WORST_CASE(?,O(1))
* Step 1: LocalSizeboundsProc WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  selectOrd(A,B,C,D,E) -> m4(A,B,C,D,E)                     [A >= 0]                                                                                 (1,1)
          1.  m0(A,B,C,D,E)        -> m1(A,B,C,F,E)                     [A >= 1 + B && B >= 1 + C && A >= 1 + F && 1 + F >= A]                                   (?,1)
          2.  m2(A,B,C,D,E)        -> m3(A,F,C,D,E)                     [A >= 2 + F && 2 + F >= A]                                                               (?,1)
          3.  m6(A,B,C,D,E)        -> m7(A,B,C,D,E)                     [B >= 1 + C && A >= 2 + B && D >= E]                                                     (?,1)
          4.  n0(A,B,C,D,E)        -> m7(A,C,C,D,E)                     [D >= 1 + B && A >= 2 + C]                                                               (?,1)
          5.  m7(A,B,C,D,E)        -> m0(A,F,C,D,E)                     [B >= C && A >= 2 + B && 1 + B >= F && F >= 1 + B]                                       (?,1)
          6.  n1(A,B,C,D,E)        -> c2(m5(A,B,0,D,E),m2(A,B,0,D,E))   [A >= 0]                                                                                 (?,1)
          7.  m4(A,B,C,D,E)        -> n1(A,B,C,D,E)                     [A >= 0]                                                                                 (?,1)
          8.  n2(A,B,C,D,E)        -> n3(A,B,C,F,G)                     [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A]                                   (?,1)
          9.  n3(A,B,C,D,E)        -> m6(A,B,C,D,E)                     True                                                                                     (?,1)
          10. n3(A,B,C,D,E)        -> n0(A,D,B,E,E)                     True                                                                                     (?,1)
          11. m1(A,B,C,D,E)        -> n2(A,B,C,D,E)                     True                                                                                     (?,1)
          12. m1(A,B,C,D,E)        -> m9(A,D,B,D,E)                     True                                                                                     (?,1)
          13. n40(A,B,C,D,E)       -> m2(A,B,C,D,E)                     True                                                                                     (?,1)
          14. n41(A,B,C,D,E)       -> m0(A,D,B,D,E)                     True                                                                                     (?,1)
          15. n4(A,B,C,D,E)        -> c2(n40(A,C,F,G,E),n41(A,C,F,G,E)) [A >= 2 + G && 1 + C >= G && G >= 1 + C && F >= G && G >= F && A >= 2 + B && 2 + B >= A] (?,1)
          16. m3(A,B,C,D,E)        -> n4(A,B,C,D,E)                     True                                                                                     (?,1)
          17. m3(A,B,C,D,E)        -> m8(C,B,B,D,E)                     True                                                                                     (?,1)
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n3,5)
          ;(n4,5)
          ;(n40,5)
          ;(n41,5)
          ;(selectOrd,5)}
        Flow Graph:
          [0->{7},1->{11,12},2->{16,17},3->{5},4->{5},5->{1},6->{2},7->{6},8->{9,10},9->{3},10->{4},11->{8},12->{}
          ,13->{2},14->{1},15->{13,14},16->{15},17->{}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (< 0,0,A>, A, .= 0) (< 0,0,B>,     B, .= 0) (< 0,0,C>,         C, .= 0) (< 0,0,D>,         D, .= 0) (< 0,0,E>, E, .= 0) 
          (< 1,0,A>, A, .= 0) (< 1,0,B>,     B, .= 0) (< 1,0,C>,         C, .= 0) (< 1,0,D>,     1 + A, .+ 1) (< 1,0,E>, E, .= 0) 
          (< 2,0,A>, A, .= 0) (< 2,0,B>, 2 + A, .+ 2) (< 2,0,C>,         C, .= 0) (< 2,0,D>,         D, .= 0) (< 2,0,E>, E, .= 0) 
          (< 3,0,A>, A, .= 0) (< 3,0,B>,     B, .= 0) (< 3,0,C>,         C, .= 0) (< 3,0,D>,         D, .= 0) (< 3,0,E>, E, .= 0) 
          (< 4,0,A>, A, .= 0) (< 4,0,B>,     C, .= 0) (< 4,0,C>,         C, .= 0) (< 4,0,D>,         D, .= 0) (< 4,0,E>, E, .= 0) 
          (< 5,0,A>, A, .= 0) (< 5,0,B>, 1 + B, .+ 1) (< 5,0,C>,         C, .= 0) (< 5,0,D>,         D, .= 0) (< 5,0,E>, E, .= 0) 
          (< 6,0,A>, A, .= 0) (< 6,0,B>,     B, .= 0) (< 6,0,C>,         0, .= 0) (< 6,0,D>,         D, .= 0) (< 6,0,E>, E, .= 0) 
          (< 6,1,A>, A, .= 0) (< 6,1,B>,     B, .= 0) (< 6,1,C>,         0, .= 0) (< 6,1,D>,         D, .= 0) (< 6,1,E>, E, .= 0) 
          (< 7,0,A>, A, .= 0) (< 7,0,B>,     B, .= 0) (< 7,0,C>,         C, .= 0) (< 7,0,D>,         D, .= 0) (< 7,0,E>, E, .= 0) 
          (< 8,0,A>, A, .= 0) (< 8,0,B>,     B, .= 0) (< 8,0,C>,         C, .= 0) (< 8,0,D>,         ?,   .?) (< 8,0,E>, ?,   .?) 
          (< 9,0,A>, A, .= 0) (< 9,0,B>,     B, .= 0) (< 9,0,C>,         C, .= 0) (< 9,0,D>,         D, .= 0) (< 9,0,E>, E, .= 0) 
          (<10,0,A>, A, .= 0) (<10,0,B>,     D, .= 0) (<10,0,C>,         B, .= 0) (<10,0,D>,         E, .= 0) (<10,0,E>, E, .= 0) 
          (<11,0,A>, A, .= 0) (<11,0,B>,     B, .= 0) (<11,0,C>,         C, .= 0) (<11,0,D>,         D, .= 0) (<11,0,E>, E, .= 0) 
          (<12,0,A>, A, .= 0) (<12,0,B>,     D, .= 0) (<12,0,C>,         B, .= 0) (<12,0,D>,         D, .= 0) (<12,0,E>, E, .= 0) 
          (<13,0,A>, A, .= 0) (<13,0,B>,     B, .= 0) (<13,0,C>,         C, .= 0) (<13,0,D>,         D, .= 0) (<13,0,E>, E, .= 0) 
          (<14,0,A>, A, .= 0) (<14,0,B>,     D, .= 0) (<14,0,C>,         B, .= 0) (<14,0,D>,         D, .= 0) (<14,0,E>, E, .= 0) 
          (<15,0,A>, A, .= 0) (<15,0,B>,     C, .= 0) (<15,0,C>, 2 + A + C, .* 2) (<15,0,D>, 2 + A + C, .* 2) (<15,0,E>, E, .= 0) 
          (<15,1,A>, A, .= 0) (<15,1,B>,     C, .= 0) (<15,1,C>, 2 + A + C, .* 2) (<15,1,D>, 2 + A + C, .* 2) (<15,1,E>, E, .= 0) 
          (<16,0,A>, A, .= 0) (<16,0,B>,     B, .= 0) (<16,0,C>,         C, .= 0) (<16,0,D>,         D, .= 0) (<16,0,E>, E, .= 0) 
          (<17,0,A>, C, .= 0) (<17,0,B>,     B, .= 0) (<17,0,C>,         B, .= 0) (<17,0,D>,         D, .= 0) (<17,0,E>, E, .= 0) 
* Step 2: SizeboundsProc WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  selectOrd(A,B,C,D,E) -> m4(A,B,C,D,E)                     [A >= 0]                                                                                 (1,1)
          1.  m0(A,B,C,D,E)        -> m1(A,B,C,F,E)                     [A >= 1 + B && B >= 1 + C && A >= 1 + F && 1 + F >= A]                                   (?,1)
          2.  m2(A,B,C,D,E)        -> m3(A,F,C,D,E)                     [A >= 2 + F && 2 + F >= A]                                                               (?,1)
          3.  m6(A,B,C,D,E)        -> m7(A,B,C,D,E)                     [B >= 1 + C && A >= 2 + B && D >= E]                                                     (?,1)
          4.  n0(A,B,C,D,E)        -> m7(A,C,C,D,E)                     [D >= 1 + B && A >= 2 + C]                                                               (?,1)
          5.  m7(A,B,C,D,E)        -> m0(A,F,C,D,E)                     [B >= C && A >= 2 + B && 1 + B >= F && F >= 1 + B]                                       (?,1)
          6.  n1(A,B,C,D,E)        -> c2(m5(A,B,0,D,E),m2(A,B,0,D,E))   [A >= 0]                                                                                 (?,1)
          7.  m4(A,B,C,D,E)        -> n1(A,B,C,D,E)                     [A >= 0]                                                                                 (?,1)
          8.  n2(A,B,C,D,E)        -> n3(A,B,C,F,G)                     [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A]                                   (?,1)
          9.  n3(A,B,C,D,E)        -> m6(A,B,C,D,E)                     True                                                                                     (?,1)
          10. n3(A,B,C,D,E)        -> n0(A,D,B,E,E)                     True                                                                                     (?,1)
          11. m1(A,B,C,D,E)        -> n2(A,B,C,D,E)                     True                                                                                     (?,1)
          12. m1(A,B,C,D,E)        -> m9(A,D,B,D,E)                     True                                                                                     (?,1)
          13. n40(A,B,C,D,E)       -> m2(A,B,C,D,E)                     True                                                                                     (?,1)
          14. n41(A,B,C,D,E)       -> m0(A,D,B,D,E)                     True                                                                                     (?,1)
          15. n4(A,B,C,D,E)        -> c2(n40(A,C,F,G,E),n41(A,C,F,G,E)) [A >= 2 + G && 1 + C >= G && G >= 1 + C && F >= G && G >= F && A >= 2 + B && 2 + B >= A] (?,1)
          16. m3(A,B,C,D,E)        -> n4(A,B,C,D,E)                     True                                                                                     (?,1)
          17. m3(A,B,C,D,E)        -> m8(C,B,B,D,E)                     True                                                                                     (?,1)
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n3,5)
          ;(n4,5)
          ;(n40,5)
          ;(n41,5)
          ;(selectOrd,5)}
        Flow Graph:
          [0->{7},1->{11,12},2->{16,17},3->{5},4->{5},5->{1},6->{2},7->{6},8->{9,10},9->{3},10->{4},11->{8},12->{}
          ,13->{2},14->{1},15->{13,14},16->{15},17->{}]
        Sizebounds:
          (< 0,0,A>, ?) (< 0,0,B>, ?) (< 0,0,C>, ?) (< 0,0,D>, ?) (< 0,0,E>, ?) 
          (< 1,0,A>, ?) (< 1,0,B>, ?) (< 1,0,C>, ?) (< 1,0,D>, ?) (< 1,0,E>, ?) 
          (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, ?) (< 2,0,E>, ?) 
          (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, ?) (< 3,0,E>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, ?) 
          (< 6,1,A>, ?) (< 6,1,B>, ?) (< 6,1,C>, ?) (< 6,1,D>, ?) (< 6,1,E>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
          (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
          (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) 
          (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) 
          (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) 
          (<14,0,A>, ?) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, ?) 
          (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, ?) 
          (<15,1,A>, ?) (<15,1,B>, ?) (<15,1,C>, ?) (<15,1,D>, ?) (<15,1,E>, ?) 
          (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,E>, ?) 
          (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,E>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (< 0,0,A>, A) (< 0,0,B>,     B) (< 0,0,C>,     C) (< 0,0,D>,     D) (< 0,0,E>, E) 
          (< 1,0,A>, A) (< 1,0,B>,     A) (< 1,0,C>,     ?) (< 1,0,D>, 1 + A) (< 1,0,E>, ?) 
          (< 2,0,A>, A) (< 2,0,B>, 2 + A) (< 2,0,C>,     ?) (< 2,0,D>,     ?) (< 2,0,E>, E) 
          (< 3,0,A>, A) (< 3,0,B>,     A) (< 3,0,C>, 1 + A) (< 3,0,D>,     ?) (< 3,0,E>, ?) 
          (< 4,0,A>, A) (< 4,0,B>,     1) (< 4,0,C>, 1 + A) (< 4,0,D>,     ?) (< 4,0,E>, ?) 
          (< 5,0,A>, A) (< 5,0,B>,     1) (< 5,0,C>, 1 + A) (< 5,0,D>,     ?) (< 5,0,E>, ?) 
          (< 6,0,A>, A) (< 6,0,B>,     B) (< 6,0,C>,     0) (< 6,0,D>,     D) (< 6,0,E>, E) 
          (< 6,1,A>, A) (< 6,1,B>,     B) (< 6,1,C>,     0) (< 6,1,D>,     D) (< 6,1,E>, E) 
          (< 7,0,A>, A) (< 7,0,B>,     B) (< 7,0,C>,     C) (< 7,0,D>,     D) (< 7,0,E>, E) 
          (< 8,0,A>, A) (< 8,0,B>, 1 + A) (< 8,0,C>,     A) (< 8,0,D>,     ?) (< 8,0,E>, ?) 
          (< 9,0,A>, A) (< 9,0,B>, 1 + A) (< 9,0,C>,     A) (< 9,0,D>,     ?) (< 9,0,E>, ?) 
          (<10,0,A>, A) (<10,0,B>,     ?) (<10,0,C>, 1 + A) (<10,0,D>,     ?) (<10,0,E>, ?) 
          (<11,0,A>, A) (<11,0,B>,     A) (<11,0,C>,     ?) (<11,0,D>, 1 + A) (<11,0,E>, ?) 
          (<12,0,A>, A) (<12,0,B>, 1 + A) (<12,0,C>,     A) (<12,0,D>, 1 + A) (<12,0,E>, ?) 
          (<13,0,A>, A) (<13,0,B>,     ?) (<13,0,C>,     ?) (<13,0,D>,     ?) (<13,0,E>, E) 
          (<14,0,A>, A) (<14,0,B>,     ?) (<14,0,C>,     ?) (<14,0,D>,     ?) (<14,0,E>, E) 
          (<15,0,A>, A) (<15,0,B>,     ?) (<15,0,C>,     ?) (<15,0,D>,     ?) (<15,0,E>, E) 
          (<15,1,A>, A) (<15,1,B>,     ?) (<15,1,C>,     ?) (<15,1,D>,     ?) (<15,1,E>, E) 
          (<16,0,A>, A) (<16,0,B>, 2 + A) (<16,0,C>,     ?) (<16,0,D>,     ?) (<16,0,E>, E) 
          (<17,0,A>, ?) (<17,0,B>, 2 + A) (<17,0,C>, 2 + A) (<17,0,D>,     ?) (<17,0,E>, E) 
* Step 3: LeafRules WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  selectOrd(A,B,C,D,E) -> m4(A,B,C,D,E)                     [A >= 0]                                                                                 (1,1)
          1.  m0(A,B,C,D,E)        -> m1(A,B,C,F,E)                     [A >= 1 + B && B >= 1 + C && A >= 1 + F && 1 + F >= A]                                   (?,1)
          2.  m2(A,B,C,D,E)        -> m3(A,F,C,D,E)                     [A >= 2 + F && 2 + F >= A]                                                               (?,1)
          3.  m6(A,B,C,D,E)        -> m7(A,B,C,D,E)                     [B >= 1 + C && A >= 2 + B && D >= E]                                                     (?,1)
          4.  n0(A,B,C,D,E)        -> m7(A,C,C,D,E)                     [D >= 1 + B && A >= 2 + C]                                                               (?,1)
          5.  m7(A,B,C,D,E)        -> m0(A,F,C,D,E)                     [B >= C && A >= 2 + B && 1 + B >= F && F >= 1 + B]                                       (?,1)
          6.  n1(A,B,C,D,E)        -> c2(m5(A,B,0,D,E),m2(A,B,0,D,E))   [A >= 0]                                                                                 (?,1)
          7.  m4(A,B,C,D,E)        -> n1(A,B,C,D,E)                     [A >= 0]                                                                                 (?,1)
          8.  n2(A,B,C,D,E)        -> n3(A,B,C,F,G)                     [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A]                                   (?,1)
          9.  n3(A,B,C,D,E)        -> m6(A,B,C,D,E)                     True                                                                                     (?,1)
          10. n3(A,B,C,D,E)        -> n0(A,D,B,E,E)                     True                                                                                     (?,1)
          11. m1(A,B,C,D,E)        -> n2(A,B,C,D,E)                     True                                                                                     (?,1)
          12. m1(A,B,C,D,E)        -> m9(A,D,B,D,E)                     True                                                                                     (?,1)
          13. n40(A,B,C,D,E)       -> m2(A,B,C,D,E)                     True                                                                                     (?,1)
          14. n41(A,B,C,D,E)       -> m0(A,D,B,D,E)                     True                                                                                     (?,1)
          15. n4(A,B,C,D,E)        -> c2(n40(A,C,F,G,E),n41(A,C,F,G,E)) [A >= 2 + G && 1 + C >= G && G >= 1 + C && F >= G && G >= F && A >= 2 + B && 2 + B >= A] (?,1)
          16. m3(A,B,C,D,E)        -> n4(A,B,C,D,E)                     True                                                                                     (?,1)
          17. m3(A,B,C,D,E)        -> m8(C,B,B,D,E)                     True                                                                                     (?,1)
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n3,5)
          ;(n4,5)
          ;(n40,5)
          ;(n41,5)
          ;(selectOrd,5)}
        Flow Graph:
          [0->{7},1->{11,12},2->{16,17},3->{5},4->{5},5->{1},6->{2},7->{6},8->{9,10},9->{3},10->{4},11->{8},12->{}
          ,13->{2},14->{1},15->{13,14},16->{15},17->{}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>,     B) (< 0,0,C>,     C) (< 0,0,D>,     D) (< 0,0,E>, E) 
          (< 1,0,A>, A) (< 1,0,B>,     A) (< 1,0,C>,     ?) (< 1,0,D>, 1 + A) (< 1,0,E>, ?) 
          (< 2,0,A>, A) (< 2,0,B>, 2 + A) (< 2,0,C>,     ?) (< 2,0,D>,     ?) (< 2,0,E>, E) 
          (< 3,0,A>, A) (< 3,0,B>,     A) (< 3,0,C>, 1 + A) (< 3,0,D>,     ?) (< 3,0,E>, ?) 
          (< 4,0,A>, A) (< 4,0,B>,     1) (< 4,0,C>, 1 + A) (< 4,0,D>,     ?) (< 4,0,E>, ?) 
          (< 5,0,A>, A) (< 5,0,B>,     1) (< 5,0,C>, 1 + A) (< 5,0,D>,     ?) (< 5,0,E>, ?) 
          (< 6,0,A>, A) (< 6,0,B>,     B) (< 6,0,C>,     0) (< 6,0,D>,     D) (< 6,0,E>, E) 
          (< 6,1,A>, A) (< 6,1,B>,     B) (< 6,1,C>,     0) (< 6,1,D>,     D) (< 6,1,E>, E) 
          (< 7,0,A>, A) (< 7,0,B>,     B) (< 7,0,C>,     C) (< 7,0,D>,     D) (< 7,0,E>, E) 
          (< 8,0,A>, A) (< 8,0,B>, 1 + A) (< 8,0,C>,     A) (< 8,0,D>,     ?) (< 8,0,E>, ?) 
          (< 9,0,A>, A) (< 9,0,B>, 1 + A) (< 9,0,C>,     A) (< 9,0,D>,     ?) (< 9,0,E>, ?) 
          (<10,0,A>, A) (<10,0,B>,     ?) (<10,0,C>, 1 + A) (<10,0,D>,     ?) (<10,0,E>, ?) 
          (<11,0,A>, A) (<11,0,B>,     A) (<11,0,C>,     ?) (<11,0,D>, 1 + A) (<11,0,E>, ?) 
          (<12,0,A>, A) (<12,0,B>, 1 + A) (<12,0,C>,     A) (<12,0,D>, 1 + A) (<12,0,E>, ?) 
          (<13,0,A>, A) (<13,0,B>,     ?) (<13,0,C>,     ?) (<13,0,D>,     ?) (<13,0,E>, E) 
          (<14,0,A>, A) (<14,0,B>,     ?) (<14,0,C>,     ?) (<14,0,D>,     ?) (<14,0,E>, E) 
          (<15,0,A>, A) (<15,0,B>,     ?) (<15,0,C>,     ?) (<15,0,D>,     ?) (<15,0,E>, E) 
          (<15,1,A>, A) (<15,1,B>,     ?) (<15,1,C>,     ?) (<15,1,D>,     ?) (<15,1,E>, E) 
          (<16,0,A>, A) (<16,0,B>, 2 + A) (<16,0,C>,     ?) (<16,0,D>,     ?) (<16,0,E>, E) 
          (<17,0,A>, ?) (<17,0,B>, 2 + A) (<17,0,C>, 2 + A) (<17,0,D>,     ?) (<17,0,E>, E) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [12,17]
* Step 4: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  selectOrd(A,B,C,D,E) -> m4(A,B,C,D,E)                     [A >= 0]                                                                                 (1,1)
          1.  m0(A,B,C,D,E)        -> m1(A,B,C,F,E)                     [A >= 1 + B && B >= 1 + C && A >= 1 + F && 1 + F >= A]                                   (?,1)
          2.  m2(A,B,C,D,E)        -> m3(A,F,C,D,E)                     [A >= 2 + F && 2 + F >= A]                                                               (?,1)
          3.  m6(A,B,C,D,E)        -> m7(A,B,C,D,E)                     [B >= 1 + C && A >= 2 + B && D >= E]                                                     (?,1)
          4.  n0(A,B,C,D,E)        -> m7(A,C,C,D,E)                     [D >= 1 + B && A >= 2 + C]                                                               (?,1)
          5.  m7(A,B,C,D,E)        -> m0(A,F,C,D,E)                     [B >= C && A >= 2 + B && 1 + B >= F && F >= 1 + B]                                       (?,1)
          6.  n1(A,B,C,D,E)        -> c2(m5(A,B,0,D,E),m2(A,B,0,D,E))   [A >= 0]                                                                                 (?,1)
          7.  m4(A,B,C,D,E)        -> n1(A,B,C,D,E)                     [A >= 0]                                                                                 (?,1)
          8.  n2(A,B,C,D,E)        -> n3(A,B,C,F,G)                     [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A]                                   (?,1)
          9.  n3(A,B,C,D,E)        -> m6(A,B,C,D,E)                     True                                                                                     (?,1)
          10. n3(A,B,C,D,E)        -> n0(A,D,B,E,E)                     True                                                                                     (?,1)
          11. m1(A,B,C,D,E)        -> n2(A,B,C,D,E)                     True                                                                                     (?,1)
          13. n40(A,B,C,D,E)       -> m2(A,B,C,D,E)                     True                                                                                     (?,1)
          14. n41(A,B,C,D,E)       -> m0(A,D,B,D,E)                     True                                                                                     (?,1)
          15. n4(A,B,C,D,E)        -> c2(n40(A,C,F,G,E),n41(A,C,F,G,E)) [A >= 2 + G && 1 + C >= G && G >= 1 + C && F >= G && G >= F && A >= 2 + B && 2 + B >= A] (?,1)
          16. m3(A,B,C,D,E)        -> n4(A,B,C,D,E)                     True                                                                                     (?,1)
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n3,5)
          ;(n4,5)
          ;(n40,5)
          ;(n41,5)
          ;(selectOrd,5)}
        Flow Graph:
          [0->{7},1->{11},2->{16},3->{5},4->{5},5->{1},6->{2},7->{6},8->{9,10},9->{3},10->{4},11->{8},13->{2}
          ,14->{1},15->{13,14},16->{15}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>,     B) (< 0,0,C>,     C) (< 0,0,D>,     D) (< 0,0,E>, E) 
          (< 1,0,A>, A) (< 1,0,B>,     A) (< 1,0,C>,     ?) (< 1,0,D>, 1 + A) (< 1,0,E>, ?) 
          (< 2,0,A>, A) (< 2,0,B>, 2 + A) (< 2,0,C>,     ?) (< 2,0,D>,     ?) (< 2,0,E>, E) 
          (< 3,0,A>, A) (< 3,0,B>,     A) (< 3,0,C>, 1 + A) (< 3,0,D>,     ?) (< 3,0,E>, ?) 
          (< 4,0,A>, A) (< 4,0,B>,     1) (< 4,0,C>, 1 + A) (< 4,0,D>,     ?) (< 4,0,E>, ?) 
          (< 5,0,A>, A) (< 5,0,B>,     1) (< 5,0,C>, 1 + A) (< 5,0,D>,     ?) (< 5,0,E>, ?) 
          (< 6,0,A>, A) (< 6,0,B>,     B) (< 6,0,C>,     0) (< 6,0,D>,     D) (< 6,0,E>, E) 
          (< 6,1,A>, A) (< 6,1,B>,     B) (< 6,1,C>,     0) (< 6,1,D>,     D) (< 6,1,E>, E) 
          (< 7,0,A>, A) (< 7,0,B>,     B) (< 7,0,C>,     C) (< 7,0,D>,     D) (< 7,0,E>, E) 
          (< 8,0,A>, A) (< 8,0,B>, 1 + A) (< 8,0,C>,     A) (< 8,0,D>,     ?) (< 8,0,E>, ?) 
          (< 9,0,A>, A) (< 9,0,B>, 1 + A) (< 9,0,C>,     A) (< 9,0,D>,     ?) (< 9,0,E>, ?) 
          (<10,0,A>, A) (<10,0,B>,     ?) (<10,0,C>, 1 + A) (<10,0,D>,     ?) (<10,0,E>, ?) 
          (<11,0,A>, A) (<11,0,B>,     A) (<11,0,C>,     ?) (<11,0,D>, 1 + A) (<11,0,E>, ?) 
          (<13,0,A>, A) (<13,0,B>,     ?) (<13,0,C>,     ?) (<13,0,D>,     ?) (<13,0,E>, E) 
          (<14,0,A>, A) (<14,0,B>,     ?) (<14,0,C>,     ?) (<14,0,D>,     ?) (<14,0,E>, E) 
          (<15,0,A>, A) (<15,0,B>,     ?) (<15,0,C>,     ?) (<15,0,D>,     ?) (<15,0,E>, E) 
          (<15,1,A>, A) (<15,1,B>,     ?) (<15,1,C>,     ?) (<15,1,D>,     ?) (<15,1,E>, E) 
          (<16,0,A>, A) (<16,0,B>, 2 + A) (<16,0,C>,     ?) (<16,0,D>,     ?) (<16,0,E>, E) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
                 p(m0) = 0
                 p(m1) = 0
                 p(m2) = 1
                 p(m3) = 1
                 p(m4) = 2
                 p(m5) = 0
                 p(m6) = 0
                 p(m7) = 0
                 p(n0) = 0
                 p(n1) = 1
                 p(n2) = 0
                 p(n3) = 0
                 p(n4) = 1
                p(n40) = 1
                p(n41) = 0
          p(selectOrd) = 2
        
