WORST_CASE(?,O(n^2))
* Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0. evalfstart(A,B,C)    -> evalfentryin(A,B,C)   True         (1,1)
          1. evalfentryin(A,B,C)  -> evalfbb4in(1,B,C)     True         (?,1)
          2. evalfbb4in(A,B,C)    -> evalfbb2in(A,B,A)     [B >= A]     (?,1)
          3. evalfbb4in(A,B,C)    -> evalfreturnin(A,B,C)  [A >= 1 + B] (?,1)
          4. evalfbb2in(A,B,C)    -> evalfbb1in(A,B,C)     [B >= C]     (?,1)
          5. evalfbb2in(A,B,C)    -> evalfbb3in(A,B,C)     [C >= 1 + B] (?,1)
          6. evalfbb1in(A,B,C)    -> evalfbb2in(A,B,1 + C) True         (?,1)
          7. evalfbb3in(A,B,C)    -> evalfbb4in(1 + A,B,C) True         (?,1)
          8. evalfreturnin(A,B,C) -> evalfstop(A,B,C)      True         (?,1)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbb4in,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [0->{1},1->{2,3},2->{4,5},3->{8},4->{6},5->{7},6->{4,5},7->{2,3},8->{}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (<0,0,A>,     A, .= 0) (<0,0,B>, B, .= 0) (<0,0,C>,     C, .= 0) 
          (<1,0,A>,     1, .= 1) (<1,0,B>, B, .= 0) (<1,0,C>,     C, .= 0) 
          (<2,0,A>,     A, .= 0) (<2,0,B>, B, .= 0) (<2,0,C>,     A, .= 0) 
          (<3,0,A>,     A, .= 0) (<3,0,B>, B, .= 0) (<3,0,C>,     C, .= 0) 
          (<4,0,A>,     A, .= 0) (<4,0,B>, B, .= 0) (<4,0,C>,     C, .= 0) 
          (<5,0,A>,     A, .= 0) (<5,0,B>, B, .= 0) (<5,0,C>,     C, .= 0) 
          (<6,0,A>,     A, .= 0) (<6,0,B>, B, .= 0) (<6,0,C>, 1 + C, .+ 1) 
          (<7,0,A>, 1 + A, .+ 1) (<7,0,B>, B, .= 0) (<7,0,C>,     C, .= 0) 
          (<8,0,A>,     A, .= 0) (<8,0,B>, B, .= 0) (<8,0,C>,     C, .= 0) 
* Step 2: SizeboundsProc WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0. evalfstart(A,B,C)    -> evalfentryin(A,B,C)   True         (1,1)
          1. evalfentryin(A,B,C)  -> evalfbb4in(1,B,C)     True         (?,1)
          2. evalfbb4in(A,B,C)    -> evalfbb2in(A,B,A)     [B >= A]     (?,1)
          3. evalfbb4in(A,B,C)    -> evalfreturnin(A,B,C)  [A >= 1 + B] (?,1)
          4. evalfbb2in(A,B,C)    -> evalfbb1in(A,B,C)     [B >= C]     (?,1)
          5. evalfbb2in(A,B,C)    -> evalfbb3in(A,B,C)     [C >= 1 + B] (?,1)
          6. evalfbb1in(A,B,C)    -> evalfbb2in(A,B,1 + C) True         (?,1)
          7. evalfbb3in(A,B,C)    -> evalfbb4in(1 + A,B,C) True         (?,1)
          8. evalfreturnin(A,B,C) -> evalfstop(A,B,C)      True         (?,1)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbb4in,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [0->{1},1->{2,3},2->{4,5},3->{8},4->{6},5->{7},6->{4,5},7->{2,3},8->{}]
        Sizebounds:
          (<0,0,A>, ?) (<0,0,B>, ?) (<0,0,C>, ?) 
          (<1,0,A>, ?) (<1,0,B>, ?) (<1,0,C>, ?) 
          (<2,0,A>, ?) (<2,0,B>, ?) (<2,0,C>, ?) 
          (<3,0,A>, ?) (<3,0,B>, ?) (<3,0,C>, ?) 
          (<4,0,A>, ?) (<4,0,B>, ?) (<4,0,C>, ?) 
          (<5,0,A>, ?) (<5,0,B>, ?) (<5,0,C>, ?) 
          (<6,0,A>, ?) (<6,0,B>, ?) (<6,0,C>, ?) 
          (<7,0,A>, ?) (<7,0,B>, ?) (<7,0,C>, ?) 
          (<8,0,A>, ?) (<8,0,B>, ?) (<8,0,C>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) 
          (<1,0,A>, 1) (<1,0,B>, B) (<1,0,C>, C) 
          (<2,0,A>, B) (<2,0,B>, B) (<2,0,C>, ?) 
          (<3,0,A>, ?) (<3,0,B>, B) (<3,0,C>, ?) 
          (<4,0,A>, ?) (<4,0,B>, B) (<4,0,C>, B) 
          (<5,0,A>, ?) (<5,0,B>, B) (<5,0,C>, ?) 
          (<6,0,A>, ?) (<6,0,B>, B) (<6,0,C>, B) 
          (<7,0,A>, ?) (<7,0,B>, B) (<7,0,C>, ?) 
          (<8,0,A>, ?) (<8,0,B>, B) (<8,0,C>, ?) 
* Step 3: UnsatPaths WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0. evalfstart(A,B,C)    -> evalfentryin(A,B,C)   True         (1,1)
          1. evalfentryin(A,B,C)  -> evalfbb4in(1,B,C)     True         (?,1)
          2. evalfbb4in(A,B,C)    -> evalfbb2in(A,B,A)     [B >= A]     (?,1)
          3. evalfbb4in(A,B,C)    -> evalfreturnin(A,B,C)  [A >= 1 + B] (?,1)
          4. evalfbb2in(A,B,C)    -> evalfbb1in(A,B,C)     [B >= C]     (?,1)
          5. evalfbb2in(A,B,C)    -> evalfbb3in(A,B,C)     [C >= 1 + B] (?,1)
          6. evalfbb1in(A,B,C)    -> evalfbb2in(A,B,1 + C) True         (?,1)
          7. evalfbb3in(A,B,C)    -> evalfbb4in(1 + A,B,C) True         (?,1)
          8. evalfreturnin(A,B,C) -> evalfstop(A,B,C)      True         (?,1)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbb4in,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [0->{1},1->{2,3},2->{4,5},3->{8},4->{6},5->{7},6->{4,5},7->{2,3},8->{}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) 
          (<1,0,A>, 1) (<1,0,B>, B) (<1,0,C>, C) 
          (<2,0,A>, B) (<2,0,B>, B) (<2,0,C>, ?) 
          (<3,0,A>, ?) (<3,0,B>, B) (<3,0,C>, ?) 
          (<4,0,A>, ?) (<4,0,B>, B) (<4,0,C>, B) 
          (<5,0,A>, ?) (<5,0,B>, B) (<5,0,C>, ?) 
          (<6,0,A>, ?) (<6,0,B>, B) (<6,0,C>, B) 
          (<7,0,A>, ?) (<7,0,B>, B) (<7,0,C>, ?) 
          (<8,0,A>, ?) (<8,0,B>, B) (<8,0,C>, ?) 
    + Applied Processor:
        UnsatPaths
    + Details:
        We remove following edges from the transition graph: [(2,5)]
* Step 4: LeafRules WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0. evalfstart(A,B,C)    -> evalfentryin(A,B,C)   True         (1,1)
          1. evalfentryin(A,B,C)  -> evalfbb4in(1,B,C)     True         (?,1)
          2. evalfbb4in(A,B,C)    -> evalfbb2in(A,B,A)     [B >= A]     (?,1)
          3. evalfbb4in(A,B,C)    -> evalfreturnin(A,B,C)  [A >= 1 + B] (?,1)
          4. evalfbb2in(A,B,C)    -> evalfbb1in(A,B,C)     [B >= C]     (?,1)
          5. evalfbb2in(A,B,C)    -> evalfbb3in(A,B,C)     [C >= 1 + B] (?,1)
          6. evalfbb1in(A,B,C)    -> evalfbb2in(A,B,1 + C) True         (?,1)
          7. evalfbb3in(A,B,C)    -> evalfbb4in(1 + A,B,C) True         (?,1)
          8. evalfreturnin(A,B,C) -> evalfstop(A,B,C)      True         (?,1)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbb4in,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [0->{1},1->{2,3},2->{4},3->{8},4->{6},5->{7},6->{4,5},7->{2,3},8->{}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) 
          (<1,0,A>, 1) (<1,0,B>, B) (<1,0,C>, C) 
          (<2,0,A>, B) (<2,0,B>, B) (<2,0,C>, ?) 
          (<3,0,A>, ?) (<3,0,B>, B) (<3,0,C>, ?) 
          (<4,0,A>, ?) (<4,0,B>, B) (<4,0,C>, B) 
          (<5,0,A>, ?) (<5,0,B>, B) (<5,0,C>, ?) 
          (<6,0,A>, ?) (<6,0,B>, B) (<6,0,C>, B) 
          (<7,0,A>, ?) (<7,0,B>, B) (<7,0,C>, ?) 
          (<8,0,A>, ?) (<8,0,B>, B) (<8,0,C>, ?) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [3,8]
* Step 5: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0. evalfstart(A,B,C)   -> evalfentryin(A,B,C)   True         (1,1)
          1. evalfentryin(A,B,C) -> evalfbb4in(1,B,C)     True         (?,1)
          2. evalfbb4in(A,B,C)   -> evalfbb2in(A,B,A)     [B >= A]     (?,1)
          4. evalfbb2in(A,B,C)   -> evalfbb1in(A,B,C)     [B >= C]     (?,1)
          5. evalfbb2in(A,B,C)   -> evalfbb3in(A,B,C)     [C >= 1 + B] (?,1)
          6. evalfbb1in(A,B,C)   -> evalfbb2in(A,B,1 + C) True         (?,1)
          7. evalfbb3in(A,B,C)   -> evalfbb4in(1 + A,B,C) True         (?,1)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbb4in,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [0->{1},1->{2},2->{4},4->{6},5->{7},6->{4,5},7->{2}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) 
          (<1,0,A>, 1) (<1,0,B>, B) (<1,0,C>, C) 
          (<2,0,A>, B) (<2,0,B>, B) (<2,0,C>, ?) 
          (<4,0,A>, ?) (<4,0,B>, B) (<4,0,C>, B) 
          (<5,0,A>, ?) (<5,0,B>, B) (<5,0,C>, ?) 
          (<6,0,A>, ?) (<6,0,B>, B) (<6,0,C>, B) 
          (<7,0,A>, ?) (<7,0,B>, B) (<7,0,C>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
            p(evalfbb1in) = 1
            p(evalfbb2in) = 1
            p(evalfbb3in) = 1
            p(evalfbb4in) = 1
          p(evalfentryin) = 2
            p(evalfstart) = 2
        
