WORST_CASE(?,O(n^1)) * Step 1: UnsatRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval(A,B) -> eval(-1 + A,B) [A + B >= 1 && A >= 1 + B] (?,1) 1. eval(A,B) -> eval(-1 + A,B) [2*A >= 1 && B = A] (?,1) 2. eval(A,B) -> eval(A,-1 + B) [A + B >= 1 && B >= A && B >= 1 + A] (?,1) 3. eval(A,B) -> eval(A,-1 + B) [A + B >= 1 && B >= A && A >= 1 + B] (?,1) 4. start(A,B) -> eval(A,B) True (1,1) Signature: {(eval,2);(start,2)} Flow Graph: [0->{0,1,2,3},1->{0,1,2,3},2->{0,1,2,3},3->{0,1,2,3},4->{0,1,2,3}] + Applied Processor: UnsatRules + Details: The following transitions have unsatisfiable constraints and are removed: [3] * Step 2: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval(A,B) -> eval(-1 + A,B) [A + B >= 1 && A >= 1 + B] (?,1) 1. eval(A,B) -> eval(-1 + A,B) [2*A >= 1 && B = A] (?,1) 2. eval(A,B) -> eval(A,-1 + B) [A + B >= 1 && B >= A && B >= 1 + A] (?,1) 4. start(A,B) -> eval(A,B) True (1,1) Signature: {(eval,2);(start,2)} Flow Graph: [0->{0,1,2},1->{0,1,2},2->{0,1,2},4->{0,1,2}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<0,0,A>, 1 + A, .+ 1) (<0,0,B>, B, .= 0) (<1,0,A>, 1 + A, .+ 1) (<1,0,B>, B, .= 0) (<2,0,A>, A, .= 0) (<2,0,B>, 1 + B, .+ 1) (<4,0,A>, A, .= 0) (<4,0,B>, B, .= 0) * Step 3: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval(A,B) -> eval(-1 + A,B) [A + B >= 1 && A >= 1 + B] (?,1) 1. eval(A,B) -> eval(-1 + A,B) [2*A >= 1 && B = A] (?,1) 2. eval(A,B) -> eval(A,-1 + B) [A + B >= 1 && B >= A && B >= 1 + A] (?,1) 4. start(A,B) -> eval(A,B) True (1,1) Signature: {(eval,2);(start,2)} Flow Graph: [0->{0,1,2},1->{0,1,2},2->{0,1,2},4->{0,1,2}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<1,0,A>, ?) (<1,0,B>, ?) (<2,0,A>, ?) (<2,0,B>, ?) (<4,0,A>, ?) (<4,0,B>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<0,0,A>, ?) (<0,0,B>, ?) (<1,0,A>, ?) (<1,0,B>, ?) (<2,0,A>, ?) (<2,0,B>, ?) (<4,0,A>, A) (<4,0,B>, B) * Step 4: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval(A,B) -> eval(-1 + A,B) [A + B >= 1 && A >= 1 + B] (?,1) 1. eval(A,B) -> eval(-1 + A,B) [2*A >= 1 && B = A] (?,1) 2. eval(A,B) -> eval(A,-1 + B) [A + B >= 1 && B >= A && B >= 1 + A] (?,1) 4. start(A,B) -> eval(A,B) True (1,1) Signature: {(eval,2);(start,2)} Flow Graph: [0->{0,1,2},1->{0,1,2},2->{0,1,2},4->{0,1,2}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<1,0,A>, ?) (<1,0,B>, ?) (<2,0,A>, ?) (<2,0,B>, ?) (<4,0,A>, A) (<4,0,B>, B) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(0,2),(1,0),(1,1),(2,0)] * Step 5: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval(A,B) -> eval(-1 + A,B) [A + B >= 1 && A >= 1 + B] (?,1) 1. eval(A,B) -> eval(-1 + A,B) [2*A >= 1 && B = A] (?,1) 2. eval(A,B) -> eval(A,-1 + B) [A + B >= 1 && B >= A && B >= 1 + A] (?,1) 4. start(A,B) -> eval(A,B) True (1,1) Signature: {(eval,2);(start,2)} Flow Graph: [0->{0,1},1->{2},2->{1,2},4->{0,1,2}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<1,0,A>, ?) (<1,0,B>, ?) (<2,0,A>, ?) (<2,0,B>, ?) (<4,0,A>, A) (<4,0,B>, B) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(eval) = 