WORST_CASE(?,O(1)) * Step 1: LocalSizeboundsProc WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. selectOrd(A,B,C,D,E) -> m4(A,B,C,D,E) [A >= 0] (1,1) 1. m0(A,B,C,D,E) -> m1(A,B,C,F,E) [A >= 1 + B && B >= 1 + C && A >= 1 + F && 1 + F >= A] (?,1) 2. m2(A,B,C,D,E) -> m3(A,F,C,D,E) [A >= 2 + F && 2 + F >= A] (?,1) 3. m6(A,B,C,D,E) -> m7(A,B,C,D,E) [B >= 1 + C && A >= 2 + B && D >= E] (?,1) 4. n0(A,B,C,D,E) -> m7(A,C,C,D,E) [D >= 1 + B && A >= 2 + C] (?,1) 5. m7(A,B,C,D,E) -> m0(A,F,C,D,E) [B >= C && A >= 2 + B && 1 + B >= F && F >= 1 + B] (?,1) 6. n1(A,B,C,D,E) -> c2(m5(A,B,0,D,E),m2(A,B,0,D,E)) [A >= 0] (?,1) 7. m4(A,B,C,D,E) -> n1(A,B,C,D,E) [A >= 0] (?,1) 8. n2(A,B,C,D,E) -> n3(A,B,C,F,G) [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A] (?,1) 9. n3(A,B,C,D,E) -> m6(A,B,C,D,E) True (?,1) 10. n3(A,B,C,D,E) -> n0(A,D,B,E,E) True (?,1) 11. m1(A,B,C,D,E) -> n2(A,B,C,D,E) True (?,1) 12. m1(A,B,C,D,E) -> m9(A,D,B,D,E) True (?,1) 13. n40(A,B,C,D,E) -> m2(A,B,C,D,E) True (?,1) 14. n41(A,B,C,D,E) -> m0(A,D,B,D,E) True (?,1) 15. n4(A,B,C,D,E) -> c2(n40(A,C,F,G,E),n41(A,C,F,G,E)) [A >= 2 + G && 1 + C >= G && G >= 1 + C && F >= G && G >= F && A >= 2 + B && 2 + B >= A] (?,1) 16. m3(A,B,C,D,E) -> n4(A,B,C,D,E) True (?,1) 17. m3(A,B,C,D,E) -> m8(C,B,B,D,E) True (?,1) Signature: {(m0,5) ;(m1,5) ;(m2,5) ;(m3,5) ;(m4,5) ;(m5,5) ;(m6,5) ;(m7,5) ;(m8,5) ;(m9,5) ;(n0,5) ;(n1,5) ;(n2,5) ;(n3,5) ;(n4,5) ;(n40,5) ;(n41,5) ;(selectOrd,5)} Flow Graph: [0->{7},1->{11,12},2->{16,17},3->{5},4->{5},5->{1},6->{2},7->{6},8->{9,10},9->{3},10->{4},11->{8},12->{} ,13->{2},14->{1},15->{13,14},16->{15},17->{}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (< 0,0,A>, A, .= 0) (< 0,0,B>, B, .= 0) (< 0,0,C>, C, .= 0) (< 0,0,D>, D, .= 0) (< 0,0,E>, E, .= 0) (< 1,0,A>, A, .= 0) (< 1,0,B>, B, .= 0) (< 1,0,C>, C, .= 0) (< 1,0,D>, 1 + A, .+ 1) (< 1,0,E>, E, .= 0) (< 2,0,A>, A, .= 0) (< 2,0,B>, 2 + A, .+ 2) (< 2,0,C>, C, .= 0) (< 2,0,D>, D, .= 0) (< 2,0,E>, E, .= 0) (< 3,0,A>, A, .= 0) (< 3,0,B>, B, .= 0) (< 3,0,C>, C, .= 0) (< 3,0,D>, D, .= 0) (< 3,0,E>, E, .= 0) (< 4,0,A>, A, .= 0) (< 4,0,B>, C, .= 0) (< 4,0,C>, C, .= 0) (< 4,0,D>, D, .= 0) (< 4,0,E>, E, .= 0) (< 5,0,A>, A, .= 0) (< 5,0,B>, 1 + B, .+ 1) (< 5,0,C>, C, .= 0) (< 5,0,D>, D, .= 0) (< 5,0,E>, E, .= 0) (< 6,0,A>, A, .= 0) (< 6,0,B>, B, .= 0) (< 6,0,C>, 0, .= 0) (< 6,0,D>, D, .= 0) (< 6,0,E>, E, .= 0) (< 6,1,A>, A, .= 0) (< 6,1,B>, B, .= 0) (< 6,1,C>, 0, .= 0) (< 6,1,D>, D, .= 0) (< 6,1,E>, E, .= 0) (< 7,0,A>, A, .= 0) (< 7,0,B>, B, .= 0) (< 7,0,C>, C, .= 0) (< 7,0,D>, D, .= 0) (< 7,0,E>, E, .= 0) (< 8,0,A>, A, .= 0) (< 8,0,B>, B, .= 0) (< 8,0,C>, C, .= 0) (< 8,0,D>, ?, .?) (< 8,0,E>, ?, .?) (< 9,0,A>, A, .= 0) (< 9,0,B>, B, .= 0) (< 9,0,C>, C, .= 0) (< 9,0,D>, D, .= 0) (< 9,0,E>, E, .= 0) (<10,0,A>, A, .= 0) (<10,0,B>, D, .= 0) (<10,0,C>, B, .= 0) (<10,0,D>, E, .= 0) (<10,0,E>, E, .= 0) (<11,0,A>, A, .= 0) (<11,0,B>, B, .= 0) (<11,0,C>, C, .= 0) (<11,0,D>, D, .= 0) (<11,0,E>, E, .= 0) (<12,0,A>, A, .= 0) (<12,0,B>, D, .= 0) (<12,0,C>, B, .= 0) (<12,0,D>, D, .= 0) (<12,0,E>, E, .= 0) (<13,0,A>, A, .= 0) (<13,0,B>, B, .= 0) (<13,0,C>, C, .= 0) (<13,0,D>, D, .= 0) (<13,0,E>, E, .= 0) (<14,0,A>, A, .= 0) (<14,0,B>, D, .= 0) (<14,0,C>, B, .= 0) (<14,0,D>, D, .= 0) (<14,0,E>, E, .= 0) (<15,0,A>, A, .= 0) (<15,0,B>, C, .= 0) (<15,0,C>, 2 + A + C, .* 2) (<15,0,D>, 2 + A + C, .* 2) (<15,0,E>, E, .= 0) (<15,1,A>, A, .= 0) (<15,1,B>, C, .= 0) (<15,1,C>, 2 + A + C, .* 2) (<15,1,D>, 2 + A + C, .* 2) (<15,1,E>, E, .= 0) (<16,0,A>, A, .= 0) (<16,0,B>, B, .= 0) (<16,0,C>, C, .= 0) (<16,0,D>, D, .= 0) (<16,0,E>, E, .= 0) (<17,0,A>, C, .= 0) (<17,0,B>, B, .= 0) (<17,0,C>, B, .= 0) (<17,0,D>, D, .= 0) (<17,0,E>, E, .= 0) * Step 2: SizeboundsProc WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. selectOrd(A,B,C,D,E) -> m4(A,B,C,D,E) [A >= 0] (1,1) 1. m0(A,B,C,D,E) -> m1(A,B,C,F,E) [A >= 1 + B && B >= 1 + C && A >= 1 + F && 1 + F >= A] (?,1) 2. m2(A,B,C,D,E) -> m3(A,F,C,D,E) [A >= 2 + F && 2 + F >= A] (?,1) 3. m6(A,B,C,D,E) -> m7(A,B,C,D,E) [B >= 1 + C && A >= 2 + B && D >= E] (?,1) 4. n0(A,B,C,D,E) -> m7(A,C,C,D,E) [D >= 1 + B && A >= 2 + C] (?,1) 5. m7(A,B,C,D,E) -> m0(A,F,C,D,E) [B >= C && A >= 2 + B && 1 + B >= F && F >= 1 + B] (?,1) 6. n1(A,B,C,D,E) -> c2(m5(A,B,0,D,E),m2(A,B,0,D,E)) [A >= 0] (?,1) 7. m4(A,B,C,D,E) -> n1(A,B,C,D,E) [A >= 0] (?,1) 8. n2(A,B,C,D,E) -> n3(A,B,C,F,G) [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A] (?,1) 9. n3(A,B,C,D,E) -> m6(A,B,C,D,E) True (?,1) 10. n3(A,B,C,D,E) -> n0(A,D,B,E,E) True (?,1) 11. m1(A,B,C,D,E) -> n2(A,B,C,D,E) True (?,1) 12. m1(A,B,C,D,E) -> m9(A,D,B,D,E) True (?,1) 13. n40(A,B,C,D,E) -> m2(A,B,C,D,E) True (?,1) 14. n41(A,B,C,D,E) -> m0(A,D,B,D,E) True (?,1) 15. n4(A,B,C,D,E) -> c2(n40(A,C,F,G,E),n41(A,C,F,G,E)) [A >= 2 + G && 1 + C >= G && G >= 1 + C && F >= G && G >= F && A >= 2 + B && 2 + B >= A] (?,1) 16. m3(A,B,C,D,E) -> n4(A,B,C,D,E) True (?,1) 17. m3(A,B,C,D,E) -> m8(C,B,B,D,E) True (?,1) Signature: {(m0,5) ;(m1,5) ;(m2,5) ;(m3,5) ;(m4,5) ;(m5,5) ;(m6,5) ;(m7,5) ;(m8,5) ;(m9,5) ;(n0,5) ;(n1,5) ;(n2,5) ;(n3,5) ;(n4,5) ;(n40,5) ;(n41,5) ;(selectOrd,5)} Flow Graph: [0->{7},1->{11,12},2->{16,17},3->{5},4->{5},5->{1},6->{2},7->{6},8->{9,10},9->{3},10->{4},11->{8},12->{} ,13->{2},14->{1},15->{13,14},16->{15},17->{}] Sizebounds: (< 0,0,A>, ?) (< 0,0,B>, ?) (< 0,0,C>, ?) (< 0,0,D>, ?) (< 0,0,E>, ?) (< 1,0,A>, ?) (< 1,0,B>, ?) (< 1,0,C>, ?) (< 1,0,D>, ?) (< 1,0,E>, ?) (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, ?) (< 3,0,E>, ?) (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, ?) (< 6,1,A>, ?) (< 6,1,B>, ?) (< 6,1,C>, ?) (< 6,1,D>, ?) (< 6,1,E>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) (<14,0,A>, ?) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, ?) (<15,1,A>, ?) (<15,1,B>, ?) (<15,1,C>, ?) (<15,1,D>, ?) (<15,1,E>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,E>, ?) (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,E>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 1,0,A>, A) (< 1,0,B>, A) (< 1,0,C>, ?) (< 1,0,D>, 1 + A) (< 1,0,E>, ?) (< 2,0,A>, A) (< 2,0,B>, 2 + A) (< 2,0,C>, ?) (< 2,0,D>, ?) (< 2,0,E>, E) (< 3,0,A>, A) (< 3,0,B>, A) (< 3,0,C>, 1 + A) (< 3,0,D>, ?) (< 3,0,E>, ?) (< 4,0,A>, A) (< 4,0,B>, 1) (< 4,0,C>, 1 + A) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 5,0,A>, A) (< 5,0,B>, 1) (< 5,0,C>, 1 + A) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 6,0,A>, A) (< 6,0,B>, B) (< 6,0,C>, 0) (< 6,0,D>, D) (< 6,0,E>, E) (< 6,1,A>, A) (< 6,1,B>, B) (< 6,1,C>, 0) (< 6,1,D>, D) (< 6,1,E>, E) (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, C) (< 7,0,D>, D) (< 7,0,E>, E) (< 8,0,A>, A) (< 8,0,B>, 1 + A) (< 8,0,C>, A) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, A) (< 9,0,B>, 1 + A) (< 9,0,C>, A) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, 1 + A) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, A) (<11,0,B>, A) (<11,0,C>, ?) (<11,0,D>, 1 + A) (<11,0,E>, ?) (<12,0,A>, A) (<12,0,B>, 1 + A) (<12,0,C>, A) (<12,0,D>, 1 + A) (<12,0,E>, ?) (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, E) (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, E) (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, E) (<15,1,A>, A) (<15,1,B>, ?) (<15,1,C>, ?) (<15,1,D>, ?) (<15,1,E>, E) (<16,0,A>, A) (<16,0,B>, 2 + A) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,E>, E) (<17,0,A>, ?) (<17,0,B>, 2 + A) (<17,0,C>, 2 + A) (<17,0,D>, ?) (<17,0,E>, E) * Step 3: LeafRules WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. selectOrd(A,B,C,D,E) -> m4(A,B,C,D,E) [A >= 0] (1,1) 1. m0(A,B,C,D,E) -> m1(A,B,C,F,E) [A >= 1 + B && B >= 1 + C && A >= 1 + F && 1 + F >= A] (?,1) 2. m2(A,B,C,D,E) -> m3(A,F,C,D,E) [A >= 2 + F && 2 + F >= A] (?,1) 3. m6(A,B,C,D,E) -> m7(A,B,C,D,E) [B >= 1 + C && A >= 2 + B && D >= E] (?,1) 4. n0(A,B,C,D,E) -> m7(A,C,C,D,E) [D >= 1 + B && A >= 2 + C] (?,1) 5. m7(A,B,C,D,E) -> m0(A,F,C,D,E) [B >= C && A >= 2 + B && 1 + B >= F && F >= 1 + B] (?,1) 6. n1(A,B,C,D,E) -> c2(m5(A,B,0,D,E),m2(A,B,0,D,E)) [A >= 0] (?,1) 7. m4(A,B,C,D,E) -> n1(A,B,C,D,E) [A >= 0] (?,1) 8. n2(A,B,C,D,E) -> n3(A,B,C,F,G) [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A] (?,1) 9. n3(A,B,C,D,E) -> m6(A,B,C,D,E) True (?,1) 10. n3(A,B,C,D,E) -> n0(A,D,B,E,E) True (?,1) 11. m1(A,B,C,D,E) -> n2(A,B,C,D,E) True (?,1) 12. m1(A,B,C,D,E) -> m9(A,D,B,D,E) True (?,1) 13. n40(A,B,C,D,E) -> m2(A,B,C,D,E) True (?,1) 14. n41(A,B,C,D,E) -> m0(A,D,B,D,E) True (?,1) 15. n4(A,B,C,D,E) -> c2(n40(A,C,F,G,E),n41(A,C,F,G,E)) [A >= 2 + G && 1 + C >= G && G >= 1 + C && F >= G && G >= F && A >= 2 + B && 2 + B >= A] (?,1) 16. m3(A,B,C,D,E) -> n4(A,B,C,D,E) True (?,1) 17. m3(A,B,C,D,E) -> m8(C,B,B,D,E) True (?,1) Signature: {(m0,5) ;(m1,5) ;(m2,5) ;(m3,5) ;(m4,5) ;(m5,5) ;(m6,5) ;(m7,5) ;(m8,5) ;(m9,5) ;(n0,5) ;(n1,5) ;(n2,5) ;(n3,5) ;(n4,5) ;(n40,5) ;(n41,5) ;(selectOrd,5)} Flow Graph: [0->{7},1->{11,12},2->{16,17},3->{5},4->{5},5->{1},6->{2},7->{6},8->{9,10},9->{3},10->{4},11->{8},12->{} ,13->{2},14->{1},15->{13,14},16->{15},17->{}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 1,0,A>, A) (< 1,0,B>, A) (< 1,0,C>, ?) (< 1,0,D>, 1 + A) (< 1,0,E>, ?) (< 2,0,A>, A) (< 2,0,B>, 2 + A) (< 2,0,C>, ?) (< 2,0,D>, ?) (< 2,0,E>, E) (< 3,0,A>, A) (< 3,0,B>, A) (< 3,0,C>, 1 + A) (< 3,0,D>, ?) (< 3,0,E>, ?) (< 4,0,A>, A) (< 4,0,B>, 1) (< 4,0,C>, 1 + A) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 5,0,A>, A) (< 5,0,B>, 1) (< 5,0,C>, 1 + A) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 6,0,A>, A) (< 6,0,B>, B) (< 6,0,C>, 0) (< 6,0,D>, D) (< 6,0,E>, E) (< 6,1,A>, A) (< 6,1,B>, B) (< 6,1,C>, 0) (< 6,1,D>, D) (< 6,1,E>, E) (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, C) (< 7,0,D>, D) (< 7,0,E>, E) (< 8,0,A>, A) (< 8,0,B>, 1 + A) (< 8,0,C>, A) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, A) (< 9,0,B>, 1 + A) (< 9,0,C>, A) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, 1 + A) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, A) (<11,0,B>, A) (<11,0,C>, ?) (<11,0,D>, 1 + A) (<11,0,E>, ?) (<12,0,A>, A) (<12,0,B>, 1 + A) (<12,0,C>, A) (<12,0,D>, 1 + A) (<12,0,E>, ?) (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, E) (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, E) (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, E) (<15,1,A>, A) (<15,1,B>, ?) (<15,1,C>, ?) (<15,1,D>, ?) (<15,1,E>, E) (<16,0,A>, A) (<16,0,B>, 2 + A) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,E>, E) (<17,0,A>, ?) (<17,0,B>, 2 + A) (<17,0,C>, 2 + A) (<17,0,D>, ?) (<17,0,E>, E) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [12,17] * Step 4: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. selectOrd(A,B,C,D,E) -> m4(A,B,C,D,E) [A >= 0] (1,1) 1. m0(A,B,C,D,E) -> m1(A,B,C,F,E) [A >= 1 + B && B >= 1 + C && A >= 1 + F && 1 + F >= A] (?,1) 2. m2(A,B,C,D,E) -> m3(A,F,C,D,E) [A >= 2 + F && 2 + F >= A] (?,1) 3. m6(A,B,C,D,E) -> m7(A,B,C,D,E) [B >= 1 + C && A >= 2 + B && D >= E] (?,1) 4. n0(A,B,C,D,E) -> m7(A,C,C,D,E) [D >= 1 + B && A >= 2 + C] (?,1) 5. m7(A,B,C,D,E) -> m0(A,F,C,D,E) [B >= C && A >= 2 + B && 1 + B >= F && F >= 1 + B] (?,1) 6. n1(A,B,C,D,E) -> c2(m5(A,B,0,D,E),m2(A,B,0,D,E)) [A >= 0] (?,1) 7. m4(A,B,C,D,E) -> n1(A,B,C,D,E) [A >= 0] (?,1) 8. n2(A,B,C,D,E) -> n3(A,B,C,F,G) [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A] (?,1) 9. n3(A,B,C,D,E) -> m6(A,B,C,D,E) True (?,1) 10. n3(A,B,C,D,E) -> n0(A,D,B,E,E) True (?,1) 11. m1(A,B,C,D,E) -> n2(A,B,C,D,E) True (?,1) 13. n40(A,B,C,D,E) -> m2(A,B,C,D,E) True (?,1) 14. n41(A,B,C,D,E) -> m0(A,D,B,D,E) True (?,1) 15. n4(A,B,C,D,E) -> c2(n40(A,C,F,G,E),n41(A,C,F,G,E)) [A >= 2 + G && 1 + C >= G && G >= 1 + C && F >= G && G >= F && A >= 2 + B && 2 + B >= A] (?,1) 16. m3(A,B,C,D,E) -> n4(A,B,C,D,E) True (?,1) Signature: {(m0,5) ;(m1,5) ;(m2,5) ;(m3,5) ;(m4,5) ;(m5,5) ;(m6,5) ;(m7,5) ;(m8,5) ;(m9,5) ;(n0,5) ;(n1,5) ;(n2,5) ;(n3,5) ;(n4,5) ;(n40,5) ;(n41,5) ;(selectOrd,5)} Flow Graph: [0->{7},1->{11},2->{16},3->{5},4->{5},5->{1},6->{2},7->{6},8->{9,10},9->{3},10->{4},11->{8},13->{2} ,14->{1},15->{13,14},16->{15}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 1,0,A>, A) (< 1,0,B>, A) (< 1,0,C>, ?) (< 1,0,D>, 1 + A) (< 1,0,E>, ?) (< 2,0,A>, A) (< 2,0,B>, 2 + A) (< 2,0,C>, ?) (< 2,0,D>, ?) (< 2,0,E>, E) (< 3,0,A>, A) (< 3,0,B>, A) (< 3,0,C>, 1 + A) (< 3,0,D>, ?) (< 3,0,E>, ?) (< 4,0,A>, A) (< 4,0,B>, 1) (< 4,0,C>, 1 + A) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 5,0,A>, A) (< 5,0,B>, 1) (< 5,0,C>, 1 + A) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 6,0,A>, A) (< 6,0,B>, B) (< 6,0,C>, 0) (< 6,0,D>, D) (< 6,0,E>, E) (< 6,1,A>, A) (< 6,1,B>, B) (< 6,1,C>, 0) (< 6,1,D>, D) (< 6,1,E>, E) (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, C) (< 7,0,D>, D) (< 7,0,E>, E) (< 8,0,A>, A) (< 8,0,B>, 1 + A) (< 8,0,C>, A) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, A) (< 9,0,B>, 1 + A) (< 9,0,C>, A) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, 1 + A) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, A) (<11,0,B>, A) (<11,0,C>, ?) (<11,0,D>, 1 + A) (<11,0,E>, ?) (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, E) (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, E) (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, E) (<15,1,A>, A) (<15,1,B>, ?) (<15,1,C>, ?) (<15,1,D>, ?) (<15,1,E>, E) (<16,0,A>, A) (<16,0,B>, 2 + A) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,E>, E) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(m0) = 0 p(m1) = 0 p(m2) = 1 p(m3) = 1 p(m4) = 2 p(m5) = 0 p(m6) = 0 p(m7) = 0 p(n0) = 0 p(n1) = 1 p(n2) = 0 p(n3) = 0 p(n4) = 1 p(n40) = 1 p(n41) = 0 p(selectOrd) = 2 The following rules are strictly oriented: [A >= 0] ==> m4(A,B,C,D,E) = 2 > 1 = n1(A,B,C,D,E) The following rules are weakly oriented: [A >= 0] ==> selectOrd(A,B,C,D,E) = 2 >= 2 = m4(A,B,C,D,E) [A >= 1 + B && B >= 1 + C && A >= 1 + F && 1 + F >= A] ==> m0(A,B,C,D,E) = 0 >= 0 = m1(A,B,C,F,E) [A >= 2 + F && 2 + F >= A] ==> m2(A,B,C,D,E) = 1 >= 1 = m3(A,F,C,D,E) [B >= 1 + C && A >= 2 + B && D >= E] ==> m6(A,B,C,D,E) = 0 >= 0 = m7(A,B,C,D,E) [D >= 1 + B && A >= 2 + C] ==> n0(A,B,C,D,E) = 0 >= 0 = m7(A,C,C,D,E) [B >= C && A >= 2 + B && 1 + B >= F && F >= 1 + B] ==> m7(A,B,C,D,E) = 0 >= 0 = m0(A,F,C,D,E) [A >= 0] ==> n1(A,B,C,D,E) = 1 >= 1 = c2(m5(A,B,0,D,E),m2(A,B,0,D,E)) [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A] ==> n2(A,B,C,D,E) = 0 >= 0 = n3(A,B,C,F,G) True ==> n3(A,B,C,D,E) = 0 >= 0 = m6(A,B,C,D,E) True ==> n3(A,B,C,D,E) = 0 >= 0 = n0(A,D,B,E,E) True ==> m1(A,B,C,D,E) = 0 >= 0 = n2(A,B,C,D,E) True ==> n40(A,B,C,D,E) = 1 >= 1 = m2(A,B,C,D,E) True ==> n41(A,B,C,D,E) = 0 >= 0 = m0(A,D,B,D,E) [A >= 2 + G && 1 + C >= G && G >= 1 + C && F >= G && G >= F && A >= 2 + B && 2 + B >= A] ==> n4(A,B,C,D,E) = 1 >= 1 = c2(n40(A,C,F,G,E),n41(A,C,F,G,E)) True ==> m3(A,B,C,D,E) = 1 >= 1 = n4(A,B,C,D,E) * Step 5: KnowledgePropagation WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. selectOrd(A,B,C,D,E) -> m4(A,B,C,D,E) [A >= 0] (1,1) 1. m0(A,B,C,D,E) -> m1(A,B,C,F,E) [A >= 1 + B && B >= 1 + C && A >= 1 + F && 1 + F >= A] (?,1) 2. m2(A,B,C,D,E) -> m3(A,F,C,D,E) [A >= 2 + F && 2 + F >= A] (?,1) 3. m6(A,B,C,D,E) -> m7(A,B,C,D,E) [B >= 1 + C && A >= 2 + B && D >= E] (?,1) 4. n0(A,B,C,D,E) -> m7(A,C,C,D,E) [D >= 1 + B && A >= 2 + C] (?,1) 5. m7(A,B,C,D,E) -> m0(A,F,C,D,E) [B >= C && A >= 2 + B && 1 + B >= F && F >= 1 + B] (?,1) 6. n1(A,B,C,D,E) -> c2(m5(A,B,0,D,E),m2(A,B,0,D,E)) [A >= 0] (?,1) 7. m4(A,B,C,D,E) -> n1(A,B,C,D,E) [A >= 0] (2,1) 8. n2(A,B,C,D,E) -> n3(A,B,C,F,G) [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A] (?,1) 9. n3(A,B,C,D,E) -> m6(A,B,C,D,E) True (?,1) 10. n3(A,B,C,D,E) -> n0(A,D,B,E,E) True (?,1) 11. m1(A,B,C,D,E) -> n2(A,B,C,D,E) True (?,1) 13. n40(A,B,C,D,E) -> m2(A,B,C,D,E) True (?,1) 14. n41(A,B,C,D,E) -> m0(A,D,B,D,E) True (?,1) 15. n4(A,B,C,D,E) -> c2(n40(A,C,F,G,E),n41(A,C,F,G,E)) [A >= 2 + G && 1 + C >= G && G >= 1 + C && F >= G && G >= F && A >= 2 + B && 2 + B >= A] (?,1) 16. m3(A,B,C,D,E) -> n4(A,B,C,D,E) True (?,1) Signature: {(m0,5) ;(m1,5) ;(m2,5) ;(m3,5) ;(m4,5) ;(m5,5) ;(m6,5) ;(m7,5) ;(m8,5) ;(m9,5) ;(n0,5) ;(n1,5) ;(n2,5) ;(n3,5) ;(n4,5) ;(n40,5) ;(n41,5) ;(selectOrd,5)} Flow Graph: [0->{7},1->{11},2->{16},3->{5},4->{5},5->{1},6->{2},7->{6},8->{9,10},9->{3},10->{4},11->{8},13->{2} ,14->{1},15->{13,14},16->{15}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 1,0,A>, A) (< 1,0,B>, A) (< 1,0,C>, ?) (< 1,0,D>, 1 + A) (< 1,0,E>, ?) (< 2,0,A>, A) (< 2,0,B>, 2 + A) (< 2,0,C>, ?) (< 2,0,D>, ?) (< 2,0,E>, E) (< 3,0,A>, A) (< 3,0,B>, A) (< 3,0,C>, 1 + A) (< 3,0,D>, ?) (< 3,0,E>, ?) (< 4,0,A>, A) (< 4,0,B>, 1) (< 4,0,C>, 1 + A) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 5,0,A>, A) (< 5,0,B>, 1) (< 5,0,C>, 1 + A) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 6,0,A>, A) (< 6,0,B>, B) (< 6,0,C>, 0) (< 6,0,D>, D) (< 6,0,E>, E) (< 6,1,A>, A) (< 6,1,B>, B) (< 6,1,C>, 0) (< 6,1,D>, D) (< 6,1,E>, E) (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, C) (< 7,0,D>, D) (< 7,0,E>, E) (< 8,0,A>, A) (< 8,0,B>, 1 + A) (< 8,0,C>, A) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, A) (< 9,0,B>, 1 + A) (< 9,0,C>, A) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, 1 + A) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, A) (<11,0,B>, A) (<11,0,C>, ?) (<11,0,D>, 1 + A) (<11,0,E>, ?) (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, E) (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, E) (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, E) (<15,1,A>, A) (<15,1,B>, ?) (<15,1,C>, ?) (<15,1,D>, ?) (<15,1,E>, E) (<16,0,A>, A) (<16,0,B>, 2 + A) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,E>, E) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 6: ChainProcessor WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. selectOrd(A,B,C,D,E) -> m4(A,B,C,D,E) [A >= 0] (1,1) 1. m0(A,B,C,D,E) -> m1(A,B,C,F,E) [A >= 1 + B && B >= 1 + C && A >= 1 + F && 1 + F >= A] (?,1) 2. m2(A,B,C,D,E) -> m3(A,F,C,D,E) [A >= 2 + F && 2 + F >= A] (?,1) 3. m6(A,B,C,D,E) -> m7(A,B,C,D,E) [B >= 1 + C && A >= 2 + B && D >= E] (?,1) 4. n0(A,B,C,D,E) -> m7(A,C,C,D,E) [D >= 1 + B && A >= 2 + C] (?,1) 5. m7(A,B,C,D,E) -> m0(A,F,C,D,E) [B >= C && A >= 2 + B && 1 + B >= F && F >= 1 + B] (?,1) 6. n1(A,B,C,D,E) -> c2(m5(A,B,0,D,E),m2(A,B,0,D,E)) [A >= 0] (2,1) 7. m4(A,B,C,D,E) -> n1(A,B,C,D,E) [A >= 0] (2,1) 8. n2(A,B,C,D,E) -> n3(A,B,C,F,G) [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A] (?,1) 9. n3(A,B,C,D,E) -> m6(A,B,C,D,E) True (?,1) 10. n3(A,B,C,D,E) -> n0(A,D,B,E,E) True (?,1) 11. m1(A,B,C,D,E) -> n2(A,B,C,D,E) True (?,1) 13. n40(A,B,C,D,E) -> m2(A,B,C,D,E) True (?,1) 14. n41(A,B,C,D,E) -> m0(A,D,B,D,E) True (?,1) 15. n4(A,B,C,D,E) -> c2(n40(A,C,F,G,E),n41(A,C,F,G,E)) [A >= 2 + G && 1 + C >= G && G >= 1 + C && F >= G && G >= F && A >= 2 + B && 2 + B >= A] (?,1) 16. m3(A,B,C,D,E) -> n4(A,B,C,D,E) True (?,1) Signature: {(m0,5) ;(m1,5) ;(m2,5) ;(m3,5) ;(m4,5) ;(m5,5) ;(m6,5) ;(m7,5) ;(m8,5) ;(m9,5) ;(n0,5) ;(n1,5) ;(n2,5) ;(n3,5) ;(n4,5) ;(n40,5) ;(n41,5) ;(selectOrd,5)} Flow Graph: [0->{7},1->{11},2->{16},3->{5},4->{5},5->{1},6->{2},7->{6},8->{9,10},9->{3},10->{4},11->{8},13->{2} ,14->{1},15->{13,14},16->{15}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 1,0,A>, A) (< 1,0,B>, A) (< 1,0,C>, ?) (< 1,0,D>, 1 + A) (< 1,0,E>, ?) (< 2,0,A>, A) (< 2,0,B>, 2 + A) (< 2,0,C>, ?) (< 2,0,D>, ?) (< 2,0,E>, E) (< 3,0,A>, A) (< 3,0,B>, A) (< 3,0,C>, 1 + A) (< 3,0,D>, ?) (< 3,0,E>, ?) (< 4,0,A>, A) (< 4,0,B>, 1) (< 4,0,C>, 1 + A) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 5,0,A>, A) (< 5,0,B>, 1) (< 5,0,C>, 1 + A) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 6,0,A>, A) (< 6,0,B>, B) (< 6,0,C>, 0) (< 6,0,D>, D) (< 6,0,E>, E) (< 6,1,A>, A) (< 6,1,B>, B) (< 6,1,C>, 0) (< 6,1,D>, D) (< 6,1,E>, E) (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, C) (< 7,0,D>, D) (< 7,0,E>, E) (< 8,0,A>, A) (< 8,0,B>, 1 + A) (< 8,0,C>, A) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, A) (< 9,0,B>, 1 + A) (< 9,0,C>, A) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, 1 + A) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, A) (<11,0,B>, A) (<11,0,C>, ?) (<11,0,D>, 1 + A) (<11,0,E>, ?) (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, E) (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, E) (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, E) (<15,1,A>, A) (<15,1,B>, ?) (<15,1,C>, ?) (<15,1,D>, ?) (<15,1,E>, E) (<16,0,A>, A) (<16,0,B>, 2 + A) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,E>, E) + Applied Processor: ChainProcessor False [0,1,2,3,4,5,6,7,8,9,10,11,13,14,15,16] + Details: We chained rule 0 to obtain the rules [17] . * Step 7: UnreachableRules WORST_CASE(?,O(1)) + Considered Problem: Rules: 1. m0(A,B,C,D,E) -> m1(A,B,C,F,E) [A >= 1 + B && B >= 1 + C && A >= 1 + F && 1 + F >= A] (?,1) 2. m2(A,B,C,D,E) -> m3(A,F,C,D,E) [A >= 2 + F && 2 + F >= A] (?,1) 3. m6(A,B,C,D,E) -> m7(A,B,C,D,E) [B >= 1 + C && A >= 2 + B && D >= E] (?,1) 4. n0(A,B,C,D,E) -> m7(A,C,C,D,E) [D >= 1 + B && A >= 2 + C] (?,1) 5. m7(A,B,C,D,E) -> m0(A,F,C,D,E) [B >= C && A >= 2 + B && 1 + B >= F && F >= 1 + B] (?,1) 6. n1(A,B,C,D,E) -> c2(m5(A,B,0,D,E),m2(A,B,0,D,E)) [A >= 0] (2,1) 7. m4(A,B,C,D,E) -> n1(A,B,C,D,E) [A >= 0] (2,1) 8. n2(A,B,C,D,E) -> n3(A,B,C,F,G) [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A] (?,1) 9. n3(A,B,C,D,E) -> m6(A,B,C,D,E) True (?,1) 10. n3(A,B,C,D,E) -> n0(A,D,B,E,E) True (?,1) 11. m1(A,B,C,D,E) -> n2(A,B,C,D,E) True (?,1) 13. n40(A,B,C,D,E) -> m2(A,B,C,D,E) True (?,1) 14. n41(A,B,C,D,E) -> m0(A,D,B,D,E) True (?,1) 15. n4(A,B,C,D,E) -> c2(n40(A,C,F,G,E),n41(A,C,F,G,E)) [A >= 2 + G && 1 + C >= G && G >= 1 + C && F >= G && G >= F && A >= 2 + B && 2 + B >= A] (?,1) 16. m3(A,B,C,D,E) -> n4(A,B,C,D,E) True (?,1) 17. selectOrd(A,B,C,D,E) -> n1(A,B,C,D,E) [A >= 0 && A >= 0] (1,2) Signature: {(m0,5) ;(m1,5) ;(m2,5) ;(m3,5) ;(m4,5) ;(m5,5) ;(m6,5) ;(m7,5) ;(m8,5) ;(m9,5) ;(n0,5) ;(n1,5) ;(n2,5) ;(n3,5) ;(n4,5) ;(n40,5) ;(n41,5) ;(selectOrd,5)} Flow Graph: [1->{11},2->{16},3->{5},4->{5},5->{1},6->{2},7->{6},8->{9,10},9->{3},10->{4},11->{8},13->{2},14->{1} ,15->{13,14},16->{15},17->{6}] Sizebounds: (< 1,0,A>, A) (< 1,0,B>, A) (< 1,0,C>, ?) (< 1,0,D>, 1 + A) (< 1,0,E>, ?) (< 2,0,A>, A) (< 2,0,B>, 2 + A) (< 2,0,C>, ?) (< 2,0,D>, ?) (< 2,0,E>, E) (< 3,0,A>, A) (< 3,0,B>, A) (< 3,0,C>, 1 + A) (< 3,0,D>, ?) (< 3,0,E>, ?) (< 4,0,A>, A) (< 4,0,B>, 1) (< 4,0,C>, 1 + A) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 5,0,A>, A) (< 5,0,B>, 1) (< 5,0,C>, 1 + A) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 6,0,A>, A) (< 6,0,B>, B) (< 6,0,C>, 0) (< 6,0,D>, D) (< 6,0,E>, E) (< 6,1,A>, A) (< 6,1,B>, B) (< 6,1,C>, 0) (< 6,1,D>, D) (< 6,1,E>, E) (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, C) (< 