WORST_CASE(?,O(n^1)) * Step 1: UnsatRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval(A,B) -> eval(A,1 + B) [A >= 1 + B] (?,1) 1. eval(A,B) -> eval(A,1 + B) [B >= 1 + A && A >= 1 + B] (?,1) 2. eval(A,B) -> eval(1 + A,B) [A >= 1 + B && B >= A] (?,1) 3. eval(A,B) -> eval(1 + A,B) [B >= 1 + A && B >= A] (?,1) 4. start(A,B) -> eval(A,B) True (1,1) Signature: {(eval,2);(start,2)} Flow Graph: [0->{0,1,2,3},1->{0,1,2,3},2->{0,1,2,3},3->{0,1,2,3},4->{0,1,2,3}] + Applied Processor: UnsatRules + Details: The following transitions have unsatisfiable constraints and are removed: [1,2] * Step 2: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval(A,B) -> eval(A,1 + B) [A >= 1 + B] (?,1) 3. eval(A,B) -> eval(1 + A,B) [B >= 1 + A && B >= A] (?,1) 4. start(A,B) -> eval(A,B) True (1,1) Signature: {(eval,2);(start,2)} Flow Graph: [0->{0,3},3->{0,3},4->{0,3}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<0,0,A>, A, .= 0) (<0,0,B>, 1 + B, .+ 1) (<3,0,A>, 1 + A, .+ 1) (<3,0,B>, B, .= 0) (<4,0,A>, A, .= 0) (<4,0,B>, B, .= 0) * Step 3: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval(A,B) -> eval(A,1 + B) [A >= 1 + B] (?,1) 3. eval(A,B) -> eval(1 + A,B) [B >= 1 + A && B >= A] (?,1) 4. start(A,B) -> eval(A,B) True (1,1) Signature: {(eval,2);(start,2)} Flow Graph: [0->{0,3},3->{0,3},4->{0,3}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<3,0,A>, ?) (<3,0,B>, ?) (<4,0,A>, ?) (<4,0,B>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<0,0,A>, ?) (<0,0,B>, ?) (<3,0,A>, ?) (<3,0,B>, ?) (<4,0,A>, A) (<4,0,B>, B) * Step 4: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval(A,B) -> eval(A,1 + B) [A >= 1 + B] (?,1) 3. eval(A,B) -> eval(1 + A,B) [B >= 1 + A && B >= A] (?,1) 4. start(A,B) -> eval(A,B) True (1,1) Signature: {(eval,2);(start,2)} Flow Graph: [0->{0,3},3->{0,3},4->{0,3}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<3,0,A>, ?) (<3,0,B>, ?) (<4,0,A>, A) (<4,0,B>, B) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(0,3),(3,0)] * Step 5: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval(A,B) -> eval(A,1 + B) [A >= 1 + B] (?,1) 3. eval(A,B) -> eval(1 + A,B) [B >= 1 + A && B >= A] (?,1) 4. start(A,B) -> eval(A,B) True (1,1) Signature: {(eval,2);(start,2)} Flow Graph: [0->{0},3->{3},4->{0,3}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<3,0,A>, ?) (<3,0,B>, ?) (<4,0,A>, A) (<4,0,B>, B) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [3], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(eval) = 1 + -1*x1 + x2 The following rules are strictly oriented: [B >= 1 + A && B >= A] ==> eval(A,B) = 1 + -1*A + B > -1*A + B = eval(1 + A,B) The following rules are weakly oriented: We use the following global sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<3,0,A>, ?) (<3,0,B>, ?) (<4,0,A>, A) (<4,0,B>, B) * Step 6: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval(A,B) -> eval(A,1 + B) [A >= 1 + B] (?,1) 3. eval(A,B) -> eval(1 + A,B) [B >= 1 + A && B >= A] (1 + A + B,1) 4. start(A,B) -> eval(A,B) True (1,1) Signature: {(eval,2);(start,2)} Flow Graph: [0->{0},3->{3},4->{0,3}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<3,0,A>, ?) (<3,0,B>, ?) (<4,0,A>, A) (<4,0,B>, B) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<0,0,A>, 1 + 2*A + B) (<0,0,B>, 1 + 2*A + B) (<3,0,A>, 1 + 2*A + B) (<3,0,B>, 1 + 2*A + B) (<4,0,A>, A) (<4,0,B>, B) * Step 7: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval(A,B) -> eval(A,1 + B) [A >= 1 + B] (?,1) 3. eval(A,B) -> eval(1 + A,B) [B >= 1 + A && B >= A] (1 + A + B,1) 4. start(A,B) -> eval(A,B) True (1,1) Signature: {(eval,2);(start,2)} Flow Graph: [0->{0},3->{3},4->{0,3}] Sizebounds: (<0,0,A>, 1 + 2*A + B) (<0,0,B>, 1 + 2*A + B) (<3,0,A>, 1 + 2*A + B) (<3,0,B>, 1 + 2*A + B) (<4,0,A>, A) (<4,0,B>, B) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [0], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(eval) = x1 + -1*x2 The following rules are strictly oriented: [A >= 1 + B] ==> eval(A,B) = A + -1*B > -1 + A + -1*B = eval(A,1 + B) The following rules are weakly oriented: We use the following global sizebounds: (<0,0,A>, 1 + 2*A + B) (<0,0,B>, 1 + 2*A + B) (<3,0,A>, 1 + 2*A + B) (<3,0,B>, 1 + 2*A + B) (<4,0,A>, A) (<4,0,B>, B) * Step 8: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval(A,B) -> eval(A,1 + B) [A >= 1 + B] (A + B,1) 3. eval(A,B) -> eval(1 + A,B) [B >= 1 + A && B >= A] (1 + A + B,1) 4. start(A,B) -> eval(A,B) True (1,1) Signature: {(eval,2);(start,2)} Flow Graph: [0->{0},3->{3},4->{0,3}] Sizebounds: (<0,0,A>, 1 + 2*A + B) (<0,0,B>, 1 + 2*A + B) (<3,0,A>, 1 + 2*A + B) (<3,0,B>, 1 + 2*A + B) (<4,0,A>, A) (<4,0,B>, B) + Applied Processor: KnowledgePropagation + Details: The problem is already solved. WORST_CASE(?,O(n^1))