >= 0]             (1,3)
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(multiply,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n20,5)
          ;(n21,5)
          ;(n3,5)
          ;(n30,5)
          ;(n31,5)
          ;(n4,5)}
        Flow Graph:
          [18->{20},19->{29},20->{18},22->{25},24->{28},25->{24,25},27->{18},28->{27,28},29->{25}]
        Sizebounds:
          (<18,0,A>, A) (<18,0,B>, 1 + A) (<18,0,C>, 1 + A) (<18,0,D>, 1 + A) (<18,0,E>, B) 
          (<19,0,A>, A) (<19,0,B>,     B) (<19,0,C>,     C) (<19,0,D>,     D) (<19,0,E>, E) 
          (<20,0,A>, A) (<20,0,B>, 1 + A) (<20,0,C>, 1 + A) (<20,0,D>, 1 + A) (<20,0,E>, B) 
          (<22,0,A>, A) (<22,0,B>,     B) (<22,0,C>,     ?) (<22,0,D>,     ?) (<22,0,E>, B) 
          (<24,0,A>, A) (<24,0,B>, 1 + A) (<24,0,C>, 1 + A) (<24,0,D>,     A) (<24,0,E>, B) 
          (<25,0,A>, A) (<25,0,B>,     B) (<25,0,C>,     ?) (<25,0,D>,     ?) (<25,0,E>, B) 
          (<27,0,A>, A) (<27,0,B>, 1 + A) (<27,0,C>, 1 + A) (<27,0,D>, 1 + A) (<27,0,E>, B) 
          (<28,0,A>, A) (<28,0,B>, 1 + A) (<28,0,C>, 1 + A) (<28,0,D>,     A) (<28,0,E>, B) 
          (<29,0,A>, A) (<29,0,B>,     B) (<29,0,C>,     ?) (<29,0,D>,     ?) (<29,0,E>, B) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [22]
* Step 25: ChainProcessor WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          18. n4(A,B,C,D,E)       -> m0(A,F,C,D,E)                        [F >= 1 && A >= F && 1 + B >= F && F >= 1 + B && 1 + C >= F && F >= 1 + C && A >= D && D >= A] (?,1)
          19. multiply(A,B,C,D,E) -> m7(A,B,C,D,E)                        True                                                                                           (1,2)
          20. m0(A,B,C,D,E)       -> n4(A,B,F,G,E)                        [A >= 1 && F >= 0 && A >= F && A >= G && G >= A && B >= F && F >= B]                           (?,2)
          24. n21(A,B,C,D,E)      -> n3(A,0,F$,G$,E)                      [F$ >= 0 && A >= G$ && G$ >= A && 0 >= F$ && F$ >= 0]                                          (?,3)
          25. n2(A,B,C,D,E)       -> c2(n2(A,B,F,F$$,G$$),n21(A,B,F,D,E)) [B >= F                                                                                        (?,4)
                                                                           && 1 + C >= F                                                                                      
                                                                           && F >= 1 + C                                                                                      
                                                                           && B >= E                                                                                          
                                                                           && E >= B                                                                                          
                                                                           && 1 + D >= F                                                                                      
                                                                           && F >= 1 + D                                                                                      
                                                                           && B >= G$$                                                                                        
                                                                           && G$$ >= B                                                                                        
                                                                           && F >= F$$                                                                                        
                                                                           && F$$ >= F]                                                                                       
          27. n31(A,B,C,D,E)      -> n4(A,0,F$,G$,E)                      [A >= 1 && F$ >= 0 && A >= F$ && A >= G$ && G$ >= A && 0 >= F$ && F$ >= 0]                     (?,3)
          28. n3(A,B,C,D,E)       -> c2(n3(A,F,F$$,G$$,E),n31(A,F,C,D,E)) [F >= 1                                                                                        (?,4)
                                                                           && A >= F                                                                                          
                                                                           && 1 + C >= F                                                                                      
                                                                           && F >= 1 + C                                                                                      
                                                                           && 1 + B >= F                                                                                      
                                                                           && F >= 1 + B                                                                                      
                                                                           && A >= D                                                                                          
                                                                           && D >= A                                                                                          
                                                                           && F$$ >= 0                                                                                        
                                                                           && A >= G$$                                                                                        
                                                                           && G$$ >= A                                                                                        
                                                                           && F >= F$$                                                                                        
                                                                           && F$$ >= F]                                                                                       
          29. m7(A,B,C,D,E)       -> c2(m8(F,G,0,D,E),n2(F,G,0,F$,G$))    [B >= G && G >= B && A >= F && F >= A && G >= G$ && G$ >= G && 0 >= F$ && F$ >= 0]             (1,3)
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(multiply,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n20,5)
          ;(n21,5)
          ;(n3,5)
          ;(n30,5)
          ;(n31,5)
          ;(n4,5)}
        Flow Graph:
          [18->{20},19->{29},20->{18},24->{28},25->{24,25},27->{18},28->{27,28},29->{25}]
        Sizebounds:
          (<18,0,A>, A) (<18,0,B>, 1 + A) (<18,0,C>, 1 + A) (<18,0,D>, 1 + A) (<18,0,E>, B) 
          (<19,0,A>, A) (<19,0,B>,     B) (<19,0,C>,     C) (<19,0,D>,     D) (<19,0,E>, E) 
          (<20,0,A>, A) (<20,0,B>, 1 + A) (<20,0,C>, 1 + A) (<20,0,D>, 1 + A) (<20,0,E>, B) 
          (<24,0,A>, A) (<24,0,B>, 1 + A) (<24,0,C>, 1 + A) (<24,0,D>,     A) (<24,0,E>, B) 
          (<25,0,A>, A) (<25,0,B>,     B) (<25,0,C>,     ?) (<25,0,D>,     ?) (<25,0,E>, B) 
          (<27,0,A>, A) (<27,0,B>, 1 + A) (<27,0,C>, 1 + A) (<27,0,D>, 1 + A) (<27,0,E>, B) 
          (<28,0,A>, A) (<28,0,B>, 1 + A) (<28,0,C>, 1 + A) (<28,0,D>,     A) (<28,0,E>, B) 
          (<29,0,A>, A) (<29,0,B>,     B) (<29,0,C>,     ?) (<29,0,D>,     ?) (<29,0,E>, B) 
    + Applied Processor:
        ChainProcessor False [18,19,20,24,25,27,28,29]
    + Details:
        We chained rule 18 to obtain the rules [30] .
