WORST_CASE(?,O(n^1)) * Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval1(A,B,C) -> eval2(A,B,C) [A >= 1 + B && C = A] (?,1) 1. eval2(A,B,C) -> eval2(-1 + A,B,-1 + C) [A >= 1 + B] (?,1) 2. eval2(A,B,C) -> eval1(A,B,C) [B >= A] (?,1) 3. start(A,B,C) -> eval1(A,B,C) True (1,1) Signature: {(eval1,3);(eval2,3);(start,3)} Flow Graph: [0->{1,2},1->{1,2},2->{0},3->{0}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<0,0,A>, A, .= 0) (<0,0,B>, B, .= 0) (<0,0,C>, C, .= 0) (<1,0,A>, 1 + A, .+ 1) (<1,0,B>, B, .= 0) (<1,0,C>, 1 + C, .+ 1) (<2,0,A>, A, .= 0) (<2,0,B>, B, .= 0) (<2,0,C>, C, .= 0) (<3,0,A>, A, .= 0) (<3,0,B>, B, .= 0) (<3,0,C>, C, .= 0) * Step 2: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval1(A,B,C) -> eval2(A,B,C) [A >= 1 + B && C = A] (?,1) 1. eval2(A,B,C) -> eval2(-1 + A,B,-1 + C) [A >= 1 + B] (?,1) 2. eval2(A,B,C) -> eval1(A,B,C) [B >= A] (?,1) 3. start(A,B,C) -> eval1(A,B,C) True (1,1) Signature: {(eval1,3);(eval2,3);(start,3)} Flow Graph: [0->{1,2},1->{1,2},2->{0},3->{0}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<0,0,C>, ?) (<1,0,A>, ?) (<1,0,B>, ?) (<1,0,C>, ?) (<2,0,A>, ?) (<2,0,B>, ?) (<2,0,C>, ?) (<3,0,A>, ?) (<3,0,B>, ?) (<3,0,C>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<0,0,A>, A + B) (<0,0,B>, B) (<0,0,C>, A + B) (<1,0,A>, ?) (<1,0,B>, B) (<1,0,C>, ?) (<2,0,A>, B) (<2,0,B>, B) (<2,0,C>, ?) (<3,0,A>, A) (<3,0,B>, B) (<3,0,C>, C) * Step 3: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval1(A,B,C) -> eval2(A,B,C) [A >= 1 + B && C = A] (?,1) 1. eval2(A,B,C) -> eval2(-1 + A,B,-1 + C) [A >= 1 + B] (?,1) 2. eval2(A,B,C) -> eval1(A,B,C) [B >= A] (?,1) 3. start(A,B,C) -> eval1(A,B,C) True (1,1) Signature: {(eval1,3);(eval2,3);(start,3)} Flow Graph: [0->{1,2},1->{1,2},2->{0},3->{0}] Sizebounds: (<0,0,A>, A + B) (<0,0,B>, B) (<0,0,C>, A + B) (<1,0,A>, ?) (<1,0,B>, B) (<1,0,C>, ?) (<2,0,A>, B) (<2,0,B>, B) (<2,0,C>, ?) (<3,0,A>, A) (<3,0,B>, B) (<3,0,C>, C) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(0,2),(2,0)] * Step 4: LeafRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval1(A,B,C) -> eval2(A,B,C) [A >= 1 + B && C = A] (?,1) 1. eval2(A,B,C) -> eval2(-1 + A,B,-1 + C) [A >= 1 + B] (?,1) 2. eval2(A,B,C) -> eval1(A,B,C) [B >= A] (?,1) 3. start(A,B,C) -> eval1(A,B,C) True (1,1) Signature: {(eval1,3);(eval2,3);(start,3)} Flow Graph: [0->{1},1->{1,2},2->{},3->{0}] Sizebounds: (<0,0,A>, A + B) (<0,0,B>, B) (<0,0,C>, A + B) (<1,0,A>, ?) (<1,0,B>, B) (<1,0,C>, ?) (<2,0,A>, B) (<2,0,B>, B) (<2,0,C>, ?) (<3,0,A>, A) (<3,0,B>, B) (<3,0,C>, C) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [2] * Step 5: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval1(A,B,C) -> eval2(A,B,C) [A >= 1 + B && C = A] (?,1) 1. eval2(A,B,C) -> eval2(-1 + A,B,-1 + C) [A >= 1 + B] (?,1) 3. start(A,B,C) -> eval1(A,B,C) True (1,1) Signature: {(eval1,3);(eval2,3);(start,3)} Flow Graph: [0->{1},1->{1},3->{0}] Sizebounds: (<0,0,A>, A + B) (<0,0,B>, B) (<0,0,C>, A + B) (<1,0,A>, ?) (<1,0,B>, B) (<1,0,C>, ?) (<3,0,A>, A) (<3,0,B>, B) (<3,0,C>, C) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(eval1) = x1 + -1*x2 p(eval2) = x1 + -1*x2 p(start) = x1 + -1*x2 The following rules are strictly oriented: [A >= 1 + B] ==> eval2(A,B,C) = A + -1*B > -1 + A + -1*B = eval2(-1 + A,B,-1 + C) The following rules are weakly oriented: [A >= 1 + B && C = A] ==> eval1(A,B,C) = A + -1*B >= A + -1*B = eval2(A,B,C) True ==> start(A,B,C) = A + -1*B >= A + -1*B = eval1(A,B,C) * Step 6: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval1(A,B,C) -> eval2(A,B,C) [A >= 1 + B && C = A] (?,1) 1. eval2(A,B,C) -> eval2(-1 + A,B,-1 + C) [A >= 1 + B] (A + B,1) 3. start(A,B,C) -> eval1(A,B,C) True (1,1) Signature: {(eval1,3);(eval2,3);(start,3)} Flow Graph: [0->{1},1->{1},3->{0}] Sizebounds: (<0,0,A>, A + B) (<0,0,B>, B) (<0,0,C>, A + B) (<1,0,A>, ?) (<1,0,B>, B) (<1,0,C>, ?) (<3,0,A>, A) (<3,0,B>, B) (<3,0,C>, C) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 7: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval1(A,B,C) -> eval2(A,B,C) [A >= 1 + B && C = A] (1,1) 1. eval2(A,B,C) -> eval2(-1 + A,B,-1 + C) [A >= 1 + B] (A + B,1) 3. start(A,B,C) -> eval1(A,B,C) True (1,1) Signature: {(eval1,3);(eval2,3);(start,3)} Flow Graph: [0->{1},1->{1},3->{0}] Sizebounds: (<0,0,A>, A + B) (<0,0,B>, B) (<0,0,C>, A + B) (<1,0,A>, ?) (<1,0,B>, B) (<1,0,C>, ?) (<3,0,A>, A) (<3,0,B>, B) (<3,0,C>, C) + Applied Processor: LocalSizeboundsProc + Details: The problem is already solved. WORST_CASE(?,O(n^1))