        The following rules are strictly oriented:
                         True ==>                  
          evalfentryin(A,B,C)   = 2                
                                > 1                
                                = evalfbb4in(1,B,C)
        
        
        The following rules are weakly oriented:
                       True ==>                      
          evalfstart(A,B,C)   = 2                    
                             >= 2                    
                              = evalfentryin(A,B,C)  
        
                   [B >= A] ==>                      
          evalfbb4in(A,B,C)   = 1                    
                             >= 1                    
                              = evalfbb2in(A,B,A)    
        
                   [B >= C] ==>                      
          evalfbb2in(A,B,C)   = 1                    
                             >= 1                    
                              = evalfbb1in(A,B,C)    
        
               [C >= 1 + B] ==>                      
          evalfbb2in(A,B,C)   = 1                    
                             >= 1                    
                              = evalfbb3in(A,B,C)    
        
                       True ==>                      
          evalfbb1in(A,B,C)   = 1                    
                             >= 1                    
                              = evalfbb2in(A,B,1 + C)
        
                       True ==>                      
          evalfbb3in(A,B,C)   = 1                    
                             >= 1                    
                              = evalfbb4in(1 + A,B,C)
        
        
* Step 6: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0. evalfstart(A,B,C)   -> evalfentryin(A,B,C)   True         (1,1)
          1. evalfentryin(A,B,C) -> evalfbb4in(1,B,C)     True         (2,1)
          2. evalfbb4in(A,B,C)   -> evalfbb2in(A,B,A)     [B >= A]     (?,1)
          4. evalfbb2in(A,B,C)   -> evalfbb1in(A,B,C)     [B >= C]     (?,1)
          5. evalfbb2in(A,B,C)   -> evalfbb3in(A,B,C)     [C >= 1 + B] (?,1)
          6. evalfbb1in(A,B,C)   -> evalfbb2in(A,B,1 + C) True         (?,1)
          7. evalfbb3in(A,B,C)   -> evalfbb4in(1 + A,B,C) True         (?,1)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbb4in,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [0->{1},1->{2},2->{4},4->{6},5->{7},6->{4,5},7->{2}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) 
          (<1,0,A>, 1) (<1,0,B>, B) (<1,0,C>, C) 
          (<2,0,A>, B) (<2,0,B>, B) (<2,0,C>, ?) 
          (<4,0,A>, ?) (<4,0,B>, B) (<4,0,C>, B) 
          (<5,0,A>, ?) (<5,0,B>, B) (<5,0,C>, ?) 
          (<6,0,A>, ?) (<6,0,B>, B) (<6,0,C>, B) 
          (<7,0,A>, ?) (<7,0,B>, B) (<7,0,C>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
            p(evalfbb1in) = -1*x1 + x2    
            p(evalfbb2in) = -1*x1 + x2    
            p(evalfbb3in) = -1*x1 + x2    
            p(evalfbb4in) = 1 + -1*x1 + x2
          p(evalfentryin) = x2            
            p(evalfstart) = x2            
        
        The following rules are strictly oriented:
                   [B >= A] ==>                  
          evalfbb4in(A,B,C)   = 1 + -1*A + B     
                              > -1*A + B         
                              = evalfbb2in(A,B,A)
        
