WORST_CASE(?,O(1)) * Step 1: LocalSizeboundsProc WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. eval(A,B) -> eval(B,A) [A >= 1 + B] (?,1) 1. start(A,B) -> eval(A,B) True (1,1) Signature: {(eval,2);(start,2)} Flow Graph: [0->{0},1->{0}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<0,0,A>, B, .= 0) (<0,0,B>, A, .= 0) (<1,0,A>, A, .= 0) (<1,0,B>, B, .= 0) * Step 2: SizeboundsProc WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. eval(A,B) -> eval(B,A) [A >= 1 + B] (?,1) 1. start(A,B) -> eval(A,B) True (1,1) Signature: {(eval,2);(start,2)} Flow Graph: [0->{0},1->{0}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<1,0,A>, ?) (<1,0,B>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<0,0,A>, A + B) (<0,0,B>, A + B) (<1,0,A>, A) (<1,0,B>, B) * Step 3: UnsatPaths WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. eval(A,B) -> eval(B,A) [A >= 1 + B] (?,1) 1. start(A,B) -> eval(A,B) True (1,1) Signature: {(eval,2);(start,2)} Flow Graph: [0->{0},1->{0}] Sizebounds: (<0,0,A>, A + B) (<0,0,B>, A + B) (<1,0,A>, A) (<1,0,B>, B) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(0,0)] * Step 4: LeafRules WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. eval(A,B) -> eval(B,A) [A >= 1 + B] (?,1) 1. start(A,B) -> eval(A,B) True (1,1) Signature: {(eval,2);(start,2)} Flow Graph: [0->{},1->{0}] Sizebounds: (<0,0,A>, A + B) (<0,0,B>, A + B) (<1,0,A>, A) (<1,0,B>, B) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [0] * Step 5: LocalSizeboundsProc WORST_CASE(?,O(1)) + Considered Problem: Rules: 1. start(A,B) -> eval(A,B) True (1,1) Signature: {(eval,2);(start,2)} Flow Graph: [1->{}] Sizebounds: (<1,0,A>, A) (<1,0,B>, B) + Applied Processor: LocalSizeboundsProc + Details: The problem is already solved. WORST_CASE(?,O(1))