WORST_CASE(?,O(n^1)) * Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. sumto(A,B) -> end(A,B) [A >= 1 + B] (?,1) 1. sumto(A,B) -> sumto(1 + A,B) [B >= A] (?,1) 2. start(A,B) -> sumto(A,B) True (1,1) Signature: {(end,2);(start,2);(sumto,2)} Flow Graph: [0->{},1->{0,1},2->{0,1}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<0,0,A>, A, .= 0) (<0,0,B>, B, .= 0) (<1,0,A>, 1 + A, .+ 1) (<1,0,B>, B, .= 0) (<2,0,A>, A, .= 0) (<2,0,B>, B, .= 0) * Step 2: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. sumto(A,B) -> end(A,B) [A >= 1 + B] (?,1) 1. sumto(A,B) -> sumto(1 + A,B) [B >= A] (?,1) 2. start(A,B) -> sumto(A,B) True (1,1) Signature: {(end,2);(start,2);(sumto,2)} Flow Graph: [0->{},1->{0,1},2->{0,1}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<1,0,A>, ?) (<1,0,B>, ?) (<2,0,A>, ?) (<2,0,B>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<0,0,A>, 1 + A + B) (<0,0,B>, B) (<1,0,A>, 1 + B) (<1,0,B>, B) (<2,0,A>, A) (<2,0,B>, B) * Step 3: LeafRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. sumto(A,B) -> end(A,B) [A >= 1 + B] (?,1) 1. sumto(A,B) -> sumto(1 + A,B) [B >= A] (?,1) 2. start(A,B) -> sumto(A,B) True (1,1) Signature: {(end,2);(start,2);(sumto,2)} Flow Graph: [0->{},1->{0,1},2->{0,1}] Sizebounds: (<0,0,A>, 1 + A + B) (<0,0,B>, B) (<1,0,A>, 1 + B) (<1,0,B>, B) (<2,0,A>, A) (<2,0,B>, B) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [0] * Step 4: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 1. sumto(A,B) -> sumto(1 + A,B) [B >= A] (?,1) 2. start(A,B) -> sumto(A,B) True (1,1) Signature: {(end,2);(start,2);(sumto,2)} Flow Graph: [1->{1},2->{1}] Sizebounds: (<1,0,A>, 1 + B) (<1,0,B>, B) (<2,0,A>, A) (<2,0,B>, B) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(start) = 1 + -1*x1 + x2 p(sumto) = 1 + -1*x1 + x2 The following rules are strictly oriented: [B >= A] ==> sumto(A,B) = 1 + -1*A + B > -1*A + B = sumto(1 + A,B) The following rules are weakly oriented: True ==> start(A,B) = 1 + -1*A + B >= 1 + -1*A + B = sumto(A,B) * Step 5: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 1. sumto(A,B) -> sumto(1 + A,B) [B >= A] (1 + A + B,1) 2. start(A,B) -> sumto(A,B) True (1,1) Signature: {(end,2);(start,2);(sumto,2)} Flow Graph: [1->{1},2->{1}] Sizebounds: (<1,0,A>, 1 + B) (<1,0,B>, B) (<2,0,A>, A) (<2,0,B>, B) + Applied Processor: KnowledgePropagation + Details: The problem is already solved. WORST_CASE(?,O(n^1))