        
        The following rules are weakly oriented:
                         True ==>                      
            evalfstart(A,B,C)   = B                    
                               >= B                    
                                = evalfentryin(A,B,C)  
        
                         True ==>                      
          evalfentryin(A,B,C)   = B                    
                               >= B                    
                                = evalfbb4in(1,B,C)    
        
                     [B >= C] ==>                      
            evalfbb2in(A,B,C)   = -1*A + B             
                               >= -1*A + B             
                                = evalfbb1in(A,B,C)    
        
                 [C >= 1 + B] ==>                      
            evalfbb2in(A,B,C)   = -1*A + B             
                               >= -1*A + B             
                                = evalfbb3in(A,B,C)    
        
                         True ==>                      
            evalfbb1in(A,B,C)   = -1*A + B             
                               >= -1*A + B             
                                = evalfbb2in(A,B,1 + C)
        
                         True ==>                      
            evalfbb3in(A,B,C)   = -1*A + B             
                               >= -1*A + B             
                                = evalfbb4in(1 + A,B,C)
        
        
* Step 7: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0. evalfstart(A,B,C)   -> evalfentryin(A,B,C)   True         (1,1)
          1. evalfentryin(A,B,C) -> evalfbb4in(1,B,C)     True         (2,1)
          2. evalfbb4in(A,B,C)   -> evalfbb2in(A,B,A)     [B >= A]     (B,1)
          4. evalfbb2in(A,B,C)   -> evalfbb1in(A,B,C)     [B >= C]     (?,1)
          5. evalfbb2in(A,B,C)   -> evalfbb3in(A,B,C)     [C >= 1 + B] (?,1)
          6. evalfbb1in(A,B,C)   -> evalfbb2in(A,B,1 + C) True         (?,1)
          7. evalfbb3in(A,B,C)   -> evalfbb4in(1 + A,B,C) True         (?,1)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbb4in,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [0->{1},1->{2},2->{4},4->{6},5->{7},6->{4,5},7->{2}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) 
          (<1,0,A>, 1) (<1,0,B>, B) (<1,0,C>, C) 
          (<2,0,A>, B) (<2,0,B>, B) (<2,0,C>, ?) 
          (<4,0,A>, ?) (<4,0,B>, B) (<4,0,C>, B) 
          (<5,0,A>, ?) (<5,0,B>, B) (<5,0,C>, ?) 
          (<6,0,A>, ?) (<6,0,B>, B) (<6,0,C>, B) 
          (<7,0,A>, ?) (<7,0,B>, B) (<7,0,C>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [7,5,6,4], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalfbb1in) = 1
          p(evalfbb2in) = 1
          p(evalfbb3in) = 1
          p(evalfbb4in) = 0
        
        The following rules are strictly oriented:
                       True ==>                      
          evalfbb3in(A,B,C)   = 1                    
                              > 0                    
                              = evalfbb4in(1 + A,B,C)
        
        
        The following rules are weakly oriented:
                   [B >= C] ==>                      
          evalfbb2in(A,B,C)   = 1                    
                             >= 1                    
                              = evalfbb1in(A,B,C)    
        
               [C >= 1 + B] ==>                      
          evalfbb2in(A,B,C)   = 1                    
                             >= 1                    
                              = evalfbb3in(A,B,C)    
        
                       True ==>                      
          evalfbb1in(A,B,C)   = 1                    
                             >= 1                    
                              = evalfbb2in(A,B,1 + C)
        
        We use the following global sizebounds:
        (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) 
        (<1,0,A>, 1) (<1,0,B>, B) (<1,0,C>, C) 
        (<2,0,A>, B) (<2,0,B>, B) (<2,0,C>, ?) 
        (<4,0,A>, ?) (<4,0,B>, B) (<4,0,C>, B) 
        (<5,0,A>, ?) (<5,0,B>, B) (<5,0,C>, ?) 
        (<6,0,A>, ?) (<6,0,B>, B) (<6,0,C>, B) 
        (<7,0,A>, ?) (<7,0,B>, B) (<7,0,C>, ?) 
* Step 8: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0. evalfstart(A,B,C)   -> evalfentryin(A,B,C)   True         (1,1)
          1. evalfentryin(A,B,C) -> evalfbb4in(1,B,C)     True         (2,1)
          2. evalfbb4in(A,B,C)   -> evalfbb2in(A,B,A)     [B >= A]     (B,1)
          4. evalfbb2in(A,B,C)   -> evalfbb1in(A,B,C)     [B >= C]     (?,1)
          5. evalfbb2in(A,B,C)   -> evalfbb3in(A,B,C)     [C >= 1 + B] (?,1)
          6. evalfbb1in(A,B,C)   -> evalfbb2in(A,B,1 + C) True         (?,1)
          7. evalfbb3in(A,B,C)   -> evalfbb4in(1 + A,B,C) True         (B,1)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbb4in,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [0->{1},1->{2},2->{4},4->{6},5->{7},6->{4,5},7->{2}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) 
          (<1,0,A>, 1) (<1,0,B>, B) (<1,0,C>, C) 
          (<2,0,A>, B) (<2,0,B>, B) (<2,0,C>, ?) 
          (<4,0,A>, ?) (<4,0,B>, B) (<4,0,C>, B) 
          (<5,0,A>, ?) (<5,0,B>, B) (<5,0,C>, ?) 
          (<6,0,A>, ?) (<6,0,B>, B) (<6,0,C>, B) 
          (<7,0,A>, ?) (<7,0,B>, B) (<7,0,C>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [5,6,4], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalfbb1in) = 1
          p(evalfbb2in) = 1
          p(evalfbb3in) = 0
        
        The following rules are strictly oriented:
               [C >= 1 + B] ==>                  
          evalfbb2in(A,B,C)   = 1                
                              > 0                
                              = evalfbb3in(A,B,C)
        
        
        The following rules are weakly oriented:
                   [B >= C] ==>                      
          evalfbb2in(A,B,C)   = 1                    
                             >= 1                    
                              = evalfbb1in(A,B,C)    
        
                       True ==>                      
          evalfbb1in(A,B,C)   = 1                    
                             >= 1                    
                              = evalfbb2in(A,B,1 + C)
        