        The following rules are strictly oriented:
               [A >= 0] ==>              
          m4(A,B,C,D,E)   = 2            
                          > 1            
                          = n1(A,B,C,D,E)
        
        
        The following rules are weakly oriented:
                                                                                        [A >= 0] ==>                                  
                                                                            selectOrd(A,B,C,D,E)   = 2                                
                                                                                                  >= 2                                
                                                                                                   = m4(A,B,C,D,E)                    
        
                                          [A >= 1 + B && B >= 1 + C && A >= 1 + F && 1 + F >= A] ==>                                  
                                                                                   m0(A,B,C,D,E)   = 0                                
                                                                                                  >= 0                                
                                                                                                   = m1(A,B,C,F,E)                    
        
                                                                      [A >= 2 + F && 2 + F >= A] ==>                                  
                                                                                   m2(A,B,C,D,E)   = 1                                
                                                                                                  >= 1                                
                                                                                                   = m3(A,F,C,D,E)                    
        
                                                            [B >= 1 + C && A >= 2 + B && D >= E] ==>                                  
                                                                                   m6(A,B,C,D,E)   = 0                                
                                                                                                  >= 0                                
                                                                                                   = m7(A,B,C,D,E)                    
        
                                                                      [D >= 1 + B && A >= 2 + C] ==>                                  
                                                                                   n0(A,B,C,D,E)   = 0                                
                                                                                                  >= 0                                
                                                                                                   = m7(A,C,C,D,E)                    
        
                                              [B >= C && A >= 2 + B && 1 + B >= F && F >= 1 + B] ==>                                  
                                                                                   m7(A,B,C,D,E)   = 0                                
                                                                                                  >= 0                                
                                                                                                   = m0(A,F,C,D,E)                    
        
                                                                                        [A >= 0] ==>                                  
                                                                                   n1(A,B,C,D,E)   = 1                                
                                                                                                  >= 1                                
                                                                                                   = c2(m5(A,B,0,D,E),m2(A,B,0,D,E))  
        
                                          [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A] ==>                                  
                                                                                   n2(A,B,C,D,E)   = 0                                
                                                                                                  >= 0                                
                                                                                                   = n3(A,B,C,F,G)                    
        
                                                                                            True ==>                                  
                                                                                   n3(A,B,C,D,E)   = 0                                
                                                                                                  >= 0                                
                                                                                                   = m6(A,B,C,D,E)                    
        
                                                                                            True ==>                                  
                                                                                   n3(A,B,C,D,E)   = 0                                
                                                                                                  >= 0                                
                                                                                                   = n0(A,D,B,E,E)                    
        
                                                                                            True ==>                                  
                                                                                   m1(A,B,C,D,E)   = 0                                
                                                                                                  >= 0                                
                                                                                                   = n2(A,B,C,D,E)                    
        
                                                                                            True ==>                                  
                                                                                  n40(A,B,C,D,E)   = 1                                
                                                                                                  >= 1                                
                                                                                                   = m2(A,B,C,D,E)                    
        
                                                                                            True ==>                                  
                                                                                  n41(A,B,C,D,E)   = 0                                
                                                                                                  >= 0                                
                                                                                                   = m0(A,D,B,D,E)                    
        
        [A >= 2 + G && 1 + C >= G && G >= 1 + C && F >= G && G >= F && A >= 2 + B && 2 + B >= A] ==>                                  
                                                                                   n4(A,B,C,D,E)   = 1                                
                                                                                                  >= 1                                
                                                                                                   = c2(n40(A,C,F,G,E),n41(A,C,F,G,E))
        
                                                                                            True ==>                                  
                                                                                   m3(A,B,C,D,E)   = 1                                
                                                                                                  >= 1                                
                                                                                                   = n4(A,B,C,D,E)                    
        