* Step 26: UnreachableRules WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          19. multiply(A,B,C,D,E) -> m7(A,B,C,D,E)                        True                                                                               (1,2)
          20. m0(A,B,C,D,E)       -> n4(A,B,F,G,E)                        [A >= 1 && F >= 0 && A >= F && A >= G && G >= A && B >= F && F >= B]               (?,2)
          24. n21(A,B,C,D,E)      -> n3(A,0,F$,G$,E)                      [F$ >= 0 && A >= G$ && G$ >= A && 0 >= F$ && F$ >= 0]                              (?,3)
          25. n2(A,B,C,D,E)       -> c2(n2(A,B,F,F$$,G$$),n21(A,B,F,D,E)) [B >= F                                                                            (?,4)
                                                                           && 1 + C >= F                                                                          
                                                                           && F >= 1 + C                                                                          
                                                                           && B >= E                                                                              
                                                                           && E >= B                                                                              
                                                                           && 1 + D >= F                                                                          
                                                                           && F >= 1 + D                                                                          
                                                                           && B >= G$$                                                                            
                                                                           && G$$ >= B                                                                            
                                                                           && F >= F$$                                                                            
                                                                           && F$$ >= F]                                                                           
          27. n31(A,B,C,D,E)      -> n4(A,0,F$,G$,E)                      [A >= 1 && F$ >= 0 && A >= F$ && A >= G$ && G$ >= A && 0 >= F$ && F$ >= 0]         (?,3)
          28. n3(A,B,C,D,E)       -> c2(n3(A,F,F$$,G$$,E),n31(A,F,C,D,E)) [F >= 1                                                                            (?,4)
                                                                           && A >= F                                                                              
                                                                           && 1 + C >= F                                                                          
                                                                           && F >= 1 + C                                                                          
                                                                           && 1 + B >= F                                                                          
                                                                           && F >= 1 + B                                                                          
                                                                           && A >= D                                                                              
                                                                           && D >= A                                                                              
                                                                           && F$$ >= 0                                                                            
                                                                           && A >= G$$                                                                            
                                                                           && G$$ >= A                                                                            
                                                                           && F >= F$$                                                                            
                                                                           && F$$ >= F]                                                                           
          29. m7(A,B,C,D,E)       -> c2(m8(F,G,0,D,E),n2(F,G,0,F$,G$))    [B >= G && G >= B && A >= F && F >= A && G >= G$ && G$ >= G && 0 >= F$ && F$ >= 0] (1,3)
          30. n4(A,B,C,D,E)       -> n4(A,F,F$,G$,E)                      [F >= 1                                                                            (?,3)
                                                                           && A >= F                                                                              
                                                                           && 1 + B >= F                                                                          
                                                                           && F >= 1 + B                                                                          
                                                                           && 1 + C >= F                                                                          
                                                                           && F >= 1 + C                                                                          
                                                                           && A >= D                                                                              
                                                                           && D >= A                                                                              
                                                                           && A >= 1                                                                              
                                                                           && F$ >= 0                                                                             
                                                                           && A >= F$                                                                             
                                                                           && A >= G$                                                                             
                                                                           && G$ >= A                                                                             
                                                                           && F >= F$                                                                             
                                                                           && F$ >= F]                                                                            
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(multiply,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n20,5)
          ;(n21,5)
          ;(n3,5)
          ;(n30,5)
          ;(n31,5)
          ;(n4,5)}
        Flow Graph:
          [19->{29},20->{30},24->{28},25->{24,25},27->{30},28->{27,28},29->{25},30->{30}]
        Sizebounds:
          (<19,0,A>, A) (<19,0,B>,     B) (<19,0,C>,     C) (<19,0,D>,     D) (<19,0,E>, E) 
          (<20,0,A>, A) (<20,0,B>, 1 + A) (<20,0,C>, 1 + A) (<20,0,D>, 1 + A) (<20,0,E>, B) 
          (<24,0,A>, A) (<24,0,B>, 1 + A) (<24,0,C>, 1 + A) (<24,0,D>,     A) (<24,0,E>, B) 
          (<25,0,A>, A) (<25,0,B>,     B) (<25,0,C>,     ?) (<25,0,D>,     ?) (<25,0,E>, B) 
          (<27,0,A>, A) (<27,0,B>, 1 + A) (<27,0,C>, 1 + A) (<27,0,D>, 1 + A) (<27,0,E>, B) 
          (<28,0,A>, A) (<28,0,B>, 1 + A) (<28,0,C>, 1 + A) (<28,0,D>,     A) (<28,0,E>, B) 
          (<29,0,A>, A) (<29,0,B>,     B) (<29,0,C>,     ?) (<29,0,D>,     ?) (<29,0,E>, B) 
          (<30,0,A>, A) (<30,0,B>, 1 + A) (<30,0,C>, 1 + A) (<30,0,D>, 1 + A) (<30,0,E>, B) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [20]
* Step 27: ChainProcessor WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          19. multiply(A,B,C,D,E) -> m7(A,B,C,D,E)                        True                                                                               (1,2)
          24. n21(A,B,C,D,E)      -> n3(A,0,F$,G$,E)                      [F$ >= 0 && A >= G$ && G$ >= A && 0 >= F$ && F$ >= 0]                              (?,3)
          25. n2(A,B,C,D,E)       -> c2(n2(A,B,F,F$$,G$$),n21(A,B,F,D,E)) [B >= F                                                                            (?,4)
                                                                           && 1 + C >= F                                                                          
                                                                           && F >= 1 + C                                                                          
                                                                           && B >= E                                                                              
                                                                           && E >= B                                                                              
                                                                           && 1 + D >= F                                                                          
                                                                           && F >= 1 + D                                                                          
                                                                           && B >= G$$                                                                            
                                                                           && G$$ >= B                                                                            
                                                                           && F >= F$$                                                                            
                                                                           && F$$ >= F]                                                                           
          27. n31(A,B,C,D,E)      -> n4(A,0,F$,G$,E)                      [A >= 1 && F$ >= 0 && A >= F$ && A >= G$ && G$ >= A && 0 >= F$ && F$ >= 0]         (?,3)
          28. n3(A,B,C,D,E)       -> c2(n3(A,F,F$$,G$$,E),n31(A,F,C,D,E)) [F >= 1                                                                            (?,4)
                                                                           && A >= F                                                                              
                                                                           && 1 + C >= F                                                                          
                                                                           && F >= 1 + C                                                                          
                                                                           && 1 + B >= F                                                                          
                                                                           && F >= 1 + B                                                                          
                                                                           && A >= D                                                                              
                                                                           && D >= A                                                                              
                                                                           && F$$ >= 0                                                                            
                                                                           && A >= G$$                                                                            
                                                                           && G$$ >= A                                                                            
                                                                           && F >= F$$                                                                            
                                                                           && F$$ >= F]                                                                           
          29. m7(A,B,C,D,E)       -> c2(m8(F,G,0,D,E),n2(F,G,0,F$,G$))    [B >= G && G >= B && A >= F && F >= A && G >= G$ && G$ >= G && 0 >= F$ && F$ >= 0] (1,3)
          30. n4(A,B,C,D,E)       -> n4(A,F,F$,G$,E)                      [F >= 1                                                                            (?,3)
                                                                           && A >= F                                                                              
                                                                           && 1 + B >= F                                                                          
                                                                           && F >= 1 + B                                                                          
                                                                           && 1 + C >= F                                                                          
                                                                           && F >= 1 + C                                                                          
                                                                           && A >= D                                                                              
                                                                           && D >= A                                                                              
                                                                           && A >= 1                                                                              
                                                                           && F$ >= 0                                                                             
                                                                           && A >= F$                                                                             
                                                                           && A >= G$                                                                             
                                                                           && G$ >= A                                                                             
                                                                           && F >= F$                                                                             
                                                                           && F$ >= F]                                                                            
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(multiply,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n20,5)
          ;(n21,5)
          ;(n3,5)
          ;(n30,5)
          ;(n31,5)
          ;(n4,5)}
        Flow Graph:
          [19->{29},24->{28},25->{24,25},27->{30},28->{27,28},29->{25},30->{30}]
        Sizebounds:
          (<19,0,A>, A) (<19,0,B>,     B) (<19,0,C>,     C) (<19,0,D>,     D) (<19,0,E>, E) 
          (<24,0,A>, A) (<24,0,B>, 1 + A) (<24,0,C>, 1 + A) (<24,0,D>,     A) (<24,0,E>, B) 
          (<25,0,A>, A) (<25,0,B>,     B) (<25,0,C>,     ?) (<25,0,D>,     ?) (<25,0,E>, B) 
          (<27,0,A>, A) (<27,0,B>, 1 + A) (<27,0,C>, 1 + A) (<27,0,D>, 1 + A) (<27,0,E>, B) 
          (<28,0,A>, A) (<28,0,B>, 1 + A) (<28,0,C>, 1 + A) (<28,0,D>,     A) (<28,0,E>, B) 
          (<29,0,A>, A) (<29,0,B>,     B) (<29,0,C>,     ?) (<29,0,D>,     ?) (<29,0,E>, B) 
          (<30,0,A>, A) (<30,0,B>, 1 + A) (<30,0,C>, 1 + A) (<30,0,D>, 1 + A) (<30,0,E>, B) 
    + Applied Processor:
        ChainProcessor False [19,24,25,27,28,29,30]
    + Details:
        We chained rule 25 to obtain the rules [31] .
