WORST_CASE(?,O(1)) * Step 1: LocalSizeboundsProc WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. evalndloopstart(A) -> evalndloopentryin(A) True (1,1) 1. evalndloopentryin(A) -> evalndloopbbin(0) True (?,1) 2. evalndloopbbin(A) -> evalndloopbbin(B) [2 + A >= B && B >= 1 + A && 9 >= B] (?,1) 3. evalndloopbbin(A) -> evalndloopreturnin(A) [B >= 3 + A] (?,1) 4. evalndloopbbin(A) -> evalndloopreturnin(A) [A >= B] (?,1) 5. evalndloopbbin(A) -> evalndloopreturnin(A) [B >= 10] (?,1) 6. evalndloopreturnin(A) -> evalndloopstop(A) True (?,1) Signature: {(evalndloopbbin,1);(evalndloopentryin,1);(evalndloopreturnin,1);(evalndloopstart,1);(evalndloopstop,1)} Flow Graph: [0->{1},1->{2,3,4,5},2->{2,3,4,5},3->{6},4->{6},5->{6},6->{}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<0,0,A>, A, .= 0) (<1,0,A>, 0, .= 0) (<2,0,A>, 9 + A, .+ 9) (<3,0,A>, A, .= 0) (<4,0,A>, A, .= 0) (<5,0,A>, A, .= 0) (<6,0,A>, A, .= 0) * Step 2: SizeboundsProc WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. evalndloopstart(A) -> evalndloopentryin(A) True (1,1) 1. evalndloopentryin(A) -> evalndloopbbin(0) True (?,1) 2. evalndloopbbin(A) -> evalndloopbbin(B) [2 + A >= B && B >= 1 + A && 9 >= B] (?,1) 3. evalndloopbbin(A) -> evalndloopreturnin(A) [B >= 3 + A] (?,1) 4. evalndloopbbin(A) -> evalndloopreturnin(A) [A >= B] (?,1) 5. evalndloopbbin(A) -> evalndloopreturnin(A) [B >= 10] (?,1) 6. evalndloopreturnin(A) -> evalndloopstop(A) True (?,1) Signature: {(evalndloopbbin,1);(evalndloopentryin,1);(evalndloopreturnin,1);(evalndloopstart,1);(evalndloopstop,1)} Flow Graph: [0->{1},1->{2,3,4,5},2->{2,3,4,5},3->{6},4->{6},5->{6},6->{}] Sizebounds: (<0,0,A>, ?) (<1,0,A>, ?) (<2,0,A>, ?) (<3,0,A>, ?) (<4,0,A>, ?) (<5,0,A>, ?) (<6,0,A>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<0,0,A>, A) (<1,0,A>, 0) (<2,0,A>, 1) (<3,0,A>, 1) (<4,0,A>, 1) (<5,0,A>, 1) (<6,0,A>, 1) * Step 3: LeafRules WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. evalndloopstart(A) -> evalndloopentryin(A) True (1,1) 1. evalndloopentryin(A) -> evalndloopbbin(0) True (?,1) 2. evalndloopbbin(A) -> evalndloopbbin(B) [2 + A >= B && B >= 1 + A && 9 >= B] (?,1) 3. evalndloopbbin(A) -> evalndloopreturnin(A) [B >= 3 + A] (?,1) 4. evalndloopbbin(A) -> evalndloopreturnin(A) [A >= B] (?,1) 5. evalndloopbbin(A) -> evalndloopreturnin(A) [B >= 10] (?,1) 6. evalndloopreturnin(A) -> evalndloopstop(A) True (?,1) Signature: {(evalndloopbbin,1);(evalndloopentryin,1);(evalndloopreturnin,1);(evalndloopstart,1);(evalndloopstop,1)} Flow Graph: [0->{1},1->{2,3,4,5},2->{2,3,4,5},3->{6},4->{6},5->{6},6->{}] Sizebounds: (<0,0,A>, A) (<1,0,A>, 0) (<2,0,A>, 1) (<3,0,A>, 1) (<4,0,A>, 1) (<5,0,A>, 1) (<6,0,A>, 1) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [3,4,5,6] * Step 4: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. evalndloopstart(A) -> evalndloopentryin(A) True (1,1) 1. evalndloopentryin(A) -> evalndloopbbin(0) True (?,1) 2. evalndloopbbin(A) -> evalndloopbbin(B) [2 + A >= B && B >= 1 + A && 9 >= B] (?,1) Signature: {(evalndloopbbin,1);(evalndloopentryin,1);(evalndloopreturnin,1);(evalndloopstart,1);(evalndloopstop,1)} Flow Graph: [0->{1},1->{2},2->{2}] Sizebounds: (<0,0,A>, A) (<1,0,A>, 0) (<2,0,A>, 1) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalndloopbbin) = 9 + -1*x1 p(evalndloopentryin) = 9 p(evalndloopstart) = 9 The following rules are strictly oriented: [2 + A >= B && B >= 1 + A && 9 >= B] ==> evalndloopbbin(A) = 9 + -1*A > 9 + -1*B = evalndloopbbin(B) The following rules are weakly oriented: True ==> evalndloopstart(A) = 9 >= 9 = evalndloopentryin(A) True ==> evalndloopentryin(A) = 9 >= 9 = evalndloopbbin(0) * Step 5: KnowledgePropagation WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. evalndloopstart(A) -> evalndloopentryin(A) True (1,1) 1. evalndloopentryin(A) -> evalndloopbbin(0) True (?,1) 2. evalndloopbbin(A) -> evalndloopbbin(B) [2 + A >= B && B >= 1 + A && 9 >= B] (9,1) Signature: {(evalndloopbbin,1);(evalndloopentryin,1);(evalndloopreturnin,1);(evalndloopstart,1);(evalndloopstop,1)} Flow Graph: [0->{1},1->{2},2->{2}] Sizebounds: (<0,0,A>, A) (<1,0,A>, 0) (<2,0,A>, 1) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 6: LocalSizeboundsProc WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. evalndloopstart(A) -> evalndloopentryin(A) True (1,1) 1. evalndloopentryin(A) -> evalndloopbbin(0) True (1,1) 2. evalndloopbbin(A) -> evalndloopbbin(B) [2 + A >= B && B >= 1 + A && 9 >= B] (9,1) Signature: {(evalndloopbbin,1);(evalndloopentryin,1);(evalndloopreturnin,1);(evalndloopstart,1);(evalndloopstop,1)} Flow Graph: [0->{1},1->{2},2->{2}] Sizebounds: (<0,0,A>, A) (<1,0,A>, 0) (<2,0,A>, 1) + Applied Processor: LocalSizeboundsProc + Details: The problem is already solved. WORST_CASE(?,O(1))