WORST_CASE(?,O(1))
* Step 1: RestrictVarsProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(A,B,C,D,E,F,G,H,I,J) -> f5(K,0,0,D,E,F,G,H,I,J)         True      (1,1)
          1. f5(A,B,C,D,E,F,G,H,I,J) -> f5(A,1 + B,1 + C,1,E,F,G,H,I,J) [31 >= C] (?,1)
          2. f5(A,B,C,D,E,F,G,H,I,J) -> f5(A,B,1 + C,0,E,F,G,H,I,J)     [31 >= C] (?,1)
          3. f5(A,B,C,D,E,F,G,H,I,J) -> f28(A,B,C,D,B,B,K,L,L,L)        [C >= 32] (?,1)
        Signature:
          {(f0,10);(f28,10);(f5,10)}
        Flow Graph:
          [0->{1,2,3},1->{1,2,3},2->{1,2,3},3->{}]
        
    + Applied Processor:
        RestrictVarsProcessor
    + Details:
        We removed the arguments [A,D,E,F,G,H,I,J] .
* Step 2: LocalSizeboundsProc WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(B,C) -> f5(0,0)         True      (1,1)
          1. f5(B,C) -> f5(1 + B,1 + C) [31 >= C] (?,1)
          2. f5(B,C) -> f5(B,1 + C)     [31 >= C] (?,1)
          3. f5(B,C) -> f28(B,C)        [C >= 32] (?,1)
        Signature:
          {(f0,2);(f28,2);(f5,2)}
        Flow Graph:
          [0->{1,2,3},1->{1,2,3},2->{1,2,3},3->{}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (<0,0,B>,     0, .= 0) (<0,0,C>,     0, .= 0) 
          (<1,0,B>, 1 + B, .+ 1) (<1,0,C>, 1 + C, .+ 1) 
          (<2,0,B>,     B, .= 0) (<2,0,C>, 1 + C, .+ 1) 
          (<3,0,B>,     B, .= 0) (<3,0,C>,     C, .= 0) 
* Step 3: SizeboundsProc WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(B,C) -> f5(0,0)         True      (1,1)
          1. f5(B,C) -> f5(1 + B,1 + C) [31 >= C] (?,1)
          2. f5(B,C) -> f5(B,1 + C)     [31 >= C] (?,1)
          3. f5(B,C) -> f28(B,C)        [C >= 32] (?,1)
        Signature:
          {(f0,2);(f28,2);(f5,2)}
        Flow Graph:
          [0->{1,2,3},1->{1,2,3},2->{1,2,3},3->{}]
        Sizebounds:
          (<0,0,B>, ?) (<0,0,C>, ?) 
          (<1,0,B>, ?) (<1,0,C>, ?) 
          (<2,0,B>, ?) (<2,0,C>, ?) 
          (<3,0,B>, ?) (<3,0,C>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (<0,0,B>, 0) (<0,0,C>,  0) 
          (<1,0,B>, ?) (<1,0,C>, 32) 
          (<2,0,B>, ?) (<2,0,C>, 32) 
          (<3,0,B>, ?) (<3,0,C>, 32) 
* Step 4: UnsatPaths WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(B,C) -> f5(0,0)         True      (1,1)
          1. f5(B,C) -> f5(1 + B,1 + C) [31 >= C] (?,1)
          2. f5(B,C) -> f5(B,1 + C)     [31 >= C] (?,1)
          3. f5(B,C) -> f28(B,C)        [C >= 32] (?,1)
        Signature:
          {(f0,2);(f28,2);(f5,2)}
        Flow Graph:
          [0->{1,2,3},1->{1,2,3},2->{1,2,3},3->{}]
        Sizebounds:
          (<0,0,B>, 0) (<0,0,C>,  0) 
          (<1,0,B>, ?) (<1,0,C>, 32) 
          (<2,0,B>, ?) (<2,0,C>, 32) 
          (<3,0,B>, ?) (<3,0,C>, 32) 
    + Applied Processor:
        UnsatPaths
    + Details:
        We remove following edges from the transition graph: [(0,3)]
* Step 5: LeafRules WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(B,C) -> f5(0,0)         True      (1,1)
          1. f5(B,C) -> f5(1 + B,1 + C) [31 >= C] (?,1)
          2. f5(B,C) -> f5(B,1 + C)     [31 >= C] (?,1)
          3. f5(B,C) -> f28(B,C)        [C >= 32] (?,1)
        Signature:
          {(f0,2);(f28,2);(f5,2)}
        Flow Graph:
          [0->{1,2},1->{1,2,3},2->{1,2,3},3->{}]
        Sizebounds:
          (<0,0,B>, 0) (<0,0,C>,  0) 
          (<1,0,B>, ?) (<1,0,C>, 32) 
          (<2,0,B>, ?) (<2,0,C>, 32) 
          (<3,0,B>, ?) (<3,0,C>, 32) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [3]
* Step 6: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(B,C) -> f5(0,0)         True      (1,1)
          1. f5(B,C) -> f5(1 + B,1 + C) [31 >= C] (?,1)
          2. f5(B,C) -> f5(B,1 + C)     [31 >= C] (?,1)
        Signature:
          {(f0,2);(f28,2);(f5,2)}
        Flow Graph:
          [0->{1,2},1->{1,2},2->{1,2}]
        Sizebounds:
          (<0,0,B>, 0) (<0,0,C>,  0) 
          (<1,0,B>, ?) (<1,0,C>, 32) 
          (<2,0,B>, ?) (<2,0,C>, 32) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f0) = 32        
          p(f5) = 32 + -1*x2
        
