WORST_CASE(?,O(n^1)) * Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval1(A,B) -> eval2(A,B) [A >= 1] (?,1) 1. eval2(A,B) -> eval2(A,-1 + B) [A >= 1 && B >= 1] (?,1) 2. eval2(A,B) -> eval1(-1 + A,B) [A >= 1 && 0 >= B] (?,1) 3. start(A,B) -> eval1(A,B) True (1,1) Signature: {(eval1,2);(eval2,2);(start,2)} Flow Graph: [0->{1,2},1->{1,2},2->{0},3->{0}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<0,0,A>, A, .= 0) (<0,0,B>, B, .= 0) (<1,0,A>, A, .= 0) (<1,0,B>, 1 + B, .+ 1) (<2,0,A>, 1 + A, .+ 1) (<2,0,B>, B, .= 0) (<3,0,A>, A, .= 0) (<3,0,B>, B, .= 0) * Step 2: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval1(A,B) -> eval2(A,B) [A >= 1] (?,1) 1. eval2(A,B) -> eval2(A,-1 + B) [A >= 1 && B >= 1] (?,1) 2. eval2(A,B) -> eval1(-1 + A,B) [A >= 1 && 0 >= B] (?,1) 3. start(A,B) -> eval1(A,B) True (1,1) Signature: {(eval1,2);(eval2,2);(start,2)} Flow Graph: [0->{1,2},1->{1,2},2->{0},3->{0}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<1,0,A>, ?) (<1,0,B>, ?) (<2,0,A>, ?) (<2,0,B>, ?) (<3,0,A>, ?) (<3,0,B>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<0,0,A>, ?) (<0,0,B>, B) (<1,0,A>, ?) (<1,0,B>, ?) (<2,0,A>, ?) (<2,0,B>, 0) (<3,0,A>, A) (<3,0,B>, B) * Step 3: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval1(A,B) -> eval2(A,B) [A >= 1] (?,1) 1. eval2(A,B) -> eval2(A,-1 + B) [A >= 1 && B >= 1] (?,1) 2. eval2(A,B) -> eval1(-1 + A,B) [A >= 1 && 0 >= B] (?,1) 3. start(A,B) -> eval1(A,B) True (1,1) Signature: {(eval1,2);(eval2,2);(start,2)} Flow Graph: [0->{1,2},1->{1,2},2->{0},3->{0}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, B) (<1,0,A>, ?) (<1,0,B>, ?) (<2,0,A>, ?) (<2,0,B>, 0) (<3,0,A>, A) (<3,0,B>, B) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(eval1) = x1 p(eval2) = x1 p(start) = x1 The following rules are strictly oriented: [A >= 1 && 0 >= B] ==> eval2(A,B) = A > -1 + A = eval1(-1 + A,B) The following rules are weakly oriented: [A >= 1] ==> eval1(A,B) = A >= A = eval2(A,B) [A >= 1 && B >= 1] ==> eval2(A,B) = A >= A = eval2(A,-1 + B) True ==> start(A,B) = A >= A = eval1(A,B) * Step 4: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval1(A,B) -> eval2(A,B) [A >= 1] (?,1) 1. eval2(A,B) -> eval2(A,-1 + B) [A >= 1 && B >= 1] (?,1) 2. eval2(A,B) -> eval1(-1 + A,B) [A >= 1 && 0 >= B] (A,1) 3. start(A,B) -> eval1(A,B) True (1,1) Signature: {(eval1,2);(eval2,2);(start,2)} Flow Graph: [0->{1,2},1->{1,2},2->{0},3->{0}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, B) (<1,0,A>, ?) (<1,0,B>, ?) (<2,0,A>, ?) (<2,0,B>, 0) (<3,0,A>, A) (<3,0,B>, B) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 5: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval1(A,B) -> eval2(A,B) [A >= 1] (1 + A,1) 1. eval2(A,B) -> eval2(A,-1 + B) [A >= 1 && B >= 1] (?,1) 2. eval2(A,B) -> eval1(-1 + A,B) [A >= 1 && 0 >= B] (A,1) 3. start(A,B) -> eval1(A,B) True (1,1) Signature: {(eval1,2);(eval2,2);(start,2)} Flow Graph: [0->{1,2},1->{1,2},2->{0},3->{0}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, B) (<1,0,A>, ?) (<1,0,B>, ?) (<2,0,A>, ?) (<2,0,B>, 0) (<3,0,A>, A) (<3,0,B>, B) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(eval1) = x2 p(eval2) = x2 p(start) = x2 The following rules are strictly oriented: [A >= 1 && B >= 1] ==> eval2(A,B) = B > -1 + B = eval2(A,-1 + B) The following rules are weakly oriented: [A >= 1] ==> eval1(A,B) = B >= B = eval2(A,B) [A >= 1 && 0 >= B] ==> eval2(A,B) = B >= B = eval1(-1 + A,B) True ==> start(A,B) = B >= B = eval1(A,B) * Step 6: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval1(A,B) -> eval2(A,B) [A >= 1] (1 + A,1) 1. eval2(A,B) -> eval2(A,-1 + B) [A >= 1 && B >= 1] (B,1) 2. eval2(A,B) -> eval1(-1 + A,B) [A >= 1 && 0 >= B] (A,1) 3. start(A,B) -> eval1(A,B) True (1,1) Signature: {(eval1,2);(eval2,2);(start,2)} Flow Graph: [0->{1,2},1->{1,2},2->{0},3->{0}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, B) (<1,0,A>, ?) (<1,0,B>, ?) (<2,0,A>, ?) (<2,0,B>, 0) (<3,0,A>, A) (<3,0,B>, B) + Applied Processor: KnowledgePropagation + Details: The problem is already solved. WORST_CASE(?,O(n^1))