7,0,D>, D) (< 7,0,E>, E) (< 8,0,A>, A) (< 8,0,B>, 1 + A) (< 8,0,C>, A) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, A) (< 9,0,B>, 1 + A) (< 9,0,C>, A) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, 1 + A) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, A) (<11,0,B>, A) (<11,0,C>, ?) (<11,0,D>, 1 + A) (<11,0,E>, ?) (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, E) (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, E) (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, E) (<15,1,A>, A) (<15,1,B>, ?) (<15,1,C>, ?) (<15,1,D>, ?) (<15,1,E>, E) (<16,0,A>, A) (<16,0,B>, 2 + A) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,E>, E) (<17,0,A>, A) (<17,0,B>, B) (<17,0,C>, C) (<17,0,D>, D) (<17,0,E>, E) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [7] * Step 8: ChainProcessor WORST_CASE(?,O(1)) + Considered Problem: Rules: 1. m0(A,B,C,D,E) -> m1(A,B,C,F,E) [A >= 1 + B && B >= 1 + C && A >= 1 + F && 1 + F >= A] (?,1) 2. m2(A,B,C,D,E) -> m3(A,F,C,D,E) [A >= 2 + F && 2 + F >= A] (?,1) 3. m6(A,B,C,D,E) -> m7(A,B,C,D,E) [B >= 1 + C && A >= 2 + B && D >= E] (?,1) 4. n0(A,B,C,D,E) -> m7(A,C,C,D,E) [D >= 1 + B && A >= 2 + C] (?,1) 5. m7(A,B,C,D,E) -> m0(A,F,C,D,E) [B >= C && A >= 2 + B && 1 + B >= F && F >= 1 + B] (?,1) 6. n1(A,B,C,D,E) -> c2(m5(A,B,0,D,E),m2(A,B,0,D,E)) [A >= 0] (2,1) 8. n2(A,B,C,D,E) -> n3(A,B,C,F,G) [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A] (?,1) 9. n3(A,B,C,D,E) -> m6(A,B,C,D,E) True (?,1) 10. n3(A,B,C,D,E) -> n0(A,D,B,E,E) True (?,1) 11. m1(A,B,C,D,E) -> n2(A,B,C,D,E) True (?,1) 13. n40(A,B,C,D,E) -> m2(A,B,C,D,E) True (?,1) 14. n41(A,B,C,D,E) -> m0(A,D,B,D,E) True (?,1) 15. n4(A,B,C,D,E) -> c2(n40(A,C,F,G,E),n41(A,C,F,G,E)) [A >= 2 + G && 1 + C >= G && G >= 1 + C && F >= G && G >= F && A >= 2 + B && 2 + B >= A] (?,1) 16. m3(A,B,C,D,E) -> n4(A,B,C,D,E) True (?,1) 17. selectOrd(A,B,C,D,E) -> n1(A,B,C,D,E) [A >= 0 && A >= 0] (1,2) Signature: {(m0,5) ;(m1,5) ;(m2,5) ;(m3,5) ;(m4,5) ;(m5,5) ;(m6,5) ;(m7,5) ;(m8,5) ;(m9,5) ;(n0,5) ;(n1,5) ;(n2,5) ;(n3,5) ;(n4,5) ;(n40,5) ;(n41,5) ;(selectOrd,5)} Flow Graph: [1->{11},2->{16},3->{5},4->{5},5->{1},6->{2},8->{9,10},9->{3},10->{4},11->{8},13->{2},14->{1},15->{13,14} ,16->{15},17->{6}] Sizebounds: (< 1,0,A>, A) (< 1,0,B>, A) (< 1,0,C>, ?) (< 1,0,D>, 1 + A) (< 1,0,E>, ?) (< 2,0,A>, A) (< 2,0,B>, 2 + A) (< 2,0,C>, ?) (< 2,0,D>, ?) (< 2,0,E>, E) (< 3,0,A>, A) (< 3,0,B>, A) (< 3,0,C>, 1 + A) (< 3,0,D>, ?) (< 3,0,E>, ?) (< 4,0,A>, A) (< 4,0,B>, 1) (< 4,0,C>, 1 + A) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 5,0,A>, A) (< 5,0,B>, 1) (< 5,0,C>, 1 + A) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 6,0,A>, A) (< 6,0,B>, B) (< 6,0,C>, 0) (< 6,0,D>, D) (< 6,0,E>, E) (< 6,1,A>, A) (< 6,1,B>, B) (< 6,1,C>, 0) (< 6,1,D>, D) (< 6,1,E>, E) (< 8,0,A>, A) (< 8,0,B>, 1 + A) (< 8,0,C>, A) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, A) (< 9,0,B>, 1 + A) (< 9,0,C>, A) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, 1 + A) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, A) (<11,0,B>, A) (<11,0,C>, ?) (<11,0,D>, 1 + A) (<11,0,E>, ?) (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, E) (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, E) (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, E) (<15,1,A>, A) (<15,1,B>, ?) (<15,1,C>, ?) (<15,1,D>, ?) (<15,1,E>, E) (<16,0,A>, A) (<16,0,B>, 2 + A) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,E>, E) (<17,0,A>, A) (<17,0,B>, B) (<17,0,C>, C) (<17,0,D>, D) (<17,0,E>, E) + Applied Processor: ChainProcessor False [1,2,3,4,5,6,8,9,10,11,13,14,15,16,17] + Details: We chained rule 1 to obtain the rules [18] . * Step 9: UnreachableRules WORST_CASE(?,O(1)) + Considered Problem: Rules: 2. m2(A,B,C,D,E) -> m3(A,F,C,D,E) [A >= 2 + F && 2 + F >= A] (?,1) 3. m6(A,B,C,D,E) -> m7(A,B,C,D,E) [B >= 1 + C && A >= 2 + B && D >= E] (?,1) 4. n0(A,B,C,D,E) -> m7(A,C,C,D,E) [D >= 1 + B && A >= 2 + C] (?,1) 5. m7(A,B,C,D,E) -> m0(A,F,C,D,E) [B >= C && A >= 2 + B && 1 + B >= F && F >= 1 + B] (?,1) 6. n1(A,B,C,D,E) -> c2(m5(A,B,0,D,E),m2(A,B,0,D,E)) [A >= 0] (2,1) 8. n2(A,B,C,D,E) -> n3(A,B,C,F,G) [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A] (?,1) 9. n3(A,B,C,D,E) -> m6(A,B,C,D,E) True (?,1) 10. n3(A,B,C,D,E) -> n0(A,D,B,E,E) True (?,1) 11. m1(A,B,C,D,E) -> n2(A,B,C,D,E) True (?,1) 13. n40(A,B,C,D,E) -> m2(A,B,C,D,E) True (?,1) 14. n41(A,B,C,D,E) -> m0(A,D,B,D,E) True (?,1) 15. n4(A,B,C,D,E) -> c2(n40(A,C,F,G,E),n41(A,C,F,G,E)) [A >= 2 + G && 1 + C >= G && G >= 1 + C && F >= G && G >= F && A >= 2 + B && 2 + B >= A] (?,1) 16. m3(A,B,C,D,E) -> n4(A,B,C,D,E) True (?,1) 17. selectOrd(A,B,C,D,E) -> n1(A,B,C,D,E) [A >= 0 && A >= 0] (1,2) 18. m0(A,B,C,D,E) -> n2(A,B,C,F,E) [A >= 1 + B && B >= 1 + C && A >= 1 + F && 1 + F >= A] (?,2) Signature: {(m0,5) ;(m1,5) ;(m2,5) ;(m3,5) ;(m4,5) ;(m5,5) ;(m6,5) ;(m7,5) ;(m8,5) ;(m9,5) ;(n0,5) ;(n1,5) ;(n2,5) ;(n3,5) ;(n4,5) ;(n40,5) ;(n41,5) ;(selectOrd,5)} Flow Graph: [2->{16},3->{5},4->{5},5->{18},6->{2},8->{9,10},9->{3},10->{4},11->{8},13->{2},14->{18},15->{13,14} ,16->{15},17->{6},18->{8}] Sizebounds: (< 2,0,A>, A) (< 2,0,B>, 2 + A) (< 2,0,C>, ?) (< 2,0,D>, ?) (< 2,0,E>, E) (< 3,0,A>, A) (< 3,0,B>, A) (< 3,0,C>, 1 + A) (< 3,0,D>, ?) (< 3,0,E>, ?) (< 4,0,A>, A) (< 4,0,B>, 1) (< 4,0,C>, 1 + A) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 5,0,A>, A) (< 5,0,B>, 1) (< 5,0,C>, 1 + A) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 6,0,A>, A) (< 6,0,B>, B) (< 6,0,C>, 0) (< 6,0,D>, D) (< 6,0,E>, E) (< 6,1,A>, A) (< 6,1,B>, B) (< 6,1,C>, 0) (< 6,1,D>, D) (< 6,1,E>, E) (< 8,0,A>, A) (< 8,0,B>, 1 + A) (< 8,0,C>, A) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, A) (< 9,0,B>, 1 + A) (< 9,0,C>, A) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, 1 + A) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, A) (<11,0,B>, A) (<11,0,C>, ?) (<11,0,D>, 1 + A) (<11,0,E>, ?) (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, E) (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, E) (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, E) (<15,1,A>, A) (<15,1,B>, ?) (<15,1,C>, ?) (<15,1,D>, ?) (<15,1,E>, E) (<16,0,A>, A) (<16,0,B>, 2 + A) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,E>, E) (<17,0,A>, A) (<17,0,B>, B) (<17,0,C>, C) (<17,0,D>, D) (<17,0,E>, E) (<18,0,A>, A) (<18,0,B>, A) (<18,0,C>, ?) (<18,0,D>, 1 + A) (<18,0,E>, ?) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [11] * Step 10: ChainProcessor WORST_CASE(?,O(1)) + Considered Problem: Rules: 2. m2(A,B,C,D,E) -> m3(A,F,C,D,E) [A >= 2 + F && 2 + F >= A] (?,1) 3. m6(A,B,C,D,E) -> m7(A,B,C,D,E) [B >= 1 + C && A >= 2 + B && D >= E] (?,1) 4. n0(A,B,C,D,E) -> m7(A,C,C,D,E) [D >= 1 + B && A >= 2 + C] (?,1) 5. m7(A,B,C,D,E) -> m0(A,F,C,D,E) [B >= C && A >= 2 + B && 1 + B >= F && F >= 1 + B] (?,1) 6. n1(A,B,C,D,E) -> c2(m5(A,B,0,D,E),m2(A,B,0,D,E)) [A >= 0] (2,1) 8. n2(A,B,C,D,E) -> n3(A,B,C,F,G) [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A] (?,1) 9. n3(A,B,C,D,E) -> m6(A,B,C,D,E) True (?,1) 10. n3(A,B,C,D,E) -> n0(A,D,B,E,E) True (?,1) 13. n40(A,B,C,D,E) -> m2(A,B,C,D,E) True (?,1) 14. n41(A,B,C,D,E) -> m0(A,D,B,D,E) True (?,1) 15. n4(A,B,C,D,E) -> c2(n40(A,C,F,G,E),n41(A,C,F,G,E)) [A >= 2 + G && 1 + C >= G && G >= 1 + C && F >= G && G >= F && A >= 2 + B && 2 + B >= A] (?,1) 16. m3(A,B,C,D,E) -> n4(A,B,C,D,E) True (?,1) 17. selectOrd(A,B,C,D,E) -> n1(A,B,C,D,E) [A >= 0 && A >= 0] (1,2) 18. m0(A,B,C,D,E) -> n2(A,B,C,F,E) [A >= 1 + B && B >= 1 + C && A >= 1 + F && 1 + F >= A] (?,2) Signature: {(m0,5) ;(m1,5) ;(m2,5) ;(m3,5) ;(m4,5) ;(m5,5) ;(m6,5) ;(m7,5) ;(m8,5) ;(m9,5) ;(n0,5) ;(n1,5) ;(n2,5) ;(n3,5) ;(n4,5) ;(n40,5) ;(n41,5) ;(selectOrd,5)} Flow Graph: [2->{16},3->{5},4->{5},5->{18},6->{2},8->{9,10},9->{3},10->{4},13->{2},14->{18},15->{13,14},16->{15} ,17->{6},18->{8}] Sizebounds: (< 2,0,A>, A) (< 2,0,B>, 2 + A) (< 2,0,C>, ?) (< 2,0,D>, ?) (< 2,0,E>, E) (< 3,0,A>, A) (< 3,0,B>, A) (< 3,0,C>, 1 + A) (< 3,0,D>, ?) (< 3,0,E>, ?) (< 4,0,A>, A) (< 4,0,B>, 1) (< 4,0,C>, 1 + A) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 5,0,A>, A) (< 5,0,B>, 1) (< 5,0,C>, 1 + A) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 6,0,A>, A) (< 6,0,B>, B) (< 6,0,C>, 0) (< 6,0,D>, D) (< 6,0,E>, E) (< 6,1,A>, A) (< 6,1,B>, B) (< 6,1,C>, 0) (< 6,1,D>, D) (< 6,1,E>, E) (< 8,0,A>, A) (< 8,0,B>, 1 + A) (< 8,0,C>, A) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, A) (< 9,0,B>, 1 + A) (< 9,0,C>, A) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, 1 + A) (<10,0,D>, ?) (<10,0,E>, ?) (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, E) (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, E) (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, E) (<15,1,A>, A) (<15,1,B>, ?) (<15,1,C>, ?) (<15,1,D>, ?) (<15,1,E>, E) (<16,0,A>, A) (<16,0,B>, 2 + A) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,E>, E) (<17,0,A>, A) (<17,0,B>, B) (<17,0,C>, C) (<17,0,D>, D) (<17,0,E>, E) (<18,0,A>, A) (<18,0,B>, A) (<18,0,C>, ?) (<18,0,D>, 1 + A) (<18,0,E>, ?) + Applied Processor: ChainProcessor False [2,3,4,5,6,8,9,10,13,14,15,16,17,18] + Details: We chained rule 2 to obtain the rules [19] . * Step 11: UnreachableRules WORST_CASE(?,O(1)) + Considered Problem: Rules: 3. m6(A,B,C,D,E) -> m7(A,B,C,D,E) [B >= 1 + C && A >= 2 + B && D >= E] (?,1) 4. n0(A,B,C,D,E) -> m7(A,C,C,D,E) [D >= 1 + B && A >= 2 + C] (?,1) 5. m7(A,B,C,D,E) -> m0(A,F,C,D,E) [B >= C && A >= 2 + B && 1 + B >= F && F >= 1 + B] (?,1) 6. n1(A,B,C,D,E) -> c2(m5(A,B,0,D,E),m2(A,B,0,D,E)) [A >= 0] (2,1) 8. n2(A,B,C,D,E) -> n3(A,B,C,F,G) [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A] (?,1) 9. n3(A,B,C,D,E) -> m6(A,B,C,D,E) True (?,1) 10. n3(A,B,C,D,E) -> n0(A,D,B,E,E) True (?,1) 13. n40(A,B,C,D,E) -> m2(A,B,C,D,E) True (?,1) 14. n41(A,B,C,D,E) -> m0(A,D,B,D,E) True (?,1) 15. n4(A,B,C,D,E) -> c2(n40(A,C,F,G,E),n41(A,C,F,G,E)) [A >= 2 + G && 1 + C >= G && G >= 1 + C && F >= G && G >= F && A >= 2 + B && 2 + B >= A] (?,1) 16. m3(A,B,C,D,E) -> n4(A,B,C,D,E) True (?,1) 17. selectOrd(A,B,C,D,E) -> n1(A,B,C,D,E) [A >= 0 && A >= 0] (1,2) 18. m0(A,B,C,D,E) -> n2(A,B,C,F,E) [A >= 1 + B && B >= 1 + C && A >= 1 + F && 1 + F >= A] (?,2) 19. m2(A,B,C,D,E) -> n4(A,F,C,D,E) [A >= 2 + F && 2 + F >= A] (?,2) Signature: {(m0,5) ;(m1,5) ;(m2,5) ;(m3,5) ;(m4,5) ;(m5,5) ;(m6,5) ;(m7,5) ;(m8,5) ;(m9,5) ;(n0,5) ;(n1,5) ;(n2,5) ;(n3,5) ;(n4,5) ;(n40,5) ;(n41,5) ;(selectOrd,5)} Flow Graph: [3->{5},4->{5},5->{18},6->{19},8->{9,10},9->{3},10->{4},13->{19},14->{18},15->{13,14},16->{15},17->{6} ,18->{8},19->{15}] Sizebounds: (< 3,0,A>, A) (< 3,0,B>, A) (< 3,0,C>, 1 + A) (< 3,0,D>, ?) (< 3,0,E>, ?) (< 4,0,A>, A) (< 4,0,B>, 1) (< 4,0,C>, 1 + A) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 5,0,A>, A) (< 5,0,B>, 1) (< 5,0,C>, 1 + A) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 6,0,A>, A) (< 6,0,B>, B) (< 6,0,C>, 0) (< 6,0,D>, D) (< 6,0,E>, E) (< 6,1,A>, A) (< 6,1,B>, B) (< 6,1,C>, 0) (< 6,1,D>, D) (< 6,1,E>, E) (< 8,0,A>, A) (< 8,0,B>, 1 + A) (< 8,0,C>, A) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, A) (< 9,0,B>, 1 + A) (< 9,0,C>, A) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, 1 + A) (<10,0,D>, ?) (<10,0,E>, ?) (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, E) (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, E) (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, E) (<15,1,A>, A) (<15,1,B>, ?) (<15,1,C>, ?) (<15,1,D>, ?) (<15,1,E>, E) (<16,0,A>, A) (<16,0,B>, 