        We use the following global sizebounds:
        (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) 
        (<1,0,A>, 1) (<1,0,B>, B) (<1,0,C>, C) 
        (<2,0,A>, B) (<2,0,B>, B) (<2,0,C>, ?) 
        (<4,0,A>, ?) (<4,0,B>, B) (<4,0,C>, B) 
        (<5,0,A>, ?) (<5,0,B>, B) (<5,0,C>, ?) 
        (<6,0,A>, ?) (<6,0,B>, B) (<6,0,C>, B) 
        (<7,0,A>, ?) (<7,0,B>, B) (<7,0,C>, ?) 
* Step 9: ChainProcessor WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0. evalfstart(A,B,C)   -> evalfentryin(A,B,C)   True         (1,1)
          1. evalfentryin(A,B,C) -> evalfbb4in(1,B,C)     True         (2,1)
          2. evalfbb4in(A,B,C)   -> evalfbb2in(A,B,A)     [B >= A]     (B,1)
          4. evalfbb2in(A,B,C)   -> evalfbb1in(A,B,C)     [B >= C]     (?,1)
          5. evalfbb2in(A,B,C)   -> evalfbb3in(A,B,C)     [C >= 1 + B] (B,1)
          6. evalfbb1in(A,B,C)   -> evalfbb2in(A,B,1 + C) True         (?,1)
          7. evalfbb3in(A,B,C)   -> evalfbb4in(1 + A,B,C) True         (B,1)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbb4in,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [0->{1},1->{2},2->{4},4->{6},5->{7},6->{4,5},7->{2}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) 
          (<1,0,A>, 1) (<1,0,B>, B) (<1,0,C>, C) 
          (<2,0,A>, B) (<2,0,B>, B) (<2,0,C>, ?) 
          (<4,0,A>, ?) (<4,0,B>, B) (<4,0,C>, B) 
          (<5,0,A>, ?) (<5,0,B>, B) (<5,0,C>, ?) 
          (<6,0,A>, ?) (<6,0,B>, B) (<6,0,C>, B) 
          (<7,0,A>, ?) (<7,0,B>, B) (<7,0,C>, ?) 
    + Applied Processor:
        ChainProcessor False [0,1,2,4,5,6,7]
    + Details:
        We chained rule 0 to obtain the rules [8] .
* Step 10: UnreachableRules WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          1. evalfentryin(A,B,C) -> evalfbb4in(1,B,C)     True         (2,1)
          2. evalfbb4in(A,B,C)   -> evalfbb2in(A,B,A)     [B >= A]     (B,1)
          4. evalfbb2in(A,B,C)   -> evalfbb1in(A,B,C)     [B >= C]     (?,1)
          5. evalfbb2in(A,B,C)   -> evalfbb3in(A,B,C)     [C >= 1 + B] (B,1)
          6. evalfbb1in(A,B,C)   -> evalfbb2in(A,B,1 + C) True         (?,1)
          7. evalfbb3in(A,B,C)   -> evalfbb4in(1 + A,B,C) True         (B,1)
          8. evalfstart(A,B,C)   -> evalfbb4in(1,B,C)     True         (1,2)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbb4in,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [1->{2},2->{4,5},4->{6},5->{7},6->{4,5},7->{2},8->{2}]
        Sizebounds:
          (<1,0,A>, 1) (<1,0,B>, B) (<1,0,C>, C) 
          (<2,0,A>, B) (<2,0,B>, B) (<2,0,C>, ?) 
          (<4,0,A>, ?) (<4,0,B>, B) (<4,0,C>, B) 
          (<5,0,A>, ?) (<5,0,B>, B) (<5,0,C>, ?) 
          (<6,0,A>, ?) (<6,0,B>, B) (<6,0,C>, B) 
          (<7,0,A>, ?) (<7,0,B>, B) (<7,0,C>, ?) 
          (<8,0,A>, 1) (<8,0,B>, B) (<8,0,C>, C) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [1]
* Step 11: ChainProcessor WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          2. evalfbb4in(A,B,C) -> evalfbb2in(A,B,A)     [B >= A]     (B,1)
          4. evalfbb2in(A,B,C) -> evalfbb1in(A,B,C)     [B >= C]     (?,1)
          5. evalfbb2in(A,B,C) -> evalfbb3in(A,B,C)     [C >= 1 + B] (B,1)
          6. evalfbb1in(A,B,C) -> evalfbb2in(A,B,1 + C) True         (?,1)
          7. evalfbb3in(A,B,C) -> evalfbb4in(1 + A,B,C) True         (B,1)
          8. evalfstart(A,B,C) -> evalfbb4in(1,B,C)     True         (1,2)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbb4in,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [2->{4,5},4->{6},5->{7},6->{4,5},7->{2},8->{2}]
        Sizebounds:
          (<2,0,A>, B) (<2,0,B>, B) (<2,0,C>, ?) 
          (<4,0,A>, ?) (<4,0,B>, B) (<4,0,C>, B) 
          (<5,0,A>, ?) (<5,0,B>, B) (<5,0,C>, ?) 
          (<6,0,A>, ?) (<6,0,B>, B) (<6,0,C>, B) 
          (<7,0,A>, ?) (<7,0,B>, B) (<7,0,C>, ?) 
          (<8,0,A>, 1) (<8,0,B>, B) (<8,0,C>, C) 
    + Applied Processor:
        ChainProcessor False [2,4,5,6,7,8]
    + Details:
        We chained rule 2 to obtain the rules [9,10] .
* Step 12: ChainProcessor WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          4.  evalfbb2in(A,B,C) -> evalfbb1in(A,B,C)     [B >= C]               (?,1)
          5.  evalfbb2in(A,B,C) -> evalfbb3in(A,B,C)     [C >= 1 + B]           (B,1)
          6.  evalfbb1in(A,B,C) -> evalfbb2in(A,B,1 + C) True                   (?,1)
          7.  evalfbb3in(A,B,C) -> evalfbb4in(1 + A,B,C) True                   (B,1)
          8.  evalfstart(A,B,C) -> evalfbb4in(1,B,C)     True                   (1,2)
          9.  evalfbb4in(A,B,C) -> evalfbb1in(A,B,A)     [B >= A && B >= A]     (B,2)
          10. evalfbb4in(A,B,C) -> evalfbb3in(A,B,A)     [B >= A && A >= 1 + B] (B,2)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbb4in,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [4->{6},5->{7},6->{4,5},7->{9,10},8->{9,10},9->{6},10->{7}]
        Sizebounds:
          (< 4,0,A>, ?) (< 4,0,B>, B) (< 4,0,C>, B) 
          (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, B) 
          (< 7,0,A>, ?) (< 7,0,B>, B) (< 7,0,C>, ?) 
          (< 8,0,A>, 1) (< 8,0,B>, B) (< 8,0,C>, C) 
          (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, B) 
          (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) 
    + Applied Processor:
        ChainProcessor False [4,5,6,7,8,9,10]
    + Details:
        We chained rule 4 to obtain the rules [11] .
* Step 13: ChainProcessor WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          5.  evalfbb2in(A,B,C) -> evalfbb3in(A,B,C)     [C >= 1 + B]           (B,1)
          6.  evalfbb1in(A,B,C) -> evalfbb2in(A,B,1 + C) True                   (?,1)
          7.  evalfbb3in(A,B,C) -> evalfbb4in(1 + A,B,C) True                   (B,1)
          8.  evalfstart(A,B,C) -> evalfbb4in(1,B,C)     True                   (1,2)
          9.  evalfbb4in(A,B,C) -> evalfbb1in(A,B,A)     [B >= A && B >= A]     (B,2)
          10. evalfbb4in(A,B,C) -> evalfbb3in(A,B,A)     [B >= A && A >= 1 + B] (B,2)
          11. evalfbb2in(A,B,C) -> evalfbb2in(A,B,1 + C) [B >= C]               (?,2)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbb4in,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [5->{7},6->{5,11},7->{9,10},8->{9,10},9->{6},10->{7},11->{5,11}]
        Sizebounds:
          (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, B) 
          (< 7,0,A>, ?) (< 7,0,B>, B) (< 7,0,C>, ?) 
          (< 8,0,A>, 1) (< 8,0,B>, B) (< 8,0,C>, C) 
          (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, B) 
          (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) 
          (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, B) 
    + Applied Processor:
        ChainProcessor False [5,6,7,8,9,10,11]
    + Details:
        We chained rule 5 to obtain the rules [12] .
* Step 14: ChainProcessor WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          6.  evalfbb1in(A,B,C) -> evalfbb2in(A,B,1 + C) True                   (?,1)
          7.  evalfbb3in(A,B,C) -> evalfbb4in(1 + A,B,C) True                   (B,1)
          8.  evalfstart(A,B,C) -> evalfbb4in(1,B,C)     True                   (1,2)
          9.  evalfbb4in(A,B,C) -> evalfbb1in(A,B,A)     [B >= A && B >= A]     (B,2)
          10. evalfbb4in(A,B,C) -> evalfbb3in(A,B,A)     [B >= A && A >= 1 + B] (B,2)
          11. evalfbb2in(A,B,C) -> evalfbb2in(A,B,1 + C) [B >= C]               (?,2)
          12. evalfbb2in(A,B,C) -> evalfbb4in(1 + A,B,C) [C >= 1 + B]           (B,2)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbb4in,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [6->{11,12},7->{9,10},8->{9,10},9->{6},10->{7},11->{11,12},12->{9,10}]