* Step 28: UnreachableRules WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          19. multiply(A,B,C,D,E) -> m7(A,B,C,D,E)                               True                                                                               (1,2)
          24. n21(A,B,C,D,E)      -> n3(A,0,F$,G$,E)                             [F$ >= 0 && A >= G$ && G$ >= A && 0 >= F$ && F$ >= 0]                              (?,3)
          27. n31(A,B,C,D,E)      -> n4(A,0,F$,G$,E)                             [A >= 1 && F$ >= 0 && A >= F$ && A >= G$ && G$ >= A && 0 >= F$ && F$ >= 0]         (?,3)
          28. n3(A,B,C,D,E)       -> c2(n3(A,F,F$$,G$$,E),n31(A,F,C,D,E))        [F >= 1                                                                            (?,4)
                                                                                  && A >= F                                                                              
                                                                                  && 1 + C >= F                                                                          
                                                                                  && F >= 1 + C                                                                          
                                                                                  && 1 + B >= F                                                                          
                                                                                  && F >= 1 + B                                                                          
                                                                                  && A >= D                                                                              
                                                                                  && D >= A                                                                              
                                                                                  && F$$ >= 0                                                                            
                                                                                  && A >= G$$                                                                            
                                                                                  && G$$ >= A                                                                            
                                                                                  && F >= F$$                                                                            
                                                                                  && F$$ >= F]                                                                           
          29. m7(A,B,C,D,E)       -> c2(m8(F,G,0,D,E),n2(F,G,0,F$,G$))           [B >= G && G >= B && A >= F && F >= A && G >= G$ && G$ >= G && 0 >= F$ && F$ >= 0] (1,3)
          30. n4(A,B,C,D,E)       -> n4(A,F,F$,G$,E)                             [F >= 1                                                                            (?,3)
                                                                                  && A >= F                                                                              
                                                                                  && 1 + B >= F                                                                          
                                                                                  && F >= 1 + B                                                                          
                                                                                  && 1 + C >= F                                                                          
                                                                                  && F >= 1 + C                                                                          
                                                                                  && A >= D                                                                              
                                                                                  && D >= A                                                                              
                                                                                  && A >= 1                                                                              
                                                                                  && F$ >= 0                                                                             
                                                                                  && A >= F$                                                                             
                                                                                  && A >= G$                                                                             
                                                                                  && G$ >= A                                                                             
                                                                                  && F >= F$                                                                             
                                                                                  && F$ >= F]                                                                            
          31. n2(A,B,C,D,E)       -> c2(n2(A,B,F,F$$,G$$),n3(A,0,F$$$,G$$$,G$$)) [B >= F                                                                            (?,7)
                                                                                  && 1 + C >= F                                                                          
                                                                                  && F >= 1 + C                                                                          
                                                                                  && B >= E                                                                              
                                                                                  && E >= B                                                                              
                                                                                  && 1 + D >= F                                                                          
                                                                                  && F >= 1 + D                                                                          
                                                                                  && B >= G$$                                                                            
                                                                                  && G$$ >= B                                                                            
                                                                                  && F >= F$$                                                                            
                                                                                  && F$$ >= F                                                                            
                                                                                  && F$$$ >= 0                                                                           
                                                                                  && A >= G$$$                                                                           
                                                                                  && G$$$ >= A                                                                           
                                                                                  && 0 >= F$$$                                                                           
                                                                                  && F$$$ >= 0]                                                                          
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(multiply,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n20,5)
          ;(n21,5)
          ;(n3,5)
          ;(n30,5)
          ;(n31,5)
          ;(n4,5)}
        Flow Graph:
          [19->{29},24->{28},27->{30},28->{27,28},29->{31},30->{30},31->{28,31}]
        Sizebounds:
          (<19,0,A>, A) (<19,0,B>,     B) (<19,0,C>,     C) (<19,0,D>,     D) (<19,0,E>, E) 
          (<24,0,A>, A) (<24,0,B>, 1 + A) (<24,0,C>, 1 + A) (<24,0,D>,     A) (<24,0,E>, B) 
          (<27,0,A>, A) (<27,0,B>, 1 + A) (<27,0,C>, 1 + A) (<27,0,D>, 1 + A) (<27,0,E>, B) 
          (<28,0,A>, A) (<28,0,B>, 1 + A) (<28,0,C>, 1 + A) (<28,0,D>,     A) (<28,0,E>, B) 
          (<29,0,A>, A) (<29,0,B>,     B) (<29,0,C>,     ?) (<29,0,D>,     ?) (<29,0,E>, B) 
          (<30,0,A>, A) (<30,0,B>, 1 + A) (<30,0,C>, 1 + A) (<30,0,D>, 1 + A) (<30,0,E>, B) 
          (<31,0,A>, A) (<31,0,B>, 1 + A) (<31,0,C>, 1 + A) (<31,0,D>,     A) (<31,0,E>, B) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [24]
* Step 29: ChainProcessor WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          19. multiply(A,B,C,D,E) -> m7(A,B,C,D,E)                               True                                                                               (1,2)
          27. n31(A,B,C,D,E)      -> n4(A,0,F$,G$,E)                             [A >= 1 && F$ >= 0 && A >= F$ && A >= G$ && G$ >= A && 0 >= F$ && F$ >= 0]         (?,3)
          28. n3(A,B,C,D,E)       -> c2(n3(A,F,F$$,G$$,E),n31(A,F,C,D,E))        [F >= 1                                                                            (?,4)
                                                                                  && A >= F                                                                              
                                                                                  && 1 + C >= F                                                                          
                                                                                  && F >= 1 + C                                                                          
                                                                                  && 1 + B >= F                                                                          
                                                                                  && F >= 1 + B                                                                          
                                                                                  && A >= D                                                                              
                                                                                  && D >= A                                                                              
                                                                                  && F$$ >= 0                                                                            
                                                                                  && A >= G$$                                                                            
                                                                                  && G$$ >= A                                                                            
                                                                                  && F >= F$$                                                                            
                                                                                  && F$$ >= F]                                                                           
          29. m7(A,B,C,D,E)       -> c2(m8(F,G,0,D,E),n2(F,G,0,F$,G$))           [B >= G && G >= B && A >= F && F >= A && G >= G$ && G$ >= G && 0 >= F$ && F$ >= 0] (1,3)
          30. n4(A,B,C,D,E)       -> n4(A,F,F$,G$,E)                             [F >= 1                                                                            (?,3)
                                                                                  && A >= F                                                                              
                                                                                  && 1 + B >= F                                                                          
                                                                                  && F >= 1 + B                                                                          
                                                                                  && 1 + C >= F                                                                          
                                                                                  && F >= 1 + C                                                                          
                                                                                  && A >= D                                                                              
                                                                                  && D >= A                                                                              
                                                                                  && A >= 1                                                                              
                                                                                  && F$ >= 0                                                                             
                                                                                  && A >= F$                                                                             
                                                                                  && A >= G$                                                                             
                                                                                  && G$ >= A                                                                             
                                                                                  && F >= F$                                                                             
                                                                                  && F$ >= F]                                                                            
          31. n2(A,B,C,D,E)       -> c2(n2(A,B,F,F$$,G$$),n3(A,0,F$$$,G$$$,G$$)) [B >= F                                                                            (?,7)
                                                                                  && 1 + C >= F                                                                          
                                                                                  && F >= 1 + C                                                                          
                                                                                  && B >= E                                                                              
                                                                                  && E >= B                                                                              
                                                                                  && 1 + D >= F                                                                          
                                                                                  && F >= 1 + D                                                                          
                                                                                  && B >= G$$                                                                            
                                                                                  && G$$ >= B                                                                            
                                                                                  && F >= F$$                                                                            
                                                                                  && F$$ >= F                                                                            
                                                                                  && F$$$ >= 0                                                                           
                                                                                  && A >= G$$$                                                                           
                                                                                  && G$$$ >= A                                                                           
                                                                                  && 0 >= F$$$                                                                           
                                                                                  && F$$$ >= 0]                                                                          
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(multiply,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n20,5)
          ;(n21,5)
          ;(n3,5)
          ;(n30,5)
          ;(n31,5)
          ;(n4,5)}
        Flow Graph:
          [19->{29},27->{30},28->{27,28},29->{31},30->{30},31->{28,31}]
        Sizebounds:
          (<19,0,A>, A) (<19,0,B>,     B) (<19,0,C>,     C) (<19,0,D>,     D) (<19,0,E>, E) 
          (<27,0,A>, A) (<27,0,B>, 1 + A) (<27,0,C>, 1 + A) (<27,0,D>, 1 + A) (<27,0,E>, B) 
          (<28,0,A>, A) (<28,0,B>, 1 + A) (<28,0,C>, 1 + A) (<28,0,D>,     A) (<28,0,E>, B) 
          (<29,0,A>, A) (<29,0,B>,     B) (<29,0,C>,     ?) (<29,0,D>,     ?) (<29,0,E>, B) 
          (<30,0,A>, A) (<30,0,B>, 1 + A) (<30,0,C>, 1 + A) (<30,0,D>, 1 + A) (<30,0,E>, B) 
          (<31,0,A>, A) (<31,0,B>, 1 + A) (<31,0,C>, 1 + A) (<31,0,D>,     A) (<31,0,E>, B) 
    + Applied Processor:
        ChainProcessor False [19,27,28,29,30,31]
    + Details:
        We chained rule 28 to obtain the rules [32] .