        
* Step 5: KnowledgePropagation WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  selectOrd(A,B,C,D,E) -> m4(A,B,C,D,E)                     [A >= 0]                                                                                 (1,1)
          1.  m0(A,B,C,D,E)        -> m1(A,B,C,F,E)                     [A >= 1 + B && B >= 1 + C && A >= 1 + F && 1 + F >= A]                                   (?,1)
          2.  m2(A,B,C,D,E)        -> m3(A,F,C,D,E)                     [A >= 2 + F && 2 + F >= A]                                                               (?,1)
          3.  m6(A,B,C,D,E)        -> m7(A,B,C,D,E)                     [B >= 1 + C && A >= 2 + B && D >= E]                                                     (?,1)
          4.  n0(A,B,C,D,E)        -> m7(A,C,C,D,E)                     [D >= 1 + B && A >= 2 + C]                                                               (?,1)
          5.  m7(A,B,C,D,E)        -> m0(A,F,C,D,E)                     [B >= C && A >= 2 + B && 1 + B >= F && F >= 1 + B]                                       (?,1)
          6.  n1(A,B,C,D,E)        -> c2(m5(A,B,0,D,E),m2(A,B,0,D,E))   [A >= 0]                                                                                 (?,1)
          7.  m4(A,B,C,D,E)        -> n1(A,B,C,D,E)                     [A >= 0]                                                                                 (2,1)
          8.  n2(A,B,C,D,E)        -> n3(A,B,C,F,G)                     [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A]                                   (?,1)
          9.  n3(A,B,C,D,E)        -> m6(A,B,C,D,E)                     True                                                                                     (?,1)
          10. n3(A,B,C,D,E)        -> n0(A,D,B,E,E)                     True                                                                                     (?,1)
          11. m1(A,B,C,D,E)        -> n2(A,B,C,D,E)                     True                                                                                     (?,1)
          13. n40(A,B,C,D,E)       -> m2(A,B,C,D,E)                     True                                                                                     (?,1)
          14. n41(A,B,C,D,E)       -> m0(A,D,B,D,E)                     True                                                                                     (?,1)
          15. n4(A,B,C,D,E)        -> c2(n40(A,C,F,G,E),n41(A,C,F,G,E)) [A >= 2 + G && 1 + C >= G && G >= 1 + C && F >= G && G >= F && A >= 2 + B && 2 + B >= A] (?,1)
          16. m3(A,B,C,D,E)        -> n4(A,B,C,D,E)                     True                                                                                     (?,1)
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n3,5)
          ;(n4,5)
          ;(n40,5)
          ;(n41,5)
          ;(selectOrd,5)}
        Flow Graph:
          [0->{7},1->{11},2->{16},3->{5},4->{5},5->{1},6->{2},7->{6},8->{9,10},9->{3},10->{4},11->{8},13->{2}
          ,14->{1},15->{13,14},16->{15}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>,     B) (< 0,0,C>,     C) (< 0,0,D>,     D) (< 0,0,E>, E) 
          (< 1,0,A>, A) (< 1,0,B>,     A) (< 1,0,C>,     ?) (< 1,0,D>, 1 + A) (< 1,0,E>, ?) 
          (< 2,0,A>, A) (< 2,0,B>, 2 + A) (< 2,0,C>,     ?) (< 2,0,D>,     ?) (< 2,0,E>, E) 
          (< 3,0,A>, A) (< 3,0,B>,     A) (< 3,0,C>, 1 + A) (< 3,0,D>,     ?) (< 3,0,E>, ?) 
          (< 4,0,A>, A) (< 4,0,B>,     1) (< 4,0,C>, 1 + A) (< 4,0,D>,     ?) (< 4,0,E>, ?) 
          (< 5,0,A>, A) (< 5,0,B>,     1) (< 5,0,C>, 1 + A) (< 5,0,D>,     ?) (< 5,0,E>, ?) 
          (< 6,0,A>, A) (< 6,0,B>,     B) (< 6,0,C>,     0) (< 6,0,D>,     D) (< 6,0,E>, E) 
          (< 6,1,A>, A) (< 6,1,B>,     B) (< 6,1,C>,     0) (< 6,1,D>,     D) (< 6,1,E>, E) 
          (< 7,0,A>, A) (< 7,0,B>,     B) (< 7,0,C>,     C) (< 7,0,D>,     D) (< 7,0,E>, E) 
          (< 8,0,A>, A) (< 8,0,B>, 1 + A) (< 8,0,C>,     A) (< 8,0,D>,     ?) (< 8,0,E>, ?) 
          (< 9,0,A>, A) (< 9,0,B>, 1 + A) (< 9,0,C>,     A) (< 9,0,D>,     ?) (< 9,0,E>, ?) 
          (<10,0,A>, A) (<10,0,B>,     ?) (<10,0,C>, 1 + A) (<10,0,D>,     ?) (<10,0,E>, ?) 
          (<11,0,A>, A) (<11,0,B>,     A) (<11,0,C>,     ?) (<11,0,D>, 1 + A) (<11,0,E>, ?) 
          (<13,0,A>, A) (<13,0,B>,     ?) (<13,0,C>,     ?) (<13,0,D>,     ?) (<13,0,E>, E) 
          (<14,0,A>, A) (<14,0,B>,     ?) (<14,0,C>,     ?) (<14,0,D>,     ?) (<14,0,E>, E) 
          (<15,0,A>, A) (<15,0,B>,     ?) (<15,0,C>,     ?) (<15,0,D>,     ?) (<15,0,E>, E) 
          (<15,1,A>, A) (<15,1,B>,     ?) (<15,1,C>,     ?) (<15,1,D>,     ?) (<15,1,E>, E) 
          (<16,0,A>, A) (<16,0,B>, 2 + A) (<16,0,C>,     ?) (<16,0,D>,     ?) (<16,0,E>, E) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 6: ChainProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  selectOrd(A,B,C,D,E) -> m4(A,B,C,D,E)                     [A >= 0]                                                                                 (1,1)
          1.  m0(A,B,C,D,E)        -> m1(A,B,C,F,E)                     [A >= 1 + B && B >= 1 + C && A >= 1 + F && 1 + F >= A]                                   (?,1)
          2.  m2(A,B,C,D,E)        -> m3(A,F,C,D,E)                     [A >= 2 + F && 2 + F >= A]                                                               (?,1)
          3.  m6(A,B,C,D,E)        -> m7(A,B,C,D,E)                     [B >= 1 + C && A >= 2 + B && D >= E]                                                     (?,1)
          4.  n0(A,B,C,D,E)        -> m7(A,C,C,D,E)                     [D >= 1 + B && A >= 2 + C]                                                               (?,1)
          5.  m7(A,B,C,D,E)        -> m0(A,F,C,D,E)                     [B >= C && A >= 2 + B && 1 + B >= F && F >= 1 + B]                                       (?,1)
          6.  n1(A,B,C,D,E)        -> c2(m5(A,B,0,D,E),m2(A,B,0,D,E))   [A >= 0]                                                                                 (2,1)
          7.  m4(A,B,C,D,E)        -> n1(A,B,C,D,E)                     [A >= 0]                                                                                 (2,1)
          8.  n2(A,B,C,D,E)        -> n3(A,B,C,F,G)                     [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A]                                   (?,1)
          9.  n3(A,B,C,D,E)        -> m6(A,B,C,D,E)                     True                                                                                     (?,1)
          10. n3(A,B,C,D,E)        -> n0(A,D,B,E,E)                     True                                                                                     (?,1)
          11. m1(A,B,C,D,E)        -> n2(A,B,C,D,E)                     True                                                                                     (?,1)
          13. n40(A,B,C,D,E)       -> m2(A,B,C,D,E)                     True                                                                                     (?,1)
          14. n41(A,B,C,D,E)       -> m0(A,D,B,D,E)                     True                                                                                     (?,1)
          15. n4(A,B,C,D,E)        -> c2(n40(A,C,F,G,E),n41(A,C,F,G,E)) [A >= 2 + G && 1 + C >= G && G >= 1 + C && F >= G && G >= F && A >= 2 + B && 2 + B >= A] (?,1)
          16. m3(A,B,C,D,E)        -> n4(A,B,C,D,E)                     True                                                                                     (?,1)
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n3,5)
          ;(n4,5)
          ;(n40,5)
          ;(n41,5)
          ;(selectOrd,5)}
        Flow Graph:
          [0->{7},1->{11},2->{16},3->{5},4->{5},5->{1},6->{2},7->{6},8->{9,10},9->{3},10->{4},11->{8},13->{2}
          ,14->{1},15->{13,14},16->{15}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>,     B) (< 0,0,C>,     C) (< 0,0,D>,     D) (< 0,0,E>, E) 
          (< 1,0,A>, A) (< 1,0,B>,     A) (< 1,0,C>,     ?) (< 1,0,D>, 1 + A) (< 1,0,E>, ?) 
          (< 2,0,A>, A) (< 2,0,B>, 2 + A) (< 2,0,C>,     ?) (< 2,0,D>,     ?) (< 2,0,E>, E) 
          (< 3,0,A>, A) (< 3,0,B>,     A) (< 3,0,C>, 1 + A) (< 3,0,D>,     ?) (< 3,0,E>, ?) 
          (< 4,0,A>, A) (< 4,0,B>,     1) (< 4,0,C>, 1 + A) (< 4,0,D>,     ?) (< 4,0,E>, ?) 
          (< 5,0,A>, A) (< 5,0,B>,     1) (< 5,0,C>, 1 + A) (< 5,0,D>,     ?) (< 5,0,E>, ?) 
          (< 6,0,A>, A) (< 6,0,B>,     B) (< 6,0,C>,     0) (< 6,0,D>,     D) (< 6,0,E>, E) 
          (< 6,1,A>, A) (< 6,1,B>,     B) (< 6,1,C>,     0) (< 6,1,D>,     D) (< 6,1,E>, E) 
          (< 7,0,A>, A) (< 7,0,B>,     B) (< 7,0,C>,     C) (< 7,0,D>,     D) (< 7,0,E>, E) 
          (< 8,0,A>, A) (< 8,0,B>, 1 + A) (< 8,0,C>,     A) (< 8,0,D>,     ?) (< 8,0,E>, ?) 
          (< 9,0,A>, A) (< 9,0,B>, 1 + A) (< 9,0,C>,     A) (< 9,0,D>,     ?) (< 9,0,E>, ?) 
          (<10,0,A>, A) (<10,0,B>,     ?) (<10,0,C>, 1 + A) (<10,0,D>,     ?) (<10,0,E>, ?) 
          (<11,0,A>, A) (<11,0,B>,     A) (<11,0,C>,     ?) (<11,0,D>, 1 + A) (<11,0,E>, ?) 
          (<13,0,A>, A) (<13,0,B>,     ?) (<13,0,C>,     ?) (<13,0,D>,     ?) (<13,0,E>, E) 
          (<14,0,A>, A) (<14,0,B>,     ?) (<14,0,C>,     ?) (<14,0,D>,     ?) (<14,0,E>, E) 
          (<15,0,A>, A) (<15,0,B>,     ?) (<15,0,C>,     ?) (<15,0,D>,     ?) (<15,0,E>, E) 
          (<15,1,A>, A) (<15,1,B>,     ?) (<15,1,C>,     ?) (<15,1,D>,     ?) (<15,1,E>, E) 
          (<16,0,A>, A) (<16,0,B>, 2 + A) (<16,0,C>,     ?) (<16,0,D>,     ?) (<16,0,E>, E) 
    + Applied Processor:
        ChainProcessor False [0,1,2,3,4,5,6,7,8,9,10,11,13,14,15,16]
    + Details:
        We chained rule 0 to obtain the rules [17] .
* Step 7: UnreachableRules WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          1.  m0(A,B,C,D,E)        -> m1(A,B,C,F,E)                     [A >= 1 + B && B >= 1 + C && A >= 1 + F && 1 + F >= A]                                   (?,1)
          2.  m2(A,B,C,D,E)        -> m3(A,F,C,D,E)                     [A >= 2 + F && 2 + F >= A]                                                               (?,1)
          3.  m6(A,B,C,D,E)        -> m7(A,B,C,D,E)                     [B >= 1 + C && A >= 2 + B && D >= E]                                                     (?,1)
          4.  n0(A,B,C,D,E)        -> m7(A,C,C,D,E)                     [D >= 1 + B && A >= 2 + C]                                                               (?,1)
          5.  m7(A,B,C,D,E)        -> m0(A,F,C,D,E)                     [B >= C && A >= 2 + B && 1 + B >= F && F >= 1 + B]                                       (?,1)
          6.  n1(A,B,C,D,E)        -> c2(m5(A,B,0,D,E),m2(A,B,0,D,E))   [A >= 0]                                                                                 (2,1)
          7.  m4(A,B,C,D,E)        -> n1(A,B,C,D,E)                     [A >= 0]                                                                                 (2,1)
          8.  n2(A,B,C,D,E)        -> n3(A,B,C,F,G)                     [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A]                                   (?,1)
          9.  n3(A,B,C,D,E)        -> m6(A,B,C,D,E)                     True                                                                                     (?,1)
          10. n3(A,B,C,D,E)        -> n0(A,D,B,E,E)                     True                                                                                     (?,1)
          11. m1(A,B,C,D,E)        -> n2(A,B,C,D,E)                     True                                                                                     (?,1)
          13. n40(A,B,C,D,E)       -> m2(A,B,C,D,E)                     True                                                                                     (?,1)
          14. n41(A,B,C,D,E)       -> m0(A,D,B,D,E)                     True                                                                                     (?,1)
          15. n4(A,B,C,D,E)        -> c2(n40(A,C,F,G,E),n41(A,C,F,G,E)) [A >= 2 + G && 1 + C >= G && G >= 1 + C && F >= G && G >= F && A >= 2 + B && 2 + B >= A] (?,1)
          16. m3(A,B,C,D,E)        -> n4(A,B,C,D,E)                     True                                                                                     (?,1)
          17. selectOrd(A,B,C,D,E) -> n1(A,B,C,D,E)                     [A >= 0 && A >= 0]                                                                       (1,2)
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n3,5)
          ;(n4,5)
          ;(n40,5)
          ;(n41,5)
          ;(selectOrd,5)}
        Flow Graph:
          [1->{11},2->{16},3->{5},4->{5},5->{1},6->{2},7->{6},8->{9,10},9->{3},10->{4},11->{8},13->{2},14->{1}
          ,15->{13,14},16->{15},17->{6}]
        Sizebounds:
          (< 1,0,A>, A) (< 1,0,B>,     A) (< 1,0,C>,     ?) (< 1,0,D>, 1 + A) (< 1,0,E>, ?) 
          (< 2,0,A>, A) (< 2,0,B>, 2 + A) (< 2,0,C>,     ?) (< 2,0,D>,     ?) (< 2,0,E>, E) 
          (< 3,0,A>, A) (< 3,0,B>,     A) (< 3,0,C>, 1 + A) (< 3,0,D>,     ?) (< 3,0,E>, ?) 
          (< 4,0,A>, A) (< 4,0,B>,     1) (< 4,0,C>, 1 + A) (< 4,0,D>,     ?) (< 4,0,E>, ?) 
          (< 5,0,A>, A) (< 5,0,B>,     1) (< 5,0,C>, 1 + A) (< 5,0,D>,     ?) (< 5,0,E>, ?) 
          (< 6,0,A>, A) (< 6,0,B>,     B) (< 6,0,C>,     0) (< 6,0,D>,     D) (< 6,0,E>, E) 
          (< 6,1,A>, A) (< 6,1,B>,     B) (< 6,1,C>,     0) (< 6,1,D>,     D) (< 6,1,E>, E) 
          (< 7,0,A>, A) (< 7,0,B>,     B) (< 7,0,C>,     C) (< 7,0,D>,     D) (< 7,0,E>, E) 
          (< 8,0,A>, A) (< 8,0,B>, 1 + A) (< 8,0,C>,     A) (< 8,0,D>,     ?) (< 8,0,E>, ?) 
          (< 9,0,A>, A) (< 9,0,B>, 1 + A) (< 9,0,C>,     A) (< 9,0,D>,     ?) (< 9,0,E>, ?) 
          (<10,0,A>, A) (<10,0,B>,     ?) (<10,0,C>, 1 + A) (<10,0,D>,     ?) (<10,0,E>, ?) 
          (<11,0,A>, A) (<11,0,B>,     A) (<11,0,C>,     ?) (<11,0,D>, 1 + A) (<11,0,E>, ?) 
          (<13,0,A>, A) (<13,0,B>,     ?) (<13,0,C>,     ?) (<13,0,D>,     ?) (<13,0,E>, E) 
          (<14,0,A>, A) (<14,0,B>,     ?) (<14,0,C>,     ?) (<14,0,D>,     ?) (<14,0,E>, E) 
          (<15,0,A>, A) (<15,0,B>,     ?) (<15,0,C>,     ?) (<15,0,D>,     ?) (<15,0,E>, E) 
          (<15,1,A>, A) (<15,1,B>,     ?) (<15,1,C>,     ?) (<15,1,D>,     ?) (<15,1,E>, E) 
          (<16,0,A>, A) (<16,0,B>, 2 + A) (<16,0,C>,     ?) (<16,0,D>,     ?) (<16,0,E>, E) 
          (<17,0,A>, A) (<17,0,B>,     B) (<17,0,C>,     C) (<17,0,D>,     D) (<17,0,E>, E) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [7]
* Step 8: ChainProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          1.  m0(A,B,C,D,E)        -> m1(A,B,C,F,E)                     [A >= 1 + B && B >= 1 + C && A >= 1 + F && 1 + F >= A]                                   (?,1)
          2.  m2(A,B,C,D,E)        -> m3(A,F,C,D,E)                     [A >= 2 + F && 2 + F >= A]                                                               (?,1)
          3.  m6(A,B,C,D,E)        -> m7(A,B,C,D,E)                     [B >= 1 + C && A >= 2 + B && D >= E]                                                     (?,1)
          4.  n0(A,B,C,D,E)        -> m7(A,C,C,D,E)                     [D >= 1 + B && A >= 2 + C]                                                               (?,1)
          5.  m7(A,B,C,D,E)        -> m0(A,F,C,D,E)                     [B >= C && A >= 2 + B && 1 + B >= F && F >= 1 + B]                                       (?,1)
          6.  n1(A,B,C,D,E)        -> c2(m5(A,B,0,D,E),m2(A,B,0,D,E))   [A >= 0]                                                                                 (2,1)
          8.  n2(A,B,C,D,E)        -> n3(A,B,C,F,G)                     [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A]                                   (?,1)
          9.  n3(A,B,C,D,E)        -> m6(A,B,C,D,E)                     True                                                                                     (?,1)
          10. n3(A,B,C,D,E)        -> n0(A,D,B,E,E)                     True                                                                                     (?,1)
          11. m1(A,B,C,D,E)        -> n2(A,B,C,D,E)                     True                                                                                     (?,1)
          13. n40(A,B,C,D,E)       -> m2(A,B,C,D,E)                     True                                                                                     (?,1)
          14. n41(A,B,C,D,E)       -> m0(A,D,B,D,E)                     True                                                                                     (?,1)
          15. n4(A,B,C,D,E)        -> c2(n40(A,C,F,G,E),n41(A,C,F,G,E)) [A >= 2 + G && 1 + C >= G && G >= 1 + C && F >= G && G >= F && A >= 2 + B && 2 + B >= A] (?,1)
          16. m3(A,B,C,D,E)        -> n4(A,B,C,D,E)                     True                                                                                     (?,1)
          17. selectOrd(A,B,C,D,E) -> n1(A,B,C,D,E)                     [A >= 0 && A >= 0]                                                                       (1,2)
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n3,5)
          ;(n4,5)
          ;(n40,5)
          ;(n41,5)
          ;(selectOrd,5)}
        Flow Graph:
          [1->{11},2->{16},3->{5},4->{5},5->{1},6->{2},8->{9,10},9->{3},10->{4},11->{8},13->{2},14->{1},15->{13,14}
          ,16->{15},17->{6}]
        Sizebounds:
          (< 1,0,A>, A) (< 1,0,B>,     A) (< 1,0,C>,     ?) (< 1,0,D>, 1 + A) (< 1,0,E>, ?) 
          (< 2,0,A>, A) (< 2,0,B>, 2 + A) (< 2,0,C>,     ?) (< 2,0,D>,     ?) (< 2,0,E>, E) 
          (< 3,0,A>, A) (< 3,0,B>,     A) (< 3,0,C>, 1 + A) (< 3,0,D>,     ?) (< 3,0,E>, ?) 
          (< 4,0,A>, A) (< 4,0,B>,     1) (< 4,0,C>, 1 + A) (< 4,0,D>,     ?) (< 4,0,E>, ?) 
          (< 5,0,A>, A) (< 5,0,B>,     1) (< 5,0,C>, 1 + A) (< 5,0,D>,     ?) (< 5,0,E>, ?) 
          (< 6,0,A>, A) (< 6,0,B>,     B) (< 6,0,C>,     0) (< 6,0,D>,     D) (< 6,0,E>, E) 
          (< 6,1,A>, A) (< 6,1,B>,     B) (< 6,1,C>,     0) (< 6,1,D>,     D) (< 6,1,E>, E) 
          (< 8,0,A>, A) (< 8,0,B>, 1 + A) (< 8,0,C>,     A) (< 8,0,D>,     ?) (< 8,0,E>, ?) 
          (< 9,0,A>, A) (< 9,0,B>, 1 + A) (< 9,0,C>,     A) (< 9,0,D>,     ?) (< 9,0,E>, ?) 
          (<10,0,A>, A) (<10,0,B>,     ?) (<10,0,C>, 1 + A) (<10,0,D>,     ?) (<10,0,E>, ?) 
          (<11,0,A>, A) (<11,0,B>,     A) (<11,0,C>,     ?) (<11,0,D>, 1 + A) (<11,0,E>, ?) 
          (<13,0,A>, A) (<13,0,B>,     ?) (<13,0,C>,     ?) (<13,0,D>,     ?) (<13,0,E>, E) 
          (<14,0,A>, A) (<14,0,B>,     ?) (<14,0,C>,     ?) (<14,0,D>,     ?) (<14,0,E>, E) 
          (<15,0,A>, A) (<15,0,B>,     ?) (<15,0,C>,     ?) (<15,0,D>,     ?) (<15,0,E>, E) 
          (<15,1,A>, A) (<15,1,B>,     ?) (<15,1,C>,     ?) (<15,1,D>,     ?) (<15,1,E>, E) 
          (<16,0,A>, A) (<16,0,B>, 2 + A) (<16,0,C>,     ?) (<16,0,D>,     ?) (<16,0,E>, E) 
          (<17,0,A>, A) (<17,0,B>,     B) (<17,0,C>,     C) (<17,0,D>,     D) (<17,0,E>, E) 
    + Applied Processor:
        ChainProcessor False [1,2,3,4,5,6,8,9,10,11,13,14,15,16,17]
    + Details:
        We chained rule 1 to obtain the rules [18] .
* Step 9: UnreachableRules WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  m2(A,B,C,D,E)        -> m3(A,F,C,D,E)                     [A >= 2 + F && 2 + F >= A]                                                               (?,1)
          3.  m6(A,B,C,D,E)        -> m7(A,B,C,D,E)                     [B >= 1 + C && A >= 2 + B && D >= E]                                                     (?,1)
          4.  n0(A,B,C,D,E)        -> m7(A,C,C,D,E)                     [D >= 1 + B && A >= 2 + C]                                                               (?,1)
          5.  m7(A,B,C,D,E)        -> m0(A,F,C,D,E)                     [B >= C && A >= 2 + B && 1 + B >= F && F >= 1 + B]                                       (?,1)
          6.  n1(A,B,C,D,E)        -> c2(m5(A,B,0,D,E),m2(A,B,0,D,E))   [A >= 0]                                                                                 (2,1)
          8.  n2(A,B,C,D,E)        -> n3(A,B,C,F,G)                     [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A]                                   (?,1)
          9.  n3(A,B,C,D,E)        -> m6(A,B,C,D,E)                     True                                                                                     (?,1)
          10. n3(A,B,C,D,E)        -> n0(A,D,B,E,E)                     True                                                                                     (?,1)
          11. m1(A,B,C,D,E)        -> n2(A,B,C,D,E)                     True                                                                                     (?,1)
          13. n40(A,B,C,D,E)       -> m2(A,B,C,D,E)                     True                                                                                     (?,1)
          14. n41(A,B,C,D,E)       -> m0(A,D,B,D,E)                     True                                                                                     (?,1)
          15. n4(A,B,C,D,E)        -> c2(n40(A,C,F,G,E),n41(A,C,F,G,E)) [A >= 2 + G && 1 + C >= G && G >= 1 + C && F >= G && G >= F && A >= 2 + B && 2 + B >= A] (?,1)
          16. m3(A,B,C,D,E)        -> n4(A,B,C,D,E)                     True                                                                                     (?,1)
          17. selectOrd(A,B,C,D,E) -> n1(A,B,C,D,E)                     [A >= 0 && A >= 0]                                                                       (1,2)
          18. m0(A,B,C,D,E)        -> n2(A,B,C,F,E)                     [A >= 1 + B && B >= 1 + C && A >= 1 + F && 1 + F >= A]                                   (?,2)
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n3,5)
          ;(n4,5)
          ;(n40,5)
          ;(n41,5)
          ;(selectOrd,5)}
        Flow Graph:
          [2->{16},3->{5},4->{5},5->{18},6->{2},8->{9,10},9->{3},10->{4},11->{8},13->{2},14->{18},15->{13,14}
          ,16->{15},17->{6},18->{8}]
        Sizebounds:
          (< 2,0,A>, A) (< 2,0,B>, 2 + A) (< 2,0,C>,     ?) (< 2,0,D>,     ?) (< 2,0,E>, E) 
          (< 3,0,A>, A) (< 3,0,B>,     A) (< 3,0,C>, 1 + A) (< 3,0,D>,     ?) (< 3,0,E>, ?) 
          (< 4,0,A>, A) (< 4,0,B>,     1) (< 4,0,C>, 1 + A) (< 4,0,D>,     ?) (< 4,0,E>, ?) 
          (< 5,0,A>, A) (< 5,0,B>,     1) (< 5,0,C>, 1 + A) (< 5,0,D>,     ?) (< 5,0,E>, ?) 
          (< 6,0,A>, A) (< 6,0,B>,     B) (< 6,0,C>,     0) (< 6,0,D>,     D) (< 6,0,E>, E) 
          (< 6,1,A>, A) (< 6,1,B>,     B) (< 6,1,C>,     0) (< 6,1,D>,     D) (< 6,1,E>, E) 
          (< 8,0,A>, A) (< 8,0,B>, 1 + A) (< 8,0,C>,     A) (< 8,0,D>,     ?) (< 8,0,E>, ?) 
          (< 9,0,A>, A) (< 9,0,B>, 1 + A) (< 9,0,C>,     A) (< 9,0,D>,     ?) (< 9,0,E>, ?) 
          (<10,0,A>, A) (<10,0,B>,     ?) (<10,0,C>, 1 + A) (<10,0,D>,     ?) (<10,0,E>, ?) 
          (<11,0,A>, A) (<11,0,B>,     A) (<11,0,C>,     ?) (<11,0,D>, 1 + A) (<11,0,E>, ?) 
          (<13,0,A>, A) (<13,0,B>,     ?) (<13,0,C>,     ?) (<13,0,D>,     ?) (<13,0,E>, E) 
          (<14,0,A>, A) (<14,0,B>,     ?) (<14,0,C>,     ?) (<14,0,D>,     ?) (<14,0,E>, E) 
          (<15,0,A>, A) (<15,0,B>,     ?) (<15,0,C>,     ?) (<15,0,D>,     ?) (<15,0,E>, E) 
          (<15,1,A>, A) (<15,1,B>,     ?) (<15,1,C>,     ?) (<15,1,D>,     ?) (<15,1,E>, E) 
          (<16,0,A>, A) (<16,0,B>, 2 + A) (<16,0,C>,     ?) (<16,0,D>,     ?) (<16,0,E>, E) 
          (<17,0,A>, A) (<17,0,B>,     B) (<17,0,C>,     C) (<17,0,D>,     D) (<17,0,E>, E) 
          (<18,0,A>, A) (<18,0,B>,     A) (<18,0,C>,     ?) (<18,0,D>, 1 + A) (<18,0,E>, ?) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [11]
* Step 10: ChainProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  m2(A,B,C,D,E)        -> m3(A,F,C,D,E)                     [A >= 2 + F && 2 + F >= A]                                                               (?,1)
          3.  m6(A,B,C,D,E)        -> m7(A,B,C,D,E)                     [B >= 1 + C && A >= 2 + B && D >= E]                                                     (?,1)
          4.  n0(A,B,C,D,E)        -> m7(A,C,C,D,E)                     [D >= 1 + B && A >= 2 + C]                                                               (?,1)
          5.  m7(A,B,C,D,E)        -> m0(A,F,C,D,E)                     [B >= C && A >= 2 + B && 1 + B >= F && F >= 1 + B]                                       (?,1)
          6.  n1(A,B,C,D,E)        -> c2(m5(A,B,0,D,E),m2(A,B,0,D,E))   [A >= 0]                                                                                 (2,1)
          8.  n2(A,B,C,D,E)        -> n3(A,B,C,F,G)                     [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A]                                   (?,1)
          9.  n3(A,B,C,D,E)        -> m6(A,B,C,D,E)                     True                                                                                     (?,1)
          10. n3(A,B,C,D,E)        -> n0(A,D,B,E,E)                     True                                                                                     (?,1)
          13. n40(A,B,C,D,E)       -> m2(A,B,C,D,E)                     True                                                                                     (?,1)
          14. n41(A,B,C,D,E)       -> m0(A,D,B,D,E)                     True                                                                                     (?,1)
          15. n4(A,B,C,D,E)        -> c2(n40(A,C,F,G,E),n41(A,C,F,G,E)) [A >= 2 + G && 1 + C >= G && G >= 1 + C && F >= G && G >= F && A >= 2 + B && 2 + B >= A] (?,1)
          16. m3(A,B,C,D,E)        -> n4(A,B,C,D,E)                     True                                                                                     (?,1)
          17. selectOrd(A,B,C,D,E) -> n1(A,B,C,D,E)                     [A >= 0 && A >= 0]                                                                       (1,2)
          18. m0(A,B,C,D,E)        -> n2(A,B,C,F,E)                     [A >= 1 + B && B >= 1 + C && A >= 1 + F && 1 + F >= A]                                   (?,2)
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n3,5)
          ;(n4,5)
          ;(n40,5)
          ;(n41,5)
          ;(selectOrd,5)}
        Flow Graph:
          [2->{16},3->{5},4->{5},5->{18},6->{2},8->{9,10},9->{3},10->{4},13->{2},14->{18},15->{13,14},16->{15}
          ,17->{6},18->{8}]
        Sizebounds:
          (< 2,0,A>, A) (< 2,0,B>, 2 + A) (< 2,0,C>,     ?) (< 2,0,D>,     ?) (< 2,0,E>, E) 
          (< 3,0,A>, A) (< 3,0,B>,     A) (< 3,0,C>, 1 + A) (< 3,0,D>,     ?) (< 3,0,E>, ?) 
          (< 4,0,A>, A) (< 4,0,B>,     1) (< 4,0,C>, 1 + A) (< 4,0,D>,     ?) (< 4,0,E>, ?) 
          (< 5,0,A>, A) (< 5,0,B>,     1) (< 5,0,C>, 1 + A) (< 5,0,D>,     ?) (< 5,0,E>, ?) 
          (< 6,0,A>, A) (< 6,0,B>,     B) (< 6,0,C>,     0) (< 6,0,D>,     D) (< 6,0,E>, E) 
          (< 6,1,A>, A) (< 6,1,B>,     B) (< 6,1,C>,     0) (< 6,1,D>,     D) (< 6,1,E>, E) 
          (< 8,0,A>, A) (< 8,0,B>, 1 + A) (< 8,0,C>,     A) (< 8,0,D>,     ?) (< 8,0,E>, ?) 
          (< 9,0,A>, A) (< 9,0,B>, 1 + A) (< 9,0,C>,     A) (< 9,0,D>,     ?) (< 9,0,E>, ?) 
          (<10,0,A>, A) (<10,0,B>,     ?) (<10,0,C>, 1 + A) (<10,0,D>,     ?) (<10,0,E>, ?) 
          (<13,0,A>, A) (<13,0,B>,     ?) (<13,0,C>,     ?) (<13,0,D>,     ?) (<13,0,E>, E) 
          (<14,0,A>, A) (<14,0,B>,     ?) (<14,0,C>,     ?) (<14,0,D>,     ?) (<14,0,E>, E) 
          (<15,0,A>, A) (<15,0,B>,     ?) (<15,0,C>,     ?) (<15,0,D>,     ?) (<15,0,E>, E) 
          (<15,1,A>, A) (<15,1,B>,     ?) (<15,1,C>,     ?) (<15,1,D>,     ?) (<15,1,E>, E) 
          (<16,0,A>, A) (<16,0,B>, 2 + A) (<16,0,C>,     ?) (<16,0,D>,     ?) (<16,0,E>, E) 
          (<17,0,A>, A) (<17,0,B>,     B) (<17,0,C>,     C) (<17,0,D>,     D) (<17,0,E>, E) 
          (<18,0,A>, A) (<18,0,B>,     A) (<18,0,C>,     ?) (<18,0,D>, 1 + A) (<18,0,E>, ?) 
    + Applied Processor:
        ChainProcessor False [2,3,4,5,6,8,9,10,13,14,15,16,17,18]
    + Details:
        We chained rule 2 to obtain the rules [19] .
* Step 11: UnreachableRules WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          3.  m6(A,B,C,D,E)        -> m7(A,B,C,D,E)                     [B >= 1 + C && A >= 2 + B && D >= E]                                                     (?,1)
          4.  n0(A,B,C,D,E)        -> m7(A,C,C,D,E)                     [D >= 1 + B && A >= 2 + C]                                                               (?,1)
          5.  m7(A,B,C,D,E)        -> m0(A,F,C,D,E)                     [B >= C && A >= 2 + B && 1 + B >= F && F >= 1 + B]                                       (?,1)
          6.  n1(A,B,C,D,E)        -> c2(m5(A,B,0,D,E),m2(A,B,0,D,E))   [A >= 0]                                                                                 (2,1)
          8.  n2(A,B,C,D,E)        -> n3(A,B,C,F,G)                     [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A]                                   (?,1)
          9.  n3(A,B,C,D,E)        -> m6(A,B,C,D,E)                     True                                                                                     (?,1)
          10. n3(A,B,C,D,E)        -> n0(A,D,B,E,E)                     True                                                                                     (?,1)
          13. n40(A,B,C,D,E)       -> m2(A,B,C,D,E)                     True                                                                                     (?,1)
          14. n41(A,B,C,D,E)       -> m0(A,D,B,D,E)                     True                                                                                     (?,1)
          15. n4(A,B,C,D,E)        -> c2(n40(A,C,F,G,E),n41(A,C,F,G,E)) [A >= 2 + G && 1 + C >= G && G >= 1 + C && F >= G && G >= F && A >= 2 + B && 2 + B >= A] (?,1)
          16. m3(A,B,C,D,E)        -> n4(A,B,C,D,E)                     True                                                                                     (?,1)
          17. selectOrd(A,B,C,D,E) -> n1(A,B,C,D,E)                     [A >= 0 && A >= 0]                                                                       (1,2)
          18. m0(A,B,C,D,E)        -> n2(A,B,C,F,E)                     [A >= 1 + B && B >= 1 + C && A >= 1 + F && 1 + F >= A]                                   (?,2)
          19. m2(A,B,C,D,E)        -> n4(A,F,C,D,E)                     [A >= 2 + F && 2 + F >= A]                                                               (?,2)
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n3,5)
          ;(n4,5)
          ;(n40,5)
          ;(n41,5)
          ;(selectOrd,5)}
        Flow Graph:
          [3->{5},4->{5},5->{18},6->{19},8->{9,10},9->{3},10->{4},13->{19},14->{18},15->{13,14},16->{15},17->{6}
          ,18->{8},19->{15}]
        Sizebounds:
          (< 3,0,A>, A) (< 3,0,B>,     A) (< 3,0,C>, 1 + A) (< 3,0,D>,     ?) (< 3,0,E>, ?) 
          (< 4,0,A>, A) (< 4,0,B>,     1) (< 4,0,C>, 1 + A) (< 4,0,D>,     ?) (< 4,0,E>, ?) 
          (< 5,0,A>, A) (< 5,0,B>,     1) (< 5,0,C>, 1 + A) (< 5,0,D>,     ?) (< 5,0,E>, ?) 
          (< 6,0,A>, A) (< 6,0,B>,     B) (< 6,0,C>,     0) (< 6,0,D>,     D) (< 6,0,E>, E) 
          (< 6,1,A>, A) (< 6,1,B>,     B) (< 6,1,C>,     0) (< 6,1,D>,     D) (< 6,1,E>, E) 
          (< 8,0,A>, A) (< 8,0,B>, 1 + A) (< 8,0,C>,     A) (< 8,0,D>,     ?) (< 8,0,E>, ?) 
          (< 9,0,A>, A) (< 9,0,B>, 1 + A) (< 9,0,C>,     A) (< 9,0,D>,     ?) (< 9,0,E>, ?) 
          (<10,0,A>, A) (<10,0,B>,     ?) (<10,0,C>, 1 + A) (<10,0,D>,     ?) (<10,0,E>, ?) 
          (<13,0,A>, A) (<13,0,B>,     ?) (<13,0,C>,     ?) (<13,0,D>,     ?) (<13,0,E>, E) 
