WORST_CASE(?,O(n^3))
* Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          0.  evalfstart(A,B,C,D,E)    -> evalfentryin(A,B,C,D,E)    True               (1,1)
          1.  evalfentryin(A,B,C,D,E)  -> evalfbb7in(B,B,0,D,E)      True               (?,1)
          2.  evalfbb7in(A,B,C,D,E)    -> evalfbbin(A,B,C,D,E)       [A >= 0 && C >= 0] (?,1)
          3.  evalfbb7in(A,B,C,D,E)    -> evalfreturnin(A,B,C,D,E)   [0 >= 1 + A]       (?,1)
          4.  evalfbb7in(A,B,C,D,E)    -> evalfreturnin(A,B,C,D,E)   [0 >= 1 + C]       (?,1)
          5.  evalfbbin(A,B,C,D,E)     -> evalfbb3in(A,B,C,C,E)      [0 >= 1 + F]       (?,1)
          6.  evalfbbin(A,B,C,D,E)     -> evalfbb3in(A,B,C,C,E)      [F >= 1]           (?,1)
          7.  evalfbbin(A,B,C,D,E)     -> evalfbb6in(A,B,C,A,C)      True               (?,1)
          8.  evalfbb3in(A,B,C,D,E)    -> evalfbb5in(A,B,C,D,E)      [D >= 1 + B]       (?,1)
          9.  evalfbb3in(A,B,C,D,E)    -> evalfbb4in(A,B,C,D,E)      [B >= D]           (?,1)
          10. evalfbb4in(A,B,C,D,E)    -> evalfbb2in(A,B,C,D,E)      [0 >= 1 + F]       (?,1)
          11. evalfbb4in(A,B,C,D,E)    -> evalfbb2in(A,B,C,D,E)      [F >= 1]           (?,1)
          12. evalfbb4in(A,B,C,D,E)    -> evalfbb5in(A,B,C,D,E)      True               (?,1)
          13. evalfbb2in(A,B,C,D,E)    -> evalfbb3in(A,B,C,1 + D,E)  True               (?,1)
          14. evalfbb5in(A,B,C,D,E)    -> evalfbb6in(A,B,C,-1 + A,D) True               (?,1)
          15. evalfbb6in(A,B,C,D,E)    -> evalfbb7in(D,B,-1 + E,D,E) True               (?,1)
          16. evalfreturnin(A,B,C,D,E) -> evalfstop(A,B,C,D,E)       True               (?,1)
        Signature:
          {(evalfbb2in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbbin,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [0->{1},1->{2,3,4},2->{5,6,7},3->{16},4->{16},5->{8,9},6->{8,9},7->{15},8->{14},9->{10,11,12},10->{13}
          ,11->{13},12->{14},13->{8,9},14->{15},15->{2,3,4},16->{}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (< 0,0,A>, A, .= 0) (< 0,0,B>, B, .= 0) (< 0,0,C>,     C, .= 0) (< 0,0,D>,     D, .= 0) (< 0,0,E>, E, .= 0) 
          (< 1,0,A>, B, .= 0) (< 1,0,B>, B, .= 0) (< 1,0,C>,     0, .= 0) (< 1,0,D>,     D, .= 0) (< 1,0,E>, E, .= 0) 
          (< 2,0,A>, A, .= 0) (< 2,0,B>, B, .= 0) (< 2,0,C>,     C, .= 0) (< 2,0,D>,     D, .= 0) (< 2,0,E>, E, .= 0) 
          (< 3,0,A>, A, .= 0) (< 3,0,B>, B, .= 0) (< 3,0,C>,     C, .= 0) (< 3,0,D>,     D, .= 0) (< 3,0,E>, E, .= 0) 
          (< 4,0,A>, A, .= 0) (< 4,0,B>, B, .= 0) (< 4,0,C>,     C, .= 0) (< 4,0,D>,     D, .= 0) (< 4,0,E>, E, .= 0) 
          (< 5,0,A>, A, .= 0) (< 5,0,B>, B, .= 0) (< 5,0,C>,     C, .= 0) (< 5,0,D>,     C, .= 0) (< 5,0,E>, E, .= 0) 
          (< 6,0,A>, A, .= 0) (< 6,0,B>, B, .= 0) (< 6,0,C>,     C, .= 0) (< 6,0,D>,     C, .= 0) (< 6,0,E>, E, .= 0) 
          (< 7,0,A>, A, .= 0) (< 7,0,B>, B, .= 0) (< 7,0,C>,     C, .= 0) (< 7,0,D>,     A, .= 0) (< 7,0,E>, C, .= 0) 
          (< 8,0,A>, A, .= 0) (< 8,0,B>, B, .= 0) (< 8,0,C>,     C, .= 0) (< 8,0,D>,     D, .= 0) (< 8,0,E>, E, .= 0) 
          (< 9,0,A>, A, .= 0) (< 9,0,B>, B, .= 0) (< 9,0,C>,     C, .= 0) (< 9,0,D>,     D, .= 0) (< 9,0,E>, E, .= 0) 
          (<10,0,A>, A, .= 0) (<10,0,B>, B, .= 0) (<10,0,C>,     C, .= 0) (<10,0,D>,     D, .= 0) (<10,0,E>, E, .= 0) 
          (<11,0,A>, A, .= 0) (<11,0,B>, B, .= 0) (<11,0,C>,     C, .= 0) (<11,0,D>,     D, .= 0) (<11,0,E>, E, .= 0) 
          (<12,0,A>, A, .= 0) (<12,0,B>, B, .= 0) (<12,0,C>,     C, .= 0) (<12,0,D>,     D, .= 0) (<12,0,E>, E, .= 0) 
          (<13,0,A>, A, .= 0) (<13,0,B>, B, .= 0) (<13,0,C>,     C, .= 0) (<13,0,D>, 1 + D, .+ 1) (<13,0,E>, E, .= 0) 
          (<14,0,A>, A, .= 0) (<14,0,B>, B, .= 0) (<14,0,C>,     C, .= 0) (<14,0,D>, 1 + A, .+ 1) (<14,0,E>, D, .= 0) 
          (<15,0,A>, D, .= 0) (<15,0,B>, B, .= 0) (<15,0,C>, 1 + E, .+ 1) (<15,0,D>,     D, .= 0) (<15,0,E>, E, .= 0) 
          (<16,0,A>, A, .= 0) (<16,0,B>, B, .= 0) (<16,0,C>,     C, .= 0) (<16,0,D>,     D, .= 0) (<16,0,E>, E, .= 0) 
* Step 2: SizeboundsProc WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          0.  evalfstart(A,B,C,D,E)    -> evalfentryin(A,B,C,D,E)    True               (1,1)
          1.  evalfentryin(A,B,C,D,E)  -> evalfbb7in(B,B,0,D,E)      True               (?,1)
          2.  evalfbb7in(A,B,C,D,E)    -> evalfbbin(A,B,C,D,E)       [A >= 0 && C >= 0] (?,1)
          3.  evalfbb7in(A,B,C,D,E)    -> evalfreturnin(A,B,C,D,E)   [0 >= 1 + A]       (?,1)
          4.  evalfbb7in(A,B,C,D,E)    -> evalfreturnin(A,B,C,D,E)   [0 >= 1 + C]       (?,1)
          5.  evalfbbin(A,B,C,D,E)     -> evalfbb3in(A,B,C,C,E)      [0 >= 1 + F]       (?,1)
          6.  evalfbbin(A,B,C,D,E)     -> evalfbb3in(A,B,C,C,E)      [F >= 1]           (?,1)
          7.  evalfbbin(A,B,C,D,E)     -> evalfbb6in(A,B,C,A,C)      True               (?,1)
          8.  evalfbb3in(A,B,C,D,E)    -> evalfbb5in(A,B,C,D,E)      [D >= 1 + B]       (?,1)
          9.  evalfbb3in(A,B,C,D,E)    -> evalfbb4in(A,B,C,D,E)      [B >= D]           (?,1)
          10. evalfbb4in(A,B,C,D,E)    -> evalfbb2in(A,B,C,D,E)      [0 >= 1 + F]       (?,1)
          11. evalfbb4in(A,B,C,D,E)    -> evalfbb2in(A,B,C,D,E)      [F >= 1]           (?,1)
          12. evalfbb4in(A,B,C,D,E)    -> evalfbb5in(A,B,C,D,E)      True               (?,1)
          13. evalfbb2in(A,B,C,D,E)    -> evalfbb3in(A,B,C,1 + D,E)  True               (?,1)
          14. evalfbb5in(A,B,C,D,E)    -> evalfbb6in(A,B,C,-1 + A,D) True               (?,1)
          15. evalfbb6in(A,B,C,D,E)    -> evalfbb7in(D,B,-1 + E,D,E) True               (?,1)
          16. evalfreturnin(A,B,C,D,E) -> evalfstop(A,B,C,D,E)       True               (?,1)
        Signature:
          {(evalfbb2in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbbin,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [0->{1},1->{2,3,4},2->{5,6,7},3->{16},4->{16},5->{8,9},6->{8,9},7->{15},8->{14},9->{10,11,12},10->{13}
          ,11->{13},12->{14},13->{8,9},14->{15},15->{2,3,4},16->{}]
        Sizebounds:
          (< 0,0,A>, ?) (< 0,0,B>, ?) (< 0,0,C>, ?) (< 0,0,D>, ?) (< 0,0,E>, ?) 
          (< 1,0,A>, ?) (< 1,0,B>, ?) (< 1,0,C>, ?) (< 1,0,D>, ?) (< 1,0,E>, ?) 
          (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, ?) (< 2,0,E>, ?) 
          (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, ?) (< 3,0,E>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
          (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
          (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) 
          (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) 
          (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) 
          (<14,0,A>, ?) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, ?) 
          (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, ?) 
          (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,E>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) 
          (< 1,0,A>, B) (< 1,0,B>, B) (< 1,0,C>, 0) (< 1,0,D>, D) (< 1,0,E>, E) 
          (< 2,0,A>, ?) (< 2,0,B>, B) (< 2,0,C>, ?) (< 2,0,D>, ?) (< 2,0,E>, ?) 
          (< 3,0,A>, ?) (< 3,0,B>, B) (< 3,0,C>, ?) (< 3,0,D>, ?) (< 3,0,E>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>, B) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, B) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, B) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, ?) (< 9,0,D>, B) (< 9,0,E>, ?) 
          (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, B) (<10,0,E>, ?) 
          (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, ?) (<11,0,D>, B) (<11,0,E>, ?) 
          (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) (<12,0,D>, B) (<12,0,E>, ?) 
          (<13,0,A>, ?) (<13,0,B>, B) (<13,0,C>, ?) (<13,0,D>, B) (<13,0,E>, ?) 
          (<14,0,A>, ?) (<14,0,B>, B) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, ?) 
          (<15,0,A>, ?) (<15,0,B>, B) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, ?) 
          (<16,0,A>, ?) (<16,0,B>, B) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,E>, ?) 
* Step 3: UnsatPaths WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          0.  evalfstart(A,B,C,D,E)    -> evalfentryin(A,B,C,D,E)    True               (1,1)
          1.  evalfentryin(A,B,C,D,E)  -> evalfbb7in(B,B,0,D,E)      True               (?,1)
          2.  evalfbb7in(A,B,C,D,E)    -> evalfbbin(A,B,C,D,E)       [A >= 0 && C >= 0] (?,1)
          3.  evalfbb7in(A,B,C,D,E)    -> evalfreturnin(A,B,C,D,E)   [0 >= 1 + A]       (?,1)
          4.  evalfbb7in(A,B,C,D,E)    -> evalfreturnin(A,B,C,D,E)   [0 >= 1 + C]       (?,1)
          5.  evalfbbin(A,B,C,D,E)     -> evalfbb3in(A,B,C,C,E)      [0 >= 1 + F]       (?,1)
          6.  evalfbbin(A,B,C,D,E)     -> evalfbb3in(A,B,C,C,E)      [F >= 1]           (?,1)
          7.  evalfbbin(A,B,C,D,E)     -> evalfbb6in(A,B,C,A,C)      True               (?,1)
          8.  evalfbb3in(A,B,C,D,E)    -> evalfbb5in(A,B,C,D,E)      [D >= 1 + B]       (?,1)
          9.  evalfbb3in(A,B,C,D,E)    -> evalfbb4in(A,B,C,D,E)      [B >= D]           (?,1)
          10. evalfbb4in(A,B,C,D,E)    -> evalfbb2in(A,B,C,D,E)      [0 >= 1 + F]       (?,1)
          11. evalfbb4in(A,B,C,D,E)    -> evalfbb2in(A,B,C,D,E)      [F >= 1]           (?,1)
          12. evalfbb4in(A,B,C,D,E)    -> evalfbb5in(A,B,C,D,E)      True               (?,1)
          13. evalfbb2in(A,B,C,D,E)    -> evalfbb3in(A,B,C,1 + D,E)  True               (?,1)
          14. evalfbb5in(A,B,C,D,E)    -> evalfbb6in(A,B,C,-1 + A,D) True               (?,1)
          15. evalfbb6in(A,B,C,D,E)    -> evalfbb7in(D,B,-1 + E,D,E) True               (?,1)
          16. evalfreturnin(A,B,C,D,E) -> evalfstop(A,B,C,D,E)       True               (?,1)
        Signature:
          {(evalfbb2in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbbin,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [0->{1},1->{2,3,4},2->{5,6,7},3->{16},4->{16},5->{8,9},6->{8,9},7->{15},8->{14},9->{10,11,12},10->{13}
          ,11->{13},12->{14},13->{8,9},14->{15},15->{2,3,4},16->{}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) 
          (< 1,0,A>, B) (< 1,0,B>, B) (< 1,0,C>, 0) (< 1,0,D>, D) (< 1,0,E>, E) 
          (< 2,0,A>, ?) (< 2,0,B>, B) (< 2,0,C>, ?) (< 2,0,D>, ?) (< 2,0,E>, ?) 
          (< 3,0,A>, ?) (< 3,0,B>, B) (< 3,0,C>, ?) (< 3,0,D>, ?) (< 3,0,E>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>, B) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, B) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, B) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, ?) (< 9,0,D>, B) (< 9,0,E>, ?) 
          (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, B) (<10,0,E>, ?) 
          (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, ?) (<11,0,D>, B) (<11,0,E>, ?) 
          (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) (<12,0,D>, B) (<12,0,E>, ?) 
          (<13,0,A>, ?) (<13,0,B>, B) (<13,0,C>, ?) (<13,0,D>, B) (<13,0,E>, ?) 
          (<14,0,A>, ?) (<14,0,B>, B) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, ?) 
          (<15,0,A>, ?) (<15,0,B>, B) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, ?) 
          (<16,0,A>, ?) (<16,0,B>, B) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,E>, ?) 
    + Applied Processor:
        UnsatPaths
    + Details:
        We remove following edges from the transition graph: [(1,4)]
* Step 4: LeafRules WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          0.  evalfstart(A,B,C,D,E)    -> evalfentryin(A,B,C,D,E)    True               (1,1)
          1.  evalfentryin(A,B,C,D,E)  -> evalfbb7in(B,B,0,D,E)      True               (?,1)
          2.  evalfbb7in(A,B,C,D,E)    -> evalfbbin(A,B,C,D,E)       [A >= 0 && C >= 0] (?,1)
          3.  evalfbb7in(A,B,C,D,E)    -> evalfreturnin(A,B,C,D,E)   [0 >= 1 + A]       (?,1)
          4.  evalfbb7in(A,B,C,D,E)    -> evalfreturnin(A,B,C,D,E)   [0 >= 1 + C]       (?,1)
          5.  evalfbbin(A,B,C,D,E)     -> evalfbb3in(A,B,C,C,E)      [0 >= 1 + F]       (?,1)
          6.  evalfbbin(A,B,C,D,E)     -> evalfbb3in(A,B,C,C,E)      [F >= 1]           (?,1)
          7.  evalfbbin(A,B,C,D,E)     -> evalfbb6in(A,B,C,A,C)      True               (?,1)
          8.  evalfbb3in(A,B,C,D,E)    -> evalfbb5in(A,B,C,D,E)      [D >= 1 + B]       (?,1)
          9.  evalfbb3in(A,B,C,D,E)    -> evalfbb4in(A,B,C,D,E)      [B >= D]           (?,1)
          10. evalfbb4in(A,B,C,D,E)    -> evalfbb2in(A,B,C,D,E)      [0 >= 1 + F]       (?,1)
          11. evalfbb4in(A,B,C,D,E)    -> evalfbb2in(A,B,C,D,E)      [F >= 1]           (?,1)
          12. evalfbb4in(A,B,C,D,E)    -> evalfbb5in(A,B,C,D,E)      True               (?,1)
          13. evalfbb2in(A,B,C,D,E)    -> evalfbb3in(A,B,C,1 + D,E)  True               (?,1)
          14. evalfbb5in(A,B,C,D,E)    -> evalfbb6in(A,B,C,-1 + A,D) True               (?,1)
          15. evalfbb6in(A,B,C,D,E)    -> evalfbb7in(D,B,-1 + E,D,E) True               (?,1)
          16. evalfreturnin(A,B,C,D,E) -> evalfstop(A,B,C,D,E)       True               (?,1)
        Signature:
          {(evalfbb2in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbbin,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [0->{1},1->{2,3},2->{5,6,7},3->{16},4->{16},5->{8,9},6->{8,9},7->{15},8->{14},9->{10,11,12},10->{13}
          ,11->{13},12->{14},13->{8,9},14->{15},15->{2,3,4},16->{}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) 
          (< 1,0,A>, B) (< 1,0,B>, B) (< 1,0,C>, 0) (< 1,0,D>, D) (< 1,0,E>, E) 
          (< 2,0,A>, ?) (< 2,0,B>, B) (< 2,0,C>, ?) (< 2,0,D>, ?) (< 2,0,E>, ?) 
          (< 3,0,A>, ?) (< 3,0,B>, B) (< 3,0,C>, ?) (< 3,0,D>, ?) (< 3,0,E>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>, B) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, B) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, B) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, ?) (< 9,0,D>, B) (< 9,0,E>, ?) 
          (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, B) (<10,0,E>, ?) 
          (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, ?) (<11,0,D>, B) (<11,0,E>, ?) 
          (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) (<12,0,D>, B) (<12,0,E>, ?) 
          (<13,0,A>, ?) (<13,0,B>, B) (<13,0,C>, ?) (<13,0,D>, B) (<13,0,E>, ?) 
          (<14,0,A>, ?) (<14,0,B>, B) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, ?) 
          (<15,0,A>, ?) (<15,0,B>, B) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, ?) 
          (<16,0,A>, ?) (<16,0,B>, B) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,E>, ?) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [3,4,16]
* Step 5: PolyRank WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          0.  evalfstart(A,B,C,D,E)   -> evalfentryin(A,B,C,D,E)    True               (1,1)
          1.  evalfentryin(A,B,C,D,E) -> evalfbb7in(B,B,0,D,E)      True               (?,1)
          2.  evalfbb7in(A,B,C,D,E)   -> evalfbbin(A,B,C,D,E)       [A >= 0 && C >= 0] (?,1)
          5.  evalfbbin(A,B,C,D,E)    -> evalfbb3in(A,B,C,C,E)      [0 >= 1 + F]       (?,1)
          6.  evalfbbin(A,B,C,D,E)    -> evalfbb3in(A,B,C,C,E)      [F >= 1]           (?,1)
          7.  evalfbbin(A,B,C,D,E)    -> evalfbb6in(A,B,C,A,C)      True               (?,1)
          8.  evalfbb3in(A,B,C,D,E)   -> evalfbb5in(A,B,C,D,E)      [D >= 1 + B]       (?,1)
          9.  evalfbb3in(A,B,C,D,E)   -> evalfbb4in(A,B,C,D,E)      [B >= D]           (?,1)
          10. evalfbb4in(A,B,C,D,E)   -> evalfbb2in(A,B,C,D,E)      [0 >= 1 + F]       (?,1)
          11. evalfbb4in(A,B,C,D,E)   -> evalfbb2in(A,B,C,D,E)      [F >= 1]           (?,1)
          12. evalfbb4in(A,B,C,D,E)   -> evalfbb5in(A,B,C,D,E)      True               (?,1)
          13. evalfbb2in(A,B,C,D,E)   -> evalfbb3in(A,B,C,1 + D,E)  True               (?,1)
          14. evalfbb5in(A,B,C,D,E)   -> evalfbb6in(A,B,C,-1 + A,D) True               (?,1)
          15. evalfbb6in(A,B,C,D,E)   -> evalfbb7in(D,B,-1 + E,D,E) True               (?,1)
        Signature:
          {(evalfbb2in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbbin,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [0->{1},1->{2},2->{5,6,7},5->{8,9},6->{8,9},7->{15},8->{14},9->{10,11,12},10->{13},11->{13},12->{14}
          ,13->{8,9},14->{15},15->{2}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) 
          (< 1,0,A>, B) (< 1,0,B>, B) (< 1,0,C>, 0) (< 1,0,D>, D) (< 1,0,E>, E) 
          (< 2,0,A>, ?) (< 2,0,B>, B) (< 2,0,C>, ?) (< 2,0,D>, ?) (< 2,0,E>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, B) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, B) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, ?) (< 9,0,D>, B) (< 9,0,E>, ?) 
          (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, B) (<10,0,E>, ?) 
          (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, ?) (<11,0,D>, B) (<11,0,E>, ?) 
          (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) (<12,0,D>, B) (<12,0,E>, ?) 
          (<13,0,A>, ?) (<13,0,B>, B) (<13,0,C>, ?) (<13,0,D>, B) (<13,0,E>, ?) 
          (<14,0,A>, ?) (<14,0,B>, B) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, ?) 
          (<15,0,A>, ?) (<15,0,B>, B) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
            p(evalfbb2in) = 0
            p(evalfbb3in) = 0
            p(evalfbb4in) = 0
            p(evalfbb5in) = 0
            p(evalfbb6in) = 0
            p(evalfbb7in) = 0
             p(evalfbbin) = 0
          p(evalfentryin) = 1
            p(evalfstart) = 1
        
        The following rules are strictly oriented:
                             True ==>                      
          evalfentryin(A,B,C,D,E)   = 1                    
                                    > 0                    
                                    = evalfbb7in(B,B,0,D,E)
        
        
        The following rules are weakly oriented:
                           True ==>                           
          evalfstart(A,B,C,D,E)   = 1                         
                                 >= 1                         
                                  = evalfentryin(A,B,C,D,E)   
        
             [A >= 0 && C >= 0] ==>                           
          evalfbb7in(A,B,C,D,E)   = 0                         
                                 >= 0                         
                                  = evalfbbin(A,B,C,D,E)      
        
                   [0 >= 1 + F] ==>                           
           evalfbbin(A,B,C,D,E)   = 0                         
                                 >= 0                         
                                  = evalfbb3in(A,B,C,C,E)     
        
                       [F >= 1] ==>                           
           evalfbbin(A,B,C,D,E)   = 0                         
                                 >= 0                         
                                  = evalfbb3in(A,B,C,C,E)     
        
                           True ==>                           
           evalfbbin(A,B,C,D,E)   = 0                         
                                 >= 0                         
                                  = evalfbb6in(A,B,C,A,C)     
        
                   [D >= 1 + B] ==>                           
          evalfbb3in(A,B,C,D,E)   = 0                         
                                 >= 0                         
                                  = evalfbb5in(A,B,C,D,E)     
        
                       [B >= D] ==>                           
          evalfbb3in(A,B,C,D,E)   = 0                         
                                 >= 0                         
                                  = evalfbb4in(A,B,C,D,E)     
        
                   [0 >= 1 + F] ==>                           
          evalfbb4in(A,B,C,D,E)   = 0                         
                                 >= 0                         
                                  = evalfbb2in(A,B,C,D,E)     
        
                       [F >= 1] ==>                           
          evalfbb4in(A,B,C,D,E)   = 0                         
                                 >= 0                         
                                  = evalfbb2in(A,B,C,D,E)     
        
                           True ==>                           
          evalfbb4in(A,B,C,D,E)   = 0                         
                                 >= 0                         
                                  = evalfbb5in(A,B,C,D,E)     
        
                           True ==>                           
          evalfbb2in(A,B,C,D,E)   = 0                         
                                 >= 0                         
                                  = evalfbb3in(A,B,C,1 + D,E) 
        
                           True ==>                           
          evalfbb5in(A,B,C,D,E)   = 0                         
                                 >= 0                         
                                  = evalfbb6in(A,B,C,-1 + A,D)
        
                           True ==>                           
          evalfbb6in(A,B,C,D,E)   = 0                         
                                 >= 0                         
                                  = evalfbb7in(D,B,-1 + E,D,E)
        
