WORST_CASE(?,O(n^1)) * Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. div(A,B) -> end(A,B) [0 >= A] (?,1) 1. div(A,B) -> end(A,B) [A >= B] (?,1) 2. div(A,B) -> div(A,-1*A + B) [B >= 1 + A && A >= 1] (?,1) 3. start(A,B) -> div(A,B) True (1,1) Signature: {(div,2);(end,2);(start,2)} Flow Graph: [0->{},1->{},2->{0,1,2},3->{0,1,2}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<0,0,A>, A, .= 0) (<0,0,B>, B, .= 0) (<1,0,A>, A, .= 0) (<1,0,B>, B, .= 0) (<2,0,A>, A, .= 0) (<2,0,B>, 1 + A + B, .* 1) (<3,0,A>, A, .= 0) (<3,0,B>, B, .= 0) * Step 2: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. div(A,B) -> end(A,B) [0 >= A] (?,1) 1. div(A,B) -> end(A,B) [A >= B] (?,1) 2. div(A,B) -> div(A,-1*A + B) [B >= 1 + A && A >= 1] (?,1) 3. start(A,B) -> div(A,B) True (1,1) Signature: {(div,2);(end,2);(start,2)} Flow Graph: [0->{},1->{},2->{0,1,2},3->{0,1,2}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<1,0,A>, ?) (<1,0,B>, ?) (<2,0,A>, ?) (<2,0,B>, ?) (<3,0,A>, ?) (<3,0,B>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<0,0,A>, A) (<0,0,B>, ?) (<1,0,A>, A) (<1,0,B>, ?) (<2,0,A>, A) (<2,0,B>, ?) (<3,0,A>, A) (<3,0,B>, B) * Step 3: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. div(A,B) -> end(A,B) [0 >= A] (?,1) 1. div(A,B) -> end(A,B) [A >= B] (?,1) 2. div(A,B) -> div(A,-1*A + B) [B >= 1 + A && A >= 1] (?,1) 3. start(A,B) -> div(A,B) True (1,1) Signature: {(div,2);(end,2);(start,2)} Flow Graph: [0->{},1->{},2->{0,1,2},3->{0,1,2}] Sizebounds: (<0,0,A>, A) (<0,0,B>, ?) (<1,0,A>, A) (<1,0,B>, ?) (<2,0,A>, A) (<2,0,B>, ?) (<3,0,A>, A) (<3,0,B>, B) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(2,0)] * Step 4: LeafRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. div(A,B) -> end(A,B) [0 >= A] (?,1) 1. div(A,B) -> end(A,B) [A >= B] (?,1) 2. div(A,B) -> div(A,-1*A + B) [B >= 1 + A && A >= 1] (?,1) 3. start(A,B) -> div(A,B) True (1,1) Signature: {(div,2);(end,2);(start,2)} Flow Graph: [0->{},1->{},2->{1,2},3->{0,1,2}] Sizebounds: (<0,0,A>, A) (<0,0,B>, ?) (<1,0,A>, A) (<1,0,B>, ?) (<2,0,A>, A) (<2,0,B>, ?) (<3,0,A>, A) (<3,0,B>, B) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [0,1] * Step 5: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 2. div(A,B) -> div(A,-1*A + B) [B >= 1 + A && A >= 1] (?,1) 3. start(A,B) -> div(A,B) True (1,1) Signature: {(div,2);(end,2);(start,2)} Flow Graph: [2->{2},3->{2}] Sizebounds: (<2,0,A>, A) (<2,0,B>, ?) (<3,0,A>, A) (<3,0,B>, B) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(div) = -1*x1 + x2 p(start) = -1*x1 + x2 The following rules are strictly oriented: [B >= 1 + A && A >= 1] ==> div(A,B) = -1*A + B > -2*A + B = div(A,-1*A + B) The following rules are weakly oriented: True ==> start(A,B) = -1*A + B >= -1*A + B = div(A,B) * Step 6: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 2. div(A,B) -> div(A,-1*A + B) [B >= 1 + A && A >= 1] (A + B,1) 3. start(A,B) -> div(A,B) True (1,1) Signature: {(div,2);(end,2);(start,2)} Flow Graph: [2->{2},3->{2}] Sizebounds: (<2,0,A>, A) (<2,0,B>, ?) (<3,0,A>, A) (<3,0,B>, B) + Applied Processor: KnowledgePropagation + Details: The problem is already solved. WORST_CASE(?,O(n^1))