          (<14,0,A>, A) (<14,0,B>,     ?) (<14,0,C>,     ?) (<14,0,D>,     ?) (<14,0,E>, E) 
          (<15,0,A>, A) (<15,0,B>,     ?) (<15,0,C>,     ?) (<15,0,D>,     ?) (<15,0,E>, E) 
          (<15,1,A>, A) (<15,1,B>,     ?) (<15,1,C>,     ?) (<15,1,D>,     ?) (<15,1,E>, E) 
          (<16,0,A>, A) (<16,0,B>, 2 + A) (<16,0,C>,     ?) (<16,0,D>,     ?) (<16,0,E>, E) 
          (<17,0,A>, A) (<17,0,B>,     B) (<17,0,C>,     C) (<17,0,D>,     D) (<17,0,E>, E) 
          (<18,0,A>, A) (<18,0,B>,     A) (<18,0,C>,     ?) (<18,0,D>, 1 + A) (<18,0,E>, ?) 
          (<19,0,A>, A) (<19,0,B>, 2 + A) (<19,0,C>,     ?) (<19,0,D>,     ?) (<19,0,E>, E) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [16]
* Step 12: ChainProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          3.  m6(A,B,C,D,E)        -> m7(A,B,C,D,E)                     [B >= 1 + C && A >= 2 + B && D >= E]                                                     (?,1)
          4.  n0(A,B,C,D,E)        -> m7(A,C,C,D,E)                     [D >= 1 + B && A >= 2 + C]                                                               (?,1)
          5.  m7(A,B,C,D,E)        -> m0(A,F,C,D,E)                     [B >= C && A >= 2 + B && 1 + B >= F && F >= 1 + B]                                       (?,1)
          6.  n1(A,B,C,D,E)        -> c2(m5(A,B,0,D,E),m2(A,B,0,D,E))   [A >= 0]                                                                                 (2,1)
          8.  n2(A,B,C,D,E)        -> n3(A,B,C,F,G)                     [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A]                                   (?,1)
          9.  n3(A,B,C,D,E)        -> m6(A,B,C,D,E)                     True                                                                                     (?,1)
          10. n3(A,B,C,D,E)        -> n0(A,D,B,E,E)                     True                                                                                     (?,1)
          13. n40(A,B,C,D,E)       -> m2(A,B,C,D,E)                     True                                                                                     (?,1)
          14. n41(A,B,C,D,E)       -> m0(A,D,B,D,E)                     True                                                                                     (?,1)
          15. n4(A,B,C,D,E)        -> c2(n40(A,C,F,G,E),n41(A,C,F,G,E)) [A >= 2 + G && 1 + C >= G && G >= 1 + C && F >= G && G >= F && A >= 2 + B && 2 + B >= A] (?,1)
          17. selectOrd(A,B,C,D,E) -> n1(A,B,C,D,E)                     [A >= 0 && A >= 0]                                                                       (1,2)
          18. m0(A,B,C,D,E)        -> n2(A,B,C,F,E)                     [A >= 1 + B && B >= 1 + C && A >= 1 + F && 1 + F >= A]                                   (?,2)
          19. m2(A,B,C,D,E)        -> n4(A,F,C,D,E)                     [A >= 2 + F && 2 + F >= A]                                                               (?,2)
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n3,5)
          ;(n4,5)
          ;(n40,5)
          ;(n41,5)
          ;(selectOrd,5)}
        Flow Graph:
          [3->{5},4->{5},5->{18},6->{19},8->{9,10},9->{3},10->{4},13->{19},14->{18},15->{13,14},17->{6},18->{8}
          ,19->{15}]
        Sizebounds:
          (< 3,0,A>, A) (< 3,0,B>,     A) (< 3,0,C>, 1 + A) (< 3,0,D>,     ?) (< 3,0,E>, ?) 
          (< 4,0,A>, A) (< 4,0,B>,     1) (< 4,0,C>, 1 + A) (< 4,0,D>,     ?) (< 4,0,E>, ?) 
          (< 5,0,A>, A) (< 5,0,B>,     1) (< 5,0,C>, 1 + A) (< 5,0,D>,     ?) (< 5,0,E>, ?) 
          (< 6,0,A>, A) (< 6,0,B>,     B) (< 6,0,C>,     0) (< 6,0,D>,     D) (< 6,0,E>, E) 
          (< 6,1,A>, A) (< 6,1,B>,     B) (< 6,1,C>,     0) (< 6,1,D>,     D) (< 6,1,E>, E) 
          (< 8,0,A>, A) (< 8,0,B>, 1 + A) (< 8,0,C>,     A) (< 8,0,D>,     ?) (< 8,0,E>, ?) 
          (< 9,0,A>, A) (< 9,0,B>, 1 + A) (< 9,0,C>,     A) (< 9,0,D>,     ?) (< 9,0,E>, ?) 
          (<10,0,A>, A) (<10,0,B>,     ?) (<10,0,C>, 1 + A) (<10,0,D>,     ?) (<10,0,E>, ?) 
          (<13,0,A>, A) (<13,0,B>,     ?) (<13,0,C>,     ?) (<13,0,D>,     ?) (<13,0,E>, E) 
          (<14,0,A>, A) (<14,0,B>,     ?) (<14,0,C>,     ?) (<14,0,D>,     ?) (<14,0,E>, E) 
          (<15,0,A>, A) (<15,0,B>,     ?) (<15,0,C>,     ?) (<15,0,D>,     ?) (<15,0,E>, E) 
          (<15,1,A>, A) (<15,1,B>,     ?) (<15,1,C>,     ?) (<15,1,D>,     ?) (<15,1,E>, E) 
          (<17,0,A>, A) (<17,0,B>,     B) (<17,0,C>,     C) (<17,0,D>,     D) (<17,0,E>, E) 
          (<18,0,A>, A) (<18,0,B>,     A) (<18,0,C>,     ?) (<18,0,D>, 1 + A) (<18,0,E>, ?) 
          (<19,0,A>, A) (<19,0,B>, 2 + A) (<19,0,C>,     ?) (<19,0,D>,     ?) (<19,0,E>, E) 
    + Applied Processor:
        ChainProcessor False [3,4,5,6,8,9,10,13,14,15,17,18,19]
    + Details:
        We chained rule 3 to obtain the rules [20] .
* Step 13: ChainProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          4.  n0(A,B,C,D,E)        -> m7(A,C,C,D,E)                     [D >= 1 + B && A >= 2 + C]                                                                 (?,1)
          5.  m7(A,B,C,D,E)        -> m0(A,F,C,D,E)                     [B >= C && A >= 2 + B && 1 + B >= F && F >= 1 + B]                                         (?,1)
          6.  n1(A,B,C,D,E)        -> c2(m5(A,B,0,D,E),m2(A,B,0,D,E))   [A >= 0]                                                                                   (2,1)
          8.  n2(A,B,C,D,E)        -> n3(A,B,C,F,G)                     [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A]                                     (?,1)
          9.  n3(A,B,C,D,E)        -> m6(A,B,C,D,E)                     True                                                                                       (?,1)
          10. n3(A,B,C,D,E)        -> n0(A,D,B,E,E)                     True                                                                                       (?,1)
          13. n40(A,B,C,D,E)       -> m2(A,B,C,D,E)                     True                                                                                       (?,1)
          14. n41(A,B,C,D,E)       -> m0(A,D,B,D,E)                     True                                                                                       (?,1)
          15. n4(A,B,C,D,E)        -> c2(n40(A,C,F,G,E),n41(A,C,F,G,E)) [A >= 2 + G && 1 + C >= G && G >= 1 + C && F >= G && G >= F && A >= 2 + B && 2 + B >= A]   (?,1)
          17. selectOrd(A,B,C,D,E) -> n1(A,B,C,D,E)                     [A >= 0 && A >= 0]                                                                         (1,2)
          18. m0(A,B,C,D,E)        -> n2(A,B,C,F,E)                     [A >= 1 + B && B >= 1 + C && A >= 1 + F && 1 + F >= A]                                     (?,2)
          19. m2(A,B,C,D,E)        -> n4(A,F,C,D,E)                     [A >= 2 + F && 2 + F >= A]                                                                 (?,2)
          20. m6(A,B,C,D,E)        -> m0(A,F$,C,D,E)                    [B >= 1 + C && A >= 2 + B && D >= E && B >= C && A >= 2 + B && 1 + B >= F$ && F$ >= 1 + B] (?,2)
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n3,5)
          ;(n4,5)
          ;(n40,5)
          ;(n41,5)
          ;(selectOrd,5)}
        Flow Graph:
          [4->{5},5->{18},6->{19},8->{9,10},9->{20},10->{4},13->{19},14->{18},15->{13,14},17->{6},18->{8},19->{15}
          ,20->{18}]
        Sizebounds:
          (< 4,0,A>, A) (< 4,0,B>,     1) (< 4,0,C>, 1 + A) (< 4,0,D>,     ?) (< 4,0,E>, ?) 
          (< 5,0,A>, A) (< 5,0,B>,     1) (< 5,0,C>, 1 + A) (< 5,0,D>,     ?) (< 5,0,E>, ?) 
          (< 6,0,A>, A) (< 6,0,B>,     B) (< 6,0,C>,     0) (< 6,0,D>,     D) (< 6,0,E>, E) 
          (< 6,1,A>, A) (< 6,1,B>,     B) (< 6,1,C>,     0) (< 6,1,D>,     D) (< 6,1,E>, E) 
          (< 8,0,A>, A) (< 8,0,B>, 1 + A) (< 8,0,C>,     A) (< 8,0,D>,     ?) (< 8,0,E>, ?) 
          (< 9,0,A>, A) (< 9,0,B>, 1 + A) (< 9,0,C>,     A) (< 9,0,D>,     ?) (< 9,0,E>, ?) 
          (<10,0,A>, A) (<10,0,B>,     ?) (<10,0,C>, 1 + A) (<10,0,D>,     ?) (<10,0,E>, ?) 
          (<13,0,A>, A) (<13,0,B>,     ?) (<13,0,C>,     ?) (<13,0,D>,     ?) (<13,0,E>, E) 
          (<14,0,A>, A) (<14,0,B>,     ?) (<14,0,C>,     ?) (<14,0,D>,     ?) (<14,0,E>, E) 
          (<15,0,A>, A) (<15,0,B>,     ?) (<15,0,C>,     ?) (<15,0,D>,     ?) (<15,0,E>, E) 
          (<15,1,A>, A) (<15,1,B>,     ?) (<15,1,C>,     ?) (<15,1,D>,     ?) (<15,1,E>, E) 
          (<17,0,A>, A) (<17,0,B>,     B) (<17,0,C>,     C) (<17,0,D>,     D) (<17,0,E>, E) 
          (<18,0,A>, A) (<18,0,B>,     A) (<18,0,C>,     ?) (<18,0,D>, 1 + A) (<18,0,E>, ?) 
          (<19,0,A>, A) (<19,0,B>, 2 + A) (<19,0,C>,     ?) (<19,0,D>,     ?) (<19,0,E>, E) 
          (<20,0,A>, A) (<20,0,B>,     1) (<20,0,C>, 1 + A) (<20,0,D>,     ?) (<20,0,E>, ?) 
    + Applied Processor:
        ChainProcessor False [4,5,6,8,9,10,13,14,15,17,18,19,20]
    + Details:
        We chained rule 4 to obtain the rules [21] .
* Step 14: UnreachableRules WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          5.  m7(A,B,C,D,E)        -> m0(A,F,C,D,E)                     [B >= C && A >= 2 + B && 1 + B >= F && F >= 1 + B]                                         (?,1)
          6.  n1(A,B,C,D,E)        -> c2(m5(A,B,0,D,E),m2(A,B,0,D,E))   [A >= 0]                                                                                   (2,1)
          8.  n2(A,B,C,D,E)        -> n3(A,B,C,F,G)                     [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A]                                     (?,1)
          9.  n3(A,B,C,D,E)        -> m6(A,B,C,D,E)                     True                                                                                       (?,1)
          10. n3(A,B,C,D,E)        -> n0(A,D,B,E,E)                     True                                                                                       (?,1)
          13. n40(A,B,C,D,E)       -> m2(A,B,C,D,E)                     True                                                                                       (?,1)
          14. n41(A,B,C,D,E)       -> m0(A,D,B,D,E)                     True                                                                                       (?,1)
          15. n4(A,B,C,D,E)        -> c2(n40(A,C,F,G,E),n41(A,C,F,G,E)) [A >= 2 + G && 1 + C >= G && G >= 1 + C && F >= G && G >= F && A >= 2 + B && 2 + B >= A]   (?,1)
          17. selectOrd(A,B,C,D,E) -> n1(A,B,C,D,E)                     [A >= 0 && A >= 0]                                                                         (1,2)
          18. m0(A,B,C,D,E)        -> n2(A,B,C,F,E)                     [A >= 1 + B && B >= 1 + C && A >= 1 + F && 1 + F >= A]                                     (?,2)
          19. m2(A,B,C,D,E)        -> n4(A,F,C,D,E)                     [A >= 2 + F && 2 + F >= A]                                                                 (?,2)
          20. m6(A,B,C,D,E)        -> m0(A,F$,C,D,E)                    [B >= 1 + C && A >= 2 + B && D >= E && B >= C && A >= 2 + B && 1 + B >= F$ && F$ >= 1 + B] (?,2)
          21. n0(A,B,C,D,E)        -> m0(A,F$,C,D,E)                    [D >= 1 + B && A >= 2 + C && C >= C && A >= 2 + C && 1 + C >= F$ && F$ >= 1 + C]           (?,2)
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n3,5)
          ;(n4,5)
          ;(n40,5)
          ;(n41,5)
          ;(selectOrd,5)}
        Flow Graph:
          [5->{18},6->{19},8->{9,10},9->{20},10->{21},13->{19},14->{18},15->{13,14},17->{6},18->{8},19->{15}
          ,20->{18},21->{18}]
        Sizebounds:
          (< 5,0,A>, A) (< 5,0,B>,     1) (< 5,0,C>, 1 + A) (< 5,0,D>,     ?) (< 5,0,E>, ?) 
          (< 6,0,A>, A) (< 6,0,B>,     B) (< 6,0,C>,     0) (< 6,0,D>,     D) (< 6,0,E>, E) 
          (< 6,1,A>, A) (< 6,1,B>,     B) (< 6,1,C>,     0) (< 6,1,D>,     D) (< 6,1,E>, E) 
          (< 8,0,A>, A) (< 8,0,B>, 1 + A) (< 8,0,C>,     A) (< 8,0,D>,     ?) (< 8,0,E>, ?) 
          (< 9,0,A>, A) (< 9,0,B>, 1 + A) (< 9,0,C>,     A) (< 9,0,D>,     ?) (< 9,0,E>, ?) 
          (<10,0,A>, A) (<10,0,B>,     ?) (<10,0,C>, 1 + A) (<10,0,D>,     ?) (<10,0,E>, ?) 
          (<13,0,A>, A) (<13,0,B>,     ?) (<13,0,C>,     ?) (<13,0,D>,     ?) (<13,0,E>, E) 
          (<14,0,A>, A) (<14,0,B>,     ?) (<14,0,C>,     ?) (<14,0,D>,     ?) (<14,0,E>, E) 
          (<15,0,A>, A) (<15,0,B>,     ?) (<15,0,C>,     ?) (<15,0,D>,     ?) (<15,0,E>, E) 
          (<15,1,A>, A) (<15,1,B>,     ?) (<15,1,C>,     ?) (<15,1,D>,     ?) (<15,1,E>, E) 
          (<17,0,A>, A) (<17,0,B>,     B) (<17,0,C>,     C) (<17,0,D>,     D) (<17,0,E>, E) 
          (<18,0,A>, A) (<18,0,B>,     A) (<18,0,C>,     ?) (<18,0,D>, 1 + A) (<18,0,E>, ?) 
          (<19,0,A>, A) (<19,0,B>, 2 + A) (<19,0,C>,     ?) (<19,0,D>,     ?) (<19,0,E>, E) 
          (<20,0,A>, A) (<20,0,B>,     1) (<20,0,C>, 1 + A) (<20,0,D>,     ?) (<20,0,E>, ?) 
          (<21,0,A>, A) (<21,0,B>,     1) (<21,0,C>, 1 + A) (<21,0,D>,     ?) (<21,0,E>, ?) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [5]
* Step 15: ChainProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          6.  n1(A,B,C,D,E)        -> c2(m5(A,B,0,D,E),m2(A,B,0,D,E))   [A >= 0]                                                                                   (2,1)
          8.  n2(A,B,C,D,E)        -> n3(A,B,C,F,G)                     [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A]                                     (?,1)
          9.  n3(A,B,C,D,E)        -> m6(A,B,C,D,E)                     True                                                                                       (?,1)
          10. n3(A,B,C,D,E)        -> n0(A,D,B,E,E)                     True                                                                                       (?,1)
          13. n40(A,B,C,D,E)       -> m2(A,B,C,D,E)                     True                                                                                       (?,1)
          14. n41(A,B,C,D,E)       -> m0(A,D,B,D,E)                     True                                                                                       (?,1)
          15. n4(A,B,C,D,E)        -> c2(n40(A,C,F,G,E),n41(A,C,F,G,E)) [A >= 2 + G && 1 + C >= G && G >= 1 + C && F >= G && G >= F && A >= 2 + B && 2 + B >= A]   (?,1)
          17. selectOrd(A,B,C,D,E) -> n1(A,B,C,D,E)                     [A >= 0 && A >= 0]                                                                         (1,2)
          18. m0(A,B,C,D,E)        -> n2(A,B,C,F,E)                     [A >= 1 + B && B >= 1 + C && A >= 1 + F && 1 + F >= A]                                     (?,2)
          19. m2(A,B,C,D,E)        -> n4(A,F,C,D,E)                     [A >= 2 + F && 2 + F >= A]                                                                 (?,2)
          20. m6(A,B,C,D,E)        -> m0(A,F$,C,D,E)                    [B >= 1 + C && A >= 2 + B && D >= E && B >= C && A >= 2 + B && 1 + B >= F$ && F$ >= 1 + B] (?,2)
          21. n0(A,B,C,D,E)        -> m0(A,F$,C,D,E)                    [D >= 1 + B && A >= 2 + C && C >= C && A >= 2 + C && 1 + C >= F$ && F$ >= 1 + C]           (?,2)
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n3,5)
          ;(n4,5)
          ;(n40,5)
          ;(n41,5)
          ;(selectOrd,5)}
        Flow Graph:
          [6->{19},8->{9,10},9->{20},10->{21},13->{19},14->{18},15->{13,14},17->{6},18->{8},19->{15},20->{18}
          ,21->{18}]
        Sizebounds:
          (< 6,0,A>, A) (< 6,0,B>,     B) (< 6,0,C>,     0) (< 6,0,D>,     D) (< 6,0,E>, E) 
          (< 6,1,A>, A) (< 6,1,B>,     B) (< 6,1,C>,     0) (< 6,1,D>,     D) (< 6,1,E>, E) 
          (< 8,0,A>, A) (< 8,0,B>, 1 + A) (< 8,0,C>,     A) (< 8,0,D>,     ?) (< 8,0,E>, ?) 
          (< 9,0,A>, A) (< 9,0,B>, 1 + A) (< 9,0,C>,     A) (< 9,0,D>,     ?) (< 9,0,E>, ?) 
          (<10,0,A>, A) (<10,0,B>,     ?) (<10,0,C>, 1 + A) (<10,0,D>,     ?) (<10,0,E>, ?) 
          (<13,0,A>, A) (<13,0,B>,     ?) (<13,0,C>,     ?) (<13,0,D>,     ?) (<13,0,E>, E) 
          (<14,0,A>, A) (<14,0,B>,     ?) (<14,0,C>,     ?) (<14,0,D>,     ?) (<14,0,E>, E) 
          (<15,0,A>, A) (<15,0,B>,     ?) (<15,0,C>,     ?) (<15,0,D>,     ?) (<15,0,E>, E) 
          (<15,1,A>, A) (<15,1,B>,     ?) (<15,1,C>,     ?) (<15,1,D>,     ?) (<15,1,E>, E) 
          (<17,0,A>, A) (<17,0,B>,     B) (<17,0,C>,     C) (<17,0,D>,     D) (<17,0,E>, E) 
          (<18,0,A>, A) (<18,0,B>,     A) (<18,0,C>,     ?) (<18,0,D>, 1 + A) (<18,0,E>, ?) 
          (<19,0,A>, A) (<19,0,B>, 2 + A) (<19,0,C>,     ?) (<19,0,D>,     ?) (<19,0,E>, E) 
          (<20,0,A>, A) (<20,0,B>,     1) (<20,0,C>, 1 + A) (<20,0,D>,     ?) (<20,0,E>, ?) 
          (<21,0,A>, A) (<21,0,B>,     1) (<21,0,C>, 1 + A) (<21,0,D>,     ?) (<21,0,E>, ?) 
    + Applied Processor:
        ChainProcessor False [6,8,9,10,13,14,15,17,18,19,20,21]
    + Details:
        We chained rule 6 to obtain the rules [22] .
* Step 16: ChainProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          8.  n2(A,B,C,D,E)        -> n3(A,B,C,F,G)                     [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A]                                     (?,1)
          9.  n3(A,B,C,D,E)        -> m6(A,B,C,D,E)                     True                                                                                       (?,1)
          10. n3(A,B,C,D,E)        -> n0(A,D,B,E,E)                     True                                                                                       (?,1)
          13. n40(A,B,C,D,E)       -> m2(A,B,C,D,E)                     True                                                                                       (?,1)
          14. n41(A,B,C,D,E)       -> m0(A,D,B,D,E)                     True                                                                                       (?,1)
          15. n4(A,B,C,D,E)        -> c2(n40(A,C,F,G,E),n41(A,C,F,G,E)) [A >= 2 + G && 1 + C >= G && G >= 1 + C && F >= G && G >= F && A >= 2 + B && 2 + B >= A]   (?,1)
          17. selectOrd(A,B,C,D,E) -> n1(A,B,C,D,E)                     [A >= 0 && A >= 0]                                                                         (1,2)
          18. m0(A,B,C,D,E)        -> n2(A,B,C,F,E)                     [A >= 1 + B && B >= 1 + C && A >= 1 + F && 1 + F >= A]                                     (?,2)
          19. m2(A,B,C,D,E)        -> n4(A,F,C,D,E)                     [A >= 2 + F && 2 + F >= A]                                                                 (?,2)
          20. m6(A,B,C,D,E)        -> m0(A,F$,C,D,E)                    [B >= 1 + C && A >= 2 + B && D >= E && B >= C && A >= 2 + B && 1 + B >= F$ && F$ >= 1 + B] (?,2)
          21. n0(A,B,C,D,E)        -> m0(A,F$,C,D,E)                    [D >= 1 + B && A >= 2 + C && C >= C && A >= 2 + C && 1 + C >= F$ && F$ >= 1 + C]           (?,2)
          22. n1(A,B,C,D,E)        -> c2(m5(A,B,0,D,E),n4(A,F$,0,D,E))  [A >= 0 && A >= 2 + F$ && 2 + F$ >= A]                                                     (2,3)
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n3,5)
          ;(n4,5)
          ;(n40,5)
          ;(n41,5)
          ;(selectOrd,5)}
        Flow Graph:
          [8->{9,10},9->{20},10->{21},13->{19},14->{18},15->{13,14},17->{22},18->{8},19->{15},20->{18},21->{18}
          ,22->{15}]
        Sizebounds:
          (< 8,0,A>, A) (< 8,0,B>, 1 + A) (< 8,0,C>,     A) (< 8,0,D>,     ?) (< 8,0,E>, ?) 
          (< 9,0,A>, A) (< 9,0,B>, 1 + A) (< 9,0,C>,     A) (< 9,0,D>,     ?) (< 9,0,E>, ?) 
          (<10,0,A>, A) (<10,0,B>,     ?) (<10,0,C>, 1 + A) (<10,0,D>,     ?) (<10,0,E>, ?) 
          (<13,0,A>, A) (<13,0,B>,     ?) (<13,0,C>,     ?) (<13,0,D>,     ?) (<13,0,E>, E) 
          (<14,0,A>, A) (<14,0,B>,     ?) (<14,0,C>,     ?) (<14,0,D>,     ?) (<14,0,E>, E) 
          (<15,0,A>, A) (<15,0,B>,     ?) (<15,0,C>,     ?) (<15,0,D>,     ?) (<15,0,E>, E) 
          (<15,1,A>, A) (<15,1,B>,     ?) (<15,1,C>,     ?) (<15,1,D>,     ?) (<15,1,E>, E) 
          (<17,0,A>, A) (<17,0,B>,     B) (<17,0,C>,     C) (<17,0,D>,     D) (<17,0,E>, E) 
          (<18,0,A>, A) (<18,0,B>,     A) (<18,0,C>,     ?) (<18,0,D>, 1 + A) (<18,0,E>, ?) 
          (<19,0,A>, A) (<19,0,B>, 2 + A) (<19,0,C>,     ?) (<19,0,D>,     ?) (<19,0,E>, E) 
          (<20,0,A>, A) (<20,0,B>,     1) (<20,0,C>, 1 + A) (<20,0,D>,     ?) (<20,0,E>, ?) 
          (<21,0,A>, A) (<21,0,B>,     1) (<21,0,C>, 1 + A) (<21,0,D>,     ?) (<21,0,E>, ?) 
          (<22,0,A>, A) (<22,0,B>, 2 + A) (<22,0,C>,     ?) (<22,0,D>,     ?) (<22,0,E>, E) 
    + Applied Processor:
        ChainProcessor False [8,9,10,13,14,15,17,18,19,20,21,22]
    + Details:
        We chained rule 8 to obtain the rules [23,24] .
* Step 17: UnreachableRules WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          9.  n3(A,B,C,D,E)        -> m6(A,B,C,D,E)                     True                                                                                       (?,1)
          10. n3(A,B,C,D,E)        -> n0(A,D,B,E,E)                     True                                                                                       (?,1)
          13. n40(A,B,C,D,E)       -> m2(A,B,C,D,E)                     True                                                                                       (?,1)
          14. n41(A,B,C,D,E)       -> m0(A,D,B,D,E)                     True                                                                                       (?,1)
          15. n4(A,B,C,D,E)        -> c2(n40(A,C,F,G,E),n41(A,C,F,G,E)) [A >= 2 + G && 1 + C >= G && G >= 1 + C && F >= G && G >= F && A >= 2 + B && 2 + B >= A]   (?,1)
          17. selectOrd(A,B,C,D,E) -> n1(A,B,C,D,E)                     [A >= 0 && A >= 0]                                                                         (1,2)
          18. m0(A,B,C,D,E)        -> n2(A,B,C,F,E)                     [A >= 1 + B && B >= 1 + C && A >= 1 + F && 1 + F >= A]                                     (?,2)
          19. m2(A,B,C,D,E)        -> n4(A,F,C,D,E)                     [A >= 2 + F && 2 + F >= A]                                                                 (?,2)
          20. m6(A,B,C,D,E)        -> m0(A,F$,C,D,E)                    [B >= 1 + C && A >= 2 + B && D >= E && B >= C && A >= 2 + B && 1 + B >= F$ && F$ >= 1 + B] (?,2)
          21. n0(A,B,C,D,E)        -> m0(A,F$,C,D,E)                    [D >= 1 + B && A >= 2 + C && C >= C && A >= 2 + C && 1 + C >= F$ && F$ >= 1 + C]           (?,2)
          22. n1(A,B,C,D,E)        -> c2(m5(A,B,0,D,E),n4(A,F$,0,D,E))  [A >= 0 && A >= 2 + F$ && 2 + F$ >= A]                                                     (2,3)
          23. n2(A,B,C,D,E)        -> m6(A,B,C,F,G)                     [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A]                                     (?,2)
          24. n2(A,B,C,D,E)        -> n0(A,F,B,G,G)                     [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A]                                     (?,2)
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n3,5)
          ;(n4,5)
          ;(n40,5)
          ;(n41,5)
          ;(selectOrd,5)}
        Flow Graph:
          [9->{20},10->{21},13->{19},14->{18},15->{13,14},17->{22},18->{23,24},19->{15},20->{18},21->{18},22->{15}
          ,23->{20},24->{21}]
        Sizebounds:
          (< 9,0,A>, A) (< 9,0,B>, 1 + A) (< 9,0,C>,     A) (< 9,0,D>,     ?) (< 9,0,E>, ?) 
          (<10,0,A>, A) (<10,0,B>,     ?) (<10,0,C>, 1 + A) (<10,0,D>,     ?) (<10,0,E>, ?) 
          (<13,0,A>, A) (<13,0,B>,     ?) (<13,0,C>,     ?) (<13,0,D>,     ?) (<13,0,E>, E) 
          (<14,0,A>, A) (<14,0,B>,     ?) (<14,0,C>,     ?) (<14,0,D>,     ?) (<14,0,E>, E) 
          (<15,0,A>, A) (<15,0,B>,     ?) (<15,0,C>,     ?) (<15,0,D>,     ?) (<15,0,E>, E) 
          (<15,1,A>, A) (<15,1,B>,     ?) (<15,1,C>,     ?) (<15,1,D>,     ?) (<15,1,E>, E) 
          (<17,0,A>, A) (<17,0,B>,     B) (<17,0,C>,     C) (<17,0,D>,     D) (<17,0,E>, E) 
          (<18,0,A>, A) (<18,0,B>,     A) (<18,0,C>,     ?) (<18,0,D>, 1 + A) (<18,0,E>, ?) 
          (<19,0,A>, A) (<19,0,B>, 2 + A) (<19,0,C>,     ?) (<19,0,D>,     ?) (<19,0,E>, E) 
          (<20,0,A>, A) (<20,0,B>,     1) (<20,0,C>, 1 + A) (<20,0,D>,     ?) (<20,0,E>, ?) 
          (<21,0,A>, A) (<21,0,B>,     1) (<21,0,C>, 1 + A) (<21,0,D>,     ?) (<21,0,E>, ?) 
          (<22,0,A>, A) (<22,0,B>, 2 + A) (<22,0,C>,     ?) (<22,0,D>,     ?) (<22,0,E>, E) 
          (<23,0,A>, A) (<23,0,B>, 1 + A) (<23,0,C>,     A) (<23,0,D>,     ?) (<23,0,E>, ?) 
          (<24,0,A>, A) (<24,0,B>,     ?) (<24,0,C>, 1 + A) (<24,0,D>,     ?) (<24,0,E>, ?) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [9,10]
* Step 18: ChainProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          13. n40(A,B,C,D,E)       -> m2(A,B,C,D,E)                     True                                                                                       (?,1)
          14. n41(A,B,C,D,E)       -> m0(A,D,B,D,E)                     True                                                                                       (?,1)
          15. n4(A,B,C,D,E)        -> c2(n40(A,C,F,G,E),n41(A,C,F,G,E)) [A >= 2 + G && 1 + C >= G && G >= 1 + C && F >= G && G >= F && A >= 2 + B && 2 + B >= A]   (?,1)
          17. selectOrd(A,B,C,D,E) -> n1(A,B,C,D,E)                     [A >= 0 && A >= 0]                                                                         (1,2)
          18. m0(A,B,C,D,E)        -> n2(A,B,C,F,E)                     [A >= 1 + B && B >= 1 + C && A >= 1 + F && 1 + F >= A]                                     (?,2)
          19. m2(A,B,C,D,E)        -> n4(A,F,C,D,E)                     [A >= 2 + F && 2 + F >= A]                                                                 (?,2)
          20. m6(A,B,C,D,E)        -> m0(A,F$,C,D,E)                    [B >= 1 + C && A >= 2 + B && D >= E && B >= C && A >= 2 + B && 1 + B >= F$ && F$ >= 1 + B] (?,2)
          21. n0(A,B,C,D,E)        -> m0(A,F$,C,D,E)                    [D >= 1 + B && A >= 2 + C && C >= C && A >= 2 + C && 1 + C >= F$ && F$ >= 1 + C]           (?,2)
          22. n1(A,B,C,D,E)        -> c2(m5(A,B,0,D,E),n4(A,F$,0,D,E))  [A >= 0 && A >= 2 + F$ && 2 + F$ >= A]                                                     (2,3)
          23. n2(A,B,C,D,E)        -> m6(A,B,C,F,G)                     [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A]                                     (?,2)
          24. n2(A,B,C,D,E)        -> n0(A,F,B,G,G)                     [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A]                                     (?,2)
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n3,5)
          ;(n4,5)
          ;(n40,5)
          ;(n41,5)
          ;(selectOrd,5)}
        Flow Graph:
          [13->{19},14->{18},15->{13,14},17->{22},18->{23,24},19->{15},20->{18},21->{18},22->{15},23->{20},24->{21}]
        Sizebounds:
          (<13,0,A>, A) (<13,0,B>,     ?) (<13,0,C>,     ?) (<13,0,D>,     ?) (<13,0,E>, E) 
          (<14,0,A>, A) (<14,0,B>,     ?) (<14,0,C>,     ?) (<14,0,D>,     ?) (<14,0,E>, E) 
          (<15,0,A>, A) (<15,0,B>,     ?) (<15,0,C>,     ?) (<15,0,D>,     ?) (<15,0,E>, E) 
          (<15,1,A>, A) (<15,1,B>,     ?) (<15,1,C>,     ?) (<15,1,D>,     ?) (<15,1,E>, E) 
          (<17,0,A>, A) (<17,0,B>,     B) (<17,0,C>,     C) (<17,0,D>,     D) (<17,0,E>, E) 
          (<18,0,A>, A) (<18,0,B>,     A) (<18,0,C>,     ?) (<18,0,D>, 1 + A) (<18,0,E>, ?) 
          (<19,0,A>, A) (<19,0,B>, 2 + A) (<19,0,C>,     ?) (<19,0,D>,     ?) (<19,0,E>, E) 
          (<20,0,A>, A) (<20,0,B>,     1) (<20,0,C>, 1 + A) (<20,0,D>,     ?) (<20,0,E>, ?) 
          (<21,0,A>, A) (<21,0,B>,     1) (<21,0,C>, 1 + A) (<21,0,D>,     ?) (<21,0,E>, ?) 
          (<22,0,A>, A) (<22,0,B>, 2 + A) (<22,0,C>,     ?) (<22,0,D>,     ?) (<22,0,E>, E) 
          (<23,0,A>, A) (<23,0,B>, 1 + A) (<23,0,C>,     A) (<23,0,D>,     ?) (<23,0,E>, ?) 
          (<24,0,A>, A) (<24,0,B>,     ?) (<24,0,C>, 1 + A) (<24,0,D>,     ?) (<24,0,E>, ?) 
    + Applied Processor:
        ChainProcessor False [13,14,15,17,18,19,20,21,22,23,24]
    + Details:
        We chained rule 13 to obtain the rules [25] .
* Step 19: UnreachableRules WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          14. n41(A,B,C,D,E)       -> m0(A,D,B,D,E)                     True                                                                                       (?,1)
          15. n4(A,B,C,D,E)        -> c2(n40(A,C,F,G,E),n41(A,C,F,G,E)) [A >= 2 + G && 1 + C >= G && G >= 1 + C && F >= G && G >= F && A >= 2 + B && 2 + B >= A]   (?,1)
          17. selectOrd(A,B,C,D,E) -> n1(A,B,C,D,E)                     [A >= 0 && A >= 0]                                                                         (1,2)
          18. m0(A,B,C,D,E)        -> n2(A,B,C,F,E)                     [A >= 1 + B && B >= 1 + C && A >= 1 + F && 1 + F >= A]                                     (?,2)
          19. m2(A,B,C,D,E)        -> n4(A,F,C,D,E)                     [A >= 2 + F && 2 + F >= A]                                                                 (?,2)
          20. m6(A,B,C,D,E)        -> m0(A,F$,C,D,E)                    [B >= 1 + C && A >= 2 + B && D >= E && B >= C && A >= 2 + B && 1 + B >= F$ && F$ >= 1 + B] (?,2)
          21. n0(A,B,C,D,E)        -> m0(A,F$,C,D,E)                    [D >= 1 + B && A >= 2 + C && C >= C && A >= 2 + C && 1 + C >= F$ && F$ >= 1 + C]           (?,2)
          22. n1(A,B,C,D,E)        -> c2(m5(A,B,0,D,E),n4(A,F$,0,D,E))  [A >= 0 && A >= 2 + F$ && 2 + F$ >= A]                                                     (2,3)
          23. n2(A,B,C,D,E)        -> m6(A,B,C,F,G)                     [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A]                                     (?,2)
          24. n2(A,B,C,D,E)        -> n0(A,F,B,G,G)                     [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A]                                     (?,2)
          25. n40(A,B,C,D,E)       -> n4(A,F$,C,D,E)                    [A >= 2 + F$ && 2 + F$ >= A]                                                               (?,3)
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n3,5)
          ;(n4,5)
          ;(n40,5)
          ;(n41,5)
          ;(selectOrd,5)}
        Flow Graph:
          [14->{18},15->{14,25},17->{22},18->{23,24},19->{15},20->{18},21->{18},22->{15},23->{20},24->{21},25->{15}]
        Sizebounds:
          (<14,0,A>, A) (<14,0,B>,     ?) (<14,0,C>,     ?) (<14,0,D>,     ?) (<14,0,E>, E) 
          (<15,0,A>, A) (<15,0,B>,     ?) (<15,0,C>,     ?) (<15,0,D>,     ?) (<15,0,E>, E) 
          (<15,1,A>, A) (<15,1,B>,     ?) (<15,1,C>,     ?) (<15,1,D>,     ?) (<15,1,E>, E) 
          (<17,0,A>, A) (<17,0,B>,     B) (<17,0,C>,     C) (<17,0,D>,     D) (<17,0,E>, E) 
          (<18,0,A>, A) (<18,0,B>,     A) (<18,0,C>,     ?) (<18,0,D>, 1 + A) (<18,0,E>, ?) 
          (<19,0,A>, A) (<19,0,B>, 2 + A) (<19,0,C>,     ?) (<19,0,D>,     ?) (<19,0,E>, E) 
          (<20,0,A>, A) (<20,0,B>,     1) (<20,0,C>, 1 + A) (<20,0,D>,     ?) (<20,0,E>, ?) 
          (<21,0,A>, A) (<21,0,B>,     1) (<21,0,C>, 1 + A) (<21,0,D>,     ?) (<21,0,E>, ?) 
          (<22,0,A>, A) (<22,0,B>, 2 + A) (<22,0,C>,     ?) (<22,0,D>,     ?) (<22,0,E>, E) 
          (<23,0,A>, A) (<23,0,B>, 1 + A) (<23,0,C>,     A) (<23,0,D>,     ?) (<23,0,E>, ?) 
          (<24,0,A>, A) (<24,0,B>,     ?) (<24,0,C>, 1 + A) (<24,0,D>,     ?) (<24,0,E>, ?) 
          (<25,0,A>, A) (<25,0,B>, 2 + A) (<25,0,C>,     ?) (<25,0,D>,     ?) (<25,0,E>, E) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [19]
