WORST_CASE(?,O(n^1))
* Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. eval(A,B,C)  -> eval(C,-1 + B,1 + A) [100 >= A && B >= C] (?,1)
          1. start(A,B,C) -> eval(A,B,C)          True                 (1,1)
        Signature:
          {(eval,3);(start,3)}
        Flow Graph:
          [0->{0},1->{0}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (<0,0,A>, C, .= 0) (<0,0,B>, 1 + B, .+ 1) (<0,0,C>, 1 + A, .+ 1) 
          (<1,0,A>, A, .= 0) (<1,0,B>,     B, .= 0) (<1,0,C>,     C, .= 0) 
* Step 2: SizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. eval(A,B,C)  -> eval(C,-1 + B,1 + A) [100 >= A && B >= C] (?,1)
          1. start(A,B,C) -> eval(A,B,C)          True                 (1,1)
        Signature:
          {(eval,3);(start,3)}
        Flow Graph:
          [0->{0},1->{0}]
        Sizebounds:
          (<0,0,A>, ?) (<0,0,B>, ?) (<0,0,C>, ?) 
          (<1,0,A>, ?) (<1,0,B>, ?) (<1,0,C>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (<0,0,A>, 1) (<0,0,B>, ?) (<0,0,C>, 2) 
          (<1,0,A>, A) (<1,0,B>, B) (<1,0,C>, C) 
* Step 3: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. eval(A,B,C)  -> eval(C,-1 + B,1 + A) [100 >= A && B >= C] (?,1)
          1. start(A,B,C) -> eval(A,B,C)          True                 (1,1)
        Signature:
          {(eval,3);(start,3)}
        Flow Graph:
          [0->{0},1->{0}]
        Sizebounds:
          (<0,0,A>, 1) (<0,0,B>, ?) (<0,0,C>, 2) 
          (<1,0,A>, A) (<1,0,B>, B) (<1,0,C>, C) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(eval) = 101 + -1*x1 + x2 + -1*x3
          p(start) = 101 + -1*x1 + x2 + -1*x3
        
        The following rules are strictly oriented:
        [100 >= A && B >= C] ==>                      
                 eval(A,B,C)   = 101 + -1*A + B + -1*C
                               > 99 + -1*A + B + -1*C 
                               = eval(C,-1 + B,1 + A) 
        
        
        The following rules are weakly oriented:
                  True ==>                      
          start(A,B,C)   = 101 + -1*A + B + -1*C
                        >= 101 + -1*A + B + -1*C
                         = eval(A,B,C)          
        
        
* Step 4: KnowledgePropagation WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. eval(A,B,C)  -> eval(C,-1 + B,1 + A) [100 >= A && B >= C] (101 + A + B + C,1)
          1. start(A,B,C) -> eval(A,B,C)          True                 (1,1)              
        Signature:
          {(eval,3);(start,3)}
        Flow Graph:
          [0->{0},1->{0}]
        Sizebounds:
          (<0,0,A>, 1) (<0,0,B>, ?) (<0,0,C>, 2) 
          (<1,0,A>, A) (<1,0,B>, B) (<1,0,C>, C) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        The problem is already solved.

WORST_CASE(?,O(n^1))