        Sizebounds:
          (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, B) 
          (< 7,0,A>, ?) (< 7,0,B>, B) (< 7,0,C>, ?) 
          (< 8,0,A>, 1) (< 8,0,B>, B) (< 8,0,C>, C) 
          (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, B) 
          (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) 
          (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, B) 
          (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) 
    + Applied Processor:
        ChainProcessor False [6,7,8,9,10,11,12]
    + Details:
        We chained rule 7 to obtain the rules [13,14] .
* Step 15: ChainProcessor WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          6.  evalfbb1in(A,B,C) -> evalfbb2in(A,B,1 + C)     True                           (?,1)
          8.  evalfstart(A,B,C) -> evalfbb4in(1,B,C)         True                           (1,2)
          9.  evalfbb4in(A,B,C) -> evalfbb1in(A,B,A)         [B >= A && B >= A]             (B,2)
          10. evalfbb4in(A,B,C) -> evalfbb3in(A,B,A)         [B >= A && A >= 1 + B]         (B,2)
          11. evalfbb2in(A,B,C) -> evalfbb2in(A,B,1 + C)     [B >= C]                       (?,2)
          12. evalfbb2in(A,B,C) -> evalfbb4in(1 + A,B,C)     [C >= 1 + B]                   (B,2)
          13. evalfbb3in(A,B,C) -> evalfbb1in(1 + A,B,1 + A) [B >= 1 + A && B >= 1 + A]     (B,3)
          14. evalfbb3in(A,B,C) -> evalfbb3in(1 + A,B,1 + A) [B >= 1 + A && 1 + A >= 1 + B] (B,3)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbb4in,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [6->{11,12},8->{9,10},9->{6},10->{13,14},11->{11,12},12->{9,10},13->{6},14->{13,14}]
        Sizebounds:
          (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, B) 
          (< 8,0,A>, 1) (< 8,0,B>, B) (< 8,0,C>, C) 
          (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, B) 
          (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) 
          (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, B) 
          (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) 
          (<13,0,A>, ?) (<13,0,B>, B) (<13,0,C>, B) 
          (<14,0,A>, ?) (<14,0,B>, B) (<14,0,C>, ?) 
    + Applied Processor:
        ChainProcessor False [6,8,9,10,11,12,13,14]
    + Details:
        We chained rule 8 to obtain the rules [15,16] .
* Step 16: ChainProcessor WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          6.  evalfbb1in(A,B,C) -> evalfbb2in(A,B,1 + C)     True                           (?,1)
          9.  evalfbb4in(A,B,C) -> evalfbb1in(A,B,A)         [B >= A && B >= A]             (B,2)
          10. evalfbb4in(A,B,C) -> evalfbb3in(A,B,A)         [B >= A && A >= 1 + B]         (B,2)
          11. evalfbb2in(A,B,C) -> evalfbb2in(A,B,1 + C)     [B >= C]                       (?,2)
          12. evalfbb2in(A,B,C) -> evalfbb4in(1 + A,B,C)     [C >= 1 + B]                   (B,2)
          13. evalfbb3in(A,B,C) -> evalfbb1in(1 + A,B,1 + A) [B >= 1 + A && B >= 1 + A]     (B,3)
          14. evalfbb3in(A,B,C) -> evalfbb3in(1 + A,B,1 + A) [B >= 1 + A && 1 + A >= 1 + B] (B,3)
          15. evalfstart(A,B,C) -> evalfbb1in(1,B,1)         [B >= 1 && B >= 1]             (1,4)
          16. evalfstart(A,B,C) -> evalfbb3in(1,B,1)         [B >= 1 && 1 >= 1 + B]         (1,4)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbb4in,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [6->{11,12},9->{6},10->{13,14},11->{11,12},12->{9,10},13->{6},14->{13,14},15->{6},16->{13,14}]
        Sizebounds:
          (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, B) 
          (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, B) 
          (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) 
          (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, B) 
          (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) 
          (<13,0,A>, ?) (<13,0,B>, B) (<13,0,C>, B) 
          (<14,0,A>, ?) (<14,0,B>, B) (<14,0,C>, ?) 
          (<15,0,A>, ?) (<15,0,B>, B) (<15,0,C>, B) 
          (<16,0,A>, ?) (<16,0,B>, B) (<16,0,C>, ?) 
    + Applied Processor:
        ChainProcessor False [6,9,10,11,12,13,14,15,16]
    + Details:
        We chained rule 9 to obtain the rules [17] .
* Step 17: ChainProcessor WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          6.  evalfbb1in(A,B,C) -> evalfbb2in(A,B,1 + C)     True                           (?,1)
          10. evalfbb4in(A,B,C) -> evalfbb3in(A,B,A)         [B >= A && A >= 1 + B]         (B,2)
          11. evalfbb2in(A,B,C) -> evalfbb2in(A,B,1 + C)     [B >= C]                       (?,2)
          12. evalfbb2in(A,B,C) -> evalfbb4in(1 + A,B,C)     [C >= 1 + B]                   (B,2)
          13. evalfbb3in(A,B,C) -> evalfbb1in(1 + A,B,1 + A) [B >= 1 + A && B >= 1 + A]     (B,3)
          14. evalfbb3in(A,B,C) -> evalfbb3in(1 + A,B,1 + A) [B >= 1 + A && 1 + A >= 1 + B] (B,3)
          15. evalfstart(A,B,C) -> evalfbb1in(1,B,1)         [B >= 1 && B >= 1]             (1,4)
          16. evalfstart(A,B,C) -> evalfbb3in(1,B,1)         [B >= 1 && 1 >= 1 + B]         (1,4)
          17. evalfbb4in(A,B,C) -> evalfbb2in(A,B,1 + A)     [B >= A && B >= A]             (B,3)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbb4in,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [6->{11,12},10->{13,14},11->{11,12},12->{10,17},13->{6},14->{13,14},15->{6},16->{13,14},17->{11,12}]
        Sizebounds:
          (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, B) 
          (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) 
          (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, B) 
          (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) 
          (<13,0,A>, ?) (<13,0,B>, B) (<13,0,C>, B) 
          (<14,0,A>, ?) (<14,0,B>, B) (<14,0,C>, ?) 
          (<15,0,A>, ?) (<15,0,B>, B) (<15,0,C>, B) 
          (<16,0,A>, ?) (<16,0,B>, B) (<16,0,C>, ?) 
          (<17,0,A>, ?) (<17,0,B>, B) (<17,0,C>, B) 
    + Applied Processor:
        ChainProcessor False [6,10,11,12,13,14,15,16,17]
    + Details:
        We chained rule 12 to obtain the rules [18,19] .
* Step 18: UnreachableRules WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          6.  evalfbb1in(A,B,C) -> evalfbb2in(A,B,1 + C)     True                                         (?,1)
          10. evalfbb4in(A,B,C) -> evalfbb3in(A,B,A)         [B >= A && A >= 1 + B]                       (B,2)
          11. evalfbb2in(A,B,C) -> evalfbb2in(A,B,1 + C)     [B >= C]                                     (?,2)
          13. evalfbb3in(A,B,C) -> evalfbb1in(1 + A,B,1 + A) [B >= 1 + A && B >= 1 + A]                   (B,3)
          14. evalfbb3in(A,B,C) -> evalfbb3in(1 + A,B,1 + A) [B >= 1 + A && 1 + A >= 1 + B]               (B,3)
          15. evalfstart(A,B,C) -> evalfbb1in(1,B,1)         [B >= 1 && B >= 1]                           (1,4)
          16. evalfstart(A,B,C) -> evalfbb3in(1,B,1)         [B >= 1 && 1 >= 1 + B]                       (1,4)
          17. evalfbb4in(A,B,C) -> evalfbb2in(A,B,1 + A)     [B >= A && B >= A]                           (B,3)
          18. evalfbb2in(A,B,C) -> evalfbb3in(1 + A,B,1 + A) [C >= 1 + B && B >= 1 + A && 1 + A >= 1 + B] (B,4)
          19. evalfbb2in(A,B,C) -> evalfbb2in(1 + A,B,2 + A) [C >= 1 + B && B >= 1 + A && B >= 1 + A]     (B,5)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbb4in,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [6->{11,18,19},10->{13,14},11->{11,18,19},13->{6},14->{13,14},15->{6},16->{13,14},17->{11,18,19},18->{13