        
* Step 6: ChainProcessor WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          0.  evalfstart(A,B,C,D,E)   -> evalfentryin(A,B,C,D,E)    True               (1,1)
          1.  evalfentryin(A,B,C,D,E) -> evalfbb7in(B,B,0,D,E)      True               (1,1)
          2.  evalfbb7in(A,B,C,D,E)   -> evalfbbin(A,B,C,D,E)       [A >= 0 && C >= 0] (?,1)
          5.  evalfbbin(A,B,C,D,E)    -> evalfbb3in(A,B,C,C,E)      [0 >= 1 + F]       (?,1)
          6.  evalfbbin(A,B,C,D,E)    -> evalfbb3in(A,B,C,C,E)      [F >= 1]           (?,1)
          7.  evalfbbin(A,B,C,D,E)    -> evalfbb6in(A,B,C,A,C)      True               (?,1)
          8.  evalfbb3in(A,B,C,D,E)   -> evalfbb5in(A,B,C,D,E)      [D >= 1 + B]       (?,1)
          9.  evalfbb3in(A,B,C,D,E)   -> evalfbb4in(A,B,C,D,E)      [B >= D]           (?,1)
          10. evalfbb4in(A,B,C,D,E)   -> evalfbb2in(A,B,C,D,E)      [0 >= 1 + F]       (?,1)
          11. evalfbb4in(A,B,C,D,E)   -> evalfbb2in(A,B,C,D,E)      [F >= 1]           (?,1)
          12. evalfbb4in(A,B,C,D,E)   -> evalfbb5in(A,B,C,D,E)      True               (?,1)
          13. evalfbb2in(A,B,C,D,E)   -> evalfbb3in(A,B,C,1 + D,E)  True               (?,1)
          14. evalfbb5in(A,B,C,D,E)   -> evalfbb6in(A,B,C,-1 + A,D) True               (?,1)
          15. evalfbb6in(A,B,C,D,E)   -> evalfbb7in(D,B,-1 + E,D,E) True               (?,1)
        Signature:
          {(evalfbb2in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbbin,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [0->{1},1->{2},2->{5,6,7},5->{8,9},6->{8,9},7->{15},8->{14},9->{10,11,12},10->{13},11->{13},12->{14}
          ,13->{8,9},14->{15},15->{2}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) 
          (< 1,0,A>, B) (< 1,0,B>, B) (< 1,0,C>, 0) (< 1,0,D>, D) (< 1,0,E>, E) 
          (< 2,0,A>, ?) (< 2,0,B>, B) (< 2,0,C>, ?) (< 2,0,D>, ?) (< 2,0,E>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, B) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, B) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, ?) (< 9,0,D>, B) (< 9,0,E>, ?) 
          (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, B) (<10,0,E>, ?) 
          (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, ?) (<11,0,D>, B) (<11,0,E>, ?) 
          (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) (<12,0,D>, B) (<12,0,E>, ?) 
          (<13,0,A>, ?) (<13,0,B>, B) (<13,0,C>, ?) (<13,0,D>, B) (<13,0,E>, ?) 
          (<14,0,A>, ?) (<14,0,B>, B) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, ?) 
          (<15,0,A>, ?) (<15,0,B>, B) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, ?) 
    + Applied Processor:
        ChainProcessor False [0,1,2,5,6,7,8,9,10,11,12,13,14,15]
    + Details:
        We chained rule 0 to obtain the rules [16] .
* Step 7: UnreachableRules WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          1.  evalfentryin(A,B,C,D,E) -> evalfbb7in(B,B,0,D,E)      True               (1,1)
          2.  evalfbb7in(A,B,C,D,E)   -> evalfbbin(A,B,C,D,E)       [A >= 0 && C >= 0] (?,1)
          5.  evalfbbin(A,B,C,D,E)    -> evalfbb3in(A,B,C,C,E)      [0 >= 1 + F]       (?,1)
          6.  evalfbbin(A,B,C,D,E)    -> evalfbb3in(A,B,C,C,E)      [F >= 1]           (?,1)
          7.  evalfbbin(A,B,C,D,E)    -> evalfbb6in(A,B,C,A,C)      True               (?,1)
          8.  evalfbb3in(A,B,C,D,E)   -> evalfbb5in(A,B,C,D,E)      [D >= 1 + B]       (?,1)
          9.  evalfbb3in(A,B,C,D,E)   -> evalfbb4in(A,B,C,D,E)      [B >= D]           (?,1)
          10. evalfbb4in(A,B,C,D,E)   -> evalfbb2in(A,B,C,D,E)      [0 >= 1 + F]       (?,1)
          11. evalfbb4in(A,B,C,D,E)   -> evalfbb2in(A,B,C,D,E)      [F >= 1]           (?,1)
          12. evalfbb4in(A,B,C,D,E)   -> evalfbb5in(A,B,C,D,E)      True               (?,1)
          13. evalfbb2in(A,B,C,D,E)   -> evalfbb3in(A,B,C,1 + D,E)  True               (?,1)
          14. evalfbb5in(A,B,C,D,E)   -> evalfbb6in(A,B,C,-1 + A,D) True               (?,1)
          15. evalfbb6in(A,B,C,D,E)   -> evalfbb7in(D,B,-1 + E,D,E) True               (?,1)
          16. evalfstart(A,B,C,D,E)   -> evalfbb7in(B,B,0,D,E)      True               (1,2)
        Signature:
          {(evalfbb2in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbbin,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [1->{2},2->{5,6,7},5->{8,9},6->{8,9},7->{15},8->{14},9->{10,11,12},10->{13},11->{13},12->{14},13->{8,9}
          ,14->{15},15->{2},16->{2}]
        Sizebounds:
          (< 1,0,A>, B) (< 1,0,B>, B) (< 1,0,C>, 0) (< 1,0,D>, D) (< 1,0,E>, E) 
          (< 2,0,A>, ?) (< 2,0,B>, B) (< 2,0,C>, ?) (< 2,0,D>, ?) (< 2,0,E>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, B) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, B) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, ?) (< 9,0,D>, B) (< 9,0,E>, ?) 
          (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, B) (<10,0,E>, ?) 
          (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, ?) (<11,0,D>, B) (<11,0,E>, ?) 
          (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) (<12,0,D>, B) (<12,0,E>, ?) 
          (<13,0,A>, ?) (<13,0,B>, B) (<13,0,C>, ?) (<13,0,D>, B) (<13,0,E>, ?) 
          (<14,0,A>, ?) (<14,0,B>, B) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, ?) 
          (<15,0,A>, ?) (<15,0,B>, B) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, ?) 
          (<16,0,A>, B) (<16,0,B>, B) (<16,0,C>, 0) (<16,0,D>, D) (<16,0,E>, E) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [1]
* Step 8: ChainProcessor WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          2.  evalfbb7in(A,B,C,D,E) -> evalfbbin(A,B,C,D,E)       [A >= 0 && C >= 0] (?,1)
          5.  evalfbbin(A,B,C,D,E)  -> evalfbb3in(A,B,C,C,E)      [0 >= 1 + F]       (?,1)
          6.  evalfbbin(A,B,C,D,E)  -> evalfbb3in(A,B,C,C,E)      [F >= 1]           (?,1)
          7.  evalfbbin(A,B,C,D,E)  -> evalfbb6in(A,B,C,A,C)      True               (?,1)
          8.  evalfbb3in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E)      [D >= 1 + B]       (?,1)
          9.  evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,E)      [B >= D]           (?,1)
          10. evalfbb4in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)      [0 >= 1 + F]       (?,1)
          11. evalfbb4in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)      [F >= 1]           (?,1)
          12. evalfbb4in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E)      True               (?,1)
          13. evalfbb2in(A,B,C,D,E) -> evalfbb3in(A,B,C,1 + D,E)  True               (?,1)
          14. evalfbb5in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,D) True               (?,1)
          15. evalfbb6in(A,B,C,D,E) -> evalfbb7in(D,B,-1 + E,D,E) True               (?,1)
          16. evalfstart(A,B,C,D,E) -> evalfbb7in(B,B,0,D,E)      True               (1,2)
        Signature:
          {(evalfbb2in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbbin,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [2->{5,6,7},5->{8,9},6->{8,9},7->{15},8->{14},9->{10,11,12},10->{13},11->{13},12->{14},13->{8,9},14->{15}
          ,15->{2},16->{2}]
        Sizebounds:
          (< 2,0,A>, ?) (< 2,0,B>, B) (< 2,0,C>, ?) (< 2,0,D>, ?) (< 2,0,E>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, B) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, B) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, ?) (< 9,0,D>, B) (< 9,0,E>, ?) 
          (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, B) (<10,0,E>, ?) 
          (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, ?) (<11,0,D>, B) (<11,0,E>, ?) 
          (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) (<12,0,D>, B) (<12,0,E>, ?) 
          (<13,0,A>, ?) (<13,0,B>, B) (<13,0,C>, ?) (<13,0,D>, B) (<13,0,E>, ?) 
          (<14,0,A>, ?) (<14,0,B>, B) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, ?) 
          (<15,0,A>, ?) (<15,0,B>, B) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, ?) 
          (<16,0,A>, B) (<16,0,B>, B) (<16,0,C>, 0) (<16,0,D>, D) (<16,0,E>, E) 
    + Applied Processor:
        ChainProcessor False [2,5,6,7,8,9,10,11,12,13,14,15,16]
    + Details:
        We chained rule 2 to obtain the rules [17,18,19] .
* Step 9: UnreachableRules WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          5.  evalfbbin(A,B,C,D,E)  -> evalfbb3in(A,B,C,C,E)      [0 >= 1 + F]                      (?,1)
          6.  evalfbbin(A,B,C,D,E)  -> evalfbb3in(A,B,C,C,E)      [F >= 1]                          (?,1)
          7.  evalfbbin(A,B,C,D,E)  -> evalfbb6in(A,B,C,A,C)      True                              (?,1)
          8.  evalfbb3in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E)      [D >= 1 + B]                      (?,1)
          9.  evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,E)      [B >= D]                          (?,1)
          10. evalfbb4in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)      [0 >= 1 + F]                      (?,1)
          11. evalfbb4in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)      [F >= 1]                          (?,1)
          12. evalfbb4in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E)      True                              (?,1)
          13. evalfbb2in(A,B,C,D,E) -> evalfbb3in(A,B,C,1 + D,E)  True                              (?,1)
          14. evalfbb5in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,D) True                              (?,1)
          15. evalfbb6in(A,B,C,D,E) -> evalfbb7in(D,B,-1 + E,D,E) True                              (?,1)
          16. evalfstart(A,B,C,D,E) -> evalfbb7in(B,B,0,D,E)      True                              (1,2)
          17. evalfbb7in(A,B,C,D,E) -> evalfbb3in(A,B,C,C,E)      [A >= 0 && C >= 0 && 0 >= 1 + F$] (?,2)
          18. evalfbb7in(A,B,C,D,E) -> evalfbb3in(A,B,C,C,E)      [A >= 0 && C >= 0 && F$ >= 1]     (?,2)
          19. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,A,C)      [A >= 0 && C >= 0]                (?,2)
        Signature:
          {(evalfbb2in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbbin,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [5->{8,9},6->{8,9},7->{15},8->{14},9->{10,11,12},10->{13},11->{13},12->{14},13->{8,9},14->{15},15->{17,18
          ,19},16->{17,18,19},17->{8,9},18->{8,9},19->{15}]
        Sizebounds:
          (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, B) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, B) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, ?) (< 9,0,D>, B) (< 9,0,E>, ?) 
          (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, B) (<10,0,E>, ?) 
          (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, ?) (<11,0,D>, B) (<11,0,E>, ?) 
          (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) (<12,0,D>, B) (<12,0,E>, ?) 
          (<13,0,A>, ?) (<13,0,B>, B) (<13,0,C>, ?) (<13,0,D>, B) (<13,0,E>, ?) 
          (<14,0,A>, ?) (<14,0,B>, B) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, ?) 
          (<15,0,A>, ?) (<15,0,B>, B) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, ?) 
          (<16,0,A>, B) (<16,0,B>, B) (<16,0,C>, 0) (<16,0,D>, D) (<16,0,E>, E) 
          (<17,0,A>, ?) (<17,0,B>, B) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,E>, ?) 
          (<18,0,A>, ?) (<18,0,B>, B) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,E>, ?) 
          (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [5,6,7]
* Step 10: ChainProcessor WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          8.  evalfbb3in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E)      [D >= 1 + B]                      (?,1)
          9.  evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,E)      [B >= D]                          (?,1)
          10. evalfbb4in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)      [0 >= 1 + F]                      (?,1)
          11. evalfbb4in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)      [F >= 1]                          (?,1)
          12. evalfbb4in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E)      True                              (?,1)
          13. evalfbb2in(A,B,C,D,E) -> evalfbb3in(A,B,C,1 + D,E)  True                              (?,1)
          14. evalfbb5in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,D) True                              (?,1)
          15. evalfbb6in(A,B,C,D,E) -> evalfbb7in(D,B,-1 + E,D,E) True                              (?,1)
          16. evalfstart(A,B,C,D,E) -> evalfbb7in(B,B,0,D,E)      True                              (1,2)
          17. evalfbb7in(A,B,C,D,E) -> evalfbb3in(A,B,C,C,E)      [A >= 0 && C >= 0 && 0 >= 1 + F$] (?,2)
          18. evalfbb7in(A,B,C,D,E) -> evalfbb3in(A,B,C,C,E)      [A >= 0 && C >= 0 && F$ >= 1]     (?,2)
          19. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,A,C)      [A >= 0 && C >= 0]                (?,2)
        Signature:
          {(evalfbb2in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbbin,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [8->{14},9->{10,11,12},10->{13},11->{13},12->{14},13->{8,9},14->{15},15->{17,18,19},16->{17,18,19},17->{8
          ,9},18->{8,9},19->{15}]
        Sizebounds:
          (< 8,0,A>, ?) (< 8,0,B>, B) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, ?) (< 9,0,D>, B) (< 9,0,E>, ?) 
          (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, B) (<10,0,E>, ?) 
          (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, ?) (<11,0,D>, B) (<11,0,E>, ?) 
          (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) (<12,0,D>, B) (<12,0,E>, ?) 
          (<13,0,A>, ?) (<13,0,B>, B) (<13,0,C>, ?) (<13,0,D>, B) (<13,0,E>, ?) 
          (<14,0,A>, ?) (<14,0,B>, B) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, ?) 
          (<15,0,A>, ?) (<15,0,B>, B) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, ?) 
          (<16,0,A>, B) (<16,0,B>, B) (<16,0,C>, 0) (<16,0,D>, D) (<16,0,E>, E) 
          (<17,0,A>, ?) (<17,0,B>, B) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,E>, ?) 
          (<18,0,A>, ?) (<18,0,B>, B) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,E>, ?) 
          (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) 
    + Applied Processor:
        ChainProcessor False [8,9,10,11,12,13,14,15,16,17,18,19]
    + Details:
        We chained rule 8 to obtain the rules [20] .
* Step 11: ChainProcessor WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          9.  evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,E)      [B >= D]                          (?,1)
          10. evalfbb4in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)      [0 >= 1 + F]                      (?,1)
          11. evalfbb4in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)      [F >= 1]                          (?,1)
          12. evalfbb4in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E)      True                              (?,1)
          13. evalfbb2in(A,B,C,D,E) -> evalfbb3in(A,B,C,1 + D,E)  True                              (?,1)
          14. evalfbb5in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,D) True                              (?,1)
          15. evalfbb6in(A,B,C,D,E) -> evalfbb7in(D,B,-1 + E,D,E) True                              (?,1)
          16. evalfstart(A,B,C,D,E) -> evalfbb7in(B,B,0,D,E)      True                              (1,2)
          17. evalfbb7in(A,B,C,D,E) -> evalfbb3in(A,B,C,C,E)      [A >= 0 && C >= 0 && 0 >= 1 + F$] (?,2)
          18. evalfbb7in(A,B,C,D,E) -> evalfbb3in(A,B,C,C,E)      [A >= 0 && C >= 0 && F$ >= 1]     (?,2)
          19. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,A,C)      [A >= 0 && C >= 0]                (?,2)
          20. evalfbb3in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,D) [D >= 1 + B]                      (?,2)
        Signature:
          {(evalfbb2in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbbin,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [9->{10,11,12},10->{13},11->{13},12->{14},13->{9,20},14->{15},15->{17,18,19},16->{17,18,19},17->{9,20}
          ,18->{9,20},19->{15},20->{15}]
        Sizebounds:
          (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, ?) (< 9,0,D>, B) (< 9,0,E>, ?) 
          (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, B) (<10,0,E>, ?) 
          (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, ?) (<11,0,D>, B) (<11,0,E>, ?) 
          (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) (<12,0,D>, B) (<12,0,E>, ?) 
          (<13,0,A>, ?) (<13,0,B>, B) (<13,0,C>, ?) (<13,0,D>, B) (<13,0,E>, ?) 
          (<14,0,A>, ?) (<14,0,B>, B) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, ?) 
          (<15,0,A>, ?) (<15,0,B>, B) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, ?) 
          (<16,0,A>, B) (<16,0,B>, B) (<16,0,C>, 0) (<16,0,D>, D) (<16,0,E>, E) 
          (<17,0,A>, ?) (<17,0,B>, B) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,E>, ?) 
          (<18,0,A>, ?) (<18,0,B>, B) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,E>, ?) 
          (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) 
          (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) 
    + Applied Processor:
        ChainProcessor False [9,10,11,12,13,14,15,16,17,18,19,20]
    + Details:
        We chained rule 9 to obtain the rules [21,22,23] .
* Step 12: UnreachableRules WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          10. evalfbb4in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)      [0 >= 1 + F]                      (?,1)
          11. evalfbb4in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)      [F >= 1]                          (?,1)
          12. evalfbb4in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E)      True                              (?,1)
          13. evalfbb2in(A,B,C,D,E) -> evalfbb3in(A,B,C,1 + D,E)  True                              (?,1)
          14. evalfbb5in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,D) True                              (?,1)
          15. evalfbb6in(A,B,C,D,E) -> evalfbb7in(D,B,-1 + E,D,E) True                              (?,1)
          16. evalfstart(A,B,C,D,E) -> evalfbb7in(B,B,0,D,E)      True                              (1,2)
          17. evalfbb7in(A,B,C,D,E) -> evalfbb3in(A,B,C,C,E)      [A >= 0 && C >= 0 && 0 >= 1 + F$] (?,2)
          18. evalfbb7in(A,B,C,D,E) -> evalfbb3in(A,B,C,C,E)      [A >= 0 && C >= 0 && F$ >= 1]     (?,2)
          19. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,A,C)      [A >= 0 && C >= 0]                (?,2)
          20. evalfbb3in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,D) [D >= 1 + B]                      (?,2)
          21. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)      [B >= D && 0 >= 1 + F$]           (?,2)
          22. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)      [B >= D && F$ >= 1]               (?,2)
          23. evalfbb3in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E)      [B >= D]                          (?,2)
        Signature:
          {(evalfbb2in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbbin,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [10->{13},11->{13},12->{14},13->{20,21,22,23},14->{15},15->{17,18,19},16->{17,18,19},17->{20,21,22,23}
          ,18->{20,21,22,23},19->{15},20->{15},21->{13},22->{13},23->{14}]
        Sizebounds:
          (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, B) (<10,0,E>, ?) 
          (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, ?) (<11,0,D>, B) (<11,0,E>, ?) 
          (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) (<12,0,D>, B) (<12,0,E>, ?) 
          (<13,0,A>, ?) (<13,0,B>, B) (<13,0,C>, ?) (<13,0,D>, B) (<13,0,E>, ?) 
          (<14,0,A>, ?) (<14,0,B>, B) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, ?) 
          (<15,0,A>, ?) (<15,0,B>, B) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, ?) 
          (<16,0,A>, B) (<16,0,B>, B) (<16,0,C>, 0) (<16,0,D>, D) (<16,0,E>, E) 
          (<17,0,A>, ?) (<17,0,B>, B) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,E>, ?) 
          (<18,0,A>, ?) (<18,0,B>, B) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,E>, ?) 
          (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) 
          (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) 
          (<21,0,A>, ?) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, B) (<21,0,E>, ?) 
          (<22,0,A>, ?) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, B) (<22,0,E>, ?) 
          (<23,0,A>, ?) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, B) (<23,0,E>, ?) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [10,11,12]
* Step 13: ChainProcessor WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          13. evalfbb2in(A,B,C,D,E) -> evalfbb3in(A,B,C,1 + D,E)  True                              (?,1)
          14. evalfbb5in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,D) True                              (?,1)
          15. evalfbb6in(A,B,C,D,E) -> evalfbb7in(D,B,-1 + E,D,E) True                              (?,1)
          16. evalfstart(A,B,C,D,E) -> evalfbb7in(B,B,0,D,E)      True                              (1,2)
          17. evalfbb7in(A,B,C,D,E) -> evalfbb3in(A,B,C,C,E)      [A >= 0 && C >= 0 && 0 >= 1 + F$] (?,2)
          18. evalfbb7in(A,B,C,D,E) -> evalfbb3in(A,B,C,C,E)      [A >= 0 && C >= 0 && F$ >= 1]     (?,2)
          19. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,A,C)      [A >= 0 && C >= 0]                (?,2)
          20. evalfbb3in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,D) [D >= 1 + B]                      (?,2)
          21. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)      [B >= D && 0 >= 1 + F$]           (?,2)
          22. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)      [B >= D && F$ >= 1]               (?,2)
          23. evalfbb3in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E)      [B >= D]                          (?,2)
        Signature:
          {(evalfbb2in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbbin,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [13->{20,21,22,23},14->{15},15->{17,18,19},16->{17,18,19},17->{20,21,22,23},18->{20,21,22,23},19->{15}
          ,20->{15},21->{13},22->{13},23->{14}]
        Sizebounds:
          (<13,0,A>, ?) (<13,0,B>, B) (<13,0,C>, ?) (<13,0,D>, B) (<13,0,E>, ?) 
          (<14,0,A>, ?) (<14,0,B>, B) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, ?) 
          (<15,0,A>, ?) (<15,0,B>, B) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, ?) 
          (<16,0,A>, B) (<16,0,B>, B) (<16,0,C>, 0) (<16,0,D>, D) (<16,0,E>, E) 
          (<17,0,A>, ?) (<17,0,B>, B) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,E>, ?) 
          (<18,0,A>, ?) (<18,0,B>, B) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,E>, ?) 
          (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) 
          (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) 
          (<21,0,A>, ?) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, B) (<21,0,E>, ?) 
          (<22,0,A>, ?) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, B) (<22,0,E>, ?) 
          (<23,0,A>, ?) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, B) (<23,0,E>, ?) 
    + Applied Processor:
        ChainProcessor False [13,14,15,16,17,18,19,20,21,22,23]
    + Details:
        We chained rule 13 to obtain the rules [24,25,26,27] .
* Step 14: ChainProcessor WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          14. evalfbb5in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,D)     True                              (?,1)
          15. evalfbb6in(A,B,C,D,E) -> evalfbb7in(D,B,-1 + E,D,E)     True                              (?,1)
          16. evalfstart(A,B,C,D,E) -> evalfbb7in(B,B,0,D,E)          True                              (1,2)
          17. evalfbb7in(A,B,C,D,E) -> evalfbb3in(A,B,C,C,E)          [A >= 0 && C >= 0 && 0 >= 1 + F$] (?,2)
          18. evalfbb7in(A,B,C,D,E) -> evalfbb3in(A,B,C,C,E)          [A >= 0 && C >= 0 && F$ >= 1]     (?,2)
          19. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,A,C)          [A >= 0 && C >= 0]                (?,2)
          20. evalfbb3in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,D)     [D >= 1 + B]                      (?,2)
          21. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)          [B >= D && 0 >= 1 + F$]           (?,2)
          22. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)          [B >= D && F$ >= 1]               (?,2)
          23. evalfbb3in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E)          [B >= D]                          (?,2)
          24. evalfbb2in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,1 + D) [1 + D >= 1 + B]                  (?,3)
          25. evalfbb2in(A,B,C,D,E) -> evalfbb2in(A,B,C,1 + D,E)      [B >= 1 + D && 0 >= 1 + F$$]      (?,3)
          26. evalfbb2in(A,B,C,D,E) -> evalfbb2in(A,B,C,1 + D,E)      [B >= 1 + D && F$$ >= 1]          (?,3)
          27. evalfbb2in(A,B,C,D,E) -> evalfbb5in(A,B,C,1 + D,E)      [B >= 1 + D]                      (?,3)
        Signature:
          {(evalfbb2in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbbin,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [14->{15},15->{17,18,19},16->{17,18,19},17->{20,21,22,23},18->{20,21,22,23},19->{15},20->{15},21->{24,25
          ,26,27},22->{24,25,26,27},23->{14},24->{15},25->{24,25,26,27},26->{24,25,26,27},27->{14}]
        Sizebounds:
          (<14,0,A>, ?) (<14,0,B>, B) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, ?) 
          (<15,0,A>, ?) (<15,0,B>, B) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, ?) 
          (<16,0,A>, B) (<16,0,B>, B) (<16,0,C>, 0) (<16,0,D>, D) (<16,0,E>, E) 
          (<17,0,A>, ?) (<17,0,B>, B) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,E>, ?) 
          (<18,0,A>, ?) (<18,0,B>, B) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,E>, ?) 
          (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) 
          (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) 
          (<21,0,A>, ?) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, B) (<21,0,E>, ?) 
          (<22,0,A>, ?) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, B) (<22,0,E>, ?) 
          (<23,0,A>, ?) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, B) (<23,0,E>, ?) 
          (<24,0,A>, ?) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, ?) (<24,0,E>, ?) 
          (<25,0,A>, ?) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, B) (<25,0,E>, ?) 
          (<26,0,A>, ?) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, B) (<26,0,E>, ?) 
          (<27,0,A>, ?) (<27,0,B>, B) (<27,0,C>, ?) (<27,0,D>, B) (<27,0,E>, ?) 
    + Applied Processor:
        ChainProcessor False [14,15,16,17,18,19,20,21,22,23,24,25,26,27]
    + Details:
        We chained rule 14 to obtain the rules [28] .
* Step 15: ChainProcessor WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          15. evalfbb6in(A,B,C,D,E) -> evalfbb7in(D,B,-1 + E,D,E)           True                              (?,1)
          16. evalfstart(A,B,C,D,E) -> evalfbb7in(B,B,0,D,E)                True                              (1,2)
          17. evalfbb7in(A,B,C,D,E) -> evalfbb3in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$] (?,2)
          18. evalfbb7in(A,B,C,D,E) -> evalfbb3in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1]     (?,2)
          19. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,A,C)                [A >= 0 && C >= 0]                (?,2)
          20. evalfbb3in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,D)           [D >= 1 + B]                      (?,2)
          21. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)                [B >= D && 0 >= 1 + F$]           (?,2)
          22. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)                [B >= D && F$ >= 1]               (?,2)
          23. evalfbb3in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E)                [B >= D]                          (?,2)
          24. evalfbb2in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,1 + D)       [1 + D >= 1 + B]                  (?,3)
          25. evalfbb2in(A,B,C,D,E) -> evalfbb2in(A,B,C,1 + D,E)            [B >= 1 + D && 0 >= 1 + F$$]      (?,3)
          26. evalfbb2in(A,B,C,D,E) -> evalfbb2in(A,B,C,1 + D,E)            [B >= 1 + D && F$$ >= 1]          (?,3)
          27. evalfbb2in(A,B,C,D,E) -> evalfbb5in(A,B,C,1 + D,E)            [B >= 1 + D]                      (?,3)
          28. evalfbb5in(A,B,C,D,E) -> evalfbb7in(-1 + A,B,-1 + D,-1 + A,D) True                              (?,2)
        Signature:
          {(evalfbb2in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbbin,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [15->{17,18,19},16->{17,18,19},17->{20,21,22,23},18->{20,21,22,23},19->{15},20->{15},21->{24,25,26,27}
          ,22->{24,25,26,27},23->{28},24->{15},25->{24,25,26,27},26->{24,25,26,27},27->{28},28->{17,18,19}]
        Sizebounds:
          (<15,0,A>, ?) (<15,0,B>, B) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, ?) 
          (<16,0,A>, B) (<16,0,B>, B) (<16,0,C>, 0) (<16,0,D>, D) (<16,0,E>, E) 
          (<17,0,A>, ?) (<17,0,B>, B) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,E>, ?) 
          (<18,0,A>, ?) (<18,0,B>, B) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,E>, ?) 
          (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) 
          (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) 
          (<21,0,A>, ?) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, B) (<21,0,E>, ?) 
          (<22,0,A>, ?) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, B) (<22,0,E>, ?) 
          (<23,0,A>, ?) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, B) (<23,0,E>, ?) 
          (<24,0,A>, ?) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, ?) (<24,0,E>, ?) 
          (<25,0,A>, ?) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, B) (<25,0,E>, ?) 
          (<26,0,A>, ?) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, B) (<26,0,E>, ?) 
          (<27,0,A>, ?) (<27,0,B>, B) (<27,0,C>, ?) (<27,0,D>, B) (<27,0,E>, ?) 
          (<28,0,A>, ?) (<28,0,B>, B) (<28,0,C>, ?) (<28,0,D>, ?) (<28,0,E>, ?) 
    + Applied Processor:
        ChainProcessor False [15,16,17,18,19,20,21,22,23,24,25,26,27,28]
    + Details:
        We chained rule 15 to obtain the rules [29,30,31] .
* Step 16: ChainProcessor WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          16. evalfstart(A,B,C,D,E) -> evalfbb7in(B,B,0,D,E)                True                                    (1,2)
          17. evalfbb7in(A,B,C,D,E) -> evalfbb3in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$]       (?,2)
          18. evalfbb7in(A,B,C,D,E) -> evalfbb3in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1]           (?,2)
          19. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,A,C)                [A >= 0 && C >= 0]                      (?,2)
          20. evalfbb3in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,D)           [D >= 1 + B]                            (?,2)
          21. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)                [B >= D && 0 >= 1 + F$]                 (?,2)
          22. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)                [B >= D && F$ >= 1]                     (?,2)
          23. evalfbb3in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E)                [B >= D]                                (?,2)
          24. evalfbb2in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,1 + D)       [1 + D >= 1 + B]                        (?,3)
          25. evalfbb2in(A,B,C,D,E) -> evalfbb2in(A,B,C,1 + D,E)            [B >= 1 + D && 0 >= 1 + F$$]            (?,3)
          26. evalfbb2in(A,B,C,D,E) -> evalfbb2in(A,B,C,1 + D,E)            [B >= 1 + D && F$$ >= 1]                (?,3)
          27. evalfbb2in(A,B,C,D,E) -> evalfbb5in(A,B,C,1 + D,E)            [B >= 1 + D]                            (?,3)
          28. evalfbb5in(A,B,C,D,E) -> evalfbb7in(-1 + A,B,-1 + D,-1 + A,D) True                                    (?,2)
          29. evalfbb6in(A,B,C,D,E) -> evalfbb3in(D,B,-1 + E,-1 + E,E)      [D >= 0 && -1 + E >= 0 && 0 >= 1 + F$$] (?,3)
          30. evalfbb6in(A,B,C,D,E) -> evalfbb3in(D,B,-1 + E,-1 + E,E)      [D >= 0 && -1 + E >= 0 && F$$ >= 1]     (?,3)
          31. evalfbb6in(A,B,C,D,E) -> evalfbb6in(D,B,-1 + E,D,-1 + E)      [D >= 0 && -1 + E >= 0]                 (?,3)
        Signature:
          {(evalfbb2in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbbin,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [16->{17,18,19},17->{20,21,22,23},18->{20,21,22,23},19->{29,30,31},20->{29,30,31},21->{24,25,26,27}
          ,22->{24,25,26,27},23->{28},24->{29,30,31},25->{24,25,26,27},26->{24,25,26,27},27->{28},28->{17,18,19}
          ,29->{20,21,22,23},30->{20,21,22,23},31->{29,30,31}]
        Sizebounds:
          (<16,0,A>, B) (<16,0,B>, B) (<16,0,C>, 0) (<16,0,D>, D) (<16,0,E>, E) 
          (<17,0,A>, ?) (<17,0,B>, B) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,E>, ?) 
          (<18,0,A>, ?) (<18,0,B>, B) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,E>, ?) 
          (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) 
          (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) 
          (<21,0,A>, ?) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, B) (<21,0,E>, ?) 
          (<22,0,A>, ?) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, B) (<22,0,E>, ?) 
          (<23,0,A>, ?) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, B) (<23,0,E>, ?) 
          (<24,0,A>, ?) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, ?) (<24,0,E>, ?) 
          (<25,0,A>, ?) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, B) (<25,0,E>, ?) 
          (<26,0,A>, ?) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, B) (<26,0,E>, ?) 
          (<27,0,A>, ?) (<27,0,B>, B) (<27,0,C>, ?) (<27,0,D>, B) (<27,0,E>, ?) 
          (<28,0,A>, ?) (<28,0,B>, B) (<28,0,C>, ?) (<28,0,D>, ?) (<28,0,E>, ?) 
          (<29,0,A>, ?) (<29,0,B>, B) (<29,0,C>, ?) (<29,0,D>, ?) (<29,0,E>, ?) 
          (<30,0,A>, ?) (<30,0,B>, B) (<30,0,C>, ?) (<30,0,D>, ?) (<30,0,E>, ?) 
          (<31,0,A>, ?) (<31,0,B>, B) (<31,0,C>, ?) (<31,0,D>, ?) (<31,0,E>, ?) 
    + Applied Processor:
        ChainProcessor False [16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31]
    + Details:
        We chained rule 16 to obtain the rules [32,33,34] .
* Step 17: ChainProcessor WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          17. evalfbb7in(A,B,C,D,E) -> evalfbb3in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$]       (?,2)
          18. evalfbb7in(A,B,C,D,E) -> evalfbb3in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1]           (?,2)
          19. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,A,C)                [A >= 0 && C >= 0]                      (?,2)
          20. evalfbb3in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,D)           [D >= 1 + B]                            (?,2)
          21. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)                [B >= D && 0 >= 1 + F$]                 (?,2)
          22. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)                [B >= D && F$ >= 1]                     (?,2)
          23. evalfbb3in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E)                [B >= D]                                (?,2)
          24. evalfbb2in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,1 + D)       [1 + D >= 1 + B]                        (?,3)
          25. evalfbb2in(A,B,C,D,E) -> evalfbb2in(A,B,C,1 + D,E)            [B >= 1 + D && 0 >= 1 + F$$]            (?,3)
          26. evalfbb2in(A,B,C,D,E) -> evalfbb2in(A,B,C,1 + D,E)            [B >= 1 + D && F$$ >= 1]                (?,3)
          27. evalfbb2in(A,B,C,D,E) -> evalfbb5in(A,B,C,1 + D,E)            [B >= 1 + D]                            (?,3)
          28. evalfbb5in(A,B,C,D,E) -> evalfbb7in(-1 + A,B,-1 + D,-1 + A,D) True                                    (?,2)
          29. evalfbb6in(A,B,C,D,E) -> evalfbb3in(D,B,-1 + E,-1 + E,E)      [D >= 0 && -1 + E >= 0 && 0 >= 1 + F$$] (?,3)
          30. evalfbb6in(A,B,C,D,E) -> evalfbb3in(D,B,-1 + E,-1 + E,E)      [D >= 0 && -1 + E >= 0 && F$$ >= 1]     (?,3)
          31. evalfbb6in(A,B,C,D,E) -> evalfbb6in(D,B,-1 + E,D,-1 + E)      [D >= 0 && -1 + E >= 0]                 (?,3)
          32. evalfstart(A,B,C,D,E) -> evalfbb3in(B,B,0,0,E)                [B >= 0 && 0 >= 0 && 0 >= 1 + F$$]      (1,4)
          33. evalfstart(A,B,C,D,E) -> evalfbb3in(B,B,0,0,E)                [B >= 0 && 0 >= 0 && F$$ >= 1]          (1,4)
          34. evalfstart(A,B,C,D,E) -> evalfbb6in(B,B,0,B,0)                [B >= 0 && 0 >= 0]                      (1,4)
        Signature:
          {(evalfbb2in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbbin,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [17->{20,21,22,23},18->{20,21,22,23},19->{29,30,31},20->{29,30,31},21->{24,25,26,27},22->{24,25,26,27}
          ,23->{28},24->{29,30,31},25->{24,25,26,27},26->{24,25,26,27},27->{28},28->{17,18,19},29->{20,21,22,23}
          ,30->{20,21,22,23},31->{29,30,31},32->{20,21,22,23},33->{20,21,22,23},34->{29,30,31}]
        Sizebounds:
          (<17,0,A>, ?) (<17,0,B>, B) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,E>, ?) 
          (<18,0,A>, ?) (<18,0,B>, B) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,E>, ?) 
          (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) 
          (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) 
          (<21,0,A>, ?) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, B) (<21,0,E>, ?) 
          (<22,0,A>, ?) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, B) (<22,0,E>, ?) 
          (<23,0,A>, ?) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, B) (<23,0,E>, ?) 
          (<24,0,A>, ?) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, ?) (<24,0,E>, ?) 
          (<25,0,A>, ?) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, B) (<25,0,E>, ?) 
          (<26,0,A>, ?) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, B) (<26,0,E>, ?) 
          (<27,0,A>, ?) (<27,0,B>, B) (<27,0,C>, ?) (<27,0,D>, B) (<27,0,E>, ?) 
          (<28,0,A>, ?) (<28,0,B>, B) (<28,0,C>, ?) (<28,0,D>, ?) (<28,0,E>, ?) 
          (<29,0,A>, ?) (<29,0,B>, B) (<29,0,C>, ?) (<29,0,D>, ?) (<29,0,E>, ?) 
          (<30,0,A>, ?) (<30,0,B>, B) (<30,0,C>, ?) (<30,0,D>, ?) (<30,0,E>, ?) 
          (<31,0,A>, ?) (<31,0,B>, B) (<31,0,C>, ?) (<31,0,D>, ?) (<31,0,E>, ?) 
          (<32,0,A>, ?) (<32,0,B>, B) (<32,0,C>, ?) (<32,0,D>, ?) (<32,0,E>, ?) 
          (<33,0,A>, ?) (<33,0,B>, B) (<33,0,C>, ?) (<33,0,D>, ?) (<33,0,E>, ?) 
          (<34,0,A>, ?) (<34,0,B>, B) (<34,0,C>, ?) (<34,0,D>, ?) (<34,0,E>, ?) 
    + Applied Processor:
        ChainProcessor False [17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34]
    + Details:
        We chained rule 17 to obtain the rules [35,36,37,38] .
* Step 18: ChainProcessor WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          18. evalfbb7in(A,B,C,D,E) -> evalfbb3in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1]                               (?,2)
          19. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,A,C)                [A >= 0 && C >= 0]                                          (?,2)
          20. evalfbb3in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,D)           [D >= 1 + B]                                                (?,2)
          21. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)                [B >= D && 0 >= 1 + F$]                                     (?,2)
          22. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)                [B >= D && F$ >= 1]                                         (?,2)
          23. evalfbb3in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E)                [B >= D]                                                    (?,2)
          24. evalfbb2in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,1 + D)       [1 + D >= 1 + B]                                            (?,3)
          25. evalfbb2in(A,B,C,D,E) -> evalfbb2in(A,B,C,1 + D,E)            [B >= 1 + D && 0 >= 1 + F$$]                                (?,3)
          26. evalfbb2in(A,B,C,D,E) -> evalfbb2in(A,B,C,1 + D,E)            [B >= 1 + D && F$$ >= 1]                                    (?,3)
          27. evalfbb2in(A,B,C,D,E) -> evalfbb5in(A,B,C,1 + D,E)            [B >= 1 + D]                                                (?,3)
          28. evalfbb5in(A,B,C,D,E) -> evalfbb7in(-1 + A,B,-1 + D,-1 + A,D) True                                                        (?,2)
          29. evalfbb6in(A,B,C,D,E) -> evalfbb3in(D,B,-1 + E,-1 + E,E)      [D >= 0 && -1 + E >= 0 && 0 >= 1 + F$$]                     (?,3)
          30. evalfbb6in(A,B,C,D,E) -> evalfbb3in(D,B,-1 + E,-1 + E,E)      [D >= 0 && -1 + E >= 0 && F$$ >= 1]                         (?,3)
          31. evalfbb6in(A,B,C,D,E) -> evalfbb6in(D,B,-1 + E,D,-1 + E)      [D >= 0 && -1 + E >= 0]                                     (?,3)
          32. evalfstart(A,B,C,D,E) -> evalfbb3in(B,B,0,0,E)                [B >= 0 && 0 >= 0 && 0 >= 1 + F$$]                          (1,4)
          33. evalfstart(A,B,C,D,E) -> evalfbb3in(B,B,0,0,E)                [B >= 0 && 0 >= 0 && F$$ >= 1]                              (1,4)
          34. evalfstart(A,B,C,D,E) -> evalfbb6in(B,B,0,B,0)                [B >= 0 && 0 >= 0]                                          (1,4)
          35. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,C)           [A >= 0 && C >= 0 && 0 >= 1 + F$ && C >= 1 + B]             (?,4)
          36. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && 0 >= 1 + F$$] (?,4)
          37. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && F$$ >= 1]     (?,4)
          38. evalfbb7in(A,B,C,D,E) -> evalfbb5in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C]                 (?,4)
        Signature:
          {(evalfbb2in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbbin,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [18->{20,21,22,23},19->{29,30,31},20->{29,30,31},21->{24,25,26,27},22->{24,25,26,27},23->{28},24->{29,30
          ,31},25->{24,25,26,27},26->{24,25,26,27},27->{28},28->{18,19,35,36,37,38},29->{20,21,22,23},30->{20,21,22
          ,23},31->{29,30,31},32->{20,21,22,23},33->{20,21,22,23},34->{29,30,31},35->{29,30,31},36->{24,25,26,27}
          ,37->{24,25,26,27},38->{28}]
        Sizebounds:
          (<18,0,A>, ?) (<18,0,B>, B) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,E>, ?) 
          (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) 
          (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) 
          (<21,0,A>, ?) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, B) (<21,0,E>, ?) 
          (<22,0,A>, ?) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, B) (<22,0,E>, ?) 
          (<23,0,A>, ?) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, B) (<23,0,E>, ?) 
          (<24,0,A>, ?) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, ?) (<24,0,E>, ?) 
          (<25,0,A>, ?) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, B) (<25,0,E>, ?) 
          (<26,0,A>, ?) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, B) (<26,0,E>, ?) 
          (<27,0,A>, ?) (<27,0,B>, B) (<27,0,C>, ?) (<27,0,D>, B) (<27,0,E>, ?) 
          (<28,0,A>, ?) (<28,0,B>, B) (<28,0,C>, ?) (<28,0,D>, ?) (<28,0,E>, ?) 
          (<29,0,A>, ?) (<29,0,B>, B) (<29,0,C>, ?) (<29,0,D>, ?) (<29,0,E>, ?) 
          (<30,0,A>, ?) (<30,0,B>, B) (<30,0,C>, ?) (<30,0,D>, ?) (<30,0,E>, ?) 
          (<31,0,A>, ?) (<31,0,B>, B) (<31,0,C>, ?) (<31,0,D>, ?) (<31,0,E>, ?) 
          (<32,0,A>, ?) (<32,0,B>, B) (<32,0,C>, ?) (<32,0,D>, ?) (<32,0,E>, ?) 
          (<33,0,A>, ?) (<33,0,B>, B) (<33,0,C>, ?) (<33,0,D>, ?) (<33,0,E>, ?) 
          (<34,0,A>, ?) (<34,0,B>, B) (<34,0,C>, ?) (<34,0,D>, ?) (<34,0,E>, ?) 
          (<35,0,A>, ?) (<35,0,B>, B) (<35,0,C>, ?) (<35,0,D>, ?) (<35,0,E>, ?) 
          (<36,0,A>, ?) (<36,0,B>, B) (<36,0,C>, ?) (<36,0,D>, B) (<36,0,E>, ?) 
          (<37,0,A>, ?) (<37,0,B>, B) (<37,0,C>, ?) (<37,0,D>, B) (<37,0,E>, ?) 
          (<38,0,A>, ?) (<38,0,B>, B) (<38,0,C>, ?) (<38,0,D>, B) (<38,0,E>, ?) 
    + Applied Processor:
        ChainProcessor False [18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38]
    + Details:
        We chained rule 18 to obtain the rules [39,40,41,42] .
* Step 19: UnsatPaths WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          19. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,A,C)                [A >= 0 && C >= 0]                                          (?,2)
          20. evalfbb3in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,D)           [D >= 1 + B]                                                (?,2)
          21. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)                [B >= D && 0 >= 1 + F$]                                     (?,2)
          22. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)                [B >= D && F$ >= 1]                                         (?,2)
          23. evalfbb3in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E)                [B >= D]                                                    (?,2)
          24. evalfbb2in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,1 + D)       [1 + D >= 1 + B]                                            (?,3)
          25. evalfbb2in(A,B,C,D,E) -> evalfbb2in(A,B,C,1 + D,E)            [B >= 1 + D && 0 >= 1 + F$$]                                (?,3)
          26. evalfbb2in(A,B,C,D,E) -> evalfbb2in(A,B,C,1 + D,E)            [B >= 1 + D && F$$ >= 1]                                    (?,3)
          27. evalfbb2in(A,B,C,D,E) -> evalfbb5in(A,B,C,1 + D,E)            [B >= 1 + D]                                                (?,3)
          28. evalfbb5in(A,B,C,D,E) -> evalfbb7in(-1 + A,B,-1 + D,-1 + A,D) True                                                        (?,2)
          29. evalfbb6in(A,B,C,D,E) -> evalfbb3in(D,B,-1 + E,-1 + E,E)      [D >= 0 && -1 + E >= 0 && 0 >= 1 + F$$]                     (?,3)
          30. evalfbb6in(A,B,C,D,E) -> evalfbb3in(D,B,-1 + E,-1 + E,E)      [D >= 0 && -1 + E >= 0 && F$$ >= 1]                         (?,3)
          31. evalfbb6in(A,B,C,D,E) -> evalfbb6in(D,B,-1 + E,D,-1 + E)      [D >= 0 && -1 + E >= 0]                                     (?,3)
          32. evalfstart(A,B,C,D,E) -> evalfbb3in(B,B,0,0,E)                [B >= 0 && 0 >= 0 && 0 >= 1 + F$$]                          (1,4)
          33. evalfstart(A,B,C,D,E) -> evalfbb3in(B,B,0,0,E)                [B >= 0 && 0 >= 0 && F$$ >= 1]                              (1,4)
          34. evalfstart(A,B,C,D,E) -> evalfbb6in(B,B,0,B,0)                [B >= 0 && 0 >= 0]                                          (1,4)
          35. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,C)           [A >= 0 && C >= 0 && 0 >= 1 + F$ && C >= 1 + B]             (?,4)
          36. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && 0 >= 1 + F$$] (?,4)
          37. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && F$$ >= 1]     (?,4)
          38. evalfbb7in(A,B,C,D,E) -> evalfbb5in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C]                 (?,4)
          39. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,C)           [A >= 0 && C >= 0 && F$ >= 1 && C >= 1 + B]                 (?,4)
          40. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C && 0 >= 1 + F$$]     (?,4)
          41. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C && F$$ >= 1]         (?,4)
          42. evalfbb7in(A,B,C,D,E) -> evalfbb5in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C]                     (?,4)
        Signature:
          {(evalfbb2in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbbin,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [19->{29,30,31},20->{29,30,31},21->{24,25,26,27},22->{24,25,26,27},23->{28},24->{29,30,31},25->{24,25,26
          ,27},26->{24,25,26,27},27->{28},28->{19,35,36,37,38,39,40,41,42},29->{20,21,22,23},30->{20,21,22,23},31->{29
          ,30,31},32->{20,21,22,23},33->{20,21,22,23},34->{29,30,31},35->{29,30,31},36->{24,25,26,27},37->{24,25,26
          ,27},38->{28},39->{29,30,31},40->{24,25,26,27},41->{24,25,26,27},42->{28}]
        Sizebounds:
          (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) 
          (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) 
          (<21,0,A>, ?) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, B) (<21,0,E>, ?) 
          (<22,0,A>, ?) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, B) (<22,0,E>, ?) 
          (<23,0,A>, ?) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, B) (<23,0,E>, ?) 
          (<24,0,A>, ?) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, ?) (<24,0,E>, ?) 
          (<25,0,A>, ?) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, B) (<25,0,E>, ?) 
          (<26,0,A>, ?) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, B) (<26,0,E>, ?) 
          (<27,0,A>, ?) (<27,0,B>, B) (<27,0,C>, ?) (<27,0,D>, B) (<27,0,E>, ?) 
          (<28,0,A>, ?) (<28,0,B>, B) (<28,0,C>, ?) (<28,0,D>, ?) (<28,0,E>, ?) 
          (<29,0,A>, ?) (<29,0,B>, B) (<29,0,C>, ?) (<29,0,D>, ?) (<29,0,E>, ?) 
          (<30,0,A>, ?) (<30,0,B>, B) (<30,0,C>, ?) (<30,0,D>, ?) (<30,0,E>, ?) 
          (<31,0,A>, ?) (<31,0,B>, B) (<31,0,C>, ?) (<31,0,D>, ?) (<31,0,E>, ?) 
          (<32,0,A>, ?) (<32,0,B>, B) (<32,0,C>, ?) (<32,0,D>, ?) (<32,0,E>, ?) 
          (<33,0,A>, ?) (<33,0,B>, B) (<33,0,C>, ?) (<33,0,D>, ?) (<33,0,E>, ?) 
          (<34,0,A>, ?) (<34,0,B>, B) (<34,0,C>, ?) (<34,0,D>, ?) (<34,0,E>, ?) 
          (<35,0,A>, ?) (<35,0,B>, B) (<35,0,C>, ?) (<35,0,D>, ?) (<35,0,E>, ?) 
          (<36,0,A>, ?) (<36,0,B>, B) (<36,0,C>, ?) (<36,0,D>, B) (<36,0,E>, ?) 
          (<37,0,A>, ?) (<37,0,B>, B) (<37,0,C>, ?) (<37,0,D>, B) (<37,0,E>, ?) 
          (<38,0,A>, ?) (<38,0,B>, B) (<38,0,C>, ?) (<38,0,D>, B) (<38,0,E>, ?) 
          (<39,0,A>, ?) (<39,0,B>, B) (<39,0,C>, ?) (<39,0,D>, ?) (<39,0,E>, ?) 
          (<40,0,A>, ?) (<40,0,B>, B) (<40,0,C>, ?) (<40,0,D>, B) (<40,0,E>, ?) 
          (<41,0,A>, ?) (<41,0,B>, B) (<41,0,C>, ?) (<41,0,D>, B) (<41,0,E>, ?) 
          (<42,0,A>, ?) (<42,0,B>, B) (<42,0,C>, ?) (<42,0,D>, B) (<42,0,E>, ?) 
    + Applied Processor:
        UnsatPaths
    + Details:
        We remove following edges from the transition graph: [(32,20),(33,20),(34,29),(34,30),(34,31)]
* Step 20: LocalSizeboundsProc WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          19. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,A,C)                [A >= 0 && C >= 0]                                          (?,2)
          20. evalfbb3in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,D)           [D >= 1 + B]                                                (?,2)
          21. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)                [B >= D && 0 >= 1 + F$]                                     (?,2)
          22. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)                [B >= D && F$ >= 1]                                         (?,2)
          23. evalfbb3in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E)                [B >= D]                                                    (?,2)
          24. evalfbb2in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,1 + D)       [1 + D >= 1 + B]                                            (?,3)
          25. evalfbb2in(A,B,C,D,E) -> evalfbb2in(A,B,C,1 + D,E)            [B >= 1 + D && 0 >= 1 + F$$]                                (?,3)
          26. evalfbb2in(A,B,C,D,E) -> evalfbb2in(A,B,C,1 + D,E)            [B >= 1 + D && F$$ >= 1]                                    (?,3)
          27. evalfbb2in(A,B,C,D,E) -> evalfbb5in(A,B,C,1 + D,E)            [B >= 1 + D]                                                (?,3)
          28. evalfbb5in(A,B,C,D,E) -> evalfbb7in(-1 + A,B,-1 + D,-1 + A,D) True                                                        (?,2)
          29. evalfbb6in(A,B,C,D,E) -> evalfbb3in(D,B,-1 + E,-1 + E,E)      [D >= 0 && -1 + E >= 0 && 0 >= 1 + F$$]                     (?,3)
          30. evalfbb6in(A,B,C,D,E) -> evalfbb3in(D,B,-1 + E,-1 + E,E)      [D >= 0 && -1 + E >= 0 && F$$ >= 1]                         (?,3)
          31. evalfbb6in(A,B,C,D,E) -> evalfbb6in(D,B,-1 + E,D,-1 + E)      [D >= 0 && -1 + E >= 0]                                     (?,3)
          32. evalfstart(A,B,C,D,E) -> evalfbb3in(B,B,0,0,E)                [B >= 0 && 0 >= 0 && 0 >= 1 + F$$]                          (1,4)
          33. evalfstart(A,B,C,D,E) -> evalfbb3in(B,B,0,0,E)                [B >= 0 && 0 >= 0 && F$$ >= 1]                              (1,4)
          34. evalfstart(A,B,C,D,E) -> evalfbb6in(B,B,0,B,0)                [B >= 0 && 0 >= 0]                                          (1,4)
          35. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,C)           [A >= 0 && C >= 0 && 0 >= 1 + F$ && C >= 1 + B]             (?,4)
          36. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && 0 >= 1 + F$$] (?,4)
          37. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && F$$ >= 1]     (?,4)
          38. evalfbb7in(A,B,C,D,E) -> evalfbb5in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C]                 (?,4)
          39. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,C)           [A >= 0 && C >= 0 && F$ >= 1 && C >= 1 + B]                 (?,4)
          40. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C && 0 >= 1 + F$$]     (?,4)
          41. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C && F$$ >= 1]         (?,4)
          42. evalfbb7in(A,B,C,D,E) -> evalfbb5in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C]                     (?,4)
        Signature:
          {(evalfbb2in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbbin,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [19->{29,30,31},20->{29,30,31},21->{24,25,26,27},22->{24,25,26,27},23->{28},24->{29,30,31},25->{24,25,26
          ,27},26->{24,25,26,27},27->{28},28->{19,35,36,37,38,39,40,41,42},29->{20,21,22,23},30->{20,21,22,23},31->{29
          ,30,31},32->{21,22,23},33->{21,22,23},34->{},35->{29,30,31},36->{24,25,26,27},37->{24,25,26,27},38->{28}
          ,39->{29,30,31},40->{24,25,26,27},41->{24,25,26,27},42->{28}]
        Sizebounds:
          (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) 
          (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) 
          (<21,0,A>, ?) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, B) (<21,0,E>, ?) 
          (<22,0,A>, ?) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, B) (<22,0,E>, ?) 
          (<23,0,A>, ?) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, B) (<23,0,E>, ?) 
          (<24,0,A>, ?) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, ?) (<24,0,E>, ?) 
          (<25,0,A>, ?) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, B) (<25,0,E>, ?) 
          (<26,0,A>, ?) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, B) (<26,0,E>, ?) 
          (<27,0,A>, ?) (<27,0,B>, B) (<27,0,C>, ?) (<27,0,D>, B) (<27,0,E>, ?) 
          (<28,0,A>, ?) (<28,0,B>, B) (<28,0,C>, ?) (<28,0,D>, ?) (<28,0,E>, ?) 
          (<29,0,A>, ?) (<29,0,B>, B) (<29,0,C>, ?) (<29,0,D>, ?) (<29,0,E>, ?) 
          (<30,0,A>, ?) (<30,0,B>, B) (<30,0,C>, ?) (<30,0,D>, ?) (<30,0,E>, ?) 
          (<31,0,A>, ?) (<31,0,B>, B) (<31,0,C>, ?) (<31,0,D>, ?) (<31,0,E>, ?) 
          (<32,0,A>, ?) (<32,0,B>, B) (<32,0,C>, ?) (<32,0,D>, ?) (<32,0,E>, ?) 
          (<33,0,A>, ?) (<33,0,B>, B) (<33,0,C>, ?) (<33,0,D>, ?) (<33,0,E>, ?) 
          (<34,0,A>, ?) (<34,0,B>, B) (<34,0,C>, ?) (<34,0,D>, ?) (<34,0,E>, ?) 
          (<35,0,A>, ?) (<35,0,B>, B) (<35,0,C>, ?) (<35,0,D>, ?) (<35,0,E>, ?) 
          (<36,0,A>, ?) (<36,0,B>, B) (<36,0,C>, ?) (<36,0,D>, B) (<36,0,E>, ?) 
          (<37,0,A>, ?) (<37,0,B>, B) (<37,0,C>, ?) (<37,0,D>, B) (<37,0,E>, ?) 
          (<38,0,A>, ?) (<38,0,B>, B) (<38,0,C>, ?) (<38,0,D>, B) (<38,0,E>, ?) 
          (<39,0,A>, ?) (<39,0,B>, B) (<39,0,C>, ?) (<39,0,D>, ?) (<39,0,E>, ?) 
          (<40,0,A>, ?) (<40,0,B>, B) (<40,0,C>, ?) (<40,0,D>, B) (<40,0,E>, ?) 
          (<41,0,A>, ?) (<41,0,B>, B) (<41,0,C>, ?) (<41,0,D>, B) (<41,0,E>, ?) 
          (<42,0,A>, ?) (<42,0,B>, B) (<42,0,C>, ?) (<42,0,D>, B) (<42,0,E>, ?) 
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (<19,0,A>,     A, .= 0) (<19,0,B>, B, .= 0) (<19,0,C>,     C, .= 0) (<19,0,D>,     A, .= 0) (<19,0,E>,     C, .= 0) 
          (<20,0,A>,     A, .= 0) (<20,0,B>, B, .= 0) (<20,0,C>,     C, .= 0) (<20,0,D>, 1 + A, .+ 1) (<20,0,E>,     D, .= 0) 
          (<21,0,A>,     A, .= 0) (<21,0,B>, B, .= 0) (<21,0,C>,     C, .= 0) (<21,0,D>,     D, .= 0) (<21,0,E>,     E, .= 0) 
          (<22,0,A>,     A, .= 0) (<22,0,B>, B, .= 0) (<22,0,C>,     C, .= 0) (<22,0,D>,     D, .= 0) (<22,0,E>,     E, .= 0) 
          (<23,0,A>,     A, .= 0) (<23,0,B>, B, .= 0) (<23,0,C>,     C, .= 0) (<23,0,D>,     D, .= 0) (<23,0,E>,     E, .= 0) 
          (<24,0,A>,     A, .= 0) (<24,0,B>, B, .= 0) (<24,0,C>,     C, .= 0) (<24,0,D>, 1 + A, .+ 1) (<24,0,E>, 1 + D, .+ 1) 
          (<25,0,A>,     A, .= 0) (<25,0,B>, B, .= 0) (<25,0,C>,     C, .= 0) (<25,0,D>, 1 + D, .+ 1) (<25,0,E>,     E, .= 0) 
          (<26,0,A>,     A, .= 0) (<26,0,B>, B, .= 0) (<26,0,C>,     C, .= 0) (<26,0,D>, 1 + D, .+ 1) (<26,0,E>,     E, .= 0) 
          (<27,0,A>,     A, .= 0) (<27,0,B>, B, .= 0) (<27,0,C>,     C, .= 0) (<27,0,D>, 1 + D, .+ 1) (<27,0,E>,     E, .= 0) 
          (<28,0,A>, 1 + A, .+ 1) (<28,0,B>, B, .= 0) (<28,0,C>, 1 + D, .+ 1) (<28,0,D>, 1 + A, .+ 1) (<28,0,E>,     D, .= 0) 
          (<29,0,A>,     D, .= 0) (<29,0,B>, B, .= 0) (<29,0,C>, 1 + E, .+ 1) (<29,0,D>, 1 + E, .+ 1) (<29,0,E>,     E, .= 0) 
          (<30,0,A>,     D, .= 0) (<30,0,B>, B, .= 0) (<30,0,C>, 1 + E, .+ 1) (<30,0,D>, 1 + E, .+ 1) (<30,0,E>,     E, .= 0) 
          (<31,0,A>,     D, .= 0) (<31,0,B>, B, .= 0) (<31,0,C>, 1 + E, .+ 1) (<31,0,D>,     D, .= 0) (<31,0,E>, 1 + E, .+ 1) 
          (<32,0,A>,     B, .= 0) (<32,0,B>, B, .= 0) (<32,0,C>,     0, .= 0) (<32,0,D>,     0, .= 0) (<32,0,E>,     E, .= 0) 
          (<33,0,A>,     B, .= 0) (<33,0,B>, B, .= 0) (<33,0,C>,     0, .= 0) (<33,0,D>,     0, .= 0) (<33,0,E>,     E, .= 0) 
          (<34,0,A>,     B, .= 0) (<34,0,B>, B, .= 0) (<34,0,C>,     0, .= 0) (<34,0,D>,     B, .= 0) (<34,0,E>,     0, .= 0) 
          (<35,0,A>,     A, .= 0) (<35,0,B>, B, .= 0) (<35,0,C>,     C, .= 0) (<35,0,D>, 1 + A, .+ 1) (<35,0,E>,     C, .= 0) 
          (<36,0,A>,     A, .= 0) (<36,0,B>, B, .= 0) (<36,0,C>,     C, .= 0) (<36,0,D>,     C, .= 0) (<36,0,E>,     E, .= 0) 
          (<37,0,A>,     A, .= 0) (<37,0,B>, B, .= 0) (<37,0,C>,     C, .= 0) (<37,0,D>,     C, .= 0) (<37,0,E>,     E, .= 0) 
          (<38,0,A>,     A, .= 0) (<38,0,B>, B, .= 0) (<38,0,C>,     C, .= 0) (<38,0,D>,     C, .= 0) (<38,0,E>,     E, .= 0) 
          (<39,0,A>,     A, .= 0) (<39,0,B>, B, .= 0) (<39,0,C>,     C, .= 0) (<39,0,D>, 1 + A, .+ 1) (<39,0,E>,     C, .= 0) 
          (<40,0,A>,     A, .= 0) (<40,0,B>, B, .= 0) (<40,0,C>,     C, .= 0) (<40,0,D>,     C, .= 0) (<40,0,E>,     E, .= 0) 
          (<41,0,A>,     A, .= 0) (<41,0,B>, B, .= 0) (<41,0,C>,     C, .= 0) (<41,0,D>,     C, .= 0) (<41,0,E>,     E, .= 0) 
          (<42,0,A>,     A, .= 0) (<42,0,B>, B, .= 0) (<42,0,C>,     C, .= 0) (<42,0,D>,     C, .= 0) (<42,0,E>,     E, .= 0) 
* Step 21: SizeboundsProc WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          19. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,A,C)                [A >= 0 && C >= 0]                                          (?,2)
          20. evalfbb3in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,D)           [D >= 1 + B]                                                (?,2)
          21. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)                [B >= D && 0 >= 1 + F$]                                     (?,2)
          22. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)                [B >= D && F$ >= 1]                                         (?,2)
          23. evalfbb3in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E)                [B >= D]                                                    (?,2)
          24. evalfbb2in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,1 + D)       [1 + D >= 1 + B]                                            (?,3)
          25. evalfbb2in(A,B,C,D,E) -> evalfbb2in(A,B,C,1 + D,E)            [B >= 1 + D && 0 >= 1 + F$$]                                (?,3)
          26. evalfbb2in(A,B,C,D,E) -> evalfbb2in(A,B,C,1 + D,E)            [B >= 1 + D && F$$ >= 1]                                    (?,3)
          27. evalfbb2in(A,B,C,D,E) -> evalfbb5in(A,B,C,1 + D,E)            [B >= 1 + D]                                                (?,3)
          28. evalfbb5in(A,B,C,D,E) -> evalfbb7in(-1 + A,B,-1 + D,-1 + A,D) True                                                        (?,2)
          29. evalfbb6in(A,B,C,D,E) -> evalfbb3in(D,B,-1 + E,-1 + E,E)      [D >= 0 && -1 + E >= 0 && 0 >= 1 + F$$]                     (?,3)
          30. evalfbb6in(A,B,C,D,E) -> evalfbb3in(D,B,-1 + E,-1 + E,E)      [D >= 0 && -1 + E >= 0 && F$$ >= 1]                         (?,3)
          31. evalfbb6in(A,B,C,D,E) -> evalfbb6in(D,B,-1 + E,D,-1 + E)      [D >= 0 && -1 + E >= 0]                                     (?,3)
          32. evalfstart(A,B,C,D,E) -> evalfbb3in(B,B,0,0,E)                [B >= 0 && 0 >= 0 && 0 >= 1 + F$$]                          (1,4)
          33. evalfstart(A,B,C,D,E) -> evalfbb3in(B,B,0,0,E)                [B >= 0 && 0 >= 0 && F$$ >= 1]                              (1,4)
          34. evalfstart(A,B,C,D,E) -> evalfbb6in(B,B,0,B,0)                [B >= 0 && 0 >= 0]                                          (1,4)
          35. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,C)           [A >= 0 && C >= 0 && 0 >= 1 + F$ && C >= 1 + B]             (?,4)
          36. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && 0 >= 1 + F$$] (?,4)
          37. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && F$$ >= 1]     (?,4)
          38. evalfbb7in(A,B,C,D,E) -> evalfbb5in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C]                 (?,4)
          39. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,C)           [A >= 0 && C >= 0 && F$ >= 1 && C >= 1 + B]                 (?,4)
          40. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C && 0 >= 1 + F$$]     (?,4)
          41. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C && F$$ >= 1]         (?,4)
          42. evalfbb7in(A,B,C,D,E) -> evalfbb5in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C]                     (?,4)
        Signature:
          {(evalfbb2in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbbin,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [19->{29,30,31},20->{29,30,31},21->{24,25,26,27},22->{24,25,26,27},23->{28},24->{29,30,31},25->{24,25,26
          ,27},26->{24,25,26,27},27->{28},28->{19,35,36,37,38,39,40,41,42},29->{20,21,22,23},30->{20,21,22,23},31->{29
          ,30,31},32->{21,22,23},33->{21,22,23},34->{},35->{29,30,31},36->{24,25,26,27},37->{24,25,26,27},38->{28}
          ,39->{29,30,31},40->{24,25,26,27},41->{24,25,26,27},42->{28}]
        Sizebounds:
          (<19,0,A>, ?) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) 
          (<20,0,A>, ?) (<20,0,B>, ?) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) 
          (<21,0,A>, ?) (<21,0,B>, ?) (<21,0,C>, ?) (<21,0,D>, ?) (<21,0,E>, ?) 
          (<22,0,A>, ?) (<22,0,B>, ?) (<22,0,C>, ?) (<22,0,D>, ?) (<22,0,E>, ?) 
          (<23,0,A>, ?) (<23,0,B>, ?) (<23,0,C>, ?) (<23,0,D>, ?) (<23,0,E>, ?) 
          (<24,0,A>, ?) (<24,0,B>, ?) (<24,0,C>, ?) (<24,0,D>, ?) (<24,0,E>, ?) 
          (<25,0,A>, ?) (<25,0,B>, ?) (<25,0,C>, ?) (<25,0,D>, ?) (<25,0,E>, ?) 
          (<26,0,A>, ?) (<26,0,B>, ?) (<26,0,C>, ?) (<26,0,D>, ?) (<26,0,E>, ?) 
          (<27,0,A>, ?) (<27,0,B>, ?) (<27,0,C>, ?) (<27,0,D>, ?) (<27,0,E>, ?) 
          (<28,0,A>, ?) (<28,0,B>, ?) (<28,0,C>, ?) (<28,0,D>, ?) (<28,0,E>, ?) 
          (<29,0,A>, ?) (<29,0,B>, ?) (<29,0,C>, ?) (<29,0,D>, ?) (<29,0,E>, ?) 
          (<30,0,A>, ?) (<30,0,B>, ?) (<30,0,C>, ?) (<30,0,D>, ?) (<30,0,E>, ?) 
          (<31,0,A>, ?) (<31,0,B>, ?) (<31,0,C>, ?) (<31,0,D>, ?) (<31,0,E>, ?) 
          (<32,0,A>, ?) (<32,0,B>, ?) (<32,0,C>, ?) (<32,0,D>, ?) (<32,0,E>, ?) 
          (<33,0,A>, ?) (<33,0,B>, ?) (<33,0,C>, ?) (<33,0,D>, ?) (<33,0,E>, ?) 
          (<34,0,A>, ?) (<34,0,B>, ?) (<34,0,C>, ?) (<34,0,D>, ?) (<34,0,E>, ?) 
          (<35,0,A>, ?) (<35,0,B>, ?) (<35,0,C>, ?) (<35,0,D>, ?) (<35,0,E>, ?) 
          (<36,0,A>, ?) (<36,0,B>, ?) (<36,0,C>, ?) (<36,0,D>, ?) (<36,0,E>, ?) 
          (<37,0,A>, ?) (<37,0,B>, ?) (<37,0,C>, ?) (<37,0,D>, ?) (<37,0,E>, ?) 
          (<38,0,A>, ?) (<38,0,B>, ?) (<38,0,C>, ?) (<38,0,D>, ?) (<38,0,E>, ?) 
          (<39,0,A>, ?) (<39,0,B>, ?) (<39,0,C>, ?) (<39,0,D>, ?) (<39,0,E>, ?) 
          (<40,0,A>, ?) (<40,0,B>, ?) (<40,0,C>, ?) (<40,0,D>, ?) (<40,0,E>, ?) 
          (<41,0,A>, ?) (<41,0,B>, ?) (<41,0,C>, ?) (<41,0,D>, ?) (<41,0,E>, ?) 
          (<42,0,A>, ?) (<42,0,B>, ?) (<42,0,C>, ?) (<42,0,D>, ?) (<42,0,E>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) 
          (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) 
          (<21,0,A>, ?) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, B) (<21,0,E>, ?) 
          (<22,0,A>, ?) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, B) (<22,0,E>, ?) 
          (<23,0,A>, ?) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, B) (<23,0,E>, ?) 
          (<24,0,A>, ?) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, ?) (<24,0,E>, ?) 
          (<25,0,A>, ?) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, B) (<25,0,E>, ?) 
          (<26,0,A>, ?) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, B) (<26,0,E>, ?) 
          (<27,0,A>, ?) (<27,0,B>, B) (<27,0,C>, ?) (<27,0,D>, B) (<27,0,E>, ?) 
          (<28,0,A>, ?) (<28,0,B>, B) (<28,0,C>, ?) (<28,0,D>, ?) (<28,0,E>, ?) 
          (<29,0,A>, ?) (<29,0,B>, B) (<29,0,C>, ?) (<29,0,D>, ?) (<29,0,E>, ?) 
          (<30,0,A>, ?) (<30,0,B>, B) (<30,0,C>, ?) (<30,0,D>, ?) (<30,0,E>, ?) 
          (<31,0,A>, ?) (<31,0,B>, B) (<31,0,C>, ?) (<31,0,D>, ?) (<31,0,E>, ?) 
          (<32,0,A>, B) (<32,0,B>, B) (<32,0,C>, 0) (<32,0,D>, 0) (<32,0,E>, E) 
          (<33,0,A>, B) (<33,0,B>, B) (<33,0,C>, 0) (<33,0,D>, 0) (<33,0,E>, E) 
          (<34,0,A>, B) (<34,0,B>, B) (<34,0,C>, 0) (<34,0,D>, B) (<34,0,E>, 0) 
          (<35,0,A>, ?) (<35,0,B>, B) (<35,0,C>, ?) (<35,0,D>, ?) (<35,0,E>, ?) 
          (<36,0,A>, ?) (<36,0,B>, B) (<36,0,C>, ?) (<36,0,D>, ?) (<36,0,E>, ?) 
          (<37,0,A>, ?) (<37,0,B>, B) (<37,0,C>, ?) (<37,0,D>, ?) (<37,0,E>, ?) 
          (<38,0,A>, ?) (<38,0,B>, B) (<38,0,C>, ?) (<38,0,D>, ?) (<38,0,E>, ?) 
          (<39,0,A>, ?) (<39,0,B>, B) (<39,0,C>, ?) (<39,0,D>, ?) (<39,0,E>, ?) 
          (<40,0,A>, ?) (<40,0,B>, B) (<40,0,C>, ?) (<40,0,D>, ?) (<40,0,E>, ?) 
          (<41,0,A>, ?) (<41,0,B>, B) (<41,0,C>, ?) (<41,0,D>, ?) (<41,0,E>, ?) 
          (<42,0,A>, ?) (<42,0,B>, B) (<42,0,C>, ?) (<42,0,D>, ?) (<42,0,E>, ?) 
* Step 22: LocationConstraintsProc WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          19. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,A,C)                [A >= 0 && C >= 0]                                          (?,2)
          20. evalfbb3in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,D)           [D >= 1 + B]                                                (?,2)
          21. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)                [B >= D && 0 >= 1 + F$]                                     (?,2)
          22. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)                [B >= D && F$ >= 1]                                         (?,2)
          23. evalfbb3in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E)                [B >= D]                                                    (?,2)
          24. evalfbb2in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,1 + D)       [1 + D >= 1 + B]                                            (?,3)
          25. evalfbb2in(A,B,C,D,E) -> evalfbb2in(A,B,C,1 + D,E)            [B >= 1 + D && 0 >= 1 + F$$]                                (?,3)
          26. evalfbb2in(A,B,C,D,E) -> evalfbb2in(A,B,C,1 + D,E)            [B >= 1 + D && F$$ >= 1]                                    (?,3)
          27. evalfbb2in(A,B,C,D,E) -> evalfbb5in(A,B,C,1 + D,E)            [B >= 1 + D]                                                (?,3)
          28. evalfbb5in(A,B,C,D,E) -> evalfbb7in(-1 + A,B,-1 + D,-1 + A,D) True                                                        (?,2)
          29. evalfbb6in(A,B,C,D,E) -> evalfbb3in(D,B,-1 + E,-1 + E,E)      [D >= 0 && -1 + E >= 0 && 0 >= 1 + F$$]                     (?,3)
          30. evalfbb6in(A,B,C,D,E) -> evalfbb3in(D,B,-1 + E,-1 + E,E)      [D >= 0 && -1 + E >= 0 && F$$ >= 1]                         (?,3)
          31. evalfbb6in(A,B,C,D,E) -> evalfbb6in(D,B,-1 + E,D,-1 + E)      [D >= 0 && -1 + E >= 0]                                     (?,3)
          32. evalfstart(A,B,C,D,E) -> evalfbb3in(B,B,0,0,E)                [B >= 0 && 0 >= 0 && 0 >= 1 + F$$]                          (1,4)
          33. evalfstart(A,B,C,D,E) -> evalfbb3in(B,B,0,0,E)                [B >= 0 && 0 >= 0 && F$$ >= 1]                              (1,4)
          34. evalfstart(A,B,C,D,E) -> evalfbb6in(B,B,0,B,0)                [B >= 0 && 0 >= 0]                                          (1,4)
          35. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,C)           [A >= 0 && C >= 0 && 0 >= 1 + F$ && C >= 1 + B]             (?,4)
          36. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && 0 >= 1 + F$$] (?,4)
          37. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && F$$ >= 1]     (?,4)
          38. evalfbb7in(A,B,C,D,E) -> evalfbb5in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C]                 (?,4)
          39. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,C)           [A >= 0 && C >= 0 && F$ >= 1 && C >= 1 + B]                 (?,4)
          40. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C && 0 >= 1 + F$$]     (?,4)
          41. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C && F$$ >= 1]         (?,4)
          42. evalfbb7in(A,B,C,D,E) -> evalfbb5in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C]                     (?,4)
        Signature:
          {(evalfbb2in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbbin,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [19->{29,30,31},20->{29,30,31},21->{24,25,26,27},22->{24,25,26,27},23->{28},24->{29,30,31},25->{24,25,26
          ,27},26->{24,25,26,27},27->{28},28->{19,35,36,37,38,39,40,41,42},29->{20,21,22,23},30->{20,21,22,23},31->{29
          ,30,31},32->{21,22,23},33->{21,22,23},34->{},35->{29,30,31},36->{24,25,26,27},37->{24,25,26,27},38->{28}
          ,39->{29,30,31},40->{24,25,26,27},41->{24,25,26,27},42->{28}]
        Sizebounds:
          (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) 
          (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) 
          (<21,0,A>, ?) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, B) (<21,0,E>, ?) 
          (<22,0,A>, ?) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, B) (<22,0,E>, ?) 
          (<23,0,A>, ?) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, B) (<23,0,E>, ?) 
          (<24,0,A>, ?) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, ?) (<24,0,E>, ?) 
          (<25,0,A>, ?) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, B) (<25,0,E>, ?) 
          (<26,0,A>, ?) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, B) (<26,0,E>, ?) 
          (<27,0,A>, ?) (<27,0,B>, B) (<27,0,C>, ?) (<27,0,D>, B) (<27,0,E>, ?) 
          (<28,0,A>, ?) (<28,0,B>, B) (<28,0,C>, ?) (<28,0,D>, ?) (<28,0,E>, ?) 
          (<29,0,A>, ?) (<29,0,B>, B) (<29,0,C>, ?) (<29,0,D>, ?) (<29,0,E>, ?) 
          (<30,0,A>, ?) (<30,0,B>, B) (<30,0,C>, ?) (<30,0,D>, ?) (<30,0,E>, ?) 
          (<31,0,A>, ?) (<31,0,B>, B) (<31,0,C>, ?) (<31,0,D>, ?) (<31,0,E>, ?) 
          (<32,0,A>, B) (<32,0,B>, B) (<32,0,C>, 0) (<32,0,D>, 0) (<32,0,E>, E) 
          (<33,0,A>, B) (<33,0,B>, B) (<33,0,C>, 0) (<33,0,D>, 0) (<33,0,E>, E) 
          (<34,0,A>, B) (<34,0,B>, B) (<34,0,C>, 0) (<34,0,D>, B) (<34,0,E>, 0) 
          (<35,0,A>, ?) (<35,0,B>, B) (<35,0,C>, ?) (<35,0,D>, ?) (<35,0,E>, ?) 
          (<36,0,A>, ?) (<36,0,B>, B) (<36,0,C>, ?) (<36,0,D>, ?) (<36,0,E>, ?) 
          (<37,0,A>, ?) (<37,0,B>, B) (<37,0,C>, ?) (<37,0,D>, ?) (<37,0,E>, ?) 
          (<38,0,A>, ?) (<38,0,B>, B) (<38,0,C>, ?) (<38,0,D>, ?) (<38,0,E>, ?) 
          (<39,0,A>, ?) (<39,0,B>, B) (<39,0,C>, ?) (<39,0,D>, ?) (<39,0,E>, ?) 
          (<40,0,A>, ?) (<40,0,B>, B) (<40,0,C>, ?) (<40,0,D>, ?) (<40,0,E>, ?) 
          (<41,0,A>, ?) (<41,0,B>, B) (<41,0,C>, ?) (<41,0,D>, ?) (<41,0,E>, ?) 
          (<42,0,A>, ?) (<42,0,B>, B) (<42,0,C>, ?) (<42,0,D>, ?) (<42,0,E>, ?) 
    + Applied Processor:
        LocationConstraintsProc
    + Details:
        We computed the location constraints  19 :  True 20 :  True 21 :  True 22 :  True 23 :  True 24 :  True 25 :  True 26 :  True 27 :  True 28 :  True 29 :  True 30 :  True 31 :  True 32 :  True 33 :  True 34 :  True 35 :  True 36 :  True 37 :  True 38 :  True 39 :  True 40 :  True 41 :  True 42 :  True .
* Step 23: PolyRank WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          19. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,A,C)                [A >= 0 && C >= 0]                                          (?,2)
          20. evalfbb3in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,D)           [D >= 1 + B]                                                (?,2)
          21. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)                [B >= D && 0 >= 1 + F$]                                     (?,2)
          22. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)                [B >= D && F$ >= 1]                                         (?,2)
          23. evalfbb3in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E)                [B >= D]                                                    (?,2)
          24. evalfbb2in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,1 + D)       [1 + D >= 1 + B]                                            (?,3)
          25. evalfbb2in(A,B,C,D,E) -> evalfbb2in(A,B,C,1 + D,E)            [B >= 1 + D && 0 >= 1 + F$$]                                (?,3)
          26. evalfbb2in(A,B,C,D,E) -> evalfbb2in(A,B,C,1 + D,E)            [B >= 1 + D && F$$ >= 1]                                    (?,3)
          27. evalfbb2in(A,B,C,D,E) -> evalfbb5in(A,B,C,1 + D,E)            [B >= 1 + D]                                                (?,3)
          28. evalfbb5in(A,B,C,D,E) -> evalfbb7in(-1 + A,B,-1 + D,-1 + A,D) True                                                        (?,2)
          29. evalfbb6in(A,B,C,D,E) -> evalfbb3in(D,B,-1 + E,-1 + E,E)      [D >= 0 && -1 + E >= 0 && 0 >= 1 + F$$]                     (?,3)
          30. evalfbb6in(A,B,C,D,E) -> evalfbb3in(D,B,-1 + E,-1 + E,E)      [D >= 0 && -1 + E >= 0 && F$$ >= 1]                         (?,3)
          31. evalfbb6in(A,B,C,D,E) -> evalfbb6in(D,B,-1 + E,D,-1 + E)      [D >= 0 && -1 + E >= 0]                                     (?,3)
          32. evalfstart(A,B,C,D,E) -> evalfbb3in(B,B,0,0,E)                [B >= 0 && 0 >= 0 && 0 >= 1 + F$$]                          (1,4)
          33. evalfstart(A,B,C,D,E) -> evalfbb3in(B,B,0,0,E)                [B >= 0 && 0 >= 0 && F$$ >= 1]                              (1,4)
          34. evalfstart(A,B,C,D,E) -> evalfbb6in(B,B,0,B,0)                [B >= 0 && 0 >= 0]                                          (1,4)
          35. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,C)           [A >= 0 && C >= 0 && 0 >= 1 + F$ && C >= 1 + B]             (?,4)
          36. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && 0 >= 1 + F$$] (?,4)
          37. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && F$$ >= 1]     (?,4)
          38. evalfbb7in(A,B,C,D,E) -> evalfbb5in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C]                 (?,4)
          39. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,C)           [A >= 0 && C >= 0 && F$ >= 1 && C >= 1 + B]                 (?,4)
          40. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C && 0 >= 1 + F$$]     (?,4)
          41. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C && F$$ >= 1]         (?,4)
          42. evalfbb7in(A,B,C,D,E) -> evalfbb5in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C]                     (?,4)
        Signature:
          {(evalfbb2in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbbin,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [19->{29,30,31},20->{29,30,31},21->{24,25,26,27},22->{24,25,26,27},23->{28},24->{29,30,31},25->{24,25,26
          ,27},26->{24,25,26,27},27->{28},28->{19,35,36,37,38,39,40,41,42},29->{20,21,22,23},30->{20,21,22,23},31->{29
          ,30,31},32->{21,22,23},33->{21,22,23},34->{},35->{29,30,31},36->{24,25,26,27},37->{24,25,26,27},38->{28}
          ,39->{29,30,31},40->{24,25,26,27},41->{24,25,26,27},42->{28}]
        Sizebounds:
          (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) 
          (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) 
          (<21,0,A>, ?) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, B) (<21,0,E>, ?) 
          (<22,0,A>, ?) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, B) (<22,0,E>, ?) 
          (<23,0,A>, ?) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, B) (<23,0,E>, ?) 
          (<24,0,A>, ?) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, ?) (<24,0,E>, ?) 
          (<25,0,A>, ?) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, B) (<25,0,E>, ?) 
          (<26,0,A>, ?) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, B) (<26,0,E>, ?) 
          (<27,0,A>, ?) (<27,0,B>, B) (<27,0,C>, ?) (<27,0,D>, B) (<27,0,E>, ?) 
          (<28,0,A>, ?) (<28,0,B>, B) (<28,0,C>, ?) (<28,0,D>, ?) (<28,0,E>, ?) 
          (<29,0,A>, ?) (<29,0,B>, B) (<29,0,C>, ?) (<29,0,D>, ?) (<29,0,E>, ?) 
          (<30,0,A>, ?) (<30,0,B>, B) (<30,0,C>, ?) (<30,0,D>, ?) (<30,0,E>, ?) 
          (<31,0,A>, ?) (<31,0,B>, B) (<31,0,C>, ?) (<31,0,D>, ?) (<31,0,E>, ?) 
          (<32,0,A>, B) (<32,0,B>, B) (<32,0,C>, 0) (<32,0,D>, 0) (<32,0,E>, E) 
          (<33,0,A>, B) (<33,0,B>, B) (<33,0,C>, 0) (<33,0,D>, 0) (<33,0,E>, E) 
          (<34,0,A>, B) (<34,0,B>, B) (<34,0,C>, 0) (<34,0,D>, B) (<34,0,E>, 0) 
          (<35,0,A>, ?) (<35,0,B>, B) (<35,0,C>, ?) (<35,0,D>, ?) (<35,0,E>, ?) 
          (<36,0,A>, ?) (<36,0,B>, B) (<36,0,C>, ?) (<36,0,D>, ?) (<36,0,E>, ?) 
          (<37,0,A>, ?) (<37,0,B>, B) (<37,0,C>, ?) (<37,0,D>, ?) (<37,0,E>, ?) 
          (<38,0,A>, ?) (<38,0,B>, B) (<38,0,C>, ?) (<38,0,D>, ?) (<38,0,E>, ?) 
          (<39,0,A>, ?) (<39,0,B>, B) (<39,0,C>, ?) (<39,0,D>, ?) (<39,0,E>, ?) 
          (<40,0,A>, ?) (<40,0,B>, B) (<40,0,C>, ?) (<40,0,D>, ?) (<40,0,E>, ?) 
          (<41,0,A>, ?) (<41,0,B>, B) (<41,0,C>, ?) (<41,0,D>, ?) (<41,0,E>, ?) 
          (<42,0,A>, ?) (<42,0,B>, B) (<42,0,C>, ?) (<42,0,D>, ?) (<42,0,E>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalfbb2in) = x1    
          p(evalfbb3in) = x1    
          p(evalfbb5in) = x1    
          p(evalfbb6in) = 1 + x4
          p(evalfbb7in) = 1 + x1
          p(evalfstart) = 1 + x2
        