* Step 20: ChainProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          14. n41(A,B,C,D,E)       -> m0(A,D,B,D,E)                     True                                                                                       (?,1)
          15. n4(A,B,C,D,E)        -> c2(n40(A,C,F,G,E),n41(A,C,F,G,E)) [A >= 2 + G && 1 + C >= G && G >= 1 + C && F >= G && G >= F && A >= 2 + B && 2 + B >= A]   (?,1)
          17. selectOrd(A,B,C,D,E) -> n1(A,B,C,D,E)                     [A >= 0 && A >= 0]                                                                         (1,2)
          18. m0(A,B,C,D,E)        -> n2(A,B,C,F,E)                     [A >= 1 + B && B >= 1 + C && A >= 1 + F && 1 + F >= A]                                     (?,2)
          20. m6(A,B,C,D,E)        -> m0(A,F$,C,D,E)                    [B >= 1 + C && A >= 2 + B && D >= E && B >= C && A >= 2 + B && 1 + B >= F$ && F$ >= 1 + B] (?,2)
          21. n0(A,B,C,D,E)        -> m0(A,F$,C,D,E)                    [D >= 1 + B && A >= 2 + C && C >= C && A >= 2 + C && 1 + C >= F$ && F$ >= 1 + C]           (?,2)
          22. n1(A,B,C,D,E)        -> c2(m5(A,B,0,D,E),n4(A,F$,0,D,E))  [A >= 0 && A >= 2 + F$ && 2 + F$ >= A]                                                     (2,3)
          23. n2(A,B,C,D,E)        -> m6(A,B,C,F,G)                     [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A]                                     (?,2)
          24. n2(A,B,C,D,E)        -> n0(A,F,B,G,G)                     [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A]                                     (?,2)
          25. n40(A,B,C,D,E)       -> n4(A,F$,C,D,E)                    [A >= 2 + F$ && 2 + F$ >= A]                                                               (?,3)
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n3,5)
          ;(n4,5)
          ;(n40,5)
          ;(n41,5)
          ;(selectOrd,5)}
        Flow Graph:
          [14->{18},15->{14,25},17->{22},18->{23,24},20->{18},21->{18},22->{15},23->{20},24->{21},25->{15}]
        Sizebounds:
          (<14,0,A>, A) (<14,0,B>,     ?) (<14,0,C>,     ?) (<14,0,D>,     ?) (<14,0,E>, E) 
          (<15,0,A>, A) (<15,0,B>,     ?) (<15,0,C>,     ?) (<15,0,D>,     ?) (<15,0,E>, E) 
          (<15,1,A>, A) (<15,1,B>,     ?) (<15,1,C>,     ?) (<15,1,D>,     ?) (<15,1,E>, E) 
          (<17,0,A>, A) (<17,0,B>,     B) (<17,0,C>,     C) (<17,0,D>,     D) (<17,0,E>, E) 
          (<18,0,A>, A) (<18,0,B>,     A) (<18,0,C>,     ?) (<18,0,D>, 1 + A) (<18,0,E>, ?) 
          (<20,0,A>, A) (<20,0,B>,     1) (<20,0,C>, 1 + A) (<20,0,D>,     ?) (<20,0,E>, ?) 
          (<21,0,A>, A) (<21,0,B>,     1) (<21,0,C>, 1 + A) (<21,0,D>,     ?) (<21,0,E>, ?) 
          (<22,0,A>, A) (<22,0,B>, 2 + A) (<22,0,C>,     ?) (<22,0,D>,     ?) (<22,0,E>, E) 
          (<23,0,A>, A) (<23,0,B>, 1 + A) (<23,0,C>,     A) (<23,0,D>,     ?) (<23,0,E>, ?) 
          (<24,0,A>, A) (<24,0,B>,     ?) (<24,0,C>, 1 + A) (<24,0,D>,     ?) (<24,0,E>, ?) 
          (<25,0,A>, A) (<25,0,B>, 2 + A) (<25,0,C>,     ?) (<25,0,D>,     ?) (<25,0,E>, E) 
    + Applied Processor:
        ChainProcessor False [14,15,17,18,20,21,22,23,24,25]
    + Details:
        We chained rule 14 to obtain the rules [26] .
* Step 21: ChainProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          15. n4(A,B,C,D,E)        -> c2(n40(A,C,F,G,E),n41(A,C,F,G,E)) [A >= 2 + G && 1 + C >= G && G >= 1 + C && F >= G && G >= F && A >= 2 + B && 2 + B >= A]   (?,1)
          17. selectOrd(A,B,C,D,E) -> n1(A,B,C,D,E)                     [A >= 0 && A >= 0]                                                                         (1,2)
          18. m0(A,B,C,D,E)        -> n2(A,B,C,F,E)                     [A >= 1 + B && B >= 1 + C && A >= 1 + F && 1 + F >= A]                                     (?,2)
          20. m6(A,B,C,D,E)        -> m0(A,F$,C,D,E)                    [B >= 1 + C && A >= 2 + B && D >= E && B >= C && A >= 2 + B && 1 + B >= F$ && F$ >= 1 + B] (?,2)
          21. n0(A,B,C,D,E)        -> m0(A,F$,C,D,E)                    [D >= 1 + B && A >= 2 + C && C >= C && A >= 2 + C && 1 + C >= F$ && F$ >= 1 + C]           (?,2)
          22. n1(A,B,C,D,E)        -> c2(m5(A,B,0,D,E),n4(A,F$,0,D,E))  [A >= 0 && A >= 2 + F$ && 2 + F$ >= A]                                                     (2,3)
          23. n2(A,B,C,D,E)        -> m6(A,B,C,F,G)                     [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A]                                     (?,2)
          24. n2(A,B,C,D,E)        -> n0(A,F,B,G,G)                     [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A]                                     (?,2)
          25. n40(A,B,C,D,E)       -> n4(A,F$,C,D,E)                    [A >= 2 + F$ && 2 + F$ >= A]                                                               (?,3)
          26. n41(A,B,C,D,E)       -> n2(A,D,B,F$,E)                    [A >= 1 + D && D >= 1 + B && A >= 1 + F$ && 1 + F$ >= A]                                   (?,3)
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n3,5)
          ;(n4,5)
          ;(n40,5)
          ;(n41,5)
          ;(selectOrd,5)}
        Flow Graph:
          [15->{25,26},17->{22},18->{23,24},20->{18},21->{18},22->{15},23->{20},24->{21},25->{15},26->{23,24}]
        Sizebounds:
          (<15,0,A>, A) (<15,0,B>,     ?) (<15,0,C>,     ?) (<15,0,D>,     ?) (<15,0,E>, E) 
          (<15,1,A>, A) (<15,1,B>,     ?) (<15,1,C>,     ?) (<15,1,D>,     ?) (<15,1,E>, E) 
          (<17,0,A>, A) (<17,0,B>,     B) (<17,0,C>,     C) (<17,0,D>,     D) (<17,0,E>, E) 
          (<18,0,A>, A) (<18,0,B>,     A) (<18,0,C>,     ?) (<18,0,D>, 1 + A) (<18,0,E>, ?) 
          (<20,0,A>, A) (<20,0,B>,     1) (<20,0,C>, 1 + A) (<20,0,D>,     ?) (<20,0,E>, ?) 
          (<21,0,A>, A) (<21,0,B>,     1) (<21,0,C>, 1 + A) (<21,0,D>,     ?) (<21,0,E>, ?) 
          (<22,0,A>, A) (<22,0,B>, 2 + A) (<22,0,C>,     ?) (<22,0,D>,     ?) (<22,0,E>, E) 
          (<23,0,A>, A) (<23,0,B>, 1 + A) (<23,0,C>,     A) (<23,0,D>,     ?) (<23,0,E>, ?) 
          (<24,0,A>, A) (<24,0,B>,     ?) (<24,0,C>, 1 + A) (<24,0,D>,     ?) (<24,0,E>, ?) 
          (<25,0,A>, A) (<25,0,B>, 2 + A) (<25,0,C>,     ?) (<25,0,D>,     ?) (<25,0,E>, E) 
          (<26,0,A>, A) (<26,0,B>,     A) (<26,0,C>,     ?) (<26,0,D>, 1 + A) (<26,0,E>, ?) 
    + Applied Processor:
        ChainProcessor False [15,17,18,20,21,22,23,24,25,26]
    + Details:
        We chained rule 15 to obtain the rules [27] .
* Step 22: UnreachableRules WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          17. selectOrd(A,B,C,D,E) -> n1(A,B,C,D,E)                      [A >= 0 && A >= 0]                                                                         (1,2)
          18. m0(A,B,C,D,E)        -> n2(A,B,C,F,E)                      [A >= 1 + B && B >= 1 + C && A >= 1 + F && 1 + F >= A]                                     (?,2)
          20. m6(A,B,C,D,E)        -> m0(A,F$,C,D,E)                     [B >= 1 + C && A >= 2 + B && D >= E && B >= C && A >= 2 + B && 1 + B >= F$ && F$ >= 1 + B] (?,2)
          21. n0(A,B,C,D,E)        -> m0(A,F$,C,D,E)                     [D >= 1 + B && A >= 2 + C && C >= C && A >= 2 + C && 1 + C >= F$ && F$ >= 1 + C]           (?,2)
          22. n1(A,B,C,D,E)        -> c2(m5(A,B,0,D,E),n4(A,F$,0,D,E))   [A >= 0 && A >= 2 + F$ && 2 + F$ >= A]                                                     (2,3)
          23. n2(A,B,C,D,E)        -> m6(A,B,C,F,G)                      [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A]                                     (?,2)
          24. n2(A,B,C,D,E)        -> n0(A,F,B,G,G)                      [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A]                                     (?,2)
          25. n40(A,B,C,D,E)       -> n4(A,F$,C,D,E)                     [A >= 2 + F$ && 2 + F$ >= A]                                                               (?,3)
          26. n41(A,B,C,D,E)       -> n2(A,D,B,F$,E)                     [A >= 1 + D && D >= 1 + B && A >= 1 + F$ && 1 + F$ >= A]                                   (?,3)
          27. n4(A,B,C,D,E)        -> c2(n4(A,F$$,F,G,E),n41(A,C,F,G,E)) [A >= 2 + G                                                                                (?,4)
                                                                          && 1 + C >= G                                                                                  
                                                                          && G >= 1 + C                                                                                  
                                                                          && F >= G                                                                                      
                                                                          && G >= F                                                                                      
                                                                          && A >= 2 + B                                                                                  
                                                                          && 2 + B >= A                                                                                  
                                                                          && A >= 2 + F$$                                                                                
                                                                          && 2 + F$$ >= A]                                                                               
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n3,5)
          ;(n4,5)
          ;(n40,5)
          ;(n41,5)
          ;(selectOrd,5)}
        Flow Graph:
          [17->{22},18->{23,24},20->{18},21->{18},22->{27},23->{20},24->{21},25->{27},26->{23,24},27->{26,27}]
        Sizebounds:
          (<17,0,A>, A) (<17,0,B>,     B) (<17,0,C>,     C) (<17,0,D>,     D) (<17,0,E>, E) 
          (<18,0,A>, A) (<18,0,B>,     A) (<18,0,C>,     ?) (<18,0,D>, 1 + A) (<18,0,E>, ?) 
          (<20,0,A>, A) (<20,0,B>,     1) (<20,0,C>, 1 + A) (<20,0,D>,     ?) (<20,0,E>, ?) 
          (<21,0,A>, A) (<21,0,B>,     1) (<21,0,C>, 1 + A) (<21,0,D>,     ?) (<21,0,E>, ?) 
          (<22,0,A>, A) (<22,0,B>, 2 + A) (<22,0,C>,     ?) (<22,0,D>,     ?) (<22,0,E>, E) 
          (<23,0,A>, A) (<23,0,B>, 1 + A) (<23,0,C>,     A) (<23,0,D>,     ?) (<23,0,E>, ?) 
          (<24,0,A>, A) (<24,0,B>,     ?) (<24,0,C>, 1 + A) (<24,0,D>,     ?) (<24,0,E>, ?) 
          (<25,0,A>, A) (<25,0,B>, 2 + A) (<25,0,C>,     ?) (<25,0,D>,     ?) (<25,0,E>, E) 
          (<26,0,A>, A) (<26,0,B>,     A) (<26,0,C>,     ?) (<26,0,D>, 1 + A) (<26,0,E>, ?) 
          (<27,0,A>, A) (<27,0,B>, 2 + A) (<27,0,C>,     ?) (<27,0,D>,     ?) (<27,0,E>, E) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [25]
* Step 23: ChainProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          17. selectOrd(A,B,C,D,E) -> n1(A,B,C,D,E)                      [A >= 0 && A >= 0]                                                                         (1,2)
          18. m0(A,B,C,D,E)        -> n2(A,B,C,F,E)                      [A >= 1 + B && B >= 1 + C && A >= 1 + F && 1 + F >= A]                                     (?,2)
          20. m6(A,B,C,D,E)        -> m0(A,F$,C,D,E)                     [B >= 1 + C && A >= 2 + B && D >= E && B >= C && A >= 2 + B && 1 + B >= F$ && F$ >= 1 + B] (?,2)
          21. n0(A,B,C,D,E)        -> m0(A,F$,C,D,E)                     [D >= 1 + B && A >= 2 + C && C >= C && A >= 2 + C && 1 + C >= F$ && F$ >= 1 + C]           (?,2)
          22. n1(A,B,C,D,E)        -> c2(m5(A,B,0,D,E),n4(A,F$,0,D,E))   [A >= 0 && A >= 2 + F$ && 2 + F$ >= A]                                                     (2,3)
          23. n2(A,B,C,D,E)        -> m6(A,B,C,F,G)                      [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A]                                     (?,2)
          24. n2(A,B,C,D,E)        -> n0(A,F,B,G,G)                      [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A]                                     (?,2)
          26. n41(A,B,C,D,E)       -> n2(A,D,B,F$,E)                     [A >= 1 + D && D >= 1 + B && A >= 1 + F$ && 1 + F$ >= A]                                   (?,3)
          27. n4(A,B,C,D,E)        -> c2(n4(A,F$$,F,G,E),n41(A,C,F,G,E)) [A >= 2 + G                                                                                (?,4)
                                                                          && 1 + C >= G                                                                                  
                                                                          && G >= 1 + C                                                                                  
                                                                          && F >= G                                                                                      
                                                                          && G >= F                                                                                      
                                                                          && A >= 2 + B                                                                                  
                                                                          && 2 + B >= A                                                                                  
                                                                          && A >= 2 + F$$                                                                                
                                                                          && 2 + F$$ >= A]                                                                               
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n3,5)
          ;(n4,5)
          ;(n40,5)
          ;(n41,5)
          ;(selectOrd,5)}
        Flow Graph:
          [17->{22},18->{23,24},20->{18},21->{18},22->{27},23->{20},24->{21},26->{23,24},27->{26,27}]
        Sizebounds:
          (<17,0,A>, A) (<17,0,B>,     B) (<17,0,C>,     C) (<17,0,D>,     D) (<17,0,E>, E) 
          (<18,0,A>, A) (<18,0,B>,     A) (<18,0,C>,     ?) (<18,0,D>, 1 + A) (<18,0,E>, ?) 
          (<20,0,A>, A) (<20,0,B>,     1) (<20,0,C>, 1 + A) (<20,0,D>,     ?) (<20,0,E>, ?) 
          (<21,0,A>, A) (<21,0,B>,     1) (<21,0,C>, 1 + A) (<21,0,D>,     ?) (<21,0,E>, ?) 
          (<22,0,A>, A) (<22,0,B>, 2 + A) (<22,0,C>,     ?) (<22,0,D>,     ?) (<22,0,E>, E) 
          (<23,0,A>, A) (<23,0,B>, 1 + A) (<23,0,C>,     A) (<23,0,D>,     ?) (<23,0,E>, ?) 
          (<24,0,A>, A) (<24,0,B>,     ?) (<24,0,C>, 1 + A) (<24,0,D>,     ?) (<24,0,E>, ?) 
          (<26,0,A>, A) (<26,0,B>,     A) (<26,0,C>,     ?) (<26,0,D>, 1 + A) (<26,0,E>, ?) 
          (<27,0,A>, A) (<27,0,B>, 2 + A) (<27,0,C>,     ?) (<27,0,D>,     ?) (<27,0,E>, E) 
    + Applied Processor:
        ChainProcessor False [17,18,20,21,22,23,24,26,27]
    + Details:
        We chained rule 18 to obtain the rules [28,29] .
* Step 24: ChainProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          17. selectOrd(A,B,C,D,E) -> n1(A,B,C,D,E)                      [A >= 0 && A >= 0]                                                                         (1,2)
          20. m6(A,B,C,D,E)        -> m0(A,F$,C,D,E)                     [B >= 1 + C && A >= 2 + B && D >= E && B >= C && A >= 2 + B && 1 + B >= F$ && F$ >= 1 + B] (?,2)
          21. n0(A,B,C,D,E)        -> m0(A,F$,C,D,E)                     [D >= 1 + B && A >= 2 + C && C >= C && A >= 2 + C && 1 + C >= F$ && F$ >= 1 + C]           (?,2)
          22. n1(A,B,C,D,E)        -> c2(m5(A,B,0,D,E),n4(A,F$,0,D,E))   [A >= 0 && A >= 2 + F$ && 2 + F$ >= A]                                                     (2,3)
          23. n2(A,B,C,D,E)        -> m6(A,B,C,F,G)                      [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A]                                     (?,2)
          24. n2(A,B,C,D,E)        -> n0(A,F,B,G,G)                      [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A]                                     (?,2)
          26. n41(A,B,C,D,E)       -> n2(A,D,B,F$,E)                     [A >= 1 + D && D >= 1 + B && A >= 1 + F$ && 1 + F$ >= A]                                   (?,3)
          27. n4(A,B,C,D,E)        -> c2(n4(A,F$$,F,G,E),n41(A,C,F,G,E)) [A >= 2 + G                                                                                (?,4)
                                                                          && 1 + C >= G                                                                                  
                                                                          && G >= 1 + C                                                                                  
                                                                          && F >= G                                                                                      
                                                                          && G >= F                                                                                      
                                                                          && A >= 2 + B                                                                                  
                                                                          && 2 + B >= A                                                                                  
                                                                          && A >= 2 + F$$                                                                                
                                                                          && 2 + F$$ >= A]                                                                               
          28. m0(A,B,C,D,E)        -> m6(A,B,C,F$,G$)                    [A >= 1 + B                                                                                (?,4)
                                                                          && B >= 1 + C                                                                                  
                                                                          && A >= 1 + F                                                                                  
                                                                          && 1 + F >= A                                                                                  
                                                                          && B >= 1 + C                                                                                  
                                                                          && A >= 2 + B                                                                                  
                                                                          && A >= 1 + F                                                                                  
                                                                          && 1 + F >= A]                                                                                 
          29. m0(A,B,C,D,E)        -> n0(A,F$,B,G$,G$)                   [A >= 1 + B                                                                                (?,4)
                                                                          && B >= 1 + C                                                                                  
                                                                          && A >= 1 + F                                                                                  
                                                                          && 1 + F >= A                                                                                  
                                                                          && B >= 1 + C                                                                                  
                                                                          && A >= 2 + B                                                                                  
                                                                          && A >= 1 + F                                                                                  
                                                                          && 1 + F >= A]                                                                                 
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n3,5)
          ;(n4,5)
          ;(n40,5)
          ;(n41,5)
          ;(selectOrd,5)}
        Flow Graph:
          [17->{22},20->{28,29},21->{28,29},22->{27},23->{20},24->{21},26->{23,24},27->{26,27},28->{20},29->{21}]
        Sizebounds:
          (<17,0,A>, A) (<17,0,B>,     B) (<17,0,C>,     C) (<17,0,D>,     D) (<17,0,E>, E) 
          (<20,0,A>, A) (<20,0,B>,     1) (<20,0,C>, 1 + A) (<20,0,D>,     ?) (<20,0,E>, ?) 
          (<21,0,A>, A) (<21,0,B>,     1) (<21,0,C>, 1 + A) (<21,0,D>,     ?) (<21,0,E>, ?) 
          (<22,0,A>, A) (<22,0,B>, 2 + A) (<22,0,C>,     ?) (<22,0,D>,     ?) (<22,0,E>, E) 
          (<23,0,A>, A) (<23,0,B>, 1 + A) (<23,0,C>,     A) (<23,0,D>,     ?) (<23,0,E>, ?) 
          (<24,0,A>, A) (<24,0,B>,     ?) (<24,0,C>, 1 + A) (<24,0,D>,     ?) (<24,0,E>, ?) 
          (<26,0,A>, A) (<26,0,B>,     A) (<26,0,C>,     ?) (<26,0,D>, 1 + A) (<26,0,E>, ?) 
          (<27,0,A>, A) (<27,0,B>, 2 + A) (<27,0,C>,     ?) (<27,0,D>,     ?) (<27,0,E>, E) 
          (<28,0,A>, A) (<28,0,B>, 1 + A) (<28,0,C>,     A) (<28,0,D>,     ?) (<28,0,E>, ?) 
          (<29,0,A>, A) (<29,0,B>,     ?) (<29,0,C>, 1 + A) (<29,0,D>,     ?) (<29,0,E>, ?) 
    + Applied Processor:
        ChainProcessor False [17,20,21,22,23,24,26,27,28,29]
    + Details:
        We chained rule 20 to obtain the rules [30,31] .
* Step 25: ChainProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          17. selectOrd(A,B,C,D,E) -> n1(A,B,C,D,E)                      [A >= 0 && A >= 0]                                                               (1,2)
          21. n0(A,B,C,D,E)        -> m0(A,F$,C,D,E)                     [D >= 1 + B && A >= 2 + C && C >= C && A >= 2 + C && 1 + C >= F$ && F$ >= 1 + C] (?,2)
          22. n1(A,B,C,D,E)        -> c2(m5(A,B,0,D,E),n4(A,F$,0,D,E))   [A >= 0 && A >= 2 + F$ && 2 + F$ >= A]                                           (2,3)
          23. n2(A,B,C,D,E)        -> m6(A,B,C,F,G)                      [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A]                           (?,2)
          24. n2(A,B,C,D,E)        -> n0(A,F,B,G,G)                      [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A]                           (?,2)
          26. n41(A,B,C,D,E)       -> n2(A,D,B,F$,E)                     [A >= 1 + D && D >= 1 + B && A >= 1 + F$ && 1 + F$ >= A]                         (?,3)
          27. n4(A,B,C,D,E)        -> c2(n4(A,F$$,F,G,E),n41(A,C,F,G,E)) [A >= 2 + G                                                                      (?,4)
                                                                          && 1 + C >= G                                                                        
                                                                          && G >= 1 + C                                                                        
                                                                          && F >= G                                                                            
                                                                          && G >= F                                                                            
                                                                          && A >= 2 + B                                                                        
                                                                          && 2 + B >= A                                                                        
                                                                          && A >= 2 + F$$                                                                      
                                                                          && 2 + F$$ >= A]                                                                     
          28. m0(A,B,C,D,E)        -> m6(A,B,C,F$,G$)                    [A >= 1 + B                                                                      (?,4)
                                                                          && B >= 1 + C                                                                        
                                                                          && A >= 1 + F                                                                        
                                                                          && 1 + F >= A                                                                        
                                                                          && B >= 1 + C                                                                        
                                                                          && A >= 2 + B                                                                        
                                                                          && A >= 1 + F                                                                        
                                                                          && 1 + F >= A]                                                                       
          29. m0(A,B,C,D,E)        -> n0(A,F$,B,G$,G$)                   [A >= 1 + B                                                                      (?,4)
                                                                          && B >= 1 + C                                                                        
                                                                          && A >= 1 + F                                                                        
                                                                          && 1 + F >= A                                                                        
                                                                          && B >= 1 + C                                                                        
                                                                          && A >= 2 + B                                                                        
                                                                          && A >= 1 + F                                                                        
                                                                          && 1 + F >= A]                                                                       
          30. m6(A,B,C,D,E)        -> m6(A,F$,C,F$$$,G$$$)               [B >= 1 + C                                                                      (?,6)
                                                                          && A >= 2 + B                                                                        
                                                                          && D >= E                                                                            
                                                                          && B >= C                                                                            
                                                                          && A >= 2 + B                                                                        
                                                                          && 1 + B >= F$                                                                       
                                                                          && F$ >= 1 + B                                                                       
                                                                          && A >= 1 + F$                                                                       
                                                                          && F$ >= 1 + C                                                                       
                                                                          && A >= 1 + F$$                                                                      
                                                                          && 1 + F$$ >= A                                                                      
                                                                          && F$ >= 1 + C                                                                       
                                                                          && A >= 2 + F$                                                                       
                                                                          && A >= 1 + F$$                                                                      
                                                                          && 1 + F$$ >= A]                                                                     
          31. m6(A,B,C,D,E)        -> n0(A,F$$$,F$,G$$$,G$$$)            [B >= 1 + C                                                                      (?,6)
                                                                          && A >= 2 + B                                                                        
                                                                          && D >= E                                                                            
                                                                          && B >= C                                                                            
                                                                          && A >= 2 + B                                                                        
                                                                          && 1 + B >= F$                                                                       
                                                                          && F$ >= 1 + B                                                                       
                                                                          && A >= 1 + F$                                                                       
                                                                          && F$ >= 1 + C                                                                       
                                                                          && A >= 1 + F$$                                                                      
                                                                          && 1 + F$$ >= A                                                                      
                                                                          && F$ >= 1 + C                                                                       
                                                                          && A >= 2 + F$                                                                       
                                                                          && A >= 1 + F$$                                                                      