* Step 30: UnreachableRules WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          19. multiply(A,B,C,D,E) -> m7(A,B,C,D,E)                               True                                                                               (1,2)
          27. n31(A,B,C,D,E)      -> n4(A,0,F$,G$,E)                             [A >= 1 && F$ >= 0 && A >= F$ && A >= G$ && G$ >= A && 0 >= F$ && F$ >= 0]         (?,3)
          29. m7(A,B,C,D,E)       -> c2(m8(F,G,0,D,E),n2(F,G,0,F$,G$))           [B >= G && G >= B && A >= F && F >= A && G >= G$ && G$ >= G && 0 >= F$ && F$ >= 0] (1,3)
          30. n4(A,B,C,D,E)       -> n4(A,F,F$,G$,E)                             [F >= 1                                                                            (?,3)
                                                                                  && A >= F                                                                              
                                                                                  && 1 + B >= F                                                                          
                                                                                  && F >= 1 + B                                                                          
                                                                                  && 1 + C >= F                                                                          
                                                                                  && F >= 1 + C                                                                          
                                                                                  && A >= D                                                                              
                                                                                  && D >= A                                                                              
                                                                                  && A >= 1                                                                              
                                                                                  && F$ >= 0                                                                             
                                                                                  && A >= F$                                                                             
                                                                                  && A >= G$                                                                             
                                                                                  && G$ >= A                                                                             
                                                                                  && F >= F$                                                                             
                                                                                  && F$ >= F]                                                                            
          31. n2(A,B,C,D,E)       -> c2(n2(A,B,F,F$$,G$$),n3(A,0,F$$$,G$$$,G$$)) [B >= F                                                                            (?,7)
                                                                                  && 1 + C >= F                                                                          
                                                                                  && F >= 1 + C                                                                          
                                                                                  && B >= E                                                                              
                                                                                  && E >= B                                                                              
                                                                                  && 1 + D >= F                                                                          
                                                                                  && F >= 1 + D                                                                          
                                                                                  && B >= G$$                                                                            
                                                                                  && G$$ >= B                                                                            
                                                                                  && F >= F$$                                                                            
                                                                                  && F$$ >= F                                                                            
                                                                                  && F$$$ >= 0                                                                           
                                                                                  && A >= G$$$                                                                           
                                                                                  && G$$$ >= A                                                                           
                                                                                  && 0 >= F$$$                                                                           
                                                                                  && F$$$ >= 0]                                                                          
          32. n3(A,B,C,D,E)       -> c2(n3(A,F,F$$,G$$,E),n4(A,0,F$$$,G$$$,E))   [F >= 1                                                                            (?,7)
                                                                                  && A >= F                                                                              
                                                                                  && 1 + C >= F                                                                          
                                                                                  && F >= 1 + C                                                                          
                                                                                  && 1 + B >= F                                                                          
                                                                                  && F >= 1 + B                                                                          
                                                                                  && A >= D                                                                              
                                                                                  && D >= A                                                                              
                                                                                  && F$$ >= 0                                                                            
                                                                                  && A >= G$$                                                                            
                                                                                  && G$$ >= A                                                                            
                                                                                  && F >= F$$                                                                            
                                                                                  && F$$ >= F                                                                            
                                                                                  && A >= 1                                                                              
                                                                                  && F$$$ >= 0                                                                           
                                                                                  && A >= F$$$                                                                           
                                                                                  && A >= G$$$                                                                           
                                                                                  && G$$$ >= A                                                                           
                                                                                  && 0 >= F$$$                                                                           
                                                                                  && F$$$ >= 0]                                                                          
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(multiply,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n20,5)
          ;(n21,5)
          ;(n3,5)
          ;(n30,5)
          ;(n31,5)
          ;(n4,5)}
        Flow Graph:
          [19->{29},27->{30},29->{31},30->{30},31->{31,32},32->{30,32}]
        Sizebounds:
          (<19,0,A>, A) (<19,0,B>,     B) (<19,0,C>,     C) (<19,0,D>,     D) (<19,0,E>, E) 
          (<27,0,A>, A) (<27,0,B>, 1 + A) (<27,0,C>, 1 + A) (<27,0,D>, 1 + A) (<27,0,E>, B) 
          (<29,0,A>, A) (<29,0,B>,     B) (<29,0,C>,     ?) (<29,0,D>,     ?) (<29,0,E>, B) 
          (<30,0,A>, A) (<30,0,B>, 1 + A) (<30,0,C>, 1 + A) (<30,0,D>, 1 + A) (<30,0,E>, B) 
          (<31,0,A>, A) (<31,0,B>, 1 + A) (<31,0,C>, 1 + A) (<31,0,D>,     A) (<31,0,E>, B) 
          (<32,0,A>, A) (<32,0,B>, 1 + A) (<32,0,C>, 1 + A) (<32,0,D>, 1 + A) (<32,0,E>, B) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [27]
* Step 31: LocalSizeboundsProc WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          19. multiply(A,B,C,D,E) -> m7(A,B,C,D,E)                               True                                                                               (1,2)
          29. m7(A,B,C,D,E)       -> c2(m8(F,G,0,D,E),n2(F,G,0,F$,G$))           [B >= G && G >= B && A >= F && F >= A && G >= G$ && G$ >= G && 0 >= F$ && F$ >= 0] (1,3)
          30. n4(A,B,C,D,E)       -> n4(A,F,F$,G$,E)                             [F >= 1                                                                            (?,3)
                                                                                  && A >= F                                                                              
                                                                                  && 1 + B >= F                                                                          
                                                                                  && F >= 1 + B                                                                          
                                                                                  && 1 + C >= F                                                                          
                                                                                  && F >= 1 + C                                                                          
                                                                                  && A >= D                                                                              
                                                                                  && D >= A                                                                              
                                                                                  && A >= 1                                                                              
                                                                                  && F$ >= 0                                                                             
                                                                                  && A >= F$                                                                             
                                                                                  && A >= G$                                                                             
                                                                                  && G$ >= A                                                                             
                                                                                  && F >= F$                                                                             
                                                                                  && F$ >= F]                                                                            
          31. n2(A,B,C,D,E)       -> c2(n2(A,B,F,F$$,G$$),n3(A,0,F$$$,G$$$,G$$)) [B >= F                                                                            (?,7)
                                                                                  && 1 + C >= F                                                                          
                                                                                  && F >= 1 + C                                                                          
                                                                                  && B >= E                                                                              
                                                                                  && E >= B                                                                              
                                                                                  && 1 + D >= F                                                                          
                                                                                  && F >= 1 + D                                                                          
                                                                                  && B >= G$$                                                                            
                                                                                  && G$$ >= B                                                                            
                                                                                  && F >= F$$                                                                            
                                                                                  && F$$ >= F                                                                            
                                                                                  && F$$$ >= 0                                                                           
                                                                                  && A >= G$$$                                                                           
                                                                                  && G$$$ >= A                                                                           