        The following rules are strictly oriented:
             [B >= 0 && 0 >= 0 && 0 >= 1 + F$$] ==>                      
                          evalfstart(A,B,C,D,E)   = 1 + B                
                                                  > B                    
                                                  = evalfbb3in(B,B,0,0,E)
        
                 [B >= 0 && 0 >= 0 && F$$ >= 1] ==>                      
                          evalfstart(A,B,C,D,E)   = 1 + B                
                                                  > B                    
                                                  = evalfbb3in(B,B,0,0,E)
        
        [A >= 0 && C >= 0 && F$ >= 1 && B >= C] ==>                      
                          evalfbb7in(A,B,C,D,E)   = 1 + A                
                                                  > A                    
                                                  = evalfbb5in(A,B,C,C,E)
        
        
        The following rules are weakly oriented:
                                                 [A >= 0 && C >= 0] ==>                                     
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                               
                                                                     >= 1 + A                               
                                                                      = evalfbb6in(A,B,C,A,C)               
        
                                                       [D >= 1 + B] ==>                                     
                                              evalfbb3in(A,B,C,D,E)   = A                                   
                                                                     >= A                                   
                                                                      = evalfbb6in(A,B,C,-1 + A,D)          
        
                                            [B >= D && 0 >= 1 + F$] ==>                                     
                                              evalfbb3in(A,B,C,D,E)   = A                                   
                                                                     >= A                                   
                                                                      = evalfbb2in(A,B,C,D,E)               
        
                                                [B >= D && F$ >= 1] ==>                                     
                                              evalfbb3in(A,B,C,D,E)   = A                                   
                                                                     >= A                                   
                                                                      = evalfbb2in(A,B,C,D,E)               
        
                                                           [B >= D] ==>                                     
                                              evalfbb3in(A,B,C,D,E)   = A                                   
                                                                     >= A                                   
                                                                      = evalfbb5in(A,B,C,D,E)               
        
                                                   [1 + D >= 1 + B] ==>                                     
                                              evalfbb2in(A,B,C,D,E)   = A                                   
                                                                     >= A                                   
                                                                      = evalfbb6in(A,B,C,-1 + A,1 + D)      
        
                                       [B >= 1 + D && 0 >= 1 + F$$] ==>                                     
                                              evalfbb2in(A,B,C,D,E)   = A                                   
                                                                     >= A                                   
                                                                      = evalfbb2in(A,B,C,1 + D,E)           
        
                                           [B >= 1 + D && F$$ >= 1] ==>                                     
                                              evalfbb2in(A,B,C,D,E)   = A                                   
                                                                     >= A                                   
                                                                      = evalfbb2in(A,B,C,1 + D,E)           
        
                                                       [B >= 1 + D] ==>                                     
                                              evalfbb2in(A,B,C,D,E)   = A                                   
                                                                     >= A                                   
                                                                      = evalfbb5in(A,B,C,1 + D,E)           
        
                                                               True ==>                                     
                                              evalfbb5in(A,B,C,D,E)   = A                                   
                                                                     >= A                                   
                                                                      = evalfbb7in(-1 + A,B,-1 + D,-1 + A,D)
        
                            [D >= 0 && -1 + E >= 0 && 0 >= 1 + F$$] ==>                                     
                                              evalfbb6in(A,B,C,D,E)   = 1 + D                               
                                                                     >= D                                   
                                                                      = evalfbb3in(D,B,-1 + E,-1 + E,E)     
        
                                [D >= 0 && -1 + E >= 0 && F$$ >= 1] ==>                                     
                                              evalfbb6in(A,B,C,D,E)   = 1 + D                               
                                                                     >= D                                   
                                                                      = evalfbb3in(D,B,-1 + E,-1 + E,E)     
        
                                            [D >= 0 && -1 + E >= 0] ==>                                     
                                              evalfbb6in(A,B,C,D,E)   = 1 + D                               
                                                                     >= 1 + D                               
                                                                      = evalfbb6in(D,B,-1 + E,D,-1 + E)     
        
                                                 [B >= 0 && 0 >= 0] ==>                                     
                                              evalfstart(A,B,C,D,E)   = 1 + B                               
                                                                     >= 1 + B                               
                                                                      = evalfbb6in(B,B,0,B,0)               
        
                    [A >= 0 && C >= 0 && 0 >= 1 + F$ && C >= 1 + B] ==>                                     
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                               
                                                                     >= A                                   
                                                                      = evalfbb6in(A,B,C,-1 + A,C)          
        
        [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && 0 >= 1 + F$$] ==>                                     
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                               
                                                                     >= A                                   
                                                                      = evalfbb2in(A,B,C,C,E)               
        
            [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && F$$ >= 1] ==>                                     
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                               
                                                                     >= A                                   
                                                                      = evalfbb2in(A,B,C,C,E)               
        
                        [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C] ==>                                     
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                               
                                                                     >= A                                   
                                                                      = evalfbb5in(A,B,C,C,E)               
        
                        [A >= 0 && C >= 0 && F$ >= 1 && C >= 1 + B] ==>                                     
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                               
                                                                     >= A                                   
                                                                      = evalfbb6in(A,B,C,-1 + A,C)          
        
            [A >= 0 && C >= 0 && F$ >= 1 && B >= C && 0 >= 1 + F$$] ==>                                     
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                               
                                                                     >= A                                   
                                                                      = evalfbb2in(A,B,C,C,E)               
        
                [A >= 0 && C >= 0 && F$ >= 1 && B >= C && F$$ >= 1] ==>                                     
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                               
                                                                     >= A                                   
                                                                      = evalfbb2in(A,B,C,C,E)               
        
        
* Step 24: PolyRank WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          19. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,A,C)                [A >= 0 && C >= 0]                                          (?,2)    
          20. evalfbb3in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,D)           [D >= 1 + B]                                                (?,2)    
          21. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)                [B >= D && 0 >= 1 + F$]                                     (?,2)    
          22. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)                [B >= D && F$ >= 1]                                         (?,2)    
          23. evalfbb3in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E)                [B >= D]                                                    (?,2)    
          24. evalfbb2in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,1 + D)       [1 + D >= 1 + B]                                            (?,3)    
          25. evalfbb2in(A,B,C,D,E) -> evalfbb2in(A,B,C,1 + D,E)            [B >= 1 + D && 0 >= 1 + F$$]                                (?,3)    
          26. evalfbb2in(A,B,C,D,E) -> evalfbb2in(A,B,C,1 + D,E)            [B >= 1 + D && F$$ >= 1]                                    (?,3)    
          27. evalfbb2in(A,B,C,D,E) -> evalfbb5in(A,B,C,1 + D,E)            [B >= 1 + D]                                                (?,3)    
          28. evalfbb5in(A,B,C,D,E) -> evalfbb7in(-1 + A,B,-1 + D,-1 + A,D) True                                                        (?,2)    
          29. evalfbb6in(A,B,C,D,E) -> evalfbb3in(D,B,-1 + E,-1 + E,E)      [D >= 0 && -1 + E >= 0 && 0 >= 1 + F$$]                     (?,3)    
          30. evalfbb6in(A,B,C,D,E) -> evalfbb3in(D,B,-1 + E,-1 + E,E)      [D >= 0 && -1 + E >= 0 && F$$ >= 1]                         (?,3)    
          31. evalfbb6in(A,B,C,D,E) -> evalfbb6in(D,B,-1 + E,D,-1 + E)      [D >= 0 && -1 + E >= 0]                                     (?,3)    
          32. evalfstart(A,B,C,D,E) -> evalfbb3in(B,B,0,0,E)                [B >= 0 && 0 >= 0 && 0 >= 1 + F$$]                          (1,4)    
          33. evalfstart(A,B,C,D,E) -> evalfbb3in(B,B,0,0,E)                [B >= 0 && 0 >= 0 && F$$ >= 1]                              (1,4)    
          34. evalfstart(A,B,C,D,E) -> evalfbb6in(B,B,0,B,0)                [B >= 0 && 0 >= 0]                                          (1,4)    
          35. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,C)           [A >= 0 && C >= 0 && 0 >= 1 + F$ && C >= 1 + B]             (?,4)    
          36. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && 0 >= 1 + F$$] (?,4)    
          37. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && F$$ >= 1]     (?,4)    
          38. evalfbb7in(A,B,C,D,E) -> evalfbb5in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C]                 (?,4)    
          39. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,C)           [A >= 0 && C >= 0 && F$ >= 1 && C >= 1 + B]                 (?,4)    
          40. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C && 0 >= 1 + F$$]     (?,4)    
          41. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C && F$$ >= 1]         (?,4)    
          42. evalfbb7in(A,B,C,D,E) -> evalfbb5in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C]                     (1 + B,4)
        Signature:
          {(evalfbb2in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbbin,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [19->{29,30,31},20->{29,30,31},21->{24,25,26,27},22->{24,25,26,27},23->{28},24->{29,30,31},25->{24,25,26
          ,27},26->{24,25,26,27},27->{28},28->{19,35,36,37,38,39,40,41,42},29->{20,21,22,23},30->{20,21,22,23},31->{29
          ,30,31},32->{21,22,23},33->{21,22,23},34->{},35->{29,30,31},36->{24,25,26,27},37->{24,25,26,27},38->{28}
          ,39->{29,30,31},40->{24,25,26,27},41->{24,25,26,27},42->{28}]
        Sizebounds:
          (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) 
          (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) 
          (<21,0,A>, ?) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, B) (<21,0,E>, ?) 
          (<22,0,A>, ?) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, B) (<22,0,E>, ?) 
          (<23,0,A>, ?) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, B) (<23,0,E>, ?) 
          (<24,0,A>, ?) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, ?) (<24,0,E>, ?) 
          (<25,0,A>, ?) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, B) (<25,0,E>, ?) 
          (<26,0,A>, ?) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, B) (<26,0,E>, ?) 
          (<27,0,A>, ?) (<27,0,B>, B) (<27,0,C>, ?) (<27,0,D>, B) (<27,0,E>, ?) 
          (<28,0,A>, ?) (<28,0,B>, B) (<28,0,C>, ?) (<28,0,D>, ?) (<28,0,E>, ?) 
          (<29,0,A>, ?) (<29,0,B>, B) (<29,0,C>, ?) (<29,0,D>, ?) (<29,0,E>, ?) 
          (<30,0,A>, ?) (<30,0,B>, B) (<30,0,C>, ?) (<30,0,D>, ?) (<30,0,E>, ?) 
          (<31,0,A>, ?) (<31,0,B>, B) (<31,0,C>, ?) (<31,0,D>, ?) (<31,0,E>, ?) 
          (<32,0,A>, B) (<32,0,B>, B) (<32,0,C>, 0) (<32,0,D>, 0) (<32,0,E>, E) 
          (<33,0,A>, B) (<33,0,B>, B) (<33,0,C>, 0) (<33,0,D>, 0) (<33,0,E>, E) 
          (<34,0,A>, B) (<34,0,B>, B) (<34,0,C>, 0) (<34,0,D>, B) (<34,0,E>, 0) 
          (<35,0,A>, ?) (<35,0,B>, B) (<35,0,C>, ?) (<35,0,D>, ?) (<35,0,E>, ?) 
          (<36,0,A>, ?) (<36,0,B>, B) (<36,0,C>, ?) (<36,0,D>, ?) (<36,0,E>, ?) 
          (<37,0,A>, ?) (<37,0,B>, B) (<37,0,C>, ?) (<37,0,D>, ?) (<37,0,E>, ?) 
          (<38,0,A>, ?) (<38,0,B>, B) (<38,0,C>, ?) (<38,0,D>, ?) (<38,0,E>, ?) 
          (<39,0,A>, ?) (<39,0,B>, B) (<39,0,C>, ?) (<39,0,D>, ?) (<39,0,E>, ?) 
          (<40,0,A>, ?) (<40,0,B>, B) (<40,0,C>, ?) (<40,0,D>, ?) (<40,0,E>, ?) 
          (<41,0,A>, ?) (<41,0,B>, B) (<41,0,C>, ?) (<41,0,D>, ?) (<41,0,E>, ?) 
          (<42,0,A>, ?) (<42,0,B>, B) (<42,0,C>, ?) (<42,0,D>, ?) (<42,0,E>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalfbb2in) = x1    
          p(evalfbb3in) = x1    
          p(evalfbb5in) = x1    
          p(evalfbb6in) = 1 + x4
          p(evalfbb7in) = 1 + x1
          p(evalfstart) = 1 + x2
        
        The following rules are strictly oriented:
                         [B >= 0 && 0 >= 0 && 0 >= 1 + F$$] ==>                      
                                      evalfstart(A,B,C,D,E)   = 1 + B                
                                                              > B                    
                                                              = evalfbb3in(B,B,0,0,E)
        
                             [B >= 0 && 0 >= 0 && F$$ >= 1] ==>                      
                                      evalfstart(A,B,C,D,E)   = 1 + B                
                                                              > B                    
                                                              = evalfbb3in(B,B,0,0,E)
        
        [A >= 0 && C >= 0 && F$ >= 1 && B >= C && F$$ >= 1] ==>                      
                                      evalfbb7in(A,B,C,D,E)   = 1 + A                
                                                              > A                    
                                                              = evalfbb2in(A,B,C,C,E)
        
                    [A >= 0 && C >= 0 && F$ >= 1 && B >= C] ==>                      
                                      evalfbb7in(A,B,C,D,E)   = 1 + A                
                                                              > A                    
                                                              = evalfbb5in(A,B,C,C,E)
        
        
        The following rules are weakly oriented:
                                                 [A >= 0 && C >= 0] ==>                                     
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                               
                                                                     >= 1 + A                               
                                                                      = evalfbb6in(A,B,C,A,C)               
        
                                                       [D >= 1 + B] ==>                                     
                                              evalfbb3in(A,B,C,D,E)   = A                                   
                                                                     >= A                                   
                                                                      = evalfbb6in(A,B,C,-1 + A,D)          
        
                                            [B >= D && 0 >= 1 + F$] ==>                                     
                                              evalfbb3in(A,B,C,D,E)   = A                                   
                                                                     >= A                                   
                                                                      = evalfbb2in(A,B,C,D,E)               
        