                                                                          && 1 + F$$ >= A]                                                                     
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n3,5)
          ;(n4,5)
          ;(n40,5)
          ;(n41,5)
          ;(selectOrd,5)}
        Flow Graph:
          [17->{22},21->{28,29},22->{27},23->{30,31},24->{21},26->{23,24},27->{26,27},28->{30,31},29->{21},30->{30
          ,31},31->{21}]
        Sizebounds:
          (<17,0,A>, A) (<17,0,B>,     B) (<17,0,C>,     C) (<17,0,D>,     D) (<17,0,E>, E) 
          (<21,0,A>, A) (<21,0,B>,     1) (<21,0,C>, 1 + A) (<21,0,D>,     ?) (<21,0,E>, ?) 
          (<22,0,A>, A) (<22,0,B>, 2 + A) (<22,0,C>,     ?) (<22,0,D>,     ?) (<22,0,E>, E) 
          (<23,0,A>, A) (<23,0,B>, 1 + A) (<23,0,C>,     A) (<23,0,D>,     ?) (<23,0,E>, ?) 
          (<24,0,A>, A) (<24,0,B>,     ?) (<24,0,C>, 1 + A) (<24,0,D>,     ?) (<24,0,E>, ?) 
          (<26,0,A>, A) (<26,0,B>,     A) (<26,0,C>,     ?) (<26,0,D>, 1 + A) (<26,0,E>, ?) 
          (<27,0,A>, A) (<27,0,B>, 2 + A) (<27,0,C>,     ?) (<27,0,D>,     ?) (<27,0,E>, E) 
          (<28,0,A>, A) (<28,0,B>, 1 + A) (<28,0,C>,     A) (<28,0,D>,     ?) (<28,0,E>, ?) 
          (<29,0,A>, A) (<29,0,B>,     ?) (<29,0,C>, 1 + A) (<29,0,D>,     ?) (<29,0,E>, ?) 
          (<30,0,A>, A) (<30,0,B>, 1 + A) (<30,0,C>,     A) (<30,0,D>,     ?) (<30,0,E>, ?) 
          (<31,0,A>, A) (<31,0,B>,     ?) (<31,0,C>, 1 + A) (<31,0,D>,     ?) (<31,0,E>, ?) 
    + Applied Processor:
        ChainProcessor False [17,21,22,23,24,26,27,28,29,30,31]
    + Details:
        We chained rule 21 to obtain the rules [32,33] .
* Step 26: UnreachableRules WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          17. selectOrd(A,B,C,D,E) -> n1(A,B,C,D,E)                      [A >= 0 && A >= 0]                                       (1,2)
          22. n1(A,B,C,D,E)        -> c2(m5(A,B,0,D,E),n4(A,F$,0,D,E))   [A >= 0 && A >= 2 + F$ && 2 + F$ >= A]                   (2,3)
          23. n2(A,B,C,D,E)        -> m6(A,B,C,F,G)                      [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A]   (?,2)
          24. n2(A,B,C,D,E)        -> n0(A,F,B,G,G)                      [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A]   (?,2)
          26. n41(A,B,C,D,E)       -> n2(A,D,B,F$,E)                     [A >= 1 + D && D >= 1 + B && A >= 1 + F$ && 1 + F$ >= A] (?,3)
          27. n4(A,B,C,D,E)        -> c2(n4(A,F$$,F,G,E),n41(A,C,F,G,E)) [A >= 2 + G                                              (?,4)
                                                                          && 1 + C >= G                                                
                                                                          && G >= 1 + C                                                
                                                                          && F >= G                                                    
                                                                          && G >= F                                                    
                                                                          && A >= 2 + B                                                
                                                                          && 2 + B >= A                                                
                                                                          && A >= 2 + F$$                                              
                                                                          && 2 + F$$ >= A]                                             
          28. m0(A,B,C,D,E)        -> m6(A,B,C,F$,G$)                    [A >= 1 + B                                              (?,4)
                                                                          && B >= 1 + C                                                
                                                                          && A >= 1 + F                                                
                                                                          && 1 + F >= A                                                
                                                                          && B >= 1 + C                                                
                                                                          && A >= 2 + B                                                
                                                                          && A >= 1 + F                                                
                                                                          && 1 + F >= A]                                               
          29. m0(A,B,C,D,E)        -> n0(A,F$,B,G$,G$)                   [A >= 1 + B                                              (?,4)
                                                                          && B >= 1 + C                                                
                                                                          && A >= 1 + F                                                
                                                                          && 1 + F >= A                                                
                                                                          && B >= 1 + C                                                
                                                                          && A >= 2 + B                                                
                                                                          && A >= 1 + F                                                
                                                                          && 1 + F >= A]                                               
          30. m6(A,B,C,D,E)        -> m6(A,F$,C,F$$$,G$$$)               [B >= 1 + C                                              (?,6)
                                                                          && A >= 2 + B                                                
                                                                          && D >= E                                                    
                                                                          && B >= C                                                    
                                                                          && A >= 2 + B                                                
                                                                          && 1 + B >= F$                                               
                                                                          && F$ >= 1 + B                                               
                                                                          && A >= 1 + F$                                               
                                                                          && F$ >= 1 + C                                               
                                                                          && A >= 1 + F$$                                              
                                                                          && 1 + F$$ >= A                                              
                                                                          && F$ >= 1 + C                                               
                                                                          && A >= 2 + F$                                               
                                                                          && A >= 1 + F$$                                              
                                                                          && 1 + F$$ >= A]                                             
          31. m6(A,B,C,D,E)        -> n0(A,F$$$,F$,G$$$,G$$$)            [B >= 1 + C                                              (?,6)
                                                                          && A >= 2 + B                                                
                                                                          && D >= E                                                    
                                                                          && B >= C                                                    
                                                                          && A >= 2 + B                                                
                                                                          && 1 + B >= F$                                               
                                                                          && F$ >= 1 + B                                               
                                                                          && A >= 1 + F$                                               
                                                                          && F$ >= 1 + C                                               
                                                                          && A >= 1 + F$$                                              
                                                                          && 1 + F$$ >= A                                              
                                                                          && F$ >= 1 + C                                               
                                                                          && A >= 2 + F$                                               
                                                                          && A >= 1 + F$$                                              
                                                                          && 1 + F$$ >= A]                                             
          32. n0(A,B,C,D,E)        -> m6(A,F$,C,F$$$,G$$$)               [D >= 1 + B                                              (?,6)
                                                                          && A >= 2 + C                                                
                                                                          && C >= C                                                    
                                                                          && A >= 2 + C                                                
                                                                          && 1 + C >= F$                                               
                                                                          && F$ >= 1 + C                                               
                                                                          && A >= 1 + F$                                               
                                                                          && F$ >= 1 + C                                               
                                                                          && A >= 1 + F$$                                              
                                                                          && 1 + F$$ >= A                                              
                                                                          && F$ >= 1 + C                                               
                                                                          && A >= 2 + F$                                               
                                                                          && A >= 1 + F$$                                              
                                                                          && 1 + F$$ >= A]                                             
          33. n0(A,B,C,D,E)        -> n0(A,F$$$,F$,G$$$,G$$$)            [D >= 1 + B                                              (?,6)
                                                                          && A >= 2 + C                                                
                                                                          && C >= C                                                    
                                                                          && A >= 2 + C                                                
                                                                          && 1 + C >= F$                                               
                                                                          && F$ >= 1 + C                                               
                                                                          && A >= 1 + F$                                               
                                                                          && F$ >= 1 + C                                               
                                                                          && A >= 1 + F$$                                              
                                                                          && 1 + F$$ >= A                                              
                                                                          && F$ >= 1 + C                                               
                                                                          && A >= 2 + F$                                               
                                                                          && A >= 1 + F$$                                              
                                                                          && 1 + F$$ >= A]                                             
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n3,5)
          ;(n4,5)
          ;(n40,5)
          ;(n41,5)
          ;(selectOrd,5)}
        Flow Graph:
          [17->{22},22->{27},23->{30,31},24->{32,33},26->{23,24},27->{26,27},28->{30,31},29->{32,33},30->{30,31}
          ,31->{32,33},32->{30,31},33->{32,33}]
        Sizebounds:
          (<17,0,A>, A) (<17,0,B>,     B) (<17,0,C>,     C) (<17,0,D>,     D) (<17,0,E>, E) 
          (<22,0,A>, A) (<22,0,B>, 2 + A) (<22,0,C>,     ?) (<22,0,D>,     ?) (<22,0,E>, E) 
          (<23,0,A>, A) (<23,0,B>, 1 + A) (<23,0,C>,     A) (<23,0,D>,     ?) (<23,0,E>, ?) 
          (<24,0,A>, A) (<24,0,B>,     ?) (<24,0,C>, 1 + A) (<24,0,D>,     ?) (<24,0,E>, ?) 
          (<26,0,A>, A) (<26,0,B>,     A) (<26,0,C>,     ?) (<26,0,D>, 1 + A) (<26,0,E>, ?) 
          (<27,0,A>, A) (<27,0,B>, 2 + A) (<27,0,C>,     ?) (<27,0,D>,     ?) (<27,0,E>, E) 
          (<28,0,A>, A) (<28,0,B>, 1 + A) (<28,0,C>,     A) (<28,0,D>,     ?) (<28,0,E>, ?) 
          (<29,0,A>, A) (<29,0,B>,     ?) (<29,0,C>, 1 + A) (<29,0,D>,     ?) (<29,0,E>, ?) 
          (<30,0,A>, A) (<30,0,B>, 1 + A) (<30,0,C>,     A) (<30,0,D>,     ?) (<30,0,E>, ?) 
          (<31,0,A>, A) (<31,0,B>,     ?) (<31,0,C>, 1 + A) (<31,0,D>,     ?) (<31,0,E>, ?) 
          (<32,0,A>, A) (<32,0,B>, 1 + A) (<32,0,C>,     A) (<32,0,D>,     ?) (<32,0,E>, ?) 
          (<33,0,A>, A) (<33,0,B>,     ?) (<33,0,C>, 1 + A) (<33,0,D>,     ?) (<33,0,E>, ?) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [28,29]
* Step 27: ChainProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          17. selectOrd(A,B,C,D,E) -> n1(A,B,C,D,E)                      [A >= 0 && A >= 0]                                       (1,2)
          22. n1(A,B,C,D,E)        -> c2(m5(A,B,0,D,E),n4(A,F$,0,D,E))   [A >= 0 && A >= 2 + F$ && 2 + F$ >= A]                   (2,3)
          23. n2(A,B,C,D,E)        -> m6(A,B,C,F,G)                      [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A]   (?,2)
          24. n2(A,B,C,D,E)        -> n0(A,F,B,G,G)                      [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A]   (?,2)
          26. n41(A,B,C,D,E)       -> n2(A,D,B,F$,E)                     [A >= 1 + D && D >= 1 + B && A >= 1 + F$ && 1 + F$ >= A] (?,3)
          27. n4(A,B,C,D,E)        -> c2(n4(A,F$$,F,G,E),n41(A,C,F,G,E)) [A >= 2 + G                                              (?,4)
                                                                          && 1 + C >= G                                                
                                                                          && G >= 1 + C                                                
                                                                          && F >= G                                                    
                                                                          && G >= F                                                    
                                                                          && A >= 2 + B                                                
                                                                          && 2 + B >= A                                                
                                                                          && A >= 2 + F$$                                              
                                                                          && 2 + F$$ >= A]                                             
          30. m6(A,B,C,D,E)        -> m6(A,F$,C,F$$$,G$$$)               [B >= 1 + C                                              (?,6)
                                                                          && A >= 2 + B                                                
                                                                          && D >= E                                                    
                                                                          && B >= C                                                    
                                                                          && A >= 2 + B                                                
                                                                          && 1 + B >= F$                                               
                                                                          && F$ >= 1 + B                                               
                                                                          && A >= 1 + F$                                               
                                                                          && F$ >= 1 + C                                               
                                                                          && A >= 1 + F$$                                              
                                                                          && 1 + F$$ >= A                                              
                                                                          && F$ >= 1 + C                                               
                                                                          && A >= 2 + F$                                               
                                                                          && A >= 1 + F$$                                              
                                                                          && 1 + F$$ >= A]                                             
          31. m6(A,B,C,D,E)        -> n0(A,F$$$,F$,G$$$,G$$$)            [B >= 1 + C                                              (?,6)
                                                                          && A >= 2 + B                                                
                                                                          && D >= E                                                    
                                                                          && B >= C                                                    
                                                                          && A >= 2 + B                                                
                                                                          && 1 + B >= F$                                               
                                                                          && F$ >= 1 + B                                               
                                                                          && A >= 1 + F$                                               
                                                                          && F$ >= 1 + C                                               
                                                                          && A >= 1 + F$$                                              
                                                                          && 1 + F$$ >= A                                              
                                                                          && F$ >= 1 + C                                               
                                                                          && A >= 2 + F$                                               
                                                                          && A >= 1 + F$$                                              
                                                                          && 1 + F$$ >= A]                                             
          32. n0(A,B,C,D,E)        -> m6(A,F$,C,F$$$,G$$$)               [D >= 1 + B                                              (?,6)
                                                                          && A >= 2 + C                                                
                                                                          && C >= C                                                    
                                                                          && A >= 2 + C                                                
                                                                          && 1 + C >= F$                                               
                                                                          && F$ >= 1 + C                                               
                                                                          && A >= 1 + F$                                               
                                                                          && F$ >= 1 + C                                               
                                                                          && A >= 1 + F$$                                              
                                                                          && 1 + F$$ >= A                                              
                                                                          && F$ >= 1 + C                                               
                                                                          && A >= 2 + F$                                               
                                                                          && A >= 1 + F$$                                              
                                                                          && 1 + F$$ >= A]                                             
          33. n0(A,B,C,D,E)        -> n0(A,F$$$,F$,G$$$,G$$$)            [D >= 1 + B                                              (?,6)
                                                                          && A >= 2 + C                                                
                                                                          && C >= C                                                    
                                                                          && A >= 2 + C                                                
                                                                          && 1 + C >= F$                                               
                                                                          && F$ >= 1 + C                                               
                                                                          && A >= 1 + F$                                               
                                                                          && F$ >= 1 + C                                               
                                                                          && A >= 1 + F$$                                              
                                                                          && 1 + F$$ >= A                                              
                                                                          && F$ >= 1 + C                                               
                                                                          && A >= 2 + F$                                               
                                                                          && A >= 1 + F$$                                              
                                                                          && 1 + F$$ >= A]                                             
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n3,5)
          ;(n4,5)
          ;(n40,5)
          ;(n41,5)
          ;(selectOrd,5)}
        Flow Graph:
          [17->{22},22->{27},23->{30,31},24->{32,33},26->{23,24},27->{26,27},30->{30,31},31->{32,33},32->{30,31}
          ,33->{32,33}]
        Sizebounds:
          (<17,0,A>, A) (<17,0,B>,     B) (<17,0,C>,     C) (<17,0,D>,     D) (<17,0,E>, E) 
          (<22,0,A>, A) (<22,0,B>, 2 + A) (<22,0,C>,     ?) (<22,0,D>,     ?) (<22,0,E>, E) 
          (<23,0,A>, A) (<23,0,B>, 1 + A) (<23,0,C>,     A) (<23,0,D>,     ?) (<23,0,E>, ?) 
          (<24,0,A>, A) (<24,0,B>,     ?) (<24,0,C>, 1 + A) (<24,0,D>,     ?) (<24,0,E>, ?) 
          (<26,0,A>, A) (<26,0,B>,     A) (<26,0,C>,     ?) (<26,0,D>, 1 + A) (<26,0,E>, ?) 
          (<27,0,A>, A) (<27,0,B>, 2 + A) (<27,0,C>,     ?) (<27,0,D>,     ?) (<27,0,E>, E) 
          (<30,0,A>, A) (<30,0,B>, 1 + A) (<30,0,C>,     A) (<30,0,D>,     ?) (<30,0,E>, ?) 
          (<31,0,A>, A) (<31,0,B>,     ?) (<31,0,C>, 1 + A) (<31,0,D>,     ?) (<31,0,E>, ?) 
          (<32,0,A>, A) (<32,0,B>, 1 + A) (<32,0,C>,     A) (<32,0,D>,     ?) (<32,0,E>, ?) 
          (<33,0,A>, A) (<33,0,B>,     ?) (<33,0,C>, 1 + A) (<33,0,D>,     ?) (<33,0,E>, ?) 
    + Applied Processor:
        ChainProcessor False [17,22,23,24,26,27,30,31,32,33]
    + Details:
        We chained rule 26 to obtain the rules [34,35] .
* Step 28: UnreachableRules WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          17. selectOrd(A,B,C,D,E) -> n1(A,B,C,D,E)                      [A >= 0 && A >= 0]                                     (1,2)
          22. n1(A,B,C,D,E)        -> c2(m5(A,B,0,D,E),n4(A,F$,0,D,E))   [A >= 0 && A >= 2 + F$ && 2 + F$ >= A]                 (2,3)
          23. n2(A,B,C,D,E)        -> m6(A,B,C,F,G)                      [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A] (?,2)
          24. n2(A,B,C,D,E)        -> n0(A,F,B,G,G)                      [B >= 1 + C && A >= 2 + B && A >= 1 + D && 1 + D >= A] (?,2)
          27. n4(A,B,C,D,E)        -> c2(n4(A,F$$,F,G,E),n41(A,C,F,G,E)) [A >= 2 + G                                            (?,4)
                                                                          && 1 + C >= G                                              
                                                                          && G >= 1 + C                                              
                                                                          && F >= G                                                  
                                                                          && G >= F                                                  
                                                                          && A >= 2 + B                                              
                                                                          && 2 + B >= A                                              
                                                                          && A >= 2 + F$$                                            
                                                                          && 2 + F$$ >= A]                                           
          30. m6(A,B,C,D,E)        -> m6(A,F$,C,F$$$,G$$$)               [B >= 1 + C                                            (?,6)
                                                                          && A >= 2 + B                                              
                                                                          && D >= E                                                  
                                                                          && B >= C                                                  
                                                                          && A >= 2 + B                                              
                                                                          && 1 + B >= F$                                             
                                                                          && F$ >= 1 + B                                             
                                                                          && A >= 1 + F$                                             
                                                                          && F$ >= 1 + C                                             
                                                                          && A >= 1 + F$$                                            
                                                                          && 1 + F$$ >= A                                            
                                                                          && F$ >= 1 + C                                             
                                                                          && A >= 2 + F$                                             
                                                                          && A >= 1 + F$$                                            
                                                                          && 1 + F$$ >= A]                                           
          31. m6(A,B,C,D,E)        -> n0(A,F$$$,F$,G$$$,G$$$)            [B >= 1 + C                                            (?,6)
                                                                          && A >= 2 + B                                              
                                                                          && D >= E                                                  
                                                                          && B >= C                                                  
                                                                          && A >= 2 + B                                              
                                                                          && 1 + B >= F$                                             
                                                                          && F$ >= 1 + B                                             
                                                                          && A >= 1 + F$                                             
                                                                          && F$ >= 1 + C                                             