2*x2 p(start) = 2*x2 The following rules are strictly oriented: [A + B >= 1 && B >= A && B >= 1 + A] ==> eval(A,B) = 2*B > -2 + 2*B = eval(A,-1 + B) The following rules are weakly oriented: [A + B >= 1 && A >= 1 + B] ==> eval(A,B) = 2*B >= 2*B = eval(-1 + A,B) [2*A >= 1 && B = A] ==> eval(A,B) = 2*B >= 2*B = eval(-1 + A,B) True ==> start(A,B) = 2*B >= 2*B = eval(A,B) * Step 6: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval(A,B) -> eval(-1 + A,B) [A + B >= 1 && A >= 1 + B] (?,1) 1. eval(A,B) -> eval(-1 + A,B) [2*A >= 1 && B = A] (?,1) 2. eval(A,B) -> eval(A,-1 + B) [A + B >= 1 && B >= A && B >= 1 + A] (2*B,1) 4. start(A,B) -> eval(A,B) True (1,1) Signature: {(eval,2);(start,2)} Flow Graph: [0->{0,1},1->{2},2->{1,2},4->{0,1,2}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<1,0,A>, ?) (<1,0,B>, ?) (<2,0,A>, ?) (<2,0,B>, ?) (<4,0,A>, A) (<4,0,B>, B) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(eval) = 2*x1 p(start) = 2*x1 The following rules are strictly oriented: [2*A >= 1 && B = A] ==> eval(A,B) = 2*A > -2 + 2*A = eval(-1 + A,B) The following rules are weakly oriented: [A + B >= 1 && A >= 1 + B] ==> eval(A,B) = 2*A >= -2 + 2*A = eval(-1 + A,B) [A + B >= 1 && B >= A && B >= 1 + A] ==> eval(A,B) = 2*A >= 2*A = eval(A,-1 + B) True ==> start(A,B) = 2*A >= 2*A = eval(A,B) * Step 7: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval(A,B) -> eval(-1 + A,B) [A + B >= 1 && A >= 1 + B] (?,1) 1. eval(A,B) -> eval(-1 + A,B) [2*A >= 1 && B = A] (2*A,1) 2. eval(A,B) -> eval(A,-1 + B) [A + B >= 1 && B >= A && B >= 1 + A] (2*B,1) 4. start(A,B) -> eval(A,B) True (1,1) Signature: {(eval,2);(start,2)} Flow Graph: [0->{0,1},1->{2},2->{1,2},4->{0,1,2}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<1,0,A>, ?) (<1,0,B>, ?) (<2,0,A>, ?) (<2,0,B>, ?) (<4,0,A>, A) (<4,0,B>, B) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(eval) = 2*x1 p(start) = 2*x1 The following rules are strictly oriented: [A + B >= 1 && A >= 1 + B] ==> eval(A,B) = 2*A > -2 + 2*A = eval(-1 + A,B) [2*A >= 1 && B = A] ==> eval(A,B) = 2*A > -2 + 2*A = eval(-1 + A,B) The following rules are weakly oriented: [A + B >= 1 && B >= A && B >= 1 + A] ==> eval(A,B) = 2*A >= 2*A = eval(A,-1 + B) True ==> start(A,B) = 2*A >= 2*A = eval(A,B) * Step 8: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval(A,B) -> eval(-1 + A,B) [A + B >= 1 && A >= 1 + B] (2*A,1) 1. eval(A,B) -> eval(-1 + A,B) [2*A >= 1 && B = A] (2*A,1) 2. eval(A,B) -> eval(A,-1 + B) [A + B >= 1 && B >= A && B >= 1 + A] (2*B,1) 4. start(A,B) -> eval(A,B) True (1,1) Signature: {(eval,2);(start,2)} Flow Graph: [0->{0,1},1->{2},2->{1,2},4->{0,1,2}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<1,0,A>, ?) (<1,0,B>, ?) (<2,0,A>, ?) (<2,0,B>, ?) (<4,0,A>, A) (<4,0,B>, B) + Applied Processor: KnowledgePropagation + Details: The problem is already solved. WORST_CASE(?,O(n^1))