                                                [B >= D && F$ >= 1] ==>                                     
                                              evalfbb3in(A,B,C,D,E)   = A                                   
                                                                     >= A                                   
                                                                      = evalfbb2in(A,B,C,D,E)               
        
                                                           [B >= D] ==>                                     
                                              evalfbb3in(A,B,C,D,E)   = A                                   
                                                                     >= A                                   
                                                                      = evalfbb5in(A,B,C,D,E)               
        
                                                   [1 + D >= 1 + B] ==>                                     
                                              evalfbb2in(A,B,C,D,E)   = A                                   
                                                                     >= A                                   
                                                                      = evalfbb6in(A,B,C,-1 + A,1 + D)      
        
                                       [B >= 1 + D && 0 >= 1 + F$$] ==>                                     
                                              evalfbb2in(A,B,C,D,E)   = A                                   
                                                                     >= A                                   
                                                                      = evalfbb2in(A,B,C,1 + D,E)           
        
                                           [B >= 1 + D && F$$ >= 1] ==>                                     
                                              evalfbb2in(A,B,C,D,E)   = A                                   
                                                                     >= A                                   
                                                                      = evalfbb2in(A,B,C,1 + D,E)           
        
                                                       [B >= 1 + D] ==>                                     
                                              evalfbb2in(A,B,C,D,E)   = A                                   
                                                                     >= A                                   
                                                                      = evalfbb5in(A,B,C,1 + D,E)           
        
                                                               True ==>                                     
                                              evalfbb5in(A,B,C,D,E)   = A                                   
                                                                     >= A                                   
                                                                      = evalfbb7in(-1 + A,B,-1 + D,-1 + A,D)
        
                            [D >= 0 && -1 + E >= 0 && 0 >= 1 + F$$] ==>                                     
                                              evalfbb6in(A,B,C,D,E)   = 1 + D                               
                                                                     >= D                                   
                                                                      = evalfbb3in(D,B,-1 + E,-1 + E,E)     
        
                                [D >= 0 && -1 + E >= 0 && F$$ >= 1] ==>                                     
                                              evalfbb6in(A,B,C,D,E)   = 1 + D                               
                                                                     >= D                                   
                                                                      = evalfbb3in(D,B,-1 + E,-1 + E,E)     
        
                                            [D >= 0 && -1 + E >= 0] ==>                                     
                                              evalfbb6in(A,B,C,D,E)   = 1 + D                               
                                                                     >= 1 + D                               
                                                                      = evalfbb6in(D,B,-1 + E,D,-1 + E)     
        
                                                 [B >= 0 && 0 >= 0] ==>                                     
                                              evalfstart(A,B,C,D,E)   = 1 + B                               
                                                                     >= 1 + B                               
                                                                      = evalfbb6in(B,B,0,B,0)               
        
                    [A >= 0 && C >= 0 && 0 >= 1 + F$ && C >= 1 + B] ==>                                     
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                               
                                                                     >= A                                   
                                                                      = evalfbb6in(A,B,C,-1 + A,C)          
        
        [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && 0 >= 1 + F$$] ==>                                     
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                               
                                                                     >= A                                   
                                                                      = evalfbb2in(A,B,C,C,E)               
        
            [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && F$$ >= 1] ==>                                     
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                               
                                                                     >= A                                   
                                                                      = evalfbb2in(A,B,C,C,E)               
        
                        [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C] ==>                                     
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                               
                                                                     >= A                                   
                                                                      = evalfbb5in(A,B,C,C,E)               
        
                        [A >= 0 && C >= 0 && F$ >= 1 && C >= 1 + B] ==>                                     
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                               
                                                                     >= A                                   
                                                                      = evalfbb6in(A,B,C,-1 + A,C)          
        
            [A >= 0 && C >= 0 && F$ >= 1 && B >= C && 0 >= 1 + F$$] ==>                                     
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                               
                                                                     >= A                                   
                                                                      = evalfbb2in(A,B,C,C,E)               
        
        
* Step 25: PolyRank WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          19. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,A,C)                [A >= 0 && C >= 0]                                          (?,2)    
          20. evalfbb3in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,D)           [D >= 1 + B]                                                (?,2)    
          21. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)                [B >= D && 0 >= 1 + F$]                                     (?,2)    
          22. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)                [B >= D && F$ >= 1]                                         (?,2)    
          23. evalfbb3in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E)                [B >= D]                                                    (?,2)    
          24. evalfbb2in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,1 + D)       [1 + D >= 1 + B]                                            (?,3)    
          25. evalfbb2in(A,B,C,D,E) -> evalfbb2in(A,B,C,1 + D,E)            [B >= 1 + D && 0 >= 1 + F$$]                                (?,3)    
          26. evalfbb2in(A,B,C,D,E) -> evalfbb2in(A,B,C,1 + D,E)            [B >= 1 + D && F$$ >= 1]                                    (?,3)    
          27. evalfbb2in(A,B,C,D,E) -> evalfbb5in(A,B,C,1 + D,E)            [B >= 1 + D]                                                (?,3)    
          28. evalfbb5in(A,B,C,D,E) -> evalfbb7in(-1 + A,B,-1 + D,-1 + A,D) True                                                        (?,2)    
          29. evalfbb6in(A,B,C,D,E) -> evalfbb3in(D,B,-1 + E,-1 + E,E)      [D >= 0 && -1 + E >= 0 && 0 >= 1 + F$$]                     (?,3)    
          30. evalfbb6in(A,B,C,D,E) -> evalfbb3in(D,B,-1 + E,-1 + E,E)      [D >= 0 && -1 + E >= 0 && F$$ >= 1]                         (?,3)    
          31. evalfbb6in(A,B,C,D,E) -> evalfbb6in(D,B,-1 + E,D,-1 + E)      [D >= 0 && -1 + E >= 0]                                     (?,3)    
          32. evalfstart(A,B,C,D,E) -> evalfbb3in(B,B,0,0,E)                [B >= 0 && 0 >= 0 && 0 >= 1 + F$$]                          (1,4)    
          33. evalfstart(A,B,C,D,E) -> evalfbb3in(B,B,0,0,E)                [B >= 0 && 0 >= 0 && F$$ >= 1]                              (1,4)    
          34. evalfstart(A,B,C,D,E) -> evalfbb6in(B,B,0,B,0)                [B >= 0 && 0 >= 0]                                          (1,4)    
          35. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,C)           [A >= 0 && C >= 0 && 0 >= 1 + F$ && C >= 1 + B]             (?,4)    
          36. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && 0 >= 1 + F$$] (?,4)    
          37. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && F$$ >= 1]     (?,4)    
          38. evalfbb7in(A,B,C,D,E) -> evalfbb5in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C]                 (?,4)    
          39. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,C)           [A >= 0 && C >= 0 && F$ >= 1 && C >= 1 + B]                 (?,4)    
          40. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C && 0 >= 1 + F$$]     (?,4)    
          41. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C && F$$ >= 1]         (1 + B,4)
          42. evalfbb7in(A,B,C,D,E) -> evalfbb5in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C]                     (1 + B,4)
        Signature:
          {(evalfbb2in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbbin,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [19->{29,30,31},20->{29,30,31},21->{24,25,26,27},22->{24,25,26,27},23->{28},24->{29,30,31},25->{24,25,26
          ,27},26->{24,25,26,27},27->{28},28->{19,35,36,37,38,39,40,41,42},29->{20,21,22,23},30->{20,21,22,23},31->{29
          ,30,31},32->{21,22,23},33->{21,22,23},34->{},35->{29,30,31},36->{24,25,26,27},37->{24,25,26,27},38->{28}
          ,39->{29,30,31},40->{24,25,26,27},41->{24,25,26,27},42->{28}]
        Sizebounds:
          (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) 
          (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) 
          (<21,0,A>, ?) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, B) (<21,0,E>, ?) 
          (<22,0,A>, ?) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, B) (<22,0,E>, ?) 
          (<23,0,A>, ?) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, B) (<23,0,E>, ?) 
          (<24,0,A>, ?) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, ?) (<24,0,E>, ?) 
          (<25,0,A>, ?) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, B) (<25,0,E>, ?) 
          (<26,0,A>, ?) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, B) (<26,0,E>, ?) 
          (<27,0,A>, ?) (<27,0,B>, B) (<27,0,C>, ?) (<27,0,D>, B) (<27,0,E>, ?) 
          (<28,0,A>, ?) (<28,0,B>, B) (<28,0,C>, ?) (<28,0,D>, ?) (<28,0,E>, ?) 
          (<29,0,A>, ?) (<29,0,B>, B) (<29,0,C>, ?) (<29,0,D>, ?) (<29,0,E>, ?) 
          (<30,0,A>, ?) (<30,0,B>, B) (<30,0,C>, ?) (<30,0,D>, ?) (<30,0,E>, ?) 
          (<31,0,A>, ?) (<31,0,B>, B) (<31,0,C>, ?) (<31,0,D>, ?) (<31,0,E>, ?) 
          (<32,0,A>, B) (<32,0,B>, B) (<32,0,C>, 0) (<32,0,D>, 0) (<32,0,E>, E) 
          (<33,0,A>, B) (<33,0,B>, B) (<33,0,C>, 0) (<33,0,D>, 0) (<33,0,E>, E) 
          (<34,0,A>, B) (<34,0,B>, B) (<34,0,C>, 0) (<34,0,D>, B) (<34,0,E>, 0) 
          (<35,0,A>, ?) (<35,0,B>, B) (<35,0,C>, ?) (<35,0,D>, ?) (<35,0,E>, ?) 
          (<36,0,A>, ?) (<36,0,B>, B) (<36,0,C>, ?) (<36,0,D>, ?) (<36,0,E>, ?) 
          (<37,0,A>, ?) (<37,0,B>, B) (<37,0,C>, ?) (<37,0,D>, ?) (<37,0,E>, ?) 
          (<38,0,A>, ?) (<38,0,B>, B) (<38,0,C>, ?) (<38,0,D>, ?) (<38,0,E>, ?) 
          (<39,0,A>, ?) (<39,0,B>, B) (<39,0,C>, ?) (<39,0,D>, ?) (<39,0,E>, ?) 
          (<40,0,A>, ?) (<40,0,B>, B) (<40,0,C>, ?) (<40,0,D>, ?) (<40,0,E>, ?) 
          (<41,0,A>, ?) (<41,0,B>, B) (<41,0,C>, ?) (<41,0,D>, ?) (<41,0,E>, ?) 
          (<42,0,A>, ?) (<42,0,B>, B) (<42,0,C>, ?) (<42,0,D>, ?) (<42,0,E>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalfbb2in) = x1    
          p(evalfbb3in) = x1    
          p(evalfbb5in) = x1    
          p(evalfbb6in) = 1 + x4
          p(evalfbb7in) = 1 + x1
          p(evalfstart) = 1 + x2
        
        The following rules are strictly oriented:
                             [B >= 0 && 0 >= 0 && 0 >= 1 + F$$] ==>                      
                                          evalfstart(A,B,C,D,E)   = 1 + B                
                                                                  > B                    
                                                                  = evalfbb3in(B,B,0,0,E)
        
                                 [B >= 0 && 0 >= 0 && F$$ >= 1] ==>                      
                                          evalfstart(A,B,C,D,E)   = 1 + B                
                                                                  > B                    
                                                                  = evalfbb3in(B,B,0,0,E)
        
        [A >= 0 && C >= 0 && F$ >= 1 && B >= C && 0 >= 1 + F$$] ==>                      
                                          evalfbb7in(A,B,C,D,E)   = 1 + A                
                                                                  > A                    
                                                                  = evalfbb2in(A,B,C,C,E)
        
            [A >= 0 && C >= 0 && F$ >= 1 && B >= C && F$$ >= 1] ==>                      
                                          evalfbb7in(A,B,C,D,E)   = 1 + A                
                                                                  > A                    
                                                                  = evalfbb2in(A,B,C,C,E)
        
                        [A >= 0 && C >= 0 && F$ >= 1 && B >= C] ==>                      
                                          evalfbb7in(A,B,C,D,E)   = 1 + A                
                                                                  > A                    
                                                                  = evalfbb5in(A,B,C,C,E)
        
        
        The following rules are weakly oriented:
                                                 [A >= 0 && C >= 0] ==>                                     
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                               
                                                                     >= 1 + A                               
                                                                      = evalfbb6in(A,B,C,A,C)               
        
                                                       [D >= 1 + B] ==>                                     
                                              evalfbb3in(A,B,C,D,E)   = A                                   
                                                                     >= A                                   
                                                                      = evalfbb6in(A,B,C,-1 + A,D)          
        
                                            [B >= D && 0 >= 1 + F$] ==>                                     
                                              evalfbb3in(A,B,C,D,E)   = A                                   
                                                                     >= A                                   
                                                                      = evalfbb2in(A,B,C,D,E)               
        
                                                [B >= D && F$ >= 1] ==>                                     
                                              evalfbb3in(A,B,C,D,E)   = A                                   
                                                                     >= A                                   
                                                                      = evalfbb2in(A,B,C,D,E)               
        
                                                           [B >= D] ==>                                     
                                              evalfbb3in(A,B,C,D,E)   = A                                   
                                                                     >= A                                   
                                                                      = evalfbb5in(A,B,C,D,E)               
        
                                                   [1 + D >= 1 + B] ==>                                     
                                              evalfbb2in(A,B,C,D,E)   = A                                   
                                                                     >= A                                   
                                                                      = evalfbb6in(A,B,C,-1 + A,1 + D)      
        
                                       [B >= 1 + D && 0 >= 1 + F$$] ==>                                     
                                              evalfbb2in(A,B,C,D,E)   = A                                   
                                                                     >= A                                   
                                                                      = evalfbb2in(A,B,C,1 + D,E)           
        
                                           [B >= 1 + D && F$$ >= 1] ==>                                     
                                              evalfbb2in(A,B,C,D,E)   = A                                   
                                                                     >= A                                   
                                                                      = evalfbb2in(A,B,C,1 + D,E)           
        
                                                       [B >= 1 + D] ==>                                     
                                              evalfbb2in(A,B,C,D,E)   = A                                   
                                                                     >= A                                   
                                                                      = evalfbb5in(A,B,C,1 + D,E)           
        
                                                               True ==>                                     
                                              evalfbb5in(A,B,C,D,E)   = A                                   
                                                                     >= A                                   
                                                                      = evalfbb7in(-1 + A,B,-1 + D,-1 + A,D)
        
                            [D >= 0 && -1 + E >= 0 && 0 >= 1 + F$$] ==>                                     
                                              evalfbb6in(A,B,C,D,E)   = 1 + D                               
                                                                     >= D                                   
                                                                      = evalfbb3in(D,B,-1 + E,-1 + E,E)     
        
                                [D >= 0 && -1 + E >= 0 && F$$ >= 1] ==>                                     
                                              evalfbb6in(A,B,C,D,E)   = 1 + D                               
                                                                     >= D                                   
                                                                      = evalfbb3in(D,B,-1 + E,-1 + E,E)     
        
                                            [D >= 0 && -1 + E >= 0] ==>                                     
                                              evalfbb6in(A,B,C,D,E)   = 1 + D                               
                                                                     >= 1 + D                               
                                                                      = evalfbb6in(D,B,-1 + E,D,-1 + E)     
        
                                                 [B >= 0 && 0 >= 0] ==>                                     
                                              evalfstart(A,B,C,D,E)   = 1 + B                               
                                                                     >= 1 + B                               
                                                                      = evalfbb6in(B,B,0,B,0)               
        
                    [A >= 0 && C >= 0 && 0 >= 1 + F$ && C >= 1 + B] ==>                                     
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                               
                                                                     >= A                                   
                                                                      = evalfbb6in(A,B,C,-1 + A,C)          
        
        [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && 0 >= 1 + F$$] ==>                                     
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                               
                                                                     >= A                                   
                                                                      = evalfbb2in(A,B,C,C,E)               
        
            [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && F$$ >= 1] ==>                                     
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                               
                                                                     >= A                                   
                                                                      = evalfbb2in(A,B,C,C,E)               
        
                        [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C] ==>                                     
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                               
                                                                     >= A                                   
                                                                      = evalfbb5in(A,B,C,C,E)               
        
                        [A >= 0 && C >= 0 && F$ >= 1 && C >= 1 + B] ==>                                     
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                               
                                                                     >= A                                   
                                                                      = evalfbb6in(A,B,C,-1 + A,C)          
        
        
* Step 26: PolyRank WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          19. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,A,C)                [A >= 0 && C >= 0]                                          (?,2)    
          20. evalfbb3in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,D)           [D >= 1 + B]                                                (?,2)    
          21. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)                [B >= D && 0 >= 1 + F$]                                     (?,2)    
          22. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)                [B >= D && F$ >= 1]                                         (?,2)    
          23. evalfbb3in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E)                [B >= D]                                                    (?,2)    
          24. evalfbb2in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,1 + D)       [1 + D >= 1 + B]                                            (?,3)    
          25. evalfbb2in(A,B,C,D,E) -> evalfbb2in(A,B,C,1 + D,E)            [B >= 1 + D && 0 >= 1 + F$$]                                (?,3)    
          26. evalfbb2in(A,B,C,D,E) -> evalfbb2in(A,B,C,1 + D,E)            [B >= 1 + D && F$$ >= 1]                                    (?,3)    
          27. evalfbb2in(A,B,C,D,E) -> evalfbb5in(A,B,C,1 + D,E)            [B >= 1 + D]                                                (?,3)    
          28. evalfbb5in(A,B,C,D,E) -> evalfbb7in(-1 + A,B,-1 + D,-1 + A,D) True                                                        (?,2)    
          29. evalfbb6in(A,B,C,D,E) -> evalfbb3in(D,B,-1 + E,-1 + E,E)      [D >= 0 && -1 + E >= 0 && 0 >= 1 + F$$]                     (?,3)    
          30. evalfbb6in(A,B,C,D,E) -> evalfbb3in(D,B,-1 + E,-1 + E,E)      [D >= 0 && -1 + E >= 0 && F$$ >= 1]                         (?,3)    
          31. evalfbb6in(A,B,C,D,E) -> evalfbb6in(D,B,-1 + E,D,-1 + E)      [D >= 0 && -1 + E >= 0]                                     (?,3)    
          32. evalfstart(A,B,C,D,E) -> evalfbb3in(B,B,0,0,E)                [B >= 0 && 0 >= 0 && 0 >= 1 + F$$]                          (1,4)    
          33. evalfstart(A,B,C,D,E) -> evalfbb3in(B,B,0,0,E)                [B >= 0 && 0 >= 0 && F$$ >= 1]                              (1,4)    
          34. evalfstart(A,B,C,D,E) -> evalfbb6in(B,B,0,B,0)                [B >= 0 && 0 >= 0]                                          (1,4)    
          35. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,C)           [A >= 0 && C >= 0 && 0 >= 1 + F$ && C >= 1 + B]             (?,4)    
          36. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && 0 >= 1 + F$$] (?,4)    
          37. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && F$$ >= 1]     (?,4)    
          38. evalfbb7in(A,B,C,D,E) -> evalfbb5in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C]                 (?,4)    
          39. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,C)           [A >= 0 && C >= 0 && F$ >= 1 && C >= 1 + B]                 (?,4)    
          40. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C && 0 >= 1 + F$$]     (1 + B,4)
          41. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C && F$$ >= 1]         (1 + B,4)
          42. evalfbb7in(A,B,C,D,E) -> evalfbb5in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C]                     (1 + B,4)
        Signature:
          {(evalfbb2in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbbin,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [19->{29,30,31},20->{29,30,31},21->{24,25,26,27},22->{24,25,26,27},23->{28},24->{29,30,31},25->{24,25,26
          ,27},26->{24,25,26,27},27->{28},28->{19,35,36,37,38,39,40,41,42},29->{20,21,22,23},30->{20,21,22,23},31->{29
          ,30,31},32->{21,22,23},33->{21,22,23},34->{},35->{29,30,31},36->{24,25,26,27},37->{24,25,26,27},38->{28}
          ,39->{29,30,31},40->{24,25,26,27},41->{24,25,26,27},42->{28}]
        Sizebounds:
          (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) 
          (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) 
          (<21,0,A>, ?) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, B) (<21,0,E>, ?) 
          (<22,0,A>, ?) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, B) (<22,0,E>, ?) 
          (<23,0,A>, ?) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, B) (<23,0,E>, ?) 
          (<24,0,A>, ?) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, ?) (<24,0,E>, ?) 
          (<25,0,A>, ?) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, B) (<25,0,E>, ?) 
          (<26,0,A>, ?) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, B) (<26,0,E>, ?) 
          (<27,0,A>, ?) (<27,0,B>, B) (<27,0,C>, ?) (<27,0,D>, B) (<27,0,E>, ?) 
          (<28,0,A>, ?) (<28,0,B>, B) (<28,0,C>, ?) (<28,0,D>, ?) (<28,0,E>, ?) 
          (<29,0,A>, ?) (<29,0,B>, B) (<29,0,C>, ?) (<29,0,D>, ?) (<29,0,E>, ?) 
          (<30,0,A>, ?) (<30,0,B>, B) (<30,0,C>, ?) (<30,0,D>, ?) (<30,0,E>, ?) 
          (<31,0,A>, ?) (<31,0,B>, B) (<31,0,C>, ?) (<31,0,D>, ?) (<31,0,E>, ?) 
          (<32,0,A>, B) (<32,0,B>, B) (<32,0,C>, 0) (<32,0,D>, 0) (<32,0,E>, E) 
          (<33,0,A>, B) (<33,0,B>, B) (<33,0,C>, 0) (<33,0,D>, 0) (<33,0,E>, E) 
          (<34,0,A>, B) (<34,0,B>, B) (<34,0,C>, 0) (<34,0,D>, B) (<34,0,E>, 0) 
          (<35,0,A>, ?) (<35,0,B>, B) (<35,0,C>, ?) (<35,0,D>, ?) (<35,0,E>, ?) 
          (<36,0,A>, ?) (<36,0,B>, B) (<36,0,C>, ?) (<36,0,D>, ?) (<36,0,E>, ?) 
          (<37,0,A>, ?) (<37,0,B>, B) (<37,0,C>, ?) (<37,0,D>, ?) (<37,0,E>, ?) 
          (<38,0,A>, ?) (<38,0,B>, B) (<38,0,C>, ?) (<38,0,D>, ?) (<38,0,E>, ?) 
          (<39,0,A>, ?) (<39,0,B>, B) (<39,0,C>, ?) (<39,0,D>, ?) (<39,0,E>, ?) 
          (<40,0,A>, ?) (<40,0,B>, B) (<40,0,C>, ?) (<40,0,D>, ?) (<40,0,E>, ?) 
          (<41,0,A>, ?) (<41,0,B>, B) (<41,0,C>, ?) (<41,0,D>, ?) (<41,0,E>, ?) 
          (<42,0,A>, ?) (<42,0,B>, B) (<42,0,C>, ?) (<42,0,D>, ?) (<42,0,E>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalfbb2in) = 1 + x1
          p(evalfbb3in) = 1 + x1
          p(evalfbb5in) = 1 + x1
          p(evalfbb6in) = 1 + x4
          p(evalfbb7in) = 1 + x1
          p(evalfstart) = 1 + x2
        
        The following rules are strictly oriented:
        [A >= 0 && C >= 0 && F$ >= 1 && C >= 1 + B] ==>                           
                              evalfbb7in(A,B,C,D,E)   = 1 + A                     
                                                      > A                         
                                                      = evalfbb6in(A,B,C,-1 + A,C)
        
        
        The following rules are weakly oriented:
                                                 [A >= 0 && C >= 0] ==>                                     
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                               
                                                                     >= 1 + A                               
                                                                      = evalfbb6in(A,B,C,A,C)               
        
                                                       [D >= 1 + B] ==>                                     
                                              evalfbb3in(A,B,C,D,E)   = 1 + A                               
                                                                     >= A                                   
                                                                      = evalfbb6in(A,B,C,-1 + A,D)          
        
                                            [B >= D && 0 >= 1 + F$] ==>                                     
                                              evalfbb3in(A,B,C,D,E)   = 1 + A                               
                                                                     >= 1 + A                               
                                                                      = evalfbb2in(A,B,C,D,E)               
        
                                                [B >= D && F$ >= 1] ==>                                     
                                              evalfbb3in(A,B,C,D,E)   = 1 + A                               
                                                                     >= 1 + A                               
                                                                      = evalfbb2in(A,B,C,D,E)               
        
                                                           [B >= D] ==>                                     
                                              evalfbb3in(A,B,C,D,E)   = 1 + A                               
                                                                     >= 1 + A                               
                                                                      = evalfbb5in(A,B,C,D,E)               
        
                                                   [1 + D >= 1 + B] ==>                                     
                                              evalfbb2in(A,B,C,D,E)   = 1 + A                               
                                                                     >= A                                   
                                                                      = evalfbb6in(A,B,C,-1 + A,1 + D)      
        
                                       [B >= 1 + D && 0 >= 1 + F$$] ==>                                     
                                              evalfbb2in(A,B,C,D,E)   = 1 + A                               
                                                                     >= 1 + A                               
                                                                      = evalfbb2in(A,B,C,1 + D,E)           
        
                                           [B >= 1 + D && F$$ >= 1] ==>                                     
                                              evalfbb2in(A,B,C,D,E)   = 1 + A                               
                                                                     >= 1 + A                               
                                                                      = evalfbb2in(A,B,C,1 + D,E)           
        
                                                       [B >= 1 + D] ==>                                     
                                              evalfbb2in(A,B,C,D,E)   = 1 + A                               
                                                                     >= 1 + A                               
                                                                      = evalfbb5in(A,B,C,1 + D,E)           
        
                                                               True ==>                                     
                                              evalfbb5in(A,B,C,D,E)   = 1 + A                               
                                                                     >= A                                   
                                                                      = evalfbb7in(-1 + A,B,-1 + D,-1 + A,D)
        
                            [D >= 0 && -1 + E >= 0 && 0 >= 1 + F$$] ==>                                     
                                              evalfbb6in(A,B,C,D,E)   = 1 + D                               
                                                                     >= 1 + D                               
                                                                      = evalfbb3in(D,B,-1 + E,-1 + E,E)     
        
                                [D >= 0 && -1 + E >= 0 && F$$ >= 1] ==>                                     
                                              evalfbb6in(A,B,C,D,E)   = 1 + D                               
                                                                     >= 1 + D                               
                                                                      = evalfbb3in(D,B,-1 + E,-1 + E,E)     
        
                                            [D >= 0 && -1 + E >= 0] ==>                                     
                                              evalfbb6in(A,B,C,D,E)   = 1 + D                               
                                                                     >= 1 + D                               
                                                                      = evalfbb6in(D,B,-1 + E,D,-1 + E)     
        
                                 [B >= 0 && 0 >= 0 && 0 >= 1 + F$$] ==>                                     
                                              evalfstart(A,B,C,D,E)   = 1 + B                               
                                                                     >= 1 + B                               
                                                                      = evalfbb3in(B,B,0,0,E)               
        
                                     [B >= 0 && 0 >= 0 && F$$ >= 1] ==>                                     
                                              evalfstart(A,B,C,D,E)   = 1 + B                               
                                                                     >= 1 + B                               
                                                                      = evalfbb3in(B,B,0,0,E)               
        
                                                 [B >= 0 && 0 >= 0] ==>                                     
                                              evalfstart(A,B,C,D,E)   = 1 + B                               
                                                                     >= 1 + B                               
                                                                      = evalfbb6in(B,B,0,B,0)               
        
                    [A >= 0 && C >= 0 && 0 >= 1 + F$ && C >= 1 + B] ==>                                     
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                               
                                                                     >= A                                   
                                                                      = evalfbb6in(A,B,C,-1 + A,C)          
        
        [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && 0 >= 1 + F$$] ==>                                     
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                               
                                                                     >= 1 + A                               
                                                                      = evalfbb2in(A,B,C,C,E)               
        
            [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && F$$ >= 1] ==>                                     
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                               
                                                                     >= 1 + A                               
                                                                      = evalfbb2in(A,B,C,C,E)               
        
                        [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C] ==>                                     
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                               
                                                                     >= 1 + A                               
                                                                      = evalfbb5in(A,B,C,C,E)               
        
            [A >= 0 && C >= 0 && F$ >= 1 && B >= C && 0 >= 1 + F$$] ==>                                     
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                               
                                                                     >= 1 + A                               
                                                                      = evalfbb2in(A,B,C,C,E)               
        
                [A >= 0 && C >= 0 && F$ >= 1 && B >= C && F$$ >= 1] ==>                                     
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                               
                                                                     >= 1 + A                               
                                                                      = evalfbb2in(A,B,C,C,E)               
        
                            [A >= 0 && C >= 0 && F$ >= 1 && B >= C] ==>                                     
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                               
                                                                     >= 1 + A                               
                                                                      = evalfbb5in(A,B,C,C,E)               
        
        
* Step 27: PolyRank WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          19. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,A,C)                [A >= 0 && C >= 0]                                          (?,2)    
          20. evalfbb3in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,D)           [D >= 1 + B]                                                (?,2)    
          21. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)                [B >= D && 0 >= 1 + F$]                                     (?,2)    
          22. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)                [B >= D && F$ >= 1]                                         (?,2)    
          23. evalfbb3in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E)                [B >= D]                                                    (?,2)    
          24. evalfbb2in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,1 + D)       [1 + D >= 1 + B]                                            (?,3)    
          25. evalfbb2in(A,B,C,D,E) -> evalfbb2in(A,B,C,1 + D,E)            [B >= 1 + D && 0 >= 1 + F$$]                                (?,3)    
          26. evalfbb2in(A,B,C,D,E) -> evalfbb2in(A,B,C,1 + D,E)            [B >= 1 + D && F$$ >= 1]                                    (?,3)    
          27. evalfbb2in(A,B,C,D,E) -> evalfbb5in(A,B,C,1 + D,E)            [B >= 1 + D]                                                (?,3)    
          28. evalfbb5in(A,B,C,D,E) -> evalfbb7in(-1 + A,B,-1 + D,-1 + A,D) True                                                        (?,2)    
          29. evalfbb6in(A,B,C,D,E) -> evalfbb3in(D,B,-1 + E,-1 + E,E)      [D >= 0 && -1 + E >= 0 && 0 >= 1 + F$$]                     (?,3)    
          30. evalfbb6in(A,B,C,D,E) -> evalfbb3in(D,B,-1 + E,-1 + E,E)      [D >= 0 && -1 + E >= 0 && F$$ >= 1]                         (?,3)    
          31. evalfbb6in(A,B,C,D,E) -> evalfbb6in(D,B,-1 + E,D,-1 + E)      [D >= 0 && -1 + E >= 0]                                     (?,3)    
          32. evalfstart(A,B,C,D,E) -> evalfbb3in(B,B,0,0,E)                [B >= 0 && 0 >= 0 && 0 >= 1 + F$$]                          (1,4)    
          33. evalfstart(A,B,C,D,E) -> evalfbb3in(B,B,0,0,E)                [B >= 0 && 0 >= 0 && F$$ >= 1]                              (1,4)    
          34. evalfstart(A,B,C,D,E) -> evalfbb6in(B,B,0,B,0)                [B >= 0 && 0 >= 0]                                          (1,4)    
          35. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,C)           [A >= 0 && C >= 0 && 0 >= 1 + F$ && C >= 1 + B]             (?,4)    
          36. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && 0 >= 1 + F$$] (?,4)    
          37. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && F$$ >= 1]     (?,4)    
          38. evalfbb7in(A,B,C,D,E) -> evalfbb5in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C]                 (?,4)    
          39. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,C)           [A >= 0 && C >= 0 && F$ >= 1 && C >= 1 + B]                 (1 + B,4)
          40. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C && 0 >= 1 + F$$]     (1 + B,4)
          41. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C && F$$ >= 1]         (1 + B,4)
          42. evalfbb7in(A,B,C,D,E) -> evalfbb5in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C]                     (1 + B,4)
        Signature:
          {(evalfbb2in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbbin,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [19->{29,30,31},20->{29,30,31},21->{24,25,26,27},22->{24,25,26,27},23->{28},24->{29,30,31},25->{24,25,26
          ,27},26->{24,25,26,27},27->{28},28->{19,35,36,37,38,39,40,41,42},29->{20,21,22,23},30->{20,21,22,23},31->{29
          ,30,31},32->{21,22,23},33->{21,22,23},34->{},35->{29,30,31},36->{24,25,26,27},37->{24,25,26,27},38->{28}
          ,39->{29,30,31},40->{24,25,26,27},41->{24,25,26,27},42->{28}]
        Sizebounds:
          (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) 
          (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) 
          (<21,0,A>, ?) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, B) (<21,0,E>, ?) 
          (<22,0,A>, ?) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, B) (<22,0,E>, ?) 
          (<23,0,A>, ?) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, B) (<23,0,E>, ?) 
          (<24,0,A>, ?) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, ?) (<24,0,E>, ?) 
          (<25,0,A>, ?) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, B) (<25,0,E>, ?) 
          (<26,0,A>, ?) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, B) (<26,0,E>, ?) 
          (<27,0,A>, ?) (<27,0,B>, B) (<27,0,C>, ?) (<27,0,D>, B) (<27,0,E>, ?) 
          (<28,0,A>, ?) (<28,0,B>, B) (<28,0,C>, ?) (<28,0,D>, ?) (<28,0,E>, ?) 
          (<29,0,A>, ?) (<29,0,B>, B) (<29,0,C>, ?) (<29,0,D>, ?) (<29,0,E>, ?) 
          (<30,0,A>, ?) (<30,0,B>, B) (<30,0,C>, ?) (<30,0,D>, ?) (<30,0,E>, ?) 
          (<31,0,A>, ?) (<31,0,B>, B) (<31,0,C>, ?) (<31,0,D>, ?) (<31,0,E>, ?) 
          (<32,0,A>, B) (<32,0,B>, B) (<32,0,C>, 0) (<32,0,D>, 0) (<32,0,E>, E) 
          (<33,0,A>, B) (<33,0,B>, B) (<33,0,C>, 0) (<33,0,D>, 0) (<33,0,E>, E) 
          (<34,0,A>, B) (<34,0,B>, B) (<34,0,C>, 0) (<34,0,D>, B) (<34,0,E>, 0) 
          (<35,0,A>, ?) (<35,0,B>, B) (<35,0,C>, ?) (<35,0,D>, ?) (<35,0,E>, ?) 
          (<36,0,A>, ?) (<36,0,B>, B) (<36,0,C>, ?) (<36,0,D>, ?) (<36,0,E>, ?) 
          (<37,0,A>, ?) (<37,0,B>, B) (<37,0,C>, ?) (<37,0,D>, ?) (<37,0,E>, ?) 
          (<38,0,A>, ?) (<38,0,B>, B) (<38,0,C>, ?) (<38,0,D>, ?) (<38,0,E>, ?) 
          (<39,0,A>, ?) (<39,0,B>, B) (<39,0,C>, ?) (<39,0,D>, ?) (<39,0,E>, ?) 
          (<40,0,A>, ?) (<40,0,B>, B) (<40,0,C>, ?) (<40,0,D>, ?) (<40,0,E>, ?) 
          (<41,0,A>, ?) (<41,0,B>, B) (<41,0,C>, ?) (<41,0,D>, ?) (<41,0,E>, ?) 
          (<42,0,A>, ?) (<42,0,B>, B) (<42,0,C>, ?) (<42,0,D>, ?) (<42,0,E>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalfbb2in) = x1    
          p(evalfbb3in) = x1    
          p(evalfbb5in) = x1    
          p(evalfbb6in) = x4    
          p(evalfbb7in) = 1 + x1
          p(evalfstart) = x2    
        
        The following rules are strictly oriented:
                    [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C] ==>                           
                                          evalfbb7in(A,B,C,D,E)   = 1 + A                     
                                                                  > A                         
                                                                  = evalfbb5in(A,B,C,C,E)     
        
                    [A >= 0 && C >= 0 && F$ >= 1 && C >= 1 + B] ==>                           
                                          evalfbb7in(A,B,C,D,E)   = 1 + A                     
                                                                  > -1 + A                    
                                                                  = evalfbb6in(A,B,C,-1 + A,C)
        
        [A >= 0 && C >= 0 && F$ >= 1 && B >= C && 0 >= 1 + F$$] ==>                           
                                          evalfbb7in(A,B,C,D,E)   = 1 + A                     
                                                                  > A                         
                                                                  = evalfbb2in(A,B,C,C,E)     
        
            [A >= 0 && C >= 0 && F$ >= 1 && B >= C && F$$ >= 1] ==>                           
                                          evalfbb7in(A,B,C,D,E)   = 1 + A                     
                                                                  > A                         
                                                                  = evalfbb2in(A,B,C,C,E)     
        
                        [A >= 0 && C >= 0 && F$ >= 1 && B >= C] ==>                           
                                          evalfbb7in(A,B,C,D,E)   = 1 + A                     
                                                                  > A                         
                                                                  = evalfbb5in(A,B,C,C,E)     
        
        
        The following rules are weakly oriented:
                                                 [A >= 0 && C >= 0] ==>                                     
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                               
                                                                     >= A                                   
                                                                      = evalfbb6in(A,B,C,A,C)               
        
                                                       [D >= 1 + B] ==>                                     
                                              evalfbb3in(A,B,C,D,E)   = A                                   
                                                                     >= -1 + A                              
                                                                      = evalfbb6in(A,B,C,-1 + A,D)          
        
                                            [B >= D && 0 >= 1 + F$] ==>                                     
                                              evalfbb3in(A,B,C,D,E)   = A                                   
                                                                     >= A                                   
                                                                      = evalfbb2in(A,B,C,D,E)               
        
                                                [B >= D && F$ >= 1] ==>                                     
                                              evalfbb3in(A,B,C,D,E)   = A                                   
                                                                     >= A                                   
                                                                      = evalfbb2in(A,B,C,D,E)               
        
                                                           [B >= D] ==>                                     
                                              evalfbb3in(A,B,C,D,E)   = A                                   
                                                                     >= A                                   
                                                                      = evalfbb5in(A,B,C,D,E)               
        
                                                   [1 + D >= 1 + B] ==>                                     
                                              evalfbb2in(A,B,C,D,E)   = A                                   
                                                                     >= -1 + A                              
                                                                      = evalfbb6in(A,B,C,-1 + A,1 + D)      
        
                                       [B >= 1 + D && 0 >= 1 + F$$] ==>                                     
                                              evalfbb2in(A,B,C,D,E)   = A                                   
                                                                     >= A                                   
                                                                      = evalfbb2in(A,B,C,1 + D,E)           
        
                                           [B >= 1 + D && F$$ >= 1] ==>                                     
                                              evalfbb2in(A,B,C,D,E)   = A                                   
                                                                     >= A                                   
                                                                      = evalfbb2in(A,B,C,1 + D,E)           
        
                                                       [B >= 1 + D] ==>                                     
                                              evalfbb2in(A,B,C,D,E)   = A                                   
                                                                     >= A                                   
                                                                      = evalfbb5in(A,B,C,1 + D,E)           
        
                                                               True ==>                                     
                                              evalfbb5in(A,B,C,D,E)   = A                                   
                                                                     >= A                                   
                                                                      = evalfbb7in(-1 + A,B,-1 + D,-1 + A,D)
        
                            [D >= 0 && -1 + E >= 0 && 0 >= 1 + F$$] ==>                                     
                                              evalfbb6in(A,B,C,D,E)   = D                                   
                                                                     >= D                                   
                                                                      = evalfbb3in(D,B,-1 + E,-1 + E,E)     
        
                                [D >= 0 && -1 + E >= 0 && F$$ >= 1] ==>                                     
                                              evalfbb6in(A,B,C,D,E)   = D                                   
                                                                     >= D                                   
                                                                      = evalfbb3in(D,B,-1 + E,-1 + E,E)     
        
                                            [D >= 0 && -1 + E >= 0] ==>                                     
                                              evalfbb6in(A,B,C,D,E)   = D                                   
                                                                     >= D                                   
                                                                      = evalfbb6in(D,B,-1 + E,D,-1 + E)     
        
                                 [B >= 0 && 0 >= 0 && 0 >= 1 + F$$] ==>                                     
                                              evalfstart(A,B,C,D,E)   = B                                   
                                                                     >= B                                   
                                                                      = evalfbb3in(B,B,0,0,E)               
        
                                     [B >= 0 && 0 >= 0 && F$$ >= 1] ==>                                     
                                              evalfstart(A,B,C,D,E)   = B                                   
                                                                     >= B                                   
                                                                      = evalfbb3in(B,B,0,0,E)               
        
                                                 [B >= 0 && 0 >= 0] ==>                                     
                                              evalfstart(A,B,C,D,E)   = B                                   
                                                                     >= B                                   
                                                                      = evalfbb6in(B,B,0,B,0)               
        
                    [A >= 0 && C >= 0 && 0 >= 1 + F$ && C >= 1 + B] ==>                                     
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                               
                                                                     >= -1 + A                              
                                                                      = evalfbb6in(A,B,C,-1 + A,C)          
        
        [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && 0 >= 1 + F$$] ==>                                     
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                               
                                                                     >= A                                   
                                                                      = evalfbb2in(A,B,C,C,E)               
        
            [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && F$$ >= 1] ==>                                     
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                               
                                                                     >= A                                   
                                                                      = evalfbb2in(A,B,C,C,E)               
        
