WORST_CASE(?,O(n^2)) * Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalfstart(A,B,C) -> evalfentryin(A,B,C) True (1,1) 1. evalfentryin(A,B,C) -> evalfbb4in(1,B,C) True (?,1) 2. evalfbb4in(A,B,C) -> evalfbb2in(A,B,A) [B >= A] (?,1) 3. evalfbb4in(A,B,C) -> evalfreturnin(A,B,C) [A >= 1 + B] (?,1) 4. evalfbb2in(A,B,C) -> evalfbb1in(A,B,C) [B >= C] (?,1) 5. evalfbb2in(A,B,C) -> evalfbb3in(A,B,C) [C >= 1 + B] (?,1) 6. evalfbb1in(A,B,C) -> evalfbb2in(A,B,1 + C) True (?,1) 7. evalfbb3in(A,B,C) -> evalfbb4in(1 + A,B,C) True (?,1) 8. evalfreturnin(A,B,C) -> evalfstop(A,B,C) True (?,1) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbb4in,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [0->{1},1->{2,3},2->{4,5},3->{8},4->{6},5->{7},6->{4,5},7->{2,3},8->{}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<0,0,A>, A, .= 0) (<0,0,B>, B, .= 0) (<0,0,C>, C, .= 0) (<1,0,A>, 1, .= 1) (<1,0,B>, B, .= 0) (<1,0,C>, C, .= 0) (<2,0,A>, A, .= 0) (<2,0,B>, B, .= 0) (<2,0,C>, A, .= 0) (<3,0,A>, A, .= 0) (<3,0,B>, B, .= 0) (<3,0,C>, C, .= 0) (<4,0,A>, A, .= 0) (<4,0,B>, B, .= 0) (<4,0,C>, C, .= 0) (<5,0,A>, A, .= 0) (<5,0,B>, B, .= 0) (<5,0,C>, C, .= 0) (<6,0,A>, A, .= 0) (<6,0,B>, B, .= 0) (<6,0,C>, 1 + C, .+ 1) (<7,0,A>, 1 + A, .+ 1) (<7,0,B>, B, .= 0) (<7,0,C>, C, .= 0) (<8,0,A>, A, .= 0) (<8,0,B>, B, .= 0) (<8,0,C>, C, .= 0) * Step 2: SizeboundsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalfstart(A,B,C) -> evalfentryin(A,B,C) True (1,1) 1. evalfentryin(A,B,C) -> evalfbb4in(1,B,C) True (?,1) 2. evalfbb4in(A,B,C) -> evalfbb2in(A,B,A) [B >= A] (?,1) 3. evalfbb4in(A,B,C) -> evalfreturnin(A,B,C) [A >= 1 + B] (?,1) 4. evalfbb2in(A,B,C) -> evalfbb1in(A,B,C) [B >= C] (?,1) 5. evalfbb2in(A,B,C) -> evalfbb3in(A,B,C) [C >= 1 + B] (?,1) 6. evalfbb1in(A,B,C) -> evalfbb2in(A,B,1 + C) True (?,1) 7. evalfbb3in(A,B,C) -> evalfbb4in(1 + A,B,C) True (?,1) 8. evalfreturnin(A,B,C) -> evalfstop(A,B,C) True (?,1) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbb4in,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [0->{1},1->{2,3},2->{4,5},3->{8},4->{6},5->{7},6->{4,5},7->{2,3},8->{}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<0,0,C>, ?) (<1,0,A>, ?) (<1,0,B>, ?) (<1,0,C>, ?) (<2,0,A>, ?) (<2,0,B>, ?) (<2,0,C>, ?) (<3,0,A>, ?) (<3,0,B>, ?) (<3,0,C>, ?) (<4,0,A>, ?) (<4,0,B>, ?) (<4,0,C>, ?) (<5,0,A>, ?) (<5,0,B>, ?) (<5,0,C>, ?) (<6,0,A>, ?) (<6,0,B>, ?) (<6,0,C>, ?) (<7,0,A>, ?) (<7,0,B>, ?) (<7,0,C>, ?) (<8,0,A>, ?) (<8,0,B>, ?) (<8,0,C>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<1,0,A>, 1) (<1,0,B>, B) (<1,0,C>, C) (<2,0,A>, B) (<2,0,B>, B) (<2,0,C>, ?) (<3,0,A>, ?) (<3,0,B>, B) (<3,0,C>, ?) (<4,0,A>, ?) (<4,0,B>, B) (<4,0,C>, B) (<5,0,A>, ?) (<5,0,B>, B) (<5,0,C>, ?) (<6,0,A>, ?) (<6,0,B>, B) (<6,0,C>, B) (<7,0,A>, ?) (<7,0,B>, B) (<7,0,C>, ?) (<8,0,A>, ?) (<8,0,B>, B) (<8,0,C>, ?) * Step 3: UnsatPaths WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalfstart(A,B,C) -> evalfentryin(A,B,C) True (1,1) 1. evalfentryin(A,B,C) -> evalfbb4in(1,B,C) True (?,1) 2. evalfbb4in(A,B,C) -> evalfbb2in(A,B,A) [B >= A] (?,1) 3. evalfbb4in(A,B,C) -> evalfreturnin(A,B,C) [A >= 1 + B] (?,1) 4. evalfbb2in(A,B,C) -> evalfbb1in(A,B,C) [B >= C] (?,1) 5. evalfbb2in(A,B,C) -> evalfbb3in(A,B,C) [C >= 1 + B] (?,1) 6. evalfbb1in(A,B,C) -> evalfbb2in(A,B,1 + C) True (?,1) 7. evalfbb3in(A,B,C) -> evalfbb4in(1 + A,B,C) True (?,1) 8. evalfreturnin(A,B,C) -> evalfstop(A,B,C) True (?,1) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbb4in,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [0->{1},1->{2,3},2->{4,5},3->{8},4->{6},5->{7},6->{4,5},7->{2,3},8->{}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<1,0,A>, 1) (<1,0,B>, B) (<1,0,C>, C) (<2,0,A>, B) (<2,0,B>, B) (<2,0,C>, ?) (<3,0,A>, ?) (<3,0,B>, B) (<3,0,C>, ?) (<4,0,A>, ?) (<4,0,B>, B) (<4,0,C>, B) (<5,0,A>, ?) (<5,0,B>, B) (<5,0,C>, ?) (<6,0,A>, ?) (<6,0,B>, B) (<6,0,C>, B) (<7,0,A>, ?) (<7,0,B>, B) (<7,0,C>, ?) (<8,0,A>, ?) (<8,0,B>, B) (<8,0,C>, ?) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(2,5)] * Step 4: LeafRules WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalfstart(A,B,C) -> evalfentryin(A,B,C) True (1,1) 1. evalfentryin(A,B,C) -> evalfbb4in(1,B,C) True (?,1) 2. evalfbb4in(A,B,C) -> evalfbb2in(A,B,A) [B >= A] (?,1) 3. evalfbb4in(A,B,C) -> evalfreturnin(A,B,C) [A >= 1 + B] (?,1) 4. evalfbb2in(A,B,C) -> evalfbb1in(A,B,C) [B >= C] (?,1) 5. evalfbb2in(A,B,C) -> evalfbb3in(A,B,C) [C >= 1 + B] (?,1) 6. evalfbb1in(A,B,C) -> evalfbb2in(A,B,1 + C) True (?,1) 7. evalfbb3in(A,B,C) -> evalfbb4in(1 + A,B,C) True (?,1) 8. evalfreturnin(A,B,C) -> evalfstop(A,B,C) True (?,1) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbb4in,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [0->{1},1->{2,3},2->{4},3->{8},4->{6},5->{7},6->{4,5},7->{2,3},8->{}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<1,0,A>, 1) (<1,0,B>, B) (<1,0,C>, C) (<2,0,A>, B) (<2,0,B>, B) (<2,0,C>, ?) (<3,0,A>, ?) (<3,0,B>, B) (<3,0,C>, ?) (<4,0,A>, ?) (<4,0,B>, B) (<4,0,C>, B) (<5,0,A>, ?) (<5,0,B>, B) (<5,0,C>, ?) (<6,0,A>, ?) (<6,0,B>, B) (<6,0,C>, B) (<7,0,A>, ?) (<7,0,B>, B) (<7,0,C>, ?) (<8,0,A>, ?) (<8,0,B>, B) (<8,0,C>, ?) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [3,8] * Step 5: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalfstart(A,B,C) -> evalfentryin(A,B,C) True (1,1) 1. evalfentryin(A,B,C) -> evalfbb4in(1,B,C) True (?,1) 2. evalfbb4in(A,B,C) -> evalfbb2in(A,B,A) [B >= A] (?,1) 4. evalfbb2in(A,B,C) -> evalfbb1in(A,B,C) [B >= C] (?,1) 5. evalfbb2in(A,B,C) -> evalfbb3in(A,B,C) [C >= 1 + B] (?,1) 6. evalfbb1in(A,B,C) -> evalfbb2in(A,B,1 + C) True (?,1) 7. evalfbb3in(A,B,C) -> evalfbb4in(1 + A,B,C) True (?,1) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbb4in,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [0->{1},1->{2},2->{4},4->{6},5->{7},6->{4,5},7->{2}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<1,0,A>, 1) (<1,0,B>, B) (<1,0,C>, C) (<2,0,A>, B) (<2,0,B>, B) (<2,0,C>, ?) (<4,0,A>, ?) (<4,0,B>, B) (<4,0,C>, B) (<5,0,A>, ?) (<5,0,B>, B) (<5,0,C>, ?) (<6,0,A>, ?) (<6,0,B>, B) (<6,0,C>, B) (<7,0,A>, ?) (<7,0,B>, B) (<7,0,C>, ?) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalfbb1in) = 1 p(evalfbb2in) = 1 p(evalfbb3in) = 1 p(evalfbb4in) = 1 p(evalfentryin) = 2 p(evalfstart) = 2 The following rules are strictly oriented: True ==> evalfentryin(A,B,C) = 2 > 1 = evalfbb4in(1,B,C) The following rules are weakly oriented: True ==> evalfstart(A,B,C) = 2 >= 2 = evalfentryin(A,B,C) [B >= A] ==> evalfbb4in(A,B,C) = 1 >= 1 = evalfbb2in(A,B,A) [B >= C] ==> evalfbb2in(A,B,C) = 1 >= 1 = evalfbb1in(A,B,C) [C >= 1 + B] ==> evalfbb2in(A,B,C) = 1 >= 1 = evalfbb3in(A,B,C) True ==> evalfbb1in(A,B,C) = 1 >= 1 = evalfbb2in(A,B,1 + C) True ==> evalfbb3in(A,B,C) = 1 >= 1 = evalfbb4in(1 + A,B,C) * Step 6: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalfstart(A,B,C) -> evalfentryin(A,B,C) True (1,1) 1. evalfentryin(A,B,C) -> evalfbb4in(1,B,C) True (2,1) 2. evalfbb4in(A,B,C) -> evalfbb2in(A,B,A) [B >= A] (?,1) 4. evalfbb2in(A,B,C) -> evalfbb1in(A,B,C) [B >= C] (?,1) 5. evalfbb2in(A,B,C) -> evalfbb3in(A,B,C) [C >= 1 + B] (?,1) 6. evalfbb1in(A,B,C) -> evalfbb2in(A,B,1 + C) True (?,1) 7. evalfbb3in(A,B,C) -> evalfbb4in(1 + A,B,C) True (?,1) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbb4in,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [0->{1},1->{2},2->{4},4->{6},5->{7},6->{4,5},7->{2}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<1,0,A>, 1) (<1,0,B>, B) (<1,0,C>, C) (<2,0,A>, B) (<2,0,B>, B) (<2,0,C>, ?) (<4,0,A>, ?) (<4,0,B>, B) (<4,0,C>, B) (<5,0,A>, ?) (<5,0,B>, B) (<5,0,C>, ?) (<6,0,A>, ?) (<6,0,B>, B) (<6,0,C>, B) (<7,0,A>, ?) (<7,0,B>, B) (<7,0,C>, ?) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalfbb1in) = -1*x1 + x2 p(evalfbb2in) = -1*x1 + x2 p(evalfbb3in) = -1*x1 + x2 p(evalfbb4in) = 1 + -1*x1 + x2 p(evalfentryin) = x2 p(evalfstart) = x2 The following rules are strictly oriented: [B >= A] ==> evalfbb4in(A,B,C) = 1 + -1*A + B > -1*A + B = evalfbb2in(A,B,A) The following rules are weakly oriented: True ==> evalfstart(A,B,C) = B >= B = evalfentryin(A,B,C) True ==> evalfentryin(A,B,C) = B >= B = evalfbb4in(1,B,C) [B >= C] ==> evalfbb2in(A,B,C) = -1*A + B >= -1*A + B = evalfbb1in(A,B,C) [C >= 1 + B] ==> evalfbb2in(A,B,C) = -1*A + B >= -1*A + B = evalfbb3in(A,B,C) True ==> evalfbb1in(A,B,C) = -1*A + B >= -1*A + B = evalfbb2in(A,B,1 + C) True ==> evalfbb3in(A,B,C) = -1*A + B >= -1*A + B = evalfbb4in(1 + A,B,C) * Step 7: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalfstart(A,B,C) -> evalfentryin(A,B,C) True (1,1) 1. evalfentryin(A,B,C) -> evalfbb4in(1,B,C) True (2,1) 2. evalfbb4in(A,B,C) -> evalfbb2in(A,B,A) [B >= A] (B,1) 4. evalfbb2in(A,B,C) -> evalfbb1in(A,B,C) [B >= C] (?,1) 5. evalfbb2in(A,B,C) -> evalfbb3in(A,B,C) [C >= 1 + B] (?,1) 6. evalfbb1in(A,B,C) -> evalfbb2in(A,B,1 + C) True (?,1) 7. evalfbb3in(A,B,C) -> evalfbb4in(1 + A,B,C) True (?,1) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbb4in,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [0->{1},1->{2},2->{4},4->{6},5->{7},6->{4,5},7->{2}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<1,0,A>, 1) (<1,0,B>, B) (<1,0,C>, C) (<2,0,A>, B) (<2,0,B>, B) (<2,0,C>, ?) (<4,0,A>, ?) (<4,0,B>, B) (<4,0,C>, B) (<5,0,A>, ?) (<5,0,B>, B) (<5,0,C>, ?) (<6,0,A>, ?) (<6,0,B>, B) (<6,0,C>, B) (<7,0,A>, ?) (<7,0,B>, B) (<7,0,C>, ?) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [7,5,6,4], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalfbb1in) = 1 p(evalfbb2in) = 1 p(evalfbb3in) = 1 p(evalfbb4in) = 0 The following rules are strictly oriented: True ==> evalfbb3in(A,B,C) = 1 > 0 = evalfbb4in(1 + A,B,C) The following rules are weakly oriented: [B >= C] ==> evalfbb2in(A,B,C) = 1 >= 1 = evalfbb1in(A,B,C) [C >= 1 + B] ==> evalfbb2in(A,B,C) = 1 >= 1 = evalfbb3in(A,B,C) True ==> evalfbb1in(A,B,C) = 1 >= 1 = evalfbb2in(A,B,1 + C) We use the following global sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<1,0,A>, 1) (<1,0,B>, B) (<1,0,C>, C) (<2,0,A>, B) (<2,0,B>, B) (<2,0,C>, ?) (<4,0,A>, ?) (<4,0,B>, B) (<4,0,C>, B) (<5,0,A>, ?) (<5,0,B>, B) (<5,0,C>, ?) (<6,0,A>, ?) (<6,0,B>, B) (<6,0,C>, B) (<7,0,A>, ?) (<7,0,B>, B) (<7,0,C>, ?) * Step 8: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalfstart(A,B,C) -> evalfentryin(A,B,C) True (1,1) 1. evalfentryin(A,B,C) -> evalfbb4in(1,B,C) True (2,1) 2. evalfbb4in(A,B,C) -> evalfbb2in(A,B,A) [B >= A] (B,1) 4. evalfbb2in(A,B,C) -> evalfbb1in(A,B,C) [B >= C] (?,1) 5. evalfbb2in(A,B,C) -> evalfbb3in(A,B,C) [C >= 1 + B] (?,1) 6. evalfbb1in(A,B,C) -> evalfbb2in(A,B,1 + C) True (?,1) 7. evalfbb3in(A,B,C) -> evalfbb4in(1 + A,B,C) True (B,1) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbb4in,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [0->{1},1->{2},2->{4},4->{6},5->{7},6->{4,5},7->{2}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<1,0,A>, 1) (<1,0,B>, B) (<1,0,C>, C) (<2,0,A>, B) (<2,0,B>, B) (<2,0,C>, ?) (<4,0,A>, ?) (<4,0,B>, B) (<4,0,C>, B) (<5,0,A>, ?) (<5,0,B>, B) (<5,0,C>, ?) (<6,0,A>, ?) (<6,0,B>, B) (<6,0,C>, B) (<7,0,A>, ?) (<7,0,B>, B) (<7,0,C>, ?) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [5,6,4], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalfbb1in) = 1 p(evalfbb2in) = 1 p(evalfbb3in) = 0 The following rules are strictly oriented: [C >= 1 + B] ==> evalfbb2in(A,B,C) = 1 > 0 = evalfbb3in(A,B,C) The following rules are weakly oriented: [B >= C] ==> evalfbb2in(A,B,C) = 1 >= 1 = evalfbb1in(A,B,C) True ==> evalfbb1in(A,B,C) = 1 >= 1 = evalfbb2in(A,B,1 + C) We use the following global sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<1,0,A>, 1) (<1,0,B>, B) (<1,0,C>, C) (<2,0,A>, B) (<2,0,B>, B) (<2,0,C>, ?) (<4,0,A>, ?) (<4,0,B>, B) (<4,0,C>, B) (<5,0,A>, ?) (<5,0,B>, B) (<5,0,C>, ?) (<6,0,A>, ?) (<6,0,B>, B) (<6,0,C>, B) (<7,0,A>, ?) (<7,0,B>, B) (<7,0,C>, ?) * Step 9: ChainProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalfstart(A,B,C) -> evalfentryin(A,B,C) True (1,1) 1. evalfentryin(A,B,C) -> evalfbb4in(1,B,C) True (2,1) 2. evalfbb4in(A,B,C) -> evalfbb2in(A,B,A) [B >= A] (B,1) 4. evalfbb2in(A,B,C) -> evalfbb1in(A,B,C) [B >= C] (?,1) 5. evalfbb2in(A,B,C) -> evalfbb3in(A,B,C) [C >= 1 + B] (B,1) 6. evalfbb1in(A,B,C) -> evalfbb2in(A,B,1 + C) True (?,1) 7. evalfbb3in(A,B,C) -> evalfbb4in(1 + A,B,C) True (B,1) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbb4in,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [0->{1},1->{2},2->{4},4->{6},5->{7},6->{4,5},7->{2}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<1,0,A>, 1) (<1,0,B>, B) (<1,0,C>, C) (<2,0,A>, B) (<2,0,B>, B) (<2,0,C>, ?) (<4,0,A>, ?) (<4,0,B>, B) (<4,0,C>, B) (<5,0,A>, ?) (<5,0,B>, B) (<5,0,C>, ?) (<6,0,A>, ?) (<6,0,B>, B) (<6,0,C>, B) (<7,0,A>, ?) (<7,0,B>, B) (<7,0,C>, ?) + Applied Processor: ChainProcessor False [0,1,2,4,5,6,7] + Details: We chained rule 0 to obtain the rules [8] . * Step 10: UnreachableRules WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 1. evalfentryin(A,B,C) -> evalfbb4in(1,B,C) True (2,1) 2. evalfbb4in(A,B,C) -> evalfbb2in(A,B,A) [B >= A] (B,1) 4. evalfbb2in(A,B,C) -> evalfbb1in(A,B,C) [B >= C] (?,1) 5. evalfbb2in(A,B,C) -> evalfbb3in(A,B,C) [C >= 1 + B] (B,1) 6. evalfbb1in(A,B,C) -> evalfbb2in(A,B,1 + C) True (?,1) 7. evalfbb3in(A,B,C) -> evalfbb4in(1 + A,B,C) True (B,1) 8. evalfstart(A,B,C) -> evalfbb4in(1,B,C) True (1,2) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbb4in,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [1->{2},2->{4,5},4->{6},5->{7},6->{4,5},7->{2},8->{2}] Sizebounds: (<1,0,A>, 1) (<1,0,B>, B) (<1,0,C>, C) (<2,0,A>, B) (<2,0,B>, B) (<2,0,C>, ?) (<4,0,A>, ?) (<4,0,B>, B) (<4,0,C>, B) (<5,0,A>, ?) (<5,0,B>, B) (<5,0,C>, ?) (<6,0,A>, ?) (<6,0,B>, B) (<6,0,C>, B) (<7,0,A>, ?) (<7,0,B>, B) (<7,0,C>, ?) (<8,0,A>, 1) (<8,0,B>, B) (<8,0,C>, C) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [1] * Step 11: ChainProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 2. evalfbb4in(A,B,C) -> evalfbb2in(A,B,A) [B >= A] (B,1) 4. evalfbb2in(A,B,C) -> evalfbb1in(A,B,C) [B >= C] (?,1) 5. evalfbb2in(A,B,C) -> evalfbb3in(A,B,C) [C >= 1 + B] (B,1) 6. evalfbb1in(A,B,C) -> evalfbb2in(A,B,1 + C) True (?,1) 7. evalfbb3in(A,B,C) -> evalfbb4in(1 + A,B,C) True (B,1) 8. evalfstart(A,B,C) -> evalfbb4in(1,B,C) True (1,2) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbb4in,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [2->{4,5},4->{6},5->{7},6->{4,5},7->{2},8->{2}] Sizebounds: (<2,0,A>, B) (<2,0,B>, B) (<2,0,C>, ?) (<4,0,A>, ?) (<4,0,B>, B) (<4,0,C>, B) (<5,0,A>, ?) (<5,0,B>, B) (<5,0,C>, ?) (<6,0,A>, ?) (<6,0,B>, B) (<6,0,C>, B) (<7,0,A>, ?) (<7,0,B>, B) (<7,0,C>, ?) (<8,0,A>, 1) (<8,0,B>, B) (<8,0,C>, C) + Applied Processor: ChainProcessor False [2,4,5,6,7,8] + Details: We chained rule 2 to obtain the rules [9,10] . * Step 12: ChainProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 4. evalfbb2in(A,B,C) -> evalfbb1in(A,B,C) [B >= C] (?,1) 5. evalfbb2in(A,B,C) -> evalfbb3in(A,B,C) [C >= 1 + B] (B,1) 6. evalfbb1in(A,B,C) -> evalfbb2in(A,B,1 + C) True (?,1) 7. evalfbb3in(A,B,C) -> evalfbb4in(1 + A,B,C) True (B,1) 8. evalfstart(A,B,C) -> evalfbb4in(1,B,C) True (1,2) 9. evalfbb4in(A,B,C) -> evalfbb1in(A,B,A) [B >= A && B >= A] (B,2) 10. evalfbb4in(A,B,C) -> evalfbb3in(A,B,A) [B >= A && A >= 1 + B] (B,2) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbb4in,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [4->{6},5->{7},6->{4,5},7->{9,10},8->{9,10},9->{6},10->{7}] Sizebounds: (< 4,0,A>, ?) (< 4,0,B>, B) (< 4,0,C>, B) (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, B) (< 7,0,A>, ?) (< 7,0,B>, B) (< 7,0,C>, ?) (< 8,0,A>, 1) (< 8,0,B>, B) (< 8,0,C>, C) (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, B) (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) + Applied Processor: ChainProcessor False [4,5,6,7,8,9,10] + Details: We chained rule 4 to obtain the rules [11] . * Step 13: ChainProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 5. evalfbb2in(A,B,C) -> evalfbb3in(A,B,C) [C >= 1 + B] (B,1) 6. evalfbb1in(A,B,C) -> evalfbb2in(A,B,1 + C) True (?,1) 7. evalfbb3in(A,B,C) -> evalfbb4in(1 + A,B,C) True (B,1) 8. evalfstart(A,B,C) -> evalfbb4in(1,B,C) True (1,2) 9. evalfbb4in(A,B,C) -> evalfbb1in(A,B,A) [B >= A && B >= A] (B,2) 10. evalfbb4in(A,B,C) -> evalfbb3in(A,B,A) [B >= A && A >= 1 + B] (B,2) 11. evalfbb2in(A,B,C) -> evalfbb2in(A,B,1 + C) [B >= C] (?,2) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbb4in,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [5->{7},6->{5,11},7->{9,10},8->{9,10},9->{6},10->{7},11->{5,11}] Sizebounds: (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, B) (< 7,0,A>, ?) (< 7,0,B>, B) (< 7,0,C>, ?) (< 8,0,A>, 1) (< 8,0,B>, B) (< 8,0,C>, C) (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, B) (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, B) + Applied Processor: ChainProcessor False [5,6,7,8,9,10,11] + Details: We chained rule 5 to obtain the rules [12] . * Step 14: ChainProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 6. evalfbb1in(A,B,C) -> evalfbb2in(A,B,1 + C) True (?,1) 7. evalfbb3in(A,B,C) -> evalfbb4in(1 + A,B,C) True (B,1) 8. evalfstart(A,B,C) -> evalfbb4in(1,B,C) True (1,2) 9. evalfbb4in(A,B,C) -> evalfbb1in(A,B,A) [B >= A && B >= A] (B,2) 10. evalfbb4in(A,B,C) -> evalfbb3in(A,B,A) [B >= A && A >= 1 + B] (B,2) 11. evalfbb2in(A,B,C) -> evalfbb2in(A,B,1 + C) [B >= C] (?,2) 12. evalfbb2in(A,B,C) -> evalfbb4in(1 + A,B,C) [C >= 1 + B] (B,2) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbb4in,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [6->{11,12},7->{9,10},8->{9,10},9->{6},10->{7},11->{11,12},12->{9,10}] Sizebounds: (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, B) (< 7,0,A>, ?) (< 7,0,B>, B) (< 7,0,C>, ?) (< 8,0,A>, 1) (< 8,0,B>, B) (< 8,0,C>, C) (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, B) (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, B) (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) + Applied