2 + A) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,E>, E) (<17,0,A>, A) (<17,0,B>, B) (<17,0,C>, C) (<17,0,D>, D) (<17,0,E>, E) (<18,0,A>, A) (<18,0,B>, A) (<18,0,C>, ?) (<18,0,D>, 1 + A) (<18,0,E>, ?) (<19,0,A>, A) (<19,0,B>, 2 + A) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, E) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [16] * Step 12: ChainProcessor WORST_CASE(?,O(1)) + Considered Problem: Rules: 3. m6(A,B,C,D,E) -> m7(A,B,C,D,E) [B >= 1 + C && A >= 2 + B && D >= E] (?,1) 4. n0(A,B,C,D,E) -> m7(A,C,C,D,E) [D >= 1 + B && A >= 2 + C] (?,1) 5. m7(A,B,C,D,E) -> m0(A,F,C,D,E) [B >= C && A >= 2 + B && 1 + B >= F && F >= 1 + B] (?,1) 6. n1(A,B,C,D,E) -> c2(m5(A,B,0,D,E),m2(A,B,0,D,E)) [A >= 0] (2,1) 8. n2(A,B,C,D,E) -> n3(A,B,C,F,G) [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A] (?,1) 9. n3(A,B,C,D,E) -> m6(A,B,C,D,E) True (?,1) 10. n3(A,B,C,D,E) -> n0(A,D,B,E,E) True (?,1) 13. n40(A,B,C,D,E) -> m2(A,B,C,D,E) True (?,1) 14. n41(A,B,C,D,E) -> m0(A,D,B,D,E) True (?,1) 15. n4(A,B,C,D,E) -> c2(n40(A,C,F,G,E),n41(A,C,F,G,E)) [A >= 2 + G && 1 + C >= G && G >= 1 + C && F >= G && G >= F && A >= 2 + B && 2 + B >= A] (?,1) 17. selectOrd(A,B,C,D,E) -> n1(A,B,C,D,E) [A >= 0 && A >= 0] (1,2) 18. m0(A,B,C,D,E) -> n2(A,B,C,F,E) [A >= 1 + B && B >= 1 + C && A >= 1 + F && 1 + F >= A] (?,2) 19. m2(A,B,C,D,E) -> n4(A,F,C,D,E) [A >= 2 + F && 2 + F >= A] (?,2) Signature: {(m0,5) ;(m1,5) ;(m2,5) ;(m3,5) ;(m4,5) ;(m5,5) ;(m6,5) ;(m7,5) ;(m8,5) ;(m9,5) ;(n0,5) ;(n1,5) ;(n2,5) ;(n3,5) ;(n4,5) ;(n40,5) ;(n41,5) ;(selectOrd,5)} Flow Graph: [3->{5},4->{5},5->{18},6->{19},8->{9,10},9->{3},10->{4},13->{19},14->{18},15->{13,14},17->{6},18->{8} ,19->{15}] Sizebounds: (< 3,0,A>, A) (< 3,0,B>, A) (< 3,0,C>, 1 + A) (< 3,0,D>, ?) (< 3,0,E>, ?) (< 4,0,A>, A) (< 4,0,B>, 1) (< 4,0,C>, 1 + A) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 5,0,A>, A) (< 5,0,B>, 1) (< 5,0,C>, 1 + A) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 6,0,A>, A) (< 6,0,B>, B) (< 6,0,C>, 0) (< 6,0,D>, D) (< 6,0,E>, E) (< 6,1,A>, A) (< 6,1,B>, B) (< 6,1,C>, 0) (< 6,1,D>, D) (< 6,1,E>, E) (< 8,0,A>, A) (< 8,0,B>, 1 + A) (< 8,0,C>, A) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, A) (< 9,0,B>, 1 + A) (< 9,0,C>, A) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, 1 + A) (<10,0,D>, ?) (<10,0,E>, ?) (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, E) (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, E) (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, E) (<15,1,A>, A) (<15,1,B>, ?) (<15,1,C>, ?) (<15,1,D>, ?) (<15,1,E>, E) (<17,0,A>, A) (<17,0,B>, B) (<17,0,C>, C) (<17,0,D>, D) (<17,0,E>, E) (<18,0,A>, A) (<18,0,B>, A) (<18,0,C>, ?) (<18,0,D>, 1 + A) (<18,0,E>, ?) (<19,0,A>, A) (<19,0,B>, 2 + A) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, E) + Applied Processor: ChainProcessor False [3,4,5,6,8,9,10,13,14,15,17,18,19] + Details: We chained rule 3 to obtain the rules [20] . * Step 13: ChainProcessor WORST_CASE(?,O(1)) + Considered Problem: Rules: 4. n0(A,B,C,D,E) -> m7(A,C,C,D,E) [D >= 1 + B && A >= 2 + C] (?,1) 5. m7(A,B,C,D,E) -> m0(A,F,C,D,E) [B >= C && A >= 2 + B && 1 + B >= F && F >= 1 + B] (?,1) 6. n1(A,B,C,D,E) -> c2(m5(A,B,0,D,E),m2(A,B,0,D,E)) [A >= 0] (2,1) 8. n2(A,B,C,D,E) -> n3(A,B,C,F,G) [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A] (?,1) 9. n3(A,B,C,D,E) -> m6(A,B,C,D,E) True (?,1) 10. n3(A,B,C,D,E) -> n0(A,D,B,E,E) True (?,1) 13. n40(A,B,C,D,E) -> m2(A,B,C,D,E) True (?,1) 14. n41(A,B,C,D,E) -> m0(A,D,B,D,E) True (?,1) 15. n4(A,B,C,D,E) -> c2(n40(A,C,F,G,E),n41(A,C,F,G,E)) [A >= 2 + G && 1 + C >= G && G >= 1 + C && F >= G && G >= F && A >= 2 + B && 2 + B >= A] (?,1) 17. selectOrd(A,B,C,D,E) -> n1(A,B,C,D,E) [A >= 0 && A >= 0] (1,2) 18. m0(A,B,C,D,E) -> n2(A,B,C,F,E) [A >= 1 + B && B >= 1 + C && A >= 1 + F && 1 + F >= A] (?,2) 19. m2(A,B,C,D,E) -> n4(A,F,C,D,E) [A >= 2 + F && 2 + F >= A] (?,2) 20. m6(A,B,C,D,E) -> m0(A,F$,C,D,E) [B >= 1 + C && A >= 2 + B && D >= E && B >= C && A >= 2 + B && 1 + B >= F$ && F$ >= 1 + B] (?,2) Signature: {(m0,5) ;(m1,5) ;(m2,5) ;(m3,5) ;(m4,5) ;(m5,5) ;(m6,5) ;(m7,5) ;(m8,5) ;(m9,5) ;(n0,5) ;(n1,5) ;(n2,5) ;(n3,5) ;(n4,5) ;(n40,5) ;(n41,5) ;(selectOrd,5)} Flow Graph: [4->{5},5->{18},6->{19},8->{9,10},9->{20},10->{4},13->{19},14->{18},15->{13,14},17->{6},18->{8},19->{15} ,20->{18}] Sizebounds: (< 4,0,A>, A) (< 4,0,B>, 1) (< 4,0,C>, 1 + A) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 5,0,A>, A) (< 5,0,B>, 1) (< 5,0,C>, 1 + A) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 6,0,A>, A) (< 6,0,B>, B) (< 6,0,C>, 0) (< 6,0,D>, D) (< 6,0,E>, E) (< 6,1,A>, A) (< 6,1,B>, B) (< 6,1,C>, 0) (< 6,1,D>, D) (< 6,1,E>, E) (< 8,0,A>, A) (< 8,0,B>, 1 + A) (< 8,0,C>, A) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, A) (< 9,0,B>, 1 + A) (< 9,0,C>, A) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, 1 + A) (<10,0,D>, ?) (<10,0,E>, ?) (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, E) (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, E) (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, E) (<15,1,A>, A) (<15,1,B>, ?) (<15,1,C>, ?) (<15,1,D>, ?) (<15,1,E>, E) (<17,0,A>, A) (<17,0,B>, B) (<17,0,C>, C) (<17,0,D>, D) (<17,0,E>, E) (<18,0,A>, A) (<18,0,B>, A) (<18,0,C>, ?) (<18,0,D>, 1 + A) (<18,0,E>, ?) (<19,0,A>, A) (<19,0,B>, 2 + A) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, E) (<20,0,A>, A) (<20,0,B>, 1) (<20,0,C>, 1 + A) (<20,0,D>, ?) (<20,0,E>, ?) + Applied Processor: ChainProcessor False [4,5,6,8,9,10,13,14,15,17,18,19,20] + Details: We chained rule 4 to obtain the rules [21] . * Step 14: UnreachableRules WORST_CASE(?,O(1)) + Considered Problem: Rules: 5. m7(A,B,C,D,E) -> m0(A,F,C,D,E) [B >= C && A >= 2 + B && 1 + B >= F && F >= 1 + B] (?,1) 6. n1(A,B,C,D,E) -> c2(m5(A,B,0,D,E),m2(A,B,0,D,E)) [A >= 0] (2,1) 8. n2(A,B,C,D,E) -> n3(A,B,C,F,G) [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A] (?,1) 9. n3(A,B,C,D,E) -> m6(A,B,C,D,E) True (?,1) 10. n3(A,B,C,D,E) -> n0(A,D,B,E,E) True (?,1) 13. n40(A,B,C,D,E) -> m2(A,B,C,D,E) True (?,1) 14. n41(A,B,C,D,E) -> m0(A,D,B,D,E) True (?,1) 15. n4(A,B,C,D,E) -> c2(n40(A,C,F,G,E),n41(A,C,F,G,E)) [A >= 2 + G && 1 + C >= G && G >= 1 + C && F >= G && G >= F && A >= 2 + B && 2 + B >= A] (?,1) 17. selectOrd(A,B,C,D,E) -> n1(A,B,C,D,E) [A >= 0 && A >= 0] (1,2) 18. m0(A,B,C,D,E) -> n2(A,B,C,F,E) [A >= 1 + B && B >= 1 + C && A >= 1 + F && 1 + F >= A] (?,2) 19. m2(A,B,C,D,E) -> n4(A,F,C,D,E) [A >= 2 + F && 2 + F >= A] (?,2) 20. m6(A,B,C,D,E) -> m0(A,F$,C,D,E) [B >= 1 + C && A >= 2 + B && D >= E && B >= C && A >= 2 + B && 1 + B >= F$ && F$ >= 1 + B] (?,2) 21. n0(A,B,C,D,E) -> m0(A,F$,C,D,E) [D >= 1 + B && A >= 2 + C && C >= C && A >= 2 + C && 1 + C >= F$ && F$ >= 1 + C] (?,2) Signature: {(m0,5) ;(m1,5) ;(m2,5) ;(m3,5) ;(m4,5) ;(m5,5) ;(m6,5) ;(m7,5) ;(m8,5) ;(m9,5) ;(n0,5) ;(n1,5) ;(n2,5) ;(n3,5) ;(n4,5) ;(n40,5) ;(n41,5) ;(selectOrd,5)} Flow Graph: [5->{18},6->{19},8->{9,10},9->{20},10->{21},13->{19},14->{18},15->{13,14},17->{6},18->{8},19->{15} ,20->{18},21->{18}] Sizebounds: (< 5,0,A>, A) (< 5,0,B>, 1) (< 5,0,C>, 1 + A) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 6,0,A>, A) (< 6,0,B>, B) (< 6,0,C>, 0) (< 6,0,D>, D) (< 6,0,E>, E) (< 6,1,A>, A) (< 6,1,B>, B) (< 6,1,C>, 0) (< 6,1,D>, D) (< 6,1,E>, E) (< 8,0,A>, A) (< 8,0,B>, 1 + A) (< 8,0,C>, A) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, A) (< 9,0,B>, 1 + A) (< 9,0,C>, A) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, 1 + A) (<10,0,D>, ?) (<10,0,E>, ?) (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, E) (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, E) (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, E) (<15,1,A>, A) (<15,1,B>, ?) (<15,1,C>, ?) (<15,1,D>, ?) (<15,1,E>, E) (<17,0,A>, A) (<17,0,B>, B) (<17,0,C>, C) (<17,0,D>, D) (<17,0,E>, E) (<18,0,A>, A) (<18,0,B>, A) (<18,0,C>, ?) (<18,0,D>, 1 + A) (<18,0,E>, ?) (<19,0,A>, A) (<19,0,B>, 2 + A) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, E) (<20,0,A>, A) (<20,0,B>, 1) (<20,0,C>, 1 + A) (<20,0,D>, ?) (<20,0,E>, ?) (<21,0,A>, A) (<21,0,B>, 1) (<21,0,C>, 1 + A) (<21,0,D>, ?) (<21,0,E>, ?) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [5] * Step 15: ChainProcessor WORST_CASE(?,O(1)) + Considered Problem: Rules: 6. n1(A,B,C,D,E) -> c2(m5(A,B,0,D,E),m2(A,B,0,D,E)) [A >= 0] (2,1) 8. n2(A,B,C,D,E) -> n3(A,B,C,F,G) [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A] (?,1) 9. n3(A,B,C,D,E) -> m6(A,B,C,D,E) True (?,1) 10. n3(A,B,C,D,E) -> n0(A,D,B,E,E) True (?,1) 13. n40(A,B,C,D,E) -> m2(A,B,C,D,E) True (?,1) 14. n41(A,B,C,D,E) -> m0(A,D,B,D,E) True (?,1) 15. n4(A,B,C,D,E) -> c2(n40(A,C,F,G,E),n41(A,C,F,G,E)) [A >= 2 + G && 1 + C >= G && G >= 1 + C && F >= G && G >= F && A >= 2 + B && 2 + B >= A] (?,1) 17. selectOrd(A,B,C,D,E) -> n1(A,B,C,D,E) [A >= 0 && A >= 0] (1,2) 18. m0(A,B,C,D,E) -> n2(A,B,C,F,E) [A >= 1 + B && B >= 1 + C && A >= 1 + F && 1 + F >= A] (?,2) 19. m2(A,B,C,D,E) -> n4(A,F,C,D,E) [A >= 2 + F && 2 + F >= A] (?,2) 20. m6(A,B,C,D,E) -> m0(A,F$,C,D,E) [B >= 1 + C && A >= 2 + B && D >= E && B >= C && A >= 2 + B && 1 + B >= F$ && F$ >= 1 + B] (?,2) 21. n0(A,B,C,D,E) -> m0(A,F$,C,D,E) [D >= 1 + B && A >= 2 + C && C >= C && A >= 2 + C && 1 + C >= F$ && F$ >= 1 + C] (?,2) Signature: {(m0,5) ;(m1,5) ;(m2,5) ;(m3,5) ;(m4,5) ;(m5,5) ;(m6,5) ;(m7,5) ;(m8,5) ;(m9,5) ;(n0,5) ;(n1,5) ;(n2,5) ;(n3,5) ;(n4,5) ;(n40,5) ;(n41,5) ;(selectOrd,5)} Flow Graph: [6->{19},8->{9,10},9->{20},10->{21},13->{19},14->{18},15->{13,14},17->{6},18->{8},19->{15},20->{18} ,21->{18}] Sizebounds: (< 6,0,A>, A) (< 6,0,B>, B) (< 6,0,C>, 0) (< 6,0,D>, D) (< 6,0,E>, E) (< 6,1,A>, A) (< 6,1,B>, B) (< 6,1,C>, 0) (< 6,1,D>, D) (< 6,1,E>, E) (< 8,0,A>, A) (< 8,0,B>, 1 + A) (< 8,0,C>, A) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, A) (< 9,0,B>, 1 + A) (< 9,0,C>, A) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, 1 + A) (<10,0,D>, ?) (<10,0,E>, ?) (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, E) (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, E) (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, E) (<15,1,A>, A) (<15,1,B>, ?) (<15,1,C>, ?) (<15,1,D>, ?) (<15,1,E>, E) (<17,0,A>, A) (<17,0,B>, B) (<17,0,C>, C) (<17,0,D>, D) (<17,0,E>, E) (<18,0,A>, A) (<18,0,B>, A) (<18,0,C>, ?) (<18,0,D>, 1 + A) (<18,0,E>, ?) (<19,0,A>, A) (<19,0,B>, 2 + A) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, E) (<20,0,A>, A) (<20,0,B>, 1) (<20,0,C>, 1 + A) (<20,0,D>, ?) (<20,0,E>, ?) (<21,0,A>, A) (<21,0,B>, 1) (<21,0,C>, 1 + A) (<21,0,D>, ?) (<21,0,E>, ?) + Applied Processor: ChainProcessor False [6,8,9,10,13,14,15,17,18,19,20,21] + Details: We chained rule 6 to obtain the rules [22] . * Step 16: ChainProcessor WORST_CASE(?,O(1)) + Considered Problem: Rules: 8. n2(A,B,C,D,E) -> n3(A,B,C,F,G) [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A] (?,1) 9. n3(A,B,C,D,E) -> m6(A,B,C,D,E) True (?,1) 10. n3(A,B,C,D,E) -> n0(A,D,B,E,E) True (?,1) 13. n40(A,B,C,D,E) -> m2(A,B,C,D,E) True (?,1) 14. n41(A,B,C,D,E) -> m0(A,D,B,D,E) True (?,1) 15. n4(A,B,C,D,E) -> c2(n40(A,C,F,G,E),n41(A,C,F,G,E)) [A >= 2 + G && 1 + C >= G && G >= 1 + C && F >= G && G >= F && A >= 2 + B && 2 + B >= A] (?,1) 17. selectOrd(A,B,C,D,E) -> n1(A,B,C,D,E) [A >= 0 && A >= 0] (1,2) 18. m0(A,B,C,D,E) -> n2(A,B,C,F,E) [A >= 1 + B && B >= 1 + C && A >= 1 + F && 