        
* Step 28: PolyRank WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          19. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,A,C)                [A >= 0 && C >= 0]                                          (?,2)
          20. evalfbb3in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,D)           [D >= 1 + B]                                                (?,2)
          21. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)                [B >= D && 0 >= 1 + F$]                                     (?,2)
          22. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)                [B >= D && F$ >= 1]                                         (?,2)
          23. evalfbb3in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E)                [B >= D]                                                    (?,2)
          24. evalfbb2in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,1 + D)       [1 + D >= 1 + B]                                            (?,3)
          25. evalfbb2in(A,B,C,D,E) -> evalfbb2in(A,B,C,1 + D,E)            [B >= 1 + D && 0 >= 1 + F$$]                                (?,3)
          26. evalfbb2in(A,B,C,D,E) -> evalfbb2in(A,B,C,1 + D,E)            [B >= 1 + D && F$$ >= 1]                                    (?,3)
          27. evalfbb2in(A,B,C,D,E) -> evalfbb5in(A,B,C,1 + D,E)            [B >= 1 + D]                                                (?,3)
          28. evalfbb5in(A,B,C,D,E) -> evalfbb7in(-1 + A,B,-1 + D,-1 + A,D) True                                                        (?,2)
          29. evalfbb6in(A,B,C,D,E) -> evalfbb3in(D,B,-1 + E,-1 + E,E)      [D >= 0 && -1 + E >= 0 && 0 >= 1 + F$$]                     (?,3)
          30. evalfbb6in(A,B,C,D,E) -> evalfbb3in(D,B,-1 + E,-1 + E,E)      [D >= 0 && -1 + E >= 0 && F$$ >= 1]                         (?,3)
          31. evalfbb6in(A,B,C,D,E) -> evalfbb6in(D,B,-1 + E,D,-1 + E)      [D >= 0 && -1 + E >= 0]                                     (?,3)
          32. evalfstart(A,B,C,D,E) -> evalfbb3in(B,B,0,0,E)                [B >= 0 && 0 >= 0 && 0 >= 1 + F$$]                          (1,4)
          33. evalfstart(A,B,C,D,E) -> evalfbb3in(B,B,0,0,E)                [B >= 0 && 0 >= 0 && F$$ >= 1]                              (1,4)
          34. evalfstart(A,B,C,D,E) -> evalfbb6in(B,B,0,B,0)                [B >= 0 && 0 >= 0]                                          (1,4)
          35. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,C)           [A >= 0 && C >= 0 && 0 >= 1 + F$ && C >= 1 + B]             (?,4)
          36. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && 0 >= 1 + F$$] (?,4)
          37. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && F$$ >= 1]     (?,4)
          38. evalfbb7in(A,B,C,D,E) -> evalfbb5in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C]                 (B,4)
          39. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,C)           [A >= 0 && C >= 0 && F$ >= 1 && C >= 1 + B]                 (B,4)
          40. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C && 0 >= 1 + F$$]     (B,4)
          41. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C && F$$ >= 1]         (B,4)
          42. evalfbb7in(A,B,C,D,E) -> evalfbb5in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C]                     (B,4)
        Signature:
          {(evalfbb2in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbbin,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [19->{29,30,31},20->{29,30,31},21->{24,25,26,27},22->{24,25,26,27},23->{28},24->{29,30,31},25->{24,25,26
          ,27},26->{24,25,26,27},27->{28},28->{19,35,36,37,38,39,40,41,42},29->{20,21,22,23},30->{20,21,22,23},31->{29
          ,30,31},32->{21,22,23},33->{21,22,23},34->{},35->{29,30,31},36->{24,25,26,27},37->{24,25,26,27},38->{28}
          ,39->{29,30,31},40->{24,25,26,27},41->{24,25,26,27},42->{28}]
        Sizebounds:
          (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) 
          (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) 
          (<21,0,A>, ?) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, B) (<21,0,E>, ?) 
          (<22,0,A>, ?) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, B) (<22,0,E>, ?) 
          (<23,0,A>, ?) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, B) (<23,0,E>, ?) 
          (<24,0,A>, ?) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, ?) (<24,0,E>, ?) 
          (<25,0,A>, ?) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, B) (<25,0,E>, ?) 
          (<26,0,A>, ?) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, B) (<26,0,E>, ?) 
          (<27,0,A>, ?) (<27,0,B>, B) (<27,0,C>, ?) (<27,0,D>, B) (<27,0,E>, ?) 
          (<28,0,A>, ?) (<28,0,B>, B) (<28,0,C>, ?) (<28,0,D>, ?) (<28,0,E>, ?) 
          (<29,0,A>, ?) (<29,0,B>, B) (<29,0,C>, ?) (<29,0,D>, ?) (<29,0,E>, ?) 
          (<30,0,A>, ?) (<30,0,B>, B) (<30,0,C>, ?) (<30,0,D>, ?) (<30,0,E>, ?) 
          (<31,0,A>, ?) (<31,0,B>, B) (<31,0,C>, ?) (<31,0,D>, ?) (<31,0,E>, ?) 
          (<32,0,A>, B) (<32,0,B>, B) (<32,0,C>, 0) (<32,0,D>, 0) (<32,0,E>, E) 
          (<33,0,A>, B) (<33,0,B>, B) (<33,0,C>, 0) (<33,0,D>, 0) (<33,0,E>, E) 
          (<34,0,A>, B) (<34,0,B>, B) (<34,0,C>, 0) (<34,0,D>, B) (<34,0,E>, 0) 
          (<35,0,A>, ?) (<35,0,B>, B) (<35,0,C>, ?) (<35,0,D>, ?) (<35,0,E>, ?) 
          (<36,0,A>, ?) (<36,0,B>, B) (<36,0,C>, ?) (<36,0,D>, ?) (<36,0,E>, ?) 
          (<37,0,A>, ?) (<37,0,B>, B) (<37,0,C>, ?) (<37,0,D>, ?) (<37,0,E>, ?) 
          (<38,0,A>, ?) (<38,0,B>, B) (<38,0,C>, ?) (<38,0,D>, ?) (<38,0,E>, ?) 
          (<39,0,A>, ?) (<39,0,B>, B) (<39,0,C>, ?) (<39,0,D>, ?) (<39,0,E>, ?) 
          (<40,0,A>, ?) (<40,0,B>, B) (<40,0,C>, ?) (<40,0,D>, ?) (<40,0,E>, ?) 
          (<41,0,A>, ?) (<41,0,B>, B) (<41,0,C>, ?) (<41,0,D>, ?) (<41,0,E>, ?) 
          (<42,0,A>, ?) (<42,0,B>, B) (<42,0,C>, ?) (<42,0,D>, ?) (<42,0,E>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalfbb2in) = x1    
          p(evalfbb3in) = x1    
          p(evalfbb5in) = x1    
          p(evalfbb6in) = 1 + x4
          p(evalfbb7in) = 1 + x1
          p(evalfstart) = 1 + x2
        
        The following rules are strictly oriented:
                             [B >= 0 && 0 >= 0 && 0 >= 1 + F$$] ==>                           
                                          evalfstart(A,B,C,D,E)   = 1 + B                     
                                                                  > B                         
                                                                  = evalfbb3in(B,B,0,0,E)     
        
                                 [B >= 0 && 0 >= 0 && F$$ >= 1] ==>                           
                                          evalfstart(A,B,C,D,E)   = 1 + B                     
                                                                  > B                         
                                                                  = evalfbb3in(B,B,0,0,E)     
        
        [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && F$$ >= 1] ==>                           
                                          evalfbb7in(A,B,C,D,E)   = 1 + A                     
                                                                  > A                         
                                                                  = evalfbb2in(A,B,C,C,E)     
        
                    [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C] ==>                           
                                          evalfbb7in(A,B,C,D,E)   = 1 + A                     
                                                                  > A                         
                                                                  = evalfbb5in(A,B,C,C,E)     
        
                    [A >= 0 && C >= 0 && F$ >= 1 && C >= 1 + B] ==>                           
                                          evalfbb7in(A,B,C,D,E)   = 1 + A                     
                                                                  > A                         
                                                                  = evalfbb6in(A,B,C,-1 + A,C)
        
        [A >= 0 && C >= 0 && F$ >= 1 && B >= C && 0 >= 1 + F$$] ==>                           
                                          evalfbb7in(A,B,C,D,E)   = 1 + A                     
                                                                  > A                         
                                                                  = evalfbb2in(A,B,C,C,E)     
        
            [A >= 0 && C >= 0 && F$ >= 1 && B >= C && F$$ >= 1] ==>                           
                                          evalfbb7in(A,B,C,D,E)   = 1 + A                     
                                                                  > A                         
                                                                  = evalfbb2in(A,B,C,C,E)     
        
                        [A >= 0 && C >= 0 && F$ >= 1 && B >= C] ==>                           
                                          evalfbb7in(A,B,C,D,E)   = 1 + A                     
                                                                  > A                         
                                                                  = evalfbb5in(A,B,C,C,E)     
        
        
        The following rules are weakly oriented:
                                                 [A >= 0 && C >= 0] ==>                                     
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                               
                                                                     >= 1 + A                               
                                                                      = evalfbb6in(A,B,C,A,C)               
        
                                                       [D >= 1 + B] ==>                                     
                                              evalfbb3in(A,B,C,D,E)   = A                                   
                                                                     >= A                                   
                                                                      = evalfbb6in(A,B,C,-1 + A,D)          
        
                                            [B >= D && 0 >= 1 + F$] ==>                                     
                                              evalfbb3in(A,B,C,D,E)   = A                                   
                                                                     >= A                                   
                                                                      = evalfbb2in(A,B,C,D,E)               
        
                                                [B >= D && F$ >= 1] ==>                                     
                                              evalfbb3in(A,B,C,D,E)   = A                                   
                                                                     >= A                                   
                                                                      = evalfbb2in(A,B,C,D,E)               
        
                                                           [B >= D] ==>                                     
                                              evalfbb3in(A,B,C,D,E)   = A                                   
                                                                     >= A                                   
                                                                      = evalfbb5in(A,B,C,D,E)               
        
                                                   [1 + D >= 1 + B] ==>                                     
                                              evalfbb2in(A,B,C,D,E)   = A                                   
                                                                     >= A                                   
                                                                      = evalfbb6in(A,B,C,-1 + A,1 + D)      
        
                                       [B >= 1 + D && 0 >= 1 + F$$] ==>                                     
                                              evalfbb2in(A,B,C,D,E)   = A                                   
                                                                     >= A                                   
                                                                      = evalfbb2in(A,B,C,1 + D,E)           
        
                                           [B >= 1 + D && F$$ >= 1] ==>                                     
                                              evalfbb2in(A,B,C,D,E)   = A                                   
                                                                     >= A                                   
                                                                      = evalfbb2in(A,B,C,1 + D,E)           
        
                                                       [B >= 1 + D] ==>                                     
                                              evalfbb2in(A,B,C,D,E)   = A                                   
                                                                     >= A                                   
                                                                      = evalfbb5in(A,B,C,1 + D,E)           
        
                                                               True ==>                                     
                                              evalfbb5in(A,B,C,D,E)   = A                                   
                                                                     >= A                                   
                                                                      = evalfbb7in(-1 + A,B,-1 + D,-1 + A,D)
        
                            [D >= 0 && -1 + E >= 0 && 0 >= 1 + F$$] ==>                                     
                                              evalfbb6in(A,B,C,D,E)   = 1 + D                               
                                                                     >= D                                   
                                                                      = evalfbb3in(D,B,-1 + E,-1 + E,E)     
        
                                [D >= 0 && -1 + E >= 0 && F$$ >= 1] ==>                                     
                                              evalfbb6in(A,B,C,D,E)   = 1 + D                               
                                                                     >= D                                   
                                                                      = evalfbb3in(D,B,-1 + E,-1 + E,E)     
        
                                            [D >= 0 && -1 + E >= 0] ==>                                     
                                              evalfbb6in(A,B,C,D,E)   = 1 + D                               
                                                                     >= 1 + D                               
                                                                      = evalfbb6in(D,B,-1 + E,D,-1 + E)     
        
                                                 [B >= 0 && 0 >= 0] ==>                                     
                                              evalfstart(A,B,C,D,E)   = 1 + B                               
                                                                     >= 1 + B                               
                                                                      = evalfbb6in(B,B,0,B,0)               
        
                    [A >= 0 && C >= 0 && 0 >= 1 + F$ && C >= 1 + B] ==>                                     
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                               
                                                                     >= A                                   
                                                                      = evalfbb6in(A,B,C,-1 + A,C)          
        
        [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && 0 >= 1 + F$$] ==>                                     
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                               
                                                                     >= A                                   
                                                                      = evalfbb2in(A,B,C,C,E)               
        
        
* Step 29: PolyRank WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          19. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,A,C)                [A >= 0 && C >= 0]                                          (?,2)    
          20. evalfbb3in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,D)           [D >= 1 + B]                                                (?,2)    
          21. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)                [B >= D && 0 >= 1 + F$]                                     (?,2)    
          22. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)                [B >= D && F$ >= 1]                                         (?,2)    
          23. evalfbb3in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E)                [B >= D]                                                    (?,2)    
          24. evalfbb2in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,1 + D)       [1 + D >= 1 + B]                                            (?,3)    
          25. evalfbb2in(A,B,C,D,E) -> evalfbb2in(A,B,C,1 + D,E)            [B >= 1 + D && 0 >= 1 + F$$]                                (?,3)    
          26. evalfbb2in(A,B,C,D,E) -> evalfbb2in(A,B,C,1 + D,E)            [B >= 1 + D && F$$ >= 1]                                    (?,3)    
          27. evalfbb2in(A,B,C,D,E) -> evalfbb5in(A,B,C,1 + D,E)            [B >= 1 + D]                                                (?,3)    
          28. evalfbb5in(A,B,C,D,E) -> evalfbb7in(-1 + A,B,-1 + D,-1 + A,D) True                                                        (?,2)    
          29. evalfbb6in(A,B,C,D,E) -> evalfbb3in(D,B,-1 + E,-1 + E,E)      [D >= 0 && -1 + E >= 0 && 0 >= 1 + F$$]                     (?,3)    
          30. evalfbb6in(A,B,C,D,E) -> evalfbb3in(D,B,-1 + E,-1 + E,E)      [D >= 0 && -1 + E >= 0 && F$$ >= 1]                         (?,3)    
          31. evalfbb6in(A,B,C,D,E) -> evalfbb6in(D,B,-1 + E,D,-1 + E)      [D >= 0 && -1 + E >= 0]                                     (?,3)    
          32. evalfstart(A,B,C,D,E) -> evalfbb3in(B,B,0,0,E)                [B >= 0 && 0 >= 0 && 0 >= 1 + F$$]                          (1,4)    
          33. evalfstart(A,B,C,D,E) -> evalfbb3in(B,B,0,0,E)                [B >= 0 && 0 >= 0 && F$$ >= 1]                              (1,4)    
          34. evalfstart(A,B,C,D,E) -> evalfbb6in(B,B,0,B,0)                [B >= 0 && 0 >= 0]                                          (1,4)    
          35. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,C)           [A >= 0 && C >= 0 && 0 >= 1 + F$ && C >= 1 + B]             (?,4)    
          36. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && 0 >= 1 + F$$] (?,4)    
          37. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && F$$ >= 1]     (1 + B,4)
          38. evalfbb7in(A,B,C,D,E) -> evalfbb5in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C]                 (B,4)    
          39. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,C)           [A >= 0 && C >= 0 && F$ >= 1 && C >= 1 + B]                 (B,4)    
          40. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C && 0 >= 1 + F$$]     (B,4)    
          41. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C && F$$ >= 1]         (B,4)    
          42. evalfbb7in(A,B,C,D,E) -> evalfbb5in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C]                     (B,4)    
        Signature:
          {(evalfbb2in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbbin,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [19->{29,30,31},20->{29,30,31},21->{24,25,26,27},22->{24,25,26,27},23->{28},24->{29,30,31},25->{24,25,26
          ,27},26->{24,25,26,27},27->{28},28->{19,35,36,37,38,39,40,41,42},29->{20,21,22,23},30->{20,21,22,23},31->{29
          ,30,31},32->{21,22,23},33->{21,22,23},34->{},35->{29,30,31},36->{24,25,26,27},37->{24,25,26,27},38->{28}
          ,39->{29,30,31},40->{24,25,26,27},41->{24,25,26,27},42->{28}]
        Sizebounds:
          (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) 
          (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) 
          (<21,0,A>, ?) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, B) (<21,0,E>, ?) 
          (<22,0,A>, ?) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, B) (<22,0,E>, ?) 
          (<23,0,A>, ?) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, B) (<23,0,E>, ?) 
          (<24,0,A>, ?) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, ?) (<24,0,E>, ?) 
          (<25,0,A>, ?) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, B) (<25,0,E>, ?) 
          (<26,0,A>, ?) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, B) (<26,0,E>, ?) 
          (<27,0,A>, ?) (<27,0,B>, B) (<27,0,C>, ?) (<27,0,D>, B) (<27,0,E>, ?) 
          (<28,0,A>, ?) (<28,0,B>, B) (<28,0,C>, ?) (<28,0,D>, ?) (<28,0,E>, ?) 
          (<29,0,A>, ?) (<29,0,B>, B) (<29,0,C>, ?) (<29,0,D>, ?) (<29,0,E>, ?) 
          (<30,0,A>, ?) (<30,0,B>, B) (<30,0,C>, ?) (<30,0,D>, ?) (<30,0,E>, ?) 
          (<31,0,A>, ?) (<31,0,B>, B) (<31,0,C>, ?) (<31,0,D>, ?) (<31,0,E>, ?) 
          (<32,0,A>, B) (<32,0,B>, B) (<32,0,C>, 0) (<32,0,D>, 0) (<32,0,E>, E) 
          (<33,0,A>, B) (<33,0,B>, B) (<33,0,C>, 0) (<33,0,D>, 0) (<33,0,E>, E) 
          (<34,0,A>, B) (<34,0,B>, B) (<34,0,C>, 0) (<34,0,D>, B) (<34,0,E>, 0) 
          (<35,0,A>, ?) (<35,0,B>, B) (<35,0,C>, ?) (<35,0,D>, ?) (<35,0,E>, ?) 
          (<36,0,A>, ?) (<36,0,B>, B) (<36,0,C>, ?) (<36,0,D>, ?) (<36,0,E>, ?) 
          (<37,0,A>, ?) (<37,0,B>, B) (<37,0,C>, ?) (<37,0,D>, ?) (<37,0,E>, ?) 
          (<38,0,A>, ?) (<38,0,B>, B) (<38,0,C>, ?) (<38,0,D>, ?) (<38,0,E>, ?) 
          (<39,0,A>, ?) (<39,0,B>, B) (<39,0,C>, ?) (<39,0,D>, ?) (<39,0,E>, ?) 
          (<40,0,A>, ?) (<40,0,B>, B) (<40,0,C>, ?) (<40,0,D>, ?) (<40,0,E>, ?) 
          (<41,0,A>, ?) (<41,0,B>, B) (<41,0,C>, ?) (<41,0,D>, ?) (<41,0,E>, ?) 
          (<42,0,A>, ?) (<42,0,B>, B) (<42,0,C>, ?) (<42,0,D>, ?) (<42,0,E>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalfbb2in) = x1    
          p(evalfbb3in) = x1    
          p(evalfbb5in) = x1    
          p(evalfbb6in) = 1 + x4
          p(evalfbb7in) = 1 + x1
          p(evalfstart) = 1 + x2
        
        The following rules are strictly oriented:
                                 [B >= 0 && 0 >= 0 && 0 >= 1 + F$$] ==>                           
                                              evalfstart(A,B,C,D,E)   = 1 + B                     
                                                                      > B                         
                                                                      = evalfbb3in(B,B,0,0,E)     
        
                                     [B >= 0 && 0 >= 0 && F$$ >= 1] ==>                           
                                              evalfstart(A,B,C,D,E)   = 1 + B                     
                                                                      > B                         
                                                                      = evalfbb3in(B,B,0,0,E)     
        
        [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && 0 >= 1 + F$$] ==>                           
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                     
                                                                      > A                         
                                                                      = evalfbb2in(A,B,C,C,E)     
        
            [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && F$$ >= 1] ==>                           
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                     
                                                                      > A                         
                                                                      = evalfbb2in(A,B,C,C,E)     
        
                        [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C] ==>                           
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                     
                                                                      > A                         
                                                                      = evalfbb5in(A,B,C,C,E)     
        
                        [A >= 0 && C >= 0 && F$ >= 1 && C >= 1 + B] ==>                           
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                     
                                                                      > A                         
                                                                      = evalfbb6in(A,B,C,-1 + A,C)
        
            [A >= 0 && C >= 0 && F$ >= 1 && B >= C && 0 >= 1 + F$$] ==>                           
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                     
                                                                      > A                         
                                                                      = evalfbb2in(A,B,C,C,E)     
        
                [A >= 0 && C >= 0 && F$ >= 1 && B >= C && F$$ >= 1] ==>                           
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                     
                                                                      > A                         
                                                                      = evalfbb2in(A,B,C,C,E)     
        
                            [A >= 0 && C >= 0 && F$ >= 1 && B >= C] ==>                           
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                     
                                                                      > A                         
                                                                      = evalfbb5in(A,B,C,C,E)     
        
        
        The following rules are weakly oriented:
                                     [A >= 0 && C >= 0] ==>                                     
                                  evalfbb7in(A,B,C,D,E)   = 1 + A                               
                                                         >= 1 + A                               
                                                          = evalfbb6in(A,B,C,A,C)               
        
                                           [D >= 1 + B] ==>                                     
                                  evalfbb3in(A,B,C,D,E)   = A                                   
                                                         >= A                                   
                                                          = evalfbb6in(A,B,C,-1 + A,D)          
        
                                [B >= D && 0 >= 1 + F$] ==>                                     
                                  evalfbb3in(A,B,C,D,E)   = A                                   
                                                         >= A                                   
                                                          = evalfbb2in(A,B,C,D,E)               
        
                                    [B >= D && F$ >= 1] ==>                                     
                                  evalfbb3in(A,B,C,D,E)   = A                                   
                                                         >= A                                   
                                                          = evalfbb2in(A,B,C,D,E)               
        
                                               [B >= D] ==>                                     
                                  evalfbb3in(A,B,C,D,E)   = A                                   
                                                         >= A                                   
                                                          = evalfbb5in(A,B,C,D,E)               
        
                                       [1 + D >= 1 + B] ==>                                     
                                  evalfbb2in(A,B,C,D,E)   = A                                   
                                                         >= A                                   
                                                          = evalfbb6in(A,B,C,-1 + A,1 + D)      
        
                           [B >= 1 + D && 0 >= 1 + F$$] ==>                                     
                                  evalfbb2in(A,B,C,D,E)   = A                                   
                                                         >= A                                   
                                                          = evalfbb2in(A,B,C,1 + D,E)           
        
                               [B >= 1 + D && F$$ >= 1] ==>                                     
                                  evalfbb2in(A,B,C,D,E)   = A                                   
                                                         >= A                                   
                                                          = evalfbb2in(A,B,C,1 + D,E)           
        
                                           [B >= 1 + D] ==>                                     
                                  evalfbb2in(A,B,C,D,E)   = A                                   
                                                         >= A                                   
                                                          = evalfbb5in(A,B,C,1 + D,E)           
        
                                                   True ==>                                     
                                  evalfbb5in(A,B,C,D,E)   = A                                   
                                                         >= A                                   
                                                          = evalfbb7in(-1 + A,B,-1 + D,-1 + A,D)
        
                [D >= 0 && -1 + E >= 0 && 0 >= 1 + F$$] ==>                                     
                                  evalfbb6in(A,B,C,D,E)   = 1 + D                               
                                                         >= D                                   
                                                          = evalfbb3in(D,B,-1 + E,-1 + E,E)     
        
                    [D >= 0 && -1 + E >= 0 && F$$ >= 1] ==>                                     
                                  evalfbb6in(A,B,C,D,E)   = 1 + D                               
                                                         >= D                                   
                                                          = evalfbb3in(D,B,-1 + E,-1 + E,E)     
        
                                [D >= 0 && -1 + E >= 0] ==>                                     
                                  evalfbb6in(A,B,C,D,E)   = 1 + D                               
                                                         >= 1 + D                               
                                                          = evalfbb6in(D,B,-1 + E,D,-1 + E)     
        
                                     [B >= 0 && 0 >= 0] ==>                                     
                                  evalfstart(A,B,C,D,E)   = 1 + B                               
                                                         >= 1 + B                               
                                                          = evalfbb6in(B,B,0,B,0)               
        
        [A >= 0 && C >= 0 && 0 >= 1 + F$ && C >= 1 + B] ==>                                     
                                  evalfbb7in(A,B,C,D,E)   = 1 + A                               
                                                         >= A                                   
                                                          = evalfbb6in(A,B,C,-1 + A,C)          
        
        
* Step 30: PolyRank WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          19. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,A,C)                [A >= 0 && C >= 0]                                          (?,2)    
          20. evalfbb3in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,D)           [D >= 1 + B]                                                (?,2)    
          21. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)                [B >= D && 0 >= 1 + F$]                                     (?,2)    
          22. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)                [B >= D && F$ >= 1]                                         (?,2)    
          23. evalfbb3in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E)                [B >= D]                                                    (?,2)    
          24. evalfbb2in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,1 + D)       [1 + D >= 1 + B]                                            (?,3)    
          25. evalfbb2in(A,B,C,D,E) -> evalfbb2in(A,B,C,1 + D,E)            [B >= 1 + D && 0 >= 1 + F$$]                                (?,3)    
          26. evalfbb2in(A,B,C,D,E) -> evalfbb2in(A,B,C,1 + D,E)            [B >= 1 + D && F$$ >= 1]                                    (?,3)    
          27. evalfbb2in(A,B,C,D,E) -> evalfbb5in(A,B,C,1 + D,E)            [B >= 1 + D]                                                (?,3)    
          28. evalfbb5in(A,B,C,D,E) -> evalfbb7in(-1 + A,B,-1 + D,-1 + A,D) True                                                        (?,2)    
          29. evalfbb6in(A,B,C,D,E) -> evalfbb3in(D,B,-1 + E,-1 + E,E)      [D >= 0 && -1 + E >= 0 && 0 >= 1 + F$$]                     (?,3)    
          30. evalfbb6in(A,B,C,D,E) -> evalfbb3in(D,B,-1 + E,-1 + E,E)      [D >= 0 && -1 + E >= 0 && F$$ >= 1]                         (?,3)    
          31. evalfbb6in(A,B,C,D,E) -> evalfbb6in(D,B,-1 + E,D,-1 + E)      [D >= 0 && -1 + E >= 0]                                     (?,3)    
          32. evalfstart(A,B,C,D,E) -> evalfbb3in(B,B,0,0,E)                [B >= 0 && 0 >= 0 && 0 >= 1 + F$$]                          (1,4)    
          33. evalfstart(A,B,C,D,E) -> evalfbb3in(B,B,0,0,E)                [B >= 0 && 0 >= 0 && F$$ >= 1]                              (1,4)    
          34. evalfstart(A,B,C,D,E) -> evalfbb6in(B,B,0,B,0)                [B >= 0 && 0 >= 0]                                          (1,4)    
          35. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,C)           [A >= 0 && C >= 0 && 0 >= 1 + F$ && C >= 1 + B]             (?,4)    
          36. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && 0 >= 1 + F$$] (1 + B,4)
          37. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && F$$ >= 1]     (1 + B,4)
          38. evalfbb7in(A,B,C,D,E) -> evalfbb5in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C]                 (B,4)    
          39. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,C)           [A >= 0 && C >= 0 && F$ >= 1 && C >= 1 + B]                 (B,4)    
          40. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C && 0 >= 1 + F$$]     (B,4)    
          41. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C && F$$ >= 1]         (B,4)    
          42. evalfbb7in(A,B,C,D,E) -> evalfbb5in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C]                     (B,4)    
        Signature:
          {(evalfbb2in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbbin,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [19->{29,30,31},20->{29,30,31},21->{24,25,26,27},22->{24,25,26,27},23->{28},24->{29,30,31},25->{24,25,26
          ,27},26->{24,25,26,27},27->{28},28->{19,35,36,37,38,39,40,41,42},29->{20,21,22,23},30->{20,21,22,23},31->{29
          ,30,31},32->{21,22,23},33->{21,22,23},34->{},35->{29,30,31},36->{24,25,26,27},37->{24,25,26,27},38->{28}
          ,39->{29,30,31},40->{24,25,26,27},41->{24,25,26,27},42->{28}]
        Sizebounds:
          (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) 
          (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) 
          (<21,0,A>, ?) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, B) (<21,0,E>, ?) 
          (<22,0,A>, ?) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, B) (<22,0,E>, ?) 
          (<23,0,A>, ?) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, B) (<23,0,E>, ?) 
          (<24,0,A>, ?) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, ?) (<24,0,E>, ?) 
          (<25,0,A>, ?) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, B) (<25,0,E>, ?) 
          (<26,0,A>, ?) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, B) (<26,0,E>, ?) 
          (<27,0,A>, ?) (<27,0,B>, B) (<27,0,C>, ?) (<27,0,D>, B) (<27,0,E>, ?) 
          (<28,0,A>, ?) (<28,0,B>, B) (<28,0,C>, ?) (<28,0,D>, ?) (<28,0,E>, ?) 
          (<29,0,A>, ?) (<29,0,B>, B) (<29,0,C>, ?) (<29,0,D>, ?) (<29,0,E>, ?) 
          (<30,0,A>, ?) (<30,0,B>, B) (<30,0,C>, ?) (<30,0,D>, ?) (<30,0,E>, ?) 
          (<31,0,A>, ?) (<31,0,B>, B) (<31,0,C>, ?) (<31,0,D>, ?) (<31,0,E>, ?) 
          (<32,0,A>, B) (<32,0,B>, B) (<32,0,C>, 0) (<32,0,D>, 0) (<32,0,E>, E) 
          (<33,0,A>, B) (<33,0,B>, B) (<33,0,C>, 0) (<33,0,D>, 0) (<33,0,E>, E) 
          (<34,0,A>, B) (<34,0,B>, B) (<34,0,C>, 0) (<34,0,D>, B) (<34,0,E>, 0) 
          (<35,0,A>, ?) (<35,0,B>, B) (<35,0,C>, ?) (<35,0,D>, ?) (<35,0,E>, ?) 
          (<36,0,A>, ?) (<36,0,B>, B) (<36,0,C>, ?) (<36,0,D>, ?) (<36,0,E>, ?) 
          (<37,0,A>, ?) (<37,0,B>, B) (<37,0,C>, ?) (<37,0,D>, ?) (<37,0,E>, ?) 
          (<38,0,A>, ?) (<38,0,B>, B) (<38,0,C>, ?) (<38,0,D>, ?) (<38,0,E>, ?) 
          (<39,0,A>, ?) (<39,0,B>, B) (<39,0,C>, ?) (<39,0,D>, ?) (<39,0,E>, ?) 
          (<40,0,A>, ?) (<40,0,B>, B) (<40,0,C>, ?) (<40,0,D>, ?) (<40,0,E>, ?) 
          (<41,0,A>, ?) (<41,0,B>, B) (<41,0,C>, ?) (<41,0,D>, ?) (<41,0,E>, ?) 
          (<42,0,A>, ?) (<42,0,B>, B) (<42,0,C>, ?) (<42,0,D>, ?) (<42,0,E>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalfbb2in) = 1 + x1
          p(evalfbb3in) = 1 + x1
          p(evalfbb5in) = 1 + x1
          p(evalfbb6in) = 1 + x4
          p(evalfbb7in) = 1 + x1
          p(evalfstart) = 1 + x2
        
        The following rules are strictly oriented:
        [A >= 0 && C >= 0 && 0 >= 1 + F$ && C >= 1 + B] ==>                           
                                  evalfbb7in(A,B,C,D,E)   = 1 + A                     
                                                          > A                         
                                                          = evalfbb6in(A,B,C,-1 + A,C)
        
            [A >= 0 && C >= 0 && F$ >= 1 && C >= 1 + B] ==>                           
                                  evalfbb7in(A,B,C,D,E)   = 1 + A                     
                                                          > A                         
                                                          = evalfbb6in(A,B,C,-1 + A,C)
        
        
        The following rules are weakly oriented:
                                                 [A >= 0 && C >= 0] ==>                                     
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                               
                                                                     >= 1 + A                               
                                                                      = evalfbb6in(A,B,C,A,C)               
        
                                                       [D >= 1 + B] ==>                                     
                                              evalfbb3in(A,B,C,D,E)   = 1 + A                               
                                                                     >= A                                   
                                                                      = evalfbb6in(A,B,C,-1 + A,D)          
        
                                            [B >= D && 0 >= 1 + F$] ==>                                     
                                              evalfbb3in(A,B,C,D,E)   = 1 + A                               
                                                                     >= 1 + A                               
                                                                      = evalfbb2in(A,B,C,D,E)               
        
                                                [B >= D && F$ >= 1] ==>                                     
                                              evalfbb3in(A,B,C,D,E)   = 1 + A                               
                                                                     >= 1 + A                               
                                                                      = evalfbb2in(A,B,C,D,E)               
        
                                                           [B >= D] ==>                                     
                                              evalfbb3in(A,B,C,D,E)   = 1 + A                               
                                                                     >= 1 + A                               
                                                                      = evalfbb5in(A,B,C,D,E)               
        
                                                   [1 + D >= 1 + B] ==>                                     
                                              evalfbb2in(A,B,C,D,E)   = 1 + A                               
                                                                     >= A                                   
                                                                      = evalfbb6in(A,B,C,-1 + A,1 + D)      
        
                                       [B >= 1 + D && 0 >= 1 + F$$] ==>                                     
                                              evalfbb2in(A,B,C,D,E)   = 1 + A                               
                                                                     >= 1 + A                               
                                                                      = evalfbb2in(A,B,C,1 + D,E)           
        
                                           [B >= 1 + D && F$$ >= 1] ==>                                     
                                              evalfbb2in(A,B,C,D,E)   = 1 + A                               
                                                                     >= 1 + A                               
                                                                      = evalfbb2in(A,B,C,1 + D,E)           
        
                                                       [B >= 1 + D] ==>                                     
                                              evalfbb2in(A,B,C,D,E)   = 1 + A                               
                                                                     >= 1 + A                               
                                                                      = evalfbb5in(A,B,C,1 + D,E)           
        
                                                               True ==>                                     
                                              evalfbb5in(A,B,C,D,E)   = 1 + A                               
                                                                     >= A                                   
                                                                      = evalfbb7in(-1 + A,B,-1 + D,-1 + A,D)
        
                            [D >= 0 && -1 + E >= 0 && 0 >= 1 + F$$] ==>                                     
                                              evalfbb6in(A,B,C,D,E)   = 1 + D                               
                                                                     >= 1 + D                               
                                                                      = evalfbb3in(D,B,-1 + E,-1 + E,E)     
        
                                [D >= 0 && -1 + E >= 0 && F$$ >= 1] ==>                                     
                                              evalfbb6in(A,B,C,D,E)   = 1 + D                               
                                                                     >= 1 + D                               
                                                                      = evalfbb3in(D,B,-1 + E,-1 + E,E)     
        
                                            [D >= 0 && -1 + E >= 0] ==>                                     
                                              evalfbb6in(A,B,C,D,E)   = 1 + D                               
                                                                     >= 1 + D                               
                                                                      = evalfbb6in(D,B,-1 + E,D,-1 + E)     
        
                                 [B >= 0 && 0 >= 0 && 0 >= 1 + F$$] ==>                                     
                                              evalfstart(A,B,C,D,E)   = 1 + B                               
                                                                     >= 1 + B                               
                                                                      = evalfbb3in(B,B,0,0,E)               
        
                                     [B >= 0 && 0 >= 0 && F$$ >= 1] ==>                                     
                                              evalfstart(A,B,C,D,E)   = 1 + B                               
                                                                     >= 1 + B                               
                                                                      = evalfbb3in(B,B,0,0,E)               
        
                                                 [B >= 0 && 0 >= 0] ==>                                     
                                              evalfstart(A,B,C,D,E)   = 1 + B                               
                                                                     >= 1 + B                               
                                                                      = evalfbb6in(B,B,0,B,0)               
        
        [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && 0 >= 1 + F$$] ==>                                     
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                               
                                                                     >= 1 + A                               
                                                                      = evalfbb2in(A,B,C,C,E)               
        
            [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && F$$ >= 1] ==>                                     
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                               
                                                                     >= 1 + A                               
                                                                      = evalfbb2in(A,B,C,C,E)               
        
                        [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C] ==>                                     
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                               
                                                                     >= 1 + A                               
                                                                      = evalfbb5in(A,B,C,C,E)               
        
            [A >= 0 && C >= 0 && F$ >= 1 && B >= C && 0 >= 1 + F$$] ==>                                     
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                               
                                                                     >= 1 + A                               
                                                                      = evalfbb2in(A,B,C,C,E)               
        
                [A >= 0 && C >= 0 && F$ >= 1 && B >= C && F$$ >= 1] ==>                                     
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                               
                                                                     >= 1 + A                               
                                                                      = evalfbb2in(A,B,C,C,E)               
        
                            [A >= 0 && C >= 0 && F$ >= 1 && B >= C] ==>                                     
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                               
                                                                     >= 1 + A                               
                                                                      = evalfbb5in(A,B,C,C,E)               
        
        
* Step 31: PolyRank WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          19. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,A,C)                [A >= 0 && C >= 0]                                          (?,2)    
          20. evalfbb3in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,D)           [D >= 1 + B]                                                (?,2)    
          21. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)                [B >= D && 0 >= 1 + F$]                                     (?,2)    
          22. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)                [B >= D && F$ >= 1]                                         (?,2)    
          23. evalfbb3in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E)                [B >= D]                                                    (?,2)    
          24. evalfbb2in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,1 + D)       [1 + D >= 1 + B]                                            (?,3)    
          25. evalfbb2in(A,B,C,D,E) -> evalfbb2in(A,B,C,1 + D,E)            [B >= 1 + D && 0 >= 1 + F$$]                                (?,3)    
          26. evalfbb2in(A,B,C,D,E) -> evalfbb2in(A,B,C,1 + D,E)            [B >= 1 + D && F$$ >= 1]                                    (?,3)    
          27. evalfbb2in(A,B,C,D,E) -> evalfbb5in(A,B,C,1 + D,E)            [B >= 1 + D]                                                (?,3)    
          28. evalfbb5in(A,B,C,D,E) -> evalfbb7in(-1 + A,B,-1 + D,-1 + A,D) True                                                        (?,2)    
          29. evalfbb6in(A,B,C,D,E) -> evalfbb3in(D,B,-1 + E,-1 + E,E)      [D >= 0 && -1 + E >= 0 && 0 >= 1 + F$$]                     (?,3)    
          30. evalfbb6in(A,B,C,D,E) -> evalfbb3in(D,B,-1 + E,-1 + E,E)      [D >= 0 && -1 + E >= 0 && F$$ >= 1]                         (?,3)    
          31. evalfbb6in(A,B,C,D,E) -> evalfbb6in(D,B,-1 + E,D,-1 + E)      [D >= 0 && -1 + E >= 0]                                     (?,3)    
          32. evalfstart(A,B,C,D,E) -> evalfbb3in(B,B,0,0,E)                [B >= 0 && 0 >= 0 && 0 >= 1 + F$$]                          (1,4)    
          33. evalfstart(A,B,C,D,E) -> evalfbb3in(B,B,0,0,E)                [B >= 0 && 0 >= 0 && F$$ >= 1]                              (1,4)    
          34. evalfstart(A,B,C,D,E) -> evalfbb6in(B,B,0,B,0)                [B >= 0 && 0 >= 0]                                          (1,4)    
          35. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,C)           [A >= 0 && C >= 0 && 0 >= 1 + F$ && C >= 1 + B]             (1 + B,4)
          36. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && 0 >= 1 + F$$] (1 + B,4)
          37. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && F$$ >= 1]     (1 + B,4)
          38. evalfbb7in(A,B,C,D,E) -> evalfbb5in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C]                 (B,4)    
          39. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,C)           [A >= 0 && C >= 0 && F$ >= 1 && C >= 1 + B]                 (B,4)    
          40. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C && 0 >= 1 + F$$]     (B,4)    
          41. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C && F$$ >= 1]         (B,4)    
          42. evalfbb7in(A,B,C,D,E) -> evalfbb5in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C]                     (B,4)    
        Signature:
          {(evalfbb2in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbbin,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [19->{29,30,31},20->{29,30,31},21->{24,25,26,27},22->{24,25,26,27},23->{28},24->{29,30,31},25->{24,25,26
          ,27},26->{24,25,26,27},27->{28},28->{19,35,36,37,38,39,40,41,42},29->{20,21,22,23},30->{20,21,22,23},31->{29
          ,30,31},32->{21,22,23},33->{21,22,23},34->{},35->{29,30,31},36->{24,25,26,27},37->{24,25,26,27},38->{28}
          ,39->{29,30,31},40->{24,25,26,27},41->{24,25,26,27},42->{28}]
        Sizebounds:
          (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) 
          (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) 
          (<21,0,A>, ?) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, B) (<21,0,E>, ?) 
          (<22,0,A>, ?) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, B) (<22,0,E>, ?) 
          (<23,0,A>, ?) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, B) (<23,0,E>, ?) 
          (<24,0,A>, ?) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, ?) (<24,0,E>, ?) 
          (<25,0,A>, ?) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, B) (<25,0,E>, ?) 
          (<26,0,A>, ?) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, B) (<26,0,E>, ?) 
          (<27,0,A>, ?) (<27,0,B>, B) (<27,0,C>, ?) (<27,0,D>, B) (<27,0,E>, ?) 
          (<28,0,A>, ?) (<28,0,B>, B) (<28,0,C>, ?) (<28,0,D>, ?) (<28,0,E>, ?) 
          (<29,0,A>, ?) (<29,0,B>, B) (<29,0,C>, ?) (<29,0,D>, ?) (<29,0,E>, ?) 
          (<30,0,A>, ?) (<30,0,B>, B) (<30,0,C>, ?) (<30,0,D>, ?) (<30,0,E>, ?) 
          (<31,0,A>, ?) (<31,0,B>, B) (<31,0,C>, ?) (<31,0,D>, ?) (<31,0,E>, ?) 
          (<32,0,A>, B) (<32,0,B>, B) (<32,0,C>, 0) (<32,0,D>, 0) (<32,0,E>, E) 
          (<33,0,A>, B) (<33,0,B>, B) (<33,0,C>, 0) (<33,0,D>, 0) (<33,0,E>, E) 
          (<34,0,A>, B) (<34,0,B>, B) (<34,0,C>, 0) (<34,0,D>, B) (<34,0,E>, 0) 
          (<35,0,A>, ?) (<35,0,B>, B) (<35,0,C>, ?) (<35,0,D>, ?) (<35,0,E>, ?) 
          (<36,0,A>, ?) (<36,0,B>, B) (<36,0,C>, ?) (<36,0,D>, ?) (<36,0,E>, ?) 
          (<37,0,A>, ?) (<37,0,B>, B) (<37,0,C>, ?) (<37,0,D>, ?) (<37,0,E>, ?) 
          (<38,0,A>, ?) (<38,0,B>, B) (<38,0,C>, ?) (<38,0,D>, ?) (<38,0,E>, ?) 
          (<39,0,A>, ?) (<39,0,B>, B) (<39,0,C>, ?) (<39,0,D>, ?) (<39,0,E>, ?) 
          (<40,0,A>, ?) (<40,0,B>, B) (<40,0,C>, ?) (<40,0,D>, ?) (<40,0,E>, ?) 
          (<41,0,A>, ?) (<41,0,B>, B) (<41,0,C>, ?) (<41,0,D>, ?) (<41,0,E>, ?) 
          (<42,0,A>, ?) (<42,0,B>, B) (<42,0,C>, ?) (<42,0,D>, ?) (<42,0,E>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalfbb2in) = x1    
          p(evalfbb3in) = x1    
          p(evalfbb5in) = x1    
          p(evalfbb6in) = 1 + x4
          p(evalfbb7in) = 1 + x1
          p(evalfstart) = 1 + x2
        