          ,14},19->{11,18,19}]
        Sizebounds:
          (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, B) 
          (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) 
          (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, B) 
          (<13,0,A>, ?) (<13,0,B>, B) (<13,0,C>, B) 
          (<14,0,A>, ?) (<14,0,B>, B) (<14,0,C>, ?) 
          (<15,0,A>, ?) (<15,0,B>, B) (<15,0,C>, B) 
          (<16,0,A>, ?) (<16,0,B>, B) (<16,0,C>, ?) 
          (<17,0,A>, ?) (<17,0,B>, B) (<17,0,C>, B) 
          (<18,0,A>, ?) (<18,0,B>, B) (<18,0,C>, ?) 
          (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, B) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [10,17]
* Step 19: ChainProcessor WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          6.  evalfbb1in(A,B,C) -> evalfbb2in(A,B,1 + C)     True                                         (?,1)
          11. evalfbb2in(A,B,C) -> evalfbb2in(A,B,1 + C)     [B >= C]                                     (?,2)
          13. evalfbb3in(A,B,C) -> evalfbb1in(1 + A,B,1 + A) [B >= 1 + A && B >= 1 + A]                   (B,3)
          14. evalfbb3in(A,B,C) -> evalfbb3in(1 + A,B,1 + A) [B >= 1 + A && 1 + A >= 1 + B]               (B,3)
          15. evalfstart(A,B,C) -> evalfbb1in(1,B,1)         [B >= 1 && B >= 1]                           (1,4)
          16. evalfstart(A,B,C) -> evalfbb3in(1,B,1)         [B >= 1 && 1 >= 1 + B]                       (1,4)
          18. evalfbb2in(A,B,C) -> evalfbb3in(1 + A,B,1 + A) [C >= 1 + B && B >= 1 + A && 1 + A >= 1 + B] (B,4)
          19. evalfbb2in(A,B,C) -> evalfbb2in(1 + A,B,2 + A) [C >= 1 + B && B >= 1 + A && B >= 1 + A]     (B,5)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbb4in,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [6->{11,18,19},11->{11,18,19},13->{6},14->{13,14},15->{6},16->{13,14},18->{13,14},19->{11,18,19}]
        Sizebounds:
          (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, B) 
          (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, B) 
          (<13,0,A>, ?) (<13,0,B>, B) (<13,0,C>, B) 
          (<14,0,A>, ?) (<14,0,B>, B) (<14,0,C>, ?) 
          (<15,0,A>, ?) (<15,0,B>, B) (<15,0,C>, B) 
          (<16,0,A>, ?) (<16,0,B>, B) (<16,0,C>, ?) 
          (<18,0,A>, ?) (<18,0,B>, B) (<18,0,C>, ?) 
          (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, B) 
    + Applied Processor:
        ChainProcessor False [6,11,13,14,15,16,18,19]
    + Details:
        We chained rule 13 to obtain the rules [20] .
* Step 20: ChainProcessor WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          6.  evalfbb1in(A,B,C) -> evalfbb2in(A,B,1 + C)     True                                         (?,1)
          11. evalfbb2in(A,B,C) -> evalfbb2in(A,B,1 + C)     [B >= C]                                     (?,2)
          14. evalfbb3in(A,B,C) -> evalfbb3in(1 + A,B,1 + A) [B >= 1 + A && 1 + A >= 1 + B]               (B,3)
          15. evalfstart(A,B,C) -> evalfbb1in(1,B,1)         [B >= 1 && B >= 1]                           (1,4)
          16. evalfstart(A,B,C) -> evalfbb3in(1,B,1)         [B >= 1 && 1 >= 1 + B]                       (1,4)
          18. evalfbb2in(A,B,C) -> evalfbb3in(1 + A,B,1 + A) [C >= 1 + B && B >= 1 + A && 1 + A >= 1 + B] (B,4)
          19. evalfbb2in(A,B,C) -> evalfbb2in(1 + A,B,2 + A) [C >= 1 + B && B >= 1 + A && B >= 1 + A]     (B,5)
          20. evalfbb3in(A,B,C) -> evalfbb2in(1 + A,B,2 + A) [B >= 1 + A && B >= 1 + A]                   (B,4)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbb4in,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [6->{11,18,19},11->{11,18,19},14->{14,20},15->{6},16->{14,20},18->{14,20},19->{11,18,19},20->{11,18,19}]
        Sizebounds:
          (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, B) 
          (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, B) 
          (<14,0,A>, ?) (<14,0,B>, B) (<14,0,C>, ?) 
          (<15,0,A>, ?) (<15,0,B>, B) (<15,0,C>, B) 
          (<16,0,A>, ?) (<16,0,B>, B) (<16,0,C>, ?) 
          (<18,0,A>, ?) (<18,0,B>, B) (<18,0,C>, ?) 
          (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, B) 
          (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, B) 
    + Applied Processor:
        ChainProcessor False [6,11,14,15,16,18,19,20]
    + Details:
        We chained rule 15 to obtain the rules [21] .
* Step 21: UnreachableRules WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          6.  evalfbb1in(A,B,C) -> evalfbb2in(A,B,1 + C)     True                                         (?,1)
          11. evalfbb2in(A,B,C) -> evalfbb2in(A,B,1 + C)     [B >= C]                                     (?,2)
          14. evalfbb3in(A,B,C) -> evalfbb3in(1 + A,B,1 + A) [B >= 1 + A && 1 + A >= 1 + B]               (B,3)
          16. evalfstart(A,B,C) -> evalfbb3in(1,B,1)         [B >= 1 && 1 >= 1 + B]                       (1,4)
          18. evalfbb2in(A,B,C) -> evalfbb3in(1 + A,B,1 + A) [C >= 1 + B && B >= 1 + A && 1 + A >= 1 + B] (B,4)
          19. evalfbb2in(A,B,C) -> evalfbb2in(1 + A,B,2 + A) [C >= 1 + B && B >= 1 + A && B >= 1 + A]     (B,5)
          20. evalfbb3in(A,B,C) -> evalfbb2in(1 + A,B,2 + A) [B >= 1 + A && B >= 1 + A]                   (B,4)
          21. evalfstart(A,B,C) -> evalfbb2in(1,B,2)         [B >= 1 && B >= 1]                           (1,5)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbb4in,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [6->{11,18,19},11->{11,18,19},14->{14,20},16->{14,20},18->{14,20},19->{11,18,19},20->{11,18,19},21->{11,18
          ,19}]
        Sizebounds:
          (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, B) 
          (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, B) 
          (<14,0,A>, ?) (<14,0,B>, B) (<14,0,C>, ?) 
          (<16,0,A>, ?) (<16,0,B>, B) (<16,0,C>, ?) 
          (<18,0,A>, ?) (<18,0,B>, B) (<18,0,C>, ?) 
          (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, B) 
          (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, B) 
          (<21,0,A>, ?) (<21,0,B>, B) (<21,0,C>, B) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [6]
* Step 22: UnsatPaths WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          11. evalfbb2in(A,B,C) -> evalfbb2in(A,B,1 + C)     [B >= C]                                     (?,2)
          14. evalfbb3in(A,B,C) -> evalfbb3in(1 + A,B,1 + A) [B >= 1 + A && 1 + A >= 1 + B]               (B,3)
          16. evalfstart(A,B,C) -> evalfbb3in(1,B,1)         [B >= 1 && 1 >= 1 + B]                       (1,4)
          18. evalfbb2in(A,B,C) -> evalfbb3in(1 + A,B,1 + A) [C >= 1 + B && B >= 1 + A && 1 + A >= 1 + B] (B,4)
          19. evalfbb2in(A,B,C) -> evalfbb2in(1 + A,B,2 + A) [C >= 1 + B && B >= 1 + A && B >= 1 + A]     (B,5)
          20. evalfbb3in(A,B,C) -> evalfbb2in(1 + A,B,2 + A) [B >= 1 + A && B >= 1 + A]                   (B,4)
          21. evalfstart(A,B,C) -> evalfbb2in(1,B,2)         [B >= 1 && B >= 1]                           (1,5)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbb4in,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [11->{11,18,19},14->{14,20},16->{14,20},18->{14,20},19->{11,18,19},20->{11,18,19},21->{11,18,19}]
        Sizebounds:
          (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, B) 
          (<14,0,A>, ?) (<14,0,B>, B) (<14,0,C>, ?) 
          (<16,0,A>, ?) (<16,0,B>, B) (<16,0,C>, ?) 