                                                                                  && 0 >= F$$$                                                                           
                                                                                  && F$$$ >= 0]                                                                          
          32. n3(A,B,C,D,E)       -> c2(n3(A,F,F$$,G$$,E),n4(A,0,F$$$,G$$$,E))   [F >= 1                                                                            (?,7)
                                                                                  && A >= F                                                                              
                                                                                  && 1 + C >= F                                                                          
                                                                                  && F >= 1 + C                                                                          
                                                                                  && 1 + B >= F                                                                          
                                                                                  && F >= 1 + B                                                                          
                                                                                  && A >= D                                                                              
                                                                                  && D >= A                                                                              
                                                                                  && F$$ >= 0                                                                            
                                                                                  && A >= G$$                                                                            
                                                                                  && G$$ >= A                                                                            
                                                                                  && F >= F$$                                                                            
                                                                                  && F$$ >= F                                                                            
                                                                                  && A >= 1                                                                              
                                                                                  && F$$$ >= 0                                                                           
                                                                                  && A >= F$$$                                                                           
                                                                                  && A >= G$$$                                                                           
                                                                                  && G$$$ >= A                                                                           
                                                                                  && 0 >= F$$$                                                                           
                                                                                  && F$$$ >= 0]                                                                          
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(multiply,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n20,5)
          ;(n21,5)
          ;(n3,5)
          ;(n30,5)
          ;(n31,5)
          ;(n4,5)}
        Flow Graph:
          [19->{29},29->{31},30->{30},31->{31,32},32->{30,32}]
        Sizebounds:
          (<19,0,A>, A) (<19,0,B>,     B) (<19,0,C>,     C) (<19,0,D>,     D) (<19,0,E>, E) 
          (<29,0,A>, A) (<29,0,B>,     B) (<29,0,C>,     ?) (<29,0,D>,     ?) (<29,0,E>, B) 
          (<30,0,A>, A) (<30,0,B>, 1 + A) (<30,0,C>, 1 + A) (<30,0,D>, 1 + A) (<30,0,E>, B) 
          (<31,0,A>, A) (<31,0,B>, 1 + A) (<31,0,C>, 1 + A) (<31,0,D>,     A) (<31,0,E>, B) 
          (<32,0,A>, A) (<32,0,B>, 1 + A) (<32,0,C>, 1 + A) (<32,0,D>, 1 + A) (<32,0,E>, B) 
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (<19,0,A>, A, .= 0) (<19,0,B>,     B, .= 0) (<19,0,C>,         C, .= 0) (<19,0,D>,         D, .= 0) (<19,0,E>, E, .= 0) 
          (<29,0,A>, A, .= 0) (<29,0,B>,     B, .= 0) (<29,0,C>,         0, .= 0) (<29,0,D>,         D, .= 0) (<29,0,E>, E, .= 0) 
          (<29,1,A>, A, .= 0) (<29,1,B>,     B, .= 0) (<29,1,C>,         0, .= 0) (<29,1,D>,         0, .= 0) (<29,1,E>, B, .= 0) 
          (<30,0,A>, A, .= 0) (<30,0,B>, 1 + B, .+ 1) (<30,0,C>,         A, .= 0) (<30,0,D>,     1 + A, .+ 1) (<30,0,E>, E, .= 0) 
          (<31,0,A>, A, .= 0) (<31,0,B>,     B, .= 0) (<31,0,C>, 1 + B + C, .* 1) (<31,0,D>, 1 + B + C, .* 1) (<31,0,E>, B, .= 0) 
          (<31,1,A>, A, .= 0) (<31,1,B>,     0, .= 0) (<31,1,C>,         0, .= 0) (<31,1,D>,         A, .= 0) (<31,1,E>, B, .= 0) 
          (<32,0,A>, A, .= 0) (<32,0,B>, 1 + B, .+ 1) (<32,0,C>,     1 + B, .+ 1) (<32,0,D>,     1 + A, .+ 1) (<32,0,E>, E, .= 0) 
          (<32,1,A>, A, .= 0) (<32,1,B>,     0, .= 0) (<32,1,C>,         0, .= 0) (<32,1,D>,     1 + A, .+ 1) (<32,1,E>, E, .= 0) 
* Step 32: SizeboundsProc WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          19. multiply(A,B,C,D,E) -> m7(A,B,C,D,E)                               True                                                                               (1,2)
          29. m7(A,B,C,D,E)       -> c2(m8(F,G,0,D,E),n2(F,G,0,F$,G$))           [B >= G && G >= B && A >= F && F >= A && G >= G$ && G$ >= G && 0 >= F$ && F$ >= 0] (1,3)
          30. n4(A,B,C,D,E)       -> n4(A,F,F$,G$,E)                             [F >= 1                                                                            (?,3)
                                                                                  && A >= F                                                                              
                                                                                  && 1 + B >= F                                                                          
                                                                                  && F >= 1 + B                                                                          
                                                                                  && 1 + C >= F                                                                          
                                                                                  && F >= 1 + C                                                                          
                                                                                  && A >= D                                                                              
                                                                                  && D >= A                                                                              
                                                                                  && A >= 1                                                                              
                                                                                  && F$ >= 0                                                                             
                                                                                  && A >= F$                                                                             
                                                                                  && A >= G$                                                                             
                                                                                  && G$ >= A                                                                             
                                                                                  && F >= F$                                                                             
                                                                                  && F$ >= F]                                                                            
          31. n2(A,B,C,D,E)       -> c2(n2(A,B,F,F$$,G$$),n3(A,0,F$$$,G$$$,G$$)) [B >= F                                                                            (?,7)
                                                                                  && 1 + C >= F                                                                          
                                                                                  && F >= 1 + C                                                                          
                                                                                  && B >= E                                                                              
                                                                                  && E >= B                                                                              
                                                                                  && 1 + D >= F                                                                          
                                                                                  && F >= 1 + D                                                                          
                                                                                  && B >= G$$                                                                            
                                                                                  && G$$ >= B                                                                            
                                                                                  && F >= F$$                                                                            
                                                                                  && F$$ >= F                                                                            
                                                                                  && F$$$ >= 0                                                                           
                                                                                  && A >= G$$$                                                                           
                                                                                  && G$$$ >= A                                                                           
                                                                                  && 0 >= F$$$                                                                           
                                                                                  && F$$$ >= 0]                                                                          
          32. n3(A,B,C,D,E)       -> c2(n3(A,F,F$$,G$$,E),n4(A,0,F$$$,G$$$,E))   [F >= 1                                                                            (?,7)
                                                                                  && A >= F                                                                              
                                                                                  && 1 + C >= F                                                                          
                                                                                  && F >= 1 + C                                                                          
                                                                                  && 1 + B >= F                                                                          
                                                                                  && F >= 1 + B                                                                          
                                                                                  && A >= D                                                                              
                                                                                  && D >= A                                                                              
                                                                                  && F$$ >= 0                                                                            
                                                                                  && A >= G$$                                                                            
                                                                                  && G$$ >= A                                                                            
                                                                                  && F >= F$$                                                                            
                                                                                  && F$$ >= F                                                                            
                                                                                  && A >= 1                                                                              
                                                                                  && F$$$ >= 0                                                                           
                                                                                  && A >= F$$$                                                                           
                                                                                  && A >= G$$$                                                                           
                                                                                  && G$$$ >= A                                                                           
                                                                                  && 0 >= F$$$                                                                           
                                                                                  && F$$$ >= 0]                                                                          
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(multiply,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n20,5)
          ;(n21,5)
          ;(n3,5)
          ;(n30,5)
          ;(n31,5)
          ;(n4,5)}
        Flow Graph:
          [19->{29},29->{31},30->{30},31->{31,32},32->{30,32}]
        Sizebounds:
          (<19,0,A>, ?) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) 
          (<29,0,A>, ?) (<29,0,B>, ?) (<29,0,C>, ?) (<29,0,D>, ?) (<29,0,E>, ?) 
          (<29,1,A>, ?) (<29,1,B>, ?) (<29,1,C>, ?) (<29,1,D>, ?) (<29,1,E>, ?) 
          (<30,0,A>, ?) (<30,0,B>, ?) (<30,0,C>, ?) (<30,0,D>, ?) (<30,0,E>, ?) 
          (<31,0,A>, ?) (<31,0,B>, ?) (<31,0,C>, ?) (<31,0,D>, ?) (<31,0,E>, ?) 
          (<31,1,A>, ?) (<31,1,B>, ?) (<31,1,C>, ?) (<31,1,D>, ?) (<31,1,E>, ?) 
          (<32,0,A>, ?) (<32,0,B>, ?) (<32,0,C>, ?) (<32,0,D>, ?) (<32,0,E>, ?) 
