WORST_CASE(?,O(n^1))
* Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. eval(A,B)  -> eval(1 + A,2 + B) [A >= 1 + B] (?,1)
          1. start(A,B) -> eval(A,B)         True         (1,1)
        Signature:
          {(eval,2);(start,2)}
        Flow Graph:
          [0->{0},1->{0}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (<0,0,A>, 1 + A, .+ 1) (<0,0,B>, 2 + B, .+ 2) 
          (<1,0,A>,     A, .= 0) (<1,0,B>,     B, .= 0) 
* Step 2: SizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. eval(A,B)  -> eval(1 + A,2 + B) [A >= 1 + B] (?,1)
          1. start(A,B) -> eval(A,B)         True         (1,1)
        Signature:
          {(eval,2);(start,2)}
        Flow Graph:
          [0->{0},1->{0}]
        Sizebounds:
          (<0,0,A>, ?) (<0,0,B>, ?) 
          (<1,0,A>, ?) (<1,0,B>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (<0,0,A>, ?) (<0,0,B>, ?) 
          (<1,0,A>, A) (<1,0,B>, B) 
* Step 3: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. eval(A,B)  -> eval(1 + A,2 + B) [A >= 1 + B] (?,1)
          1. start(A,B) -> eval(A,B)         True         (1,1)
        Signature:
          {(eval,2);(start,2)}
        Flow Graph:
          [0->{0},1->{0}]
        Sizebounds:
          (<0,0,A>, ?) (<0,0,B>, ?) 
          (<1,0,A>, A) (<1,0,B>, B) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(eval) = x1 + -1*x2
          p(start) = x1 + -1*x2
        
        The following rules are strictly oriented:
        [A >= 1 + B] ==>                  
           eval(A,B)   = A + -1*B         
                       > -1 + A + -1*B    
                       = eval(1 + A,2 + B)
        
        
        The following rules are weakly oriented:
                True ==>          
          start(A,B)   = A + -1*B 
                      >= A + -1*B 
                       = eval(A,B)
        
        
* Step 4: KnowledgePropagation WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. eval(A,B)  -> eval(1 + A,2 + B) [A >= 1 + B] (A + B,1)
          1. start(A,B) -> eval(A,B)         True         (1,1)    
        Signature:
          {(eval,2);(start,2)}
        Flow Graph:
          [0->{0},1->{0}]
        Sizebounds:
          (<0,0,A>, ?) (<0,0,B>, ?) 
          (<1,0,A>, A) (<1,0,B>, B) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        The problem is already solved.

WORST_CASE(?,O(n^1))