          (<18,0,A>, ?) (<18,0,B>, B) (<18,0,C>, ?) 
          (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, B) 
          (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, B) 
          (<21,0,A>, ?) (<21,0,B>, B) (<21,0,C>, B) 
    + Applied Processor:
        UnsatPaths
    + Details:
        We remove following edges from the transition graph: [(11,18)
                                                             ,(14,14)
                                                             ,(14,20)
                                                             ,(16,14)
                                                             ,(16,20)
                                                             ,(18,14)
                                                             ,(18,20)
                                                             ,(19,18)
                                                             ,(19,19)
                                                             ,(20,18)
                                                             ,(20,19)
                                                             ,(21,18)
                                                             ,(21,19)]
* Step 23: UnreachableRules WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          11. evalfbb2in(A,B,C) -> evalfbb2in(A,B,1 + C)     [B >= C]                                     (?,2)
          14. evalfbb3in(A,B,C) -> evalfbb3in(1 + A,B,1 + A) [B >= 1 + A && 1 + A >= 1 + B]               (B,3)
          16. evalfstart(A,B,C) -> evalfbb3in(1,B,1)         [B >= 1 && 1 >= 1 + B]                       (1,4)
          18. evalfbb2in(A,B,C) -> evalfbb3in(1 + A,B,1 + A) [C >= 1 + B && B >= 1 + A && 1 + A >= 1 + B] (B,4)
          19. evalfbb2in(A,B,C) -> evalfbb2in(1 + A,B,2 + A) [C >= 1 + B && B >= 1 + A && B >= 1 + A]     (B,5)
          20. evalfbb3in(A,B,C) -> evalfbb2in(1 + A,B,2 + A) [B >= 1 + A && B >= 1 + A]                   (B,4)
          21. evalfstart(A,B,C) -> evalfbb2in(1,B,2)         [B >= 1 && B >= 1]                           (1,5)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbb4in,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [11->{11,19},14->{},16->{},18->{},19->{11},20->{11},21->{11}]
        Sizebounds:
          (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, B) 
          (<14,0,A>, ?) (<14,0,B>, B) (<14,0,C>, ?) 
          (<16,0,A>, ?) (<16,0,B>, B) (<16,0,C>, ?) 
          (<18,0,A>, ?) (<18,0,B>, B) (<18,0,C>, ?) 
          (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, B) 
          (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, B) 
          (<21,0,A>, ?) (<21,0,B>, B) (<21,0,C>, B) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [14,18,20]
* Step 24: LocalSizeboundsProc WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          11. evalfbb2in(A,B,C) -> evalfbb2in(A,B,1 + C)     [B >= C]                                 (?,2)
          16. evalfstart(A,B,C) -> evalfbb3in(1,B,1)         [B >= 1 && 1 >= 1 + B]                   (1,4)
          19. evalfbb2in(A,B,C) -> evalfbb2in(1 + A,B,2 + A) [C >= 1 + B && B >= 1 + A && B >= 1 + A] (B,5)
          21. evalfstart(A,B,C) -> evalfbb2in(1,B,2)         [B >= 1 && B >= 1]                       (1,5)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbb4in,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [11->{11,19},16->{},19->{11},21->{11}]
        Sizebounds:
          (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, B) 
          (<16,0,A>, ?) (<16,0,B>, B) (<16,0,C>, ?) 
          (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, B) 
          (<21,0,A>, ?) (<21,0,B>, B) (<21,0,C>, B) 
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (<11,0,A>,     A, .= 0) (<11,0,B>, B, .= 0) (<11,0,C>, 1 + C, .+ 1) 
          (<16,0,A>,     1, .= 1) (<16,0,B>, B, .= 0) (<16,0,C>,     1, .= 1) 
          (<19,0,A>, 1 + A, .+ 1) (<19,0,B>, B, .= 0) (<19,0,C>, 2 + A, .+ 2) 
          (<21,0,A>,     1, .= 1) (<21,0,B>, B, .= 0) (<21,0,C>,     2, .= 2) 
* Step 25: SizeboundsProc WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          11. evalfbb2in(A,B,C) -> evalfbb2in(A,B,1 + C)     [B >= C]                                 (?,2)
          16. evalfstart(A,B,C) -> evalfbb3in(1,B,1)         [B >= 1 && 1 >= 1 + B]                   (1,4)
          19. evalfbb2in(A,B,C) -> evalfbb2in(1 + A,B,2 + A) [C >= 1 + B && B >= 1 + A && B >= 1 + A] (B,5)
          21. evalfstart(A,B,C) -> evalfbb2in(1,B,2)         [B >= 1 && B >= 1]                       (1,5)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbb4in,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [11->{11,19},16->{},19->{11},21->{11}]
        Sizebounds:
          (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) 
          (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) 
          (<19,0,A>, ?) (<19,0,B>, ?) (<19,0,C>, ?) 
          (<21,0,A>, ?) (<21,0,B>, ?) (<21,0,C>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (<11,0,A>, 1 + B) (<11,0,B>, B) (<11,0,C>, 1 + B) 
          (<16,0,A>,     1) (<16,0,B>, B) (<16,0,C>,     1) 
          (<19,0,A>, 1 + B) (<19,0,B>, B) (<19,0,C>, 3 + B) 
          (<21,0,A>,     1) (<21,0,B>, B) (<21,0,C>,     2) 
* Step 26: LocationConstraintsProc WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          11. evalfbb2in(A,B,C) -> evalfbb2in(A,B,1 + C)     [B >= C]                                 (?,2)
          16. evalfstart(A,B,C) -> evalfbb3in(1,B,1)         [B >= 1 && 1 >= 1 + B]                   (1,4)
          19. evalfbb2in(A,B,C) -> evalfbb2in(1 + A,B,2 + A) [C >= 1 + B && B >= 1 + A && B >= 1 + A] (B,5)
          21. evalfstart(A,B,C) -> evalfbb2in(1,B,2)         [B >= 1 && B >= 1]                       (1,5)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbb4in,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [11->{11,19},16->{},19->{11},21->{11}]
        Sizebounds:
          (<11,0,A>, 1 + B) (<11,0,B>, B) (<11,0,C>, 1 + B) 
          (<16,0,A>,     1) (<16,0,B>, B) (<16,0,C>,     1) 
          (<19,0,A>, 1 + B) (<19,0,B>, B) (<19,0,C>, 3 + B) 
          (<21,0,A>,     1) (<21,0,B>, B) (<21,0,C>,     2) 
    + Applied Processor:
        LocationConstraintsProc
    + Details:
        We computed the location constraints  11 :  [B >= 1 && B >= 1] 16 :  True 19 :  [B >= 1
                                                                                         && False] 21 :  True .
* Step 27: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          11. evalfbb2in(A,B,C) -> evalfbb2in(A,B,1 + C)     [B >= C]                                 (?,2)
          16. evalfstart(A,B,C) -> evalfbb3in(1,B,1)         [B >= 1 && 1 >= 1 + B]                   (1,4)
          19. evalfbb2in(A,B,C) -> evalfbb2in(1 + A,B,2 + A) [C >= 1 + B && B >= 1 + A && B >= 1 + A] (B,5)
          21. evalfstart(A,B,C) -> evalfbb2in(1,B,2)         [B >= 1 && B >= 1]                       (1,5)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbb4in,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [11->{11,19},16->{},19->{11},21->{11}]
        Sizebounds:
          (<11,0,A>, 1 + B) (<11,0,B>, B) (<11,0,C>, 1 + B) 
          (<16,0,A>,     1) (<16,0,B>, B) (<16,0,C>,     1) 
          (<19,0,A>, 1 + B) (<19,0,B>, B) (<19,0,C>, 3 + B) 
          (<21,0,A>,     1) (<21,0,B>, B) (<21,0,C>,     2) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [11], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalfbb2in) = 1 + x2 + -1*x3
        