        The following rules are strictly oriented:
        [31 >= C] ==>            
          f5(B,C)   = 32 + -1*C  
                    > 31 + -1*C  
                    = f5(B,1 + C)
        
        
        The following rules are weakly oriented:
             True ==>                
          f0(B,C)   = 32             
                   >= 32             
                    = f5(0,0)        
        
        [31 >= C] ==>                
          f5(B,C)   = 32 + -1*C      
                   >= 31 + -1*C      
                    = f5(1 + B,1 + C)
        
        
* Step 7: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(B,C) -> f5(0,0)         True      (1,1) 
          1. f5(B,C) -> f5(1 + B,1 + C) [31 >= C] (?,1) 
          2. f5(B,C) -> f5(B,1 + C)     [31 >= C] (32,1)
        Signature:
          {(f0,2);(f28,2);(f5,2)}
        Flow Graph:
          [0->{1,2},1->{1,2},2->{1,2}]
        Sizebounds:
          (<0,0,B>, 0) (<0,0,C>,  0) 
          (<1,0,B>, ?) (<1,0,C>, 32) 
          (<2,0,B>, ?) (<2,0,C>, 32) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f0) = 32        
          p(f5) = 32 + -1*x2
        
        The following rules are strictly oriented:
        [31 >= C] ==>                
          f5(B,C)   = 32 + -1*C      
                    > 31 + -1*C      
                    = f5(1 + B,1 + C)
        
        [31 >= C] ==>                
          f5(B,C)   = 32 + -1*C      
                    > 31 + -1*C      
                    = f5(B,1 + C)    
        
        
        The following rules are weakly oriented:
             True ==>        
          f0(B,C)   = 32     
                   >= 32     
                    = f5(0,0)
        
        
* Step 8: KnowledgePropagation WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(B,C) -> f5(0,0)         True      (1,1) 
          1. f5(B,C) -> f5(1 + B,1 + C) [31 >= C] (32,1)
          2. f5(B,C) -> f5(B,1 + C)     [31 >= C] (32,1)
        Signature:
          {(f0,2);(f28,2);(f5,2)}
        Flow Graph:
          [0->{1,2},1->{1,2},2->{1,2}]
        Sizebounds:
          (<0,0,B>, 0) (<0,0,C>,  0) 
          (<1,0,B>, ?) (<1,0,C>, 32) 
          (<2,0,B>, ?) (<2,0,C>, 32) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        The problem is already solved.

WORST_CASE(?,O(1))