Processor: ChainProcessor False [6,7,8,9,10,11,12] + Details: We chained rule 7 to obtain the rules [13,14] . * Step 15: ChainProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 6. evalfbb1in(A,B,C) -> evalfbb2in(A,B,1 + C) True (?,1) 8. evalfstart(A,B,C) -> evalfbb4in(1,B,C) True (1,2) 9. evalfbb4in(A,B,C) -> evalfbb1in(A,B,A) [B >= A && B >= A] (B,2) 10. evalfbb4in(A,B,C) -> evalfbb3in(A,B,A) [B >= A && A >= 1 + B] (B,2) 11. evalfbb2in(A,B,C) -> evalfbb2in(A,B,1 + C) [B >= C] (?,2) 12. evalfbb2in(A,B,C) -> evalfbb4in(1 + A,B,C) [C >= 1 + B] (B,2) 13. evalfbb3in(A,B,C) -> evalfbb1in(1 + A,B,1 + A) [B >= 1 + A && B >= 1 + A] (B,3) 14. evalfbb3in(A,B,C) -> evalfbb3in(1 + A,B,1 + A) [B >= 1 + A && 1 + A >= 1 + B] (B,3) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbb4in,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [6->{11,12},8->{9,10},9->{6},10->{13,14},11->{11,12},12->{9,10},13->{6},14->{13,14}] Sizebounds: (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, B) (< 8,0,A>, 1) (< 8,0,B>, B) (< 8,0,C>, C) (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, B) (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, B) (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) (<13,0,A>, ?) (<13,0,B>, B) (<13,0,C>, B) (<14,0,A>, ?) (<14,0,B>, B) (<14,0,C>, ?) + Applied Processor: ChainProcessor False [6,8,9,10,11,12,13,14] + Details: We chained rule 8 to obtain the rules [15,16] . * Step 16: ChainProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 6. evalfbb1in(A,B,C) -> evalfbb2in(A,B,1 + C) True (?,1) 9. evalfbb4in(A,B,C) -> evalfbb1in(A,B,A) [B >= A && B >= A] (B,2) 10. evalfbb4in(A,B,C) -> evalfbb3in(A,B,A) [B >= A && A >= 1 + B] (B,2) 11. evalfbb2in(A,B,C) -> evalfbb2in(A,B,1 + C) [B >= C] (?,2) 12. evalfbb2in(A,B,C) -> evalfbb4in(1 + A,B,C) [C >= 1 + B] (B,2) 13. evalfbb3in(A,B,C) -> evalfbb1in(1 + A,B,1 + A) [B >= 1 + A && B >= 1 + A] (B,3) 14. evalfbb3in(A,B,C) -> evalfbb3in(1 + A,B,1 + A) [B >= 1 + A && 1 + A >= 1 + B] (B,3) 15. evalfstart(A,B,C) -> evalfbb1in(1,B,1) [B >= 1 && B >= 1] (1,4) 16. evalfstart(A,B,C) -> evalfbb3in(1,B,1) [B >= 1 && 1 >= 1 + B] (1,4) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbb4in,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [6->{11,12},9->{6},10->{13,14},11->{11,12},12->{9,10},13->{6},14->{13,14},15->{6},16->{13,14}] Sizebounds: (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, B) (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, B) (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, B) (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) (<13,0,A>, ?) (<13,0,B>, B) (<13,0,C>, B) (<14,0,A>, ?) (<14,0,B>, B) (<14,0,C>, ?) (<15,0,A>, ?) (<15,0,B>, B) (<15,0,C>, B) (<16,0,A>, ?) (<16,0,B>, B) (<16,0,C>, ?) + Applied Processor: ChainProcessor False [6,9,10,11,12,13,14,15,16] + Details: We chained rule 9 to obtain the rules [17] . * Step 17: ChainProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 6. evalfbb1in(A,B,C) -> evalfbb2in(A,B,1 + C) True (?,1) 10. evalfbb4in(A,B,C) -> evalfbb3in(A,B,A) [B >= A && A >= 1 + B] (B,2) 11. evalfbb2in(A,B,C) -> evalfbb2in(A,B,1 + C) [B >= C] (?,2) 12. evalfbb2in(A,B,C) -> evalfbb4in(1 + A,B,C) [C >= 1 + B] (B,2) 13. evalfbb3in(A,B,C) -> evalfbb1in(1 + A,B,1 + A) [B >= 1 + A && B >= 1 + A] (B,3) 14. evalfbb3in(A,B,C) -> evalfbb3in(1 + A,B,1 + A) [B >= 1 + A && 1 + A >= 1 + B] (B,3) 15. evalfstart(A,B,C) -> evalfbb1in(1,B,1) [B >= 1 && B >= 1] (1,4) 16. evalfstart(A,B,C) -> evalfbb3in(1,B,1) [B >= 1 && 1 >= 1 + B] (1,4) 17. evalfbb4in(A,B,C) -> evalfbb2in(A,B,1 + A) [B >= A && B >= A] (B,3) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbb4in,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [6->{11,12},10->{13,14},11->{11,12},12->{10,17},13->{6},14->{13,14},15->{6},16->{13,14},17->{11,12}] Sizebounds: (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, B) (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, B) (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) (<13,0,A>, ?) (<13,0,B>, B) (<13,0,C>, B) (<14,0,A>, ?) (<14,0,B>, B) (<14,0,C>, ?) (<15,0,A>, ?) (<15,0,B>, B) (<15,0,C>, B) (<16,0,A>, ?) (<16,0,B>, B) (<16,0,C>, ?) (<17,0,A>, ?) (<17,0,B>, B) (<17,0,C>, B) + Applied Processor: ChainProcessor False [6,10,11,12,13,14,15,16,17] + Details: We chained rule 12 to obtain the rules [18,19] . * Step 18: UnreachableRules WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 6. evalfbb1in(A,B,C) -> evalfbb2in(A,B,1 + C) True (?,1) 10. evalfbb4in(A,B,C) -> evalfbb3in(A,B,A) [B >= A && A >= 1 + B] (B,2) 11. evalfbb2in(A,B,C) -> evalfbb2in(A,B,1 + C) [B >= C] (?,2) 13. evalfbb3in(A,B,C) -> evalfbb1in(1 + A,B,1 + A) [B >= 1 + A && B >= 1 + A] (B,3) 14. evalfbb3in(A,B,C) -> evalfbb3in(1 + A,B,1 + A) [B >= 1 + A && 1 + A >= 1 + B] (B,3) 15. evalfstart(A,B,C) -> evalfbb1in(1,B,1) [B >= 1 && B >= 1] (1,4) 16. evalfstart(A,B,C) -> evalfbb3in(1,B,1) [B >= 1 && 1 >= 1 + B] (1,4) 17. evalfbb4in(A,B,C) -> evalfbb2in(A,B,1 + A) [B >= A && B >= A] (B,3) 18. evalfbb2in(A,B,C) -> evalfbb3in(1 + A,B,1 + A) [C >= 1 + B && B >= 1 + A && 1 + A >= 1 + B] (B,4) 19. evalfbb2in(A,B,C) -> evalfbb2in(1 + A,B,2 + A) [C >= 1 + B && B >= 1 + A && B >= 1 + A] (B,5) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbb4in,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [6->{11,18,19},10->{13,14},11->{11,18,19},13->{6},14->{13,14},15->{6},16->{13,14},17->{11,18,19},18->{13 ,14},19->{11,18,19}] Sizebounds: (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, B) (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, B) (<13,0,A>, ?) (<13,0,B>, B) (<13,0,C>, B) (<14,0,A>, ?) (<14,0,B>, B) (<14,0,C>, ?) (<15,0,A>, ?) (<15,0,B>, B) (<15,0,C>, B) (<16,0,A>, ?) (<16,0,B>, B) (<16,0,C>, ?) (<17,0,A>, ?) (<17,0,B>, B) (<17,0,C>, B) (<18,0,A>, ?) (<18,0,B>, B) (<18,0,C>, ?) (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, B) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [10,17] * Step 19: ChainProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 6. evalfbb1in(A,B,C) -> evalfbb2in(A,B,1 + C) True (?,1) 11. evalfbb2in(A,B,C) -> evalfbb2in(A,B,1 + C) [B >= C] (?,2) 13. evalfbb3in(A,B,C) -> evalfbb1in(1 + A,B,1 + A) [B >= 1 + A && B >= 1 + A] (B,3) 14. evalfbb3in(A,B,C) -> evalfbb3in(1 + A,B,1 + A) [B >= 1 + A && 1 + A >= 1 + B] (B,3) 15. evalfstart(A,B,C) -> evalfbb1in(1,B,1) [B >= 1 && B >= 1] (1,4) 16. evalfstart(A,B,C) -> evalfbb3in(1,B,1) [B >= 1 && 1 >= 1 + B] (1,4) 18. evalfbb2in(A,B,C) -> evalfbb3in(1 + A,B,1 + A) [C >= 1 + B && B >= 1 + A && 1 + A >= 1 + B] (B,4) 19. evalfbb2in(A,B,C) -> evalfbb2in(1 + A,B,2 + A) [C >= 1 + B && B >= 1 + A && B >= 1 + A] (B,5) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbb4in,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [6->{11,18,19},11->{11,18,19},13->{6},14->{13,14},15->{6},16->{13,14},18->{13,14},19->{11,18,19}] Sizebounds: (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, B) (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, B) (<13,0,A>, ?) (<13,0,B>, B) (<13,0,C>, B) (<14,0,A>, ?) (<14,0,B>, B) (<14,0,C>, ?) (<15,0,A>, ?) (<15,0,B>, B) (<15,0,C>, B) (<16,0,A>, ?) (<16,0,B>, B) (<16,0,C>, ?) (<18,0,A>, ?) (<18,0,B>, B) (<18,0,C>, ?) (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, B) + Applied Processor: ChainProcessor False [6,11,13,14,15,16,18,19] + Details: We chained rule 13 to obtain the rules [20] . * Step 20: ChainProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 6. evalfbb1in(A,B,C) -> evalfbb2in(A,B,1 + C) True (?,1) 11. evalfbb2in(A,B,C) -> evalfbb2in(A,B,1 + C) [B >= C] (?,2) 14. evalfbb3in(A,B,C) -> evalfbb3in(1 + A,B,1 + A) [B >= 1 + A && 1 + A >= 1 + B] (B,3) 15. evalfstart(A,B,C) -> evalfbb1in(1,B,1) [B >= 1 && B >= 1] (1,4) 16. evalfstart(A,B,C) -> evalfbb3in(1,B,1) [B >= 1 && 1 >= 1 + B] (1,4) 18. evalfbb2in(A,B,C) -> evalfbb3in(1 + A,B,1 + A) [C >= 1 + B && B >= 1 + A && 1 + A >= 1 + B] (B,4) 19. evalfbb2in(A,B,C) -> evalfbb2in(1 + A,B,2 + A) [C >= 1 + B && B >= 1 + A && B >= 1 + A] (B,5) 20. evalfbb3in(A,B,C) -> evalfbb2in(1 + A,B,2 + A) [B >= 1 + A && B >= 1 + A] (B,4) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbb4in,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [6->{11,18,19},11->{11,18,19},14->{14,20},15->{6},16->{14,20},18->{14,20},19->{11,18,19},20->{11,18,19}] Sizebounds: (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, B) (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, B) (<14,0,A>, ?) (<14,0,B>, B) (<14,0,C>, ?) (<15,0,A>, ?) (<15,0,B>, B) (<15,0,C>, B) (<16,0,A>, ?) (<16,0,B>, B) (<16,0,C>, ?) (<18,0,A>, ?) (<18,0,B>, B) (<18,0,C>, ?) (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, B) (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, B) + Applied Processor: ChainProcessor False [6,11,14,15,16,18,19,20] + Details: We chained rule 15 to obtain the rules [21] . * Step 21: UnreachableRules WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 6. evalfbb1in(A,B,C) -> evalfbb2in(A,B,1 + C) True (?,1) 11. evalfbb2in(A,B,C) -> evalfbb2in(A,B,1 + C) [B >= C] (?,2) 14. evalfbb3in(A,B,C) -> evalfbb3in(1 + A,B,1 + A) [B >= 1 + A && 1 + A >= 1 + B] (B,3) 16. evalfstart(A,B,C) -> evalfbb3in(1,B,1) [B >= 1 && 1 >= 1 + B] (1,4) 18. evalfbb2in(A,B,C) -> evalfbb3in(1 + A,B,1 + A) [C >= 1 + B && B >= 1 + A && 1 + A >= 1 + B] (B,4) 19. evalfbb2in(A,B,C) -> evalfbb2in(1 + A,B,2 + A) [C >= 1 + B && B >= 1 + A && B >= 1 + A] (B,5) 20. evalfbb3in(A,B,C) -> evalfbb2in(1 + A,B,2 + A) [B >= 1 + A && B >= 1 + A] (B,4) 21. evalfstart(A,B,C) -> evalfbb2in(1,B,2) [B >= 1 && B >= 1] (1,5) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbb4in,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [6->{11,18,19},11->{11,18,19},14->{14,20},16->{14,20},18->{14,20},19->{11,18,19},20->{11,18,19},21->{11,18 ,19}] Sizebounds: (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, B) (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, B) (<14,0,A>, ?) (<14,0,B>, B) (<14,0,C>, ?) (<16,0,A>, ?) (<16,0,B>, B) (<16,0,C>, ?) (<18,0,A>, ?) (<18,0,B>, B) (<18,0,C>, ?) (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, B) (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, B) (<21,0,A>, ?) (<21,0,B>, B) (<21,0,C>, B) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [6] * Step 22: UnsatPaths WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 11. evalfbb2in(A,B,C) -> evalfbb2in(A,B,1 + C) [B >= C] (?,2) 14. evalfbb3in(A,B,C) -> evalfbb3in(1 + A,B,1 + A) [B >= 1 + A && 1 + A >= 1 + B] (B,3) 16. evalfstart(A,B,C) -> evalfbb3in(1,B,1) [B >= 1 && 1 >= 1 + B] (1,4) 18. evalfbb2in(A,B,C) -> evalfbb3in(1 + A,B,1 + A) [C >= 1 + B && B >= 1 + A && 1 + A >= 1 + B] (B,4) 19. evalfbb2in(A,B,C) -> evalfbb2in(1 + A,B,2 + A) [C >= 1 + B && B >= 1 + A && B >= 1 + A] (B,5) 20. evalfbb3in(A,B,C) -> evalfbb2in(1 + A,B,2 + A) [B >= 1 + A && B >= 1 + A] (B,4) 21. evalfstart(A,B,C) -> evalfbb2in(1,B,2) [B >= 1 && B >= 1] (1,5) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbb4in,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [11->{11,18,19},14->{14,20},16->{14,20},18->{14,20},19->{11,18,19},20->{11,18,19},21->{11,18,19}] Sizebounds: (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, B) (<14,0,A>, ?) (<14,0,B>, B) (<14,0,C>, ?) (<16,0,A>, ?) (<16,0,B>, B) (<16,0,C>, ?) (<18,0,A>, ?) (<18,0,B>, B) (<18,0,C>, ?) (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, B) (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, B) (<21,0,A>, ?) (<21,0,B>, B) (<21,0,C>, B) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(11,18) ,(14,14) ,(14,20) ,(16,14) ,(16,20) ,(18,14) ,(18,20) ,(19,18) ,(19,19) ,(20,18) ,(20,19) ,(21,18) ,(21,19)] * Step 23: UnreachableRules WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 11. evalfbb2in(A,B,C) -> evalfbb2in(A,B,1 + C) [B >= C] (?,2) 14. evalfbb3in(A,B,C) -> evalfbb3in(1 + A,B,1 + A) [B >= 1 + A && 1 + A >= 1 + B] (B,3) 16. evalfstart(A,B,C) -> evalfbb3in(1,B,1) [B >= 1 && 1 >= 1 + B] (1,4) 18. evalfbb2in(A,B,C) -> evalfbb3in(1 + A,B,1 + A) [C >= 1 + B && B >= 1 + A && 1 + A >= 1 + B] (B,4) 19. evalfbb2in(A,B,C) -> evalfbb2in(1 + A,B,2 + A) [C >= 1 + B && B >= 1 + A && B >= 1 + A] (B,5) 20. evalfbb3in(A,B,C) -> evalfbb2in(1 + A,B,2 + A) [B >= 1 + A && B >= 1 + A] (B,4) 21. evalfstart(A,B,C) -> evalfbb2in(1,B,2) [B >= 1 && B >= 1] (1,5) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbb4in,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [11->{11,19},14->{},16->{},18->{},19->{11},20->{11},21->{11}] Sizebounds: (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, B) (<14,0,A>, ?) (<14,0,B>, B) (<14,0,C>, ?) (<16,0,A>, ?) (<16,0,B>, B) (<16,0,C>, ?) (<18,0,A>, ?) (<18,0,B>, B) (<18,0,C>, ?) (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, B) (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, B) (<21,0,A>, ?) (<21,0,B>, B) (<21,0,C>, B) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [14,18,20] * Step 24: LocalSizeboundsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 11. evalfbb2in(A,B,C) -> evalfbb2in(A,B,1 + C) [B >= C] (?,2) 16. evalfstart(A,B,C) -> evalfbb3in(1,B,1) [B >= 1 && 1 >= 1 + B] (1,4) 19. evalfbb2in(A,B,C) -> evalfbb2in(1 + A,B,2 + A) [C >= 1 + B && B >= 1 + A && B >= 1 + A] (B,5) 21. evalfstart(A,B,C) -> evalfbb2in(1,B,2) [B >= 1 && B >= 1] (1,5) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbb4in,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [11->{11,19},16->{},19->{11},21->{11}] Sizebounds: (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, B) (<16,0,A>, ?) (<16,0,B>, B) (<16,0,C>, ?) (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, B) (<21,0,A>, ?) (<21,0,B>, B) (<21,0,C>, B) + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<11,0,A>, A, .