        The following rules are strictly oriented:
                   [B >= C] ==>                      
          evalfbb2in(A,B,C)   = 1 + B + -1*C         
                              > B + -1*C             
                              = evalfbb2in(A,B,1 + C)
        
        
        The following rules are weakly oriented:
        
        We use the following global sizebounds:
        (<11,0,A>, 1 + B) (<11,0,B>, B) (<11,0,C>, 1 + B) 
        (<16,0,A>,     1) (<16,0,B>, B) (<16,0,C>,     1) 
        (<19,0,A>, 1 + B) (<19,0,B>, B) (<19,0,C>, 3 + B) 
        (<21,0,A>,     1) (<21,0,B>, B) (<21,0,C>,     2) 
* Step 28: KnowledgePropagation WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          11. evalfbb2in(A,B,C) -> evalfbb2in(A,B,1 + C)     [B >= C]                                 (3 + 5*B + 2*B^2,2)
          16. evalfstart(A,B,C) -> evalfbb3in(1,B,1)         [B >= 1 && 1 >= 1 + B]                   (1,4)              
          19. evalfbb2in(A,B,C) -> evalfbb2in(1 + A,B,2 + A) [C >= 1 + B && B >= 1 + A && B >= 1 + A] (B,5)              
          21. evalfstart(A,B,C) -> evalfbb2in(1,B,2)         [B >= 1 && B >= 1]                       (1,5)              
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbb4in,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [11->{11,19},16->{},19->{11},21->{11}]
        Sizebounds:
          (<11,0,A>, 1 + B) (<11,0,B>, B) (<11,0,C>, 1 + B) 
          (<16,0,A>,     1) (<16,0,B>, B) (<16,0,C>,     1) 
          (<19,0,A>, 1 + B) (<19,0,B>, B) (<19,0,C>, 3 + B) 
          (<21,0,A>,     1) (<21,0,B>, B) (<21,0,C>,     2) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        The problem is already solved.

WORST_CASE(?,O(n^2))