1 + F >= A] (?,2) 19. m2(A,B,C,D,E) -> n4(A,F,C,D,E) [A >= 2 + F && 2 + F >= A] (?,2) 20. m6(A,B,C,D,E) -> m0(A,F$,C,D,E) [B >= 1 + C && A >= 2 + B && D >= E && B >= C && A >= 2 + B && 1 + B >= F$ && F$ >= 1 + B] (?,2) 21. n0(A,B,C,D,E) -> m0(A,F$,C,D,E) [D >= 1 + B && A >= 2 + C && C >= C && A >= 2 + C && 1 + C >= F$ && F$ >= 1 + C] (?,2) 22. n1(A,B,C,D,E) -> c2(m5(A,B,0,D,E),n4(A,F$,0,D,E)) [A >= 0 && A >= 2 + F$ && 2 + F$ >= A] (2,3) Signature: {(m0,5) ;(m1,5) ;(m2,5) ;(m3,5) ;(m4,5) ;(m5,5) ;(m6,5) ;(m7,5) ;(m8,5) ;(m9,5) ;(n0,5) ;(n1,5) ;(n2,5) ;(n3,5) ;(n4,5) ;(n40,5) ;(n41,5) ;(selectOrd,5)} Flow Graph: [8->{9,10},9->{20},10->{21},13->{19},14->{18},15->{13,14},17->{22},18->{8},19->{15},20->{18},21->{18} ,22->{15}] Sizebounds: (< 8,0,A>, A) (< 8,0,B>, 1 + A) (< 8,0,C>, A) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, A) (< 9,0,B>, 1 + A) (< 9,0,C>, A) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, 1 + A) (<10,0,D>, ?) (<10,0,E>, ?) (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, E) (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, E) (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, E) (<15,1,A>, A) (<15,1,B>, ?) (<15,1,C>, ?) (<15,1,D>, ?) (<15,1,E>, E) (<17,0,A>, A) (<17,0,B>, B) (<17,0,C>, C) (<17,0,D>, D) (<17,0,E>, E) (<18,0,A>, A) (<18,0,B>, A) (<18,0,C>, ?) (<18,0,D>, 1 + A) (<18,0,E>, ?) (<19,0,A>, A) (<19,0,B>, 2 + A) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, E) (<20,0,A>, A) (<20,0,B>, 1) (<20,0,C>, 1 + A) (<20,0,D>, ?) (<20,0,E>, ?) (<21,0,A>, A) (<21,0,B>, 1) (<21,0,C>, 1 + A) (<21,0,D>, ?) (<21,0,E>, ?) (<22,0,A>, A) (<22,0,B>, 2 + A) (<22,0,C>, ?) (<22,0,D>, ?) (<22,0,E>, E) + Applied Processor: ChainProcessor False [8,9,10,13,14,15,17,18,19,20,21,22] + Details: We chained rule 8 to obtain the rules [23,24] . * Step 17: UnreachableRules WORST_CASE(?,O(1)) + Considered Problem: Rules: 9. n3(A,B,C,D,E) -> m6(A,B,C,D,E) True (?,1) 10. n3(A,B,C,D,E) -> n0(A,D,B,E,E) True (?,1) 13. n40(A,B,C,D,E) -> m2(A,B,C,D,E) True (?,1) 14. n41(A,B,C,D,E) -> m0(A,D,B,D,E) True (?,1) 15. n4(A,B,C,D,E) -> c2(n40(A,C,F,G,E),n41(A,C,F,G,E)) [A >= 2 + G && 1 + C >= G && G >= 1 + C && F >= G && G >= F && A >= 2 + B && 2 + B >= A] (?,1) 17. selectOrd(A,B,C,D,E) -> n1(A,B,C,D,E) [A >= 0 && A >= 0] (1,2) 18. m0(A,B,C,D,E) -> n2(A,B,C,F,E) [A >= 1 + B && B >= 1 + C && A >= 1 + F && 1 + F >= A] (?,2) 19. m2(A,B,C,D,E) -> n4(A,F,C,D,E) [A >= 2 + F && 2 + F >= A] (?,2) 20. m6(A,B,C,D,E) -> m0(A,F$,C,D,E) [B >= 1 + C && A >= 2 + B && D >= E && B >= C && A >= 2 + B && 1 + B >= F$ && F$ >= 1 + B] (?,2) 21. n0(A,B,C,D,E) -> m0(A,F$,C,D,E) [D >= 1 + B && A >= 2 + C && C >= C && A >= 2 + C && 1 + C >= F$ && F$ >= 1 + C] (?,2) 22. n1(A,B,C,D,E) -> c2(m5(A,B,0,D,E),n4(A,F$,0,D,E)) [A >= 0 && A >= 2 + F$ && 2 + F$ >= A] (2,3) 23. n2(A,B,C,D,E) -> m6(A,B,C,F,G) [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A] (?,2) 24. n2(A,B,C,D,E) -> n0(A,F,B,G,G) [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A] (?,2) Signature: {(m0,5) ;(m1,5) ;(m2,5) ;(m3,5) ;(m4,5) ;(m5,5) ;(m6,5) ;(m7,5) ;(m8,5) ;(m9,5) ;(n0,5) ;(n1,5) ;(n2,5) ;(n3,5) ;(n4,5) ;(n40,5) ;(n41,5) ;(selectOrd,5)} Flow Graph: [9->{20},10->{21},13->{19},14->{18},15->{13,14},17->{22},18->{23,24},19->{15},20->{18},21->{18},22->{15} ,23->{20},24->{21}] Sizebounds: (< 9,0,A>, A) (< 9,0,B>, 1 + A) (< 9,0,C>, A) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, 1 + A) (<10,0,D>, ?) (<10,0,E>, ?) (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, E) (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, E) (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, E) (<15,1,A>, A) (<15,1,B>, ?) (<15,1,C>, ?) (<15,1,D>, ?) (<15,1,E>, E) (<17,0,A>, A) (<17,0,B>, B) (<17,0,C>, C) (<17,0,D>, D) (<17,0,E>, E) (<18,0,A>, A) (<18,0,B>, A) (<18,0,C>, ?) (<18,0,D>, 1 + A) (<18,0,E>, ?) (<19,0,A>, A) (<19,0,B>, 2 + A) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, E) (<20,0,A>, A) (<20,0,B>, 1) (<20,0,C>, 1 + A) (<20,0,D>, ?) (<20,0,E>, ?) (<21,0,A>, A) (<21,0,B>, 1) (<21,0,C>, 1 + A) (<21,0,D>, ?) (<21,0,E>, ?) (<22,0,A>, A) (<22,0,B>, 2 + A) (<22,0,C>, ?) (<22,0,D>, ?) (<22,0,E>, E) (<23,0,A>, A) (<23,0,B>, 1 + A) (<23,0,C>, A) (<23,0,D>, ?) (<23,0,E>, ?) (<24,0,A>, A) (<24,0,B>, ?) (<24,0,C>, 1 + A) (<24,0,D>, ?) (<24,0,E>, ?) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [9,10] * Step 18: ChainProcessor WORST_CASE(?,O(1)) + Considered Problem: Rules: 13. n40(A,B,C,D,E) -> m2(A,B,C,D,E) True (?,1) 14. n41(A,B,C,D,E) -> m0(A,D,B,D,E) True (?,1) 15. n4(A,B,C,D,E) -> c2(n40(A,C,F,G,E),n41(A,C,F,G,E)) [A >= 2 + G && 1 + C >= G && G >= 1 + C && F >= G && G >= F && A >= 2 + B && 2 + B >= A] (?,1) 17. selectOrd(A,B,C,D,E) -> n1(A,B,C,D,E) [A >= 0 && A >= 0] (1,2) 18. m0(A,B,C,D,E) -> n2(A,B,C,F,E) [A >= 1 + B && B >= 1 + C && A >= 1 + F && 1 + F >= A] (?,2) 19. m2(A,B,C,D,E) -> n4(A,F,C,D,E) [A >= 2 + F && 2 + F >= A] (?,2) 20. m6(A,B,C,D,E) -> m0(A,F$,C,D,E) [B >= 1 + C && A >= 2 + B && D >= E && B >= C && A >= 2 + B && 1 + B >= F$ && F$ >= 1 + B] (?,2) 21. n0(A,B,C,D,E) -> m0(A,F$,C,D,E) [D >= 1 + B && A >= 2 + C && C >= C && A >= 2 + C && 1 + C >= F$ && F$ >= 1 + C] (?,2) 22. n1(A,B,C,D,E) -> c2(m5(A,B,0,D,E),n4(A,F$,0,D,E)) [A >= 0 && A >= 2 + F$ && 2 + F$ >= A] (2,3) 23. n2(A,B,C,D,E) -> m6(A,B,C,F,G) [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A] (?,2) 24. n2(A,B,C,D,E) -> n0(A,F,B,G,G) [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A] (?,2) Signature: {(m0,5) ;(m1,5) ;(m2,5) ;(m3,5) ;(m4,5) ;(m5,5) ;(m6,5) ;(m7,5) ;(m8,5) ;(m9,5) ;(n0,5) ;(n1,5) ;(n2,5) ;(n3,5) ;(n4,5) ;(n40,5) ;(n41,5) ;(selectOrd,5)} Flow Graph: [13->{19},14->{18},15->{13,14},17->{22},18->{23,24},19->{15},20->{18},21->{18},22->{15},23->{20},24->{21}] Sizebounds: (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, E) (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, E) (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, E) (<15,1,A>, A) (<15,1,B>, ?) (<15,1,C>, ?) (<15,1,D>, ?) (<15,1,E>, E) (<17,0,A>, A) (<17,0,B>, B) (<17,0,C>, C) (<17,0,D>, D) (<17,0,E>, E) (<18,0,A>, A) (<18,0,B>, A) (<18,0,C>, ?) (<18,0,D>, 1 + A) (<18,0,E>, ?) (<19,0,A>, A) (<19,0,B>, 2 + A) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, E) (<20,0,A>, A) (<20,0,B>, 1) (<20,0,C>, 1 + A) (<20,0,D>, ?) (<20,0,E>, ?) (<21,0,A>, A) (<21,0,B>, 1) (<21,0,C>, 1 + A) (<21,0,D>, ?) (<21,0,E>, ?) (<22,0,A>, A) (<22,0,B>, 2 + A) (<22,0,C>, ?) (<22,0,D>, ?) (<22,0,E>, E) (<23,0,A>, A) (<23,0,B>, 1 + A) (<23,0,C>, A) (<23,0,D>, ?) (<23,0,E>, ?) (<24,0,A>, A) (<24,0,B>, ?) (<24,0,C>, 1 + A) (<24,0,D>, ?) (<24,0,E>, ?) + Applied Processor: ChainProcessor False [13,14,15,17,18,19,20,21,22,23,24] + Details: We chained rule 13 to obtain the rules [25] . * Step 19: UnreachableRules WORST_CASE(?,O(1)) + Considered Problem: Rules: 14. n41(A,B,C,D,E) -> m0(A,D,B,D,E) True (?,1) 15. n4(A,B,C,D,E) -> c2(n40(A,C,F,G,E),n41(A,C,F,G,E)) [A >= 2 + G && 1 + C >= G && G >= 1 + C && F >= G && G >= F && A >= 2 + B && 2 + B >= A] (?,1) 17. selectOrd(A,B,C,D,E) -> n1(A,B,C,D,E) [A >= 0 && A >= 0] (1,2) 18. m0(A,B,C,D,E) -> n2(A,B,C,F,E) [A >= 1 + B && B >= 1 + C && A >= 1 + F && 1 + F >= A] (?,2) 19. m2(A,B,C,D,E) -> n4(A,F,C,D,E) [A >= 2 + F && 2 + F >= A] (?,2) 20. m6(A,B,C,D,E) -> m0(A,F$,C,D,E) [B >= 1 + C && A >= 2 + B && D >= E && B >= C && A >= 2 + B && 1 + B >= F$ && F$ >= 1 + B] (?,2) 21. n0(A,B,C,D,E) -> m0(A,F$,C,D,E) [D >= 1 + B && A >= 2 + C && C >= C && A >= 2 + C && 1 + C >= F$ && F$ >= 1 + C] (?,2) 22. n1(A,B,C,D,E) -> c2(m5(A,B,0,D,E),n4(A,F$,0,D,E)) [A >= 0 && A >= 2 + F$ && 2 + F$ >= A] (2,3) 23. n2(A,B,C,D,E) -> m6(A,B,C,F,G) [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A] (?,2) 24. n2(A,B,C,D,E) -> n0(A,F,B,G,G) [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A] (?,2) 25. n40(A,B,C,D,E) -> n4(A,F$,C,D,E) [A >= 2 + F$ && 2 + F$ >= A] (?,3) Signature: {(m0,5) ;(m1,5) ;(m2,5) ;(m3,5) ;(m4,5) ;(m5,5) ;(m6,5) ;(m7,5) ;(m8,5) ;(m9,5) ;(n0,5) ;(n1,5) ;(n2,5) ;(n3,5) ;(n4,5) ;(n40,5) ;(n41,5) ;(selectOrd,5)} Flow Graph: [14->{18},15->{14,25},17->{22},18->{23,24},19->{15},20->{18},21->{18},22->{15},23->{20},24->{21},25->{15}] Sizebounds: (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, E) (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, E) (<15,1,A>, A) (<15,1,B>, ?) (<15,1,C>, ?) (<15,1,D>, ?) (<15,1,E>, E) (<17,0,A>, A) (<17,0,B>, B) (<17,0,C>, C) (<17,0,D>, D) (<17,0,E>, E) (<18,0,A>, A) (<18,0,B>, A) (<18,0,C>, ?) (<18,0,D>, 1 + A) (<18,0,E>, ?) (<19,0,A>, A) (<19,0,B>, 2 + A) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, E) (<20,0,A>, A) (<20,0,B>, 1) (<20,0,C>, 1 + A) (<20,0,D>, ?) (<20,0,E>, ?) (<21,0,A>, A) (<21,0,B>, 1) (<21,0,C>, 1 + A) (<21,0,D>, ?) (<21,0,E>, ?) (<22,0,A>, A) (<22,0,B>, 2 + A) (<22,0,C>, ?) (<22,0,D>, ?) (<22,0,E>, E) (<23,0,A>, A) (<23,0,B>, 1 + A) (<23,0,C>, A) (<23,0,D>, ?) (<23,0,E>, ?) (<24,0,A>, A) (<24,0,B>, ?) (<24,0,C>, 1 + A) (<24,0,D>, ?) (<24,0,E>, ?) (<25,0,A>, A) (<25,0,B>, 2 + A) (<25,0,C>, ?) (<25,0,D>, ?) (<25,0,E>, E) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [19] * Step 20: ChainProcessor WORST_CASE(?,O(1)) + Considered Problem: Rules: 14. n41(A,B,C,D,E) -> m0(A,D,B,D,E) True (?,1) 15. n4(A,B,C,D,E) -> c2(n40(A,C,F,G,E),n41(A,C,F,G,E)) [A >= 2 + G && 1 + C >= G && G >= 1 + C && F >= G && G >= F && A >= 2 + B && 2 + B >= A] (?,1) 17. selectOrd(A,B,C,D,E) -> n1(A,B,C,D,E) [A >= 0 && A >= 0] (1,2) 18. m0(A,B,C,D,E) -> n2(A,B,C,F,E) [A >= 1 + B && B >= 1 + C && A >= 1 + F && 1 + F >= A] (?,2) 20. m6(A,B,C,D,E) -> m0(A,F$,C,D,E) [B >= 1 + C && A >= 2 + B && D >= E && B >= C && A >= 2 + B && 1 + B >= F$ && F$ >= 1 + B] (?,2) 21. n0(A,B,C,D,E) -> m0(A,F$,C,D,E) [D >= 1 + B && A >= 2 + C && C >= C && A >= 2 + C && 1 + C >= F$ && F$ >= 1 + C] (?,2) 22. n1(A,B,C,D,E) -> c2(m5(A,B,0,D,E),n4(A,F$,0,D,E)) [A >= 0 && A >= 2 + F$ && 2 + F$ >= A] (2,3) 23. n2(A,B,C,D,E) -> m6(A,B,C,F,G) [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A] (?,2) 24. n2(A,B,C,D,E) -> n0(A,F,B,G,G) [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A] (?,2) 25. n40(A,B,C,D,E) -> n4(A,F$,C,D,E) [A >= 2 + F$ && 2 + F$ >= A] (?,3) Signature: {(m0,5) ;(m1,5) ;(m2,5) ;(m3,5) ;(m4,5) ;(m5,5) ;(m6,5) ;(m7,5) ;(m8,5) ;(m9,5) ;(n0,5) ;(n1,5) ;(n2,5) ;(n3,5) ;(n4,5) ;(n40,5) ;(n41,5) ;(selectOrd,5)} Flow Graph: [14->{18},15->{14,25},17->{22},18->{23,24},20->{18},21->{18},22->{15},23->{20},24->{21},25->{15}] Sizebounds: (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, E) (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, E) (<15,1,A>, A) (<15,1,B>, ?) (<15,1,C>, ?) (<15,1,D>, ?) (<15,1,E>, E) (<17,0,A>, A) (<17,0,B>, B) (<17,0,C>, C) (<17,0,D>, D) (<17,0,E>, E) (<18,0,A>, A) (<18,0,B>, A) (<18,0,C>, ?) (<18,0,D>, 1 + A) (<18,0,E>, ?) (<20,0,A>, A) (<20,0,B>, 1) (<20,0,C>, 1 + A) (<20,0,D>, ?) (<20,0,E>, ?) (<21,0,A>, A) (<21,0,B>, 1) (<21,0,C>, 1 + A) (<21,0,D>, ?) (<21,0,E>, ?) (<22,0,A>, A) (<22,0,B>, 2 + A) (<22,0,C>, ?) (<22,0,D>, ?) (<22,0,E>, E) (<23,0,A>, A) (<23,0,B>, 1 + A) (<23,0,C>, A) (<23,0,D>, ?) (<23,0,E>, ?) (<24,0,A>, A) (<24,0,B>, ?) (<24,0,C>, 1 + A) (<24,0,D>, ?) (<24,0,E>, ?) (<25,0,A>, A) (<25,0,B>, 2 + A) (<25,0,C>, ?) (<25,0,D>, ?) (<25,0,E>, E) + Applied Processor: ChainProcessor False [14,15,17,18,20,21,22,23,24,25] + Details: We chained rule 14 to obtain the rules [26] . * Step 21: ChainProcessor WORST_CASE(?,O(1)) + Considered