        The following rules are strictly oriented:
                                [D >= 0 && -1 + E >= 0 && F$$ >= 1] ==>                                
                                              evalfbb6in(A,B,C,D,E)   = 1 + D                          
                                                                      > D                              
                                                                      = evalfbb3in(D,B,-1 + E,-1 + E,E)
        
                                 [B >= 0 && 0 >= 0 && 0 >= 1 + F$$] ==>                                
                                              evalfstart(A,B,C,D,E)   = 1 + B                          
                                                                      > B                              
                                                                      = evalfbb3in(B,B,0,0,E)          
        
                                     [B >= 0 && 0 >= 0 && F$$ >= 1] ==>                                
                                              evalfstart(A,B,C,D,E)   = 1 + B                          
                                                                      > B                              
                                                                      = evalfbb3in(B,B,0,0,E)          
        
                    [A >= 0 && C >= 0 && 0 >= 1 + F$ && C >= 1 + B] ==>                                
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                          
                                                                      > A                              
                                                                      = evalfbb6in(A,B,C,-1 + A,C)     
        
        [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && 0 >= 1 + F$$] ==>                                
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                          
                                                                      > A                              
                                                                      = evalfbb2in(A,B,C,C,E)          
        
            [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && F$$ >= 1] ==>                                
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                          
                                                                      > A                              
                                                                      = evalfbb2in(A,B,C,C,E)          
        
                        [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C] ==>                                
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                          
                                                                      > A                              
                                                                      = evalfbb5in(A,B,C,C,E)          
        
                        [A >= 0 && C >= 0 && F$ >= 1 && C >= 1 + B] ==>                                
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                          
                                                                      > A                              
                                                                      = evalfbb6in(A,B,C,-1 + A,C)     
        
            [A >= 0 && C >= 0 && F$ >= 1 && B >= C && 0 >= 1 + F$$] ==>                                
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                          
                                                                      > A                              
                                                                      = evalfbb2in(A,B,C,C,E)          
        
                [A >= 0 && C >= 0 && F$ >= 1 && B >= C && F$$ >= 1] ==>                                
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                          
                                                                      > A                              
                                                                      = evalfbb2in(A,B,C,C,E)          
        
                            [A >= 0 && C >= 0 && F$ >= 1 && B >= C] ==>                                
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                          
                                                                      > A                              
                                                                      = evalfbb5in(A,B,C,C,E)          
        
        
        The following rules are weakly oriented:
                             [A >= 0 && C >= 0] ==>                                     
                          evalfbb7in(A,B,C,D,E)   = 1 + A                               
                                                 >= 1 + A                               
                                                  = evalfbb6in(A,B,C,A,C)               
        
                                   [D >= 1 + B] ==>                                     
                          evalfbb3in(A,B,C,D,E)   = A                                   
                                                 >= A                                   
                                                  = evalfbb6in(A,B,C,-1 + A,D)          
        
                        [B >= D && 0 >= 1 + F$] ==>                                     
                          evalfbb3in(A,B,C,D,E)   = A                                   
                                                 >= A                                   
                                                  = evalfbb2in(A,B,C,D,E)               
        
                            [B >= D && F$ >= 1] ==>                                     
                          evalfbb3in(A,B,C,D,E)   = A                                   
                                                 >= A                                   
                                                  = evalfbb2in(A,B,C,D,E)               
        
                                       [B >= D] ==>                                     
                          evalfbb3in(A,B,C,D,E)   = A                                   
                                                 >= A                                   
                                                  = evalfbb5in(A,B,C,D,E)               
        
                               [1 + D >= 1 + B] ==>                                     
                          evalfbb2in(A,B,C,D,E)   = A                                   
                                                 >= A                                   
                                                  = evalfbb6in(A,B,C,-1 + A,1 + D)      
        
                   [B >= 1 + D && 0 >= 1 + F$$] ==>                                     
                          evalfbb2in(A,B,C,D,E)   = A                                   
                                                 >= A                                   
                                                  = evalfbb2in(A,B,C,1 + D,E)           
        
                       [B >= 1 + D && F$$ >= 1] ==>                                     
                          evalfbb2in(A,B,C,D,E)   = A                                   
                                                 >= A                                   
                                                  = evalfbb2in(A,B,C,1 + D,E)           
        
                                   [B >= 1 + D] ==>                                     
                          evalfbb2in(A,B,C,D,E)   = A                                   
                                                 >= A                                   
                                                  = evalfbb5in(A,B,C,1 + D,E)           
        
                                           True ==>                                     
                          evalfbb5in(A,B,C,D,E)   = A                                   
                                                 >= A                                   
                                                  = evalfbb7in(-1 + A,B,-1 + D,-1 + A,D)
        
        [D >= 0 && -1 + E >= 0 && 0 >= 1 + F$$] ==>                                     
                          evalfbb6in(A,B,C,D,E)   = 1 + D                               
                                                 >= D                                   
                                                  = evalfbb3in(D,B,-1 + E,-1 + E,E)     
        
                        [D >= 0 && -1 + E >= 0] ==>                                     
                          evalfbb6in(A,B,C,D,E)   = 1 + D                               
                                                 >= 1 + D                               
                                                  = evalfbb6in(D,B,-1 + E,D,-1 + E)     
        
                             [B >= 0 && 0 >= 0] ==>                                     
                          evalfstart(A,B,C,D,E)   = 1 + B                               
                                                 >= 1 + B                               
                                                  = evalfbb6in(B,B,0,B,0)               
        
        
* Step 32: PolyRank WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          19. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,A,C)                [A >= 0 && C >= 0]                                          (?,2)    
          20. evalfbb3in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,D)           [D >= 1 + B]                                                (?,2)    
          21. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)                [B >= D && 0 >= 1 + F$]                                     (?,2)    
          22. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)                [B >= D && F$ >= 1]                                         (?,2)    
          23. evalfbb3in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E)                [B >= D]                                                    (?,2)    
          24. evalfbb2in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,1 + D)       [1 + D >= 1 + B]                                            (?,3)    
          25. evalfbb2in(A,B,C,D,E) -> evalfbb2in(A,B,C,1 + D,E)            [B >= 1 + D && 0 >= 1 + F$$]                                (?,3)    
          26. evalfbb2in(A,B,C,D,E) -> evalfbb2in(A,B,C,1 + D,E)            [B >= 1 + D && F$$ >= 1]                                    (?,3)    
          27. evalfbb2in(A,B,C,D,E) -> evalfbb5in(A,B,C,1 + D,E)            [B >= 1 + D]                                                (?,3)    
          28. evalfbb5in(A,B,C,D,E) -> evalfbb7in(-1 + A,B,-1 + D,-1 + A,D) True                                                        (?,2)    
          29. evalfbb6in(A,B,C,D,E) -> evalfbb3in(D,B,-1 + E,-1 + E,E)      [D >= 0 && -1 + E >= 0 && 0 >= 1 + F$$]                     (?,3)    
          30. evalfbb6in(A,B,C,D,E) -> evalfbb3in(D,B,-1 + E,-1 + E,E)      [D >= 0 && -1 + E >= 0 && F$$ >= 1]                         (1 + B,3)
          31. evalfbb6in(A,B,C,D,E) -> evalfbb6in(D,B,-1 + E,D,-1 + E)      [D >= 0 && -1 + E >= 0]                                     (?,3)    
          32. evalfstart(A,B,C,D,E) -> evalfbb3in(B,B,0,0,E)                [B >= 0 && 0 >= 0 && 0 >= 1 + F$$]                          (1,4)    
          33. evalfstart(A,B,C,D,E) -> evalfbb3in(B,B,0,0,E)                [B >= 0 && 0 >= 0 && F$$ >= 1]                              (1,4)    
          34. evalfstart(A,B,C,D,E) -> evalfbb6in(B,B,0,B,0)                [B >= 0 && 0 >= 0]                                          (1,4)    
          35. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,C)           [A >= 0 && C >= 0 && 0 >= 1 + F$ && C >= 1 + B]             (1 + B,4)
          36. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && 0 >= 1 + F$$] (1 + B,4)
          37. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && F$$ >= 1]     (1 + B,4)
          38. evalfbb7in(A,B,C,D,E) -> evalfbb5in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C]                 (B,4)    
          39. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,C)           [A >= 0 && C >= 0 && F$ >= 1 && C >= 1 + B]                 (B,4)    
          40. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C && 0 >= 1 + F$$]     (B,4)    
          41. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C && F$$ >= 1]         (B,4)    
          42. evalfbb7in(A,B,C,D,E) -> evalfbb5in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C]                     (B,4)    
        Signature:
          {(evalfbb2in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbbin,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [19->{29,30,31},20->{29,30,31},21->{24,25,26,27},22->{24,25,26,27},23->{28},24->{29,30,31},25->{24,25,26
          ,27},26->{24,25,26,27},27->{28},28->{19,35,36,37,38,39,40,41,42},29->{20,21,22,23},30->{20,21,22,23},31->{29
          ,30,31},32->{21,22,23},33->{21,22,23},34->{},35->{29,30,31},36->{24,25,26,27},37->{24,25,26,27},38->{28}
          ,39->{29,30,31},40->{24,25,26,27},41->{24,25,26,27},42->{28}]
        Sizebounds:
          (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) 
          (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) 
          (<21,0,A>, ?) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, B) (<21,0,E>, ?) 
          (<22,0,A>, ?) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, B) (<22,0,E>, ?) 
          (<23,0,A>, ?) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, B) (<23,0,E>, ?) 
          (<24,0,A>, ?) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, ?) (<24,0,E>, ?) 
          (<25,0,A>, ?) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, B) (<25,0,E>, ?) 
          (<26,0,A>, ?) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, B) (<26,0,E>, ?) 
          (<27,0,A>, ?) (<27,0,B>, B) (<27,0,C>, ?) (<27,0,D>, B) (<27,0,E>, ?) 
          (<28,0,A>, ?) (<28,0,B>, B) (<28,0,C>, ?) (<28,0,D>, ?) (<28,0,E>, ?) 
          (<29,0,A>, ?) (<29,0,B>, B) (<29,0,C>, ?) (<29,0,D>, ?) (<29,0,E>, ?) 
          (<30,0,A>, ?) (<30,0,B>, B) (<30,0,C>, ?) (<30,0,D>, ?) (<30,0,E>, ?) 
          (<31,0,A>, ?) (<31,0,B>, B) (<31,0,C>, ?) (<31,0,D>, ?) (<31,0,E>, ?) 
          (<32,0,A>, B) (<32,0,B>, B) (<32,0,C>, 0) (<32,0,D>, 0) (<32,0,E>, E) 
          (<33,0,A>, B) (<33,0,B>, B) (<33,0,C>, 0) (<33,0,D>, 0) (<33,0,E>, E) 
          (<34,0,A>, B) (<34,0,B>, B) (<34,0,C>, 0) (<34,0,D>, B) (<34,0,E>, 0) 
          (<35,0,A>, ?) (<35,0,B>, B) (<35,0,C>, ?) (<35,0,D>, ?) (<35,0,E>, ?) 
          (<36,0,A>, ?) (<36,0,B>, B) (<36,0,C>, ?) (<36,0,D>, ?) (<36,0,E>, ?) 
          (<37,0,A>, ?) (<37,0,B>, B) (<37,0,C>, ?) (<37,0,D>, ?) (<37,0,E>, ?) 
          (<38,0,A>, ?) (<38,0,B>, B) (<38,0,C>, ?) (<38,0,D>, ?) (<38,0,E>, ?) 
          (<39,0,A>, ?) (<39,0,B>, B) (<39,0,C>, ?) (<39,0,D>, ?) (<39,0,E>, ?) 
          (<40,0,A>, ?) (<40,0,B>, B) (<40,0,C>, ?) (<40,0,D>, ?) (<40,0,E>, ?) 
          (<41,0,A>, ?) (<41,0,B>, B) (<41,0,C>, ?) (<41,0,D>, ?) (<41,0,E>, ?) 
          (<42,0,A>, ?) (<42,0,B>, B) (<42,0,C>, ?) (<42,0,D>, ?) (<42,0,E>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalfbb2in) = x1    
          p(evalfbb3in) = x1    
          p(evalfbb5in) = x1    
          p(evalfbb6in) = 1 + x4
          p(evalfbb7in) = 1 + x1
          p(evalfstart) = 1 + x2
        
        The following rules are strictly oriented:
                            [D >= 0 && -1 + E >= 0 && 0 >= 1 + F$$] ==>                                
                                              evalfbb6in(A,B,C,D,E)   = 1 + D                          
                                                                      > D                              
                                                                      = evalfbb3in(D,B,-1 + E,-1 + E,E)
        
                                [D >= 0 && -1 + E >= 0 && F$$ >= 1] ==>                                
                                              evalfbb6in(A,B,C,D,E)   = 1 + D                          
                                                                      > D                              
                                                                      = evalfbb3in(D,B,-1 + E,-1 + E,E)
        
                                 [B >= 0 && 0 >= 0 && 0 >= 1 + F$$] ==>                                
                                              evalfstart(A,B,C,D,E)   = 1 + B                          
                                                                      > B                              
                                                                      = evalfbb3in(B,B,0,0,E)          
        
                                     [B >= 0 && 0 >= 0 && F$$ >= 1] ==>                                
                                              evalfstart(A,B,C,D,E)   = 1 + B                          
                                                                      > B                              
                                                                      = evalfbb3in(B,B,0,0,E)          
        
                    [A >= 0 && C >= 0 && 0 >= 1 + F$ && C >= 1 + B] ==>                                
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                          
                                                                      > A                              
                                                                      = evalfbb6in(A,B,C,-1 + A,C)     
        
        [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && 0 >= 1 + F$$] ==>                                
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                          
                                                                      > A                              
                                                                      = evalfbb2in(A,B,C,C,E)          
        
            [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && F$$ >= 1] ==>                                
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                          
                                                                      > A                              
                                                                      = evalfbb2in(A,B,C,C,E)          
        
                        [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C] ==>                                
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                          
                                                                      > A                              
                                                                      = evalfbb5in(A,B,C,C,E)          
        
                        [A >= 0 && C >= 0 && F$ >= 1 && C >= 1 + B] ==>                                
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                          
                                                                      > A                              
                                                                      = evalfbb6in(A,B,C,-1 + A,C)     
        
            [A >= 0 && C >= 0 && F$ >= 1 && B >= C && 0 >= 1 + F$$] ==>                                
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                          
                                                                      > A                              
                                                                      = evalfbb2in(A,B,C,C,E)          
        
                [A >= 0 && C >= 0 && F$ >= 1 && B >= C && F$$ >= 1] ==>                                
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                          
                                                                      > A                              
                                                                      = evalfbb2in(A,B,C,C,E)          
        
                            [A >= 0 && C >= 0 && F$ >= 1 && B >= C] ==>                                
                                              evalfbb7in(A,B,C,D,E)   = 1 + A                          
                                                                      > A                              
                                                                      = evalfbb5in(A,B,C,C,E)          
        
        
        The following rules are weakly oriented:
                  [A >= 0 && C >= 0] ==>                                     
               evalfbb7in(A,B,C,D,E)   = 1 + A                               
                                      >= 1 + A                               
                                       = evalfbb6in(A,B,C,A,C)               
        
                        [D >= 1 + B] ==>                                     
               evalfbb3in(A,B,C,D,E)   = A                                   
                                      >= A                                   
                                       = evalfbb6in(A,B,C,-1 + A,D)          
        
             [B >= D && 0 >= 1 + F$] ==>                                     
               evalfbb3in(A,B,C,D,E)   = A                                   
                                      >= A                                   
                                       = evalfbb2in(A,B,C,D,E)               
        
                 [B >= D && F$ >= 1] ==>                                     
               evalfbb3in(A,B,C,D,E)   = A                                   
                                      >= A                                   
                                       = evalfbb2in(A,B,C,D,E)               
        
                            [B >= D] ==>                                     
               evalfbb3in(A,B,C,D,E)   = A                                   
                                      >= A                                   
                                       = evalfbb5in(A,B,C,D,E)               
        
                    [1 + D >= 1 + B] ==>                                     
               evalfbb2in(A,B,C,D,E)   = A                                   
                                      >= A                                   
                                       = evalfbb6in(A,B,C,-1 + A,1 + D)      
        
        [B >= 1 + D && 0 >= 1 + F$$] ==>                                     
               evalfbb2in(A,B,C,D,E)   = A                                   
                                      >= A                                   
                                       = evalfbb2in(A,B,C,1 + D,E)           
        
            [B >= 1 + D && F$$ >= 1] ==>                                     
               evalfbb2in(A,B,C,D,E)   = A                                   
                                      >= A                                   
                                       = evalfbb2in(A,B,C,1 + D,E)           
        
                        [B >= 1 + D] ==>                                     
               evalfbb2in(A,B,C,D,E)   = A                                   
                                      >= A                                   
                                       = evalfbb5in(A,B,C,1 + D,E)           
        
                                True ==>                                     
               evalfbb5in(A,B,C,D,E)   = A                                   
                                      >= A                                   
                                       = evalfbb7in(-1 + A,B,-1 + D,-1 + A,D)
        
             [D >= 0 && -1 + E >= 0] ==>                                     
               evalfbb6in(A,B,C,D,E)   = 1 + D                               
                                      >= 1 + D                               
                                       = evalfbb6in(D,B,-1 + E,D,-1 + E)     
        
                  [B >= 0 && 0 >= 0] ==>                                     
               evalfstart(A,B,C,D,E)   = 1 + B                               
                                      >= 1 + B                               
                                       = evalfbb6in(B,B,0,B,0)               
        
        
* Step 33: PolyRank WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          19. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,A,C)                [A >= 0 && C >= 0]                                          (?,2)    
          20. evalfbb3in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,D)           [D >= 1 + B]                                                (?,2)    
          21. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)                [B >= D && 0 >= 1 + F$]                                     (?,2)    
          22. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)                [B >= D && F$ >= 1]                                         (?,2)    
          23. evalfbb3in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E)                [B >= D]                                                    (?,2)    
          24. evalfbb2in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,1 + D)       [1 + D >= 1 + B]                                            (?,3)    
          25. evalfbb2in(A,B,C,D,E) -> evalfbb2in(A,B,C,1 + D,E)            [B >= 1 + D && 0 >= 1 + F$$]                                (?,3)    
          26. evalfbb2in(A,B,C,D,E) -> evalfbb2in(A,B,C,1 + D,E)            [B >= 1 + D && F$$ >= 1]                                    (?,3)    
          27. evalfbb2in(A,B,C,D,E) -> evalfbb5in(A,B,C,1 + D,E)            [B >= 1 + D]                                                (?,3)    
          28. evalfbb5in(A,B,C,D,E) -> evalfbb7in(-1 + A,B,-1 + D,-1 + A,D) True                                                        (?,2)    
          29. evalfbb6in(A,B,C,D,E) -> evalfbb3in(D,B,-1 + E,-1 + E,E)      [D >= 0 && -1 + E >= 0 && 0 >= 1 + F$$]                     (1 + B,3)
          30. evalfbb6in(A,B,C,D,E) -> evalfbb3in(D,B,-1 + E,-1 + E,E)      [D >= 0 && -1 + E >= 0 && F$$ >= 1]                         (1 + B,3)
          31. evalfbb6in(A,B,C,D,E) -> evalfbb6in(D,B,-1 + E,D,-1 + E)      [D >= 0 && -1 + E >= 0]                                     (?,3)    
          32. evalfstart(A,B,C,D,E) -> evalfbb3in(B,B,0,0,E)                [B >= 0 && 0 >= 0 && 0 >= 1 + F$$]                          (1,4)    
          33. evalfstart(A,B,C,D,E) -> evalfbb3in(B,B,0,0,E)                [B >= 0 && 0 >= 0 && F$$ >= 1]                              (1,4)    
          34. evalfstart(A,B,C,D,E) -> evalfbb6in(B,B,0,B,0)                [B >= 0 && 0 >= 0]                                          (1,4)    
          35. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,C)           [A >= 0 && C >= 0 && 0 >= 1 + F$ && C >= 1 + B]             (1 + B,4)
          36. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && 0 >= 1 + F$$] (1 + B,4)
          37. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && F$$ >= 1]     (1 + B,4)
          38. evalfbb7in(A,B,C,D,E) -> evalfbb5in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C]                 (B,4)    
          39. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,C)           [A >= 0 && C >= 0 && F$ >= 1 && C >= 1 + B]                 (B,4)    
          40. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C && 0 >= 1 + F$$]     (B,4)    
          41. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C && F$$ >= 1]         (B,4)    
          42. evalfbb7in(A,B,C,D,E) -> evalfbb5in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C]                     (B,4)    
        Signature:
          {(evalfbb2in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbbin,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [19->{29,30,31},20->{29,30,31},21->{24,25,26,27},22->{24,25,26,27},23->{28},24->{29,30,31},25->{24,25,26
          ,27},26->{24,25,26,27},27->{28},28->{19,35,36,37,38,39,40,41,42},29->{20,21,22,23},30->{20,21,22,23},31->{29
          ,30,31},32->{21,22,23},33->{21,22,23},34->{},35->{29,30,31},36->{24,25,26,27},37->{24,25,26,27},38->{28}
          ,39->{29,30,31},40->{24,25,26,27},41->{24,25,26,27},42->{28}]
        Sizebounds:
          (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) 
          (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) 
          (<21,0,A>, ?) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, B) (<21,0,E>, ?) 
          (<22,0,A>, ?) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, B) (<22,0,E>, ?) 
          (<23,0,A>, ?) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, B) (<23,0,E>, ?) 
          (<24,0,A>, ?) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, ?) (<24,0,E>, ?) 
          (<25,0,A>, ?) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, B) (<25,0,E>, ?) 
          (<26,0,A>, ?) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, B) (<26,0,E>, ?) 
          (<27,0,A>, ?) (<27,0,B>, B) (<27,0,C>, ?) (<27,0,D>, B) (<27,0,E>, ?) 
          (<28,0,A>, ?) (<28,0,B>, B) (<28,0,C>, ?) (<28,0,D>, ?) (<28,0,E>, ?) 
          (<29,0,A>, ?) (<29,0,B>, B) (<29,0,C>, ?) (<29,0,D>, ?) (<29,0,E>, ?) 
          (<30,0,A>, ?) (<30,0,B>, B) (<30,0,C>, ?) (<30,0,D>, ?) (<30,0,E>, ?) 
          (<31,0,A>, ?) (<31,0,B>, B) (<31,0,C>, ?) (<31,0,D>, ?) (<31,0,E>, ?) 
          (<32,0,A>, B) (<32,0,B>, B) (<32,0,C>, 0) (<32,0,D>, 0) (<32,0,E>, E) 
          (<33,0,A>, B) (<33,0,B>, B) (<33,0,C>, 0) (<33,0,D>, 0) (<33,0,E>, E) 
          (<34,0,A>, B) (<34,0,B>, B) (<34,0,C>, 0) (<34,0,D>, B) (<34,0,E>, 0) 
          (<35,0,A>, ?) (<35,0,B>, B) (<35,0,C>, ?) (<35,0,D>, ?) (<35,0,E>, ?) 
          (<36,0,A>, ?) (<36,0,B>, B) (<36,0,C>, ?) (<36,0,D>, ?) (<36,0,E>, ?) 
          (<37,0,A>, ?) (<37,0,B>, B) (<37,0,C>, ?) (<37,0,D>, ?) (<37,0,E>, ?) 
          (<38,0,A>, ?) (<38,0,B>, B) (<38,0,C>, ?) (<38,0,D>, ?) (<38,0,E>, ?) 
          (<39,0,A>, ?) (<39,0,B>, B) (<39,0,C>, ?) (<39,0,D>, ?) (<39,0,E>, ?) 
          (<40,0,A>, ?) (<40,0,B>, B) (<40,0,C>, ?) (<40,0,D>, ?) (<40,0,E>, ?) 
          (<41,0,A>, ?) (<41,0,B>, B) (<41,0,C>, ?) (<41,0,D>, ?) (<41,0,E>, ?) 
          (<42,0,A>, ?) (<42,0,B>, B) (<42,0,C>, ?) (<42,0,D>, ?) (<42,0,E>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalfbb2in) = 1 + x1
          p(evalfbb3in) = 1 + x1
          p(evalfbb5in) = 1 + x1
          p(evalfbb6in) = 1 + x4
          p(evalfbb7in) = 2 + x1
          p(evalfstart) = 1 + x2
        
        The following rules are strictly oriented:
                                                 [A >= 0 && C >= 0] ==>                           
                                              evalfbb7in(A,B,C,D,E)   = 2 + A                     
                                                                      > 1 + A                     
                                                                      = evalfbb6in(A,B,C,A,C)     
        
                    [A >= 0 && C >= 0 && 0 >= 1 + F$ && C >= 1 + B] ==>                           
                                              evalfbb7in(A,B,C,D,E)   = 2 + A                     
                                                                      > A                         
                                                                      = evalfbb6in(A,B,C,-1 + A,C)
        
        [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && 0 >= 1 + F$$] ==>                           
                                              evalfbb7in(A,B,C,D,E)   = 2 + A                     
                                                                      > 1 + A                     
                                                                      = evalfbb2in(A,B,C,C,E)     
        
            [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && F$$ >= 1] ==>                           
                                              evalfbb7in(A,B,C,D,E)   = 2 + A                     
                                                                      > 1 + A                     
                                                                      = evalfbb2in(A,B,C,C,E)     
        
                        [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C] ==>                           
                                              evalfbb7in(A,B,C,D,E)   = 2 + A                     
                                                                      > 1 + A                     
                                                                      = evalfbb5in(A,B,C,C,E)     
        
                        [A >= 0 && C >= 0 && F$ >= 1 && C >= 1 + B] ==>                           
                                              evalfbb7in(A,B,C,D,E)   = 2 + A                     
                                                                      > A                         
                                                                      = evalfbb6in(A,B,C,-1 + A,C)
        
            [A >= 0 && C >= 0 && F$ >= 1 && B >= C && 0 >= 1 + F$$] ==>                           
                                              evalfbb7in(A,B,C,D,E)   = 2 + A                     
                                                                      > 1 + A                     
                                                                      = evalfbb2in(A,B,C,C,E)     
        
        
        The following rules are weakly oriented:
                                               [D >= 1 + B] ==>                                     
                                      evalfbb3in(A,B,C,D,E)   = 1 + A                               
                                                             >= A                                   
                                                              = evalfbb6in(A,B,C,-1 + A,D)          
        
                                    [B >= D && 0 >= 1 + F$] ==>                                     
                                      evalfbb3in(A,B,C,D,E)   = 1 + A                               
                                                             >= 1 + A                               
                                                              = evalfbb2in(A,B,C,D,E)               
        
                                        [B >= D && F$ >= 1] ==>                                     
                                      evalfbb3in(A,B,C,D,E)   = 1 + A                               
                                                             >= 1 + A                               
                                                              = evalfbb2in(A,B,C,D,E)               
        
                                                   [B >= D] ==>                                     
                                      evalfbb3in(A,B,C,D,E)   = 1 + A                               
                                                             >= 1 + A                               
                                                              = evalfbb5in(A,B,C,D,E)               
        
                                           [1 + D >= 1 + B] ==>                                     
                                      evalfbb2in(A,B,C,D,E)   = 1 + A                               
                                                             >= A                                   
                                                              = evalfbb6in(A,B,C,-1 + A,1 + D)      
        
                               [B >= 1 + D && 0 >= 1 + F$$] ==>                                     
                                      evalfbb2in(A,B,C,D,E)   = 1 + A                               
                                                             >= 1 + A                               
                                                              = evalfbb2in(A,B,C,1 + D,E)           
        
                                   [B >= 1 + D && F$$ >= 1] ==>                                     
                                      evalfbb2in(A,B,C,D,E)   = 1 + A                               
                                                             >= 1 + A                               
                                                              = evalfbb2in(A,B,C,1 + D,E)           
        
                                               [B >= 1 + D] ==>                                     
                                      evalfbb2in(A,B,C,D,E)   = 1 + A                               
                                                             >= 1 + A                               
                                                              = evalfbb5in(A,B,C,1 + D,E)           
        
                                                       True ==>                                     
                                      evalfbb5in(A,B,C,D,E)   = 1 + A                               
                                                             >= 1 + A                               
                                                              = evalfbb7in(-1 + A,B,-1 + D,-1 + A,D)
        
                    [D >= 0 && -1 + E >= 0 && 0 >= 1 + F$$] ==>                                     
                                      evalfbb6in(A,B,C,D,E)   = 1 + D                               
                                                             >= 1 + D                               
                                                              = evalfbb3in(D,B,-1 + E,-1 + E,E)     
        
                        [D >= 0 && -1 + E >= 0 && F$$ >= 1] ==>                                     
                                      evalfbb6in(A,B,C,D,E)   = 1 + D                               
                                                             >= 1 + D                               
                                                              = evalfbb3in(D,B,-1 + E,-1 + E,E)     
        
                                    [D >= 0 && -1 + E >= 0] ==>                                     
                                      evalfbb6in(A,B,C,D,E)   = 1 + D                               
                                                             >= 1 + D                               
                                                              = evalfbb6in(D,B,-1 + E,D,-1 + E)     
        
                         [B >= 0 && 0 >= 0 && 0 >= 1 + F$$] ==>                                     
                                      evalfstart(A,B,C,D,E)   = 1 + B                               
                                                             >= 1 + B                               
                                                              = evalfbb3in(B,B,0,0,E)               
        
                             [B >= 0 && 0 >= 0 && F$$ >= 1] ==>                                     
                                      evalfstart(A,B,C,D,E)   = 1 + B                               
                                                             >= 1 + B                               
                                                              = evalfbb3in(B,B,0,0,E)               
        
                                         [B >= 0 && 0 >= 0] ==>                                     
                                      evalfstart(A,B,C,D,E)   = 1 + B                               
                                                             >= 1 + B                               
                                                              = evalfbb6in(B,B,0,B,0)               
        
        [A >= 0 && C >= 0 && F$ >= 1 && B >= C && F$$ >= 1] ==>                                     
                                      evalfbb7in(A,B,C,D,E)   = 2 + A                               
                                                             >= 1 + A                               
                                                              = evalfbb2in(A,B,C,C,E)               
        
                    [A >= 0 && C >= 0 && F$ >= 1 && B >= C] ==>                                     
                                      evalfbb7in(A,B,C,D,E)   = 2 + A                               
                                                             >= 1 + A                               
                                                              = evalfbb5in(A,B,C,C,E)               
        
        
* Step 34: PolyRank WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          19. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,A,C)                [A >= 0 && C >= 0]                                          (1 + B,2)
          20. evalfbb3in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,D)           [D >= 1 + B]                                                (?,2)    
          21. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)                [B >= D && 0 >= 1 + F$]                                     (?,2)    
          22. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)                [B >= D && F$ >= 1]                                         (?,2)    
          23. evalfbb3in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E)                [B >= D]                                                    (?,2)    
          24. evalfbb2in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,1 + D)       [1 + D >= 1 + B]                                            (?,3)    
          25. evalfbb2in(A,B,C,D,E) -> evalfbb2in(A,B,C,1 + D,E)            [B >= 1 + D && 0 >= 1 + F$$]                                (?,3)    
          26. evalfbb2in(A,B,C,D,E) -> evalfbb2in(A,B,C,1 + D,E)            [B >= 1 + D && F$$ >= 1]                                    (?,3)    
          27. evalfbb2in(A,B,C,D,E) -> evalfbb5in(A,B,C,1 + D,E)            [B >= 1 + D]                                                (?,3)    
          28. evalfbb5in(A,B,C,D,E) -> evalfbb7in(-1 + A,B,-1 + D,-1 + A,D) True                                                        (?,2)    
          29. evalfbb6in(A,B,C,D,E) -> evalfbb3in(D,B,-1 + E,-1 + E,E)      [D >= 0 && -1 + E >= 0 && 0 >= 1 + F$$]                     (1 + B,3)
          30. evalfbb6in(A,B,C,D,E) -> evalfbb3in(D,B,-1 + E,-1 + E,E)      [D >= 0 && -1 + E >= 0 && F$$ >= 1]                         (1 + B,3)
          31. evalfbb6in(A,B,C,D,E) -> evalfbb6in(D,B,-1 + E,D,-1 + E)      [D >= 0 && -1 + E >= 0]                                     (?,3)    
          32. evalfstart(A,B,C,D,E) -> evalfbb3in(B,B,0,0,E)                [B >= 0 && 0 >= 0 && 0 >= 1 + F$$]                          (1,4)    
          33. evalfstart(A,B,C,D,E) -> evalfbb3in(B,B,0,0,E)                [B >= 0 && 0 >= 0 && F$$ >= 1]                              (1,4)    
          34. evalfstart(A,B,C,D,E) -> evalfbb6in(B,B,0,B,0)                [B >= 0 && 0 >= 0]                                          (1,4)    
          35. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,C)           [A >= 0 && C >= 0 && 0 >= 1 + F$ && C >= 1 + B]             (1 + B,4)
          36. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && 0 >= 1 + F$$] (1 + B,4)
          37. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && F$$ >= 1]     (1 + B,4)
          38. evalfbb7in(A,B,C,D,E) -> evalfbb5in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C]                 (B,4)    
          39. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,C)           [A >= 0 && C >= 0 && F$ >= 1 && C >= 1 + B]                 (B,4)    
          40. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C && 0 >= 1 + F$$]     (B,4)    
          41. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C && F$$ >= 1]         (B,4)    
          42. evalfbb7in(A,B,C,D,E) -> evalfbb5in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C]                     (B,4)    
        Signature:
          {(evalfbb2in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbbin,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [19->{29,30,31},20->{29,30,31},21->{24,25,26,27},22->{24,25,26,27},23->{28},24->{29,30,31},25->{24,25,26
          ,27},26->{24,25,26,27},27->{28},28->{19,35,36,37,38,39,40,41,42},29->{20,21,22,23},30->{20,21,22,23},31->{29
          ,30,31},32->{21,22,23},33->{21,22,23},34->{},35->{29,30,31},36->{24,25,26,27},37->{24,25,26,27},38->{28}
          ,39->{29,30,31},40->{24,25,26,27},41->{24,25,26,27},42->{28}]
        Sizebounds:
          (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) 
          (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) 
          (<21,0,A>, ?) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, B) (<21,0,E>, ?) 
          (<22,0,A>, ?) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, B) (<22,0,E>, ?) 
          (<23,0,A>, ?) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, B) (<23,0,E>, ?) 
          (<24,0,A>, ?) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, ?) (<24,0,E>, ?) 
          (<25,0,A>, ?) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, B) (<25,0,E>, ?) 
          (<26,0,A>, ?) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, B) (<26,0,E>, ?) 
          (<27,0,A>, ?) (<27,0,B>, B) (<27,0,C>, ?) (<27,0,D>, B) (<27,0,E>, ?) 
          (<28,0,A>, ?) (<28,0,B>, B) (<28,0,C>, ?) (<28,0,D>, ?) (<28,0,E>, ?) 
          (<29,0,A>, ?) (<29,0,B>, B) (<29,0,C>, ?) (<29,0,D>, ?) (<29,0,E>, ?) 
          (<30,0,A>, ?) (<30,0,B>, B) (<30,0,C>, ?) (<30,0,D>, ?) (<30,0,E>, ?) 
          (<31,0,A>, ?) (<31,0,B>, B) (<31,0,C>, ?) (<31,0,D>, ?) (<31,0,E>, ?) 
          (<32,0,A>, B) (<32,0,B>, B) (<32,0,C>, 0) (<32,0,D>, 0) (<32,0,E>, E) 
          (<33,0,A>, B) (<33,0,B>, B) (<33,0,C>, 0) (<33,0,D>, 0) (<33,0,E>, E) 
          (<34,0,A>, B) (<34,0,B>, B) (<34,0,C>, 0) (<34,0,D>, B) (<34,0,E>, 0) 
          (<35,0,A>, ?) (<35,0,B>, B) (<35,0,C>, ?) (<35,0,D>, ?) (<35,0,E>, ?) 
          (<36,0,A>, ?) (<36,0,B>, B) (<36,0,C>, ?) (<36,0,D>, ?) (<36,0,E>, ?) 
          (<37,0,A>, ?) (<37,0,B>, B) (<37,0,C>, ?) (<37,0,D>, ?) (<37,0,E>, ?) 
          (<38,0,A>, ?) (<38,0,B>, B) (<38,0,C>, ?) (<38,0,D>, ?) (<38,0,E>, ?) 
          (<39,0,A>, ?) (<39,0,B>, B) (<39,0,C>, ?) (<39,0,D>, ?) (<39,0,E>, ?) 
          (<40,0,A>, ?) (<40,0,B>, B) (<40,0,C>, ?) (<40,0,D>, ?) (<40,0,E>, ?) 
          (<41,0,A>, ?) (<41,0,B>, B) (<41,0,C>, ?) (<41,0,D>, ?) (<41,0,E>, ?) 
          (<42,0,A>, ?) (<42,0,B>, B) (<42,0,C>, ?) (<42,0,D>, ?) (<42,0,E>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [19,28,23,20,24,21,22,25,26,36,37,40,41,31,35,39,27,38,42], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalfbb2in) = 1
          p(evalfbb3in) = 1
          p(evalfbb5in) = 1
          p(evalfbb6in) = 0
          p(evalfbb7in) = 1
        
        The following rules are strictly oriented:
                                     [A >= 0 && C >= 0] ==>                               
                                  evalfbb7in(A,B,C,D,E)   = 1                             
                                                          > 0                             
                                                          = evalfbb6in(A,B,C,A,C)         
        
                                       [1 + D >= 1 + B] ==>                               
                                  evalfbb2in(A,B,C,D,E)   = 1                             
                                                          > 0                             
                                                          = evalfbb6in(A,B,C,-1 + A,1 + D)
        
        [A >= 0 && C >= 0 && 0 >= 1 + F$ && C >= 1 + B] ==>                               
                                  evalfbb7in(A,B,C,D,E)   = 1                             
                                                          > 0                             
                                                          = evalfbb6in(A,B,C,-1 + A,C)    
        
            [A >= 0 && C >= 0 && F$ >= 1 && C >= 1 + B] ==>                               
                                  evalfbb7in(A,B,C,D,E)   = 1                             
                                                          > 0                             
                                                          = evalfbb6in(A,B,C,-1 + A,C)    
        
        
        The following rules are weakly oriented:
                                                       [D >= 1 + B] ==>                                     
                                              evalfbb3in(A,B,C,D,E)   = 1                                   
                                                                     >= 0                                   
                                                                      = evalfbb6in(A,B,C,-1 + A,D)          
        
                                            [B >= D && 0 >= 1 + F$] ==>                                     
                                              evalfbb3in(A,B,C,D,E)   = 1                                   
                                                                     >= 1                                   
                                                                      = evalfbb2in(A,B,C,D,E)               
        
                                                [B >= D && F$ >= 1] ==>                                     
                                              evalfbb3in(A,B,C,D,E)   = 1                                   
                                                                     >= 1                                   
                                                                      = evalfbb2in(A,B,C,D,E)               
        
                                                           [B >= D] ==>                                     
                                              evalfbb3in(A,B,C,D,E)   = 1                                   
                                                                     >= 1                                   
                                                                      = evalfbb5in(A,B,C,D,E)               
        
                                       [B >= 1 + D && 0 >= 1 + F$$] ==>                                     
                                              evalfbb2in(A,B,C,D,E)   = 1                                   
                                                                     >= 1                                   
                                                                      = evalfbb2in(A,B,C,1 + D,E)           
        
                                           [B >= 1 + D && F$$ >= 1] ==>                                     
                                              evalfbb2in(A,B,C,D,E)   = 1                                   
                                                                     >= 1                                   
                                                                      = evalfbb2in(A,B,C,1 + D,E)           
        