                                                                          && A >= 1 + F$$                                            
                                                                          && 1 + F$$ >= A                                            
                                                                          && F$ >= 1 + C                                             
                                                                          && A >= 2 + F$                                             
                                                                          && A >= 1 + F$$                                            
                                                                          && 1 + F$$ >= A]                                           
          32. n0(A,B,C,D,E)        -> m6(A,F$,C,F$$$,G$$$)               [D >= 1 + B                                            (?,6)
                                                                          && A >= 2 + C                                              
                                                                          && C >= C                                                  
                                                                          && A >= 2 + C                                              
                                                                          && 1 + C >= F$                                             
                                                                          && F$ >= 1 + C                                             
                                                                          && A >= 1 + F$                                             
                                                                          && F$ >= 1 + C                                             
                                                                          && A >= 1 + F$$                                            
                                                                          && 1 + F$$ >= A                                            
                                                                          && F$ >= 1 + C                                             
                                                                          && A >= 2 + F$                                             
                                                                          && A >= 1 + F$$                                            
                                                                          && 1 + F$$ >= A]                                           
          33. n0(A,B,C,D,E)        -> n0(A,F$$$,F$,G$$$,G$$$)            [D >= 1 + B                                            (?,6)
                                                                          && A >= 2 + C                                              
                                                                          && C >= C                                                  
                                                                          && A >= 2 + C                                              
                                                                          && 1 + C >= F$                                             
                                                                          && F$ >= 1 + C                                             
                                                                          && A >= 1 + F$                                             
                                                                          && F$ >= 1 + C                                             
                                                                          && A >= 1 + F$$                                            
                                                                          && 1 + F$$ >= A                                            
                                                                          && F$ >= 1 + C                                             
                                                                          && A >= 2 + F$                                             
                                                                          && A >= 1 + F$$                                            
                                                                          && 1 + F$$ >= A]                                           
          34. n41(A,B,C,D,E)       -> m6(A,D,B,F$$,G$$)                  [A >= 1 + D                                            (?,5)
                                                                          && D >= 1 + B                                              
                                                                          && A >= 1 + F$                                             
                                                                          && 1 + F$ >= A                                             
                                                                          && D >= 1 + B                                              
                                                                          && A >= 2 + D                                              
                                                                          && A >= 1 + F$                                             
                                                                          && 1 + F$ >= A]                                            
          35. n41(A,B,C,D,E)       -> n0(A,F$$,D,G$$,G$$)                [A >= 1 + D                                            (?,5)
                                                                          && D >= 1 + B                                              
                                                                          && A >= 1 + F$                                             
                                                                          && 1 + F$ >= A                                             
                                                                          && D >= 1 + B                                              
                                                                          && A >= 2 + D                                              
                                                                          && A >= 1 + F$                                             
                                                                          && 1 + F$ >= A]                                            
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n3,5)
          ;(n4,5)
          ;(n40,5)
          ;(n41,5)
          ;(selectOrd,5)}
        Flow Graph:
          [17->{22},22->{27},23->{30,31},24->{32,33},27->{27,34,35},30->{30,31},31->{32,33},32->{30,31},33->{32,33}
          ,34->{30,31},35->{32,33}]
        Sizebounds:
          (<17,0,A>, A) (<17,0,B>,     B) (<17,0,C>,     C) (<17,0,D>, D) (<17,0,E>, E) 
          (<22,0,A>, A) (<22,0,B>, 2 + A) (<22,0,C>,     ?) (<22,0,D>, ?) (<22,0,E>, E) 
          (<23,0,A>, A) (<23,0,B>, 1 + A) (<23,0,C>,     A) (<23,0,D>, ?) (<23,0,E>, ?) 
          (<24,0,A>, A) (<24,0,B>,     ?) (<24,0,C>, 1 + A) (<24,0,D>, ?) (<24,0,E>, ?) 
          (<27,0,A>, A) (<27,0,B>, 2 + A) (<27,0,C>,     ?) (<27,0,D>, ?) (<27,0,E>, E) 
          (<30,0,A>, A) (<30,0,B>, 1 + A) (<30,0,C>,     A) (<30,0,D>, ?) (<30,0,E>, ?) 
          (<31,0,A>, A) (<31,0,B>,     ?) (<31,0,C>, 1 + A) (<31,0,D>, ?) (<31,0,E>, ?) 
          (<32,0,A>, A) (<32,0,B>, 1 + A) (<32,0,C>,     A) (<32,0,D>, ?) (<32,0,E>, ?) 
          (<33,0,A>, A) (<33,0,B>,     ?) (<33,0,C>, 1 + A) (<33,0,D>, ?) (<33,0,E>, ?) 
          (<34,0,A>, A) (<34,0,B>, 1 + A) (<34,0,C>,     A) (<34,0,D>, ?) (<34,0,E>, ?) 
          (<35,0,A>, A) (<35,0,B>,     ?) (<35,0,C>, 1 + A) (<35,0,D>, ?) (<35,0,E>, ?) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [23,24]
* Step 29: ChainProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          17. selectOrd(A,B,C,D,E) -> n1(A,B,C,D,E)                      [A >= 0 && A >= 0]                     (1,2)
          22. n1(A,B,C,D,E)        -> c2(m5(A,B,0,D,E),n4(A,F$,0,D,E))   [A >= 0 && A >= 2 + F$ && 2 + F$ >= A] (2,3)
          27. n4(A,B,C,D,E)        -> c2(n4(A,F$$,F,G,E),n41(A,C,F,G,E)) [A >= 2 + G                            (?,4)
                                                                          && 1 + C >= G                              
                                                                          && G >= 1 + C                              
                                                                          && F >= G                                  
                                                                          && G >= F                                  
                                                                          && A >= 2 + B                              
                                                                          && 2 + B >= A                              
                                                                          && A >= 2 + F$$                            
                                                                          && 2 + F$$ >= A]                           
          30. m6(A,B,C,D,E)        -> m6(A,F$,C,F$$$,G$$$)               [B >= 1 + C                            (?,6)
                                                                          && A >= 2 + B                              
                                                                          && D >= E                                  
                                                                          && B >= C                                  
                                                                          && A >= 2 + B                              
                                                                          && 1 + B >= F$                             
                                                                          && F$ >= 1 + B                             
                                                                          && A >= 1 + F$                             
                                                                          && F$ >= 1 + C                             
                                                                          && A >= 1 + F$$                            
                                                                          && 1 + F$$ >= A                            
                                                                          && F$ >= 1 + C                             
                                                                          && A >= 2 + F$                             
                                                                          && A >= 1 + F$$                            
                                                                          && 1 + F$$ >= A]                           
          31. m6(A,B,C,D,E)        -> n0(A,F$$$,F$,G$$$,G$$$)            [B >= 1 + C                            (?,6)
                                                                          && A >= 2 + B                              
                                                                          && D >= E                                  
                                                                          && B >= C                                  
                                                                          && A >= 2 + B                              
                                                                          && 1 + B >= F$                             
                                                                          && F$ >= 1 + B                             
                                                                          && A >= 1 + F$                             
                                                                          && F$ >= 1 + C                             
                                                                          && A >= 1 + F$$                            
                                                                          && 1 + F$$ >= A                            
                                                                          && F$ >= 1 + C                             
                                                                          && A >= 2 + F$                             
                                                                          && A >= 1 + F$$                            
                                                                          && 1 + F$$ >= A]                           
          32. n0(A,B,C,D,E)        -> m6(A,F$,C,F$$$,G$$$)               [D >= 1 + B                            (?,6)
                                                                          && A >= 2 + C                              
                                                                          && C >= C                                  
                                                                          && A >= 2 + C                              
                                                                          && 1 + C >= F$                             
                                                                          && F$ >= 1 + C                             
                                                                          && A >= 1 + F$                             
                                                                          && F$ >= 1 + C                             
                                                                          && A >= 1 + F$$                            
                                                                          && 1 + F$$ >= A                            
                                                                          && F$ >= 1 + C                             
                                                                          && A >= 2 + F$                             
                                                                          && A >= 1 + F$$                            
                                                                          && 1 + F$$ >= A]                           
          33. n0(A,B,C,D,E)        -> n0(A,F$$$,F$,G$$$,G$$$)            [D >= 1 + B                            (?,6)
                                                                          && A >= 2 + C                              
                                                                          && C >= C                                  
                                                                          && A >= 2 + C                              
                                                                          && 1 + C >= F$                             
                                                                          && F$ >= 1 + C                             
                                                                          && A >= 1 + F$                             
                                                                          && F$ >= 1 + C                             
                                                                          && A >= 1 + F$$                            
                                                                          && 1 + F$$ >= A                            
                                                                          && F$ >= 1 + C                             
                                                                          && A >= 2 + F$                             
                                                                          && A >= 1 + F$$                            
                                                                          && 1 + F$$ >= A]                           
          34. n41(A,B,C,D,E)       -> m6(A,D,B,F$$,G$$)                  [A >= 1 + D                            (?,5)
                                                                          && D >= 1 + B                              
                                                                          && A >= 1 + F$                             
                                                                          && 1 + F$ >= A                             
                                                                          && D >= 1 + B                              
                                                                          && A >= 2 + D                              
                                                                          && A >= 1 + F$                             
                                                                          && 1 + F$ >= A]                            
          35. n41(A,B,C,D,E)       -> n0(A,F$$,D,G$$,G$$)                [A >= 1 + D                            (?,5)
                                                                          && D >= 1 + B                              
                                                                          && A >= 1 + F$                             
                                                                          && 1 + F$ >= A                             
                                                                          && D >= 1 + B                              
                                                                          && A >= 2 + D                              
                                                                          && A >= 1 + F$                             
                                                                          && 1 + F$ >= A]                            
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n3,5)
          ;(n4,5)
          ;(n40,5)
          ;(n41,5)
          ;(selectOrd,5)}
        Flow Graph:
          [17->{22},22->{27},27->{27,34,35},30->{30,31},31->{32,33},32->{30,31},33->{32,33},34->{30,31},35->{32,33}]
        Sizebounds:
          (<17,0,A>, A) (<17,0,B>,     B) (<17,0,C>,     C) (<17,0,D>, D) (<17,0,E>, E) 
          (<22,0,A>, A) (<22,0,B>, 2 + A) (<22,0,C>,     ?) (<22,0,D>, ?) (<22,0,E>, E) 
          (<27,0,A>, A) (<27,0,B>, 2 + A) (<27,0,C>,     ?) (<27,0,D>, ?) (<27,0,E>, E) 
          (<30,0,A>, A) (<30,0,B>, 1 + A) (<30,0,C>,     A) (<30,0,D>, ?) (<30,0,E>, ?) 
          (<31,0,A>, A) (<31,0,B>,     ?) (<31,0,C>, 1 + A) (<31,0,D>, ?) (<31,0,E>, ?) 
          (<32,0,A>, A) (<32,0,B>, 1 + A) (<32,0,C>,     A) (<32,0,D>, ?) (<32,0,E>, ?) 
          (<33,0,A>, A) (<33,0,B>,     ?) (<33,0,C>, 1 + A) (<33,0,D>, ?) (<33,0,E>, ?) 
          (<34,0,A>, A) (<34,0,B>, 1 + A) (<34,0,C>,     A) (<34,0,D>, ?) (<34,0,E>, ?) 
          (<35,0,A>, A) (<35,0,B>,     ?) (<35,0,C>, 1 + A) (<35,0,D>, ?) (<35,0,E>, ?) 
    + Applied Processor:
        ChainProcessor False [17,22,27,30,31,32,33,34,35]
    + Details:
        We chained rule 27 to obtain the rules [36,37] .
* Step 30: UnreachableRules WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          17. selectOrd(A,B,C,D,E) -> n1(A,B,C,D,E)                                 [A >= 0 && A >= 0]                     (1,2)
          22. n1(A,B,C,D,E)        -> c2(m5(A,B,0,D,E),n4(A,F$,0,D,E))              [A >= 0 && A >= 2 + F$ && 2 + F$ >= A] (2,3)
          30. m6(A,B,C,D,E)        -> m6(A,F$,C,F$$$,G$$$)                          [B >= 1 + C                            (?,6)
                                                                                     && A >= 2 + B                              
                                                                                     && D >= E                                  
                                                                                     && B >= C                                  
                                                                                     && A >= 2 + B                              
                                                                                     && 1 + B >= F$                             
                                                                                     && F$ >= 1 + B                             
                                                                                     && A >= 1 + F$                             
                                                                                     && F$ >= 1 + C                             
                                                                                     && A >= 1 + F$$                            
                                                                                     && 1 + F$$ >= A                            
                                                                                     && F$ >= 1 + C                             
                                                                                     && A >= 2 + F$                             
                                                                                     && A >= 1 + F$$                            
                                                                                     && 1 + F$$ >= A]                           
          31. m6(A,B,C,D,E)        -> n0(A,F$$$,F$,G$$$,G$$$)                       [B >= 1 + C                            (?,6)
                                                                                     && A >= 2 + B                              
                                                                                     && D >= E                                  
                                                                                     && B >= C                                  
                                                                                     && A >= 2 + B                              
                                                                                     && 1 + B >= F$                             
                                                                                     && F$ >= 1 + B                             
                                                                                     && A >= 1 + F$                             
                                                                                     && F$ >= 1 + C                             
                                                                                     && A >= 1 + F$$                            
                                                                                     && 1 + F$$ >= A                            
                                                                                     && F$ >= 1 + C                             
                                                                                     && A >= 2 + F$                             
                                                                                     && A >= 1 + F$$                            
                                                                                     && 1 + F$$ >= A]                           
          32. n0(A,B,C,D,E)        -> m6(A,F$,C,F$$$,G$$$)                          [D >= 1 + B                            (?,6)
                                                                                     && A >= 2 + C                              
                                                                                     && C >= C                                  
                                                                                     && A >= 2 + C                              
                                                                                     && 1 + C >= F$                             
                                                                                     && F$ >= 1 + C                             
                                                                                     && A >= 1 + F$                             
                                                                                     && F$ >= 1 + C                             
                                                                                     && A >= 1 + F$$                            
                                                                                     && 1 + F$$ >= A                            
                                                                                     && F$ >= 1 + C                             
                                                                                     && A >= 2 + F$                             
                                                                                     && A >= 1 + F$$                            
                                                                                     && 1 + F$$ >= A]                           
          33. n0(A,B,C,D,E)        -> n0(A,F$$$,F$,G$$$,G$$$)                       [D >= 1 + B                            (?,6)
                                                                                     && A >= 2 + C                              
                                                                                     && C >= C                                  
                                                                                     && A >= 2 + C                              
                                                                                     && 1 + C >= F$                             
                                                                                     && F$ >= 1 + C                             
                                                                                     && A >= 1 + F$                             
                                                                                     && F$ >= 1 + C                             
                                                                                     && A >= 1 + F$$                            
                                                                                     && 1 + F$$ >= A                            
                                                                                     && F$ >= 1 + C                             
                                                                                     && A >= 2 + F$                             
                                                                                     && A >= 1 + F$$                            
                                                                                     && 1 + F$$ >= A]                           
          34. n41(A,B,C,D,E)       -> m6(A,D,B,F$$,G$$)                             [A >= 1 + D                            (?,5)
                                                                                     && D >= 1 + B                              
                                                                                     && A >= 1 + F$                             
                                                                                     && 1 + F$ >= A                             
                                                                                     && D >= 1 + B                              
                                                                                     && A >= 2 + D                              
                                                                                     && A >= 1 + F$                             
                                                                                     && 1 + F$ >= A]                            
          35. n41(A,B,C,D,E)       -> n0(A,F$$,D,G$$,G$$)                           [A >= 1 + D                            (?,5)
                                                                                     && D >= 1 + B                              
                                                                                     && A >= 1 + F$                             
                                                                                     && 1 + F$ >= A                             
                                                                                     && D >= 1 + B                              
                                                                                     && A >= 2 + D                              
                                                                                     && A >= 1 + F$                             
                                                                                     && 1 + F$ >= A]                            
          36. n4(A,B,C,D,E)        -> c2(n4(A,F$$,F,G,E),m6(A,G,F$$,F$$$$,G$$$$))   [A >= 2 + G                            (?,9)
                                                                                     && 1 + C >= G                              
                                                                                     && G >= 1 + C                              
                                                                                     && F >= G                                  
                                                                                     && G >= F                                  
                                                                                     && A >= 2 + B                              
                                                                                     && 2 + B >= A                              
                                                                                     && A >= 2 + F$$                            
                                                                                     && 2 + F$$ >= A                            
                                                                                     && A >= 1 + G                              
                                                                                     && G >= 1 + F$$                            
                                                                                     && A >= 1 + F$$$                           
                                                                                     && 1 + F$$$ >= A                           
                                                                                     && G >= 1 + F$$                            
                                                                                     && A >= 2 + G                              
                                                                                     && A >= 1 + F$$$                           
                                                                                     && 1 + F$$$ >= A]                          
          37. n4(A,B,C,D,E)        -> c2(n4(A,F$$,F,G,E),n0(A,F$$$$,G,G$$$$,G$$$$)) [A >= 2 + G                            (?,9)
