WORST_CASE(?,O(n^1)) * Step 1: RestrictVarsProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f3(A,B,C,D) -> f1(0,B,C,D) True (1,1) 1. f1(A,B,C,D) -> f2(A,B,C,E) [B >= C] (?,1) 2. f1(A,B,C,D) -> f2(1,1 + B,C,E) [1 + B = C && A = 0] (?,1) 3. f1(A,B,C,D) -> f1(0,1 + B,-1 + C,D) [C >= 2 + B && C >= 1 + B && A = 0] (?,1) Signature: {(f1,4);(f2,4);(f3,4)} Flow Graph: [0->{1,2,3},1->{},2->{},3->{1,2,3}] + Applied Processor: RestrictVarsProcessor + Details: We removed the arguments [D] . * Step 2: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f3(A,B,C) -> f1(0,B,C) True (1,1) 1. f1(A,B,C) -> f2(A,B,C) [B >= C] (?,1) 2. f1(A,B,C) -> f2(1,1 + B,C) [1 + B = C && A = 0] (?,1) 3. f1(A,B,C) -> f1(0,1 + B,-1 + C) [C >= 2 + B && C >= 1 + B && A = 0] (?,1) Signature: {(f1,3);(f2,3);(f3,3)} Flow Graph: [0->{1,2,3},1->{},2->{},3->{1,2,3}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<0,0,A>, 0, .= 0) (<0,0,B>, B, .= 0) (<0,0,C>, C, .= 0) (<1,0,A>, A, .= 0) (<1,0,B>, B, .= 0) (<1,0,C>, C, .= 0) (<2,0,A>, 1, .= 1) (<2,0,B>, 1 + B, .+ 1) (<2,0,C>, C, .= 0) (<3,0,A>, 0, .= 0) (<3,0,B>, 1 + B, .+ 1) (<3,0,C>, 1 + C, .+ 1) * Step 3: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f3(A,B,C) -> f1(0,B,C) True (1,1) 1. f1(A,B,C) -> f2(A,B,C) [B >= C] (?,1) 2. f1(A,B,C) -> f2(1,1 + B,C) [1 + B = C && A = 0] (?,1) 3. f1(A,B,C) -> f1(0,1 + B,-1 + C) [C >= 2 + B && C >= 1 + B && A = 0] (?,1) Signature: {(f1,3);(f2,3);(f3,3)} Flow Graph: [0->{1,2,3},1->{},2->{},3->{1,2,3}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<0,0,C>, ?) (<1,0,A>, ?) (<1,0,B>, ?) (<1,0,C>, ?) (<2,0,A>, ?) (<2,0,B>, ?) (<2,0,C>, ?) (<3,0,A>, ?) (<3,0,B>, ?) (<3,0,C>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<0,0,A>, 0) (<0,0,B>, B) (<0,0,C>, C) (<1,0,A>, 0) (<1,0,B>, ?) (<1,0,C>, ?) (<2,0,A>, 1) (<2,0,B>, ?) (<2,0,C>, ?) (<3,0,A>, 0) (<3,0,B>, ?) (<3,0,C>, ?) * Step 4: LeafRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f3(A,B,C) -> f1(0,B,C) True (1,1) 1. f1(A,B,C) -> f2(A,B,C) [B >= C] (?,1) 2. f1(A,B,C) -> f2(1,1 + B,C) [1 + B = C && A = 0] (?,1) 3. f1(A,B,C) -> f1(0,1 + B,-1 + C) [C >= 2 + B && C >= 1 + B && A = 0] (?,1) Signature: {(f1,3);(f2,3);(f3,3)} Flow Graph: [0->{1,2,3},1->{},2->{},3->{1,2,3}] Sizebounds: (<0,0,A>, 0) (<0,0,B>, B) (<0,0,C>, C) (<1,0,A>, 0) (<1,0,B>, ?) (<1,0,C>, ?) (<2,0,A>, 1) (<2,0,B>, ?) (<2,0,C>, ?) (<3,0,A>, 0) (<3,0,B>, ?) (<3,0,C>, ?) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [1,2] * Step 5: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f3(A,B,C) -> f1(0,B,C) True (1,1) 3. f1(A,B,C) -> f1(0,1 + B,-1 + C) [C >= 2 + B && C >= 1 + B && A = 0] (?,1) Signature: {(f1,3);(f2,3);(f3,3)} Flow Graph: [0->{3},3->{3}] Sizebounds: (<0,0,A>, 0) (<0,0,B>, B) (<0,0,C>, C) (<3,0,A>, 0) (<3,0,B>, ?) (<3,0,C>, ?) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f1) = -1*x2 + x3 p(f3) = -1*x2 + x3 The following rules are strictly oriented: [C >= 2 + B && C >= 1 + B && A = 0] ==> f1(A,B,C) = -1*B + C > -2 + -1*B + C = f1(0,1 + B,-1 + C) The following rules are weakly oriented: True ==> f3(A,B,C) = -1*B + C >= -1*B + C = f1(0,B,C) * Step 6: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f3(A,B,C) -> f1(0,B,C) True (1,1) 3. f1(A,B,C) -> f1(0,1 + B,-1 + C) [C >= 2 + B && C >= 1 + B && A = 0] (B + C,1) Signature: {(f1,3);(f2,3);(f3,3)} Flow Graph: [0->{3},3->{3}] Sizebounds: (<0,0,A>, 0) (<0,0,B>, B) (<0,0,C>, C) (<3,0,A>, 0) (<3,0,B>, ?) (<3,0,C>, ?) + Applied Processor: KnowledgePropagation + Details: The problem is already solved. WORST_CASE(?,O(n^1))