                                                       [B >= 1 + D] ==>                                     
                                              evalfbb2in(A,B,C,D,E)   = 1                                   
                                                                     >= 1                                   
                                                                      = evalfbb5in(A,B,C,1 + D,E)           
        
                                                               True ==>                                     
                                              evalfbb5in(A,B,C,D,E)   = 1                                   
                                                                     >= 1                                   
                                                                      = evalfbb7in(-1 + A,B,-1 + D,-1 + A,D)
        
                                            [D >= 0 && -1 + E >= 0] ==>                                     
                                              evalfbb6in(A,B,C,D,E)   = 0                                   
                                                                     >= 0                                   
                                                                      = evalfbb6in(D,B,-1 + E,D,-1 + E)     
        
        [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && 0 >= 1 + F$$] ==>                                     
                                              evalfbb7in(A,B,C,D,E)   = 1                                   
                                                                     >= 1                                   
                                                                      = evalfbb2in(A,B,C,C,E)               
        
            [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && F$$ >= 1] ==>                                     
                                              evalfbb7in(A,B,C,D,E)   = 1                                   
                                                                     >= 1                                   
                                                                      = evalfbb2in(A,B,C,C,E)               
        
                        [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C] ==>                                     
                                              evalfbb7in(A,B,C,D,E)   = 1                                   
                                                                     >= 1                                   
                                                                      = evalfbb5in(A,B,C,C,E)               
        
            [A >= 0 && C >= 0 && F$ >= 1 && B >= C && 0 >= 1 + F$$] ==>                                     
                                              evalfbb7in(A,B,C,D,E)   = 1                                   
                                                                     >= 1                                   
                                                                      = evalfbb2in(A,B,C,C,E)               
        
                [A >= 0 && C >= 0 && F$ >= 1 && B >= C && F$$ >= 1] ==>                                     
                                              evalfbb7in(A,B,C,D,E)   = 1                                   
                                                                     >= 1                                   
                                                                      = evalfbb2in(A,B,C,C,E)               
        
                            [A >= 0 && C >= 0 && F$ >= 1 && B >= C] ==>                                     
                                              evalfbb7in(A,B,C,D,E)   = 1                                   
                                                                     >= 1                                   
                                                                      = evalfbb5in(A,B,C,C,E)               
        
        We use the following global sizebounds:
        (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) 
        (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) 
        (<21,0,A>, ?) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, B) (<21,0,E>, ?) 
        (<22,0,A>, ?) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, B) (<22,0,E>, ?) 
        (<23,0,A>, ?) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, B) (<23,0,E>, ?) 
        (<24,0,A>, ?) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, ?) (<24,0,E>, ?) 
        (<25,0,A>, ?) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, B) (<25,0,E>, ?) 
        (<26,0,A>, ?) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, B) (<26,0,E>, ?) 
        (<27,0,A>, ?) (<27,0,B>, B) (<27,0,C>, ?) (<27,0,D>, B) (<27,0,E>, ?) 
        (<28,0,A>, ?) (<28,0,B>, B) (<28,0,C>, ?) (<28,0,D>, ?) (<28,0,E>, ?) 
        (<29,0,A>, ?) (<29,0,B>, B) (<29,0,C>, ?) (<29,0,D>, ?) (<29,0,E>, ?) 
        (<30,0,A>, ?) (<30,0,B>, B) (<30,0,C>, ?) (<30,0,D>, ?) (<30,0,E>, ?) 
        (<31,0,A>, ?) (<31,0,B>, B) (<31,0,C>, ?) (<31,0,D>, ?) (<31,0,E>, ?) 
        (<32,0,A>, B) (<32,0,B>, B) (<32,0,C>, 0) (<32,0,D>, 0) (<32,0,E>, E) 
        (<33,0,A>, B) (<33,0,B>, B) (<33,0,C>, 0) (<33,0,D>, 0) (<33,0,E>, E) 
        (<34,0,A>, B) (<34,0,B>, B) (<34,0,C>, 0) (<34,0,D>, B) (<34,0,E>, 0) 
        (<35,0,A>, ?) (<35,0,B>, B) (<35,0,C>, ?) (<35,0,D>, ?) (<35,0,E>, ?) 
        (<36,0,A>, ?) (<36,0,B>, B) (<36,0,C>, ?) (<36,0,D>, ?) (<36,0,E>, ?) 
        (<37,0,A>, ?) (<37,0,B>, B) (<37,0,C>, ?) (<37,0,D>, ?) (<37,0,E>, ?) 
        (<38,0,A>, ?) (<38,0,B>, B) (<38,0,C>, ?) (<38,0,D>, ?) (<38,0,E>, ?) 
        (<39,0,A>, ?) (<39,0,B>, B) (<39,0,C>, ?) (<39,0,D>, ?) (<39,0,E>, ?) 
        (<40,0,A>, ?) (<40,0,B>, B) (<40,0,C>, ?) (<40,0,D>, ?) (<40,0,E>, ?) 
        (<41,0,A>, ?) (<41,0,B>, B) (<41,0,C>, ?) (<41,0,D>, ?) (<41,0,E>, ?) 
        (<42,0,A>, ?) (<42,0,B>, B) (<42,0,C>, ?) (<42,0,D>, ?) (<42,0,E>, ?) 
* Step 35: KnowledgePropagation WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          19. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,A,C)                [A >= 0 && C >= 0]                                          (1 + B,2)  
          20. evalfbb3in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,D)           [D >= 1 + B]                                                (?,2)      
          21. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)                [B >= D && 0 >= 1 + F$]                                     (?,2)      
          22. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)                [B >= D && F$ >= 1]                                         (?,2)      
          23. evalfbb3in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E)                [B >= D]                                                    (?,2)      
          24. evalfbb2in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,1 + D)       [1 + D >= 1 + B]                                            (4 + 2*B,3)
          25. evalfbb2in(A,B,C,D,E) -> evalfbb2in(A,B,C,1 + D,E)            [B >= 1 + D && 0 >= 1 + F$$]                                (?,3)      
          26. evalfbb2in(A,B,C,D,E) -> evalfbb2in(A,B,C,1 + D,E)            [B >= 1 + D && F$$ >= 1]                                    (?,3)      
          27. evalfbb2in(A,B,C,D,E) -> evalfbb5in(A,B,C,1 + D,E)            [B >= 1 + D]                                                (?,3)      
          28. evalfbb5in(A,B,C,D,E) -> evalfbb7in(-1 + A,B,-1 + D,-1 + A,D) True                                                        (?,2)      
          29. evalfbb6in(A,B,C,D,E) -> evalfbb3in(D,B,-1 + E,-1 + E,E)      [D >= 0 && -1 + E >= 0 && 0 >= 1 + F$$]                     (1 + B,3)  
          30. evalfbb6in(A,B,C,D,E) -> evalfbb3in(D,B,-1 + E,-1 + E,E)      [D >= 0 && -1 + E >= 0 && F$$ >= 1]                         (1 + B,3)  
          31. evalfbb6in(A,B,C,D,E) -> evalfbb6in(D,B,-1 + E,D,-1 + E)      [D >= 0 && -1 + E >= 0]                                     (?,3)      
          32. evalfstart(A,B,C,D,E) -> evalfbb3in(B,B,0,0,E)                [B >= 0 && 0 >= 0 && 0 >= 1 + F$$]                          (1,4)      
          33. evalfstart(A,B,C,D,E) -> evalfbb3in(B,B,0,0,E)                [B >= 0 && 0 >= 0 && F$$ >= 1]                              (1,4)      
          34. evalfstart(A,B,C,D,E) -> evalfbb6in(B,B,0,B,0)                [B >= 0 && 0 >= 0]                                          (1,4)      
          35. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,C)           [A >= 0 && C >= 0 && 0 >= 1 + F$ && C >= 1 + B]             (1 + B,4)  
          36. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && 0 >= 1 + F$$] (1 + B,4)  
          37. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && F$$ >= 1]     (1 + B,4)  
          38. evalfbb7in(A,B,C,D,E) -> evalfbb5in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C]                 (B,4)      
          39. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,C)           [A >= 0 && C >= 0 && F$ >= 1 && C >= 1 + B]                 (B,4)      
          40. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C && 0 >= 1 + F$$]     (B,4)      
          41. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C && F$$ >= 1]         (B,4)      
          42. evalfbb7in(A,B,C,D,E) -> evalfbb5in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C]                     (B,4)      
        Signature:
          {(evalfbb2in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbbin,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [19->{29,30,31},20->{29,30,31},21->{24,25,26,27},22->{24,25,26,27},23->{28},24->{29,30,31},25->{24,25,26
          ,27},26->{24,25,26,27},27->{28},28->{19,35,36,37,38,39,40,41,42},29->{20,21,22,23},30->{20,21,22,23},31->{29
          ,30,31},32->{21,22,23},33->{21,22,23},34->{},35->{29,30,31},36->{24,25,26,27},37->{24,25,26,27},38->{28}
          ,39->{29,30,31},40->{24,25,26,27},41->{24,25,26,27},42->{28}]
        Sizebounds:
          (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) 
          (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) 
          (<21,0,A>, ?) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, B) (<21,0,E>, ?) 
          (<22,0,A>, ?) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, B) (<22,0,E>, ?) 
          (<23,0,A>, ?) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, B) (<23,0,E>, ?) 
          (<24,0,A>, ?) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, ?) (<24,0,E>, ?) 
          (<25,0,A>, ?) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, B) (<25,0,E>, ?) 
          (<26,0,A>, ?) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, B) (<26,0,E>, ?) 
          (<27,0,A>, ?) (<27,0,B>, B) (<27,0,C>, ?) (<27,0,D>, B) (<27,0,E>, ?) 
          (<28,0,A>, ?) (<28,0,B>, B) (<28,0,C>, ?) (<28,0,D>, ?) (<28,0,E>, ?) 
          (<29,0,A>, ?) (<29,0,B>, B) (<29,0,C>, ?) (<29,0,D>, ?) (<29,0,E>, ?) 
          (<30,0,A>, ?) (<30,0,B>, B) (<30,0,C>, ?) (<30,0,D>, ?) (<30,0,E>, ?) 
          (<31,0,A>, ?) (<31,0,B>, B) (<31,0,C>, ?) (<31,0,D>, ?) (<31,0,E>, ?) 
          (<32,0,A>, B) (<32,0,B>, B) (<32,0,C>, 0) (<32,0,D>, 0) (<32,0,E>, E) 
          (<33,0,A>, B) (<33,0,B>, B) (<33,0,C>, 0) (<33,0,D>, 0) (<33,0,E>, E) 
          (<34,0,A>, B) (<34,0,B>, B) (<34,0,C>, 0) (<34,0,D>, B) (<34,0,E>, 0) 
          (<35,0,A>, ?) (<35,0,B>, B) (<35,0,C>, ?) (<35,0,D>, ?) (<35,0,E>, ?) 
          (<36,0,A>, ?) (<36,0,B>, B) (<36,0,C>, ?) (<36,0,D>, ?) (<36,0,E>, ?) 
          (<37,0,A>, ?) (<37,0,B>, B) (<37,0,C>, ?) (<37,0,D>, ?) (<37,0,E>, ?) 
          (<38,0,A>, ?) (<38,0,B>, B) (<38,0,C>, ?) (<38,0,D>, ?) (<38,0,E>, ?) 
          (<39,0,A>, ?) (<39,0,B>, B) (<39,0,C>, ?) (<39,0,D>, ?) (<39,0,E>, ?) 
          (<40,0,A>, ?) (<40,0,B>, B) (<40,0,C>, ?) (<40,0,D>, ?) (<40,0,E>, ?) 
          (<41,0,A>, ?) (<41,0,B>, B) (<41,0,C>, ?) (<41,0,D>, ?) (<41,0,E>, ?) 
          (<42,0,A>, ?) (<42,0,B>, B) (<42,0,C>, ?) (<42,0,D>, ?) (<42,0,E>, ?) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 36: PolyRank WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          19. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,A,C)                [A >= 0 && C >= 0]                                          (1 + B,2)  
          20. evalfbb3in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,D)           [D >= 1 + B]                                                (2 + 2*B,2)
          21. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)                [B >= D && 0 >= 1 + F$]                                     (4 + 2*B,2)
          22. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)                [B >= D && F$ >= 1]                                         (4 + 2*B,2)
          23. evalfbb3in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E)                [B >= D]                                                    (4 + 2*B,2)
          24. evalfbb2in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,1 + D)       [1 + D >= 1 + B]                                            (4 + 2*B,3)
          25. evalfbb2in(A,B,C,D,E) -> evalfbb2in(A,B,C,1 + D,E)            [B >= 1 + D && 0 >= 1 + F$$]                                (?,3)      
          26. evalfbb2in(A,B,C,D,E) -> evalfbb2in(A,B,C,1 + D,E)            [B >= 1 + D && F$$ >= 1]                                    (?,3)      
          27. evalfbb2in(A,B,C,D,E) -> evalfbb5in(A,B,C,1 + D,E)            [B >= 1 + D]                                                (?,3)      
          28. evalfbb5in(A,B,C,D,E) -> evalfbb7in(-1 + A,B,-1 + D,-1 + A,D) True                                                        (?,2)      
          29. evalfbb6in(A,B,C,D,E) -> evalfbb3in(D,B,-1 + E,-1 + E,E)      [D >= 0 && -1 + E >= 0 && 0 >= 1 + F$$]                     (1 + B,3)  
          30. evalfbb6in(A,B,C,D,E) -> evalfbb3in(D,B,-1 + E,-1 + E,E)      [D >= 0 && -1 + E >= 0 && F$$ >= 1]                         (1 + B,3)  
          31. evalfbb6in(A,B,C,D,E) -> evalfbb6in(D,B,-1 + E,D,-1 + E)      [D >= 0 && -1 + E >= 0]                                     (?,3)      
          32. evalfstart(A,B,C,D,E) -> evalfbb3in(B,B,0,0,E)                [B >= 0 && 0 >= 0 && 0 >= 1 + F$$]                          (1,4)      
          33. evalfstart(A,B,C,D,E) -> evalfbb3in(B,B,0,0,E)                [B >= 0 && 0 >= 0 && F$$ >= 1]                              (1,4)      
          34. evalfstart(A,B,C,D,E) -> evalfbb6in(B,B,0,B,0)                [B >= 0 && 0 >= 0]                                          (1,4)      
          35. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,C)           [A >= 0 && C >= 0 && 0 >= 1 + F$ && C >= 1 + B]             (1 + B,4)  
          36. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && 0 >= 1 + F$$] (1 + B,4)  
          37. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && F$$ >= 1]     (1 + B,4)  
          38. evalfbb7in(A,B,C,D,E) -> evalfbb5in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C]                 (B,4)      
          39. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,C)           [A >= 0 && C >= 0 && F$ >= 1 && C >= 1 + B]                 (B,4)      
          40. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C && 0 >= 1 + F$$]     (B,4)      
          41. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C && F$$ >= 1]         (B,4)      
          42. evalfbb7in(A,B,C,D,E) -> evalfbb5in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C]                     (B,4)      
        Signature:
          {(evalfbb2in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbbin,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [19->{29,30,31},20->{29,30,31},21->{24,25,26,27},22->{24,25,26,27},23->{28},24->{29,30,31},25->{24,25,26
          ,27},26->{24,25,26,27},27->{28},28->{19,35,36,37,38,39,40,41,42},29->{20,21,22,23},30->{20,21,22,23},31->{29
          ,30,31},32->{21,22,23},33->{21,22,23},34->{},35->{29,30,31},36->{24,25,26,27},37->{24,25,26,27},38->{28}
          ,39->{29,30,31},40->{24,25,26,27},41->{24,25,26,27},42->{28}]
        Sizebounds:
          (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) 
          (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) 
          (<21,0,A>, ?) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, B) (<21,0,E>, ?) 
          (<22,0,A>, ?) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, B) (<22,0,E>, ?) 
          (<23,0,A>, ?) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, B) (<23,0,E>, ?) 
          (<24,0,A>, ?) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, ?) (<24,0,E>, ?) 
          (<25,0,A>, ?) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, B) (<25,0,E>, ?) 
          (<26,0,A>, ?) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, B) (<26,0,E>, ?) 
          (<27,0,A>, ?) (<27,0,B>, B) (<27,0,C>, ?) (<27,0,D>, B) (<27,0,E>, ?) 
          (<28,0,A>, ?) (<28,0,B>, B) (<28,0,C>, ?) (<28,0,D>, ?) (<28,0,E>, ?) 
          (<29,0,A>, ?) (<29,0,B>, B) (<29,0,C>, ?) (<29,0,D>, ?) (<29,0,E>, ?) 
          (<30,0,A>, ?) (<30,0,B>, B) (<30,0,C>, ?) (<30,0,D>, ?) (<30,0,E>, ?) 
          (<31,0,A>, ?) (<31,0,B>, B) (<31,0,C>, ?) (<31,0,D>, ?) (<31,0,E>, ?) 
          (<32,0,A>, B) (<32,0,B>, B) (<32,0,C>, 0) (<32,0,D>, 0) (<32,0,E>, E) 
          (<33,0,A>, B) (<33,0,B>, B) (<33,0,C>, 0) (<33,0,D>, 0) (<33,0,E>, E) 
          (<34,0,A>, B) (<34,0,B>, B) (<34,0,C>, 0) (<34,0,D>, B) (<34,0,E>, 0) 
          (<35,0,A>, ?) (<35,0,B>, B) (<35,0,C>, ?) (<35,0,D>, ?) (<35,0,E>, ?) 
          (<36,0,A>, ?) (<36,0,B>, B) (<36,0,C>, ?) (<36,0,D>, ?) (<36,0,E>, ?) 
          (<37,0,A>, ?) (<37,0,B>, B) (<37,0,C>, ?) (<37,0,D>, ?) (<37,0,E>, ?) 
          (<38,0,A>, ?) (<38,0,B>, B) (<38,0,C>, ?) (<38,0,D>, ?) (<38,0,E>, ?) 
          (<39,0,A>, ?) (<39,0,B>, B) (<39,0,C>, ?) (<39,0,D>, ?) (<39,0,E>, ?) 
          (<40,0,A>, ?) (<40,0,B>, B) (<40,0,C>, ?) (<40,0,D>, ?) (<40,0,E>, ?) 
          (<41,0,A>, ?) (<41,0,B>, B) (<41,0,C>, ?) (<41,0,D>, ?) (<41,0,E>, ?) 
          (<42,0,A>, ?) (<42,0,B>, B) (<42,0,C>, ?) (<42,0,D>, ?) (<42,0,E>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [28,23,29,20,30,24,21,22,25,26,31,35,39,27,38,42], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalfbb2in) = 1         
          p(evalfbb3in) = 1         
          p(evalfbb5in) = -1*x2 + x4
          p(evalfbb6in) = 1         
          p(evalfbb7in) = -1*x2 + x3
        
        The following rules are strictly oriented:
                   [B >= 1 + D] ==>                          
          evalfbb2in(A,B,C,D,E)   = 1                        
                                  > 1 + -1*B + D             
                                  = evalfbb5in(A,B,C,1 + D,E)
        
        
        The following rules are weakly oriented:
                                           [D >= 1 + B] ==>                                     
                                  evalfbb3in(A,B,C,D,E)   = 1                                   
                                                         >= 1                                   
                                                          = evalfbb6in(A,B,C,-1 + A,D)          
        
                                [B >= D && 0 >= 1 + F$] ==>                                     
                                  evalfbb3in(A,B,C,D,E)   = 1                                   
                                                         >= 1                                   
                                                          = evalfbb2in(A,B,C,D,E)               
        
                                    [B >= D && F$ >= 1] ==>                                     
                                  evalfbb3in(A,B,C,D,E)   = 1                                   
                                                         >= 1                                   
                                                          = evalfbb2in(A,B,C,D,E)               
        
                                               [B >= D] ==>                                     
                                  evalfbb3in(A,B,C,D,E)   = 1                                   
                                                         >= -1*B + D                            
                                                          = evalfbb5in(A,B,C,D,E)               
        
                                       [1 + D >= 1 + B] ==>                                     
                                  evalfbb2in(A,B,C,D,E)   = 1                                   
                                                         >= 1                                   
                                                          = evalfbb6in(A,B,C,-1 + A,1 + D)      
        
                           [B >= 1 + D && 0 >= 1 + F$$] ==>                                     
                                  evalfbb2in(A,B,C,D,E)   = 1                                   
                                                         >= 1                                   
                                                          = evalfbb2in(A,B,C,1 + D,E)           
        
                               [B >= 1 + D && F$$ >= 1] ==>                                     
                                  evalfbb2in(A,B,C,D,E)   = 1                                   
                                                         >= 1                                   
                                                          = evalfbb2in(A,B,C,1 + D,E)           
        
                                                   True ==>                                     
                                  evalfbb5in(A,B,C,D,E)   = -1*B + D                            
                                                         >= -1 + -1*B + D                       
                                                          = evalfbb7in(-1 + A,B,-1 + D,-1 + A,D)
        
                [D >= 0 && -1 + E >= 0 && 0 >= 1 + F$$] ==>                                     
                                  evalfbb6in(A,B,C,D,E)   = 1                                   
                                                         >= 1                                   
                                                          = evalfbb3in(D,B,-1 + E,-1 + E,E)     
        
                    [D >= 0 && -1 + E >= 0 && F$$ >= 1] ==>                                     
                                  evalfbb6in(A,B,C,D,E)   = 1                                   
                                                         >= 1                                   
                                                          = evalfbb3in(D,B,-1 + E,-1 + E,E)     
        
                                [D >= 0 && -1 + E >= 0] ==>                                     
                                  evalfbb6in(A,B,C,D,E)   = 1                                   
                                                         >= 1                                   
                                                          = evalfbb6in(D,B,-1 + E,D,-1 + E)     
        
        [A >= 0 && C >= 0 && 0 >= 1 + F$ && C >= 1 + B] ==>                                     
                                  evalfbb7in(A,B,C,D,E)   = -1*B + C                            
                                                         >= 1                                   
                                                          = evalfbb6in(A,B,C,-1 + A,C)          
        
            [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C] ==>                                     
                                  evalfbb7in(A,B,C,D,E)   = -1*B + C                            
                                                         >= -1*B + C                            
                                                          = evalfbb5in(A,B,C,C,E)               
        
            [A >= 0 && C >= 0 && F$ >= 1 && C >= 1 + B] ==>                                     
                                  evalfbb7in(A,B,C,D,E)   = -1*B + C                            
                                                         >= 1                                   
                                                          = evalfbb6in(A,B,C,-1 + A,C)          
        
                [A >= 0 && C >= 0 && F$ >= 1 && B >= C] ==>                                     
                                  evalfbb7in(A,B,C,D,E)   = -1*B + C                            
                                                         >= -1*B + C                            
                                                          = evalfbb5in(A,B,C,C,E)               
        
        We use the following global sizebounds:
        (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) 
        (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) 
        (<21,0,A>, ?) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, B) (<21,0,E>, ?) 
        (<22,0,A>, ?) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, B) (<22,0,E>, ?) 
        (<23,0,A>, ?) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, B) (<23,0,E>, ?) 
        (<24,0,A>, ?) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, ?) (<24,0,E>, ?) 
        (<25,0,A>, ?) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, B) (<25,0,E>, ?) 
        (<26,0,A>, ?) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, B) (<26,0,E>, ?) 
        (<27,0,A>, ?) (<27,0,B>, B) (<27,0,C>, ?) (<27,0,D>, B) (<27,0,E>, ?) 
        (<28,0,A>, ?) (<28,0,B>, B) (<28,0,C>, ?) (<28,0,D>, ?) (<28,0,E>, ?) 
        (<29,0,A>, ?) (<29,0,B>, B) (<29,0,C>, ?) (<29,0,D>, ?) (<29,0,E>, ?) 
        (<30,0,A>, ?) (<30,0,B>, B) (<30,0,C>, ?) (<30,0,D>, ?) (<30,0,E>, ?) 
        (<31,0,A>, ?) (<31,0,B>, B) (<31,0,C>, ?) (<31,0,D>, ?) (<31,0,E>, ?) 
        (<32,0,A>, B) (<32,0,B>, B) (<32,0,C>, 0) (<32,0,D>, 0) (<32,0,E>, E) 
        (<33,0,A>, B) (<33,0,B>, B) (<33,0,C>, 0) (<33,0,D>, 0) (<33,0,E>, E) 
        (<34,0,A>, B) (<34,0,B>, B) (<34,0,C>, 0) (<34,0,D>, B) (<34,0,E>, 0) 
        (<35,0,A>, ?) (<35,0,B>, B) (<35,0,C>, ?) (<35,0,D>, ?) (<35,0,E>, ?) 
        (<36,0,A>, ?) (<36,0,B>, B) (<36,0,C>, ?) (<36,0,D>, ?) (<36,0,E>, ?) 
        (<37,0,A>, ?) (<37,0,B>, B) (<37,0,C>, ?) (<37,0,D>, ?) (<37,0,E>, ?) 
        (<38,0,A>, ?) (<38,0,B>, B) (<38,0,C>, ?) (<38,0,D>, ?) (<38,0,E>, ?) 
        (<39,0,A>, ?) (<39,0,B>, B) (<39,0,C>, ?) (<39,0,D>, ?) (<39,0,E>, ?) 
        (<40,0,A>, ?) (<40,0,B>, B) (<40,0,C>, ?) (<40,0,D>, ?) (<40,0,E>, ?) 
        (<41,0,A>, ?) (<41,0,B>, B) (<41,0,C>, ?) (<41,0,D>, ?) (<41,0,E>, ?) 
        (<42,0,A>, ?) (<42,0,B>, B) (<42,0,C>, ?) (<42,0,D>, ?) (<42,0,E>, ?) 
* Step 37: KnowledgePropagation WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          19. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,A,C)                [A >= 0 && C >= 0]                                          (1 + B,2)  
          20. evalfbb3in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,D)           [D >= 1 + B]                                                (2 + 2*B,2)
          21. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)                [B >= D && 0 >= 1 + F$]                                     (4 + 2*B,2)
          22. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)                [B >= D && F$ >= 1]                                         (4 + 2*B,2)
          23. evalfbb3in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E)                [B >= D]                                                    (4 + 2*B,2)
          24. evalfbb2in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,1 + D)       [1 + D >= 1 + B]                                            (4 + 2*B,3)
          25. evalfbb2in(A,B,C,D,E) -> evalfbb2in(A,B,C,1 + D,E)            [B >= 1 + D && 0 >= 1 + F$$]                                (?,3)      
          26. evalfbb2in(A,B,C,D,E) -> evalfbb2in(A,B,C,1 + D,E)            [B >= 1 + D && F$$ >= 1]                                    (?,3)      
          27. evalfbb2in(A,B,C,D,E) -> evalfbb5in(A,B,C,1 + D,E)            [B >= 1 + D]                                                (5 + 5*B,3)
          28. evalfbb5in(A,B,C,D,E) -> evalfbb7in(-1 + A,B,-1 + D,-1 + A,D) True                                                        (?,2)      
          29. evalfbb6in(A,B,C,D,E) -> evalfbb3in(D,B,-1 + E,-1 + E,E)      [D >= 0 && -1 + E >= 0 && 0 >= 1 + F$$]                     (1 + B,3)  
          30. evalfbb6in(A,B,C,D,E) -> evalfbb3in(D,B,-1 + E,-1 + E,E)      [D >= 0 && -1 + E >= 0 && F$$ >= 1]                         (1 + B,3)  
          31. evalfbb6in(A,B,C,D,E) -> evalfbb6in(D,B,-1 + E,D,-1 + E)      [D >= 0 && -1 + E >= 0]                                     (?,3)      
          32. evalfstart(A,B,C,D,E) -> evalfbb3in(B,B,0,0,E)                [B >= 0 && 0 >= 0 && 0 >= 1 + F$$]                          (1,4)      
          33. evalfstart(A,B,C,D,E) -> evalfbb3in(B,B,0,0,E)                [B >= 0 && 0 >= 0 && F$$ >= 1]                              (1,4)      
          34. evalfstart(A,B,C,D,E) -> evalfbb6in(B,B,0,B,0)                [B >= 0 && 0 >= 0]                                          (1,4)      
          35. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,C)           [A >= 0 && C >= 0 && 0 >= 1 + F$ && C >= 1 + B]             (1 + B,4)  
          36. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && 0 >= 1 + F$$] (1 + B,4)  
          37. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && F$$ >= 1]     (1 + B,4)  
          38. evalfbb7in(A,B,C,D,E) -> evalfbb5in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C]                 (B,4)      
          39. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,C)           [A >= 0 && C >= 0 && F$ >= 1 && C >= 1 + B]                 (B,4)      
          40. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C && 0 >= 1 + F$$]     (B,4)      
          41. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C && F$$ >= 1]         (B,4)      
          42. evalfbb7in(A,B,C,D,E) -> evalfbb5in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C]                     (B,4)      
        Signature:
          {(evalfbb2in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbbin,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [19->{29,30,31},20->{29,30,31},21->{24,25,26,27},22->{24,25,26,27},23->{28},24->{29,30,31},25->{24,25,26
          ,27},26->{24,25,26,27},27->{28},28->{19,35,36,37,38,39,40,41,42},29->{20,21,22,23},30->{20,21,22,23},31->{29
          ,30,31},32->{21,22,23},33->{21,22,23},34->{},35->{29,30,31},36->{24,25,26,27},37->{24,25,26,27},38->{28}
          ,39->{29,30,31},40->{24,25,26,27},41->{24,25,26,27},42->{28}]
        Sizebounds:
          (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) 
          (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) 
          (<21,0,A>, ?) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, B) (<21,0,E>, ?) 
          (<22,0,A>, ?) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, B) (<22,0,E>, ?) 
          (<23,0,A>, ?) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, B) (<23,0,E>, ?) 
          (<24,0,A>, ?) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, ?) (<24,0,E>, ?) 
          (<25,0,A>, ?) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, B) (<25,0,E>, ?) 
          (<26,0,A>, ?) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, B) (<26,0,E>, ?) 
          (<27,0,A>, ?) (<27,0,B>, B) (<27,0,C>, ?) (<27,0,D>, B) (<27,0,E>, ?) 
          (<28,0,A>, ?) (<28,0,B>, B) (<28,0,C>, ?) (<28,0,D>, ?) (<28,0,E>, ?) 
          (<29,0,A>, ?) (<29,0,B>, B) (<29,0,C>, ?) (<29,0,D>, ?) (<29,0,E>, ?) 
          (<30,0,A>, ?) (<30,0,B>, B) (<30,0,C>, ?) (<30,0,D>, ?) (<30,0,E>, ?) 
          (<31,0,A>, ?) (<31,0,B>, B) (<31,0,C>, ?) (<31,0,D>, ?) (<31,0,E>, ?) 
          (<32,0,A>, B) (<32,0,B>, B) (<32,0,C>, 0) (<32,0,D>, 0) (<32,0,E>, E) 
          (<33,0,A>, B) (<33,0,B>, B) (<33,0,C>, 0) (<33,0,D>, 0) (<33,0,E>, E) 
          (<34,0,A>, B) (<34,0,B>, B) (<34,0,C>, 0) (<34,0,D>, B) (<34,0,E>, 0) 
          (<35,0,A>, ?) (<35,0,B>, B) (<35,0,C>, ?) (<35,0,D>, ?) (<35,0,E>, ?) 
          (<36,0,A>, ?) (<36,0,B>, B) (<36,0,C>, ?) (<36,0,D>, ?) (<36,0,E>, ?) 
          (<37,0,A>, ?) (<37,0,B>, B) (<37,0,C>, ?) (<37,0,D>, ?) (<37,0,E>, ?) 
          (<38,0,A>, ?) (<38,0,B>, B) (<38,0,C>, ?) (<38,0,D>, ?) (<38,0,E>, ?) 
          (<39,0,A>, ?) (<39,0,B>, B) (<39,0,C>, ?) (<39,0,D>, ?) (<39,0,E>, ?) 
          (<40,0,A>, ?) (<40,0,B>, B) (<40,0,C>, ?) (<40,0,D>, ?) (<40,0,E>, ?) 
          (<41,0,A>, ?) (<41,0,B>, B) (<41,0,C>, ?) (<41,0,D>, ?) (<41,0,E>, ?) 
          (<42,0,A>, ?) (<42,0,B>, B) (<42,0,C>, ?) (<42,0,D>, ?) (<42,0,E>, ?) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 38: PolyRank WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          19. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,A,C)                [A >= 0 && C >= 0]                                          (1 + B,2)  
          20. evalfbb3in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,D)           [D >= 1 + B]                                                (2 + 2*B,2)
          21. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)                [B >= D && 0 >= 1 + F$]                                     (4 + 2*B,2)
          22. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)                [B >= D && F$ >= 1]                                         (4 + 2*B,2)
          23. evalfbb3in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E)                [B >= D]                                                    (4 + 2*B,2)
          24. evalfbb2in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,1 + D)       [1 + D >= 1 + B]                                            (4 + 2*B,3)
          25. evalfbb2in(A,B,C,D,E) -> evalfbb2in(A,B,C,1 + D,E)            [B >= 1 + D && 0 >= 1 + F$$]                                (?,3)      
          26. evalfbb2in(A,B,C,D,E) -> evalfbb2in(A,B,C,1 + D,E)            [B >= 1 + D && F$$ >= 1]                                    (?,3)      
          27. evalfbb2in(A,B,C,D,E) -> evalfbb5in(A,B,C,1 + D,E)            [B >= 1 + D]                                                (5 + 5*B,3)
          28. evalfbb5in(A,B,C,D,E) -> evalfbb7in(-1 + A,B,-1 + D,-1 + A,D) True                                                        (9 + 9*B,2)
          29. evalfbb6in(A,B,C,D,E) -> evalfbb3in(D,B,-1 + E,-1 + E,E)      [D >= 0 && -1 + E >= 0 && 0 >= 1 + F$$]                     (1 + B,3)  
          30. evalfbb6in(A,B,C,D,E) -> evalfbb3in(D,B,-1 + E,-1 + E,E)      [D >= 0 && -1 + E >= 0 && F$$ >= 1]                         (1 + B,3)  
          31. evalfbb6in(A,B,C,D,E) -> evalfbb6in(D,B,-1 + E,D,-1 + E)      [D >= 0 && -1 + E >= 0]                                     (?,3)      
          32. evalfstart(A,B,C,D,E) -> evalfbb3in(B,B,0,0,E)                [B >= 0 && 0 >= 0 && 0 >= 1 + F$$]                          (1,4)      
          33. evalfstart(A,B,C,D,E) -> evalfbb3in(B,B,0,0,E)                [B >= 0 && 0 >= 0 && F$$ >= 1]                              (1,4)      
          34. evalfstart(A,B,C,D,E) -> evalfbb6in(B,B,0,B,0)                [B >= 0 && 0 >= 0]                                          (1,4)      
          35. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,C)           [A >= 0 && C >= 0 && 0 >= 1 + F$ && C >= 1 + B]             (1 + B,4)  
          36. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && 0 >= 1 + F$$] (1 + B,4)  
          37. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && F$$ >= 1]     (1 + B,4)  
          38. evalfbb7in(A,B,C,D,E) -> evalfbb5in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C]                 (B,4)      
          39. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,C)           [A >= 0 && C >= 0 && F$ >= 1 && C >= 1 + B]                 (B,4)      
          40. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C && 0 >= 1 + F$$]     (B,4)      
          41. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C && F$$ >= 1]         (B,4)      
          42. evalfbb7in(A,B,C,D,E) -> evalfbb5in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C]                     (B,4)      
        Signature:
          {(evalfbb2in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbbin,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [19->{29,30,31},20->{29,30,31},21->{24,25,26,27},22->{24,25,26,27},23->{28},24->{29,30,31},25->{24,25,26
          ,27},26->{24,25,26,27},27->{28},28->{19,35,36,37,38,39,40,41,42},29->{20,21,22,23},30->{20,21,22,23},31->{29
          ,30,31},32->{21,22,23},33->{21,22,23},34->{},35->{29,30,31},36->{24,25,26,27},37->{24,25,26,27},38->{28}
          ,39->{29,30,31},40->{24,25,26,27},41->{24,25,26,27},42->{28}]
        Sizebounds:
          (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) 
          (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) 
          (<21,0,A>, ?) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, B) (<21,0,E>, ?) 
          (<22,0,A>, ?) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, B) (<22,0,E>, ?) 
          (<23,0,A>, ?) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, B) (<23,0,E>, ?) 
          (<24,0,A>, ?) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, ?) (<24,0,E>, ?) 
          (<25,0,A>, ?) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, B) (<25,0,E>, ?) 
          (<26,0,A>, ?) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, B) (<26,0,E>, ?) 
          (<27,0,A>, ?) (<27,0,B>, B) (<27,0,C>, ?) (<27,0,D>, B) (<27,0,E>, ?) 
          (<28,0,A>, ?) (<28,0,B>, B) (<28,0,C>, ?) (<28,0,D>, ?) (<28,0,E>, ?) 
          (<29,0,A>, ?) (<29,0,B>, B) (<29,0,C>, ?) (<29,0,D>, ?) (<29,0,E>, ?) 
          (<30,0,A>, ?) (<30,0,B>, B) (<30,0,C>, ?) (<30,0,D>, ?) (<30,0,E>, ?) 
          (<31,0,A>, ?) (<31,0,B>, B) (<31,0,C>, ?) (<31,0,D>, ?) (<31,0,E>, ?) 
          (<32,0,A>, B) (<32,0,B>, B) (<32,0,C>, 0) (<32,0,D>, 0) (<32,0,E>, E) 
          (<33,0,A>, B) (<33,0,B>, B) (<33,0,C>, 0) (<33,0,D>, 0) (<33,0,E>, E) 
          (<34,0,A>, B) (<34,0,B>, B) (<34,0,C>, 0) (<34,0,D>, B) (<34,0,E>, 0) 
          (<35,0,A>, ?) (<35,0,B>, B) (<35,0,C>, ?) (<35,0,D>, ?) (<35,0,E>, ?) 
          (<36,0,A>, ?) (<36,0,B>, B) (<36,0,C>, ?) (<36,0,D>, ?) (<36,0,E>, ?) 
          (<37,0,A>, ?) (<37,0,B>, B) (<37,0,C>, ?) (<37,0,D>, ?) (<37,0,E>, ?) 
          (<38,0,A>, ?) (<38,0,B>, B) (<38,0,C>, ?) (<38,0,D>, ?) (<38,0,E>, ?) 
          (<39,0,A>, ?) (<39,0,B>, B) (<39,0,C>, ?) (<39,0,D>, ?) (<39,0,E>, ?) 
          (<40,0,A>, ?) (<40,0,B>, B) (<40,0,C>, ?) (<40,0,D>, ?) (<40,0,E>, ?) 
          (<41,0,A>, ?) (<41,0,B>, B) (<41,0,C>, ?) (<41,0,D>, ?) (<41,0,E>, ?) 
          (<42,0,A>, ?) (<42,0,B>, B) (<42,0,C>, ?) (<42,0,D>, ?) (<42,0,E>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [19,23,29,30,21,22,25,26,36,37,40,41,31,35,39,27,38,42], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalfbb2in) = x2 + -1*x4
          p(evalfbb3in) = x2 + -1*x4
          p(evalfbb5in) = x2 + -1*x4
          p(evalfbb6in) = x2        
          p(evalfbb7in) = x2        
        
        The following rules are strictly oriented:
        [B >= 1 + D && F$$ >= 1] ==>                          
           evalfbb2in(A,B,C,D,E)   = B + -1*D                 
                                   > -1 + B + -1*D            
                                   = evalfbb2in(A,B,C,1 + D,E)
        
                    [B >= 1 + D] ==>                          
           evalfbb2in(A,B,C,D,E)   = B + -1*D                 
                                   > -1 + B + -1*D            
                                   = evalfbb5in(A,B,C,1 + D,E)
        
        
        The following rules are weakly oriented:
                                                 [A >= 0 && C >= 0] ==>                                
                                              evalfbb7in(A,B,C,D,E)   = B                              
                                                                     >= B                              
                                                                      = evalfbb6in(A,B,C,A,C)          
        
                                            [B >= D && 0 >= 1 + F$] ==>                                
                                              evalfbb3in(A,B,C,D,E)   = B + -1*D                       
                                                                     >= B + -1*D                       
                                                                      = evalfbb2in(A,B,C,D,E)          
        
                                                [B >= D && F$ >= 1] ==>                                
                                              evalfbb3in(A,B,C,D,E)   = B + -1*D                       
                                                                     >= B + -1*D                       
                                                                      = evalfbb2in(A,B,C,D,E)          
        
                                                           [B >= D] ==>                                
                                              evalfbb3in(A,B,C,D,E)   = B + -1*D                       
                                                                     >= B + -1*D                       
                                                                      = evalfbb5in(A,B,C,D,E)          
        
                                       [B >= 1 + D && 0 >= 1 + F$$] ==>                                
                                              evalfbb2in(A,B,C,D,E)   = B + -1*D                       
                                                                     >= -1 + B + -1*D                  
                                                                      = evalfbb2in(A,B,C,1 + D,E)      
        
                            [D >= 0 && -1 + E >= 0 && 0 >= 1 + F$$] ==>                                
                                              evalfbb6in(A,B,C,D,E)   = B                              
                                                                     >= 1 + B + -1*E                   
                                                                      = evalfbb3in(D,B,-1 + E,-1 + E,E)
        
                                [D >= 0 && -1 + E >= 0 && F$$ >= 1] ==>                                
                                              evalfbb6in(A,B,C,D,E)   = B                              
                                                                     >= 1 + B + -1*E                   
                                                                      = evalfbb3in(D,B,-1 + E,-1 + E,E)
        