          (<32,1,A>, ?) (<32,1,B>, ?) (<32,1,C>, ?) (<32,1,D>, ?) (<32,1,E>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (<19,0,A>, A) (<19,0,B>, B) (<19,0,C>, C) (<19,0,D>,     D) (<19,0,E>, E) 
          (<29,0,A>, A) (<29,0,B>, B) (<29,0,C>, 0) (<29,0,D>,     D) (<29,0,E>, E) 
          (<29,1,A>, A) (<29,1,B>, B) (<29,1,C>, 0) (<29,1,D>,     0) (<29,1,E>, B) 
          (<30,0,A>, A) (<30,0,B>, 1) (<30,0,C>, A) (<30,0,D>, 1 + A) (<30,0,E>, B) 
          (<31,0,A>, A) (<31,0,B>, B) (<31,0,C>, ?) (<31,0,D>,     ?) (<31,0,E>, B) 
          (<31,1,A>, A) (<31,1,B>, 0) (<31,1,C>, 0) (<31,1,D>,     A) (<31,1,E>, B) 
          (<32,0,A>, A) (<32,0,B>, ?) (<32,0,C>, ?) (<32,0,D>, 1 + A) (<32,0,E>, B) 
          (<32,1,A>, A) (<32,1,B>, 0) (<32,1,C>, 0) (<32,1,D>, 1 + A) (<32,1,E>, B) 
* Step 33: LocationConstraintsProc WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          19. multiply(A,B,C,D,E) -> m7(A,B,C,D,E)                               True                                                                               (1,2)
          29. m7(A,B,C,D,E)       -> c2(m8(F,G,0,D,E),n2(F,G,0,F$,G$))           [B >= G && G >= B && A >= F && F >= A && G >= G$ && G$ >= G && 0 >= F$ && F$ >= 0] (1,3)
          30. n4(A,B,C,D,E)       -> n4(A,F,F$,G$,E)                             [F >= 1                                                                            (?,3)
                                                                                  && A >= F                                                                              
                                                                                  && 1 + B >= F                                                                          
                                                                                  && F >= 1 + B                                                                          
                                                                                  && 1 + C >= F                                                                          
                                                                                  && F >= 1 + C                                                                          
                                                                                  && A >= D                                                                              
                                                                                  && D >= A                                                                              
                                                                                  && A >= 1                                                                              
                                                                                  && F$ >= 0                                                                             
                                                                                  && A >= F$                                                                             
                                                                                  && A >= G$                                                                             
                                                                                  && G$ >= A                                                                             
                                                                                  && F >= F$                                                                             
                                                                                  && F$ >= F]                                                                            
          31. n2(A,B,C,D,E)       -> c2(n2(A,B,F,F$$,G$$),n3(A,0,F$$$,G$$$,G$$)) [B >= F                                                                            (?,7)
                                                                                  && 1 + C >= F                                                                          
                                                                                  && F >= 1 + C                                                                          
                                                                                  && B >= E                                                                              
                                                                                  && E >= B                                                                              
                                                                                  && 1 + D >= F                                                                          
                                                                                  && F >= 1 + D                                                                          
                                                                                  && B >= G$$                                                                            
                                                                                  && G$$ >= B                                                                            
                                                                                  && F >= F$$                                                                            
                                                                                  && F$$ >= F                                                                            
                                                                                  && F$$$ >= 0                                                                           
                                                                                  && A >= G$$$                                                                           
                                                                                  && G$$$ >= A                                                                           
                                                                                  && 0 >= F$$$                                                                           
                                                                                  && F$$$ >= 0]                                                                          
          32. n3(A,B,C,D,E)       -> c2(n3(A,F,F$$,G$$,E),n4(A,0,F$$$,G$$$,E))   [F >= 1                                                                            (?,7)
                                                                                  && A >= F                                                                              
                                                                                  && 1 + C >= F                                                                          
                                                                                  && F >= 1 + C                                                                          
                                                                                  && 1 + B >= F                                                                          
                                                                                  && F >= 1 + B                                                                          
                                                                                  && A >= D                                                                              
                                                                                  && D >= A                                                                              
                                                                                  && F$$ >= 0                                                                            
                                                                                  && A >= G$$                                                                            
                                                                                  && G$$ >= A                                                                            
                                                                                  && F >= F$$                                                                            
                                                                                  && F$$ >= F                                                                            
                                                                                  && A >= 1                                                                              
                                                                                  && F$$$ >= 0                                                                           
                                                                                  && A >= F$$$                                                                           
                                                                                  && A >= G$$$                                                                           
                                                                                  && G$$$ >= A                                                                           
                                                                                  && 0 >= F$$$                                                                           
                                                                                  && F$$$ >= 0]                                                                          
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(multiply,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n20,5)
          ;(n21,5)
          ;(n3,5)
          ;(n30,5)
          ;(n31,5)
          ;(n4,5)}
        Flow Graph:
          [19->{29},29->{31},30->{30},31->{31,32},32->{30,32}]
        Sizebounds:
          (<19,0,A>, A) (<19,0,B>, B) (<19,0,C>, C) (<19,0,D>,     D) (<19,0,E>, E) 
          (<29,0,A>, A) (<29,0,B>, B) (<29,0,C>, 0) (<29,0,D>,     D) (<29,0,E>, E) 
          (<29,1,A>, A) (<29,1,B>, B) (<29,1,C>, 0) (<29,1,D>,     0) (<29,1,E>, B) 
          (<30,0,A>, A) (<30,0,B>, 1) (<30,0,C>, A) (<30,0,D>, 1 + A) (<30,0,E>, B) 
          (<31,0,A>, A) (<31,0,B>, B) (<31,0,C>, ?) (<31,0,D>,     ?) (<31,0,E>, B) 
          (<31,1,A>, A) (<31,1,B>, 0) (<31,1,C>, 0) (<31,1,D>,     A) (<31,1,E>, B) 
          (<32,0,A>, A) (<32,0,B>, ?) (<32,0,C>, ?) (<32,0,D>, 1 + A) (<32,0,E>, B) 
          (<32,1,A>, A) (<32,1,B>, 0) (<32,1,C>, 0) (<32,1,D>, 1 + A) (<32,1,E>, B) 
    + Applied Processor:
        LocationConstraintsProc
    + Details:
        We computed the location constraints  19 :  True 29 :  True 30 :  True 31 :  True 32 :  True .
* Step 34: LoopRecurrenceProcessor WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          19. multiply(A,B,C,D,E) -> m7(A,B,C,D,E)                               True                                                                               (1,2)
          29. m7(A,B,C,D,E)       -> c2(m8(F,G,0,D,E),n2(F,G,0,F$,G$))           [B >= G && G >= B && A >= F && F >= A && G >= G$ && G$ >= G && 0 >= F$ && F$ >= 0] (1,3)
          30. n4(A,B,C,D,E)       -> n4(A,F,F$,G$,E)                             [F >= 1                                                                            (?,3)
                                                                                  && A >= F                                                                              
                                                                                  && 1 + B >= F                                                                          
                                                                                  && F >= 1 + B                                                                          
                                                                                  && 1 + C >= F                                                                          
                                                                                  && F >= 1 + C                                                                          
                                                                                  && A >= D                                                                              
                                                                                  && D >= A                                                                              
                                                                                  && A >= 1                                                                              
                                                                                  && F$ >= 0                                                                             
                                                                                  && A >= F$                                                                             
                                                                                  && A >= G$                                                                             
                                                                                  && G$ >= A                                                                             
                                                                                  && F >= F$                                                                             
                                                                                  && F$ >= F]                                                                            
          31. n2(A,B,C,D,E)       -> c2(n2(A,B,F,F$$,G$$),n3(A,0,F$$$,G$$$,G$$)) [B >= F                                                                            (?,7)
                                                                                  && 1 + C >= F                                                                          
                                                                                  && F >= 1 + C                                                                          
                                                                                  && B >= E                                                                              
                                                                                  && E >= B                                                                              
                                                                                  && 1 + D >= F                                                                          
                                                                                  && F >= 1 + D                                                                          
                                                                                  && B >= G$$                                                                            
                                                                                  && G$$ >= B                                                                            
                                                                                  && F >= F$$                                                                            
                                                                                  && F$$ >= F                                                                            
                                                                                  && F$$$ >= 0                                                                           
                                                                                  && A >= G$$$                                                                           
                                                                                  && G$$$ >= A                                                                           
                                                                                  && 0 >= F$$$                                                                           
                                                                                  && F$$$ >= 0]                                                                          
          32. n3(A,B,C,D,E)       -> c2(n3(A,F,F$$,G$$,E),n4(A,0,F$$$,G$$$,E))   [F >= 1                                                                            (?,7)
                                                                                  && A >= F                                                                              
                                                                                  && 1 + C >= F                                                                          
                                                                                  && F >= 1 + C                                                                          
                                                                                  && 1 + B >= F                                                                          
                                                                                  && F >= 1 + B                                                                          
                                                                                  && A >= D                                                                              
                                                                                  && D >= A                                                                              
                                                                                  && F$$ >= 0                                                                            
                                                                                  && A >= G$$                                                                            
                                                                                  && G$$ >= A                                                                            
                                                                                  && F >= F$$                                                                            
                                                                                  && F$$ >= F                                                                            
                                                                                  && A >= 1                                                                              
                                                                                  && F$$$ >= 0                                                                           
                                                                                  && A >= F$$$                                                                           
                                                                                  && A >= G$$$                                                                           
                                                                                  && G$$$ >= A                                                                           
                                                                                  && 0 >= F$$$                                                                           
                                                                                  && F$$$ >= 0]                                                                          
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(multiply,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n20,5)
          ;(n21,5)
          ;(n3,5)
          ;(n30,5)
          ;(n31,5)
          ;(n4,5)}
        Flow Graph:
          [19->{29},29->{31},30->{30},31->{31,32},32->{30,32}]
        Sizebounds:
          (<19,0,A>, A) (<19,0,B>, B) (<19,0,C>, C) (<19,0,D>,     D) (<19,0,E>, E) 
          (<29,0,A>, A) (<29,0,B>, B) (<29,0,C>, 0) (<29,0,D>,     D) (<29,0,E>, E) 
          (<29,1,A>, A) (<29,1,B>, B) (<29,1,C>, 0) (<29,1,D>,     0) (<29,1,E>, B) 
          (<30,0,A>, A) (<30,0,B>, 1) (<30,0,C>, A) (<30,0,D>, 1 + A) (<30,0,E>, B) 
          (<31,0,A>, A) (<31,0,B>, B) (<31,0,C>, ?) (<31,0,D>,     ?) (<31,0,E>, B) 
          (<31,1,A>, A) (<31,1,B>, 0) (<31,1,C>, 0) (<31,1,D>,     A) (<31,1,E>, B) 
          (<32,0,A>, A) (<32,0,B>, ?) (<32,0,C>, ?) (<32,0,D>, 1 + A) (<32,0,E>, B) 
          (<32,1,A>, A) (<32,1,B>, 0) (<32,1,C>, 0) (<32,1,D>, 1 + A) (<32,1,E>, B) 
    + Applied Processor:
        LoopRecurrenceProcessor [31]
    + Details:
        Applying the recurrence pattern linear * f to the expression B-C yields the solution 2*A*B + -2*A*C + 2*A^2*B + -2*A^2*C + B + -1*C .