                                                                                     && 1 + C >= G                              
                                                                                     && G >= 1 + C                              
                                                                                     && F >= G                                  
                                                                                     && G >= F                                  
                                                                                     && A >= 2 + B                              
                                                                                     && 2 + B >= A                              
                                                                                     && A >= 2 + F$$                            
                                                                                     && 2 + F$$ >= A                            
                                                                                     && A >= 1 + G                              
                                                                                     && G >= 1 + F$$                            
                                                                                     && A >= 1 + F$$$                           
                                                                                     && 1 + F$$$ >= A                           
                                                                                     && G >= 1 + F$$                            
                                                                                     && A >= 2 + G                              
                                                                                     && A >= 1 + F$$$                           
                                                                                     && 1 + F$$$ >= A]                          
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n3,5)
          ;(n4,5)
          ;(n40,5)
          ;(n41,5)
          ;(selectOrd,5)}
        Flow Graph:
          [17->{22},22->{36,37},30->{30,31},31->{32,33},32->{30,31},33->{32,33},34->{30,31},35->{32,33},36->{30,31
          ,36,37},37->{32,33,36,37}]
        Sizebounds:
          (<17,0,A>, A) (<17,0,B>,     B) (<17,0,C>,     C) (<17,0,D>, D) (<17,0,E>, E) 
          (<22,0,A>, A) (<22,0,B>, 2 + A) (<22,0,C>,     ?) (<22,0,D>, ?) (<22,0,E>, E) 
          (<30,0,A>, A) (<30,0,B>, 1 + A) (<30,0,C>,     A) (<30,0,D>, ?) (<30,0,E>, ?) 
          (<31,0,A>, A) (<31,0,B>,     ?) (<31,0,C>, 1 + A) (<31,0,D>, ?) (<31,0,E>, ?) 
          (<32,0,A>, A) (<32,0,B>, 1 + A) (<32,0,C>,     A) (<32,0,D>, ?) (<32,0,E>, ?) 
          (<33,0,A>, A) (<33,0,B>,     ?) (<33,0,C>, 1 + A) (<33,0,D>, ?) (<33,0,E>, ?) 
          (<34,0,A>, A) (<34,0,B>, 1 + A) (<34,0,C>,     A) (<34,0,D>, ?) (<34,0,E>, ?) 
          (<35,0,A>, A) (<35,0,B>,     ?) (<35,0,C>, 1 + A) (<35,0,D>, ?) (<35,0,E>, ?) 
          (<36,0,A>, A) (<36,0,B>, 1 + A) (<36,0,C>,     A) (<36,0,D>, ?) (<36,0,E>, ?) 
          (<37,0,A>, A) (<37,0,B>,     ?) (<37,0,C>, 1 + A) (<37,0,D>, ?) (<37,0,E>, ?) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [34,35]
* Step 31: UnsatPaths WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          17. selectOrd(A,B,C,D,E) -> n1(A,B,C,D,E)                                 [A >= 0 && A >= 0]                     (1,2)
          22. n1(A,B,C,D,E)        -> c2(m5(A,B,0,D,E),n4(A,F$,0,D,E))              [A >= 0 && A >= 2 + F$ && 2 + F$ >= A] (2,3)
          30. m6(A,B,C,D,E)        -> m6(A,F$,C,F$$$,G$$$)                          [B >= 1 + C                            (?,6)
                                                                                     && A >= 2 + B                              
                                                                                     && D >= E                                  
                                                                                     && B >= C                                  
                                                                                     && A >= 2 + B                              
                                                                                     && 1 + B >= F$                             
                                                                                     && F$ >= 1 + B                             
                                                                                     && A >= 1 + F$                             
                                                                                     && F$ >= 1 + C                             
                                                                                     && A >= 1 + F$$                            
                                                                                     && 1 + F$$ >= A                            
                                                                                     && F$ >= 1 + C                             
                                                                                     && A >= 2 + F$                             
                                                                                     && A >= 1 + F$$                            
                                                                                     && 1 + F$$ >= A]                           
          31. m6(A,B,C,D,E)        -> n0(A,F$$$,F$,G$$$,G$$$)                       [B >= 1 + C                            (?,6)
                                                                                     && A >= 2 + B                              
                                                                                     && D >= E                                  
                                                                                     && B >= C                                  
                                                                                     && A >= 2 + B                              
                                                                                     && 1 + B >= F$                             
                                                                                     && F$ >= 1 + B                             
                                                                                     && A >= 1 + F$                             
                                                                                     && F$ >= 1 + C                             
                                                                                     && A >= 1 + F$$                            
                                                                                     && 1 + F$$ >= A                            
                                                                                     && F$ >= 1 + C                             
                                                                                     && A >= 2 + F$                             
                                                                                     && A >= 1 + F$$                            
                                                                                     && 1 + F$$ >= A]                           
          32. n0(A,B,C,D,E)        -> m6(A,F$,C,F$$$,G$$$)                          [D >= 1 + B                            (?,6)
                                                                                     && A >= 2 + C                              
                                                                                     && C >= C                                  
                                                                                     && A >= 2 + C                              
                                                                                     && 1 + C >= F$                             
                                                                                     && F$ >= 1 + C                             
                                                                                     && A >= 1 + F$                             
                                                                                     && F$ >= 1 + C                             
                                                                                     && A >= 1 + F$$                            
                                                                                     && 1 + F$$ >= A                            
                                                                                     && F$ >= 1 + C                             
                                                                                     && A >= 2 + F$                             
                                                                                     && A >= 1 + F$$                            
                                                                                     && 1 + F$$ >= A]                           
          33. n0(A,B,C,D,E)        -> n0(A,F$$$,F$,G$$$,G$$$)                       [D >= 1 + B                            (?,6)
                                                                                     && A >= 2 + C                              
                                                                                     && C >= C                                  
                                                                                     && A >= 2 + C                              
                                                                                     && 1 + C >= F$                             
                                                                                     && F$ >= 1 + C                             
                                                                                     && A >= 1 + F$                             
                                                                                     && F$ >= 1 + C                             
                                                                                     && A >= 1 + F$$                            
                                                                                     && 1 + F$$ >= A                            
                                                                                     && F$ >= 1 + C                             
                                                                                     && A >= 2 + F$                             
                                                                                     && A >= 1 + F$$                            
                                                                                     && 1 + F$$ >= A]                           
          36. n4(A,B,C,D,E)        -> c2(n4(A,F$$,F,G,E),m6(A,G,F$$,F$$$$,G$$$$))   [A >= 2 + G                            (?,9)
                                                                                     && 1 + C >= G                              
                                                                                     && G >= 1 + C                              
                                                                                     && F >= G                                  
                                                                                     && G >= F                                  
                                                                                     && A >= 2 + B                              
                                                                                     && 2 + B >= A                              
                                                                                     && A >= 2 + F$$                            
                                                                                     && 2 + F$$ >= A                            
                                                                                     && A >= 1 + G                              
                                                                                     && G >= 1 + F$$                            
                                                                                     && A >= 1 + F$$$                           
                                                                                     && 1 + F$$$ >= A                           
                                                                                     && G >= 1 + F$$                            
                                                                                     && A >= 2 + G                              
                                                                                     && A >= 1 + F$$$                           
                                                                                     && 1 + F$$$ >= A]                          
          37. n4(A,B,C,D,E)        -> c2(n4(A,F$$,F,G,E),n0(A,F$$$$,G,G$$$$,G$$$$)) [A >= 2 + G                            (?,9)
                                                                                     && 1 + C >= G                              
                                                                                     && G >= 1 + C                              
                                                                                     && F >= G                                  
                                                                                     && G >= F                                  
                                                                                     && A >= 2 + B                              
                                                                                     && 2 + B >= A                              
                                                                                     && A >= 2 + F$$                            
                                                                                     && 2 + F$$ >= A                            
                                                                                     && A >= 1 + G                              
                                                                                     && G >= 1 + F$$                            
                                                                                     && A >= 1 + F$$$                           
                                                                                     && 1 + F$$$ >= A                           
                                                                                     && G >= 1 + F$$                            
                                                                                     && A >= 2 + G                              
                                                                                     && A >= 1 + F$$$                           
                                                                                     && 1 + F$$$ >= A]                          
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n3,5)
          ;(n4,5)
          ;(n40,5)
          ;(n41,5)
          ;(selectOrd,5)}
        Flow Graph:
          [17->{22},22->{36,37},30->{30,31},31->{32,33},32->{30,31},33->{32,33},36->{30,31,36,37},37->{32,33,36,37}]
        Sizebounds:
          (<17,0,A>, A) (<17,0,B>,     B) (<17,0,C>,     C) (<17,0,D>, D) (<17,0,E>, E) 
          (<22,0,A>, A) (<22,0,B>, 2 + A) (<22,0,C>,     ?) (<22,0,D>, ?) (<22,0,E>, E) 
          (<30,0,A>, A) (<30,0,B>, 1 + A) (<30,0,C>,     A) (<30,0,D>, ?) (<30,0,E>, ?) 
          (<31,0,A>, A) (<31,0,B>,     ?) (<31,0,C>, 1 + A) (<31,0,D>, ?) (<31,0,E>, ?) 
          (<32,0,A>, A) (<32,0,B>, 1 + A) (<32,0,C>,     A) (<32,0,D>, ?) (<32,0,E>, ?) 
          (<33,0,A>, A) (<33,0,B>,     ?) (<33,0,C>, 1 + A) (<33,0,D>, ?) (<33,0,E>, ?) 
          (<36,0,A>, A) (<36,0,B>, 1 + A) (<36,0,C>,     A) (<36,0,D>, ?) (<36,0,E>, ?) 
          (<37,0,A>, A) (<37,0,B>,     ?) (<37,0,C>, 1 + A) (<37,0,D>, ?) (<37,0,E>, ?) 
    + Applied Processor:
        UnsatPaths
    + Details:
        We remove following edges from the transition graph: [(22,36)
                                                             ,(22,37)
                                                             ,(36,30)
                                                             ,(36,31)
                                                             ,(36,36)
                                                             ,(36,37)
                                                             ,(37,32)
                                                             ,(37,33)
                                                             ,(37,36)
                                                             ,(37,37)]
* Step 32: UnreachableRules WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          17. selectOrd(A,B,C,D,E) -> n1(A,B,C,D,E)                                 [A >= 0 && A >= 0]                     (1,2)
          22. n1(A,B,C,D,E)        -> c2(m5(A,B,0,D,E),n4(A,F$,0,D,E))              [A >= 0 && A >= 2 + F$ && 2 + F$ >= A] (2,3)
          30. m6(A,B,C,D,E)        -> m6(A,F$,C,F$$$,G$$$)                          [B >= 1 + C                            (?,6)
                                                                                     && A >= 2 + B                              
                                                                                     && D >= E                                  
                                                                                     && B >= C                                  
                                                                                     && A >= 2 + B                              
                                                                                     && 1 + B >= F$                             
                                                                                     && F$ >= 1 + B                             
                                                                                     && A >= 1 + F$                             
                                                                                     && F$ >= 1 + C                             
                                                                                     && A >= 1 + F$$                            
                                                                                     && 1 + F$$ >= A                            
                                                                                     && F$ >= 1 + C                             
                                                                                     && A >= 2 + F$                             
                                                                                     && A >= 1 + F$$                            
                                                                                     && 1 + F$$ >= A]                           
          31. m6(A,B,C,D,E)        -> n0(A,F$$$,F$,G$$$,G$$$)                       [B >= 1 + C                            (?,6)
                                                                                     && A >= 2 + B                              
                                                                                     && D >= E                                  
                                                                                     && B >= C                                  
                                                                                     && A >= 2 + B                              
                                                                                     && 1 + B >= F$                             
                                                                                     && F$ >= 1 + B                             
                                                                                     && A >= 1 + F$                             
                                                                                     && F$ >= 1 + C                             
                                                                                     && A >= 1 + F$$                            
                                                                                     && 1 + F$$ >= A                            
                                                                                     && F$ >= 1 + C                             
                                                                                     && A >= 2 + F$                             
                                                                                     && A >= 1 + F$$                            
                                                                                     && 1 + F$$ >= A]                           
          32. n0(A,B,C,D,E)        -> m6(A,F$,C,F$$$,G$$$)                          [D >= 1 + B                            (?,6)
                                                                                     && A >= 2 + C                              
                                                                                     && C >= C                                  
                                                                                     && A >= 2 + C                              
                                                                                     && 1 + C >= F$                             
                                                                                     && F$ >= 1 + C                             
                                                                                     && A >= 1 + F$                             
                                                                                     && F$ >= 1 + C                             
                                                                                     && A >= 1 + F$$                            
                                                                                     && 1 + F$$ >= A                            
                                                                                     && F$ >= 1 + C                             
                                                                                     && A >= 2 + F$                             
                                                                                     && A >= 1 + F$$                            
                                                                                     && 1 + F$$ >= A]                           
          33. n0(A,B,C,D,E)        -> n0(A,F$$$,F$,G$$$,G$$$)                       [D >= 1 + B                            (?,6)
                                                                                     && A >= 2 + C                              
                                                                                     && C >= C                                  
                                                                                     && A >= 2 + C                              
                                                                                     && 1 + C >= F$                             
                                                                                     && F$ >= 1 + C                             
                                                                                     && A >= 1 + F$                             
                                                                                     && F$ >= 1 + C                             
                                                                                     && A >= 1 + F$$                            
                                                                                     && 1 + F$$ >= A                            
                                                                                     && F$ >= 1 + C                             
                                                                                     && A >= 2 + F$                             
                                                                                     && A >= 1 + F$$                            
                                                                                     && 1 + F$$ >= A]                           
          36. n4(A,B,C,D,E)        -> c2(n4(A,F$$,F,G,E),m6(A,G,F$$,F$$$$,G$$$$))   [A >= 2 + G                            (?,9)
                                                                                     && 1 + C >= G                              
                                                                                     && G >= 1 + C                              
                                                                                     && F >= G                                  
                                                                                     && G >= F                                  
                                                                                     && A >= 2 + B                              
                                                                                     && 2 + B >= A                              
                                                                                     && A >= 2 + F$$                            
                                                                                     && 2 + F$$ >= A                            
                                                                                     && A >= 1 + G                              
                                                                                     && G >= 1 + F$$                            
                                                                                     && A >= 1 + F$$$                           
                                                                                     && 1 + F$$$ >= A                           
                                                                                     && G >= 1 + F$$                            
                                                                                     && A >= 2 + G                              
                                                                                     && A >= 1 + F$$$                           
                                                                                     && 1 + F$$$ >= A]                          
          37. n4(A,B,C,D,E)        -> c2(n4(A,F$$,F,G,E),n0(A,F$$$$,G,G$$$$,G$$$$)) [A >= 2 + G                            (?,9)
                                                                                     && 1 + C >= G                              
                                                                                     && G >= 1 + C                              
                                                                                     && F >= G                                  
                                                                                     && G >= F                                  
                                                                                     && A >= 2 + B                              
                                                                                     && 2 + B >= A                              
                                                                                     && A >= 2 + F$$                            
                                                                                     && 2 + F$$ >= A                            
                                                                                     && A >= 1 + G                              
                                                                                     && G >= 1 + F$$                            
                                                                                     && A >= 1 + F$$$                           
                                                                                     && 1 + F$$$ >= A                           
                                                                                     && G >= 1 + F$$                            
                                                                                     && A >= 2 + G                              
                                                                                     && A >= 1 + F$$$                           
                                                                                     && 1 + F$$$ >= A]                          
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n3,5)
          ;(n4,5)
          ;(n40,5)
          ;(n41,5)
          ;(selectOrd,5)}
        Flow Graph:
          [17->{22},22->{},30->{30,31},31->{32,33},32->{30,31},33->{32,33},36->{},37->{}]
        Sizebounds:
          (<17,0,A>, A) (<17,0,B>,     B) (<17,0,C>,     C) (<17,0,D>, D) (<17,0,E>, E) 
          (<22,0,A>, A) (<22,0,B>, 2 + A) (<22,0,C>,     ?) (<22,0,D>, ?) (<22,0,E>, E) 
          (<30,0,A>, A) (<30,0,B>, 1 + A) (<30,0,C>,     A) (<30,0,D>, ?) (<30,0,E>, ?) 
          (<31,0,A>, A) (<31,0,B>,     ?) (<31,0,C>, 1 + A) (<31,0,D>, ?) (<31,0,E>, ?) 
          (<32,0,A>, A) (<32,0,B>, 1 + A) (<32,0,C>,     A) (<32,0,D>, ?) (<32,0,E>, ?) 
          (<33,0,A>, A) (<33,0,B>,     ?) (<33,0,C>, 1 + A) (<33,0,D>, ?) (<33,0,E>, ?) 
          (<36,0,A>, A) (<36,0,B>, 1 + A) (<36,0,C>,     A) (<36,0,D>, ?) (<36,0,E>, ?) 
          (<37,0,A>, A) (<37,0,B>,     ?) (<37,0,C>, 1 + A) (<37,0,D>, ?) (<37,0,E>, ?) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [30,31,32,33,36,37]
* Step 33: LeafRules WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          17. selectOrd(A,B,C,D,E) -> n1(A,B,C,D,E)                    [A >= 0 && A >= 0]                     (1,2)
          22. n1(A,B,C,D,E)        -> c2(m5(A,B,0,D,E),n4(A,F$,0,D,E)) [A >= 0 && A >= 2 + F$ && 2 + F$ >= A] (2,3)
        Signature:
          {(m0,5)
          ;(m1,5)
          ;(m2,5)
          ;(m3,5)
          ;(m4,5)
          ;(m5,5)
          ;(m6,5)
          ;(m7,5)
          ;(m8,5)
          ;(m9,5)
          ;(n0,5)
          ;(n1,5)
          ;(n2,5)
          ;(n3,5)
          ;(n4,5)
          ;(n40,5)
          ;(n41,5)
          ;(selectOrd,5)}
        Flow Graph:
          [17->{22},22->{}]
        Sizebounds:
          (<17,0,A>, A) (<17,0,B>,     B) (<17,0,C>, C) (<17,0,D>, D) (<17,0,E>, E) 
          (<22,0,A>, A) (<22,0,B>, 2 + A) (<22,0,C>, ?) (<22,0,D>, ?) (<22,0,E>, E) 
    + Applied Processor:
        LeafRules
    + Details:
        The problem is already solved.

WORST_CASE(?,O(1))