                                            [D >= 0 && -1 + E >= 0] ==>                                
                                              evalfbb6in(A,B,C,D,E)   = B                              
                                                                     >= B                              
                                                                      = evalfbb6in(D,B,-1 + E,D,-1 + E)
        
                    [A >= 0 && C >= 0 && 0 >= 1 + F$ && C >= 1 + B] ==>                                
                                              evalfbb7in(A,B,C,D,E)   = B                              
                                                                     >= B                              
                                                                      = evalfbb6in(A,B,C,-1 + A,C)     
        
        [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && 0 >= 1 + F$$] ==>                                
                                              evalfbb7in(A,B,C,D,E)   = B                              
                                                                     >= B + -1*C                       
                                                                      = evalfbb2in(A,B,C,C,E)          
        
            [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && F$$ >= 1] ==>                                
                                              evalfbb7in(A,B,C,D,E)   = B                              
                                                                     >= B + -1*C                       
                                                                      = evalfbb2in(A,B,C,C,E)          
        
                        [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C] ==>                                
                                              evalfbb7in(A,B,C,D,E)   = B                              
                                                                     >= B + -1*C                       
                                                                      = evalfbb5in(A,B,C,C,E)          
        
                        [A >= 0 && C >= 0 && F$ >= 1 && C >= 1 + B] ==>                                
                                              evalfbb7in(A,B,C,D,E)   = B                              
                                                                     >= B                              
                                                                      = evalfbb6in(A,B,C,-1 + A,C)     
        
            [A >= 0 && C >= 0 && F$ >= 1 && B >= C && 0 >= 1 + F$$] ==>                                
                                              evalfbb7in(A,B,C,D,E)   = B                              
                                                                     >= B + -1*C                       
                                                                      = evalfbb2in(A,B,C,C,E)          
        
                [A >= 0 && C >= 0 && F$ >= 1 && B >= C && F$$ >= 1] ==>                                
                                              evalfbb7in(A,B,C,D,E)   = B                              
                                                                     >= B + -1*C                       
                                                                      = evalfbb2in(A,B,C,C,E)          
        
                            [A >= 0 && C >= 0 && F$ >= 1 && B >= C] ==>                                
                                              evalfbb7in(A,B,C,D,E)   = B                              
                                                                     >= B + -1*C                       
                                                                      = evalfbb5in(A,B,C,C,E)          
        
        We use the following global sizebounds:
        (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) 
        (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) 
        (<21,0,A>, ?) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, B) (<21,0,E>, ?) 
        (<22,0,A>, ?) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, B) (<22,0,E>, ?) 
        (<23,0,A>, ?) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, B) (<23,0,E>, ?) 
        (<24,0,A>, ?) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, ?) (<24,0,E>, ?) 
        (<25,0,A>, ?) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, B) (<25,0,E>, ?) 
        (<26,0,A>, ?) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, B) (<26,0,E>, ?) 
        (<27,0,A>, ?) (<27,0,B>, B) (<27,0,C>, ?) (<27,0,D>, B) (<27,0,E>, ?) 
        (<28,0,A>, ?) (<28,0,B>, B) (<28,0,C>, ?) (<28,0,D>, ?) (<28,0,E>, ?) 
        (<29,0,A>, ?) (<29,0,B>, B) (<29,0,C>, ?) (<29,0,D>, ?) (<29,0,E>, ?) 
        (<30,0,A>, ?) (<30,0,B>, B) (<30,0,C>, ?) (<30,0,D>, ?) (<30,0,E>, ?) 
        (<31,0,A>, ?) (<31,0,B>, B) (<31,0,C>, ?) (<31,0,D>, ?) (<31,0,E>, ?) 
        (<32,0,A>, B) (<32,0,B>, B) (<32,0,C>, 0) (<32,0,D>, 0) (<32,0,E>, E) 
        (<33,0,A>, B) (<33,0,B>, B) (<33,0,C>, 0) (<33,0,D>, 0) (<33,0,E>, E) 
        (<34,0,A>, B) (<34,0,B>, B) (<34,0,C>, 0) (<34,0,D>, B) (<34,0,E>, 0) 
        (<35,0,A>, ?) (<35,0,B>, B) (<35,0,C>, ?) (<35,0,D>, ?) (<35,0,E>, ?) 
        (<36,0,A>, ?) (<36,0,B>, B) (<36,0,C>, ?) (<36,0,D>, ?) (<36,0,E>, ?) 
        (<37,0,A>, ?) (<37,0,B>, B) (<37,0,C>, ?) (<37,0,D>, ?) (<37,0,E>, ?) 
        (<38,0,A>, ?) (<38,0,B>, B) (<38,0,C>, ?) (<38,0,D>, ?) (<38,0,E>, ?) 
        (<39,0,A>, ?) (<39,0,B>, B) (<39,0,C>, ?) (<39,0,D>, ?) (<39,0,E>, ?) 
        (<40,0,A>, ?) (<40,0,B>, B) (<40,0,C>, ?) (<40,0,D>, ?) (<40,0,E>, ?) 
        (<41,0,A>, ?) (<41,0,B>, B) (<41,0,C>, ?) (<41,0,D>, ?) (<41,0,E>, ?) 
        (<42,0,A>, ?) (<42,0,B>, B) (<42,0,C>, ?) (<42,0,D>, ?) (<42,0,E>, ?) 
* Step 39: PolyRank WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          19. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,A,C)                [A >= 0 && C >= 0]                                          (1 + B,2)        
          20. evalfbb3in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,D)           [D >= 1 + B]                                                (2 + 2*B,2)      
          21. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)                [B >= D && 0 >= 1 + F$]                                     (4 + 2*B,2)      
          22. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)                [B >= D && F$ >= 1]                                         (4 + 2*B,2)      
          23. evalfbb3in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E)                [B >= D]                                                    (4 + 2*B,2)      
          24. evalfbb2in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,1 + D)       [1 + D >= 1 + B]                                            (4 + 2*B,3)      
          25. evalfbb2in(A,B,C,D,E) -> evalfbb2in(A,B,C,1 + D,E)            [B >= 1 + D && 0 >= 1 + F$$]                                (?,3)            
          26. evalfbb2in(A,B,C,D,E) -> evalfbb2in(A,B,C,1 + D,E)            [B >= 1 + D && F$$ >= 1]                                    (17*B + 13*B^2,3)
          27. evalfbb2in(A,B,C,D,E) -> evalfbb5in(A,B,C,1 + D,E)            [B >= 1 + D]                                                (5 + 5*B,3)      
          28. evalfbb5in(A,B,C,D,E) -> evalfbb7in(-1 + A,B,-1 + D,-1 + A,D) True                                                        (9 + 9*B,2)      
          29. evalfbb6in(A,B,C,D,E) -> evalfbb3in(D,B,-1 + E,-1 + E,E)      [D >= 0 && -1 + E >= 0 && 0 >= 1 + F$$]                     (1 + B,3)        
          30. evalfbb6in(A,B,C,D,E) -> evalfbb3in(D,B,-1 + E,-1 + E,E)      [D >= 0 && -1 + E >= 0 && F$$ >= 1]                         (1 + B,3)        
          31. evalfbb6in(A,B,C,D,E) -> evalfbb6in(D,B,-1 + E,D,-1 + E)      [D >= 0 && -1 + E >= 0]                                     (?,3)            
          32. evalfstart(A,B,C,D,E) -> evalfbb3in(B,B,0,0,E)                [B >= 0 && 0 >= 0 && 0 >= 1 + F$$]                          (1,4)            
          33. evalfstart(A,B,C,D,E) -> evalfbb3in(B,B,0,0,E)                [B >= 0 && 0 >= 0 && F$$ >= 1]                              (1,4)            
          34. evalfstart(A,B,C,D,E) -> evalfbb6in(B,B,0,B,0)                [B >= 0 && 0 >= 0]                                          (1,4)            
          35. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,C)           [A >= 0 && C >= 0 && 0 >= 1 + F$ && C >= 1 + B]             (1 + B,4)        
          36. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && 0 >= 1 + F$$] (1 + B,4)        
          37. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && F$$ >= 1]     (1 + B,4)        
          38. evalfbb7in(A,B,C,D,E) -> evalfbb5in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C]                 (B,4)            
          39. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,C)           [A >= 0 && C >= 0 && F$ >= 1 && C >= 1 + B]                 (B,4)            
          40. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C && 0 >= 1 + F$$]     (B,4)            
          41. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C && F$$ >= 1]         (B,4)            
          42. evalfbb7in(A,B,C,D,E) -> evalfbb5in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C]                     (B,4)            
        Signature:
          {(evalfbb2in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbbin,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [19->{29,30,31},20->{29,30,31},21->{24,25,26,27},22->{24,25,26,27},23->{28},24->{29,30,31},25->{24,25,26
          ,27},26->{24,25,26,27},27->{28},28->{19,35,36,37,38,39,40,41,42},29->{20,21,22,23},30->{20,21,22,23},31->{29
          ,30,31},32->{21,22,23},33->{21,22,23},34->{},35->{29,30,31},36->{24,25,26,27},37->{24,25,26,27},38->{28}
          ,39->{29,30,31},40->{24,25,26,27},41->{24,25,26,27},42->{28}]
        Sizebounds:
          (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) 
          (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) 
          (<21,0,A>, ?) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, B) (<21,0,E>, ?) 
          (<22,0,A>, ?) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, B) (<22,0,E>, ?) 
          (<23,0,A>, ?) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, B) (<23,0,E>, ?) 
          (<24,0,A>, ?) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, ?) (<24,0,E>, ?) 
          (<25,0,A>, ?) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, B) (<25,0,E>, ?) 
          (<26,0,A>, ?) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, B) (<26,0,E>, ?) 
          (<27,0,A>, ?) (<27,0,B>, B) (<27,0,C>, ?) (<27,0,D>, B) (<27,0,E>, ?) 
          (<28,0,A>, ?) (<28,0,B>, B) (<28,0,C>, ?) (<28,0,D>, ?) (<28,0,E>, ?) 
          (<29,0,A>, ?) (<29,0,B>, B) (<29,0,C>, ?) (<29,0,D>, ?) (<29,0,E>, ?) 
          (<30,0,A>, ?) (<30,0,B>, B) (<30,0,C>, ?) (<30,0,D>, ?) (<30,0,E>, ?) 
          (<31,0,A>, ?) (<31,0,B>, B) (<31,0,C>, ?) (<31,0,D>, ?) (<31,0,E>, ?) 
          (<32,0,A>, B) (<32,0,B>, B) (<32,0,C>, 0) (<32,0,D>, 0) (<32,0,E>, E) 
          (<33,0,A>, B) (<33,0,B>, B) (<33,0,C>, 0) (<33,0,D>, 0) (<33,0,E>, E) 
          (<34,0,A>, B) (<34,0,B>, B) (<34,0,C>, 0) (<34,0,D>, B) (<34,0,E>, 0) 
          (<35,0,A>, ?) (<35,0,B>, B) (<35,0,C>, ?) (<35,0,D>, ?) (<35,0,E>, ?) 
          (<36,0,A>, ?) (<36,0,B>, B) (<36,0,C>, ?) (<36,0,D>, ?) (<36,0,E>, ?) 
          (<37,0,A>, ?) (<37,0,B>, B) (<37,0,C>, ?) (<37,0,D>, ?) (<37,0,E>, ?) 
          (<38,0,A>, ?) (<38,0,B>, B) (<38,0,C>, ?) (<38,0,D>, ?) (<38,0,E>, ?) 
          (<39,0,A>, ?) (<39,0,B>, B) (<39,0,C>, ?) (<39,0,D>, ?) (<39,0,E>, ?) 
          (<40,0,A>, ?) (<40,0,B>, B) (<40,0,C>, ?) (<40,0,D>, ?) (<40,0,E>, ?) 
          (<41,0,A>, ?) (<41,0,B>, B) (<41,0,C>, ?) (<41,0,D>, ?) (<41,0,E>, ?) 
          (<42,0,A>, ?) (<42,0,B>, B) (<42,0,C>, ?) (<42,0,D>, ?) (<42,0,E>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [19,23,29,30,21,22,25,26,36,37,40,41,31,35,39,27,38,42], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalfbb2in) = x2 + -1*x4
          p(evalfbb3in) = x2 + -1*x4
          p(evalfbb5in) = x2 + -1*x4
          p(evalfbb6in) = x2        
          p(evalfbb7in) = x2        
        
        The following rules are strictly oriented:
        [B >= 1 + D && 0 >= 1 + F$$] ==>                          
               evalfbb2in(A,B,C,D,E)   = B + -1*D                 
                                       > -1 + B + -1*D            
                                       = evalfbb2in(A,B,C,1 + D,E)
        
            [B >= 1 + D && F$$ >= 1] ==>                          
               evalfbb2in(A,B,C,D,E)   = B + -1*D                 
                                       > -1 + B + -1*D            
                                       = evalfbb2in(A,B,C,1 + D,E)
        
                        [B >= 1 + D] ==>                          
               evalfbb2in(A,B,C,D,E)   = B + -1*D                 
                                       > -1 + B + -1*D            
                                       = evalfbb5in(A,B,C,1 + D,E)
        
        
        The following rules are weakly oriented:
                                                 [A >= 0 && C >= 0] ==>                                
                                              evalfbb7in(A,B,C,D,E)   = B                              
                                                                     >= B                              
                                                                      = evalfbb6in(A,B,C,A,C)          
        
                                            [B >= D && 0 >= 1 + F$] ==>                                
                                              evalfbb3in(A,B,C,D,E)   = B + -1*D                       
                                                                     >= B + -1*D                       
                                                                      = evalfbb2in(A,B,C,D,E)          
        
                                                [B >= D && F$ >= 1] ==>                                
                                              evalfbb3in(A,B,C,D,E)   = B + -1*D                       
                                                                     >= B + -1*D                       
                                                                      = evalfbb2in(A,B,C,D,E)          
        
                                                           [B >= D] ==>                                
                                              evalfbb3in(A,B,C,D,E)   = B + -1*D                       
                                                                     >= B + -1*D                       
                                                                      = evalfbb5in(A,B,C,D,E)          
        
                            [D >= 0 && -1 + E >= 0 && 0 >= 1 + F$$] ==>                                
                                              evalfbb6in(A,B,C,D,E)   = B                              
                                                                     >= 1 + B + -1*E                   
                                                                      = evalfbb3in(D,B,-1 + E,-1 + E,E)
        
                                [D >= 0 && -1 + E >= 0 && F$$ >= 1] ==>                                
                                              evalfbb6in(A,B,C,D,E)   = B                              
                                                                     >= 1 + B + -1*E                   
                                                                      = evalfbb3in(D,B,-1 + E,-1 + E,E)
        
                                            [D >= 0 && -1 + E >= 0] ==>                                
                                              evalfbb6in(A,B,C,D,E)   = B                              
                                                                     >= B                              
                                                                      = evalfbb6in(D,B,-1 + E,D,-1 + E)
        
                    [A >= 0 && C >= 0 && 0 >= 1 + F$ && C >= 1 + B] ==>                                
                                              evalfbb7in(A,B,C,D,E)   = B                              
                                                                     >= B                              
                                                                      = evalfbb6in(A,B,C,-1 + A,C)     
        
        [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && 0 >= 1 + F$$] ==>                                
                                              evalfbb7in(A,B,C,D,E)   = B                              
                                                                     >= B + -1*C                       
                                                                      = evalfbb2in(A,B,C,C,E)          
        
            [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && F$$ >= 1] ==>                                
                                              evalfbb7in(A,B,C,D,E)   = B                              
                                                                     >= B + -1*C                       
                                                                      = evalfbb2in(A,B,C,C,E)          
        
                        [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C] ==>                                
                                              evalfbb7in(A,B,C,D,E)   = B                              
                                                                     >= B + -1*C                       
                                                                      = evalfbb5in(A,B,C,C,E)          
        
                        [A >= 0 && C >= 0 && F$ >= 1 && C >= 1 + B] ==>                                
                                              evalfbb7in(A,B,C,D,E)   = B                              
                                                                     >= B                              
                                                                      = evalfbb6in(A,B,C,-1 + A,C)     
        
            [A >= 0 && C >= 0 && F$ >= 1 && B >= C && 0 >= 1 + F$$] ==>                                
                                              evalfbb7in(A,B,C,D,E)   = B                              
                                                                     >= B + -1*C                       
                                                                      = evalfbb2in(A,B,C,C,E)          
        
                [A >= 0 && C >= 0 && F$ >= 1 && B >= C && F$$ >= 1] ==>                                
                                              evalfbb7in(A,B,C,D,E)   = B                              
                                                                     >= B + -1*C                       
                                                                      = evalfbb2in(A,B,C,C,E)          
        
                            [A >= 0 && C >= 0 && F$ >= 1 && B >= C] ==>                                
                                              evalfbb7in(A,B,C,D,E)   = B                              
                                                                     >= B + -1*C                       
                                                                      = evalfbb5in(A,B,C,C,E)          
        
        We use the following global sizebounds:
        (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) 
        (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) 
        (<21,0,A>, ?) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, B) (<21,0,E>, ?) 
        (<22,0,A>, ?) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, B) (<22,0,E>, ?) 
        (<23,0,A>, ?) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, B) (<23,0,E>, ?) 
        (<24,0,A>, ?) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, ?) (<24,0,E>, ?) 
        (<25,0,A>, ?) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, B) (<25,0,E>, ?) 
        (<26,0,A>, ?) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, B) (<26,0,E>, ?) 
        (<27,0,A>, ?) (<27,0,B>, B) (<27,0,C>, ?) (<27,0,D>, B) (<27,0,E>, ?) 
        (<28,0,A>, ?) (<28,0,B>, B) (<28,0,C>, ?) (<28,0,D>, ?) (<28,0,E>, ?) 
        (<29,0,A>, ?) (<29,0,B>, B) (<29,0,C>, ?) (<29,0,D>, ?) (<29,0,E>, ?) 
        (<30,0,A>, ?) (<30,0,B>, B) (<30,0,C>, ?) (<30,0,D>, ?) (<30,0,E>, ?) 
        (<31,0,A>, ?) (<31,0,B>, B) (<31,0,C>, ?) (<31,0,D>, ?) (<31,0,E>, ?) 
        (<32,0,A>, B) (<32,0,B>, B) (<32,0,C>, 0) (<32,0,D>, 0) (<32,0,E>, E) 
        (<33,0,A>, B) (<33,0,B>, B) (<33,0,C>, 0) (<33,0,D>, 0) (<33,0,E>, E) 
        (<34,0,A>, B) (<34,0,B>, B) (<34,0,C>, 0) (<34,0,D>, B) (<34,0,E>, 0) 
        (<35,0,A>, ?) (<35,0,B>, B) (<35,0,C>, ?) (<35,0,D>, ?) (<35,0,E>, ?) 
        (<36,0,A>, ?) (<36,0,B>, B) (<36,0,C>, ?) (<36,0,D>, ?) (<36,0,E>, ?) 
        (<37,0,A>, ?) (<37,0,B>, B) (<37,0,C>, ?) (<37,0,D>, ?) (<37,0,E>, ?) 
        (<38,0,A>, ?) (<38,0,B>, B) (<38,0,C>, ?) (<38,0,D>, ?) (<38,0,E>, ?) 
        (<39,0,A>, ?) (<39,0,B>, B) (<39,0,C>, ?) (<39,0,D>, ?) (<39,0,E>, ?) 
        (<40,0,A>, ?) (<40,0,B>, B) (<40,0,C>, ?) (<40,0,D>, ?) (<40,0,E>, ?) 
        (<41,0,A>, ?) (<41,0,B>, B) (<41,0,C>, ?) (<41,0,D>, ?) (<41,0,E>, ?) 
        (<42,0,A>, ?) (<42,0,B>, B) (<42,0,C>, ?) (<42,0,D>, ?) (<42,0,E>, ?) 
* Step 40: PolyRank WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          19. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,A,C)                [A >= 0 && C >= 0]                                          (1 + B,2)        
          20. evalfbb3in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,D)           [D >= 1 + B]                                                (2 + 2*B,2)      
          21. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)                [B >= D && 0 >= 1 + F$]                                     (4 + 2*B,2)      
          22. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)                [B >= D && F$ >= 1]                                         (4 + 2*B,2)      
          23. evalfbb3in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E)                [B >= D]                                                    (4 + 2*B,2)      
          24. evalfbb2in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,1 + D)       [1 + D >= 1 + B]                                            (4 + 2*B,3)      
          25. evalfbb2in(A,B,C,D,E) -> evalfbb2in(A,B,C,1 + D,E)            [B >= 1 + D && 0 >= 1 + F$$]                                (17*B + 13*B^2,3)
          26. evalfbb2in(A,B,C,D,E) -> evalfbb2in(A,B,C,1 + D,E)            [B >= 1 + D && F$$ >= 1]                                    (17*B + 13*B^2,3)
          27. evalfbb2in(A,B,C,D,E) -> evalfbb5in(A,B,C,1 + D,E)            [B >= 1 + D]                                                (5 + 5*B,3)      
          28. evalfbb5in(A,B,C,D,E) -> evalfbb7in(-1 + A,B,-1 + D,-1 + A,D) True                                                        (9 + 9*B,2)      
          29. evalfbb6in(A,B,C,D,E) -> evalfbb3in(D,B,-1 + E,-1 + E,E)      [D >= 0 && -1 + E >= 0 && 0 >= 1 + F$$]                     (1 + B,3)        
          30. evalfbb6in(A,B,C,D,E) -> evalfbb3in(D,B,-1 + E,-1 + E,E)      [D >= 0 && -1 + E >= 0 && F$$ >= 1]                         (1 + B,3)        
          31. evalfbb6in(A,B,C,D,E) -> evalfbb6in(D,B,-1 + E,D,-1 + E)      [D >= 0 && -1 + E >= 0]                                     (?,3)            
          32. evalfstart(A,B,C,D,E) -> evalfbb3in(B,B,0,0,E)                [B >= 0 && 0 >= 0 && 0 >= 1 + F$$]                          (1,4)            
          33. evalfstart(A,B,C,D,E) -> evalfbb3in(B,B,0,0,E)                [B >= 0 && 0 >= 0 && F$$ >= 1]                              (1,4)            
          34. evalfstart(A,B,C,D,E) -> evalfbb6in(B,B,0,B,0)                [B >= 0 && 0 >= 0]                                          (1,4)            
          35. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,C)           [A >= 0 && C >= 0 && 0 >= 1 + F$ && C >= 1 + B]             (1 + B,4)        
          36. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && 0 >= 1 + F$$] (1 + B,4)        
          37. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && F$$ >= 1]     (1 + B,4)        
          38. evalfbb7in(A,B,C,D,E) -> evalfbb5in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C]                 (B,4)            
          39. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,C)           [A >= 0 && C >= 0 && F$ >= 1 && C >= 1 + B]                 (B,4)            
          40. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C && 0 >= 1 + F$$]     (B,4)            
          41. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C && F$$ >= 1]         (B,4)            
          42. evalfbb7in(A,B,C,D,E) -> evalfbb5in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C]                     (B,4)            
        Signature:
          {(evalfbb2in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbbin,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [19->{29,30,31},20->{29,30,31},21->{24,25,26,27},22->{24,25,26,27},23->{28},24->{29,30,31},25->{24,25,26
          ,27},26->{24,25,26,27},27->{28},28->{19,35,36,37,38,39,40,41,42},29->{20,21,22,23},30->{20,21,22,23},31->{29
          ,30,31},32->{21,22,23},33->{21,22,23},34->{},35->{29,30,31},36->{24,25,26,27},37->{24,25,26,27},38->{28}
          ,39->{29,30,31},40->{24,25,26,27},41->{24,25,26,27},42->{28}]
        Sizebounds:
          (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) 
          (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) 
          (<21,0,A>, ?) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, B) (<21,0,E>, ?) 
          (<22,0,A>, ?) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, B) (<22,0,E>, ?) 
          (<23,0,A>, ?) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, B) (<23,0,E>, ?) 
          (<24,0,A>, ?) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, ?) (<24,0,E>, ?) 
          (<25,0,A>, ?) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, B) (<25,0,E>, ?) 
          (<26,0,A>, ?) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, B) (<26,0,E>, ?) 
          (<27,0,A>, ?) (<27,0,B>, B) (<27,0,C>, ?) (<27,0,D>, B) (<27,0,E>, ?) 
          (<28,0,A>, ?) (<28,0,B>, B) (<28,0,C>, ?) (<28,0,D>, ?) (<28,0,E>, ?) 
          (<29,0,A>, ?) (<29,0,B>, B) (<29,0,C>, ?) (<29,0,D>, ?) (<29,0,E>, ?) 
          (<30,0,A>, ?) (<30,0,B>, B) (<30,0,C>, ?) (<30,0,D>, ?) (<30,0,E>, ?) 
          (<31,0,A>, ?) (<31,0,B>, B) (<31,0,C>, ?) (<31,0,D>, ?) (<31,0,E>, ?) 
          (<32,0,A>, B) (<32,0,B>, B) (<32,0,C>, 0) (<32,0,D>, 0) (<32,0,E>, E) 
          (<33,0,A>, B) (<33,0,B>, B) (<33,0,C>, 0) (<33,0,D>, 0) (<33,0,E>, E) 
          (<34,0,A>, B) (<34,0,B>, B) (<34,0,C>, 0) (<34,0,D>, B) (<34,0,E>, 0) 
          (<35,0,A>, ?) (<35,0,B>, B) (<35,0,C>, ?) (<35,0,D>, ?) (<35,0,E>, ?) 
          (<36,0,A>, ?) (<36,0,B>, B) (<36,0,C>, ?) (<36,0,D>, ?) (<36,0,E>, ?) 
          (<37,0,A>, ?) (<37,0,B>, B) (<37,0,C>, ?) (<37,0,D>, ?) (<37,0,E>, ?) 
          (<38,0,A>, ?) (<38,0,B>, B) (<38,0,C>, ?) (<38,0,D>, ?) (<38,0,E>, ?) 
          (<39,0,A>, ?) (<39,0,B>, B) (<39,0,C>, ?) (<39,0,D>, ?) (<39,0,E>, ?) 
          (<40,0,A>, ?) (<40,0,B>, B) (<40,0,C>, ?) (<40,0,D>, ?) (<40,0,E>, ?) 
          (<41,0,A>, ?) (<41,0,B>, B) (<41,0,C>, ?) (<41,0,D>, ?) (<41,0,E>, ?) 
          (<42,0,A>, ?) (<42,0,B>, B) (<42,0,C>, ?) (<42,0,D>, ?) (<42,0,E>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [19,28,23,29,20,30,24,21,22,36,37,40,41,31,35,39,27,38,42], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalfbb2in) = 1 + x4
          p(evalfbb3in) = 1 + x4
          p(evalfbb5in) = x4    
          p(evalfbb6in) = x5    
          p(evalfbb7in) = 1 + x3
        
        The following rules are strictly oriented:
                                 [A >= 0 && C >= 0] ==>                                
                              evalfbb7in(A,B,C,D,E)   = 1 + C                          
                                                      > C                              
                                                      = evalfbb6in(A,B,C,A,C)          
        
                            [D >= 0 && -1 + E >= 0] ==>                                
                              evalfbb6in(A,B,C,D,E)   = E                              
                                                      > -1 + E                         
                                                      = evalfbb6in(D,B,-1 + E,D,-1 + E)
        
        [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C] ==>                                
                              evalfbb7in(A,B,C,D,E)   = 1 + C                          
                                                      > C                              
                                                      = evalfbb5in(A,B,C,C,E)          
        
        [A >= 0 && C >= 0 && F$ >= 1 && C >= 1 + B] ==>                                
                              evalfbb7in(A,B,C,D,E)   = 1 + C                          
                                                      > C                              
                                                      = evalfbb6in(A,B,C,-1 + A,C)     
        
            [A >= 0 && C >= 0 && F$ >= 1 && B >= C] ==>                                
                              evalfbb7in(A,B,C,D,E)   = 1 + C                          
                                                      > C                              
                                                      = evalfbb5in(A,B,C,C,E)          
        
        
        The following rules are weakly oriented:
                                                       [D >= 1 + B] ==>                                     
                                              evalfbb3in(A,B,C,D,E)   = 1 + D                               
                                                                     >= D                                   
                                                                      = evalfbb6in(A,B,C,-1 + A,D)          
        
                                            [B >= D && 0 >= 1 + F$] ==>                                     
                                              evalfbb3in(A,B,C,D,E)   = 1 + D                               
                                                                     >= 1 + D                               
                                                                      = evalfbb2in(A,B,C,D,E)               
        
                                                [B >= D && F$ >= 1] ==>                                     
                                              evalfbb3in(A,B,C,D,E)   = 1 + D                               
                                                                     >= 1 + D                               
                                                                      = evalfbb2in(A,B,C,D,E)               
        
                                                           [B >= D] ==>                                     
                                              evalfbb3in(A,B,C,D,E)   = 1 + D                               
                                                                     >= D                                   
                                                                      = evalfbb5in(A,B,C,D,E)               
        
                                                   [1 + D >= 1 + B] ==>                                     
                                              evalfbb2in(A,B,C,D,E)   = 1 + D                               
                                                                     >= 1 + D                               
                                                                      = evalfbb6in(A,B,C,-1 + A,1 + D)      
        
                                                       [B >= 1 + D] ==>                                     
                                              evalfbb2in(A,B,C,D,E)   = 1 + D                               
                                                                     >= 1 + D                               
                                                                      = evalfbb5in(A,B,C,1 + D,E)           
        
                                                               True ==>                                     
                                              evalfbb5in(A,B,C,D,E)   = D                                   
                                                                     >= D                                   
                                                                      = evalfbb7in(-1 + A,B,-1 + D,-1 + A,D)
        
                            [D >= 0 && -1 + E >= 0 && 0 >= 1 + F$$] ==>                                     
                                              evalfbb6in(A,B,C,D,E)   = E                                   
                                                                     >= E                                   
                                                                      = evalfbb3in(D,B,-1 + E,-1 + E,E)     
        
                                [D >= 0 && -1 + E >= 0 && F$$ >= 1] ==>                                     
                                              evalfbb6in(A,B,C,D,E)   = E                                   
                                                                     >= E                                   
                                                                      = evalfbb3in(D,B,-1 + E,-1 + E,E)     
        
                    [A >= 0 && C >= 0 && 0 >= 1 + F$ && C >= 1 + B] ==>                                     
                                              evalfbb7in(A,B,C,D,E)   = 1 + C                               
                                                                     >= C                                   
                                                                      = evalfbb6in(A,B,C,-1 + A,C)          
        
        [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && 0 >= 1 + F$$] ==>                                     
                                              evalfbb7in(A,B,C,D,E)   = 1 + C                               
                                                                     >= 1 + C                               
                                                                      = evalfbb2in(A,B,C,C,E)               
        
            [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && F$$ >= 1] ==>                                     
                                              evalfbb7in(A,B,C,D,E)   = 1 + C                               
                                                                     >= 1 + C                               
                                                                      = evalfbb2in(A,B,C,C,E)               
        
            [A >= 0 && C >= 0 && F$ >= 1 && B >= C && 0 >= 1 + F$$] ==>                                     
                                              evalfbb7in(A,B,C,D,E)   = 1 + C                               
                                                                     >= 1 + C                               
                                                                      = evalfbb2in(A,B,C,C,E)               
        
                [A >= 0 && C >= 0 && F$ >= 1 && B >= C && F$$ >= 1] ==>                                     
                                              evalfbb7in(A,B,C,D,E)   = 1 + C                               
                                                                     >= 1 + C                               
                                                                      = evalfbb2in(A,B,C,C,E)               
        
        We use the following global sizebounds:
        (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) 
        (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) 
        (<21,0,A>, ?) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, B) (<21,0,E>, ?) 
        (<22,0,A>, ?) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, B) (<22,0,E>, ?) 
        (<23,0,A>, ?) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, B) (<23,0,E>, ?) 
        (<24,0,A>, ?) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, ?) (<24,0,E>, ?) 
        (<25,0,A>, ?) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, B) (<25,0,E>, ?) 
        (<26,0,A>, ?) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, B) (<26,0,E>, ?) 
        (<27,0,A>, ?) (<27,0,B>, B) (<27,0,C>, ?) (<27,0,D>, B) (<27,0,E>, ?) 
        (<28,0,A>, ?) (<28,0,B>, B) (<28,0,C>, ?) (<28,0,D>, ?) (<28,0,E>, ?) 
        (<29,0,A>, ?) (<29,0,B>, B) (<29,0,C>, ?) (<29,0,D>, ?) (<29,0,E>, ?) 
        (<30,0,A>, ?) (<30,0,B>, B) (<30,0,C>, ?) (<30,0,D>, ?) (<30,0,E>, ?) 
        (<31,0,A>, ?) (<31,0,B>, B) (<31,0,C>, ?) (<31,0,D>, ?) (<31,0,E>, ?) 
        (<32,0,A>, B) (<32,0,B>, B) (<32,0,C>, 0) (<32,0,D>, 0) (<32,0,E>, E) 
        (<33,0,A>, B) (<33,0,B>, B) (<33,0,C>, 0) (<33,0,D>, 0) (<33,0,E>, E) 
        (<34,0,A>, B) (<34,0,B>, B) (<34,0,C>, 0) (<34,0,D>, B) (<34,0,E>, 0) 
        (<35,0,A>, ?) (<35,0,B>, B) (<35,0,C>, ?) (<35,0,D>, ?) (<35,0,E>, ?) 
        (<36,0,A>, ?) (<36,0,B>, B) (<36,0,C>, ?) (<36,0,D>, ?) (<36,0,E>, ?) 
        (<37,0,A>, ?) (<37,0,B>, B) (<37,0,C>, ?) (<37,0,D>, ?) (<37,0,E>, ?) 
        (<38,0,A>, ?) (<38,0,B>, B) (<38,0,C>, ?) (<38,0,D>, ?) (<38,0,E>, ?) 
        (<39,0,A>, ?) (<39,0,B>, B) (<39,0,C>, ?) (<39,0,D>, ?) (<39,0,E>, ?) 
        (<40,0,A>, ?) (<40,0,B>, B) (<40,0,C>, ?) (<40,0,D>, ?) (<40,0,E>, ?) 
        (<41,0,A>, ?) (<41,0,B>, B) (<41,0,C>, ?) (<41,0,D>, ?) (<41,0,E>, ?) 
        (<42,0,A>, ?) (<42,0,B>, B) (<42,0,C>, ?) (<42,0,D>, ?) (<42,0,E>, ?) 
* Step 41: KnowledgePropagation WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          19. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,A,C)                [A >= 0 && C >= 0]                                          (1 + B,2)                     
          20. evalfbb3in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,D)           [D >= 1 + B]                                                (2 + 2*B,2)                   
          21. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)                [B >= D && 0 >= 1 + F$]                                     (4 + 2*B,2)                   
          22. evalfbb3in(A,B,C,D,E) -> evalfbb2in(A,B,C,D,E)                [B >= D && F$ >= 1]                                         (4 + 2*B,2)                   
          23. evalfbb3in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E)                [B >= D]                                                    (4 + 2*B,2)                   
          24. evalfbb2in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,1 + D)       [1 + D >= 1 + B]                                            (4 + 2*B,3)                   
          25. evalfbb2in(A,B,C,D,E) -> evalfbb2in(A,B,C,1 + D,E)            [B >= 1 + D && 0 >= 1 + F$$]                                (17*B + 13*B^2,3)             
          26. evalfbb2in(A,B,C,D,E) -> evalfbb2in(A,B,C,1 + D,E)            [B >= 1 + D && F$$ >= 1]                                    (17*B + 13*B^2,3)             
          27. evalfbb2in(A,B,C,D,E) -> evalfbb5in(A,B,C,1 + D,E)            [B >= 1 + D]                                                (5 + 5*B,3)                   
          28. evalfbb5in(A,B,C,D,E) -> evalfbb7in(-1 + A,B,-1 + D,-1 + A,D) True                                                        (9 + 9*B,2)                   
          29. evalfbb6in(A,B,C,D,E) -> evalfbb3in(D,B,-1 + E,-1 + E,E)      [D >= 0 && -1 + E >= 0 && 0 >= 1 + F$$]                     (1 + B,3)                     
          30. evalfbb6in(A,B,C,D,E) -> evalfbb3in(D,B,-1 + E,-1 + E,E)      [D >= 0 && -1 + E >= 0 && F$$ >= 1]                         (1 + B,3)                     
          31. evalfbb6in(A,B,C,D,E) -> evalfbb6in(D,B,-1 + E,D,-1 + E)      [D >= 0 && -1 + E >= 0]                                     (2 + 34*B + 60*B^2 + 26*B^3,3)
          32. evalfstart(A,B,C,D,E) -> evalfbb3in(B,B,0,0,E)                [B >= 0 && 0 >= 0 && 0 >= 1 + F$$]                          (1,4)                         
          33. evalfstart(A,B,C,D,E) -> evalfbb3in(B,B,0,0,E)                [B >= 0 && 0 >= 0 && F$$ >= 1]                              (1,4)                         
          34. evalfstart(A,B,C,D,E) -> evalfbb6in(B,B,0,B,0)                [B >= 0 && 0 >= 0]                                          (1,4)                         
          35. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,C)           [A >= 0 && C >= 0 && 0 >= 1 + F$ && C >= 1 + B]             (1 + B,4)                     
          36. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && 0 >= 1 + F$$] (1 + B,4)                     
          37. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C && F$$ >= 1]     (1 + B,4)                     
          38. evalfbb7in(A,B,C,D,E) -> evalfbb5in(A,B,C,C,E)                [A >= 0 && C >= 0 && 0 >= 1 + F$ && B >= C]                 (B,4)                         
          39. evalfbb7in(A,B,C,D,E) -> evalfbb6in(A,B,C,-1 + A,C)           [A >= 0 && C >= 0 && F$ >= 1 && C >= 1 + B]                 (B,4)                         
          40. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C && 0 >= 1 + F$$]     (B,4)                         
          41. evalfbb7in(A,B,C,D,E) -> evalfbb2in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C && F$$ >= 1]         (B,4)                         
          42. evalfbb7in(A,B,C,D,E) -> evalfbb5in(A,B,C,C,E)                [A >= 0 && C >= 0 && F$ >= 1 && B >= C]                     (B,4)                         
        Signature:
          {(evalfbb2in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbbin,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [19->{29,30,31},20->{29,30,31},21->{24,25,26,27},22->{24,25,26,27},23->{28},24->{29,30,31},25->{24,25,26
          ,27},26->{24,25,26,27},27->{28},28->{19,35,36,37,38,39,40,41,42},29->{20,21,22,23},30->{20,21,22,23},31->{29
          ,30,31},32->{21,22,23},33->{21,22,23},34->{},35->{29,30,31},36->{24,25,26,27},37->{24,25,26,27},38->{28}
          ,39->{29,30,31},40->{24,25,26,27},41->{24,25,26,27},42->{28}]
        Sizebounds:
          (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) 
          (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) 
          (<21,0,A>, ?) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, B) (<21,0,E>, ?) 
          (<22,0,A>, ?) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, B) (<22,0,E>, ?) 
          (<23,0,A>, ?) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, B) (<23,0,E>, ?) 
          (<24,0,A>, ?) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, ?) (<24,0,E>, ?) 
          (<25,0,A>, ?) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, B) (<25,0,E>, ?) 
          (<26,0,A>, ?) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, B) (<26,0,E>, ?) 
          (<27,0,A>, ?) (<27,0,B>, B) (<27,0,C>, ?) (<27,0,D>, B) (<27,0,E>, ?) 
          (<28,0,A>, ?) (<28,0,B>, B) (<28,0,C>, ?) (<28,0,D>, ?) (<28,0,E>, ?) 
          (<29,0,A>, ?) (<29,0,B>, B) (<29,0,C>, ?) (<29,0,D>, ?) (<29,0,E>, ?) 
          (<30,0,A>, ?) (<30,0,B>, B) (<30,0,C>, ?) (<30,0,D>, ?) (<30,0,E>, ?) 
          (<31,0,A>, ?) (<31,0,B>, B) (<31,0,C>, ?) (<31,0,D>, ?) (<31,0,E>, ?) 
          (<32,0,A>, B) (<32,0,B>, B) (<32,0,C>, 0) (<32,0,D>, 0) (<32,0,E>, E) 
          (<33,0,A>, B) (<33,0,B>, B) (<33,0,C>, 0) (<33,0,D>, 0) (<33,0,E>, E) 
          (<34,0,A>, B) (<34,0,B>, B) (<34,0,C>, 0) (<34,0,D>, B) (<34,0,E>, 0) 
          (<35,0,A>, ?) (<35,0,B>, B) (<35,0,C>, ?) (<35,0,D>, ?) (<35,0,E>, ?) 
          (<36,0,A>, ?) (<36,0,B>, B) (<36,0,C>, ?) (<36,0,D>, ?) (<36,0,E>, ?) 
          (<37,0,A>, ?) (<37,0,B>, B) (<37,0,C>, ?) (<37,0,D>, ?) (<37,0,E>, ?) 
          (<38,0,A>, ?) (<38,0,B>, B) (<38,0,C>, ?) (<38,0,D>, ?) (<38,0,E>, ?) 
          (<39,0,A>, ?) (<39,0,B>, B) (<39,0,C>, ?) (<39,0,D>, ?) (<39,0,E>, ?) 
          (<40,0,A>, ?) (<40,0,B>, B) (<40,0,C>, ?) (<40,0,D>, ?) (<40,0,E>, ?) 
          (<41,0,A>, ?) (<41,0,B>, B) (<41,0,C>, ?) (<41,0,D>, ?) (<41,0,E>, ?) 
          (<42,0,A>, ?) (<42,0,B>, B) (<42,0,C>, ?) (<42,0,D>, ?) (<42,0,E>, ?) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        The problem is already solved.

WORST_CASE(?,O(n^3))