* Step 35: LoopRecurrenceProcessor WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          19. multiply(A,B,C,D,E) -> m7(A,B,C,D,E)                               True                                                                               (1,2)                  
          29. m7(A,B,C,D,E)       -> c2(m8(F,G,0,D,E),n2(F,G,0,F$,G$))           [B >= G && G >= B && A >= F && F >= A && G >= G$ && G$ >= G && 0 >= F$ && F$ >= 0] (1,3)                  
          30. n4(A,B,C,D,E)       -> n4(A,F,F$,G$,E)                             [F >= 1                                                                            (2*A*B + 2*A^2*B + B,3)
                                                                                  && A >= F                                                                                                
                                                                                  && 1 + B >= F                                                                                            
                                                                                  && F >= 1 + B                                                                                            
                                                                                  && 1 + C >= F                                                                                            
                                                                                  && F >= 1 + C                                                                                            
                                                                                  && A >= D                                                                                                
                                                                                  && D >= A                                                                                                
                                                                                  && A >= 1                                                                                                
                                                                                  && F$ >= 0                                                                                               
                                                                                  && A >= F$                                                                                               
                                                                                  && A >= G$                                                                                               
                                                                                  && G$ >= A                                                                                               
                                                                                  && F >= F$                                                                                               
                                                                                  && F$ >= F]                                                                                              
          31. n2(A,B,C,D,E)       -> c2(n2(A,B,F,F$$,G$$),n3(A,0,F$$$,G$$$,G$$)) [B >= F                                                                            (2*A*B + 2*A^2*B + B,7)
                                                                                  && 1 + C >= F                                                                                            
                                                                                  && F >= 1 + C                                                                                            
                                                                                  && B >= E                                                                                                
                                                                                  && E >= B                                                                                                
                                                                                  && 1 + D >= F                                                                                            
                                                                                  && F >= 1 + D                                                                                            
                                                                                  && B >= G$$                                                                                              
                                                                                  && G$$ >= B                                                                                              
                                                                                  && F >= F$$                                                                                              
                                                                                  && F$$ >= F                                                                                              
                                                                                  && F$$$ >= 0                                                                                             
                                                                                  && A >= G$$$                                                                                             
                                                                                  && G$$$ >= A                                                                                             
                                                                                  && 0 >= F$$$                                                                                             
                                                                                  && F$$$ >= 0]                                                                                            
          32. n3(A,B,C,D,E)       -> c2(n3(A,F,F$$,G$$,E),n4(A,0,F$$$,G$$$,E))   [F >= 1                                                                            (2*A*B + 2*A^2*B + B,7)
                                                                                  && A >= F                                                                                                
                                                                                  && 1 + C >= F                                                                                            
                                                                                  && F >= 1 + C                                                                                            
                                                                                  && 1 + B >= F                                                                                            
                                                                                  && F >= 1 + B                                                                                            
                                                                                  && A >= D                                                                                                
                                                                                  && D >= A                                                                                                
                                                                                  && F$$ >= 0                                                                                              
                                                                                  && A >= G$$                                                                                              
                                                                                  && G$$ >= A                                                                                              
                                                                                  && F >= F$$                                                                                              
                                                                                  && F$$ >= F                                                                                              
                                                                                  && A >= 1                                                                                                
                                                                                  && F$$$ >= 0                                                                                             
                                                                                  && A >= F$$$                                                                                             
                                                                                  && A >= G$$$                                                                                             
                                                                                  && G$$$ >= A                                                                                             
                                                                                  && 0 >= F$$$                                                                                             
                                                                                  && F$$$ >= 0]                                                                                            
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(multiply,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n20,5)
          ;(n21,5)
          ;(n3,5)
          ;(n30,5)
          ;(n31,5)
          ;(n4,5)}
        Flow Graph:
          [19->{29},29->{31},30->{30},31->{31,32},32->{30,32}]
        Sizebounds:
          (<19,0,A>, A) (<19,0,B>, B) (<19,0,C>, C) (<19,0,D>,     D) (<19,0,E>, E) 
          (<29,0,A>, A) (<29,0,B>, B) (<29,0,C>, 0) (<29,0,D>,     D) (<29,0,E>, E) 
          (<29,1,A>, A) (<29,1,B>, B) (<29,1,C>, 0) (<29,1,D>,     0) (<29,1,E>, B) 
          (<30,0,A>, A) (<30,0,B>, 1) (<30,0,C>, A) (<30,0,D>, 1 + A) (<30,0,E>, B) 
          (<31,0,A>, A) (<31,0,B>, B) (<31,0,C>, ?) (<31,0,D>,     ?) (<31,0,E>, B) 
          (<31,1,A>, A) (<31,1,B>, 0) (<31,1,C>, 0) (<31,1,D>,     A) (<31,1,E>, B) 
          (<32,0,A>, A) (<32,0,B>, ?) (<32,0,C>, ?) (<32,0,D>, 1 + A) (<32,0,E>, B) 
          (<32,1,A>, A) (<32,1,B>, 0) (<32,1,C>, 0) (<32,1,D>, 1 + A) (<32,1,E>, B) 
    + Applied Processor:
        LoopRecurrenceProcessor [32]
    + Details:
        Applying the recurrence pattern linear * f to the expression A-B yields the solution A + -1*A*B + A^2 + -1*B .