Problem: Rules: 15. n4(A,B,C,D,E) -> c2(n40(A,C,F,G,E),n41(A,C,F,G,E)) [A >= 2 + G && 1 + C >= G && G >= 1 + C && F >= G && G >= F && A >= 2 + B && 2 + B >= A] (?,1) 17. selectOrd(A,B,C,D,E) -> n1(A,B,C,D,E) [A >= 0 && A >= 0] (1,2) 18. m0(A,B,C,D,E) -> n2(A,B,C,F,E) [A >= 1 + B && B >= 1 + C && A >= 1 + F && 1 + F >= A] (?,2) 20. m6(A,B,C,D,E) -> m0(A,F$,C,D,E) [B >= 1 + C && A >= 2 + B && D >= E && B >= C && A >= 2 + B && 1 + B >= F$ && F$ >= 1 + B] (?,2) 21. n0(A,B,C,D,E) -> m0(A,F$,C,D,E) [D >= 1 + B && A >= 2 + C && C >= C && A >= 2 + C && 1 + C >= F$ && F$ >= 1 + C] (?,2) 22. n1(A,B,C,D,E) -> c2(m5(A,B,0,D,E),n4(A,F$,0,D,E)) [A >= 0 && A >= 2 + F$ && 2 + F$ >= A] (2,3) 23. n2(A,B,C,D,E) -> m6(A,B,C,F,G) [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A] (?,2) 24. n2(A,B,C,D,E) -> n0(A,F,B,G,G) [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A] (?,2) 25. n40(A,B,C,D,E) -> n4(A,F$,C,D,E) [A >= 2 + F$ && 2 + F$ >= A] (?,3) 26. n41(A,B,C,D,E) -> n2(A,D,B,F$,E) [A >= 1 + D && D >= 1 + B && A >= 1 + F$ && 1 + F$ >= A] (?,3) Signature: {(m0,5) ;(m1,5) ;(m2,5) ;(m3,5) ;(m4,5) ;(m5,5) ;(m6,5) ;(m7,5) ;(m8,5) ;(m9,5) ;(n0,5) ;(n1,5) ;(n2,5) ;(n3,5) ;(n4,5) ;(n40,5) ;(n41,5) ;(selectOrd,5)} Flow Graph: [15->{25,26},17->{22},18->{23,24},20->{18},21->{18},22->{15},23->{20},24->{21},25->{15},26->{23,24}] Sizebounds: (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, E) (<15,1,A>, A) (<15,1,B>, ?) (<15,1,C>, ?) (<15,1,D>, ?) (<15,1,E>, E) (<17,0,A>, A) (<17,0,B>, B) (<17,0,C>, C) (<17,0,D>, D) (<17,0,E>, E) (<18,0,A>, A) (<18,0,B>, A) (<18,0,C>, ?) (<18,0,D>, 1 + A) (<18,0,E>, ?) (<20,0,A>, A) (<20,0,B>, 1) (<20,0,C>, 1 + A) (<20,0,D>, ?) (<20,0,E>, ?) (<21,0,A>, A) (<21,0,B>, 1) (<21,0,C>, 1 + A) (<21,0,D>, ?) (<21,0,E>, ?) (<22,0,A>, A) (<22,0,B>, 2 + A) (<22,0,C>, ?) (<22,0,D>, ?) (<22,0,E>, E) (<23,0,A>, A) (<23,0,B>, 1 + A) (<23,0,C>, A) (<23,0,D>, ?) (<23,0,E>, ?) (<24,0,A>, A) (<24,0,B>, ?) (<24,0,C>, 1 + A) (<24,0,D>, ?) (<24,0,E>, ?) (<25,0,A>, A) (<25,0,B>, 2 + A) (<25,0,C>, ?) (<25,0,D>, ?) (<25,0,E>, E) (<26,0,A>, A) (<26,0,B>, A) (<26,0,C>, ?) (<26,0,D>, 1 + A) (<26,0,E>, ?) + Applied Processor: ChainProcessor False [15,17,18,20,21,22,23,24,25,26] + Details: We chained rule 15 to obtain the rules [27] . * Step 22: UnreachableRules WORST_CASE(?,O(1)) + Considered Problem: Rules: 17. selectOrd(A,B,C,D,E) -> n1(A,B,C,D,E) [A >= 0 && A >= 0] (1,2) 18. m0(A,B,C,D,E) -> n2(A,B,C,F,E) [A >= 1 + B && B >= 1 + C && A >= 1 + F && 1 + F >= A] (?,2) 20. m6(A,B,C,D,E) -> m0(A,F$,C,D,E) [B >= 1 + C && A >= 2 + B && D >= E && B >= C && A >= 2 + B && 1 + B >= F$ && F$ >= 1 + B] (?,2) 21. n0(A,B,C,D,E) -> m0(A,F$,C,D,E) [D >= 1 + B && A >= 2 + C && C >= C && A >= 2 + C && 1 + C >= F$ && F$ >= 1 + C] (?,2) 22. n1(A,B,C,D,E) -> c2(m5(A,B,0,D,E),n4(A,F$,0,D,E)) [A >= 0 && A >= 2 + F$ && 2 + F$ >= A] (2,3) 23. n2(A,B,C,D,E) -> m6(A,B,C,F,G) [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A] (?,2) 24. n2(A,B,C,D,E) -> n0(A,F,B,G,G) [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A] (?,2) 25. n40(A,B,C,D,E) -> n4(A,F$,C,D,E) [A >= 2 + F$ && 2 + F$ >= A] (?,3) 26. n41(A,B,C,D,E) -> n2(A,D,B,F$,E) [A >= 1 + D && D >= 1 + B && A >= 1 + F$ && 1 + F$ >= A] (?,3) 27. n4(A,B,C,D,E) -> c2(n4(A,F$$,F,G,E),n41(A,C,F,G,E)) [A >= 2 + G (?,4) && 1 + C >= G && G >= 1 + C && F >= G && G >= F && A >= 2 + B && 2 + B >= A && A >= 2 + F$$ && 2 + F$$ >= A] Signature: {(m0,5) ;(m1,5) ;(m2,5) ;(m3,5) ;(m4,5) ;(m5,5) ;(m6,5) ;(m7,5) ;(m8,5) ;(m9,5) ;(n0,5) ;(n1,5) ;(n2,5) ;(n3,5) ;(n4,5) ;(n40,5) ;(n41,5) ;(selectOrd,5)} Flow Graph: [17->{22},18->{23,24},20->{18},21->{18},22->{27},23->{20},24->{21},25->{27},26->{23,24},27->{26,27}] Sizebounds: (<17,0,A>, A) (<17,0,B>, B) (<17,0,C>, C) (<17,0,D>, D) (<17,0,E>, E) (<18,0,A>, A) (<18,0,B>, A) (<18,0,C>, ?) (<18,0,D>, 1 + A) (<18,0,E>, ?) (<20,0,A>, A) (<20,0,B>, 1) (<20,0,C>, 1 + A) (<20,0,D>, ?) (<20,0,E>, ?) (<21,0,A>, A) (<21,0,B>, 1) (<21,0,C>, 1 + A) (<21,0,D>, ?) (<21,0,E>, ?) (<22,0,A>, A) (<22,0,B>, 2 + A) (<22,0,C>, ?) (<22,0,D>, ?) (<22,0,E>, E) (<23,0,A>, A) (<23,0,B>, 1 + A) (<23,0,C>, A) (<23,0,D>, ?) (<23,0,E>, ?) (<24,0,A>, A) (<24,0,B>, ?) (<24,0,C>, 1 + A) (<24,0,D>, ?) (<24,0,E>, ?) (<25,0,A>, A) (<25,0,B>, 2 + A) (<25,0,C>, ?) (<25,0,D>, ?) (<25,0,E>, E) (<26,0,A>, A) (<26,0,B>, A) (<26,0,C>, ?) (<26,0,D>, 1 + A) (<26,0,E>, ?) (<27,0,A>, A) (<27,0,B>, 2 + A) (<27,0,C>, ?) (<27,0,D>, ?) (<27,0,E>, E) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [25] * Step 23: ChainProcessor WORST_CASE(?,O(1)) + Considered Problem: Rules: 17. selectOrd(A,B,C,D,E) -> n1(A,B,C,D,E) [A >= 0 && A >= 0] (1,2) 18. m0(A,B,C,D,E) -> n2(A,B,C,F,E) [A >= 1 + B && B >= 1 + C && A >= 1 + F && 1 + F >= A] (?,2) 20. m6(A,B,C,D,E) -> m0(A,F$,C,D,E) [B >= 1 + C && A >= 2 + B && D >= E && B >= C && A >= 2 + B && 1 + B >= F$ && F$ >= 1 + B] (?,2) 21. n0(A,B,C,D,E) -> m0(A,F$,C,D,E) [D >= 1 + B && A >= 2 + C && C >= C && A >= 2 + C && 1 + C >= F$ && F$ >= 1 + C] (?,2) 22. n1(A,B,C,D,E) -> c2(m5(A,B,0,D,E),n4(A,F$,0,D,E)) [A >= 0 && A >= 2 + F$ && 2 + F$ >= A] (2,3) 23. n2(A,B,C,D,E) -> m6(A,B,C,F,G) [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A] (?,2) 24. n2(A,B,C,D,E) -> n0(A,F,B,G,G) [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A] (?,2) 26. n41(A,B,C,D,E) -> n2(A,D,B,F$,E) [A >= 1 + D && D >= 1 + B && A >= 1 + F$ && 1 + F$ >= A] (?,3) 27. n4(A,B,C,D,E) -> c2(n4(A,F$$,F,G,E),n41(A,C,F,G,E)) [A >= 2 + G (?,4) && 1 + C >= G && G >= 1 + C && F >= G && G >= F && A >= 2 + B && 2 + B >= A && A >= 2 + F$$ && 2 + F$$ >= A] Signature: {(m0,5) ;(m1,5) ;(m2,5) ;(m3,5) ;(m4,5) ;(m5,5) ;(m6,5) ;(m7,5) ;(m8,5) ;(m9,5) ;(n0,5) ;(n1,5) ;(n2,5) ;(n3,5) ;(n4,5) ;(n40,5) ;(n41,5) ;(selectOrd,5)} Flow Graph: [17->{22},18->{23,24},20->{18},21->{18},22->{27},23->{20},24->{21},26->{23,24},27->{26,27}] Sizebounds: (<17,0,A>, A) (<17,0,B>, B) (<17,0,C>, C) (<17,0,D>, D) (<17,0,E>, E) (<18,0,A>, A) (<18,0,B>, A) (<18,0,C>, ?) (<18,0,D>, 1 + A) (<18,0,E>, ?) (<20,0,A>, A) (<20,0,B>, 1) (<20,0,C>, 1 + A) (<20,0,D>, ?) (<20,0,E>, ?) (<21,0,A>, A) (<21,0,B>, 1) (<21,0,C>, 1 + A) (<21,0,D>, ?) (<21,0,E>, ?) (<22,0,A>, A) (<22,0,B>, 2 + A) (<22,0,C>, ?) (<22,0,D>, ?) (<22,0,E>, E) (<23,0,A>, A) (<23,0,B>, 1 + A) (<23,0,C>, A) (<23,0,D>, ?) (<23,0,E>, ?) (<24,0,A>, A) (<24,0,B>, ?) (<24,0,C>, 1 + A) (<24,0,D>, ?) (<24,0,E>, ?) (<26,0,A>, A) (<26,0,B>, A) (<26,0,C>, ?) (<26,0,D>, 1 + A) (<26,0,E>, ?) (<27,0,A>, A) (<27,0,B>, 2 + A) (<27,0,C>, ?) (<27,0,D>, ?) (<27,0,E>, E) + Applied Processor: ChainProcessor False [17,18,20,21,22,23,24,26,27] + Details: We chained rule 18 to obtain the rules [28,29] . * Step 24: ChainProcessor WORST_CASE(?,O(1)) + Considered Problem: Rules: 17. selectOrd(A,B,C,D,E) -> n1(A,B,C,D,E) [A >= 0 && A >= 0] (1,2) 20. m6(A,B,C,D,E) -> m0(A,F$,C,D,E) [B >= 1 + C && A >= 2 + B && D >= E && B >= C && A >= 2 + B && 1 + B >= F$ && F$ >= 1 + B] (?,2) 21. n0(A,B,C,D,E) -> m0(A,F$,C,D,E) [D >= 1 + B && A >= 2 + C && C >= C && A >= 2 + C && 1 + C >= F$ && F$ >= 1 + C] (?,2) 22. n1(A,B,C,D,E) -> c2(m5(A,B,0,D,E),n4(A,F$,0,D,E)) [A >= 0 && A >= 2 + F$ && 2 + F$ >= A] (2,3) 23. n2(A,B,C,D,E) -> m6(A,B,C,F,G) [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A] (?,2) 24. n2(A,B,C,D,E) -> n0(A,F,B,G,G) [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A] (?,2) 26. n41(A,B,C,D,E) -> n2(A,D,B,F$,E) [A >= 1 + D && D >= 1 + B && A >= 1 + F$ && 1 + F$ >= A] (?,3) 27. n4(A,B,C,D,E) -> c2(n4(A,F$$,F,G,E),n41(A,C,F,G,E)) [A >= 2 + G (?,4) && 1 + C >= G && G >= 1 + C && F >= G && G >= F && A >= 2 + B && 2 + B >= A && A >= 2 + F$$ && 2 + F$$ >= A] 28. m0(A,B,C,D,E) -> m6(A,B,C,F$,G$) [A >= 1 + B (?,4) && B >= 1 + C && A >= 1 + F && 1 + F >= A && B >= 1 + C && A >= 2 + B && A >= 1 + F && 1 + F >= A] 29. m0(A,B,C,D,E) -> n0(A,F$,B,G$,G$) [A >= 1 + B (?,4) && B >= 1 + C && A >= 1 + F && 1 + F >= A && B >= 1 + C && A >= 2 + B && A >= 1 + F && 1 + F >= A] Signature: {(m0,5) ;(m1,5) ;(m2,5) ;(m3,5) ;(m4,5) ;(m5,5) ;(m6,5) ;(m7,5) ;(m8,5) ;(m9,5) ;(n0,5) ;(n1,5) ;(n2,5) ;(n3,5) ;(n4,5) ;(n40,5) ;(n41,5) ;(selectOrd,5)} Flow Graph: [17->{22},20->{28,29},21->{28,29},22->{27},23->{20},24->{21},26->{23,24},27->{26,27},28->{20},29->{21}] Sizebounds: (<17,0,A>, A) (<17,0,B>, B) (<17,0,C>, C) (<17,0,D>, D) (<17,0,E>, E) (<20,0,A>, A) (<20,0,B>, 1) (<20,0,C>, 1 + A) (<20,0,D>, ?) (<20,0,E>, ?) (<21,0,A>, A) (<21,0,B>, 1) (<21,0,C>, 1 + A) (<21,0,D>, ?) (<21,0,E>, ?) (<22,0,A>, A) (<22,0,B>, 2 + A) (<22,0,C>, ?) (<22,0,D>, ?) (<22,0,E>, E) (<23,0,A>, A) (<23,0,B>, 1 + A) (<23,0,C>, A) (<23,0,D>, ?) (<23,0,E>, ?) (<24,0,A>, A) (<24,0,B>, ?) (<24,0,C>, 1 + A) (<24,0,D>, ?) (<24,0,E>, ?) (<26,0,A>, A) (<26,0,B>, A) (<26,0,C>, ?) (<26,0,D>, 1 + A) (<26,0,E>, ?) (<27,0,A>, A) (<27,0,B>, 2 + A) (<27,0,C>, ?) (<27,0,D>, ?) (<27,0,E>, E) (<28,0,A>, A) (<28,0,B>, 1 + A) (<28,0,C>, A) (<28,0,D>, ?) (<28,0,E>, ?) (<29,0,A>, A) (<29,0,B>, ?) (<29,0,C>, 1 + A) (<29,0,D>, ?) (<29,0,E>, ?) + Applied Processor: ChainProcessor False [17,20,21,22,23,24,26,27,28,29] + Details: We chained rule 20 to obtain the rules [30,31] . * Step 25: ChainProcessor WORST_CASE(?,O(1)) + Considered Problem: Rules: 17. selectOrd(A,B,C,D,E) -> n1(A,B,C,D,E) [A >= 0 && A >= 0] (1,2) 21. n0(A,B,C,D,E) -> m0(A,F$,C,D,E) [D >= 1 + B && A >= 2 + C && C >= C && A >= 2 + C && 1 + C >= F$ && F$ >= 1 + C] (?,2) 22. n1(A,B,C,D,E) -> c2(m5(A,B,0,D,E),n4(A,F$,0,D,E)) [A >= 0 && A >= 2 + F$ && 2 + F$ >= A] (2,3) 23. n2(A,B,C,D,E) -> m6(A,B,C,F,G) [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A] (?,2) 24. n2(A,B,C,D,E) -> n0(A,F,B,G,G) [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A] (?,2) 26. n41(A,B,C,D,E) -> n2(A,D,B,F$,E) [A >= 1 + D && D >= 1 + B && A >= 1 + F$ && 1 + F$ >= A] (?,3) 27. n4(A,B,C,D,E) -> c2(n4(A,F$$,F,G,E),n41(A,C,F,G,E)) [A >= 2 + G (?,4) && 1 + C >= G && G >= 1 + C && F >= G && G >= F && A >= 2 + B && 2 + B >= A && A >= 2 + F$$ && 2 + F$$ >= A] 28. m0(A,B,C,D,E) -> m6(A,B,C,F$,G$) [A >= 1 + B (?,4) && B >= 1 + C && A >= 1 + F && 1 + F >= A && B >= 1 + C && A >= 2 + B && A >= 1 + F && 1 + F >= A] 29. m0(A,B,C,D,E) -> n0(A,F$,B,G$,G$) [A >= 1 + B (?,4) && B >= 1 + C && A >= 1 + F && 1 + F >= A && B >= 1 + C && A >= 2 + B && A >= 1 + F && 1 + F >= A] 30. m6(A,B,C,D,E) -> m6(A,F$,C,F$$$,G$$$) [B >= 1 + C (?,6) && A >= 2 + B && D >= E && B >= C && A >= 2 + B && 1 + B >= F$ && F$ >= 1 + B && A >= 1 + F$ && F$ >= 1 + C && A >= 1 + F$$ && 1 + F$$ >= A && F$ >= 1 + C && A >= 2 + F$ && A >= 1 + F$$ && 1 + F$$ >= A] 31. m6(A,B,C,D,E) -> n0(A,F$$$,F$,G$$$,G$$$) [B >= 1 + C (?,6) && A >= 2 + B && D >= E && B >= C && A >= 2 + B && 1 + B >= F$ && F$ >= 1 + B && A >= 1 + F$ && F$ >= 1 + C && A >= 1 + F$$ && 1 + F$$ >= A && F$ >= 1 + C && A >= 2 + F$ && A >= 1 + F$$ && 1 + F$$ >= A] Signature: {(m0,5) ;(m1,5) ;(m2,5) ;(m3,5) ;(m4,5) ;(m5,5) ;(m6,5) ;(m7,5) ;(m8,5) ;(m9,5) ;(n0,5) ;(n1,5) ;(n2,5) ;(n3,5) ;(n4,5) ;(n40,5) ;(n41,5) ;(selectOrd,5)} Flow Graph: [17->{22},21->{28,29},22->{27},23->{30,31},24->{21},26->{23,24},27->{26,27},28->{30,31},29->{21},30->{30 ,31},31->{21}] Sizebounds: (<17,0,A>, A) (<17,0,B>, B) (<17,0,C>, C) (<17,0,D>, D) (<17,0,E>, E) (<21,0,A>, A) (<21,0,B>, 1) (<21,0,C>, 1 + A) (<21,0,D>, ?) (<21,0,E>, ?) (<22,0,A>, A) (<22,0,B>, 2 + A) (<22,0,C>, ?) (<22,0,D>, ?) (<22,0,E>, E) (<23,0,A>, A) (<23,0,B>, 1 + A) (<23,0,C>, A) (<23,0,D>, ?) (<23,0,E>, ?) (<24,0,A>, A) (<24,0,B>, ?) (<24,0,C>, 