= 0) (<11,0,B>, B, .= 0) (<11,0,C>, 1 + C, .+ 1) (<16,0,A>, 1, .= 1) (<16,0,B>, B, .= 0) (<16,0,C>, 1, .= 1) (<19,0,A>, 1 + A, .+ 1) (<19,0,B>, B, .= 0) (<19,0,C>, 2 + A, .+ 2) (<21,0,A>, 1, .= 1) (<21,0,B>, B, .= 0) (<21,0,C>, 2, .= 2) * Step 25: SizeboundsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 11. evalfbb2in(A,B,C) -> evalfbb2in(A,B,1 + C) [B >= C] (?,2) 16. evalfstart(A,B,C) -> evalfbb3in(1,B,1) [B >= 1 && 1 >= 1 + B] (1,4) 19. evalfbb2in(A,B,C) -> evalfbb2in(1 + A,B,2 + A) [C >= 1 + B && B >= 1 + A && B >= 1 + A] (B,5) 21. evalfstart(A,B,C) -> evalfbb2in(1,B,2) [B >= 1 && B >= 1] (1,5) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbb4in,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [11->{11,19},16->{},19->{11},21->{11}] Sizebounds: (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<19,0,A>, ?) (<19,0,B>, ?) (<19,0,C>, ?) (<21,0,A>, ?) (<21,0,B>, ?) (<21,0,C>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<11,0,A>, 1 + B) (<11,0,B>, B) (<11,0,C>, 1 + B) (<16,0,A>, 1) (<16,0,B>, B) (<16,0,C>, 1) (<19,0,A>, 1 + B) (<19,0,B>, B) (<19,0,C>, 3 + B) (<21,0,A>, 1) (<21,0,B>, B) (<21,0,C>, 2) * Step 26: LocationConstraintsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 11. evalfbb2in(A,B,C) -> evalfbb2in(A,B,1 + C) [B >= C] (?,2) 16. evalfstart(A,B,C) -> evalfbb3in(1,B,1) [B >= 1 && 1 >= 1 + B] (1,4) 19. evalfbb2in(A,B,C) -> evalfbb2in(1 + A,B,2 + A) [C >= 1 + B && B >= 1 + A && B >= 1 + A] (B,5) 21. evalfstart(A,B,C) -> evalfbb2in(1,B,2) [B >= 1 && B >= 1] (1,5) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbb4in,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [11->{11,19},16->{},19->{11},21->{11}] Sizebounds: (<11,0,A>, 1 + B) (<11,0,B>, B) (<11,0,C>, 1 + B) (<16,0,A>, 1) (<16,0,B>, B) (<16,0,C>, 1) (<19,0,A>, 1 + B) (<19,0,B>, B) (<19,0,C>, 3 + B) (<21,0,A>, 1) (<21,0,B>, B) (<21,0,C>, 2) + Applied Processor: LocationConstraintsProc + Details: We computed the location constraints 11 : [B >= 1 && B >= 1] 16 : True 19 : [B >= 1 && False] 21 : True . * Step 27: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 11. evalfbb2in(A,B,C) -> evalfbb2in(A,B,1 + C) [B >= C] (?,2) 16. evalfstart(A,B,C) -> evalfbb3in(1,B,1) [B >= 1 && 1 >= 1 + B] (1,4) 19. evalfbb2in(A,B,C) -> evalfbb2in(1 + A,B,2 + A) [C >= 1 + B && B >= 1 + A && B >= 1 + A] (B,5) 21. evalfstart(A,B,C) -> evalfbb2in(1,B,2) [B >= 1 && B >= 1] (1,5) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbb4in,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [11->{11,19},16->{},19->{11},21->{11}] Sizebounds: (<11,0,A>, 1 + B) (<11,0,B>, B) (<11,0,C>, 1 + B) (<16,0,A>, 1) (<16,0,B>, B) (<16,0,C>, 1) (<19,0,A>, 1 + B) (<19,0,B>, B) (<19,0,C>, 3 + B) (<21,0,A>, 1) (<21,0,B>, B) (<21,0,C>, 2) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [11], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalfbb2in) = 1 + x2 + -1*x3 The following rules are strictly oriented: [B >= C] ==> evalfbb2in(A,B,C) = 1 + B + -1*C > B + -1*C = evalfbb2in(A,B,1 + C) The following rules are weakly oriented: We use the following global sizebounds: (<11,0,A>, 1 + B) (<11,0,B>, B) (<11,0,C>, 1 + B) (<16,0,A>, 1) (<16,0,B>, B) (<16,0,C>, 1) (<19,0,A>, 1 + B) (<19,0,B>, B) (<19,0,C>, 3 + B) (<21,0,A>, 1) (<21,0,B>, B) (<21,0,C>, 2) * Step 28: KnowledgePropagation WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 11. evalfbb2in(A,B,C) -> evalfbb2in(A,B,1 + C) [B >= C] (3 + 5*B + 2*B^2,2) 16. evalfstart(A,B,C) -> evalfbb3in(1,B,1) [B >= 1 && 1 >= 1 + B] (1,4) 19. evalfbb2in(A,B,C) -> evalfbb2in(1 + A,B,2 + A) [C >= 1 + B && B >= 1 + A && B >= 1 + A] (B,5) 21. evalfstart(A,B,C) -> evalfbb2in(1,B,2) [B >= 1 && B >= 1] (1,5) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbb4in,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [11->{11,19},16->{},19->{11},21->{11}] Sizebounds: (<11,0,A>, 1 + B) (<11,0,B>, B) (<11,0,C>, 1 + B) (<16,0,A>, 1) (<16,0,B>, B) (<16,0,C>, 1) (<19,0,A>, 1 + B) (<19,0,B>, B) (<19,0,C>, 3 + B) (<21,0,A>, 1) (<21,0,B>, B) (<21,0,C>, 2) + Applied Processor: KnowledgePropagation + Details: The problem is already solved. WORST_CASE(?,O(n^2))