* Step 36: LoopRecurrenceProcessor WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          19. multiply(A,B,C,D,E) -> m7(A,B,C,D,E)                               True                                                                               (1,2)                  
          29. m7(A,B,C,D,E)       -> c2(m8(F,G,0,D,E),n2(F,G,0,F$,G$))           [B >= G && G >= B && A >= F && F >= A && G >= G$ && G$ >= G && 0 >= F$ && F$ >= 0] (1,3)                  
          30. n4(A,B,C,D,E)       -> n4(A,F,F$,G$,E)                             [F >= 1                                                                            (2*A*B + 2*A^2*B + B,3)
                                                                                  && A >= F                                                                                                
                                                                                  && 1 + B >= F                                                                                            
                                                                                  && F >= 1 + B                                                                                            
                                                                                  && 1 + C >= F                                                                                            
                                                                                  && F >= 1 + C                                                                                            
                                                                                  && A >= D                                                                                                
                                                                                  && D >= A                                                                                                
                                                                                  && A >= 1                                                                                                
                                                                                  && F$ >= 0                                                                                               
                                                                                  && A >= F$                                                                                               
                                                                                  && A >= G$                                                                                               
                                                                                  && G$ >= A                                                                                               
                                                                                  && F >= F$                                                                                               
                                                                                  && F$ >= F]                                                                                              
          31. n2(A,B,C,D,E)       -> c2(n2(A,B,F,F$$,G$$),n3(A,0,F$$$,G$$$,G$$)) [B >= F                                                                            (2*A*B + 2*A^2*B + B,7)
                                                                                  && 1 + C >= F                                                                                            
                                                                                  && F >= 1 + C                                                                                            
                                                                                  && B >= E                                                                                                
                                                                                  && E >= B                                                                                                
                                                                                  && 1 + D >= F                                                                                            
                                                                                  && F >= 1 + D                                                                                            
                                                                                  && B >= G$$                                                                                              
                                                                                  && G$$ >= B                                                                                              
                                                                                  && F >= F$$                                                                                              
                                                                                  && F$$ >= F                                                                                              
                                                                                  && F$$$ >= 0                                                                                             
                                                                                  && A >= G$$$                                                                                             
                                                                                  && G$$$ >= A                                                                                             
                                                                                  && 0 >= F$$$                                                                                             
                                                                                  && F$$$ >= 0]                                                                                            
          32. n3(A,B,C,D,E)       -> c2(n3(A,F,F$$,G$$,E),n4(A,0,F$$$,G$$$,E))   [F >= 1                                                                            (2*A*B + 2*A^2*B + B,7)
                                                                                  && A >= F                                                                                                
                                                                                  && 1 + C >= F                                                                                            
                                                                                  && F >= 1 + C                                                                                            
                                                                                  && 1 + B >= F                                                                                            
                                                                                  && F >= 1 + B                                                                                            
                                                                                  && A >= D                                                                                                
                                                                                  && D >= A                                                                                                
                                                                                  && F$$ >= 0                                                                                              
                                                                                  && A >= G$$                                                                                              
                                                                                  && G$$ >= A                                                                                              
                                                                                  && F >= F$$                                                                                              
                                                                                  && F$$ >= F                                                                                              
                                                                                  && A >= 1                                                                                                
                                                                                  && F$$$ >= 0                                                                                             
                                                                                  && A >= F$$$                                                                                             
                                                                                  && A >= G$$$                                                                                             
                                                                                  && G$$$ >= A                                                                                             
                                                                                  && 0 >= F$$$                                                                                             
                                                                                  && F$$$ >= 0]                                                                                            
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(multiply,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n20,5)
          ;(n21,5)
          ;(n3,5)
          ;(n30,5)
          ;(n31,5)
          ;(n4,5)}
        Flow Graph:
          [19->{29},29->{31},30->{30},31->{31,32},32->{30,32}]
        Sizebounds:
          (<19,0,A>, A) (<19,0,B>, B) (<19,0,C>, C) (<19,0,D>,     D) (<19,0,E>, E) 
          (<29,0,A>, A) (<29,0,B>, B) (<29,0,C>, 0) (<29,0,D>,     D) (<29,0,E>, E) 
          (<29,1,A>, A) (<29,1,B>, B) (<29,1,C>, 0) (<29,1,D>,     0) (<29,1,E>, B) 
          (<30,0,A>, A) (<30,0,B>, 1) (<30,0,C>, A) (<30,0,D>, 1 + A) (<30,0,E>, B) 
          (<31,0,A>, A) (<31,0,B>, B) (<31,0,C>, ?) (<31,0,D>,     ?) (<31,0,E>, B) 
          (<31,1,A>, A) (<31,1,B>, 0) (<31,1,C>, 0) (<31,1,D>,     A) (<31,1,E>, B) 
          (<32,0,A>, A) (<32,0,B>, ?) (<32,0,C>, ?) (<32,0,D>, 1 + A) (<32,0,E>, B) 
          (<32,1,A>, A) (<32,1,B>, 0) (<32,1,C>, 0) (<32,1,D>, 1 + A) (<32,1,E>, B) 
    + Applied Processor:
        LoopRecurrenceProcessor [30]
    + Details:
        Applying the recurrence pattern linear * f to the expression A-B yields the solution A + -1*B .
* Step 37: UnsatPaths WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          19. multiply(A,B,C,D,E) -> m7(A,B,C,D,E)                               True                                                                               (1,2)                  
          29. m7(A,B,C,D,E)       -> c2(m8(F,G,0,D,E),n2(F,G,0,F$,G$))           [B >= G && G >= B && A >= F && F >= A && G >= G$ && G$ >= G && 0 >= F$ && F$ >= 0] (1,3)                  
          30. n4(A,B,C,D,E)       -> n4(A,F,F$,G$,E)                             [F >= 1                                                                            (2*A*B + 2*A^2*B + B,3)
                                                                                  && A >= F                                                                                                
                                                                                  && 1 + B >= F                                                                                            
                                                                                  && F >= 1 + B                                                                                            
                                                                                  && 1 + C >= F                                                                                            
                                                                                  && F >= 1 + C                                                                                            
                                                                                  && A >= D                                                                                                
                                                                                  && D >= A                                                                                                
                                                                                  && A >= 1                                                                                                
                                                                                  && F$ >= 0                                                                                               
                                                                                  && A >= F$                                                                                               
                                                                                  && A >= G$                                                                                               
                                                                                  && G$ >= A                                                                                               
                                                                                  && F >= F$                                                                                               
                                                                                  && F$ >= F]                                                                                              
          31. n2(A,B,C,D,E)       -> c2(n2(A,B,F,F$$,G$$),n3(A,0,F$$$,G$$$,G$$)) [B >= F                                                                            (2*A*B + 2*A^2*B + B,7)
                                                                                  && 1 + C >= F                                                                                            
                                                                                  && F >= 1 + C                                                                                            
                                                                                  && B >= E                                                                                                
                                                                                  && E >= B                                                                                                
                                                                                  && 1 + D >= F                                                                                            
                                                                                  && F >= 1 + D                                                                                            
                                                                                  && B >= G$$                                                                                              
                                                                                  && G$$ >= B                                                                                              
                                                                                  && F >= F$$                                                                                              
                                                                                  && F$$ >= F                                                                                              
                                                                                  && F$$$ >= 0                                                                                             
                                                                                  && A >= G$$$                                                                                             
                                                                                  && G$$$ >= A                                                                                             
                                                                                  && 0 >= F$$$                                                                                             
                                                                                  && F$$$ >= 0]                                                                                            
          32. n3(A,B,C,D,E)       -> c2(n3(A,F,F$$,G$$,E),n4(A,0,F$$$,G$$$,E))   [F >= 1                                                                            (2*A*B + 2*A^2*B + B,7)
                                                                                  && A >= F                                                                                                
                                                                                  && 1 + C >= F                                                                                            
                                                                                  && F >= 1 + C                                                                                            
                                                                                  && 1 + B >= F                                                                                            
                                                                                  && F >= 1 + B                                                                                            
                                                                                  && A >= D                                                                                                
                                                                                  && D >= A                                                                                                
                                                                                  && F$$ >= 0                                                                                              
                                                                                  && A >= G$$                                                                                              
                                                                                  && G$$ >= A                                                                                              
                                                                                  && F >= F$$                                                                                              
                                                                                  && F$$ >= F                                                                                              
                                                                                  && A >= 1                                                                                                
                                                                                  && F$$$ >= 0                                                                                             
                                                                                  && A >= F$$$                                                                                             
                                                                                  && A >= G$$$                                                                                             
                                                                                  && G$$$ >= A                                                                                             
                                                                                  && 0 >= F$$$                                                                                             
                                                                                  && F$$$ >= 0]                                                                                            
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(multiply,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n20,5)
          ;(n21,5)
          ;(n3,5)
          ;(n30,5)
          ;(n31,5)
          ;(n4,5)}
        Flow Graph:
          [19->{29},29->{31},30->{30},31->{31,32},32->{30,32}]
        Sizebounds:
          (<19,0,A>, A) (<19,0,B>, B) (<19,0,C>, C) (<19,0,D>,     D) (<19,0,E>, E) 
          (<29,0,A>, A) (<29,0,B>, B) (<29,0,C>, 0) (<29,0,D>,     D) (<29,0,E>, E) 
          (<29,1,A>, A) (<29,1,B>, B) (<29,1,C>, 0) (<29,1,D>,     0) (<29,1,E>, B) 
          (<30,0,A>, A) (<30,0,B>, 1) (<30,0,C>, A) (<30,0,D>, 1 + A) (<30,0,E>, B) 
          (<31,0,A>, A) (<31,0,B>, B) (<31,0,C>, ?) (<31,0,D>,     ?) (<31,0,E>, B) 
          (<31,1,A>, A) (<31,1,B>, 0) (<31,1,C>, 0) (<31,1,D>,     A) (<31,1,E>, B) 
          (<32,0,A>, A) (<32,0,B>, ?) (<32,0,C>, ?) (<32,0,D>, 1 + A) (<32,0,E>, B) 
          (<32,1,A>, A) (<32,1,B>, 0) (<32,1,C>, 0) (<32,1,D>, 1 + A) (<32,1,E>, B) 
    + Applied Processor:
        UnsatPaths
    + Details:
        The problem is already solved.

WORST_CASE(?,O(n^3))