1 + A) (<24,0,D>, ?) (<24,0,E>, ?) (<26,0,A>, A) (<26,0,B>, A) (<26,0,C>, ?) (<26,0,D>, 1 + A) (<26,0,E>, ?) (<27,0,A>, A) (<27,0,B>, 2 + A) (<27,0,C>, ?) (<27,0,D>, ?) (<27,0,E>, E) (<28,0,A>, A) (<28,0,B>, 1 + A) (<28,0,C>, A) (<28,0,D>, ?) (<28,0,E>, ?) (<29,0,A>, A) (<29,0,B>, ?) (<29,0,C>, 1 + A) (<29,0,D>, ?) (<29,0,E>, ?) (<30,0,A>, A) (<30,0,B>, 1 + A) (<30,0,C>, A) (<30,0,D>, ?) (<30,0,E>, ?) (<31,0,A>, A) (<31,0,B>, ?) (<31,0,C>, 1 + A) (<31,0,D>, ?) (<31,0,E>, ?) + Applied Processor: ChainProcessor False [17,21,22,23,24,26,27,28,29,30,31] + Details: We chained rule 21 to obtain the rules [32,33] . * Step 26: UnreachableRules WORST_CASE(?,O(1)) + Considered Problem: Rules: 17. selectOrd(A,B,C,D,E) -> n1(A,B,C,D,E) [A >= 0 && A >= 0] (1,2) 22. n1(A,B,C,D,E) -> c2(m5(A,B,0,D,E),n4(A,F$,0,D,E)) [A >= 0 && A >= 2 + F$ && 2 + F$ >= A] (2,3) 23. n2(A,B,C,D,E) -> m6(A,B,C,F,G) [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A] (?,2) 24. n2(A,B,C,D,E) -> n0(A,F,B,G,G) [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A] (?,2) 26. n41(A,B,C,D,E) -> n2(A,D,B,F$,E) [A >= 1 + D && D >= 1 + B && A >= 1 + F$ && 1 + F$ >= A] (?,3) 27. n4(A,B,C,D,E) -> c2(n4(A,F$$,F,G,E),n41(A,C,F,G,E)) [A >= 2 + G (?,4) && 1 + C >= G && G >= 1 + C && F >= G && G >= F && A >= 2 + B && 2 + B >= A && A >= 2 + F$$ && 2 + F$$ >= A] 28. m0(A,B,C,D,E) -> m6(A,B,C,F$,G$) [A >= 1 + B (?,4) && B >= 1 + C && A >= 1 + F && 1 + F >= A && B >= 1 + C && A >= 2 + B && A >= 1 + F && 1 + F >= A] 29. m0(A,B,C,D,E) -> n0(A,F$,B,G$,G$) [A >= 1 + B (?,4) && B >= 1 + C && A >= 1 + F && 1 + F >= A && B >= 1 + C && A >= 2 + B && A >= 1 + F && 1 + F >= A] 30. m6(A,B,C,D,E) -> m6(A,F$,C,F$$$,G$$$) [B >= 1 + C (?,6) && A >= 2 + B && D >= E && B >= C && A >= 2 + B && 1 + B >= F$ && F$ >= 1 + B && A >= 1 + F$ && F$ >= 1 + C && A >= 1 + F$$ && 1 + F$$ >= A && F$ >= 1 + C && A >= 2 + F$ && A >= 1 + F$$ && 1 + F$$ >= A] 31. m6(A,B,C,D,E) -> n0(A,F$$$,F$,G$$$,G$$$) [B >= 1 + C (?,6) && A >= 2 + B && D >= E && B >= C && A >= 2 + B && 1 + B >= F$ && F$ >= 1 + B && A >= 1 + F$ && F$ >= 1 + C && A >= 1 + F$$ && 1 + F$$ >= A && F$ >= 1 + C && A >= 2 + F$ && A >= 1 + F$$ && 1 + F$$ >= A] 32. n0(A,B,C,D,E) -> m6(A,F$,C,F$$$,G$$$) [D >= 1 + B (?,6) && A >= 2 + C && C >= C && A >= 2 + C && 1 + C >= F$ && F$ >= 1 + C && A >= 1 + F$ && F$ >= 1 + C && A >= 1 + F$$ && 1 + F$$ >= A && F$ >= 1 + C && A >= 2 + F$ && A >= 1 + F$$ && 1 + F$$ >= A] 33. n0(A,B,C,D,E) -> n0(A,F$$$,F$,G$$$,G$$$) [D >= 1 + B (?,6) && A >= 2 + C && C >= C && A >= 2 + C && 1 + C >= F$ && F$ >= 1 + C && A >= 1 + F$ && F$ >= 1 + C && A >= 1 + F$$ && 1 + F$$ >= A && F$ >= 1 + C && A >= 2 + F$ && A >= 1 + F$$ && 1 + F$$ >= A] Signature: {(m0,5) ;(m1,5) ;(m2,5) ;(m3,5) ;(m4,5) ;(m5,5) ;(m6,5) ;(m7,5) ;(m8,5) ;(m9,5) ;(n0,5) ;(n1,5) ;(n2,5) ;(n3,5) ;(n4,5) ;(n40,5) ;(n41,5) ;(selectOrd,5)} Flow Graph: [17->{22},22->{27},23->{30,31},24->{32,33},26->{23,24},27->{26,27},28->{30,31},29->{32,33},30->{30,31} ,31->{32,33},32->{30,31},33->{32,33}] Sizebounds: (<17,0,A>, A) (<17,0,B>, B) (<17,0,C>, C) (<17,0,D>, D) (<17,0,E>, E) (<22,0,A>, A) (<22,0,B>, 2 + A) (<22,0,C>, ?) (<22,0,D>, ?) (<22,0,E>, E) (<23,0,A>, A) (<23,0,B>, 1 + A) (<23,0,C>, A) (<23,0,D>, ?) (<23,0,E>, ?) (<24,0,A>, A) (<24,0,B>, ?) (<24,0,C>, 1 + A) (<24,0,D>, ?) (<24,0,E>, ?) (<26,0,A>, A) (<26,0,B>, A) (<26,0,C>, ?) (<26,0,D>, 1 + A) (<26,0,E>, ?) (<27,0,A>, A) (<27,0,B>, 2 + A) (<27,0,C>, ?) (<27,0,D>, ?) (<27,0,E>, E) (<28,0,A>, A) (<28,0,B>, 1 + A) (<28,0,C>, A) (<28,0,D>, ?) (<28,0,E>, ?) (<29,0,A>, A) (<29,0,B>, ?) (<29,0,C>, 1 + A) (<29,0,D>, ?) (<29,0,E>, ?) (<30,0,A>, A) (<30,0,B>, 1 + A) (<30,0,C>, A) (<30,0,D>, ?) (<30,0,E>, ?) (<31,0,A>, A) (<31,0,B>, ?) (<31,0,C>, 1 + A) (<31,0,D>, ?) (<31,0,E>, ?) (<32,0,A>, A) (<32,0,B>, 1 + A) (<32,0,C>, A) (<32,0,D>, ?) (<32,0,E>, ?) (<33,0,A>, A) (<33,0,B>, ?) (<33,0,C>, 1 + A) (<33,0,D>, ?) (<33,0,E>, ?) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [28,29] * Step 27: ChainProcessor WORST_CASE(?,O(1)) + Considered Problem: Rules: 17. selectOrd(A,B,C,D,E) -> n1(A,B,C,D,E) [A >= 0 && A >= 0] (1,2) 22. n1(A,B,C,D,E) -> c2(m5(A,B,0,D,E),n4(A,F$,0,D,E)) [A >= 0 && A >= 2 + F$ && 2 + F$ >= A] (2,3) 23. n2(A,B,C,D,E) -> m6(A,B,C,F,G) [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A] (?,2) 24. n2(A,B,C,D,E) -> n0(A,F,B,G,G) [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A] (?,2) 26. n41(A,B,C,D,E) -> n2(A,D,B,F$,E) [A >= 1 + D && D >= 1 + B && A >= 1 + F$ && 1 + F$ >= A] (?,3) 27. n4(A,B,C,D,E) -> c2(n4(A,F$$,F,G,E),n41(A,C,F,G,E)) [A >= 2 + G (?,4) && 1 + C >= G && G >= 1 + C && F >= G && G >= F && A >= 2 + B && 2 + B >= A && A >= 2 + F$$ && 2 + F$$ >= A] 30. m6(A,B,C,D,E) -> m6(A,F$,C,F$$$,G$$$) [B >= 1 + C (?,6) && A >= 2 + B && D >= E && B >= C && A >= 2 + B && 1 + B >= F$ && F$ >= 1 + B && A >= 1 + F$ && F$ >= 1 + C && A >= 1 + F$$ && 1 + F$$ >= A && F$ >= 1 + C && A >= 2 + F$ && A >= 1 + F$$ && 1 + F$$ >= A] 31. m6(A,B,C,D,E) -> n0(A,F$$$,F$,G$$$,G$$$) [B >= 1 + C (?,6) && A >= 2 + B && D >= E && B >= C && A >= 2 + B && 1 + B >= F$ && F$ >= 1 + B && A >= 1 + F$ && F$ >= 1 + C && A >= 1 + F$$ && 1 + F$$ >= A && F$ >= 1 + C && A >= 2 + F$ && A >= 1 + F$$ && 1 + F$$ >= A] 32. n0(A,B,C,D,E) -> m6(A,F$,C,F$$$,G$$$) [D >= 1 + B (?,6) && A >= 2 + C && C >= C && A >= 2 + C && 1 + C >= F$ && F$ >= 1 + C && A >= 1 + F$ && F$ >= 1 + C && A >= 1 + F$$ && 1 + F$$ >= A && F$ >= 1 + C && A >= 2 + F$ && A >= 1 + F$$ && 1 + F$$ >= A] 33. n0(A,B,C,D,E) -> n0(A,F$$$,F$,G$$$,G$$$) [D >= 1 + B (?,6) && A >= 2 + C && C >= C && A >= 2 + C && 1 + C >= F$ && F$ >= 1 + C && A >= 1 + F$ && F$ >= 1 + C && A >= 1 + F$$ && 1 + F$$ >= A && F$ >= 1 + C && A >= 2 + F$ && A >= 1 + F$$ && 1 + F$$ >= A] Signature: {(m0,5) ;(m1,5) ;(m2,5) ;(m3,5) ;(m4,5) ;(m5,5) ;(m6,5) ;(m7,5) ;(m8,5) ;(m9,5) ;(n0,5) ;(n1,5) ;(n2,5) ;(n3,5) ;(n4,5) ;(n40,5) ;(n41,5) ;(selectOrd,5)} Flow Graph: [17->{22},22->{27},23->{30,31},24->{32,33},26->{23,24},27->{26,27},30->{30,31},31->{32,33},32->{30,31} ,33->{32,33}] Sizebounds: (<17,0,A>, A) (<17,0,B>, B) (<17,0,C>, C) (<17,0,D>, D) (<17,0,E>, E) (<22,0,A>, A) (<22,0,B>, 2 + A) (<22,0,C>, ?) (<22,0,D>, ?) (<22,0,E>, E) (<23,0,A>, A) (<23,0,B>, 1 + A) (<23,0,C>, A) (<23,0,D>, ?) (<23,0,E>, ?) (<24,0,A>, A) (<24,0,B>, ?) (<24,0,C>, 1 + A) (<24,0,D>, ?) (<24,0,E>, ?) (<26,0,A>, A) (<26,0,B>, A) (<26,0,C>, ?) (<26,0,D>, 1 + A) (<26,0,E>, ?) (<27,0,A>, A) (<27,0,B>, 2 + A) (<27,0,C>, ?) (<27,0,D>, ?) (<27,0,E>, E) (<30,0,A>, A) (<30,0,B>, 1 + A) (<30,0,C>, A) (<30,0,D>, ?) (<30,0,E>, ?) (<31,0,A>, A) (<31,0,B>, ?) (<31,0,C>, 1 + A) (<31,0,D>, ?) (<31,0,E>, ?) (<32,0,A>, A) (<32,0,B>, 1 + A) (<32,0,C>, A) (<32,0,D>, ?) (<32,0,E>, ?) (<33,0,A>, A) (<33,0,B>, ?) (<33,0,C>, 1 + A) (<33,0,D>, ?) (<33,0,E>, ?) + Applied Processor: ChainProcessor False [17,22,23,24,26,27,30,31,32,33] + Details: We chained rule 26 to obtain the rules [34,35] . * Step 28: UnreachableRules WORST_CASE(?,O(1)) + Considered Problem: Rules: 17. selectOrd(A,B,C,D,E) -> n1(A,B,C,D,E) [A >= 0 && A >= 0] (1,2) 22. n1(A,B,C,D,E) -> c2(m5(A,B,0,D,E),n4(A,F$,0,D,E)) [A >= 0 && A >= 2 + F$ && 2 + F$ >= A] (2,3) 23. n2(A,B,C,D,E) -> m6(A,B,C,F,G) [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A] (?,2) 24. n2(A,B,C,D,E) -> n0(A,F,B,G,G) [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A] (?,2) 27. n4(A,B,C,D,E) -> c2(n4(A,F$$,F,G,E),n41(A,C,F,G,E)) [A >= 2 + G (?,4) && 1 + C >= G && G >= 1 + C && F >= G && G >= F && A >= 2 + B && 2 + B >= A && A >= 2 + F$$ && 2 + F$$ >= A] 30. m6(A,B,C,D,E) -> m6(A,F$,C,F$$$,G$$$) [B >= 1 + C (?,6) && A >= 2 + B && D >= E && B >= C && A >= 2 + B && 1 + B >= F$ && F$ >= 1 + B && A >= 1 + F$ && F$ >= 1 + C && A >= 1 + F$$ && 1 + F$$ >= A && F$ >= 1 + C && A >= 2 + F$ && A >= 1 + F$$ && 1 + F$$ >= A] 31. m6(A,B,C,D,E) -> n0(A,F$$$,F$,G$$$,G$$$) [B >= 1 + C (?,6) && A >= 2 + B && D >= E && B >= C && A >= 2 + B && 1 + B >= F$ && F$ >= 1 + B && A >= 1 + F$ && F$ >= 1 + C && A >= 1 + F$$ && 1 + F$$ >= A && F$ >= 1 + C && A >= 2 + F$ && A >= 1 + F$$ && 1 + F$$ >= A] 32. n0(A,B,C,D,E) -> m6(A,F$,C,F$$$,G$$$) [D >= 1 + B (?,6) && A >= 2 + C && C >= C && A >= 2 + C && 1 + C >= F$ && F$ >= 1 + C && A >= 1 + F$ && F$ >= 1 + C && A >= 1 + F$$ && 1 + F$$ >= A && F$ >= 1 + C && A >= 2 + F$ && A >= 1 + F$$ && 1 + F$$ >= A] 33. n0(A,B,C,D,E) -> n0(A,F$$$,F$,G$$$,G$$$) [D >= 1 + B (?,6) && A >= 2 + C && C >= C && A >= 2 + C && 1 + C >= F$ && F$ >= 1 + C && A >= 1 + F$ && F$ >= 1 + C && A >= 1 + F$$ && 1 + F$$ >= A && F$ >= 1 + C && A >= 2 + F$ && A >= 1 + F$$ && 1 + F$$ >= A] 34. n41(A,B,C,D,E) -> m6(A,D,B,F$$,G$$) [A >= 1 + D (?,5) && D >= 1 + B && A >= 1 + F$ && 1 + F$ >= A && D >= 1 + B && A >= 2 + D && A >= 1 + F$ && 1 + F$ >= A] 35. n41(A,B,C,D,E) -> n0(A,F$$,D,G$$,G$$) [A >= 1 + D (?,5) && D >= 1 + B && A >= 1 + F$ && 1 + F$ >= A && D >= 1 + B && A >= 2 + D && A >= 1 + F$ && 1 + F$ >= A] Signature: {(m0,5) ;(m1,5) ;(m2,5) ;(m3,5) ;(m4,5) ;(m5,5) ;(m6,5) ;(m7,5) ;(m8,5) ;(m9,5) ;(n0,5) ;(n1,5) ;(n2,5) ;(n3,5) ;(n4,5) ;(n40,5) ;(n41,5) ;(selectOrd,5)} Flow Graph: [17->{22},22->{27},23->{30,31},24->{32,33},27->{27,34,35},30->{30,31},31->{32,33},32->{30,31},33->{32,33} ,34->{30,31},35->{32,33}] Sizebounds: (<17,0,A>, A) (<17,0,B>, B) (<17,0,C>, C) (<17,0,D>, D) (<17,0,E>, E) (<22,0,A>, A) (<22,0,B>, 2 + A) (<22,0,C>, ?) (<22,0,D>, ?) (<22,0,E>, E) (<23,0,A>, A) (<23,0,B>, 1 + A) (<23,0,C>, A) (<23,0,D>, ?) (<23,0,E>, ?) (<24,0,A>, A) (<24,0,B>, ?) (<24,0,C>, 1 + A) (<24,0,D>, ?) (<24,0,E>, ?) (<27,0,A>, A) (<27,0,B>, 2 + A) (<27,0,C>, ?) (<27,0,D>, ?) (<27,0,E>, E) (<30,0,A>, A) (<30,0,B>, 1 + A) (<30,0,C>, A) (<30,0,D>, ?) (<30,0,E>, ?) (<31,0,A>, A) (<31,0,B>, ?) (<31,0,C>, 1 + A) (<31,0,D>, ?) (<31,0,E>, ?) (<32,0,A>, A) (<32,0,B>, 1 + A) (<32,0,C>, A) (<32,0,D>, ?) (<32,0,E>, ?) (<33,0,A>, A) (<33,0,B>, ?) (<33,0,C>, 1 + A) (<33,0,D>, ?) (<33,0,E>, ?) (<34,0,A>, A) (<34,0,B>, 1 + A) (<34,0,C>, A) (<34,0,D>, ?) (<34,0,E>, ?) (<35,0,A>, A) (<35,0,B>, ?) (<35,0,C>, 1 + A) (<35,0,D>, ?) (<35,0,E>, ?) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [23,24] * Step 29: ChainProcessor WORST_CASE(?,O(1)) + Considered Problem: Rules: 17. selectOrd(A,B,C,D,E) -> n1(A,B,C,D,E) [A >= 0 && A >= 0] (1,2) 22. n1(A,B,C,D,E) -> c2(m5(A,B,0,D,E),n4(A,F$,0,D,E)) [A >= 0 && A >= 2 + F$ && 2 + F$ >= A] (2,3) 27. n4(A,B,C,D,E) -> c2(n4(A,F$$,F,G,E),n41(A,C,F,G,E)) [A >= 2 + G (?,4) && 1 + C >= G && G >= 1 + C && F >= G && G >= F && A >= 2 + B && 2 + B >= A && A >= 2 + F$$ && 2 + F$$ >= A] 30. m6(A,B,C,D,E) -> m6(A,F$,C,F$$$,G$$$) [B >= 1 + C (?,6) && A >= 2 + B && D >= E && B >= C && A >= 2 + B && 1 + B >= F$ && F$ >= 1 + B && A >= 1 + F$ && F$ >= 1 + C && A >= 1 + F$$ && 1 + F$$ >= A && F$ >= 1 + C && A >= 2 + F$ && A >= 1 + F$$ && 1 + F$$ >= A] 31. m6(A,B,C,D,E) -> n0(A,F$$$,F$,G$$$,G$$$) [B >= 1 + C (?,6) && A >= 2 + B && D >= E && B >= C && A >= 2 + B && 1 + B >= F$ && F$ >= 1 + B && A >= 1 + F$ && F$ >= 1 + C && A >= 1 + F$$ && 1 + F$$ >= A && F$ >= 1 + C && A >= 2 + F$ && A >= 1 + F$$ && 1 + F$$ >= A] 32. n0(A,B,C,D,E) -> m6(A,F$,C,F$$$,G$$$) [D >= 1 + B (?,6) && A >= 2 + C && C >= C && A >= 2 + C && 1 + C >= F$ && F$ >= 1 + C && A >= 1 + F$ && F$ >= 1 + C && A >= 1 + F$$ && 1 + F$$ >= A && F$ >= 1 + C && A >= 2 + F$ && A >= 1 + F$$ && 1 + F$$ >= A] 33. n0(A,B,C,D,E) -> n0(A,F$$$,F$,G$$$,G$$$) [D >= 1 + B (?,6) && A >= 2 + C && C >= C && A >= 2 + C && 1 + C >= F$ && F$ >= 1 + C && A >= 1 + F$ && F$ >= 1 + C && A >= 1 + F$$ && 1 + F$$ >= A && F$ >= 1 + C && A >= 2 + F$ && A >= 1 + F$$ && 1 + F$$ >= A] 34. n41(A,B,C,D,E) -> m6(A,D,B,F$$,G$$) [A >= 1 + D (?,5) && D >= 1 + B && A >= 1 + F$ && 1 + F$ >= A && D >= 1 + B && A >= 2 + D && A >= 1 + F$ && 1 + F$ >= A] 35. n41(A,B,C,D,E) -> n0(A,F$$,D,G$$,G$$) [A >= 1 + D (?,5) && D >= 1 + B && A >= 1 + F$ && 1 + F$ >= A && D >= 1 + B && A >= 2 + D && A >= 1 + F$ && 1 + F$ >= A] Signature: {(m0,5) ;(m1,5) ;(m2,5) ;(m3,5) ;(m4,5) ;(m5,5) ;(m6,5) ;(m7,5) ;(m8,5) ;(m9,5) ;(n0,5) ;(n1,5) ;(n2,5) ;(n3,5) ;(n4,5) ;(n40,5) ;(n41,5) ;(selectOrd,5)} Flow Graph: [17->{22},22->{27},27->{27,34,35},30->{30,31},31->{32,33},32->{30,31},33->{32,33},34->{30,31},35->{32,33}] Sizebounds: (<17,0,A>, A) (<17,0,B>, B) (<17,0,C>, C) (<17,0,D>, D) (<17,0,E>, E) (<22,0,A>, A) (<22,0,B>, 2 + A) (<22,0,C>, ?) (<22,0,D>, ?) (<22,0,E>, E) (<27,0,A>, A) (<27,0,B>, 2 + A) (<27,0,C>, ?) (<27,0,D>, ?) (<27,0,E>, E) (<30,0,A>, A) (<30,0,B>, 1 + A) (<30,0,C>, A) (<30,0,D>, ?) (<30,0,E>, ?) (<31,0,A>, A) (<31,0,B>, ?) (<31,0,C>, 1 + A) (<31,0,D>, ?) (<31,0,E>, ?) (<32,0,A>, A) (<32,0,B>, 1 + A) (<32,0,C>, A) (<32,0,D>, ?) (<32,0,E>, ?) (<33,0,A>, A) (<33,0,B>, ?) (<33,0,C>, 1 + A) (<33,0,D>, ?) (<33,0,E>, ?) (<34,0,A>, A) (<34,0,B>, 1 + A) (<34,0,C>, A) (<34,0,D>, ?) (<34,0,E>, ?) (<35,0,A>, A) (<35,0,B>, ?) (<35,0,C>, 1 + A) (<35,0,D>, ?) (<35,0,E>, ?) + Applied Processor: ChainProcessor False [17,22,27,30,31,32,33,34,35] + Details: We chained rule 27 to obtain the rules [36,37] . * Step 30: UnreachableRules WORST_CASE(?,O(1)) + Considered Problem: Rules: 17. selectOrd(A,B,C,D,E) -> n1(A,B,C,D,E) [A >= 0 && A >= 0] (1,2) 22. n1(A,B,C,D,E) -> c2(m5(A,B,0,D,E),n4(A,F$,0,D,E)) [A >= 0 && A >= 2 + F$ && 2 + F$ >= A] (2,3) 30. m6(A,B,C,D,E) -> m6(A,F$,C,F$$$,G$$$) [B >= 1 + C (?,6) && A >= 2 + B && D >= E && B >= C && A >= 2 + B && 1 + B >= F$ && F$ >= 1 + B && A >= 1 + F$ && F$ >= 1 + C && A >= 1 + F$$ && 1 + F$$ >= A && F$ >= 1 + C && A >= 2 + F$ && A >= 1 + F$$ && 1 + F$$ >= A] 31. m6(A,B,C,D,E) -> n0(A,F$$$,F$,G$$$,G$$$) [B >= 1 + C (?,6) && A >= 2 + B && D >= E && B >= C && A >= 2 + B && 1 + B >= F$ && F$ >= 1 + B && A >= 1 + F$ && F$ >= 1 + C && A >= 1 + F$$ && 1 + F$$ >= A && F$ >= 1 + C && A >= 2 + F$ && A >= 1 + F$$ && 1 + F$$ >= A] 32. n0(A,B,C,D,E) -> m6(A,F$,C,F$$$,G$$$) [D >= 1 + B (?,6) && A >= 2 + C && C >= C && A >= 2 + C && 1 + C >= F$ && F$ >= 1 + C && A >= 1 + F$ && F$ >= 1 + C && A >= 1 + F$$ && 1 + F$$ >= A && F$ >= 1 + C && A >= 2 + F$ && A >= 1 + F$$ && 1 + F$$ >= A] 33. n0(A,B,C,D,E) -> n0(A,F$$$,F$,G$$$,G$$$) [D >= 1 + B (?,6) && A >= 2 + C && C >= C && A >= 2 + C && 1 + C >= F$ && F$ >= 1 + C && A >= 1 + F$ && F$ >= 1 + C && A >= 1 + F$$ && 1 + F$$ >= A && F$ >= 1 + C && A >= 2 + F$ && A >= 1 + F$$ && 1 + F$$ >= A] 34. n41(A,B,C,D,E) -> m6(A,D,B,F$$,G$$) [A >= 1 + D (?,5) && D >= 1 + B && A >= 1 + F$ && 1 + F$ >= A && D >= 1 + B && A >= 2 + D && A >= 1 + F$ && 1 + F$ >= A] 35. n41(A,B,C,D,E) -> n0(A,F$$,D,G$$,G$$) [A >= 1 + D (?,5) && D >= 1 + B && A >= 1 + F$ && 1 + F$ >= A && D >= 1 + B && A >= 2 + D && A >= 1 + F$ && 1 + F$ >= A] 36. n4(A,B,C,D,E) -> c2(n4(A,F$$,F,G,E),m6(A,G,F$$,F$$$$,G$$$$)) [A >= 2 + G (?,9) && 1 + C >= G && G >= 1 + C && F >= G && G >= F && A >= 2 + B && 2 + B >= A && A >= 2 + F$$ && 2 + F$$ >= A && A >= 1 + G && G >= 1 + F$$ && A >= 1 + F$$$ && 1 + F$$$ >= A && G >= 1 + F$$ && A >= 2 + G && A >= 1 + F$$$ && 1 + F$$$ >= A] 37. n4(A,B,C,D,E) -> c2(n4(A,F$$,F,G,E),n0(A,F$$$$,G,G$$$$,G$$$$)) [A >= 2 + G (?,9) && 1 + C >= G && G >= 1 + C && F >= G && G >= F && A >= 2 + B && 2 + B >= A && A >= 2 + F$$ && 2 + F$$ >= A && A >= 1 + G && G >= 1 + F$$ && A >= 1 + F$$$ && 1 + F$$$ >= A && G >= 1 + F$$ && A >= 2 + G && A >= 1 + F$$$ && 1 + F$$$ >= A] Signature: {(m0,5) ;(m1,5) ;(m2,5) ;(m3,5) ;(m4,5) ;(m5,5) ;(m6,5) ;(m7,5) ;(m8,5) ;(m9,5) ;(n0,5) ;(n1,5) ;(n2,5) ;(n3,5) ;(n4,5) ;(n40,5) ;(n41,5) ;(selectOrd,5)} Flow Graph: [17->{22},22->{36,37},30->{30,31},31->{32,33},32->{30,31},33->{32,33},34->{30,31},35->{32,33},36->{30,31 ,36,37},37->{32,33,36,37}] Sizebounds: (<17,0,A>, A) (<17,0,B>, B) (<17,0,C>, C) (<17,0,D>, D) (<17,0,E>, E) (<22,0,A>, A) (<22,0,B>, 2 + A) (<22,0,C>, ?) (<22,0,D>, ?) (<22,0,E>, E) (<30,0,A>, A) (<30,0,B>, 1 + A) (<30,0,C>, A) (<30,0,D>, ?) (<30,0,E>, ?) (<31,0,A>, A) (<31,0,B>, ?) (<31,0,C>, 1 + A) (<31,0,D>, ?) (<31,0,E>, ?) (<32,0,A>, A) (<32,0,B>, 1 + A) (<32,0,C>, A) (<32,0,D>, ?) (<32,0,E>, ?) (<33,0,A>, A) (<33,0,B>, ?) (<33,0,C>, 1 + A) (<33,0,D>, ?) (<33,0,E>, ?) (<34,0,A>, A) (<34,0,B>, 1 + A) (<34,0,C>, A) (<34,0,D>, ?) (<34,0,E>, ?) (<35,0,A>, A) (<35,0,B>, ?) (<35,0,C>, 1 + A) (<35,0,D>, ?) (<35,0,E>, ?) (<36,0,A>, A) (<36,0,B>, 1 + A) (<36,0,C>, A) (<36,0,D>, ?) (<36,0,E>, ?) (<37,0,A>, A) (<37,0,B>, ?) (<37,0,C>, 1 + A) (<37,0,D>, ?) (<37,0,E>, ?) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [34,35] * Step 31: UnsatPaths WORST_CASE(?,O(1)) + Considered Problem: Rules: 17. selectOrd(A,B,C,D,E) -> n1(A,B,C,D,E) [A >= 0 && A >= 0] (1,2) 22. n1(A,B,C,D,E) -> c2(m5(A,B,0,D,E),n4(A,F$,0,D,E)) [A >= 0 && A >= 2 + F$ && 2 + F$ >= A] (2,3) 30. m6(A,B,C,D,E) -> m6(A,F$,C,F$$$,G$$$) [B >= 1 + C (?,6) && A >= 2 + B && D >= E && B >= C && A >= 2 + B && 1 + B >= F$ && F$ >= 1 + B && A >= 1 + F$ && F$ >= 1 + C && A >= 1 + F$$ && 1 + F$$ >= A && F$ >= 1 + C && A >= 2 + F$ && A >= 1 + F$$ && 1 + F$$ >= A] 31. m6(A,B,C,D,E) -> n0(A,F$$$,F$,G$$$,G$$$) [B >= 1 + C (?,6) && A >= 2 + B && D >= E && B >= C && A >= 2 + B && 1 + B >= F$ && F$ >= 1 + B && A >= 1 + F$ && F$ >= 1 + C && A >= 1 + F$$ && 1 + F$$ >= A && F$ >= 1 + C && A >= 2 + F$ && A >= 1 + F$$ && 1 + F$$ >= A] 32. n0(A,B,C,D,E) -> m6(A,F$,C,F$$$,G$$$) [D >= 1 + B (?,6) && A >= 2 + C && C >= C && A >= 2 + C && 1 + C >= F$ && F$ >= 1 + C && A >= 1 + F$ && F$ >= 1 + C && A >= 1 + F$$ && 1 + F$$ >= A && F$ >= 1 + C && A >= 2 + F$ && A >= 1 + F$$ && 1 + F$$ >= A] 33. n0(A,B,C,D,E) -> n0(A,F$$$,F$,G$$$,G$$$) [D >= 1 + B (?,6) && A >= 2 + C && C >= C && A >= 2 + C && 1 + C >= F$ && F$ >= 1 + C && A >= 1 + F$ && F$ >= 1 + C && A >= 1 + F$$ && 1 + F$$ >= A && F$ >= 1 + C && A >= 2 + F$ && A >= 1 + F$$ && 1 + F$$ >= A] 36. n4(A,B,C,D,E) -> c2(n4(A,F$$,F,G,E),m6(A,G,F$$,F$$$$,G$$$$)) [A >= 2 + G (?,9) && 1 + C >= G && G >= 1 + C && F >= G && G >= F && A >= 2 + B && 2 + B >= A && A >= 2 + F$$ && 2 + F$$ >= A && A >= 1 + G && G >= 1 + F$$ && A >= 1 + F$$$ && 1 + F$$$ >= A && G >= 1 + F$$ && A >= 2 + G && A >= 1 + F$$$ && 1 + F$$$ >= A] 37. n4(A,B,C,D,E) -> c2(n4(A,F$$,F,G,E),n0(A,F$$$$,G,G$$$$,G$$$$)) [A >= 2 + G (?,9) && 1 + C >= G && G >= 1 + C && F >= G && G >= F && A >= 2 + B && 2 + B >= A && A >= 2 + F$$ && 2 + F$$ >= A && A >= 1 + G && G >= 1 + F$$ && A >= 1 + F$$$ && 1 + F$$$ >= A && G >= 1 + F$$ && A >= 2 + G && A >= 1 + F$$$ && 1 + F$$$ >= A] Signature: {(m0,5) ;(m1,5) ;(m2,5) ;(m3,5) ;(m4,5) ;(m5,5) ;(m6,5) ;(m7,5) ;(m8,5) ;(m9,5) ;(n0,5) ;(n1,5) ;(n2,5) ;(n3,5) ;(n4,5) ;(n40,5) ;(n41,5) ;(selectOrd,5)} Flow Graph: [17->{22},22->{36,37},30->{30,31},31->{32,33},32->{30,31},33->{32,33},36->{30,31,36,37},37->{32,33,36,37}] Sizebounds: (<17,0,A>, A) (<17,0,B>, B) (<17,0,C>, C) (<17,0,D>, D) (<17,0,E>, E) (<22,0,A>, A) (<22,0,B>, 2 + A) (<22,0,C>, ?) (<22,0,D>, ?) (<22,0,E>, E) (<30,0,A>, A) (<30,0,B>, 1 + A) (<30,0,C>, A) (<30,0,D>, ?) (<30,0,E>, ?) (<31,0,A>, A) (<31,0,B>, ?) (<31,0,C>, 1 + A) (<31,0,D>, ?) (<31,0,E>, ?) (<32,0,A>, A) (<32,0,B>, 1 + A) (<32,0,C>, A) (<32,0,D>, ?) (<32,0,E>, ?) (<33,0,A>, A) (<33,0,B>, ?) (<33,0,C>, 1 + A) (<33,0,D>, ?) (<33,0,E>, ?) (<36,0,A>, A) (<36,0,B>, 1 + A) (<36,0,C>, A) (<36,0,D>, ?) (<36,0,E>, ?) (<37,0,A>, A) (<37,0,B>, ?) (<37,0,C>, 1 + A) (<37,0,D>, ?) (<37,0,E>, ?) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(22,36) ,(22,37) ,(36,30) ,(36,31) ,(36,36) ,(36,37) ,(37,32) ,(37,33) ,(37,36) ,(37,37)] * Step 32: UnreachableRules WORST_CASE(?,O(1)) + Considered Problem: Rules: 17. selectOrd(A,B,C,D,E) -> n1(A,B,C,D,E) [A >= 0 && A >= 0] (1,2) 22. n1(A,B,C,D,E) -> c2(m5(A,B,0,D,E),n4(A,F$,0,D,E)) [A >= 0 && A >= 2 + F$ && 2 + F$ >= A] (2,3) 30. m6(A,B,C,D,E) -> m6(A,F$,C,F$$$,G$$$) [B >= 1 + C (?,6) && A >= 2 + B && D >= E && B >= C && A >= 2 + B && 1 + B >= F$ && F$ >= 1 + B && A >= 1 + F$ && F$ >= 1 + C && A >= 1 + F$$ && 1 + F$$ >= A && F$ >= 1 + C && A >= 2 + F$ && A >= 1 + F$$ && 1 + F$$ >= A] 31. m6(A,B,C,D,E) -> n0(A,F$$$,F$,G$$$,G$$$) [B >= 1 + C (?,6) && A >= 2 + B && D >= E && B >= C && A >= 2 + B && 1 + B >= F$ && F$ >= 1 + B && A >= 1 + F$ && F$ >= 1 + C && A >= 1 + F$$ && 1 + F$$ >= A && F$ >= 1 + C && A >= 2 + F$ && A >= 1 + F$$ && 1 + F$$ >= A] 32. n0(A,B,C,D,E) -> m6(A,F$,C,F$$$,G$$$) [D >= 1 + B (?,6) && A >= 2 + C && C >= C && A >= 2 + C && 1 + C >= F$ && F$ >= 1 + C && A >= 1 + F$ && F$ >= 1 + C && A >= 1 + F$$ && 1 + F$$ >= A && F$ >= 1 + C && A >= 2 + F$ && A >= 1 + F$$ && 1 + F$$ >= A] 33. n0(A,B,C,D,E) -> n0(A,F$$$,F$,G$$$,G$$$) [D >= 1 + B (?,6) && A >= 2 + C && C >= C && A >= 2 + C && 1 + C >= F$ && F$ >= 1 + C && A >= 1 + F$ && F$ >= 1 + C && A >= 1 + F$$ && 1 + F$$ >= A && F$ >= 1 + C && A >= 2 + F$ && A >= 1 + F$$ && 1 + F$$ >= A] 36. n4(A,B,C,D,E) -> c2(n4(A,F$$,F,G,E),m6(A,G,F$$,F$$$$,G$$$$)) [A >= 2 + G (?,9) && 1 + C >= G && G >= 1 + C && F >= G && G >= F && A >= 2 + B && 2 + B >= A && A >= 2 + F$$ && 2 + F$$ >= A && A >= 1 + G && G >= 1 + F$$ && A >= 1 + F$$$ && 1 + F$$$ >= A && G >= 1 + F$$ && A >= 2 + G && A >= 1 + F$$$ && 1 + F$$$ >= A] 37. n4(A,B,C,D,E) -> c2(n4(A,F$$,F,G,E),n0(A,F$$$$,G,G$$$$,G$$$$)) [A >= 2 + G (?,9) && 1 + C >= G && G >= 1 + C && F >= G && G >= F && A >= 2 + B && 2 + B >= A && A >= 2 + F$$ && 2 + F$$ >= A && A >= 1 + G && G >= 1 + F$$ && A >= 1 + F$$$ && 1 + F$$$ >= A && G >= 1 + F$$ && A >= 2 + G && A >= 1 + F$$$ && 1 + F$$$ >= A] Signature: {(m0,5) ;(m1,5) ;(m2,5) ;(m3,5) ;(m4,5) ;(m5,5) ;(m6,5) ;(m7,5) ;(m8,5) ;(m9,5) ;(n0,5) ;(n1,5) ;(n2,5) ;(n3,5) ;(n4,5) ;(n40,5) ;(n41,5) ;(selectOrd,5)} Flow Graph: [17->{22},22->{},30->{30,31},31->{32,33},32->{30,31},33->{32,33},36->{},37->{}] Sizebounds: (<17,0,A>, A) (<17,0,B>, B) (<17,0,C>, C) (<17,0,D>, D) (<17,0,E>, E) (<22,0,A>, A) (<22,0,B>, 2 + A) (<22,0,C>, ?) (<22,0,D>, ?) (<22,0,E>, E) (<30,0,A>, A) (<30,0,B>, 1 + A) (<30,0,C>, A) (<30,0,D>, ?) (<30,0,E>, ?) (<31,0,A>, A) (<31,0,B>, ?) (<31,0,C>, 1 + A) (<31,0,D>, ?) (<31,0,E>, ?) (<32,0,A>, A) (<32,0,B>, 1 + A) (<32,0,C>, A) (<32,0,D>, ?) (<32,0,E>, ?) (<33,0,A>, A) (<33,0,B>, ?) (<33,0,C>, 1 + A) (<33,0,D>, ?) (<33,0,E>, ?) (<36,0,A>, A) (<36,0,B>, 1 + A) (<36,0,C>, A) (<36,0,D>, ?) (<36,0,E>, ?) (<37,0,A>, A) (<37,0,B>, ?) (<37,0,C>, 1 + A) (<37,0,D>, ?) (<37,0,E>, ?) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [30,31,32,33,36,37] * Step 33: LeafRules WORST_CASE(?,O(1)) + Considered Problem: Rules: 17. selectOrd(A,B,C,D,E) -> n1(A,B,C,D,E) [A >= 0 && A >= 0] (1,2) 22. n1(A,B,C,D,E) -> c2(m5(A,B,0,D,E),n4(A,F$,0,D,E)) [A >= 0 && A >= 2 + F$ && 2 + F$ >= A] (2,3) Signature: {(m0,5) ;(m1,5) ;(m2,5) ;(m3,5) ;(m4,5) ;(m5,5) ;(m6,5) ;(m7,5) ;(m8,5) ;(m9,5) ;(n0,5) ;(n1,5) ;(n2,5) ;(n3,5) ;(n4,5) ;(n40,5) ;(n41,5) ;(selectOrd,5)} Flow Graph: [17->{22},22->{}] Sizebounds: (<17,0,A>, A) (<17,0,B>, B) (<17,0,C>, C) (<17,0,D>, D) (<17,0,E>, E) (<22,0,A>, A) (<22,0,B>, 2 + A) (<22,0,C>, ?) (<22,0,D>, ?) (<22,0,E>, E) + Applied Processor: LeafRules + Details: The problem is already solved. WORST_CASE(?,O(1))