WORST_CASE(?,O(1)) * Step 1: RestrictVarsProcessor WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,D,E,F,G,H,I,J,K,L,M) -> f15(50,5,0,D,E,F,G,H,I,J,K,L,M) True (1,1) 1. f15(A,B,C,D,E,F,G,H,I,J,K,L,M) -> f19(A,B,C,0,0,F,G,H,I,J,K,L,M) [B >= C] (?,1) 2. f19(A,B,C,D,E,F,G,H,I,J,K,L,M) -> f19(A,B,C,D + N,1 + E,F,G,H,I,J,K,L,M) [B >= E && E >= 1 + C] (?,1) 3. f19(A,B,C,D,E,F,G,H,I,J,K,L,M) -> f19(A,B,C,D + N,1 + E,F,G,H,I,J,K,L,M) [C >= 1 + E && B >= E] (?,1) 4. f19(A,B,C,D,E,F,G,H,I,J,K,L,M) -> f19(A,B,C,D + N,1 + C,F,G,H,I,J,K,L,M) [B >= E && C = E] (?,1) 5. f33(A,B,C,D,E,F,G,H,I,J,K,L,M) -> f36(A,B,C,D,E,F,G,1 + G,I,J,K,L,M) [F >= 1 + G] (?,1) 6. f36(A,B,C,D,E,F,G,H,I,J,K,L,M) -> f41(A,B,C,D,E,F,G,H,N,0,K,L,M) [0 >= 1 + G && F >= H] (?,1) 7. f36(A,B,C,D,E,F,G,H,I,J,K,L,M) -> f41(A,B,C,D,E,F,G,H,N,0,K,L,M) [G >= 1 && F >= H] (?,1) 8. f41(A,B,C,D,E,F,G,H,I,J,K,L,M) -> f41(A,B,C,D,E,F,G,H,N,1 + J,K,L,M) [G >= 1 + J] (?,1) 9. f36(A,B,C,D,E,F,G,H,I,J,K,L,M) -> f36(A,B,C,D,E,F,0,1 + H,N,J,K,L,M) [F >= H && G = 0] (?,1) 10. f50(A,B,C,D,E,F,G,H,I,J,K,L,M) -> f54(A,B,C,D,E,F,G,H,N,0,K,L,M) [F >= H] (?,1) 11. f54(A,B,C,D,E,F,G,H,I,J,K,L,M) -> f54(A,B,C,D,E,F,G,H,N,1 + J,K,L,M) [G >= J] (?,1) 12. f66(A,B,C,D,E,F,G,H,I,J,K,L,M) -> f70(A,B,C,D,E,F,G,0,N,J,K,L,M) [F >= G] (?,1) 13. f70(A,B,C,D,E,F,G,H,I,J,K,L,M) -> f70(A,B,C,D,E,F,G,1 + H,N,J,K,L,M) [G >= 1 + H] (?,1) 14. f80(A,B,C,D,E,F,G,H,I,J,K,L,M) -> f84(A,B,C,D,E,F,G,1 + G,N,J,K,L,M) [G >= 0] (?,1) 15. f84(A,B,C,D,E,F,G,H,I,J,K,L,M) -> f84(A,B,C,D,E,F,G,1 + H,N,J,K,L,M) [F >= H] (?,1) 16. f84(A,B,C,D,E,F,G,H,I,J,K,L,M) -> f80(A,B,C,D,E,F,-1 + G,H,I,J,K,L,M) [H >= 1 + F] (?,1) 17. f80(A,B,C,D,E,F,G,H,I,J,K,L,M) -> f96(A,B,C,D,E,F,G,H,I,J,0,0,M) [0 >= 1 + G] (?,1) 18. f70(A,B,C,D,E,F,G,H,I,J,K,L,M) -> f66(A,B,C,D,E,F,1 + G,H,I,J,K,L,M) [H >= G] (?,1) 19. f66(A,B,C,D,E,F,G,H,I,J,K,L,M) -> f80(A,B,C,D,E,F,-1 + F,H,I,J,K,L,M) [G >= 1 + F] (?,1) 20. f54(A,B,C,D,E,F,G,H,I,J,K,L,M) -> f50(A,B,C,D,E,F,G,1 + H,I,J,K,L,M) [J >= 1 + G] (?,1) 21. f50(A,B,C,D,E,F,G,H,I,J,K,L,M) -> f33(A,B,C,D,E,F,1 + G,H,I,J,K,L,M) [H >= 1 + F] (?,1) 22. f41(A,B,C,D,E,F,G,H,I,J,K,L,M) -> f36(A,B,C,D,E,F,G,1 + H,I,J,K,L,M) [J >= G] (?,1) 23. f36(A,B,C,D,E,F,G,H,I,J,K,L,M) -> f50(A,B,C,D,E,F,G,1 + G,I,J,K,L,M) [H >= 1 + F] (?,1) 24. f33(A,B,C,D,E,F,G,H,I,J,K,L,M) -> f66(A,B,C,D,E,F,1,H,I,J,K,L,M) [G >= F] (?,1) 25. f19(A,B,C,D,E,F,G,H,I,J,K,L,M) -> f15(A,B,1 + C,D,E,F,G,H,I,J,K,L,M) [E >= 1 + B] (?,1) 26. f15(A,B,C,D,E,F,G,H,I,J,K,L,M) -> f33(A,B,C,D,E,B,0,H,I,J,K,L,A) [C >= 1 + B] (?,1) Signature: {(f0,13) ;(f15,13) ;(f19,13) ;(f33,13) ;(f36,13) ;(f41,13) ;(f50,13) ;(f54,13) ;(f66,13) ;(f70,13) ;(f80,13) ;(f84,13) ;(f96,13)} Flow Graph: [0->{1,26},1->{2,3,4,25},2->{2,3,4,25},3->{2,3,4,25},4->{2,3,4,25},5->{6,7,9,23},6->{8,22},7->{8,22},8->{8 ,22},9->{6,7,9,23},10->{11,20},11->{11,20},12->{13,18},13->{13,18},14->{15,16},15->{15,16},16->{14,17} ,17->{},18->{12,19},19->{14,17},20->{10,21},21->{5,24},22->{6,7,9,23},23->{10,21},24->{12,19},25->{1,26} ,26->{5,24}] + Applied Processor: RestrictVarsProcessor + Details: We removed the arguments [D,I,K,L,M] . * Step 2: LocalSizeboundsProc WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,E,F,G,H,J) -> f15(50,5,0,E,F,G,H,J) True (1,1) 1. f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J) [B >= C] (?,1) 2. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [B >= E && E >= 1 + C] (?,1) 3. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] (?,1) 4. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J) [B >= E && C = E] (?,1) 5. f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J) [F >= 1 + G] (?,1) 6. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [0 >= 1 + G && F >= H] (?,1) 7. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] (?,1) 8. f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J) [G >= 1 + J] (?,1) 9. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J) [F >= H && G = 0] (?,1) 10. f50(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,0) [F >= H] (?,1) 11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J) [G >= J] (?,1) 12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J) [F >= G] (?,1) 13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J) [G >= 1 + H] (?,1) 14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J) [G >= 0] (?,1) 15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J) [F >= H] (?,1) 16. f84(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + G,H,J) [H >= 1 + F] (?,1) 17. f80(A,B,C,E,F,G,H,J) -> f96(A,B,C,E,F,G,H,J) [0 >= 1 + G] (?,1) 18. f70(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1 + G,H,J) [H >= G] (?,1) 19. f66(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J) [G >= 1 + F] (?,1) 20. f54(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + H,J) [J >= 1 + G] (?,1) 21. f50(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,H,J) [H >= 1 + F] (?,1) 22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J) [J >= G] (?,1) 23. f36(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + G,J) [H >= 1 + F] (?,1) 24. f33(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J) [G >= F] (?,1) 25. f19(A,B,C,E,F,G,H,J) -> f15(A,B,1 + C,E,F,G,H,J) [E >= 1 + B] (?,1) 26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J) [C >= 1 + B] (?,1) Signature: {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)} Flow Graph: [0->{1,26},1->{2,3,4,25},2->{2,3,4,25},3->{2,3,4,25},4->{2,3,4,25},5->{6,7,9,23},6->{8,22},7->{8,22},8->{8 ,22},9->{6,7,9,23},10->{11,20},11->{11,20},12->{13,18},13->{13,18},14->{15,16},15->{15,16},16->{14,17} ,17->{},18->{12,19},19->{14,17},20->{10,21},21->{5,24},22->{6,7,9,23},23->{10,21},24->{12,19},25->{1,26} ,26->{5,24}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (< 0,0,A>, 50, .= 50) (< 0,0,B>, 5, .= 5) (< 0,0,C>, 0, .= 0) (< 0,0,E>, E, .= 0) (< 0,0,F>, F, .= 0) (< 0,0,G>, G, .= 0) (< 0,0,H>, H, .= 0) (< 0,0,J>, J, .= 0) (< 1,0,A>, A, .= 0) (< 1,0,B>, B, .= 0) (< 1,0,C>, C, .= 0) (< 1,0,E>, 0, .= 0) (< 1,0,F>, F, .= 0) (< 1,0,G>, G, .= 0) (< 1,0,H>, H, .= 0) (< 1,0,J>, J, .= 0) (< 2,0,A>, A, .= 0) (< 2,0,B>, B, .= 0) (< 2,0,C>, C, .= 0) (< 2,0,E>, 1 + E, .+ 1) (< 2,0,F>, F, .= 0) (< 2,0,G>, G, .= 0) (< 2,0,H>, H, .= 0) (< 2,0,J>, J, .= 0) (< 3,0,A>, A, .= 0) (< 3,0,B>, B, .= 0) (< 3,0,C>, C, .= 0) (< 3,0,E>, 1 + C + E, .* 1) (< 3,0,F>, F, .= 0) (< 3,0,G>, G, .= 0) (< 3,0,H>, H, .= 0) (< 3,0,J>, J, .= 0) (< 4,0,A>, A, .= 0) (< 4,0,B>, B, .= 0) (< 4,0,C>, C, .= 0) (< 4,0,E>, 1 + C, .+ 1) (< 4,0,F>, F, .= 0) (< 4,0,G>, G, .= 0) (< 4,0,H>, H, .= 0) (< 4,0,J>, J, .= 0) (< 5,0,A>, A, .= 0) (< 5,0,B>, B, .= 0) (< 5,0,C>, C, .= 0) (< 5,0,E>, E, .= 0) (< 5,0,F>, F, .= 0) (< 5,0,G>, G, .= 0) (< 5,0,H>, 1 + G, .+ 1) (< 5,0,J>, J, .= 0) (< 6,0,A>, A, .= 0) (< 6,0,B>, B, .= 0) (< 6,0,C>, C, .= 0) (< 6,0,E>, E, .= 0) (< 6,0,F>, F, .= 0) (< 6,0,G>, G, .= 0) (< 6,0,H>, H, .= 0) (< 6,0,J>, 0, .= 0) (< 7,0,A>, A, .= 0) (< 7,0,B>, B, .= 0) (< 7,0,C>, C, .= 0) (< 7,0,E>, E, .= 0) (< 7,0,F>, F, .= 0) (< 7,0,G>, G, .= 0) (< 7,0,H>, H, .= 0) (< 7,0,J>, 0, .= 0) (< 8,0,A>, A, .= 0) (< 8,0,B>, B, .= 0) (< 8,0,C>, C, .= 0) (< 8,0,E>, E, .= 0) (< 8,0,F>, F, .= 0) (< 8,0,G>, G, .= 0) (< 8,0,H>, H, .= 0) (< 8,0,J>, 1 + J, .+ 1) (< 9,0,A>, A, .= 0) (< 9,0,B>, B, .= 0) (< 9,0,C>, C, .= 0) (< 9,0,E>, E, .= 0) (< 9,0,F>, F, .= 0) (< 9,0,G>, 0, .= 0) (< 9,0,H>, 1 + H, .+ 1) (< 9,0,J>, J, .= 0) (<10,0,A>, A, .= 0) (<10,0,B>, B, .= 0) (<10,0,C>, C, .= 0) (<10,0,E>, E, .= 0) (<10,0,F>, F, .= 0) (<10,0,G>, G, .= 0) (<10,0,H>, H, .= 0) (<10,0,J>, 0, .= 0) (<11,0,A>, A, .= 0) (<11,0,B>, B, .= 0) (<11,0,C>, C, .= 0) (<11,0,E>, E, .= 0) (<11,0,F>, F, .= 0) (<11,0,G>, G, .= 0) (<11,0,H>, H, .= 0) (<11,0,J>, 1 + J, .+ 1) (<12,0,A>, A, .= 0) (<12,0,B>, B, .= 0) (<12,0,C>, C, .= 0) (<12,0,E>, E, .= 0) (<12,0,F>, F, .= 0) (<12,0,G>, G, .= 0) (<12,0,H>, 0, .= 0) (<12,0,J>, J, .= 0) (<13,0,A>, A, .= 0) (<13,0,B>, B, .= 0) (<13,0,C>, C, .= 0) (<13,0,E>, E, .= 0) (<13,0,F>, F, .= 0) (<13,0,G>, G, .= 0) (<13,0,H>, 1 + H, .+ 1) (<13,0,J>, J, .= 0) (<14,0,A>, A, .= 0) (<14,0,B>, B, .= 0) (<14,0,C>, C, .= 0) (<14,0,E>, E, .= 0) (<14,0,F>, F, .= 0) (<14,0,G>, G, .= 0) (<14,0,H>, 1 + G, .+ 1) (<14,0,J>, J, .= 0) (<15,0,A>, A, .= 0) (<15,0,B>, B, .= 0) (<15,0,C>, C, .= 0) (<15,0,E>, E, .= 0) (<15,0,F>, F, .= 0) (<15,0,G>, G, .= 0) (<15,0,H>, 1 + H, .+ 1) (<15,0,J>, J, .= 0) (<16,0,A>, A, .= 0) (<16,0,B>, B, .= 0) (<16,0,C>, C, .= 0) (<16,0,E>, E, .= 0) (<16,0,F>, F, .= 0) (<16,0,G>, 1 + G, .+ 1) (<16,0,H>, H, .= 0) (<16,0,J>, J, .= 0) (<17,0,A>, A, .= 0) (<17,0,B>, B, .= 0) (<17,0,C>, C, .= 0) (<17,0,E>, E, .= 0) (<17,0,F>, F, .= 0) (<17,0,G>, G, .= 0) (<17,0,H>, H, .= 0) (<17,0,J>, J, .= 0) (<18,0,A>, A, .= 0) (<18,0,B>, B, .= 0) (<18,0,C>, C, .= 0) (<18,0,E>, E, .= 0) (<18,0,F>, F, .= 0) (<18,0,G>, 1 + G, .+ 1) (<18,0,H>, H, .= 0) (<18,0,J>, J, .= 0) (<19,0,A>, A, .= 0) (<19,0,B>, B, .= 0) (<19,0,C>, C, .= 0) (<19,0,E>, E, .= 0) (<19,0,F>, F, .= 0) (<19,0,G>, 1 + F, .+ 1) (<19,0,H>, H, .= 0) (<19,0,J>, J, .= 0) (<20,0,A>, A, .= 0) (<20,0,B>, B, .= 0) (<20,0,C>, C, .= 0) (<20,0,E>, E, .= 0) (<20,0,F>, F, .= 0) (<20,0,G>, G, .= 0) (<20,0,H>, 1 + H, .+ 1) (<20,0,J>, J, .= 0) (<21,0,A>, A, .= 0) (<21,0,B>, B, .= 0) (<21,0,C>, C, .= 0) (<21,0,E>, E, .= 0) (<21,0,F>, F, .= 0) (<21,0,G>, 1 + G, .+ 1) (<21,0,H>, H, .= 0) (<21,0,J>, J, .= 0) (<22,0,A>, A, .= 0) (<22,0,B>, B, .= 0) (<22,0,C>, C, .= 0) (<22,0,E>, E, .= 0) (<22,0,F>, F, .= 0) (<22,0,G>, G, .= 0) (<22,0,H>, 1 + H, .+ 1) (<22,0,J>, J, .= 0) (<23,0,A>, A, .= 0) (<23,0,B>, B, .= 0) (<23,0,C>, C, .= 0) (<23,0,E>, E, .= 0) (<23,0,F>, F, .= 0) (<23,0,G>, G, .= 0) (<23,0,H>, 1 + G, .+ 1) (<23,0,J>, J, .= 0) (<24,0,A>, A, .= 0) (<24,0,B>, B, .= 0) (<24,0,C>, C, .= 0) (<24,0,E>, E, .= 0) (<24,0,F>, F, .= 0) (<24,0,G>, 1, .= 1) (<24,0,H>, H, .= 0) (<24,0,J>, J, .= 0) (<25,0,A>, A, .= 0) (<25,0,B>, B, .= 0) (<25,0,C>, 1 + C, .+ 1) (<25,0,E>, E, .= 0) (<25,0,F>, F, .= 0) (<25,0,G>, G, .= 0) (<25,0,H>, H, .= 0) (<25,0,J>, J, .= 0) (<26,0,A>, A, .= 0) (<26,0,B>, B, .= 0) (<26,0,C>, C, .= 0) (<26,0,E>, E, .= 0) (<26,0,F>, B, .= 0) (<26,0,G>, 0, .= 0) (<26,0,H>, H, .= 0) (<26,0,J>, J, .= 0) * Step 3: SizeboundsProc WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,E,F,G,H,J) -> f15(50,5,0,E,F,G,H,J) True (1,1) 1. f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J) [B >= C] (?,1) 2. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [B >= E && E >= 1 + C] (?,1) 3. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] (?,1) 4. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J) [B >= E && C = E] (?,1) 5. f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J) [F >= 1 + G] (?,1) 6. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [0 >= 1 + G && F >= H] (?,1) 7. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] (?,1) 8. f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J) [G >= 1 + J] (?,1) 9. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J) [F >= H && G = 0] (?,1) 10. f50(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,0) [F >= H] (?,1) 11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J) [G >= J] (?,1) 12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J) [F >= G] (?,1) 13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J) [G >= 1 + H] (?,1) 14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J) [G >= 0] (?,1) 15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J) [F >= H] (?,1) 16. f84(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + G,H,J) [H >= 1 + F] (?,1) 17. f80(A,B,C,E,F,G,H,J) -> f96(A,B,C,E,F,G,H,J) [0 >= 1 + G] (?,1) 18. f70(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1 + G,H,J) [H >= G] (?,1) 19. f66(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J) [G >= 1 + F] (?,1) 20. f54(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + H,J) [J >= 1 + G] (?,1) 21. f50(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,H,J) [H >= 1 + F] (?,1) 22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J) [J >= G] (?,1) 23. f36(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + G,J) [H >= 1 + F] (?,1) 24. f33(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J) [G >= F] (?,1) 25. f19(A,B,C,E,F,G,H,J) -> f15(A,B,1 + C,E,F,G,H,J) [E >= 1 + B] (?,1) 26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J) [C >= 1 + B] (?,1) Signature: {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)} Flow Graph: [0->{1,26},1->{2,3,4,25},2->{2,3,4,25},3->{2,3,4,25},4->{2,3,4,25},5->{6,7,9,23},6->{8,22},7->{8,22},8->{8 ,22},9->{6,7,9,23},10->{11,20},11->{11,20},12->{13,18},13->{13,18},14->{15,16},15->{15,16},16->{14,17} ,17->{},18->{12,19},19->{14,17},20->{10,21},21->{5,24},22->{6,7,9,23},23->{10,21},24->{12,19},25->{1,26} ,26->{5,24}] Sizebounds: (< 0,0,A>, ?) (< 0,0,B>, ?) (< 0,0,C>, ?) (< 0,0,E>, ?) (< 0,0,F>, ?) (< 0,0,G>, ?) (< 0,0,H>, ?) (< 0,0,J>, ?) (< 1,0,A>, ?) (< 1,0,B>, ?) (< 1,0,C>, ?) (< 1,0,E>, ?) (< 1,0,F>, ?) (< 1,0,G>, ?) (< 1,0,H>, ?) (< 1,0,J>, ?) (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,E>, ?) (< 2,0,F>, ?) (< 2,0,G>, ?) (< 2,0,H>, ?) (< 2,0,J>, ?) (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,E>, ?) (< 3,0,F>, ?) (< 3,0,G>, ?) (< 3,0,H>, ?) (< 3,0,J>, ?) (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 4,0,E>, ?) (< 4,0,F>, ?) (< 4,0,G>, ?) (< 4,0,H>, ?) (< 4,0,J>, ?) (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, ?) (< 5,0,G>, ?) (< 5,0,H>, ?) (< 5,0,J>, ?) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, ?) (< 6,0,G>, ?) (< 6,0,H>, ?) (< 6,0,J>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, ?) (< 7,0,G>, ?) (< 7,0,H>, ?) (< 7,0,J>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,G>, ?) (< 8,0,H>, ?) (< 8,0,J>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) (< 9,0,G>, ?) (< 9,0,H>, ?) (< 9,0,J>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,G>, ?) (<10,0,H>, ?) (<10,0,J>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,G>, ?) (<11,0,H>, ?) (<11,0,J>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,G>, ?) (<12,0,H>, ?) (<12,0,J>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,G>, ?) (<13,0,H>, ?) (<13,0,J>, ?) (<14,0,A>, ?) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,E>, ?) (<14,0,F>, ?) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, ?) (<15,0,G>, ?) (<15,0,H>, ?) (<15,0,J>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, ?) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,E>, ?) (<17,0,F>, ?) (<17,0,G>, ?) (<17,0,H>, ?) (<17,0,J>, ?) (<18,0,A>, ?) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, ?) (<18,0,G>, ?) (<18,0,H>, ?) (<18,0,J>, ?) (<19,0,A>, ?) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, ?) (<19,0,G>, ?) (<19,0,H>, ?) (<19,0,J>, ?) (<20,0,A>, ?) (<20,0,B>, ?) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, ?) (<20,0,G>, ?) (<20,0,H>, ?) (<20,0,J>, ?) (<21,0,A>, ?) (<21,0,B>, ?) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, ?) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) (<22,0,A>, ?) (<22,0,B>, ?) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,F>, ?) (<22,0,G>, ?) (<22,0,H>, ?) (<22,0,J>, ?) (<23,0,A>, ?) (<23,0,B>, ?) (<23,0,C>, ?) (<23,0,E>, ?) (<23,0,F>, ?) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) (<24,0,A>, ?) (<24,0,B>, ?) (<24,0,C>, ?) (<24,0,E>, ?) (<24,0,F>, ?) (<24,0,G>, ?) (<24,0,H>, ?) (<24,0,J>, ?) (<25,0,A>, ?) (<25,0,B>, ?) (<25,0,C>, ?) (<25,0,E>, ?) (<25,0,F>, ?) (<25,0,G>, ?) (<25,0,H>, ?) (<25,0,J>, ?) (<26,0,A>, ?) (<26,0,B>, ?) (<26,0,C>, ?) (<26,0,E>, ?) (<26,0,F>, ?) (<26,0,G>, ?) (<26,0,H>, ?) (<26,0,J>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (< 0,0,A>, 50) (< 0,0,B>, 5) (< 0,0,C>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,J>, J) (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>, 0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>, 6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>, 6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>, 5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>, ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) (<17,0,A>, 50) (<17,0,B>, 5) (<17,0,C>, ?) (<17,0,E>, ?) (<17,0,F>, 5) (<17,0,G>, ?) (<17,0,H>, ?) (<17,0,J>, ?) (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>, ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>, ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>, 6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) * Step 4: UnsatPaths WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,E,F,G,H,J) -> f15(50,5,0,E,F,G,H,J) True (1,1) 1. f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J) [B >= C] (?,1) 2. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [B >= E && E >= 1 + C] (?,1) 3. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] (?,1) 4. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J) [B >= E && C = E] (?,1) 5. f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J) [F >= 1 + G] (?,1) 6. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [0 >= 1 + G && F >= H] (?,1) 7. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] (?,1) 8. f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J) [G >= 1 + J] (?,1) 9. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J) [F >= H && G = 0] (?,1) 10. f50(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,0) [F >= H] (?,1) 11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J) [G >= J] (?,1) 12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J) [F >= G] (?,1) 13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J) [G >= 1 + H] (?,1) 14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J) [G >= 0] (?,1) 15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J) [F >= H] (?,1) 16. f84(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + G,H,J) [H >= 1 + F] (?,1) 17. f80(A,B,C,E,F,G,H,J) -> f96(A,B,C,E,F,G,H,J) [0 >= 1 + G] (?,1) 18. f70(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1 + G,H,J) [H >= G] (?,1) 19. f66(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J) [G >= 1 + F] (?,1) 20. f54(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + H,J) [J >= 1 + G] (?,1) 21. f50(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,H,J) [H >= 1 + F] (?,1) 22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J) [J >= G] (?,1) 23. f36(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + G,J) [H >= 1 + F] (?,1) 24. f33(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J) [G >= F] (?,1) 25. f19(A,B,C,E,F,G,H,J) -> f15(A,B,1 + C,E,F,G,H,J) [E >= 1 + B] (?,1) 26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J) [C >= 1 + B] (?,1) Signature: {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)} Flow Graph: [0->{1,26},1->{2,3,4,25},2->{2,3,4,25},3->{2,3,4,25},4->{2,3,4,25},5->{6,7,9,23},6->{8,22},7->{8,22},8->{8 ,22},9->{6,7,9,23},10->{11,20},11->{11,20},12->{13,18},13->{13,18},14->{15,16},15->{15,16},16->{14,17} ,17->{},18->{12,19},19->{14,17},20->{10,21},21->{5,24},22->{6,7,9,23},23->{10,21},24->{12,19},25->{1,26} ,26->{5,24}] Sizebounds: (< 0,0,A>, 50) (< 0,0,B>, 5) (< 0,0,C>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,J>, J) (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>, 0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>, 6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>, 6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>, 5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>, ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) (<17,0,A>, 50) (<17,0,B>, 5) (<17,0,C>, ?) (<17,0,E>, ?) (<17,0,F>, 5) (<17,0,G>, ?) (<17,0,H>, ?) (<17,0,J>, ?) (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>, ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>, ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>, 6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(0,26) ,(2,3) ,(2,4) ,(3,2) ,(4,3) ,(4,4) ,(5,23) ,(6,8) ,(7,22) ,(9,6) ,(9,7)] * Step 5: LeafRules WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,E,F,G,H,J) -> f15(50,5,0,E,F,G,H,J) True (1,1) 1. f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J) [B >= C] (?,1) 2. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [B >= E && E >= 1 + C] (?,1) 3. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] (?,1) 4. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J) [B >= E && C = E] (?,1) 5. f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J) [F >= 1 + G] (?,1) 6. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [0 >= 1 + G && F >= H] (?,1) 7. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] (?,1) 8. f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J) [G >= 1 + J] (?,1) 9. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J) [F >= H && G = 0] (?,1) 10. f50(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,0) [F >= H] (?,1) 11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J) [G >= J] (?,1) 12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J) [F >= G] (?,1) 13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J) [G >= 1 + H] (?,1) 14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J) [G >= 0] (?,1) 15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J) [F >= H] (?,1) 16. f84(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + G,H,J) [H >= 1 + F] (?,1) 17. f80(A,B,C,E,F,G,H,J) -> f96(A,B,C,E,F,G,H,J) [0 >= 1 + G] (?,1) 18. f70(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1 + G,H,J) [H >= G] (?,1) 19. f66(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J) [G >= 1 + F] (?,1) 20. f54(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + H,J) [J >= 1 + G] (?,1) 21. f50(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,H,J) [H >= 1 + F] (?,1) 22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J) [J >= G] (?,1) 23. f36(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + G,J) [H >= 1 + F] (?,1) 24. f33(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J) [G >= F] (?,1) 25. f19(A,B,C,E,F,G,H,J) -> f15(A,B,1 + C,E,F,G,H,J) [E >= 1 + B] (?,1) 26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J) [C >= 1 + B] (?,1) Signature: {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)} Flow Graph: [0->{1},1->{2,3,4,25},2->{2,25},3->{3,4,25},4->{2,25},5->{6,7,9},6->{22},7->{8},8->{8,22},9->{9,23} ,10->{11,20},11->{11,20},12->{13,18},13->{13,18},14->{15,16},15->{15,16},16->{14,17},17->{},18->{12,19} ,19->{14,17},20->{10,21},21->{5,24},22->{6,7,9,23},23->{10,21},24->{12,19},25->{1,26},26->{5,24}] Sizebounds: (< 0,0,A>, 50) (< 0,0,B>, 5) (< 0,0,C>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,J>, J) (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>, 0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>, 6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>, 6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>, 5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>, ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) (<17,0,A>, 50) (<17,0,B>, 5) (<17,0,C>, ?) (<17,0,E>, ?) (<17,0,F>, 5) (<17,0,G>, ?) (<17,0,H>, ?) (<17,0,J>, ?) (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>, ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>, ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>, 6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [17] * Step 6: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,E,F,G,H,J) -> f15(50,5,0,E,F,G,H,J) True (1,1) 1. f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J) [B >= C] (?,1) 2. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [B >= E && E >= 1 + C] (?,1) 3. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] (?,1) 4. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J) [B >= E && C = E] (?,1) 5. f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J) [F >= 1 + G] (?,1) 6. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [0 >= 1 + G && F >= H] (?,1) 7. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] (?,1) 8. f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J) [G >= 1 + J] (?,1) 9. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J) [F >= H && G = 0] (?,1) 10. f50(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,0) [F >= H] (?,1) 11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J) [G >= J] (?,1) 12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J) [F >= G] (?,1) 13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J) [G >= 1 + H] (?,1) 14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J) [G >= 0] (?,1) 15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J) [F >= H] (?,1) 16. f84(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + G,H,J) [H >= 1 + F] (?,1) 18. f70(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1 + G,H,J) [H >= G] (?,1) 19. f66(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J) [G >= 1 + F] (?,1) 20. f54(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + H,J) [J >= 1 + G] (?,1) 21. f50(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,H,J) [H >= 1 + F] (?,1) 22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J) [J >= G] (?,1) 23. f36(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + G,J) [H >= 1 + F] (?,1) 24. f33(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J) [G >= F] (?,1) 25. f19(A,B,C,E,F,G,H,J) -> f15(A,B,1 + C,E,F,G,H,J) [E >= 1 + B] (?,1) 26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J) [C >= 1 + B] (?,1) Signature: {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)} Flow Graph: [0->{1},1->{2,3,4,25},2->{2,25},3->{3,4,25},4->{2,25},5->{6,7,9},6->{22},7->{8},8->{8,22},9->{9,23} ,10->{11,20},11->{11,20},12->{13,18},13->{13,18},14->{15,16},15->{15,16},16->{14},18->{12,19},19->{14} ,20->{10,21},21->{5,24},22->{6,7,9,23},23->{10,21},24->{12,19},25->{1,26},26->{5,24}] Sizebounds: (< 0,0,A>, 50) (< 0,0,B>, 5) (< 0,0,C>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,J>, J) (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>, 0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>, 6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>, 6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>, 5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>, ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>, ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>, ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>, 6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 1 p(f15) = 1 p(f19) = 1 p(f33) = 0 p(f36) = 0 p(f41) = 0 p(f50) = 0 p(f54) = 0 p(f66) = 0 p(f70) = 0 p(f80) = 0 p(f84) = 0 The following rules are strictly oriented: [C >= 1 + B] ==> f15(A,B,C,E,F,G,H,J) = 1 > 0 = f33(A,B,C,E,B,0,H,J) The following rules are weakly oriented: True ==> f0(A,B,C,E,F,G,H,J) = 1 >= 1 = f15(50,5,0,E,F,G,H,J) [B >= C] ==> f15(A,B,C,E,F,G,H,J) = 1 >= 1 = f19(A,B,C,0,F,G,H,J) [B >= E && E >= 1 + C] ==> f19(A,B,C,E,F,G,H,J) = 1 >= 1 = f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] ==> f19(A,B,C,E,F,G,H,J) = 1 >= 1 = f19(A,B,C,1 + E,F,G,H,J) [B >= E && C = E] ==> f19(A,B,C,E,F,G,H,J) = 1 >= 1 = f19(A,B,C,1 + C,F,G,H,J) [F >= 1 + G] ==> f33(A,B,C,E,F,G,H,J) = 0 >= 0 = f36(A,B,C,E,F,G,1 + G,J) [0 >= 1 + G && F >= H] ==> f36(A,B,C,E,F,G,H,J) = 0 >= 0 = f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] ==> f36(A,B,C,E,F,G,H,J) = 0 >= 0 = f41(A,B,C,E,F,G,H,0) [G >= 1 + J] ==> f41(A,B,C,E,F,G,H,J) = 0 >= 0 = f41(A,B,C,E,F,G,H,1 + J) [F >= H && G = 0] ==> f36(A,B,C,E,F,G,H,J) = 0 >= 0 = f36(A,B,C,E,F,0,1 + H,J) [F >= H] ==> f50(A,B,C,E,F,G,H,J) = 0 >= 0 = f54(A,B,C,E,F,G,H,0) [G >= J] ==> f54(A,B,C,E,F,G,H,J) = 0 >= 0 = f54(A,B,C,E,F,G,H,1 + J) [F >= G] ==> f66(A,B,C,E,F,G,H,J) = 0 >= 0 = f70(A,B,C,E,F,G,0,J) [G >= 1 + H] ==> f70(A,B,C,E,F,G,H,J) = 0 >= 0 = f70(A,B,C,E,F,G,1 + H,J) [G >= 0] ==> f80(A,B,C,E,F,G,H,J) = 0 >= 0 = f84(A,B,C,E,F,G,1 + G,J) [F >= H] ==> f84(A,B,C,E,F,G,H,J) = 0 >= 0 = f84(A,B,C,E,F,G,1 + H,J) [H >= 1 + F] ==> f84(A,B,C,E,F,G,H,J) = 0 >= 0 = f80(A,B,C,E,F,-1 + G,H,J) [H >= G] ==> f70(A,B,C,E,F,G,H,J) = 0 >= 0 = f66(A,B,C,E,F,1 + G,H,J) [G >= 1 + F] ==> f66(A,B,C,E,F,G,H,J) = 0 >= 0 = f80(A,B,C,E,F,-1 + F,H,J) [J >= 1 + G] ==> f54(A,B,C,E,F,G,H,J) = 0 >= 0 = f50(A,B,C,E,F,G,1 + H,J) [H >= 1 + F] ==> f50(A,B,C,E,F,G,H,J) = 0 >= 0 = f33(A,B,C,E,F,1 + G,H,J) [J >= G] ==> f41(A,B,C,E,F,G,H,J) = 0 >= 0 = f36(A,B,C,E,F,G,1 + H,J) [H >= 1 + F] ==> f36(A,B,C,E,F,G,H,J) = 0 >= 0 = f50(A,B,C,E,F,G,1 + G,J) [G >= F] ==> f33(A,B,C,E,F,G,H,J) = 0 >= 0 = f66(A,B,C,E,F,1,H,J) [E >= 1 + B] ==> f19(A,B,C,E,F,G,H,J) = 1 >= 1 = f15(A,B,1 + C,E,F,G,H,J) * Step 7: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,E,F,G,H,J) -> f15(50,5,0,E,F,G,H,J) True (1,1) 1. f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J) [B >= C] (?,1) 2. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [B >= E && E >= 1 + C] (?,1) 3. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] (?,1) 4. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J) [B >= E && C = E] (?,1) 5. f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J) [F >= 1 + G] (?,1) 6. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [0 >= 1 + G && F >= H] (?,1) 7. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] (?,1) 8. f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J) [G >= 1 + J] (?,1) 9. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J) [F >= H && G = 0] (?,1) 10. f50(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,0) [F >= H] (?,1) 11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J) [G >= J] (?,1) 12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J) [F >= G] (?,1) 13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J) [G >= 1 + H] (?,1) 14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J) [G >= 0] (?,1) 15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J) [F >= H] (?,1) 16. f84(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + G,H,J) [H >= 1 + F] (?,1) 18. f70(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1 + G,H,J) [H >= G] (?,1) 19. f66(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J) [G >= 1 + F] (?,1) 20. f54(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + H,J) [J >= 1 + G] (?,1) 21. f50(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,H,J) [H >= 1 + F] (?,1) 22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J) [J >= G] (?,1) 23. f36(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + G,J) [H >= 1 + F] (?,1) 24. f33(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J) [G >= F] (?,1) 25. f19(A,B,C,E,F,G,H,J) -> f15(A,B,1 + C,E,F,G,H,J) [E >= 1 + B] (?,1) 26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J) [C >= 1 + B] (1,1) Signature: {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)} Flow Graph: [0->{1},1->{2,3,4,25},2->{2,25},3->{3,4,25},4->{2,25},5->{6,7,9},6->{22},7->{8},8->{8,22},9->{9,23} ,10->{11,20},11->{11,20},12->{13,18},13->{13,18},14->{15,16},15->{15,16},16->{14},18->{12,19},19->{14} ,20->{10,21},21->{5,24},22->{6,7,9,23},23->{10,21},24->{12,19},25->{1,26},26->{5,24}] Sizebounds: (< 0,0,A>, 50) (< 0,0,B>, 5) (< 0,0,C>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,J>, J) (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>, 0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>, 6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>, 6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>, 5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>, ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>, ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>, ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>, 6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 1 p(f15) = 1 p(f19) = 1 p(f33) = 1 p(f36) = 1 p(f41) = 1 p(f50) = 1 p(f54) = 1 p(f66) = 0 p(f70) = 0 p(f80) = 0 p(f84) = 0 The following rules are strictly oriented: [G >= F] ==> f33(A,B,C,E,F,G,H,J) = 1 > 0 = f66(A,B,C,E,F,1,H,J) The following rules are weakly oriented: True ==> f0(A,B,C,E,F,G,H,J) = 1 >= 1 = f15(50,5,0,E,F,G,H,J) [B >= C] ==> f15(A,B,C,E,F,G,H,J) = 1 >= 1 = f19(A,B,C,0,F,G,H,J) [B >= E && E >= 1 + C] ==> f19(A,B,C,E,F,G,H,J) = 1 >= 1 = f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] ==> f19(A,B,C,E,F,G,H,J) = 1 >= 1 = f19(A,B,C,1 + E,F,G,H,J) [B >= E && C = E] ==> f19(A,B,C,E,F,G,H,J) = 1 >= 1 = f19(A,B,C,1 + C,F,G,H,J) [F >= 1 + G] ==> f33(A,B,C,E,F,G,H,J) = 1 >= 1 = f36(A,B,C,E,F,G,1 + G,J) [0 >= 1 + G && F >= H] ==> f36(A,B,C,E,F,G,H,J) = 1 >= 1 = f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] ==> f36(A,B,C,E,F,G,H,J) = 1 >= 1 = f41(A,B,C,E,F,G,H,0) [G >= 1 + J] ==> f41(A,B,C,E,F,G,H,J) = 1 >= 1 = f41(A,B,C,E,F,G,H,1 + J) [F >= H && G = 0] ==> f36(A,B,C,E,F,G,H,J) = 1 >= 1 = f36(A,B,C,E,F,0,1 + H,J) [F >= H] ==> f50(A,B,C,E,F,G,H,J) = 1 >= 1 = f54(A,B,C,E,F,G,H,0) [G >= J] ==> f54(A,B,C,E,F,G,H,J) = 1 >= 1 = f54(A,B,C,E,F,G,H,1 + J) [F >= G] ==> f66(A,B,C,E,F,G,H,J) = 0 >= 0 = f70(A,B,C,E,F,G,0,J) [G >= 1 + H] ==> f70(A,B,C,E,F,G,H,J) = 0 >= 0 = f70(A,B,C,E,F,G,1 + H,J) [G >= 0] ==> f80(A,B,C,E,F,G,H,J) = 0 >= 0 = f84(A,B,C,E,F,G,1 + G,J) [F >= H] ==> f84(A,B,C,E,F,G,H,J) = 0 >= 0 = f84(A,B,C,E,F,G,1 + H,J) [H >= 1 + F] ==> f84(A,B,C,E,F,G,H,J) = 0 >= 0 = f80(A,B,C,E,F,-1 + G,H,J) [H >= G] ==> f70(A,B,C,E,F,G,H,J) = 0 >= 0 = f66(A,B,C,E,F,1 + G,H,J) [G >= 1 + F] ==> f66(A,B,C,E,F,G,H,J) = 0 >= 0 = f80(A,B,C,E,F,-1 + F,H,J) [J >= 1 + G] ==> f54(A,B,C,E,F,G,H,J) = 1 >= 1 = f50(A,B,C,E,F,G,1 + H,J) [H >= 1 + F] ==> f50(A,B,C,E,F,G,H,J) = 1 >= 1 = f33(A,B,C,E,F,1 + G,H,J) [J >= G] ==> f41(A,B,C,E,F,G,H,J) = 1 >= 1 = f36(A,B,C,E,F,G,1 + H,J) [H >= 1 + F] ==> f36(A,B,C,E,F,G,H,J) = 1 >= 1 = f50(A,B,C,E,F,G,1 + G,J) [E >= 1 + B] ==> f19(A,B,C,E,F,G,H,J) = 1 >= 1 = f15(A,B,1 + C,E,F,G,H,J) [C >= 1 + B] ==> f15(A,B,C,E,F,G,H,J) = 1 >= 1 = f33(A,B,C,E,B,0,H,J) * Step 8: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,E,F,G,H,J) -> f15(50,5,0,E,F,G,H,J) True (1,1) 1. f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J) [B >= C] (?,1) 2. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [B >= E && E >= 1 + C] (?,1) 3. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] (?,1) 4. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J) [B >= E && C = E] (?,1) 5. f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J) [F >= 1 + G] (?,1) 6. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [0 >= 1 + G && F >= H] (?,1) 7. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] (?,1) 8. f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J) [G >= 1 + J] (?,1) 9. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J) [F >= H && G = 0] (?,1) 10. f50(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,0) [F >= H] (?,1) 11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J) [G >= J] (?,1) 12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J) [F >= G] (?,1) 13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J) [G >= 1 + H] (?,1) 14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J) [G >= 0] (?,1) 15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J) [F >= H] (?,1) 16. f84(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + G,H,J) [H >= 1 + F] (?,1) 18. f70(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1 + G,H,J) [H >= G] (?,1) 19. f66(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J) [G >= 1 + F] (?,1) 20. f54(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + H,J) [J >= 1 + G] (?,1) 21. f50(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,H,J) [H >= 1 + F] (?,1) 22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J) [J >= G] (?,1) 23. f36(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + G,J) [H >= 1 + F] (?,1) 24. f33(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J) [G >= F] (1,1) 25. f19(A,B,C,E,F,G,H,J) -> f15(A,B,1 + C,E,F,G,H,J) [E >= 1 + B] (?,1) 26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J) [C >= 1 + B] (1,1) Signature: {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)} Flow Graph: [0->{1},1->{2,3,4,25},2->{2,25},3->{3,4,25},4->{2,25},5->{6,7,9},6->{22},7->{8},8->{8,22},9->{9,23} ,10->{11,20},11->{11,20},12->{13,18},13->{13,18},14->{15,16},15->{15,16},16->{14},18->{12,19},19->{14} ,20->{10,21},21->{5,24},22->{6,7,9,23},23->{10,21},24->{12,19},25->{1,26},26->{5,24}] Sizebounds: (< 0,0,A>, 50) (< 0,0,B>, 5) (< 0,0,C>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,J>, J) (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>, 0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>, 6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>, 6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>, 5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>, ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>, ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>, ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>, 6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 1 p(f15) = 1 p(f19) = 1 p(f33) = 1 p(f36) = 1 p(f41) = 1 p(f50) = 1 p(f54) = 1 p(f66) = 1 p(f70) = 1 p(f80) = 0 p(f84) = 0 The following rules are strictly oriented: [G >= 1 + F] ==> f66(A,B,C,E,F,G,H,J) = 1 > 0 = f80(A,B,C,E,F,-1 + F,H,J) The following rules are weakly oriented: True ==> f0(A,B,C,E,F,G,H,J) = 1 >= 1 = f15(50,5,0,E,F,G,H,J) [B >= C] ==> f15(A,B,C,E,F,G,H,J) = 1 >= 1 = f19(A,B,C,0,F,G,H,J) [B >= E && E >= 1 + C] ==> f19(A,B,C,E,F,G,H,J) = 1 >= 1 = f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] ==> f19(A,B,C,E,F,G,H,J) = 1 >= 1 = f19(A,B,C,1 + E,F,G,H,J) [B >= E && C = E] ==> f19(A,B,C,E,F,G,H,J) = 1 >= 1 = f19(A,B,C,1 + C,F,G,H,J) [F >= 1 + G] ==> f33(A,B,C,E,F,G,H,J) = 1 >= 1 = f36(A,B,C,E,F,G,1 + G,J) [0 >= 1 + G && F >= H] ==> f36(A,B,C,E,F,G,H,J) = 1 >= 1 = f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] ==> f36(A,B,C,E,F,G,H,J) = 1 >= 1 = f41(A,B,C,E,F,G,H,0) [G >= 1 + J] ==> f41(A,B,C,E,F,G,H,J) = 1 >= 1 = f41(A,B,C,E,F,G,H,1 + J) [F >= H && G = 0] ==> f36(A,B,C,E,F,G,H,J) = 1 >= 1 = f36(A,B,C,E,F,0,1 + H,J) [F >= H] ==> f50(A,B,C,E,F,G,H,J) = 1 >= 1 = f54(A,B,C,E,F,G,H,0) [G >= J] ==> f54(A,B,C,E,F,G,H,J) = 1 >= 1 = f54(A,B,C,E,F,G,H,1 + J) [F >= G] ==> f66(A,B,C,E,F,G,H,J) = 1 >= 1 = f70(A,B,C,E,F,G,0,J) [G >= 1 + H] ==> f70(A,B,C,E,F,G,H,J) = 1 >= 1 = f70(A,B,C,E,F,G,1 + H,J) [G >= 0] ==> f80(A,B,C,E,F,G,H,J) = 0 >= 0 = f84(A,B,C,E,F,G,1 + G,J) [F >= H] ==> f84(A,B,C,E,F,G,H,J) = 0 >= 0 = f84(A,B,C,E,F,G,1 + H,J) [H >= 1 + F] ==> f84(A,B,C,E,F,G,H,J) = 0 >= 0 = f80(A,B,C,E,F,-1 + G,H,J) [H >= G] ==> f70(A,B,C,E,F,G,H,J) = 1 >= 1 = f66(A,B,C,E,F,1 + G,H,J) [J >= 1 + G] ==> f54(A,B,C,E,F,G,H,J) = 1 >= 1 = f50(A,B,C,E,F,G,1 + H,J) [H >= 1 + F] ==> f50(A,B,C,E,F,G,H,J) = 1 >= 1 = f33(A,B,C,E,F,1 + G,H,J) [J >= G] ==> f41(A,B,C,E,F,G,H,J) = 1 >= 1 = f36(A,B,C,E,F,G,1 + H,J) [H >= 1 + F] ==> f36(A,B,C,E,F,G,H,J) = 1 >= 1 = f50(A,B,C,E,F,G,1 + G,J) [G >= F] ==> f33(A,B,C,E,F,G,H,J) = 1 >= 1 = f66(A,B,C,E,F,1,H,J) [E >= 1 + B] ==> f19(A,B,C,E,F,G,H,J) = 1 >= 1 = f15(A,B,1 + C,E,F,G,H,J) [C >= 1 + B] ==> f15(A,B,C,E,F,G,H,J) = 1 >= 1 = f33(A,B,C,E,B,0,H,J) * Step 9: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,E,F,G,H,J) -> f15(50,5,0,E,F,G,H,J) True (1,1) 1. f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J) [B >= C] (?,1) 2. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [B >= E && E >= 1 + C] (?,1) 3. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] (?,1) 4. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J) [B >= E && C = E] (?,1) 5. f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J) [F >= 1 + G] (?,1) 6. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [0 >= 1 + G && F >= H] (?,1) 7. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] (?,1) 8. f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J) [G >= 1 + J] (?,1) 9. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J) [F >= H && G = 0] (?,1) 10. f50(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,0) [F >= H] (?,1) 11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J) [G >= J] (?,1) 12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J) [F >= G] (?,1) 13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J) [G >= 1 + H] (?,1) 14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J) [G >= 0] (?,1) 15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J) [F >= H] (?,1) 16. f84(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + G,H,J) [H >= 1 + F] (?,1) 18. f70(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1 + G,H,J) [H >= G] (?,1) 19. f66(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J) [G >= 1 + F] (1,1) 20. f54(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + H,J) [J >= 1 + G] (?,1) 21. f50(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,H,J) [H >= 1 + F] (?,1) 22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J) [J >= G] (?,1) 23. f36(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + G,J) [H >= 1 + F] (?,1) 24. f33(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J) [G >= F] (1,1) 25. f19(A,B,C,E,F,G,H,J) -> f15(A,B,1 + C,E,F,G,H,J) [E >= 1 + B] (?,1) 26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J) [C >= 1 + B] (1,1) Signature: {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)} Flow Graph: [0->{1},1->{2,3,4,25},2->{2,25},3->{3,4,25},4->{2,25},5->{6,7,9},6->{22},7->{8},8->{8,22},9->{9,23} ,10->{11,20},11->{11,20},12->{13,18},13->{13,18},14->{15,16},15->{15,16},16->{14},18->{12,19},19->{14} ,20->{10,21},21->{5,24},22->{6,7,9,23},23->{10,21},24->{12,19},25->{1,26},26->{5,24}] Sizebounds: (< 0,0,A>, 50) (< 0,0,B>, 5) (< 0,0,C>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,J>, J) (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>, 0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>, 6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>, 6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>, 5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>, ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>, ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>, ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>, 6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 6 p(f15) = 1 + x2 p(f19) = 1 + x2 p(f33) = 1 + x5 p(f36) = 1 + x5 p(f41) = 1 + x5 p(f50) = 1 + x5 p(f54) = 1 + x5 p(f66) = 1 + x5 p(f70) = 1 + x5 p(f80) = 2 + x6 p(f84) = 1 + x6 The following rules are strictly oriented: [G >= 0] ==> f80(A,B,C,E,F,G,H,J) = 2 + G > 1 + G = f84(A,B,C,E,F,G,1 + G,J) The following rules are weakly oriented: True ==> f0(A,B,C,E,F,G,H,J) = 6 >= 6 = f15(50,5,0,E,F,G,H,J) [B >= C] ==> f15(A,B,C,E,F,G,H,J) = 1 + B >= 1 + B = f19(A,B,C,0,F,G,H,J) [B >= E && E >= 1 + C] ==> f19(A,B,C,E,F,G,H,J) = 1 + B >= 1 + B = f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] ==> f19(A,B,C,E,F,G,H,J) = 1 + B >= 1 + B = f19(A,B,C,1 + E,F,G,H,J) [B >= E && C = E] ==> f19(A,B,C,E,F,G,H,J) = 1 + B >= 1 + B = f19(A,B,C,1 + C,F,G,H,J) [F >= 1 + G] ==> f33(A,B,C,E,F,G,H,J) = 1 + F >= 1 + F = f36(A,B,C,E,F,G,1 + G,J) [0 >= 1 + G && F >= H] ==> f36(A,B,C,E,F,G,H,J) = 1 + F >= 1 + F = f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] ==> f36(A,B,C,E,F,G,H,J) = 1 + F >= 1 + F = f41(A,B,C,E,F,G,H,0) [G >= 1 + J] ==> f41(A,B,C,E,F,G,H,J) = 1 + F >= 1 + F = f41(A,B,C,E,F,G,H,1 + J) [F >= H && G = 0] ==> f36(A,B,C,E,F,G,H,J) = 1 + F >= 1 + F = f36(A,B,C,E,F,0,1 + H,J) [F >= H] ==> f50(A,B,C,E,F,G,H,J) = 1 + F >= 1 + F = f54(A,B,C,E,F,G,H,0) [G >= J] ==> f54(A,B,C,E,F,G,H,J) = 1 + F >= 1 + F = f54(A,B,C,E,F,G,H,1 + J) [F >= G] ==> f66(A,B,C,E,F,G,H,J) = 1 + F >= 1 + F = f70(A,B,C,E,F,G,0,J) [G >= 1 + H] ==> f70(A,B,C,E,F,G,H,J) = 1 + F >= 1 + F = f70(A,B,C,E,F,G,1 + H,J) [F >= H] ==> f84(A,B,C,E,F,G,H,J) = 1 + G >= 1 + G = f84(A,B,C,E,F,G,1 + H,J) [H >= 1 + F] ==> f84(A,B,C,E,F,G,H,J) = 1 + G >= 1 + G = f80(A,B,C,E,F,-1 + G,H,J) [H >= G] ==> f70(A,B,C,E,F,G,H,J) = 1 + F >= 1 + F = f66(A,B,C,E,F,1 + G,H,J) [G >= 1 + F] ==> f66(A,B,C,E,F,G,H,J) = 1 + F >= 1 + F = f80(A,B,C,E,F,-1 + F,H,J) [J >= 1 + G] ==> f54(A,B,C,E,F,G,H,J) = 1 + F >= 1 + F = f50(A,B,C,E,F,G,1 + H,J) [H >= 1 + F] ==> f50(A,B,C,E,F,G,H,J) = 1 + F >= 1 + F = f33(A,B,C,E,F,1 + G,H,J) [J >= G] ==> f41(A,B,C,E,F,G,H,J) = 1 + F >= 1 + F = f36(A,B,C,E,F,G,1 + H,J) [H >= 1 + F] ==> f36(A,B,C,E,F,G,H,J) = 1 + F >= 1 + F = f50(A,B,C,E,F,G,1 + G,J) [G >= F] ==> f33(A,B,C,E,F,G,H,J) = 1 + F >= 1 + F = f66(A,B,C,E,F,1,H,J) [E >= 1 + B] ==> f19(A,B,C,E,F,G,H,J) = 1 + B >= 1 + B = f15(A,B,1 + C,E,F,G,H,J) [C >= 1 + B] ==> f15(A,B,C,E,F,G,H,J) = 1 + B >= 1 + B = f33(A,B,C,E,B,0,H,J) * Step 10: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,E,F,G,H,J) -> f15(50,5,0,E,F,G,H,J) True (1,1) 1. f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J) [B >= C] (?,1) 2. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [B >= E && E >= 1 + C] (?,1) 3. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] (?,1) 4. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J) [B >= E && C = E] (?,1) 5. f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J) [F >= 1 + G] (?,1) 6. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [0 >= 1 + G && F >= H] (?,1) 7. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] (?,1) 8. f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J) [G >= 1 + J] (?,1) 9. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J) [F >= H && G = 0] (?,1) 10. f50(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,0) [F >= H] (?,1) 11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J) [G >= J] (?,1) 12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J) [F >= G] (?,1) 13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J) [G >= 1 + H] (?,1) 14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J) [G >= 0] (6,1) 15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J) [F >= H] (?,1) 16. f84(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + G,H,J) [H >= 1 + F] (?,1) 18. f70(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1 + G,H,J) [H >= G] (?,1) 19. f66(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J) [G >= 1 + F] (1,1) 20. f54(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + H,J) [J >= 1 + G] (?,1) 21. f50(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,H,J) [H >= 1 + F] (?,1) 22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J) [J >= G] (?,1) 23. f36(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + G,J) [H >= 1 + F] (?,1) 24. f33(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J) [G >= F] (1,1) 25. f19(A,B,C,E,F,G,H,J) -> f15(A,B,1 + C,E,F,G,H,J) [E >= 1 + B] (?,1) 26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J) [C >= 1 + B] (1,1) Signature: {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)} Flow Graph: [0->{1},1->{2,3,4,25},2->{2,25},3->{3,4,25},4->{2,25},5->{6,7,9},6->{22},7->{8},8->{8,22},9->{9,23} ,10->{11,20},11->{11,20},12->{13,18},13->{13,18},14->{15,16},15->{15,16},16->{14},18->{12,19},19->{14} ,20->{10,21},21->{5,24},22->{6,7,9,23},23->{10,21},24->{12,19},25->{1,26},26->{5,24}] Sizebounds: (< 0,0,A>, 50) (< 0,0,B>, 5) (< 0,0,C>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,J>, J) (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>, 0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>, 6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>, 6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>, 5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>, ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>, ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>, ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>, 6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 7 p(f15) = 2 + x2 + -1*x3 p(f19) = 1 + x2 + -1*x3 p(f33) = 1 + x2 + -1*x3 p(f36) = 1 + x2 + -1*x3 p(f41) = 1 + x2 + -1*x3 p(f50) = 1 + x2 + -1*x3 p(f54) = 1 + x2 + -1*x3 p(f66) = 1 + x2 + -1*x3 p(f70) = 1 + x2 + -1*x3 p(f80) = 1 + x2 + -1*x3 p(f84) = 1 + x2 + -1*x3 The following rules are strictly oriented: [B >= C] ==> f15(A,B,C,E,F,G,H,J) = 2 + B + -1*C > 1 + B + -1*C = f19(A,B,C,0,F,G,H,J) The following rules are weakly oriented: True ==> f0(A,B,C,E,F,G,H,J) = 7 >= 7 = f15(50,5,0,E,F,G,H,J) [B >= E && E >= 1 + C] ==> f19(A,B,C,E,F,G,H,J) = 1 + B + -1*C >= 1 + B + -1*C = f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] ==> f19(A,B,C,E,F,G,H,J) = 1 + B + -1*C >= 1 + B + -1*C = f19(A,B,C,1 + E,F,G,H,J) [B >= E && C = E] ==> f19(A,B,C,E,F,G,H,J) = 1 + B + -1*C >= 1 + B + -1*C = f19(A,B,C,1 + C,F,G,H,J) [F >= 1 + G] ==> f33(A,B,C,E,F,G,H,J) = 1 + B + -1*C >= 1 + B + -1*C = f36(A,B,C,E,F,G,1 + G,J) [0 >= 1 + G && F >= H] ==> f36(A,B,C,E,F,G,H,J) = 1 + B + -1*C >= 1 + B + -1*C = f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] ==> f36(A,B,C,E,F,G,H,J) = 1 + B + -1*C >= 1 + B + -1*C = f41(A,B,C,E,F,G,H,0) [G >= 1 + J] ==> f41(A,B,C,E,F,G,H,J) = 1 + B + -1*C >= 1 + B + -1*C = f41(A,B,C,E,F,G,H,1 + J) [F >= H && G = 0] ==> f36(A,B,C,E,F,G,H,J) = 1 + B + -1*C >= 1 + B + -1*C = f36(A,B,C,E,F,0,1 + H,J) [F >= H] ==> f50(A,B,C,E,F,G,H,J) = 1 + B + -1*C >= 1 + B + -1*C = f54(A,B,C,E,F,G,H,0) [G >= J] ==> f54(A,B,C,E,F,G,H,J) = 1 + B + -1*C >= 1 + B + -1*C = f54(A,B,C,E,F,G,H,1 + J) [F >= G] ==> f66(A,B,C,E,F,G,H,J) = 1 + B + -1*C >= 1 + B + -1*C = f70(A,B,C,E,F,G,0,J) [G >= 1 + H] ==> f70(A,B,C,E,F,G,H,J) = 1 + B + -1*C >= 1 + B + -1*C = f70(A,B,C,E,F,G,1 + H,J) [G >= 0] ==> f80(A,B,C,E,F,G,H,J) = 1 + B + -1*C >= 1 + B + -1*C = f84(A,B,C,E,F,G,1 + G,J) [F >= H] ==> f84(A,B,C,E,F,G,H,J) = 1 + B + -1*C >= 1 + B + -1*C = f84(A,B,C,E,F,G,1 + H,J) [H >= 1 + F] ==> f84(A,B,C,E,F,G,H,J) = 1 + B + -1*C >= 1 + B + -1*C = f80(A,B,C,E,F,-1 + G,H,J) [H >= G] ==> f70(A,B,C,E,F,G,H,J) = 1 + B + -1*C >= 1 + B + -1*C = f66(A,B,C,E,F,1 + G,H,J) [G >= 1 + F] ==> f66(A,B,C,E,F,G,H,J) = 1 + B + -1*C >= 1 + B + -1*C = f80(A,B,C,E,F,-1 + F,H,J) [J >= 1 + G] ==> f54(A,B,C,E,F,G,H,J) = 1 + B + -1*C >= 1 + B + -1*C = f50(A,B,C,E,F,G,1 + H,J) [H >= 1 + F] ==> f50(A,B,C,E,F,G,H,J) = 1 + B + -1*C >= 1 + B + -1*C = f33(A,B,C,E,F,1 + G,H,J) [J >= G] ==> f41(A,B,C,E,F,G,H,J) = 1 + B + -1*C >= 1 + B + -1*C = f36(A,B,C,E,F,G,1 + H,J) [H >= 1 + F] ==> f36(A,B,C,E,F,G,H,J) = 1 + B + -1*C >= 1 + B + -1*C = f50(A,B,C,E,F,G,1 + G,J) [G >= F] ==> f33(A,B,C,E,F,G,H,J) = 1 + B + -1*C >= 1 + B + -1*C = f66(A,B,C,E,F,1,H,J) [E >= 1 + B] ==> f19(A,B,C,E,F,G,H,J) = 1 + B + -1*C >= 1 + B + -1*C = f15(A,B,1 + C,E,F,G,H,J) [C >= 1 + B] ==> f15(A,B,C,E,F,G,H,J) = 2 + B + -1*C >= 1 + B + -1*C = f33(A,B,C,E,B,0,H,J) * Step 11: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,E,F,G,H,J) -> f15(50,5,0,E,F,G,H,J) True (1,1) 1. f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J) [B >= C] (7,1) 2. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [B >= E && E >= 1 + C] (?,1) 3. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] (?,1) 4. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J) [B >= E && C = E] (?,1) 5. f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J) [F >= 1 + G] (?,1) 6. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [0 >= 1 + G && F >= H] (?,1) 7. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] (?,1) 8. f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J) [G >= 1 + J] (?,1) 9. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J) [F >= H && G = 0] (?,1) 10. f50(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,0) [F >= H] (?,1) 11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J) [G >= J] (?,1) 12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J) [F >= G] (?,1) 13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J) [G >= 1 + H] (?,1) 14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J) [G >= 0] (6,1) 15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J) [F >= H] (?,1) 16. f84(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + G,H,J) [H >= 1 + F] (?,1) 18. f70(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1 + G,H,J) [H >= G] (?,1) 19. f66(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J) [G >= 1 + F] (1,1) 20. f54(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + H,J) [J >= 1 + G] (?,1) 21. f50(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,H,J) [H >= 1 + F] (?,1) 22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J) [J >= G] (?,1) 23. f36(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + G,J) [H >= 1 + F] (?,1) 24. f33(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J) [G >= F] (1,1) 25. f19(A,B,C,E,F,G,H,J) -> f15(A,B,1 + C,E,F,G,H,J) [E >= 1 + B] (?,1) 26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J) [C >= 1 + B] (1,1) Signature: {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)} Flow Graph: [0->{1},1->{2,3,4,25},2->{2,25},3->{3,4,25},4->{2,25},5->{6,7,9},6->{22},7->{8},8->{8,22},9->{9,23} ,10->{11,20},11->{11,20},12->{13,18},13->{13,18},14->{15,16},15->{15,16},16->{14},18->{12,19},19->{14} ,20->{10,21},21->{5,24},22->{6,7,9,23},23->{10,21},24->{12,19},25->{1,26},26->{5,24}] Sizebounds: (< 0,0,A>, 50) (< 0,0,B>, 5) (< 0,0,C>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,J>, J) (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>, 0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>, 6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>, 6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>, 5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>, ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>, ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>, ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>, 6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [2,4,3], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f19) = 1 + x3 + -1*x4 The following rules are strictly oriented: [B >= E && C = E] ==> f19(A,B,C,E,F,G,H,J) = 1 + C + -1*E > 0 = f19(A,B,C,1 + C,F,G,H,J) The following rules are weakly oriented: [B >= E && E >= 1 + C] ==> f19(A,B,C,E,F,G,H,J) = 1 + C + -1*E >= C + -1*E = f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] ==> f19(A,B,C,E,F,G,H,J) = 1 + C + -1*E >= C + -1*E = f19(A,B,C,1 + E,F,G,H,J) We use the following global sizebounds: (< 0,0,A>, 50) (< 0,0,B>, 5) (< 0,0,C>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,J>, J) (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>, 0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>, 6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>, 6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>, 5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>, ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>, ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>, ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>, 6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) * Step 12: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,E,F,G,H,J) -> f15(50,5,0,E,F,G,H,J) True (1,1) 1. f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J) [B >= C] (7,1) 2. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [B >= E && E >= 1 + C] (?,1) 3. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] (?,1) 4. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J) [B >= E && C = E] (42,1) 5. f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J) [F >= 1 + G] (?,1) 6. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [0 >= 1 + G && F >= H] (?,1) 7. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] (?,1) 8. f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J) [G >= 1 + J] (?,1) 9. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J) [F >= H && G = 0] (?,1) 10. f50(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,0) [F >= H] (?,1) 11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J) [G >= J] (?,1) 12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J) [F >= G] (?,1) 13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J) [G >= 1 + H] (?,1) 14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J) [G >= 0] (6,1) 15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J) [F >= H] (?,1) 16. f84(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + G,H,J) [H >= 1 + F] (?,1) 18. f70(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1 + G,H,J) [H >= G] (?,1) 19. f66(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J) [G >= 1 + F] (1,1) 20. f54(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + H,J) [J >= 1 + G] (?,1) 21. f50(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,H,J) [H >= 1 + F] (?,1) 22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J) [J >= G] (?,1) 23. f36(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + G,J) [H >= 1 + F] (?,1) 24. f33(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J) [G >= F] (1,1) 25. f19(A,B,C,E,F,G,H,J) -> f15(A,B,1 + C,E,F,G,H,J) [E >= 1 + B] (?,1) 26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J) [C >= 1 + B] (1,1) Signature: {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)} Flow Graph: [0->{1},1->{2,3,4,25},2->{2,25},3->{3,4,25},4->{2,25},5->{6,7,9},6->{22},7->{8},8->{8,22},9->{9,23} ,10->{11,20},11->{11,20},12->{13,18},13->{13,18},14->{15,16},15->{15,16},16->{14},18->{12,19},19->{14} ,20->{10,21},21->{5,24},22->{6,7,9,23},23->{10,21},24->{12,19},25->{1,26},26->{5,24}] Sizebounds: (< 0,0,A>, 50) (< 0,0,B>, 5) (< 0,0,C>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,J>, J) (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>, 0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>, 6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>, 6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>, 5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>, ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>, ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>, ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>, 6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [25,2,4,3], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f15) = 0 p(f19) = 1 The following rules are strictly oriented: [E >= 1 + B] ==> f19(A,B,C,E,F,G,H,J) = 1 > 0 = f15(A,B,1 + C,E,F,G,H,J) The following rules are weakly oriented: [B >= E && E >= 1 + C] ==> f19(A,B,C,E,F,G,H,J) = 1 >= 1 = f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] ==> f19(A,B,C,E,F,G,H,J) = 1 >= 1 = f19(A,B,C,1 + E,F,G,H,J) [B >= E && C = E] ==> f19(A,B,C,E,F,G,H,J) = 1 >= 1 = f19(A,B,C,1 + C,F,G,H,J) We use the following global sizebounds: (< 0,0,A>, 50) (< 0,0,B>, 5) (< 0,0,C>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,J>, J) (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>, 0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>, 6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>, 6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>, 5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>, ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>, ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>, ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>, 6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) * Step 13: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,E,F,G,H,J) -> f15(50,5,0,E,F,G,H,J) True (1,1) 1. f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J) [B >= C] (7,1) 2. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [B >= E && E >= 1 + C] (?,1) 3. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] (?,1) 4. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J) [B >= E && C = E] (42,1) 5. f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J) [F >= 1 + G] (?,1) 6. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [0 >= 1 + G && F >= H] (?,1) 7. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] (?,1) 8. f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J) [G >= 1 + J] (?,1) 9. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J) [F >= H && G = 0] (?,1) 10. f50(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,0) [F >= H] (?,1) 11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J) [G >= J] (?,1) 12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J) [F >= G] (?,1) 13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J) [G >= 1 + H] (?,1) 14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J) [G >= 0] (6,1) 15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J) [F >= H] (?,1) 16. f84(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + G,H,J) [H >= 1 + F] (?,1) 18. f70(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1 + G,H,J) [H >= G] (?,1) 19. f66(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J) [G >= 1 + F] (1,1) 20. f54(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + H,J) [J >= 1 + G] (?,1) 21. f50(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,H,J) [H >= 1 + F] (?,1) 22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J) [J >= G] (?,1) 23. f36(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + G,J) [H >= 1 + F] (?,1) 24. f33(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J) [G >= F] (1,1) 25. f19(A,B,C,E,F,G,H,J) -> f15(A,B,1 + C,E,F,G,H,J) [E >= 1 + B] (7,1) 26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J) [C >= 1 + B] (1,1) Signature: {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)} Flow Graph: [0->{1},1->{2,3,4,25},2->{2,25},3->{3,4,25},4->{2,25},5->{6,7,9},6->{22},7->{8},8->{8,22},9->{9,23} ,10->{11,20},11->{11,20},12->{13,18},13->{13,18},14->{15,16},15->{15,16},16->{14},18->{12,19},19->{14} ,20->{10,21},21->{5,24},22->{6,7,9,23},23->{10,21},24->{12,19},25->{1,26},26->{5,24}] Sizebounds: (< 0,0,A>, 50) (< 0,0,B>, 5) (< 0,0,C>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,J>, J) (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>, 0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>, 6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>, 6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>, 5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>, ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>, ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>, ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>, 6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [25,2,4,3], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f15) = 1 + x2 + -1*x4 p(f19) = 1 + x2 + -1*x4 The following rules are strictly oriented: [C >= 1 + E && B >= E] ==> f19(A,B,C,E,F,G,H,J) = 1 + B + -1*E > B + -1*E = f19(A,B,C,1 + E,F,G,H,J) [B >= E && C = E] ==> f19(A,B,C,E,F,G,H,J) = 1 + B + -1*E > B + -1*C = f19(A,B,C,1 + C,F,G,H,J) The following rules are weakly oriented: [B >= E && E >= 1 + C] ==> f19(A,B,C,E,F,G,H,J) = 1 + B + -1*E >= B + -1*E = f19(A,B,C,1 + E,F,G,H,J) [E >= 1 + B] ==> f19(A,B,C,E,F,G,H,J) = 1 + B + -1*E >= 1 + B + -1*E = f15(A,B,1 + C,E,F,G,H,J) We use the following global sizebounds: (< 0,0,A>, 50) (< 0,0,B>, 5) (< 0,0,C>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,J>, J) (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>, 0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>, 6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>, 6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>, 5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>, ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>, ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>, ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>, 6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) * Step 14: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,E,F,G,H,J) -> f15(50,5,0,E,F,G,H,J) True (1,1) 1. f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J) [B >= C] (7,1) 2. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [B >= E && E >= 1 + C] (?,1) 3. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] (42,1) 4. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J) [B >= E && C = E] (42,1) 5. f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J) [F >= 1 + G] (?,1) 6. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [0 >= 1 + G && F >= H] (?,1) 7. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] (?,1) 8. f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J) [G >= 1 + J] (?,1) 9. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J) [F >= H && G = 0] (?,1) 10. f50(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,0) [F >= H] (?,1) 11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J) [G >= J] (?,1) 12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J) [F >= G] (?,1) 13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J) [G >= 1 + H] (?,1) 14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J) [G >= 0] (6,1) 15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J) [F >= H] (?,1) 16. f84(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + G,H,J) [H >= 1 + F] (?,1) 18. f70(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1 + G,H,J) [H >= G] (?,1) 19. f66(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J) [G >= 1 + F] (1,1) 20. f54(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + H,J) [J >= 1 + G] (?,1) 21. f50(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,H,J) [H >= 1 + F] (?,1) 22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J) [J >= G] (?,1) 23. f36(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + G,J) [H >= 1 + F] (?,1) 24. f33(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J) [G >= F] (1,1) 25. f19(A,B,C,E,F,G,H,J) -> f15(A,B,1 + C,E,F,G,H,J) [E >= 1 + B] (7,1) 26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J) [C >= 1 + B] (1,1) Signature: {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)} Flow Graph: [0->{1},1->{2,3,4,25},2->{2,25},3->{3,4,25},4->{2,25},5->{6,7,9},6->{22},7->{8},8->{8,22},9->{9,23} ,10->{11,20},11->{11,20},12->{13,18},13->{13,18},14->{15,16},15->{15,16},16->{14},18->{12,19},19->{14} ,20->{10,21},21->{5,24},22->{6,7,9,23},23->{10,21},24->{12,19},25->{1,26},26->{5,24}] Sizebounds: (< 0,0,A>, 50) (< 0,0,B>, 5) (< 0,0,C>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,J>, J) (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>, 0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>, 6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>, 6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>, 5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>, ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>, ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>, ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>, 6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [25,2,4,3], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f15) = 1 + x2 + -1*x4 p(f19) = 1 + x2 + -1*x4 The following rules are strictly oriented: [B >= E && E >= 1 + C] ==> f19(A,B,C,E,F,G,H,J) = 1 + B + -1*E > B + -1*E = f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] ==> f19(A,B,C,E,F,G,H,J) = 1 + B + -1*E > B + -1*E = f19(A,B,C,1 + E,F,G,H,J) [B >= E && C = E] ==> f19(A,B,C,E,F,G,H,J) = 1 + B + -1*E > B + -1*C = f19(A,B,C,1 + C,F,G,H,J) The following rules are weakly oriented: [E >= 1 + B] ==> f19(A,B,C,E,F,G,H,J) = 1 + B + -1*E >= 1 + B + -1*E = f15(A,B,1 + C,E,F,G,H,J) We use the following global sizebounds: (< 0,0,A>, 50) (< 0,0,B>, 5) (< 0,0,C>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,J>, J) (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>, 0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>, 6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>, 6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>, 5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>, ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>, ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>, ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>, 6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) * Step 15: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,E,F,G,H,J) -> f15(50,5,0,E,F,G,H,J) True (1,1) 1. f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J) [B >= C] (7,1) 2. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [B >= E && E >= 1 + C] (42,1) 3. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] (42,1) 4. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J) [B >= E && C = E] (42,1) 5. f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J) [F >= 1 + G] (?,1) 6. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [0 >= 1 + G && F >= H] (?,1) 7. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] (?,1) 8. f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J) [G >= 1 + J] (?,1) 9. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J) [F >= H && G = 0] (?,1) 10. f50(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,0) [F >= H] (?,1) 11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J) [G >= J] (?,1) 12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J) [F >= G] (?,1) 13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J) [G >= 1 + H] (?,1) 14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J) [G >= 0] (6,1) 15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J) [F >= H] (?,1) 16. f84(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + G,H,J) [H >= 1 + F] (?,1) 18. f70(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1 + G,H,J) [H >= G] (?,1) 19. f66(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J) [G >= 1 + F] (1,1) 20. f54(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + H,J) [J >= 1 + G] (?,1) 21. f50(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,H,J) [H >= 1 + F] (?,1) 22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J) [J >= G] (?,1) 23. f36(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + G,J) [H >= 1 + F] (?,1) 24. f33(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J) [G >= F] (1,1) 25. f19(A,B,C,E,F,G,H,J) -> f15(A,B,1 + C,E,F,G,H,J) [E >= 1 + B] (7,1) 26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J) [C >= 1 + B] (1,1) Signature: {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)} Flow Graph: [0->{1},1->{2,3,4,25},2->{2,25},3->{3,4,25},4->{2,25},5->{6,7,9},6->{22},7->{8},8->{8,22},9->{9,23} ,10->{11,20},11->{11,20},12->{13,18},13->{13,18},14->{15,16},15->{15,16},16->{14},18->{12,19},19->{14} ,20->{10,21},21->{5,24},22->{6,7,9,23},23->{10,21},24->{12,19},25->{1,26},26->{5,24}] Sizebounds: (< 0,0,A>, 50) (< 0,0,B>, 5) (< 0,0,C>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,J>, J) (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>, 0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>, 6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>, 6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>, 5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>, ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>, ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>, ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>, 6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [5,21,20,10,23,9,22,6,8,7,11], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f33) = 2 + x5 + -1*x6 p(f36) = 1 + x5 + -1*x6 p(f41) = 1 + x5 + -1*x6 p(f50) = 1 + x5 + -1*x6 p(f54) = 1 + x5 + -1*x6 The following rules are strictly oriented: [F >= 1 + G] ==> f33(A,B,C,E,F,G,H,J) = 2 + F + -1*G > 1 + F + -1*G = f36(A,B,C,E,F,G,1 + G,J) The following rules are weakly oriented: [0 >= 1 + G && F >= H] ==> f36(A,B,C,E,F,G,H,J) = 1 + F + -1*G >= 1 + F + -1*G = f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] ==> f36(A,B,C,E,F,G,H,J) = 1 + F + -1*G >= 1 + F + -1*G = f41(A,B,C,E,F,G,H,0) [G >= 1 + J] ==> f41(A,B,C,E,F,G,H,J) = 1 + F + -1*G >= 1 + F + -1*G = f41(A,B,C,E,F,G,H,1 + J) [F >= H && G = 0] ==> f36(A,B,C,E,F,G,H,J) = 1 + F + -1*G >= 1 + F = f36(A,B,C,E,F,0,1 + H,J) [F >= H] ==> f50(A,B,C,E,F,G,H,J) = 1 + F + -1*G >= 1 + F + -1*G = f54(A,B,C,E,F,G,H,0) [G >= J] ==> f54(A,B,C,E,F,G,H,J) = 1 + F + -1*G >= 1 + F + -1*G = f54(A,B,C,E,F,G,H,1 + J) [J >= 1 + G] ==> f54(A,B,C,E,F,G,H,J) = 1 + F + -1*G >= 1 + F + -1*G = f50(A,B,C,E,F,G,1 + H,J) [H >= 1 + F] ==> f50(A,B,C,E,F,G,H,J) = 1 + F + -1*G >= 1 + F + -1*G = f33(A,B,C,E,F,1 + G,H,J) [J >= G] ==> f41(A,B,C,E,F,G,H,J) = 1 + F + -1*G >= 1 + F + -1*G = f36(A,B,C,E,F,G,1 + H,J) [H >= 1 + F] ==> f36(A,B,C,E,F,G,H,J) = 1 + F + -1*G >= 1 + F + -1*G = f50(A,B,C,E,F,G,1 + G,J) We use the following global sizebounds: (< 0,0,A>, 50) (< 0,0,B>, 5) (< 0,0,C>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,J>, J) (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>, 0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>, 6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>, 6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>, 5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>, ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>, ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>, ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>, 6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) * Step 16: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,E,F,G,H,J) -> f15(50,5,0,E,F,G,H,J) True (1,1) 1. f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J) [B >= C] (7,1) 2. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [B >= E && E >= 1 + C] (42,1) 3. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] (42,1) 4. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J) [B >= E && C = E] (42,1) 5. f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J) [F >= 1 + G] (7,1) 6. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [0 >= 1 + G && F >= H] (?,1) 7. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] (?,1) 8. f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J) [G >= 1 + J] (?,1) 9. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J) [F >= H && G = 0] (?,1) 10. f50(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,0) [F >= H] (?,1) 11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J) [G >= J] (?,1) 12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J) [F >= G] (?,1) 13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J) [G >= 1 + H] (?,1) 14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J) [G >= 0] (6,1) 15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J) [F >= H] (?,1) 16. f84(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + G,H,J) [H >= 1 + F] (?,1) 18. f70(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1 + G,H,J) [H >= G] (?,1) 19. f66(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J) [G >= 1 + F] (1,1) 20. f54(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + H,J) [J >= 1 + G] (?,1) 21. f50(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,H,J) [H >= 1 + F] (?,1) 22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J) [J >= G] (?,1) 23. f36(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + G,J) [H >= 1 + F] (?,1) 24. f33(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J) [G >= F] (1,1) 25. f19(A,B,C,E,F,G,H,J) -> f15(A,B,1 + C,E,F,G,H,J) [E >= 1 + B] (7,1) 26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J) [C >= 1 + B] (1,1) Signature: {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)} Flow Graph: [0->{1},1->{2,3,4,25},2->{2,25},3->{3,4,25},4->{2,25},5->{6,7,9},6->{22},7->{8},8->{8,22},9->{9,23} ,10->{11,20},11->{11,20},12->{13,18},13->{13,18},14->{15,16},15->{15,16},16->{14},18->{12,19},19->{14} ,20->{10,21},21->{5,24},22->{6,7,9,23},23->{10,21},24->{12,19},25->{1,26},26->{5,24}] Sizebounds: (< 0,0,A>, 50) (< 0,0,B>, 5) (< 0,0,C>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,J>, J) (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>, 0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>, 6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>, 6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>, 5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>, ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>, ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>, ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>, 6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [21,20,10,23,9,22,6,8,7,11], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f33) = 0 p(f36) = 1 p(f41) = 1 p(f50) = 0 p(f54) = 0 The following rules are strictly oriented: [H >= 1 + F] ==> f36(A,B,C,E,F,G,H,J) = 1 > 0 = f50(A,B,C,E,F,G,1 + G,J) The following rules are weakly oriented: [0 >= 1 + G && F >= H] ==> f36(A,B,C,E,F,G,H,J) = 1 >= 1 = f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] ==> f36(A,B,C,E,F,G,H,J) = 1 >= 1 = f41(A,B,C,E,F,G,H,0) [G >= 1 + J] ==> f41(A,B,C,E,F,G,H,J) = 1 >= 1 = f41(A,B,C,E,F,G,H,1 + J) [F >= H && G = 0] ==> f36(A,B,C,E,F,G,H,J) = 1 >= 1 = f36(A,B,C,E,F,0,1 + H,J) [F >= H] ==> f50(A,B,C,E,F,G,H,J) = 0 >= 0 = f54(A,B,C,E,F,G,H,0) [G >= J] ==> f54(A,B,C,E,F,G,H,J) = 0 >= 0 = f54(A,B,C,E,F,G,H,1 + J) [J >= 1 + G] ==> f54(A,B,C,E,F,G,H,J) = 0 >= 0 = f50(A,B,C,E,F,G,1 + H,J) [H >= 1 + F] ==> f50(A,B,C,E,F,G,H,J) = 0 >= 0 = f33(A,B,C,E,F,1 + G,H,J) [J >= G] ==> f41(A,B,C,E,F,G,H,J) = 1 >= 1 = f36(A,B,C,E,F,G,1 + H,J) We use the following global sizebounds: (< 0,0,A>, 50) (< 0,0,B>, 5) (< 0,0,C>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,J>, J) (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>, 0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>, 6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>, 6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>, 5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>, ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>, ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>, ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>, 6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) * Step 17: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,E,F,G,H,J) -> f15(50,5,0,E,F,G,H,J) True (1,1) 1. f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J) [B >= C] (7,1) 2. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [B >= E && E >= 1 + C] (42,1) 3. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] (42,1) 4. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J) [B >= E && C = E] (42,1) 5. f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J) [F >= 1 + G] (7,1) 6. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [0 >= 1 + G && F >= H] (?,1) 7. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] (?,1) 8. f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J) [G >= 1 + J] (?,1) 9. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J) [F >= H && G = 0] (?,1) 10. f50(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,0) [F >= H] (?,1) 11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J) [G >= J] (?,1) 12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J) [F >= G] (?,1) 13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J) [G >= 1 + H] (?,1) 14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J) [G >= 0] (6,1) 15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J) [F >= H] (?,1) 16. f84(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + G,H,J) [H >= 1 + F] (?,1) 18. f70(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1 + G,H,J) [H >= G] (?,1) 19. f66(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J) [G >= 1 + F] (1,1) 20. f54(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + H,J) [J >= 1 + G] (?,1) 21. f50(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,H,J) [H >= 1 + F] (?,1) 22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J) [J >= G] (?,1) 23. f36(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + G,J) [H >= 1 + F] (7,1) 24. f33(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J) [G >= F] (1,1) 25. f19(A,B,C,E,F,G,H,J) -> f15(A,B,1 + C,E,F,G,H,J) [E >= 1 + B] (7,1) 26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J) [C >= 1 + B] (1,1) Signature: {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)} Flow Graph: [0->{1},1->{2,3,4,25},2->{2,25},3->{3,4,25},4->{2,25},5->{6,7,9},6->{22},7->{8},8->{8,22},9->{9,23} ,10->{11,20},11->{11,20},12->{13,18},13->{13,18},14->{15,16},15->{15,16},16->{14},18->{12,19},19->{14} ,20->{10,21},21->{5,24},22->{6,7,9,23},23->{10,21},24->{12,19},25->{1,26},26->{5,24}] Sizebounds: (< 0,0,A>, 50) (< 0,0,B>, 5) (< 0,0,C>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,J>, J) (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>, 0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>, 6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>, 6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>, 5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>, ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>, ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>, ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>, 6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [21,20,10,23,9,22,6,8,7,11], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f33) = 0 p(f36) = 1 p(f41) = 1 p(f50) = 1 p(f54) = 1 The following rules are strictly oriented: [H >= 1 + F] ==> f50(A,B,C,E,F,G,H,J) = 1 > 0 = f33(A,B,C,E,F,1 + G,H,J) The following rules are weakly oriented: [0 >= 1 + G && F >= H] ==> f36(A,B,C,E,F,G,H,J) = 1 >= 1 = f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] ==> f36(A,B,C,E,F,G,H,J) = 1 >= 1 = f41(A,B,C,E,F,G,H,0) [G >= 1 + J] ==> f41(A,B,C,E,F,G,H,J) = 1 >= 1 = f41(A,B,C,E,F,G,H,1 + J) [F >= H && G = 0] ==> f36(A,B,C,E,F,G,H,J) = 1 >= 1 = f36(A,B,C,E,F,0,1 + H,J) [F >= H] ==> f50(A,B,C,E,F,G,H,J) = 1 >= 1 = f54(A,B,C,E,F,G,H,0) [G >= J] ==> f54(A,B,C,E,F,G,H,J) = 1 >= 1 = f54(A,B,C,E,F,G,H,1 + J) [J >= 1 + G] ==> f54(A,B,C,E,F,G,H,J) = 1 >= 1 = f50(A,B,C,E,F,G,1 + H,J) [J >= G] ==> f41(A,B,C,E,F,G,H,J) = 1 >= 1 = f36(A,B,C,E,F,G,1 + H,J) [H >= 1 + F] ==> f36(A,B,C,E,F,G,H,J) = 1 >= 1 = f50(A,B,C,E,F,G,1 + G,J) We use the following global sizebounds: (< 0,0,A>, 50) (< 0,0,B>, 5) (< 0,0,C>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,J>, J) (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>, 0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>, 6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>, 6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>, 5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>, ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>, ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>, ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>, 6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) * Step 18: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,E,F,G,H,J) -> f15(50,5,0,E,F,G,H,J) True (1,1) 1. f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J) [B >= C] (7,1) 2. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [B >= E && E >= 1 + C] (42,1) 3. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] (42,1) 4. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J) [B >= E && C = E] (42,1) 5. f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J) [F >= 1 + G] (7,1) 6. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [0 >= 1 + G && F >= H] (?,1) 7. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] (?,1) 8. f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J) [G >= 1 + J] (?,1) 9. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J) [F >= H && G = 0] (?,1) 10. f50(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,0) [F >= H] (?,1) 11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J) [G >= J] (?,1) 12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J) [F >= G] (?,1) 13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J) [G >= 1 + H] (?,1) 14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J) [G >= 0] (6,1) 15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J) [F >= H] (?,1) 16. f84(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + G,H,J) [H >= 1 + F] (?,1) 18. f70(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1 + G,H,J) [H >= G] (?,1) 19. f66(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J) [G >= 1 + F] (1,1) 20. f54(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + H,J) [J >= 1 + G] (?,1) 21. f50(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,H,J) [H >= 1 + F] (7,1) 22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J) [J >= G] (?,1) 23. f36(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + G,J) [H >= 1 + F] (7,1) 24. f33(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J) [G >= F] (1,1) 25. f19(A,B,C,E,F,G,H,J) -> f15(A,B,1 + C,E,F,G,H,J) [E >= 1 + B] (7,1) 26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J) [C >= 1 + B] (1,1) Signature: {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)} Flow Graph: [0->{1},1->{2,3,4,25},2->{2,25},3->{3,4,25},4->{2,25},5->{6,7,9},6->{22},7->{8},8->{8,22},9->{9,23} ,10->{11,20},11->{11,20},12->{13,18},13->{13,18},14->{15,16},15->{15,16},16->{14},18->{12,19},19->{14} ,20->{10,21},21->{5,24},22->{6,7,9,23},23->{10,21},24->{12,19},25->{1,26},26->{5,24}] Sizebounds: (< 0,0,A>, 50) (< 0,0,B>, 5) (< 0,0,C>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,J>, J) (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>, 0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>, 6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>, 6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>, 5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>, ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>, ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>, ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>, 6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [5,21,20,10,9,22,6,8,7,11], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f33) = 1 + x5 p(f36) = 2 + x5 + x6 + -1*x7 p(f41) = 1 + x5 + x6 + -1*x7 p(f50) = 1 + x5 p(f54) = 1 + x5 The following rules are strictly oriented: [G >= 1 && F >= H] ==> f36(A,B,C,E,F,G,H,J) = 2 + F + G + -1*H > 1 + F + G + -1*H = f41(A,B,C,E,F,G,H,0) [F >= H && G = 0] ==> f36(A,B,C,E,F,G,H,J) = 2 + F + G + -1*H > 1 + F + -1*H = f36(A,B,C,E,F,0,1 + H,J) The following rules are weakly oriented: [F >= 1 + G] ==> f33(A,B,C,E,F,G,H,J) = 1 + F >= 1 + F = f36(A,B,C,E,F,G,1 + G,J) [0 >= 1 + G && F >= H] ==> f36(A,B,C,E,F,G,H,J) = 2 + F + G + -1*H >= 1 + F + G + -1*H = f41(A,B,C,E,F,G,H,0) [G >= 1 + J] ==> f41(A,B,C,E,F,G,H,J) = 1 + F + G + -1*H >= 1 + F + G + -1*H = f41(A,B,C,E,F,G,H,1 + J) [F >= H] ==> f50(A,B,C,E,F,G,H,J) = 1 + F >= 1 + F = f54(A,B,C,E,F,G,H,0) [G >= J] ==> f54(A,B,C,E,F,G,H,J) = 1 + F >= 1 + F = f54(A,B,C,E,F,G,H,1 + J) [J >= 1 + G] ==> f54(A,B,C,E,F,G,H,J) = 1 + F >= 1 + F = f50(A,B,C,E,F,G,1 + H,J) [H >= 1 + F] ==> f50(A,B,C,E,F,G,H,J) = 1 + F >= 1 + F = f33(A,B,C,E,F,1 + G,H,J) [J >= G] ==> f41(A,B,C,E,F,G,H,J) = 1 + F + G + -1*H >= 1 + F + G + -1*H = f36(A,B,C,E,F,G,1 + H,J) We use the following global sizebounds: (< 0,0,A>, 50) (< 0,0,B>, 5) (< 0,0,C>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,J>, J) (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>, 0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>, 6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>, 6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>, 5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>, ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>, ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>, ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>, 6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) * Step 19: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,E,F,G,H,J) -> f15(50,5,0,E,F,G,H,J) True (1,1) 1. f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J) [B >= C] (7,1) 2. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [B >= E && E >= 1 + C] (42,1) 3. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] (42,1) 4. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J) [B >= E && C = E] (42,1) 5. f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J) [F >= 1 + G] (7,1) 6. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [0 >= 1 + G && F >= H] (?,1) 7. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] (48,1) 8. f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J) [G >= 1 + J] (?,1) 9. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J) [F >= H && G = 0] (48,1) 10. f50(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,0) [F >= H] (?,1) 11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J) [G >= J] (?,1) 12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J) [F >= G] (?,1) 13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J) [G >= 1 + H] (?,1) 14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J) [G >= 0] (6,1) 15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J) [F >= H] (?,1) 16. f84(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + G,H,J) [H >= 1 + F] (?,1) 18. f70(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1 + G,H,J) [H >= G] (?,1) 19. f66(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J) [G >= 1 + F] (1,1) 20. f54(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + H,J) [J >= 1 + G] (?,1) 21. f50(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,H,J) [H >= 1 + F] (7,1) 22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J) [J >= G] (?,1) 23. f36(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + G,J) [H >= 1 + F] (7,1) 24. f33(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J) [G >= F] (1,1) 25. f19(A,B,C,E,F,G,H,J) -> f15(A,B,1 + C,E,F,G,H,J) [E >= 1 + B] (7,1) 26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J) [C >= 1 + B] (1,1) Signature: {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)} Flow Graph: [0->{1},1->{2,3,4,25},2->{2,25},3->{3,4,25},4->{2,25},5->{6,7,9},6->{22},7->{8},8->{8,22},9->{9,23} ,10->{11,20},11->{11,20},12->{13,18},13->{13,18},14->{15,16},15->{15,16},16->{14},18->{12,19},19->{14} ,20->{10,21},21->{5,24},22->{6,7,9,23},23->{10,21},24->{12,19},25->{1,26},26->{5,24}] Sizebounds: (< 0,0,A>, 50) (< 0,0,B>, 5) (< 0,0,C>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,J>, J) (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>, 0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>, 6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>, 6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>, 5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>, ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>, ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>, ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>, 6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [21,20,10,23,9,22,6,8,7,11], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f33) = 2 + x5 + -1*x7 p(f36) = 1 + x5 + -1*x6 p(f41) = 1 + x5 + -1*x6 p(f50) = 2 + x5 + -1*x7 p(f54) = 1 + x5 + -1*x7 The following rules are strictly oriented: [F >= H] ==> f50(A,B,C,E,F,G,H,J) = 2 + F + -1*H > 1 + F + -1*H = f54(A,B,C,E,F,G,H,0) The following rules are weakly oriented: [0 >= 1 + G && F >= H] ==> f36(A,B,C,E,F,G,H,J) = 1 + F + -1*G >= 1 + F + -1*G = f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] ==> f36(A,B,C,E,F,G,H,J) = 1 + F + -1*G >= 1 + F + -1*G = f41(A,B,C,E,F,G,H,0) [G >= 1 + J] ==> f41(A,B,C,E,F,G,H,J) = 1 + F + -1*G >= 1 + F + -1*G = f41(A,B,C,E,F,G,H,1 + J) [F >= H && G = 0] ==> f36(A,B,C,E,F,G,H,J) = 1 + F + -1*G >= 1 + F = f36(A,B,C,E,F,0,1 + H,J) [G >= J] ==> f54(A,B,C,E,F,G,H,J) = 1 + F + -1*H >= 1 + F + -1*H = f54(A,B,C,E,F,G,H,1 + J) [J >= 1 + G] ==> f54(A,B,C,E,F,G,H,J) = 1 + F + -1*H >= 1 + F + -1*H = f50(A,B,C,E,F,G,1 + H,J) [H >= 1 + F] ==> f50(A,B,C,E,F,G,H,J) = 2 + F + -1*H >= 2 + F + -1*H = f33(A,B,C,E,F,1 + G,H,J) [J >= G] ==> f41(A,B,C,E,F,G,H,J) = 1 + F + -1*G >= 1 + F + -1*G = f36(A,B,C,E,F,G,1 + H,J) [H >= 1 + F] ==> f36(A,B,C,E,F,G,H,J) = 1 + F + -1*G >= 1 + F + -1*G = f50(A,B,C,E,F,G,1 + G,J) We use the following global sizebounds: (< 0,0,A>, 50) (< 0,0,B>, 5) (< 0,0,C>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,J>, J) (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>, 0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>, 6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>, 6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>, 5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>, ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>, ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>, ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>, 6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) * Step 20: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,E,F,G,H,J) -> f15(50,5,0,E,F,G,H,J) True (1,1) 1. f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J) [B >= C] (7,1) 2. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [B >= E && E >= 1 + C] (42,1) 3. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] (42,1) 4. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J) [B >= E && C = E] (42,1) 5. f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J) [F >= 1 + G] (7,1) 6. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [0 >= 1 + G && F >= H] (?,1) 7. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] (48,1) 8. f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J) [G >= 1 + J] (?,1) 9. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J) [F >= H && G = 0] (48,1) 10. f50(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,0) [F >= H] (77,1) 11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J) [G >= J] (?,1) 12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J) [F >= G] (?,1) 13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J) [G >= 1 + H] (?,1) 14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J) [G >= 0] (6,1) 15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J) [F >= H] (?,1) 16. f84(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + G,H,J) [H >= 1 + F] (?,1) 18. f70(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1 + G,H,J) [H >= G] (?,1) 19. f66(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J) [G >= 1 + F] (1,1) 20. f54(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + H,J) [J >= 1 + G] (?,1) 21. f50(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,H,J) [H >= 1 + F] (7,1) 22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J) [J >= G] (?,1) 23. f36(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + G,J) [H >= 1 + F] (7,1) 24. f33(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J) [G >= F] (1,1) 25. f19(A,B,C,E,F,G,H,J) -> f15(A,B,1 + C,E,F,G,H,J) [E >= 1 + B] (7,1) 26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J) [C >= 1 + B] (1,1) Signature: {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)} Flow Graph: [0->{1},1->{2,3,4,25},2->{2,25},3->{3,4,25},4->{2,25},5->{6,7,9},6->{22},7->{8},8->{8,22},9->{9,23} ,10->{11,20},11->{11,20},12->{13,18},13->{13,18},14->{15,16},15->{15,16},16->{14},18->{12,19},19->{14} ,20->{10,21},21->{5,24},22->{6,7,9,23},23->{10,21},24->{12,19},25->{1,26},26->{5,24}] Sizebounds: (< 0,0,A>, 50) (< 0,0,B>, 5) (< 0,0,C>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,J>, J) (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>, 0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>, 6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>, 6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>, 5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>, ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>, ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>, ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>, 6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [5,21,20,23,9,22,6,8,7,11], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f33) = 0 p(f36) = 0 p(f41) = 0 p(f50) = 0 p(f54) = 1 The following rules are strictly oriented: [J >= 1 + G] ==> f54(A,B,C,E,F,G,H,J) = 1 > 0 = f50(A,B,C,E,F,G,1 + H,J) The following rules are weakly oriented: [F >= 1 + G] ==> f33(A,B,C,E,F,G,H,J) = 0 >= 0 = f36(A,B,C,E,F,G,1 + G,J) [0 >= 1 + G && F >= H] ==> f36(A,B,C,E,F,G,H,J) = 0 >= 0 = f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] ==> f36(A,B,C,E,F,G,H,J) = 0 >= 0 = f41(A,B,C,E,F,G,H,0) [G >= 1 + J] ==> f41(A,B,C,E,F,G,H,J) = 0 >= 0 = f41(A,B,C,E,F,G,H,1 + J) [F >= H && G = 0] ==> f36(A,B,C,E,F,G,H,J) = 0 >= 0 = f36(A,B,C,E,F,0,1 + H,J) [G >= J] ==> f54(A,B,C,E,F,G,H,J) = 1 >= 1 = f54(A,B,C,E,F,G,H,1 + J) [H >= 1 + F] ==> f50(A,B,C,E,F,G,H,J) = 0 >= 0 = f33(A,B,C,E,F,1 + G,H,J) [J >= G] ==> f41(A,B,C,E,F,G,H,J) = 0 >= 0 = f36(A,B,C,E,F,G,1 + H,J) [H >= 1 + F] ==> f36(A,B,C,E,F,G,H,J) = 0 >= 0 = f50(A,B,C,E,F,G,1 + G,J) We use the following global sizebounds: (< 0,0,A>, 50) (< 0,0,B>, 5) (< 0,0,C>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,J>, J) (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>, 0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>, 6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>, 6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>, 5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>, ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>, ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>, ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>, 6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) * Step 21: ChainProcessor WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,E,F,G,H,J) -> f15(50,5,0,E,F,G,H,J) True (1,1) 1. f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J) [B >= C] (7,1) 2. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [B >= E && E >= 1 + C] (42,1) 3. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] (42,1) 4. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J) [B >= E && C = E] (42,1) 5. f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J) [F >= 1 + G] (7,1) 6. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [0 >= 1 + G && F >= H] (?,1) 7. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] (48,1) 8. f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J) [G >= 1 + J] (?,1) 9. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J) [F >= H && G = 0] (48,1) 10. f50(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,0) [F >= H] (77,1) 11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J) [G >= J] (?,1) 12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J) [F >= G] (?,1) 13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J) [G >= 1 + H] (?,1) 14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J) [G >= 0] (6,1) 15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J) [F >= H] (?,1) 16. f84(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + G,H,J) [H >= 1 + F] (?,1) 18. f70(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1 + G,H,J) [H >= G] (?,1) 19. f66(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J) [G >= 1 + F] (1,1) 20. f54(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + H,J) [J >= 1 + G] (77,1) 21. f50(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,H,J) [H >= 1 + F] (7,1) 22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J) [J >= G] (?,1) 23. f36(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + G,J) [H >= 1 + F] (7,1) 24. f33(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J) [G >= F] (1,1) 25. f19(A,B,C,E,F,G,H,J) -> f15(A,B,1 + C,E,F,G,H,J) [E >= 1 + B] (7,1) 26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J) [C >= 1 + B] (1,1) Signature: {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)} Flow Graph: [0->{1},1->{2,3,4,25},2->{2,25},3->{3,4,25},4->{2,25},5->{6,7,9},6->{22},7->{8},8->{8,22},9->{9,23} ,10->{11,20},11->{11,20},12->{13,18},13->{13,18},14->{15,16},15->{15,16},16->{14},18->{12,19},19->{14} ,20->{10,21},21->{5,24},22->{6,7,9,23},23->{10,21},24->{12,19},25->{1,26},26->{5,24}] Sizebounds: (< 0,0,A>, 50) (< 0,0,B>, 5) (< 0,0,C>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,J>, J) (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>, 0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>, 6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>, 6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>, 5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>, ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>, ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>, ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>, 6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) + Applied Processor: ChainProcessor False [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26] + Details: We chained rule 0 to obtain the rules [27] . * Step 22: ChainProcessor WORST_CASE(?,O(1)) + Considered Problem: Rules: 1. f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J) [B >= C] (7,1) 2. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [B >= E && E >= 1 + C] (42,1) 3. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] (42,1) 4. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J) [B >= E && C = E] (42,1) 5. f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J) [F >= 1 + G] (7,1) 6. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [0 >= 1 + G && F >= H] (?,1) 7. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] (48,1) 8. f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J) [G >= 1 + J] (?,1) 9. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J) [F >= H && G = 0] (48,1) 10. f50(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,0) [F >= H] (77,1) 11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J) [G >= J] (?,1) 12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J) [F >= G] (?,1) 13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J) [G >= 1 + H] (?,1) 14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J) [G >= 0] (6,1) 15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J) [F >= H] (?,1) 16. f84(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + G,H,J) [H >= 1 + F] (?,1) 18. f70(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1 + G,H,J) [H >= G] (?,1) 19. f66(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J) [G >= 1 + F] (1,1) 20. f54(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + H,J) [J >= 1 + G] (77,1) 21. f50(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,H,J) [H >= 1 + F] (7,1) 22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J) [J >= G] (?,1) 23. f36(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + G,J) [H >= 1 + F] (7,1) 24. f33(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J) [G >= F] (1,1) 25. f19(A,B,C,E,F,G,H,J) -> f15(A,B,1 + C,E,F,G,H,J) [E >= 1 + B] (7,1) 26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J) [C >= 1 + B] (1,1) 27. f0(A,B,C,E,F,G,H,J) -> f19(50,5,0,0,F,G,H,J) [5 >= 0] (1,2) Signature: {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)} Flow Graph: [1->{2,3,4,25},2->{2,3,4,25},3->{2,3,4,25},4->{2,3,4,25},5->{6,7,9,23},6->{8,22},7->{8,22},8->{8,22},9->{6 ,7,9,23},10->{11,20},11->{11,20},12->{13,18},13->{13,18},14->{15,16},15->{15,16},16->{14},18->{12,19} ,19->{14},20->{10,21},21->{5,24},22->{6,7,9,23},23->{10,21},24->{12,19},25->{1,26},26->{5,24},27->{2,3,4 ,25}] Sizebounds: (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>, 0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>, 6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>, 6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>, 5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>, ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>, ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>, ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>, 6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 5) (<27,0,E>, 0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) + Applied Processor: ChainProcessor False [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26,27] + Details: We chained rule 16 to obtain the rules [28] . * Step 23: ChainProcessor WORST_CASE(?,O(1)) + Considered Problem: Rules: 1. f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J) [B >= C] (7,1) 2. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [B >= E && E >= 1 + C] (42,1) 3. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] (42,1) 4. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J) [B >= E && C = E] (42,1) 5. f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J) [F >= 1 + G] (7,1) 6. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [0 >= 1 + G && F >= H] (?,1) 7. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] (48,1) 8. f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J) [G >= 1 + J] (?,1) 9. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J) [F >= H && G = 0] (48,1) 10. f50(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,0) [F >= H] (77,1) 11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J) [G >= J] (?,1) 12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J) [F >= G] (?,1) 13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J) [G >= 1 + H] (?,1) 14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J) [G >= 0] (6,1) 15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J) [F >= H] (?,1) 18. f70(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1 + G,H,J) [H >= G] (?,1) 19. f66(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J) [G >= 1 + F] (1,1) 20. f54(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + H,J) [J >= 1 + G] (77,1) 21. f50(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,H,J) [H >= 1 + F] (7,1) 22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J) [J >= G] (?,1) 23. f36(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + G,J) [H >= 1 + F] (7,1) 24. f33(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J) [G >= F] (1,1) 25. f19(A,B,C,E,F,G,H,J) -> f15(A,B,1 + C,E,F,G,H,J) [E >= 1 + B] (7,1) 26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J) [C >= 1 + B] (1,1) 27. f0(A,B,C,E,F,G,H,J) -> f19(50,5,0,0,F,G,H,J) [5 >= 0] (1,2) 28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J) [H >= 1 + F && -1 + G >= 0] (?,2) Signature: {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)} Flow Graph: [1->{2,3,4,25},2->{2,3,4,25},3->{2,3,4,25},4->{2,3,4,25},5->{6,7,9,23},6->{8,22},7->{8,22},8->{8,22},9->{6 ,7,9,23},10->{11,20},11->{11,20},12->{13,18},13->{13,18},14->{15,28},15->{15,28},18->{12,19},19->{14} ,20->{10,21},21->{5,24},22->{6,7,9,23},23->{10,21},24->{12,19},25->{1,26},26->{5,24},27->{2,3,4,25},28->{15 ,28}] Sizebounds: (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>, 0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>, 6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>, 6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>, 5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>, ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>, ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>, ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>, 6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 5) (<27,0,E>, 0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, ?) (<28,0,E>, ?) (<28,0,F>, 5) (<28,0,G>, ?) (<28,0,H>, ?) (<28,0,J>, ?) + Applied Processor: ChainProcessor False [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,18,19,20,21,22,23,24,25,26,27,28] + Details: We chained rule 18 to obtain the rules [29,30] . * Step 24: ChainProcessor WORST_CASE(?,O(1)) + Considered Problem: Rules: 1. f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J) [B >= C] (7,1) 2. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [B >= E && E >= 1 + C] (42,1) 3. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] (42,1) 4. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J) [B >= E && C = E] (42,1) 5. f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J) [F >= 1 + G] (7,1) 6. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [0 >= 1 + G && F >= H] (?,1) 7. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] (48,1) 8. f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J) [G >= 1 + J] (?,1) 9. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J) [F >= H && G = 0] (48,1) 10. f50(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,0) [F >= H] (77,1) 11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J) [G >= J] (?,1) 12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J) [F >= G] (?,1) 13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J) [G >= 1 + H] (?,1) 14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J) [G >= 0] (6,1) 15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J) [F >= H] (?,1) 19. f66(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J) [G >= 1 + F] (1,1) 20. f54(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + H,J) [J >= 1 + G] (77,1) 21. f50(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,H,J) [H >= 1 + F] (7,1) 22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J) [J >= G] (?,1) 23. f36(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + G,J) [H >= 1 + F] (7,1) 24. f33(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J) [G >= F] (1,1) 25. f19(A,B,C,E,F,G,H,J) -> f15(A,B,1 + C,E,F,G,H,J) [E >= 1 + B] (7,1) 26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J) [C >= 1 + B] (1,1) 27. f0(A,B,C,E,F,G,H,J) -> f19(50,5,0,0,F,G,H,J) [5 >= 0] (1,2) 28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J) [H >= 1 + F && -1 + G >= 0] (?,2) 29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J) [H >= G && F >= 1 + G] (?,2) 30. f70(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J) [H >= G && 1 + G >= 1 + F] (?,2) Signature: {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)} Flow Graph: [1->{2,3,4,25},2->{2,3,4,25},3->{2,3,4,25},4->{2,3,4,25},5->{6,7,9,23},6->{8,22},7->{8,22},8->{8,22},9->{6 ,7,9,23},10->{11,20},11->{11,20},12->{13,29,30},13->{13,29,30},14->{15,28},15->{15,28},19->{14},20->{10,21} ,21->{5,24},22->{6,7,9,23},23->{10,21},24->{12,19},25->{1,26},26->{5,24},27->{2,3,4,25},28->{15,28},29->{13 ,29,30},30->{14}] Sizebounds: (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>, 0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>, 6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>, 6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>, 5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>, ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>, ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>, ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>, 6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 5) (<27,0,E>, 0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, ?) (<28,0,E>, ?) (<28,0,F>, 5) (<28,0,G>, ?) (<28,0,H>, ?) (<28,0,J>, ?) (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, ?) (<29,0,E>, ?) (<29,0,F>, 5) (<29,0,G>, 5) (<29,0,H>, 0) (<29,0,J>, ?) (<30,0,A>, 50) (<30,0,B>, 5) (<30,0,C>, ?) (<30,0,E>, ?) (<30,0,F>, 5) (<30,0,G>, 6) (<30,0,H>, ?) (<30,0,J>, ?) + Applied Processor: ChainProcessor False [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,19,20,21,22,23,24,25,26,27,28,29,30] + Details: We chained rule 19 to obtain the rules [31] . * Step 25: ChainProcessor WORST_CASE(?,O(1)) + Considered Problem: Rules: 1. f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J) [B >= C] (7,1) 2. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [B >= E && E >= 1 + C] (42,1) 3. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] (42,1) 4. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J) [B >= E && C = E] (42,1) 5. f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J) [F >= 1 + G] (7,1) 6. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [0 >= 1 + G && F >= H] (?,1) 7. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] (48,1) 8. f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J) [G >= 1 + J] (?,1) 9. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J) [F >= H && G = 0] (48,1) 10. f50(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,0) [F >= H] (77,1) 11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J) [G >= J] (?,1) 12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J) [F >= G] (?,1) 13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J) [G >= 1 + H] (?,1) 14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J) [G >= 0] (6,1) 15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J) [F >= H] (?,1) 20. f54(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + H,J) [J >= 1 + G] (77,1) 21. f50(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,H,J) [H >= 1 + F] (7,1) 22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J) [J >= G] (?,1) 23. f36(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + G,J) [H >= 1 + F] (7,1) 24. f33(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J) [G >= F] (1,1) 25. f19(A,B,C,E,F,G,H,J) -> f15(A,B,1 + C,E,F,G,H,J) [E >= 1 + B] (7,1) 26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J) [C >= 1 + B] (1,1) 27. f0(A,B,C,E,F,G,H,J) -> f19(50,5,0,0,F,G,H,J) [5 >= 0] (1,2) 28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J) [H >= 1 + F && -1 + G >= 0] (?,2) 29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J) [H >= G && F >= 1 + G] (?,2) 30. f70(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J) [H >= G && 1 + G >= 1 + F] (?,2) 31. f66(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J) [G >= 1 + F && -1 + F >= 0] (1,2) Signature: {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)} Flow Graph: [1->{2,3,4,25},2->{2,3,4,25},3->{2,3,4,25},4->{2,3,4,25},5->{6,7,9,23},6->{8,22},7->{8,22},8->{8,22},9->{6 ,7,9,23},10->{11,20},11->{11,20},12->{13,29,30},13->{13,29,30},14->{15,28},15->{15,28},20->{10,21},21->{5 ,24},22->{6,7,9,23},23->{10,21},24->{12,31},25->{1,26},26->{5,24},27->{2,3,4,25},28->{15,28},29->{13,29,30} ,30->{14},31->{15,28}] Sizebounds: (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>, 0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>, 6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>, 6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>, 5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>, ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>, ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>, ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>, 6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 5) (<27,0,E>, 0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, ?) (<28,0,E>, ?) (<28,0,F>, 5) (<28,0,G>, ?) (<28,0,H>, ?) (<28,0,J>, ?) (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, ?) (<29,0,E>, ?) (<29,0,F>, 5) (<29,0,G>, 5) (<29,0,H>, 0) (<29,0,J>, ?) (<30,0,A>, 50) (<30,0,B>, 5) (<30,0,C>, ?) (<30,0,E>, ?) (<30,0,F>, 5) (<30,0,G>, 6) (<30,0,H>, ?) (<30,0,J>, ?) (<31,0,A>, 50) (<31,0,B>, 5) (<31,0,C>, ?) (<31,0,E>, ?) (<31,0,F>, 5) (<31,0,G>, ?) (<31,0,H>, ?) (<31,0,J>, ?) + Applied Processor: ChainProcessor False [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,20,21,22,23,24,25,26,27,28,29,30,31] + Details: We chained rule 20 to obtain the rules [32,33] . * Step 26: ChainProcessor WORST_CASE(?,O(1)) + Considered Problem: Rules: 1. f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J) [B >= C] (7,1) 2. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [B >= E && E >= 1 + C] (42,1) 3. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] (42,1) 4. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J) [B >= E && C = E] (42,1) 5. f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J) [F >= 1 + G] (7,1) 6. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [0 >= 1 + G && F >= H] (?,1) 7. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] (48,1) 8. f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J) [G >= 1 + J] (?,1) 9. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J) [F >= H && G = 0] (48,1) 10. f50(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,0) [F >= H] (77,1) 11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J) [G >= J] (?,1) 12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J) [F >= G] (?,1) 13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J) [G >= 1 + H] (?,1) 14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J) [G >= 0] (6,1) 15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J) [F >= H] (?,1) 21. f50(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,H,J) [H >= 1 + F] (7,1) 22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J) [J >= G] (?,1) 23. f36(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + G,J) [H >= 1 + F] (7,1) 24. f33(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J) [G >= F] (1,1) 25. f19(A,B,C,E,F,G,H,J) -> f15(A,B,1 + C,E,F,G,H,J) [E >= 1 + B] (7,1) 26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J) [C >= 1 + B] (1,1) 27. f0(A,B,C,E,F,G,H,J) -> f19(50,5,0,0,F,G,H,J) [5 >= 0] (1,2) 28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J) [H >= 1 + F && -1 + G >= 0] (?,2) 29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J) [H >= G && F >= 1 + G] (?,2) 30. f70(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J) [H >= G && 1 + G >= 1 + F] (?,2) 31. f66(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J) [G >= 1 + F && -1 + F >= 0] (1,2) 32. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + H,0) [J >= 1 + G && F >= 1 + H] (77,2) 33. f54(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,1 + H,J) [J >= 1 + G && 1 + H >= 1 + F] (77,2) Signature: {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)} Flow Graph: [1->{2,3,4,25},2->{2,3,4,25},3->{2,3,4,25},4->{2,3,4,25},5->{6,7,9,23},6->{8,22},7->{8,22},8->{8,22},9->{6 ,7,9,23},10->{11,32,33},11->{11,32,33},12->{13,29,30},13->{13,29,30},14->{15,28},15->{15,28},21->{5,24} ,22->{6,7,9,23},23->{10,21},24->{12,31},25->{1,26},26->{5,24},27->{2,3,4,25},28->{15,28},29->{13,29,30} ,30->{14},31->{15,28},32->{11,32,33},33->{5,24}] Sizebounds: (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>, 0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>, 6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>, 6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>, 5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>, ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>, ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>, ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>, 6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 5) (<27,0,E>, 0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, ?) (<28,0,E>, ?) (<28,0,F>, 5) (<28,0,G>, ?) (<28,0,H>, ?) (<28,0,J>, ?) (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, ?) (<29,0,E>, ?) (<29,0,F>, 5) (<29,0,G>, 5) (<29,0,H>, 0) (<29,0,J>, ?) (<30,0,A>, 50) (<30,0,B>, 5) (<30,0,C>, ?) (<30,0,E>, ?) (<30,0,F>, 5) (<30,0,G>, 6) (<30,0,H>, ?) (<30,0,J>, ?) (<31,0,A>, 50) (<31,0,B>, 5) (<31,0,C>, ?) (<31,0,E>, ?) (<31,0,F>, 5) (<31,0,G>, ?) (<31,0,H>, ?) (<31,0,J>, ?) (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, ?) (<32,0,E>, ?) (<32,0,F>, 5) (<32,0,G>, ?) (<32,0,H>, 5) (<32,0,J>, 0) (<33,0,A>, 50) (<33,0,B>, 5) (<33,0,C>, ?) (<33,0,E>, ?) (<33,0,F>, 5) (<33,0,G>, ?) (<33,0,H>, ?) (<33,0,J>, ?) + Applied Processor: ChainProcessor False [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,21,22,23,24,25,26,27,28,29,30,31,32,33] + Details: We chained rule 21 to obtain the rules [34,35] . * Step 27: ChainProcessor WORST_CASE(?,O(1)) + Considered Problem: Rules: 1. f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J) [B >= C] (7,1) 2. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [B >= E && E >= 1 + C] (42,1) 3. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] (42,1) 4. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J) [B >= E && C = E] (42,1) 5. f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J) [F >= 1 + G] (7,1) 6. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [0 >= 1 + G && F >= H] (?,1) 7. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] (48,1) 8. f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J) [G >= 1 + J] (?,1) 9. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J) [F >= H && G = 0] (48,1) 10. f50(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,0) [F >= H] (77,1) 11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J) [G >= J] (?,1) 12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J) [F >= G] (?,1) 13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J) [G >= 1 + H] (?,1) 14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J) [G >= 0] (6,1) 15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J) [F >= H] (?,1) 22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J) [J >= G] (?,1) 23. f36(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + G,J) [H >= 1 + F] (7,1) 24. f33(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J) [G >= F] (1,1) 25. f19(A,B,C,E,F,G,H,J) -> f15(A,B,1 + C,E,F,G,H,J) [E >= 1 + B] (7,1) 26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J) [C >= 1 + B] (1,1) 27. f0(A,B,C,E,F,G,H,J) -> f19(50,5,0,0,F,G,H,J) [5 >= 0] (1,2) 28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J) [H >= 1 + F && -1 + G >= 0] (?,2) 29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J) [H >= G && F >= 1 + G] (?,2) 30. f70(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J) [H >= G && 1 + G >= 1 + F] (?,2) 31. f66(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J) [G >= 1 + F && -1 + F >= 0] (1,2) 32. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + H,0) [J >= 1 + G && F >= 1 + H] (77,2) 33. f54(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,1 + H,J) [J >= 1 + G && 1 + H >= 1 + F] (77,2) 34. f50(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [H >= 1 + F && F >= 2 + G] (7,2) 35. f50(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J) [H >= 1 + F && 1 + G >= F] (7,2) Signature: {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)} Flow Graph: [1->{2,3,4,25},2->{2,3,4,25},3->{2,3,4,25},4->{2,3,4,25},5->{6,7,9,23},6->{8,22},7->{8,22},8->{8,22},9->{6 ,7,9,23},10->{11,32,33},11->{11,32,33},12->{13,29,30},13->{13,29,30},14->{15,28},15->{15,28},22->{6,7,9,23} ,23->{10,34,35},24->{12,31},25->{1,26},26->{5,24},27->{2,3,4,25},28->{15,28},29->{13,29,30},30->{14},31->{15 ,28},32->{11,32,33},33->{5,24},34->{6,7,9,23},35->{12,31}] Sizebounds: (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>, 0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>, 6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>, 6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>, 5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>, ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>, ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>, ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>, 6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 5) (<27,0,E>, 0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, ?) (<28,0,E>, ?) (<28,0,F>, 5) (<28,0,G>, ?) (<28,0,H>, ?) (<28,0,J>, ?) (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, ?) (<29,0,E>, ?) (<29,0,F>, 5) (<29,0,G>, 5) (<29,0,H>, 0) (<29,0,J>, ?) (<30,0,A>, 50) (<30,0,B>, 5) (<30,0,C>, ?) (<30,0,E>, ?) (<30,0,F>, 5) (<30,0,G>, 6) (<30,0,H>, ?) (<30,0,J>, ?) (<31,0,A>, 50) (<31,0,B>, 5) (<31,0,C>, ?) (<31,0,E>, ?) (<31,0,F>, 5) (<31,0,G>, ?) (<31,0,H>, ?) (<31,0,J>, ?) (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, ?) (<32,0,E>, ?) (<32,0,F>, 5) (<32,0,G>, ?) (<32,0,H>, 5) (<32,0,J>, 0) (<33,0,A>, 50) (<33,0,B>, 5) (<33,0,C>, ?) (<33,0,E>, ?) (<33,0,F>, 5) (<33,0,G>, ?) (<33,0,H>, ?) (<33,0,J>, ?) (<34,0,A>, 50) (<34,0,B>, 5) (<34,0,C>, ?) (<34,0,E>, ?) (<34,0,F>, 5) (<34,0,G>, 5) (<34,0,H>, ?) (<34,0,J>, ?) (<35,0,A>, 50) (<35,0,B>, 5) (<35,0,C>, ?) (<35,0,E>, ?) (<35,0,F>, 5) (<35,0,G>, 1) (<35,0,H>, ?) (<35,0,J>, ?) + Applied Processor: ChainProcessor False [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,22,23,24,25,26,27,28,29,30,31,32,33,34,35] + Details: We chained rule 23 to obtain the rules [36,37,38] . * Step 28: UnreachableRules WORST_CASE(?,O(1)) + Considered Problem: Rules: 1. f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J) [B >= C] (7,1) 2. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [B >= E && E >= 1 + C] (42,1) 3. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] (42,1) 4. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J) [B >= E && C = E] (42,1) 5. f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J) [F >= 1 + G] (7,1) 6. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [0 >= 1 + G && F >= H] (?,1) 7. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] (48,1) 8. f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J) [G >= 1 + J] (?,1) 9. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J) [F >= H && G = 0] (48,1) 10. f50(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,0) [F >= H] (77,1) 11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J) [G >= J] (?,1) 12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J) [F >= G] (?,1) 13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J) [G >= 1 + H] (?,1) 14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J) [G >= 0] (6,1) 15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J) [F >= H] (?,1) 22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J) [J >= G] (?,1) 24. f33(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J) [G >= F] (1,1) 25. f19(A,B,C,E,F,G,H,J) -> f15(A,B,1 + C,E,F,G,H,J) [E >= 1 + B] (7,1) 26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J) [C >= 1 + B] (1,1) 27. f0(A,B,C,E,F,G,H,J) -> f19(50,5,0,0,F,G,H,J) [5 >= 0] (1,2) 28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J) [H >= 1 + F && -1 + G >= 0] (?,2) 29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J) [H >= G && F >= 1 + G] (?,2) 30. f70(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J) [H >= G && 1 + G >= 1 + F] (?,2) 31. f66(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J) [G >= 1 + F && -1 + F >= 0] (1,2) 32. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + H,0) [J >= 1 + G && F >= 1 + H] (77,2) 33. f54(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,1 + H,J) [J >= 1 + G && 1 + H >= 1 + F] (77,2) 34. f50(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [H >= 1 + F && F >= 2 + G] (7,2) 35. f50(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J) [H >= 1 + F && 1 + G >= F] (7,2) 36. f36(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + G,0) [H >= 1 + F && F >= 1 + G] (7,2) 37. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [H >= 1 + F && 1 + G >= 1 + F && F >= 2 + G] (7,3) 38. f36(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,1 + G,J) [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F] (7,3) Signature: {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)} Flow Graph: [1->{2,3,4,25},2->{2,3,4,25},3->{2,3,4,25},4->{2,3,4,25},5->{6,7,9,36,37,38},6->{8,22},7->{8,22},8->{8,22} ,9->{6,7,9,36,37,38},10->{11,32,33},11->{11,32,33},12->{13,29,30},13->{13,29,30},14->{15,28},15->{15,28} ,22->{6,7,9,36,37,38},24->{12,31},25->{1,26},26->{5,24},27->{2,3,4,25},28->{15,28},29->{13,29,30},30->{14} ,31->{15,28},32->{11,32,33},33->{5,24},34->{6,7,9,36,37,38},35->{12,31},36->{11,32,33},37->{6,7,9,36,37,38} ,38->{12,31}] Sizebounds: (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>, 0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>, 6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>, 6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>, 5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>, ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>, ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>, 6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 5) (<27,0,E>, 0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, ?) (<28,0,E>, ?) (<28,0,F>, 5) (<28,0,G>, ?) (<28,0,H>, ?) (<28,0,J>, ?) (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, ?) (<29,0,E>, ?) (<29,0,F>, 5) (<29,0,G>, 5) (<29,0,H>, 0) (<29,0,J>, ?) (<30,0,A>, 50) (<30,0,B>, 5) (<30,0,C>, ?) (<30,0,E>, ?) (<30,0,F>, 5) (<30,0,G>, 6) (<30,0,H>, ?) (<30,0,J>, ?) (<31,0,A>, 50) (<31,0,B>, 5) (<31,0,C>, ?) (<31,0,E>, ?) (<31,0,F>, 5) (<31,0,G>, ?) (<31,0,H>, ?) (<31,0,J>, ?) (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, ?) (<32,0,E>, ?) (<32,0,F>, 5) (<32,0,G>, ?) (<32,0,H>, 5) (<32,0,J>, 0) (<33,0,A>, 50) (<33,0,B>, 5) (<33,0,C>, ?) (<33,0,E>, ?) (<33,0,F>, 5) (<33,0,G>, ?) (<33,0,H>, ?) (<33,0,J>, ?) (<34,0,A>, 50) (<34,0,B>, 5) (<34,0,C>, ?) (<34,0,E>, ?) (<34,0,F>, 5) (<34,0,G>, 5) (<34,0,H>, ?) (<34,0,J>, ?) (<35,0,A>, 50) (<35,0,B>, 5) (<35,0,C>, ?) (<35,0,E>, ?) (<35,0,F>, 5) (<35,0,G>, 1) (<35,0,H>, ?) (<35,0,J>, ?) (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, ?) (<36,0,E>, ?) (<36,0,F>, 5) (<36,0,G>, ?) (<36,0,H>, 5) (<36,0,J>, 0) (<37,0,A>, 50) (<37,0,B>, 5) (<37,0,C>, ?) (<37,0,E>, ?) (<37,0,F>, 5) (<37,0,G>, 5) (<37,0,H>, ?) (<37,0,J>, ?) (<38,0,A>, 50) (<38,0,B>, 5) (<38,0,C>, ?) (<38,0,E>, ?) (<38,0,F>, 5) (<38,0,G>, 1) (<38,0,H>, ?) (<38,0,J>, ?) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [10,34,35] * Step 29: ChainProcessor WORST_CASE(?,O(1)) + Considered Problem: Rules: 1. f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J) [B >= C] (7,1) 2. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [B >= E && E >= 1 + C] (42,1) 3. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] (42,1) 4. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J) [B >= E && C = E] (42,1) 5. f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J) [F >= 1 + G] (7,1) 6. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [0 >= 1 + G && F >= H] (?,1) 7. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] (48,1) 8. f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J) [G >= 1 + J] (?,1) 9. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J) [F >= H && G = 0] (48,1) 11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J) [G >= J] (?,1) 12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J) [F >= G] (?,1) 13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J) [G >= 1 + H] (?,1) 14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J) [G >= 0] (6,1) 15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J) [F >= H] (?,1) 22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J) [J >= G] (?,1) 24. f33(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J) [G >= F] (1,1) 25. f19(A,B,C,E,F,G,H,J) -> f15(A,B,1 + C,E,F,G,H,J) [E >= 1 + B] (7,1) 26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J) [C >= 1 + B] (1,1) 27. f0(A,B,C,E,F,G,H,J) -> f19(50,5,0,0,F,G,H,J) [5 >= 0] (1,2) 28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J) [H >= 1 + F && -1 + G >= 0] (?,2) 29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J) [H >= G && F >= 1 + G] (?,2) 30. f70(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J) [H >= G && 1 + G >= 1 + F] (?,2) 31. f66(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J) [G >= 1 + F && -1 + F >= 0] (1,2) 32. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + H,0) [J >= 1 + G && F >= 1 + H] (77,2) 33. f54(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,1 + H,J) [J >= 1 + G && 1 + H >= 1 + F] (77,2) 36. f36(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + G,0) [H >= 1 + F && F >= 1 + G] (7,2) 37. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [H >= 1 + F && 1 + G >= 1 + F && F >= 2 + G] (7,3) 38. f36(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,1 + G,J) [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F] (7,3) Signature: {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)} Flow Graph: [1->{2,3,4,25},2->{2,3,4,25},3->{2,3,4,25},4->{2,3,4,25},5->{6,7,9,36,37,38},6->{8,22},7->{8,22},8->{8,22} ,9->{6,7,9,36,37,38},11->{11,32,33},12->{13,29,30},13->{13,29,30},14->{15,28},15->{15,28},22->{6,7,9,36,37 ,38},24->{12,31},25->{1,26},26->{5,24},27->{2,3,4,25},28->{15,28},29->{13,29,30},30->{14},31->{15,28} ,32->{11,32,33},33->{5,24},36->{11,32,33},37->{6,7,9,36,37,38},38->{12,31}] Sizebounds: (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>, 0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>, 6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>, 6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>, 5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>, ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>, ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>, 6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 5) (<27,0,E>, 0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, ?) (<28,0,E>, ?) (<28,0,F>, 5) (<28,0,G>, ?) (<28,0,H>, ?) (<28,0,J>, ?) (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, ?) (<29,0,E>, ?) (<29,0,F>, 5) (<29,0,G>, 5) (<29,0,H>, 0) (<29,0,J>, ?) (<30,0,A>, 50) (<30,0,B>, 5) (<30,0,C>, ?) (<30,0,E>, ?) (<30,0,F>, 5) (<30,0,G>, 6) (<30,0,H>, ?) (<30,0,J>, ?) (<31,0,A>, 50) (<31,0,B>, 5) (<31,0,C>, ?) (<31,0,E>, ?) (<31,0,F>, 5) (<31,0,G>, ?) (<31,0,H>, ?) (<31,0,J>, ?) (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, ?) (<32,0,E>, ?) (<32,0,F>, 5) (<32,0,G>, ?) (<32,0,H>, 5) (<32,0,J>, 0) (<33,0,A>, 50) (<33,0,B>, 5) (<33,0,C>, ?) (<33,0,E>, ?) (<33,0,F>, 5) (<33,0,G>, ?) (<33,0,H>, ?) (<33,0,J>, ?) (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, ?) (<36,0,E>, ?) (<36,0,F>, 5) (<36,0,G>, ?) (<36,0,H>, 5) (<36,0,J>, 0) (<37,0,A>, 50) (<37,0,B>, 5) (<37,0,C>, ?) (<37,0,E>, ?) (<37,0,F>, 5) (<37,0,G>, 5) (<37,0,H>, ?) (<37,0,J>, ?) (<38,0,A>, 50) (<38,0,B>, 5) (<38,0,C>, ?) (<38,0,E>, ?) (<38,0,F>, 5) (<38,0,G>, 1) (<38,0,H>, ?) (<38,0,J>, ?) + Applied Processor: ChainProcessor False [1,2,3,4,5,6,7,8,9,11,12,13,14,15,22,24,25,26,27,28,29,30,31,32,33,36,37,38] + Details: We chained rule 24 to obtain the rules [39,40] . * Step 30: ChainProcessor WORST_CASE(?,O(1)) + Considered Problem: Rules: 1. f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J) [B >= C] (7,1) 2. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [B >= E && E >= 1 + C] (42,1) 3. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] (42,1) 4. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J) [B >= E && C = E] (42,1) 5. f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J) [F >= 1 + G] (7,1) 6. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [0 >= 1 + G && F >= H] (?,1) 7. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] (48,1) 8. f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J) [G >= 1 + J] (?,1) 9. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J) [F >= H && G = 0] (48,1) 11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J) [G >= J] (?,1) 12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J) [F >= G] (?,1) 13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J) [G >= 1 + H] (?,1) 14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J) [G >= 0] (6,1) 15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J) [F >= H] (?,1) 22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J) [J >= G] (?,1) 25. f19(A,B,C,E,F,G,H,J) -> f15(A,B,1 + C,E,F,G,H,J) [E >= 1 + B] (7,1) 26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J) [C >= 1 + B] (1,1) 27. f0(A,B,C,E,F,G,H,J) -> f19(50,5,0,0,F,G,H,J) [5 >= 0] (1,2) 28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J) [H >= 1 + F && -1 + G >= 0] (?,2) 29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J) [H >= G && F >= 1 + G] (?,2) 30. f70(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J) [H >= G && 1 + G >= 1 + F] (?,2) 31. f66(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J) [G >= 1 + F && -1 + F >= 0] (1,2) 32. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + H,0) [J >= 1 + G && F >= 1 + H] (77,2) 33. f54(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,1 + H,J) [J >= 1 + G && 1 + H >= 1 + F] (77,2) 36. f36(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + G,0) [H >= 1 + F && F >= 1 + G] (7,2) 37. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [H >= 1 + F && 1 + G >= 1 + F && F >= 2 + G] (7,3) 38. f36(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,1 + G,J) [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F] (7,3) 39. f33(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J) [G >= F && F >= 1] (1,2) 40. f33(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J) [G >= F && 1 >= 1 + F && -1 + F >= 0] (1,3) Signature: {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)} Flow Graph: [1->{2,3,4,25},2->{2,3,4,25},3->{2,3,4,25},4->{2,3,4,25},5->{6,7,9,36,37,38},6->{8,22},7->{8,22},8->{8,22} ,9->{6,7,9,36,37,38},11->{11,32,33},12->{13,29,30},13->{13,29,30},14->{15,28},15->{15,28},22->{6,7,9,36,37 ,38},25->{1,26},26->{5,39,40},27->{2,3,4,25},28->{15,28},29->{13,29,30},30->{14},31->{15,28},32->{11,32,33} ,33->{5,39,40},36->{11,32,33},37->{6,7,9,36,37,38},38->{12,31},39->{13,29,30},40->{15,28}] Sizebounds: (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>, 0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>, 6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>, 6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>, 5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>, ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>, 6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 5) (<27,0,E>, 0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, ?) (<28,0,E>, ?) (<28,0,F>, 5) (<28,0,G>, ?) (<28,0,H>, ?) (<28,0,J>, ?) (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, ?) (<29,0,E>, ?) (<29,0,F>, 5) (<29,0,G>, 5) (<29,0,H>, 0) (<29,0,J>, ?) (<30,0,A>, 50) (<30,0,B>, 5) (<30,0,C>, ?) (<30,0,E>, ?) (<30,0,F>, 5) (<30,0,G>, 6) (<30,0,H>, ?) (<30,0,J>, ?) (<31,0,A>, 50) (<31,0,B>, 5) (<31,0,C>, ?) (<31,0,E>, ?) (<31,0,F>, 5) (<31,0,G>, ?) (<31,0,H>, ?) (<31,0,J>, ?) (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, ?) (<32,0,E>, ?) (<32,0,F>, 5) (<32,0,G>, ?) (<32,0,H>, 5) (<32,0,J>, 0) (<33,0,A>, 50) (<33,0,B>, 5) (<33,0,C>, ?) (<33,0,E>, ?) (<33,0,F>, 5) (<33,0,G>, ?) (<33,0,H>, ?) (<33,0,J>, ?) (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, ?) (<36,0,E>, ?) (<36,0,F>, 5) (<36,0,G>, ?) (<36,0,H>, 5) (<36,0,J>, 0) (<37,0,A>, 50) (<37,0,B>, 5) (<37,0,C>, ?) (<37,0,E>, ?) (<37,0,F>, 5) (<37,0,G>, 5) (<37,0,H>, ?) (<37,0,J>, ?) (<38,0,A>, 50) (<38,0,B>, 5) (<38,0,C>, ?) (<38,0,E>, ?) (<38,0,F>, 5) (<38,0,G>, 1) (<38,0,H>, ?) (<38,0,J>, ?) (<39,0,A>, 50) (<39,0,B>, 5) (<39,0,C>, ?) (<39,0,E>, ?) (<39,0,F>, 5) (<39,0,G>, 5) (<39,0,H>, 0) (<39,0,J>, ?) (<40,0,A>, 50) (<40,0,B>, 5) (<40,0,C>, ?) (<40,0,E>, ?) (<40,0,F>, 5) (<40,0,G>, ?) (<40,0,H>, ?) (<40,0,J>, ?) + Applied Processor: ChainProcessor False [1,2,3,4,5,6,7,8,9,11,12,13,14,15,22,25,26,27,28,29,30,31,32,33,36,37,38,39,40] + Details: We chained rule 25 to obtain the rules [41,42] . * Step 31: UnreachableRules WORST_CASE(?,O(1)) + Considered Problem: Rules: 1. f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J) [B >= C] (7,1) 2. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [B >= E && E >= 1 + C] (42,1) 3. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] (42,1) 4. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J) [B >= E && C = E] (42,1) 5. f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J) [F >= 1 + G] (7,1) 6. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [0 >= 1 + G && F >= H] (?,1) 7. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] (48,1) 8. f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J) [G >= 1 + J] (?,1) 9. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J) [F >= H && G = 0] (48,1) 11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J) [G >= J] (?,1) 12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J) [F >= G] (?,1) 13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J) [G >= 1 + H] (?,1) 14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J) [G >= 0] (6,1) 15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J) [F >= H] (?,1) 22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J) [J >= G] (?,1) 26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J) [C >= 1 + B] (1,1) 27. f0(A,B,C,E,F,G,H,J) -> f19(50,5,0,0,F,G,H,J) [5 >= 0] (1,2) 28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J) [H >= 1 + F && -1 + G >= 0] (?,2) 29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J) [H >= G && F >= 1 + G] (?,2) 30. f70(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J) [H >= G && 1 + G >= 1 + F] (?,2) 31. f66(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J) [G >= 1 + F && -1 + F >= 0] (1,2) 32. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + H,0) [J >= 1 + G && F >= 1 + H] (77,2) 33. f54(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,1 + H,J) [J >= 1 + G && 1 + H >= 1 + F] (77,2) 36. f36(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + G,0) [H >= 1 + F && F >= 1 + G] (7,2) 37. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [H >= 1 + F && 1 + G >= 1 + F && F >= 2 + G] (7,3) 38. f36(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,1 + G,J) [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F] (7,3) 39. f33(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J) [G >= F && F >= 1] (1,2) 40. f33(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J) [G >= F && 1 >= 1 + F && -1 + F >= 0] (1,3) 41. f19(A,B,C,E,F,G,H,J) -> f19(A,B,1 + C,0,F,G,H,J) [E >= 1 + B && B >= 1 + C] (7,2) 42. f19(A,B,C,E,F,G,H,J) -> f33(A,B,1 + C,E,B,0,H,J) [E >= 1 + B && 1 + C >= 1 + B] (7,2) Signature: {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)} Flow Graph: [1->{2,3,4,41,42},2->{2,3,4,41,42},3->{2,3,4,41,42},4->{2,3,4,41,42},5->{6,7,9,36,37,38},6->{8,22},7->{8 ,22},8->{8,22},9->{6,7,9,36,37,38},11->{11,32,33},12->{13,29,30},13->{13,29,30},14->{15,28},15->{15,28} ,22->{6,7,9,36,37,38},26->{5,39,40},27->{2,3,4,41,42},28->{15,28},29->{13,29,30},30->{14},31->{15,28} ,32->{11,32,33},33->{5,39,40},36->{11,32,33},37->{6,7,9,36,37,38},38->{12,31},39->{13,29,30},40->{15,28} ,41->{2,3,4,41,42},42->{5,39,40}] Sizebounds: (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>, 0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>, 6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>, 6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>, 5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>, ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 5) (<27,0,E>, 0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, ?) (<28,0,E>, ?) (<28,0,F>, 5) (<28,0,G>, ?) (<28,0,H>, ?) (<28,0,J>, ?) (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, ?) (<29,0,E>, ?) (<29,0,F>, 5) (<29,0,G>, 5) (<29,0,H>, 0) (<29,0,J>, ?) (<30,0,A>, 50) (<30,0,B>, 5) (<30,0,C>, ?) (<30,0,E>, ?) (<30,0,F>, 5) (<30,0,G>, 6) (<30,0,H>, ?) (<30,0,J>, ?) (<31,0,A>, 50) (<31,0,B>, 5) (<31,0,C>, ?) (<31,0,E>, ?) (<31,0,F>, 5) (<31,0,G>, ?) (<31,0,H>, ?) (<31,0,J>, ?) (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, ?) (<32,0,E>, ?) (<32,0,F>, 5) (<32,0,G>, ?) (<32,0,H>, 5) (<32,0,J>, 0) (<33,0,A>, 50) (<33,0,B>, 5) (<33,0,C>, ?) (<33,0,E>, ?) (<33,0,F>, 5) (<33,0,G>, ?) (<33,0,H>, ?) (<33,0,J>, ?) (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, ?) (<36,0,E>, ?) (<36,0,F>, 5) (<36,0,G>, ?) (<36,0,H>, 5) (<36,0,J>, 0) (<37,0,A>, 50) (<37,0,B>, 5) (<37,0,C>, ?) (<37,0,E>, ?) (<37,0,F>, 5) (<37,0,G>, 5) (<37,0,H>, ?) (<37,0,J>, ?) (<38,0,A>, 50) (<38,0,B>, 5) (<38,0,C>, ?) (<38,0,E>, ?) (<38,0,F>, 5) (<38,0,G>, 1) (<38,0,H>, ?) (<38,0,J>, ?) (<39,0,A>, 50) (<39,0,B>, 5) (<39,0,C>, ?) (<39,0,E>, ?) (<39,0,F>, 5) (<39,0,G>, 5) (<39,0,H>, 0) (<39,0,J>, ?) (<40,0,A>, 50) (<40,0,B>, 5) (<40,0,C>, ?) (<40,0,E>, ?) (<40,0,F>, 5) (<40,0,G>, ?) (<40,0,H>, ?) (<40,0,J>, ?) (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 5) (<41,0,E>, 0) (<41,0,F>, F) (<41,0,G>, G) (<41,0,H>, H) (<41,0,J>, J) (<42,0,A>, 50) (<42,0,B>, 5) (<42,0,C>, 5) (<42,0,E>, 6 + E) (<42,0,F>, 5) (<42,0,G>, 0) (<42,0,H>, H) (<42,0,J>, J) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [1,26] * Step 32: ChainProcessor WORST_CASE(?,O(1)) + Considered Problem: Rules: 2. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [B >= E && E >= 1 + C] (42,1) 3. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] (42,1) 4. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J) [B >= E && C = E] (42,1) 5. f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J) [F >= 1 + G] (7,1) 6. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [0 >= 1 + G && F >= H] (?,1) 7. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] (48,1) 8. f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J) [G >= 1 + J] (?,1) 9. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J) [F >= H && G = 0] (48,1) 11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J) [G >= J] (?,1) 12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J) [F >= G] (?,1) 13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J) [G >= 1 + H] (?,1) 14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J) [G >= 0] (6,1) 15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J) [F >= H] (?,1) 22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J) [J >= G] (?,1) 27. f0(A,B,C,E,F,G,H,J) -> f19(50,5,0,0,F,G,H,J) [5 >= 0] (1,2) 28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J) [H >= 1 + F && -1 + G >= 0] (?,2) 29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J) [H >= G && F >= 1 + G] (?,2) 30. f70(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J) [H >= G && 1 + G >= 1 + F] (?,2) 31. f66(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J) [G >= 1 + F && -1 + F >= 0] (1,2) 32. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + H,0) [J >= 1 + G && F >= 1 + H] (77,2) 33. f54(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,1 + H,J) [J >= 1 + G && 1 + H >= 1 + F] (77,2) 36. f36(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + G,0) [H >= 1 + F && F >= 1 + G] (7,2) 37. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [H >= 1 + F && 1 + G >= 1 + F && F >= 2 + G] (7,3) 38. f36(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,1 + G,J) [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F] (7,3) 39. f33(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J) [G >= F && F >= 1] (1,2) 40. f33(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J) [G >= F && 1 >= 1 + F && -1 + F >= 0] (1,3) 41. f19(A,B,C,E,F,G,H,J) -> f19(A,B,1 + C,0,F,G,H,J) [E >= 1 + B && B >= 1 + C] (7,2) 42. f19(A,B,C,E,F,G,H,J) -> f33(A,B,1 + C,E,B,0,H,J) [E >= 1 + B && 1 + C >= 1 + B] (7,2) Signature: {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)} Flow Graph: [2->{2,3,4,41,42},3->{2,3,4,41,42},4->{2,3,4,41,42},5->{6,7,9,36,37,38},6->{8,22},7->{8,22},8->{8,22} ,9->{6,7,9,36,37,38},11->{11,32,33},12->{13,29,30},13->{13,29,30},14->{15,28},15->{15,28},22->{6,7,9,36,37 ,38},27->{2,3,4,41,42},28->{15,28},29->{13,29,30},30->{14},31->{15,28},32->{11,32,33},33->{5,39,40},36->{11 ,32,33},37->{6,7,9,36,37,38},38->{12,31},39->{13,29,30},40->{15,28},41->{2,3,4,41,42},42->{5,39,40}] Sizebounds: (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>, 6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>, 6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>, 5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>, ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 5) (<27,0,E>, 0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, ?) (<28,0,E>, ?) (<28,0,F>, 5) (<28,0,G>, ?) (<28,0,H>, ?) (<28,0,J>, ?) (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, ?) (<29,0,E>, ?) (<29,0,F>, 5) (<29,0,G>, 5) (<29,0,H>, 0) (<29,0,J>, ?) (<30,0,A>, 50) (<30,0,B>, 5) (<30,0,C>, ?) (<30,0,E>, ?) (<30,0,F>, 5) (<30,0,G>, 6) (<30,0,H>, ?) (<30,0,J>, ?) (<31,0,A>, 50) (<31,0,B>, 5) (<31,0,C>, ?) (<31,0,E>, ?) (<31,0,F>, 5) (<31,0,G>, ?) (<31,0,H>, ?) (<31,0,J>, ?) (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, ?) (<32,0,E>, ?) (<32,0,F>, 5) (<32,0,G>, ?) (<32,0,H>, 5) (<32,0,J>, 0) (<33,0,A>, 50) (<33,0,B>, 5) (<33,0,C>, ?) (<33,0,E>, ?) (<33,0,F>, 5) (<33,0,G>, ?) (<33,0,H>, ?) (<33,0,J>, ?) (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, ?) (<36,0,E>, ?) (<36,0,F>, 5) (<36,0,G>, ?) (<36,0,H>, 5) (<36,0,J>, 0) (<37,0,A>, 50) (<37,0,B>, 5) (<37,0,C>, ?) (<37,0,E>, ?) (<37,0,F>, 5) (<37,0,G>, 5) (<37,0,H>, ?) (<37,0,J>, ?) (<38,0,A>, 50) (<38,0,B>, 5) (<38,0,C>, ?) (<38,0,E>, ?) (<38,0,F>, 5) (<38,0,G>, 1) (<38,0,H>, ?) (<38,0,J>, ?) (<39,0,A>, 50) (<39,0,B>, 5) (<39,0,C>, ?) (<39,0,E>, ?) (<39,0,F>, 5) (<39,0,G>, 5) (<39,0,H>, 0) (<39,0,J>, ?) (<40,0,A>, 50) (<40,0,B>, 5) (<40,0,C>, ?) (<40,0,E>, ?) (<40,0,F>, 5) (<40,0,G>, ?) (<40,0,H>, ?) (<40,0,J>, ?) (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 5) (<41,0,E>, 0) (<41,0,F>, F) (<41,0,G>, G) (<41,0,H>, H) (<41,0,J>, J) (<42,0,A>, 50) (<42,0,B>, 5) (<42,0,C>, 5) (<42,0,E>, 6 + E) (<42,0,F>, 5) (<42,0,G>, 0) (<42,0,H>, H) (<42,0,J>, J) + Applied Processor: ChainProcessor False [2,3,4,5,6,7,8,9,11,12,13,14,15,22,27,28,29,30,31,32,33,36,37,38,39,40,41,42] + Details: We chained rule 30 to obtain the rules [43] . * Step 33: UnreachableRules WORST_CASE(?,O(1)) + Considered Problem: Rules: 2. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [B >= E && E >= 1 + C] (42,1) 3. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] (42,1) 4. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J) [B >= E && C = E] (42,1) 5. f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J) [F >= 1 + G] (7,1) 6. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [0 >= 1 + G && F >= H] (?,1) 7. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] (48,1) 8. f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J) [G >= 1 + J] (?,1) 9. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J) [F >= H && G = 0] (48,1) 11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J) [G >= J] (?,1) 12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J) [F >= G] (?,1) 13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J) [G >= 1 + H] (?,1) 14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J) [G >= 0] (6,1) 15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J) [F >= H] (?,1) 22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J) [J >= G] (?,1) 27. f0(A,B,C,E,F,G,H,J) -> f19(50,5,0,0,F,G,H,J) [5 >= 0] (1,2) 28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J) [H >= 1 + F && -1 + G >= 0] (?,2) 29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J) [H >= G && F >= 1 + G] (?,2) 31. f66(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J) [G >= 1 + F && -1 + F >= 0] (1,2) 32. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + H,0) [J >= 1 + G && F >= 1 + H] (77,2) 33. f54(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,1 + H,J) [J >= 1 + G && 1 + H >= 1 + F] (77,2) 36. f36(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + G,0) [H >= 1 + F && F >= 1 + G] (7,2) 37. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [H >= 1 + F && 1 + G >= 1 + F && F >= 2 + G] (7,3) 38. f36(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,1 + G,J) [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F] (7,3) 39. f33(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J) [G >= F && F >= 1] (1,2) 40. f33(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J) [G >= F && 1 >= 1 + F && -1 + F >= 0] (1,3) 41. f19(A,B,C,E,F,G,H,J) -> f19(A,B,1 + C,0,F,G,H,J) [E >= 1 + B && B >= 1 + C] (7,2) 42. f19(A,B,C,E,F,G,H,J) -> f33(A,B,1 + C,E,B,0,H,J) [E >= 1 + B && 1 + C >= 1 + B] (7,2) 43. f70(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J) [H >= G && 1 + G >= 1 + F && -1 + F >= 0] (?,3) Signature: {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)} Flow Graph: [2->{2,3,4,41,42},3->{2,3,4,41,42},4->{2,3,4,41,42},5->{6,7,9,36,37,38},6->{8,22},7->{8,22},8->{8,22} ,9->{6,7,9,36,37,38},11->{11,32,33},12->{13,29,43},13->{13,29,43},14->{15,28},15->{15,28},22->{6,7,9,36,37 ,38},27->{2,3,4,41,42},28->{15,28},29->{13,29,43},31->{15,28},32->{11,32,33},33->{5,39,40},36->{11,32,33} ,37->{6,7,9,36,37,38},38->{12,31},39->{13,29,43},40->{15,28},41->{2,3,4,41,42},42->{5,39,40},43->{15,28}] Sizebounds: (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>, 6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>, 6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>, 5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>, ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 5) (<27,0,E>, 0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, ?) (<28,0,E>, ?) (<28,0,F>, 5) (<28,0,G>, ?) (<28,0,H>, ?) (<28,0,J>, ?) (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, ?) (<29,0,E>, ?) (<29,0,F>, 5) (<29,0,G>, 5) (<29,0,H>, 0) (<29,0,J>, ?) (<31,0,A>, 50) (<31,0,B>, 5) (<31,0,C>, ?) (<31,0,E>, ?) (<31,0,F>, 5) (<31,0,G>, ?) (<31,0,H>, ?) (<31,0,J>, ?) (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, ?) (<32,0,E>, ?) (<32,0,F>, 5) (<32,0,G>, ?) (<32,0,H>, 5) (<32,0,J>, 0) (<33,0,A>, 50) (<33,0,B>, 5) (<33,0,C>, ?) (<33,0,E>, ?) (<33,0,F>, 5) (<33,0,G>, ?) (<33,0,H>, ?) (<33,0,J>, ?) (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, ?) (<36,0,E>, ?) (<36,0,F>, 5) (<36,0,G>, ?) (<36,0,H>, 5) (<36,0,J>, 0) (<37,0,A>, 50) (<37,0,B>, 5) (<37,0,C>, ?) (<37,0,E>, ?) (<37,0,F>, 5) (<37,0,G>, 5) (<37,0,H>, ?) (<37,0,J>, ?) (<38,0,A>, 50) (<38,0,B>, 5) (<38,0,C>, ?) (<38,0,E>, ?) (<38,0,F>, 5) (<38,0,G>, 1) (<38,0,H>, ?) (<38,0,J>, ?) (<39,0,A>, 50) (<39,0,B>, 5) (<39,0,C>, ?) (<39,0,E>, ?) (<39,0,F>, 5) (<39,0,G>, 5) (<39,0,H>, 0) (<39,0,J>, ?) (<40,0,A>, 50) (<40,0,B>, 5) (<40,0,C>, ?) (<40,0,E>, ?) (<40,0,F>, 5) (<40,0,G>, ?) (<40,0,H>, ?) (<40,0,J>, ?) (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 5) (<41,0,E>, 0) (<41,0,F>, F) (<41,0,G>, G) (<41,0,H>, H) (<41,0,J>, J) (<42,0,A>, 50) (<42,0,B>, 5) (<42,0,C>, 5) (<42,0,E>, 6 + E) (<42,0,F>, 5) (<42,0,G>, 0) (<42,0,H>, H) (<42,0,J>, J) (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, ?) (<43,0,E>, ?) (<43,0,F>, 5) (<43,0,G>, ?) (<43,0,H>, ?) (<43,0,J>, ?) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [14] * Step 34: ChainProcessor WORST_CASE(?,O(1)) + Considered Problem: Rules: 2. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [B >= E && E >= 1 + C] (42,1) 3. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] (42,1) 4. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J) [B >= E && C = E] (42,1) 5. f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J) [F >= 1 + G] (7,1) 6. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [0 >= 1 + G && F >= H] (?,1) 7. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] (48,1) 8. f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J) [G >= 1 + J] (?,1) 9. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J) [F >= H && G = 0] (48,1) 11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J) [G >= J] (?,1) 12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J) [F >= G] (?,1) 13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J) [G >= 1 + H] (?,1) 15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J) [F >= H] (?,1) 22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J) [J >= G] (?,1) 27. f0(A,B,C,E,F,G,H,J) -> f19(50,5,0,0,F,G,H,J) [5 >= 0] (1,2) 28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J) [H >= 1 + F && -1 + G >= 0] (?,2) 29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J) [H >= G && F >= 1 + G] (?,2) 31. f66(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J) [G >= 1 + F && -1 + F >= 0] (1,2) 32. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + H,0) [J >= 1 + G && F >= 1 + H] (77,2) 33. f54(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,1 + H,J) [J >= 1 + G && 1 + H >= 1 + F] (77,2) 36. f36(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + G,0) [H >= 1 + F && F >= 1 + G] (7,2) 37. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [H >= 1 + F && 1 + G >= 1 + F && F >= 2 + G] (7,3) 38. f36(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,1 + G,J) [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F] (7,3) 39. f33(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J) [G >= F && F >= 1] (1,2) 40. f33(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J) [G >= F && 1 >= 1 + F && -1 + F >= 0] (1,3) 41. f19(A,B,C,E,F,G,H,J) -> f19(A,B,1 + C,0,F,G,H,J) [E >= 1 + B && B >= 1 + C] (7,2) 42. f19(A,B,C,E,F,G,H,J) -> f33(A,B,1 + C,E,B,0,H,J) [E >= 1 + B && 1 + C >= 1 + B] (7,2) 43. f70(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J) [H >= G && 1 + G >= 1 + F && -1 + F >= 0] (?,3) Signature: {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)} Flow Graph: [2->{2,3,4,41,42},3->{2,3,4,41,42},4->{2,3,4,41,42},5->{6,7,9,36,37,38},6->{8,22},7->{8,22},8->{8,22} ,9->{6,7,9,36,37,38},11->{11,32,33},12->{13,29,43},13->{13,29,43},15->{15,28},22->{6,7,9,36,37,38},27->{2,3 ,4,41,42},28->{15,28},29->{13,29,43},31->{15,28},32->{11,32,33},33->{5,39,40},36->{11,32,33},37->{6,7,9,36 ,37,38},38->{12,31},39->{13,29,43},40->{15,28},41->{2,3,4,41,42},42->{5,39,40},43->{15,28}] Sizebounds: (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>, 6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>, 6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>, 5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 5) (<27,0,E>, 0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, ?) (<28,0,E>, ?) (<28,0,F>, 5) (<28,0,G>, ?) (<28,0,H>, ?) (<28,0,J>, ?) (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, ?) (<29,0,E>, ?) (<29,0,F>, 5) (<29,0,G>, 5) (<29,0,H>, 0) (<29,0,J>, ?) (<31,0,A>, 50) (<31,0,B>, 5) (<31,0,C>, ?) (<31,0,E>, ?) (<31,0,F>, 5) (<31,0,G>, ?) (<31,0,H>, ?) (<31,0,J>, ?) (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, ?) (<32,0,E>, ?) (<32,0,F>, 5) (<32,0,G>, ?) (<32,0,H>, 5) (<32,0,J>, 0) (<33,0,A>, 50) (<33,0,B>, 5) (<33,0,C>, ?) (<33,0,E>, ?) (<33,0,F>, 5) (<33,0,G>, ?) (<33,0,H>, ?) (<33,0,J>, ?) (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, ?) (<36,0,E>, ?) (<36,0,F>, 5) (<36,0,G>, ?) (<36,0,H>, 5) (<36,0,J>, 0) (<37,0,A>, 50) (<37,0,B>, 5) (<37,0,C>, ?) (<37,0,E>, ?) (<37,0,F>, 5) (<37,0,G>, 5) (<37,0,H>, ?) (<37,0,J>, ?) (<38,0,A>, 50) (<38,0,B>, 5) (<38,0,C>, ?) (<38,0,E>, ?) (<38,0,F>, 5) (<38,0,G>, 1) (<38,0,H>, ?) (<38,0,J>, ?) (<39,0,A>, 50) (<39,0,B>, 5) (<39,0,C>, ?) (<39,0,E>, ?) (<39,0,F>, 5) (<39,0,G>, 5) (<39,0,H>, 0) (<39,0,J>, ?) (<40,0,A>, 50) (<40,0,B>, 5) (<40,0,C>, ?) (<40,0,E>, ?) (<40,0,F>, 5) (<40,0,G>, ?) (<40,0,H>, ?) (<40,0,J>, ?) (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 5) (<41,0,E>, 0) (<41,0,F>, F) (<41,0,G>, G) (<41,0,H>, H) (<41,0,J>, J) (<42,0,A>, 50) (<42,0,B>, 5) (<42,0,C>, 5) (<42,0,E>, 6 + E) (<42,0,F>, 5) (<42,0,G>, 0) (<42,0,H>, H) (<42,0,J>, J) (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, ?) (<43,0,E>, ?) (<43,0,F>, 5) (<43,0,G>, ?) (<43,0,H>, ?) (<43,0,J>, ?) + Applied Processor: ChainProcessor False [2,3,4,5,6,7,8,9,11,12,13,15,22,27,28,29,31,32,33,36,37,38,39,40,41,42,43] + Details: We chained rule 33 to obtain the rules [44,45,46] . * Step 35: ChainProcessor WORST_CASE(?,O(1)) + Considered Problem: Rules: 2. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [B >= E && E >= 1 + C] (42,1) 3. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] (42,1) 4. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J) [B >= E && C = E] (42,1) 5. f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J) [F >= 1 + G] (7,1) 6. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [0 >= 1 + G && F >= H] (?,1) 7. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] (48,1) 8. f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J) [G >= 1 + J] (?,1) 9. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J) [F >= H && G = 0] (48,1) 11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J) [G >= J] (?,1) 12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J) [F >= G] (?,1) 13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J) [G >= 1 + H] (?,1) 15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J) [F >= H] (?,1) 22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J) [J >= G] (?,1) 27. f0(A,B,C,E,F,G,H,J) -> f19(50,5,0,0,F,G,H,J) [5 >= 0] (1,2) 28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J) [H >= 1 + F && -1 + G >= 0] (?,2) 29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J) [H >= G && F >= 1 + G] (?,2) 31. f66(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J) [G >= 1 + F && -1 + F >= 0] (1,2) 32. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + H,0) [J >= 1 + G && F >= 1 + H] (77,2) 36. f36(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + G,0) [H >= 1 + F && F >= 1 + G] (7,2) 37. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [H >= 1 + F && 1 + G >= 1 + F && F >= 2 + G] (7,3) 38. f36(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,1 + G,J) [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F] (7,3) 39. f33(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J) [G >= F && F >= 1] (1,2) 40. f33(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J) [G >= F && 1 >= 1 + F && -1 + F >= 0] (1,3) 41. f19(A,B,C,E,F,G,H,J) -> f19(A,B,1 + C,0,F,G,H,J) [E >= 1 + B && B >= 1 + C] (7,2) 42. f19(A,B,C,E,F,G,H,J) -> f33(A,B,1 + C,E,B,0,H,J) [E >= 1 + B && 1 + C >= 1 + B] (7,2) 43. f70(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J) [H >= G && 1 + G >= 1 + F && -1 + F >= 0] (?,3) 44. f54(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [J >= 1 + G && 1 + H >= 1 + F && F >= 2 + G] (77,3) 45. f54(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J) [J >= 1 + G && 1 + H >= 1 + F && 1 + G >= F && F >= 1] (77,4) 46. f54(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J) [J >= 1 + G && 1 + H >= 1 + F && 1 + G >= F && 1 >= 1 + F && -1 + F >= 0] (77,5) Signature: {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)} Flow Graph: [2->{2,3,4,41,42},3->{2,3,4,41,42},4->{2,3,4,41,42},5->{6,7,9,36,37,38},6->{8,22},7->{8,22},8->{8,22} ,9->{6,7,9,36,37,38},11->{11,32,44,45,46},12->{13,29,43},13->{13,29,43},15->{15,28},22->{6,7,9,36,37,38} ,27->{2,3,4,41,42},28->{15,28},29->{13,29,43},31->{15,28},32->{11,32,44,45,46},36->{11,32,44,45,46},37->{6,7 ,9,36,37,38},38->{12,31},39->{13,29,43},40->{15,28},41->{2,3,4,41,42},42->{5,39,40},43->{15,28},44->{6,7,9 ,36,37,38},45->{13,29,43},46->{15,28}] Sizebounds: (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>, 6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>, 6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>, 5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 5) (<27,0,E>, 0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, ?) (<28,0,E>, ?) (<28,0,F>, 5) (<28,0,G>, ?) (<28,0,H>, ?) (<28,0,J>, ?) (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, ?) (<29,0,E>, ?) (<29,0,F>, 5) (<29,0,G>, 5) (<29,0,H>, 0) (<29,0,J>, ?) (<31,0,A>, 50) (<31,0,B>, 5) (<31,0,C>, ?) (<31,0,E>, ?) (<31,0,F>, 5) (<31,0,G>, ?) (<31,0,H>, ?) (<31,0,J>, ?) (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, ?) (<32,0,E>, ?) (<32,0,F>, 5) (<32,0,G>, ?) (<32,0,H>, 5) (<32,0,J>, 0) (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, ?) (<36,0,E>, ?) (<36,0,F>, 5) (<36,0,G>, ?) (<36,0,H>, 5) (<36,0,J>, 0) (<37,0,A>, 50) (<37,0,B>, 5) (<37,0,C>, ?) (<37,0,E>, ?) (<37,0,F>, 5) (<37,0,G>, 5) (<37,0,H>, ?) (<37,0,J>, ?) (<38,0,A>, 50) (<38,0,B>, 5) (<38,0,C>, ?) (<38,0,E>, ?) (<38,0,F>, 5) (<38,0,G>, 1) (<38,0,H>, ?) (<38,0,J>, ?) (<39,0,A>, 50) (<39,0,B>, 5) (<39,0,C>, ?) (<39,0,E>, ?) (<39,0,F>, 5) (<39,0,G>, 5) (<39,0,H>, 0) (<39,0,J>, ?) (<40,0,A>, 50) (<40,0,B>, 5) (<40,0,C>, ?) (<40,0,E>, ?) (<40,0,F>, 5) (<40,0,G>, ?) (<40,0,H>, ?) (<40,0,J>, ?) (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 5) (<41,0,E>, 0) (<41,0,F>, F) (<41,0,G>, G) (<41,0,H>, H) (<41,0,J>, J) (<42,0,A>, 50) (<42,0,B>, 5) (<42,0,C>, 5) (<42,0,E>, 6 + E) (<42,0,F>, 5) (<42,0,G>, 0) (<42,0,H>, H) (<42,0,J>, J) (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, ?) (<43,0,E>, ?) (<43,0,F>, 5) (<43,0,G>, ?) (<43,0,H>, ?) (<43,0,J>, ?) (<44,0,A>, 50) (<44,0,B>, 5) (<44,0,C>, ?) (<44,0,E>, ?) (<44,0,F>, 5) (<44,0,G>, 5) (<44,0,H>, ?) (<44,0,J>, ?) (<45,0,A>, 50) (<45,0,B>, 5) (<45,0,C>, ?) (<45,0,E>, ?) (<45,0,F>, 5) (<45,0,G>, 5) (<45,0,H>, 0) (<45,0,J>, ?) (<46,0,A>, 50) (<46,0,B>, 5) (<46,0,C>, ?) (<46,0,E>, ?) (<46,0,F>, 5) (<46,0,G>, ?) (<46,0,H>, ?) (<46,0,J>, ?) + Applied Processor: ChainProcessor False [2,3,4,5,6,7,8,9,11,12,13,15,22,27,28,29,31,32,36,37,38,39,40,41,42,43,44,45,46] + Details: We chained rule 38 to obtain the rules [47,48] . * Step 36: UnreachableRules WORST_CASE(?,O(1)) + Considered Problem: Rules: 2. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [B >= E && E >= 1 + C] (42,1) 3. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] (42,1) 4. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J) [B >= E && C = E] (42,1) 5. f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J) [F >= 1 + G] (7,1) 6. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [0 >= 1 + G && F >= H] (?,1) 7. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] (48,1) 8. f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J) [G >= 1 + J] (?,1) 9. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J) [F >= H && G = 0] (48,1) 11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J) [G >= J] (?,1) 12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J) [F >= G] (?,1) 13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J) [G >= 1 + H] (?,1) 15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J) [F >= H] (?,1) 22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J) [J >= G] (?,1) 27. f0(A,B,C,E,F,G,H,J) -> f19(50,5,0,0,F,G,H,J) [5 >= 0] (1,2) 28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J) [H >= 1 + F && -1 + G >= 0] (?,2) 29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J) [H >= G && F >= 1 + G] (?,2) 31. f66(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J) [G >= 1 + F && -1 + F >= 0] (1,2) 32. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + H,0) [J >= 1 + G && F >= 1 + H] (77,2) 36. f36(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + G,0) [H >= 1 + F && F >= 1 + G] (7,2) 37. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [H >= 1 + F && 1 + G >= 1 + F && F >= 2 + G] (7,3) 39. f33(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J) [G >= F && F >= 1] (1,2) 40. f33(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J) [G >= F && 1 >= 1 + F && -1 + F >= 0] (1,3) 41. f19(A,B,C,E,F,G,H,J) -> f19(A,B,1 + C,0,F,G,H,J) [E >= 1 + B && B >= 1 + C] (7,2) 42. f19(A,B,C,E,F,G,H,J) -> f33(A,B,1 + C,E,B,0,H,J) [E >= 1 + B && 1 + C >= 1 + B] (7,2) 43. f70(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J) [H >= G && 1 + G >= 1 + F && -1 + F >= 0] (?,3) 44. f54(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [J >= 1 + G && 1 + H >= 1 + F && F >= 2 + G] (77,3) 45. f54(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J) [J >= 1 + G && 1 + H >= 1 + F && 1 + G >= F && F >= 1] (77,4) 46. f54(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J) [J >= 1 + G && 1 + H >= 1 + F && 1 + G >= F && 1 >= 1 + F && -1 + F >= 0] (77,5) 47. f36(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J) [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F && F >= 1] (7,4) 48. f36(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J) [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F && 1 >= 1 + F && -1 + F >= 0] (7,5) Signature: {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)} Flow Graph: [2->{2,3,4,41,42},3->{2,3,4,41,42},4->{2,3,4,41,42},5->{6,7,9,36,37,47,48},6->{8,22},7->{8,22},8->{8,22} ,9->{6,7,9,36,37,47,48},11->{11,32,44,45,46},12->{13,29,43},13->{13,29,43},15->{15,28},22->{6,7,9,36,37,47 ,48},27->{2,3,4,41,42},28->{15,28},29->{13,29,43},31->{15,28},32->{11,32,44,45,46},36->{11,32,44,45,46} ,37->{6,7,9,36,37,47,48},39->{13,29,43},40->{15,28},41->{2,3,4,41,42},42->{5,39,40},43->{15,28},44->{6,7,9 ,36,37,47,48},45->{13,29,43},46->{15,28},47->{13,29,43},48->{15,28}] Sizebounds: (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>, 6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>, 6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>, 5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 5) (<27,0,E>, 0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, ?) (<28,0,E>, ?) (<28,0,F>, 5) (<28,0,G>, ?) (<28,0,H>, ?) (<28,0,J>, ?) (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, ?) (<29,0,E>, ?) (<29,0,F>, 5) (<29,0,G>, 5) (<29,0,H>, 0) (<29,0,J>, ?) (<31,0,A>, 50) (<31,0,B>, 5) (<31,0,C>, ?) (<31,0,E>, ?) (<31,0,F>, 5) (<31,0,G>, ?) (<31,0,H>, ?) (<31,0,J>, ?) (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, ?) (<32,0,E>, ?) (<32,0,F>, 5) (<32,0,G>, ?) (<32,0,H>, 5) (<32,0,J>, 0) (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, ?) (<36,0,E>, ?) (<36,0,F>, 5) (<36,0,G>, ?) (<36,0,H>, 5) (<36,0,J>, 0) (<37,0,A>, 50) (<37,0,B>, 5) (<37,0,C>, ?) (<37,0,E>, ?) (<37,0,F>, 5) (<37,0,G>, 5) (<37,0,H>, ?) (<37,0,J>, ?) (<39,0,A>, 50) (<39,0,B>, 5) (<39,0,C>, ?) (<39,0,E>, ?) (<39,0,F>, 5) (<39,0,G>, 5) (<39,0,H>, 0) (<39,0,J>, ?) (<40,0,A>, 50) (<40,0,B>, 5) (<40,0,C>, ?) (<40,0,E>, ?) (<40,0,F>, 5) (<40,0,G>, ?) (<40,0,H>, ?) (<40,0,J>, ?) (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 5) (<41,0,E>, 0) (<41,0,F>, F) (<41,0,G>, G) (<41,0,H>, H) (<41,0,J>, J) (<42,0,A>, 50) (<42,0,B>, 5) (<42,0,C>, 5) (<42,0,E>, 6 + E) (<42,0,F>, 5) (<42,0,G>, 0) (<42,0,H>, H) (<42,0,J>, J) (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, ?) (<43,0,E>, ?) (<43,0,F>, 5) (<43,0,G>, ?) (<43,0,H>, ?) (<43,0,J>, ?) (<44,0,A>, 50) (<44,0,B>, 5) (<44,0,C>, ?) (<44,0,E>, ?) (<44,0,F>, 5) (<44,0,G>, 5) (<44,0,H>, ?) (<44,0,J>, ?) (<45,0,A>, 50) (<45,0,B>, 5) (<45,0,C>, ?) (<45,0,E>, ?) (<45,0,F>, 5) (<45,0,G>, 5) (<45,0,H>, 0) (<45,0,J>, ?) (<46,0,A>, 50) (<46,0,B>, 5) (<46,0,C>, ?) (<46,0,E>, ?) (<46,0,F>, 5) (<46,0,G>, ?) (<46,0,H>, ?) (<46,0,J>, ?) (<47,0,A>, 50) (<47,0,B>, 5) (<47,0,C>, ?) (<47,0,E>, ?) (<47,0,F>, 5) (<47,0,G>, 5) (<47,0,H>, 0) (<47,0,J>, ?) (<48,0,A>, 50) (<48,0,B>, 5) (<48,0,C>, ?) (<48,0,E>, ?) (<48,0,F>, 5) (<48,0,G>, ?) (<48,0,H>, ?) (<48,0,J>, ?) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [12,31] * Step 37: ChainProcessor WORST_CASE(?,O(1)) + Considered Problem: Rules: 2. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [B >= E && E >= 1 + C] (42,1) 3. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] (42,1) 4. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J) [B >= E && C = E] (42,1) 5. f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J) [F >= 1 + G] (7,1) 6. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [0 >= 1 + G && F >= H] (?,1) 7. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] (48,1) 8. f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J) [G >= 1 + J] (?,1) 9. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J) [F >= H && G = 0] (48,1) 11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J) [G >= J] (?,1) 13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J) [G >= 1 + H] (?,1) 15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J) [F >= H] (?,1) 22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J) [J >= G] (?,1) 27. f0(A,B,C,E,F,G,H,J) -> f19(50,5,0,0,F,G,H,J) [5 >= 0] (1,2) 28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J) [H >= 1 + F && -1 + G >= 0] (?,2) 29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J) [H >= G && F >= 1 + G] (?,2) 32. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + H,0) [J >= 1 + G && F >= 1 + H] (77,2) 36. f36(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + G,0) [H >= 1 + F && F >= 1 + G] (7,2) 37. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [H >= 1 + F && 1 + G >= 1 + F && F >= 2 + G] (7,3) 39. f33(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J) [G >= F && F >= 1] (1,2) 40. f33(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J) [G >= F && 1 >= 1 + F && -1 + F >= 0] (1,3) 41. f19(A,B,C,E,F,G,H,J) -> f19(A,B,1 + C,0,F,G,H,J) [E >= 1 + B && B >= 1 + C] (7,2) 42. f19(A,B,C,E,F,G,H,J) -> f33(A,B,1 + C,E,B,0,H,J) [E >= 1 + B && 1 + C >= 1 + B] (7,2) 43. f70(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J) [H >= G && 1 + G >= 1 + F && -1 + F >= 0] (?,3) 44. f54(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [J >= 1 + G && 1 + H >= 1 + F && F >= 2 + G] (77,3) 45. f54(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J) [J >= 1 + G && 1 + H >= 1 + F && 1 + G >= F && F >= 1] (77,4) 46. f54(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J) [J >= 1 + G && 1 + H >= 1 + F && 1 + G >= F && 1 >= 1 + F && -1 + F >= 0] (77,5) 47. f36(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J) [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F && F >= 1] (7,4) 48. f36(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J) [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F && 1 >= 1 + F && -1 + F >= 0] (7,5) Signature: {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)} Flow Graph: [2->{2,3,4,41,42},3->{2,3,4,41,42},4->{2,3,4,41,42},5->{6,7,9,36,37,47,48},6->{8,22},7->{8,22},8->{8,22} ,9->{6,7,9,36,37,47,48},11->{11,32,44,45,46},13->{13,29,43},15->{15,28},22->{6,7,9,36,37,47,48},27->{2,3,4 ,41,42},28->{15,28},29->{13,29,43},32->{11,32,44,45,46},36->{11,32,44,45,46},37->{6,7,9,36,37,47,48},39->{13 ,29,43},40->{15,28},41->{2,3,4,41,42},42->{5,39,40},43->{15,28},44->{6,7,9,36,37,47,48},45->{13,29,43} ,46->{15,28},47->{13,29,43},48->{15,28}] Sizebounds: (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>, 6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>, 6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>, 5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 5) (<27,0,E>, 0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, ?) (<28,0,E>, ?) (<28,0,F>, 5) (<28,0,G>, ?) (<28,0,H>, ?) (<28,0,J>, ?) (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, ?) (<29,0,E>, ?) (<29,0,F>, 5) (<29,0,G>, 5) (<29,0,H>, 0) (<29,0,J>, ?) (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, ?) (<32,0,E>, ?) (<32,0,F>, 5) (<32,0,G>, ?) (<32,0,H>, 5) (<32,0,J>, 0) (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, ?) (<36,0,E>, ?) (<36,0,F>, 5) (<36,0,G>, ?) (<36,0,H>, 5) (<36,0,J>, 0) (<37,0,A>, 50) (<37,0,B>, 5) (<37,0,C>, ?) (<37,0,E>, ?) (<37,0,F>, 5) (<37,0,G>, 5) (<37,0,H>, ?) (<37,0,J>, ?) (<39,0,A>, 50) (<39,0,B>, 5) (<39,0,C>, ?) (<39,0,E>, ?) (<39,0,F>, 5) (<39,0,G>, 5) (<39,0,H>, 0) (<39,0,J>, ?) (<40,0,A>, 50) (<40,0,B>, 5) (<40,0,C>, ?) (<40,0,E>, ?) (<40,0,F>, 5) (<40,0,G>, ?) (<40,0,H>, ?) (<40,0,J>, ?) (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 5) (<41,0,E>, 0) (<41,0,F>, F) (<41,0,G>, G) (<41,0,H>, H) (<41,0,J>, J) (<42,0,A>, 50) (<42,0,B>, 5) (<42,0,C>, 5) (<42,0,E>, 6 + E) (<42,0,F>, 5) (<42,0,G>, 0) (<42,0,H>, H) (<42,0,J>, J) (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, ?) (<43,0,E>, ?) (<43,0,F>, 5) (<43,0,G>, ?) (<43,0,H>, ?) (<43,0,J>, ?) (<44,0,A>, 50) (<44,0,B>, 5) (<44,0,C>, ?) (<44,0,E>, ?) (<44,0,F>, 5) (<44,0,G>, 5) (<44,0,H>, ?) (<44,0,J>, ?) (<45,0,A>, 50) (<45,0,B>, 5) (<45,0,C>, ?) (<45,0,E>, ?) (<45,0,F>, 5) (<45,0,G>, 5) (<45,0,H>, 0) (<45,0,J>, ?) (<46,0,A>, 50) (<46,0,B>, 5) (<46,0,C>, ?) (<46,0,E>, ?) (<46,0,F>, 5) (<46,0,G>, ?) (<46,0,H>, ?) (<46,0,J>, ?) (<47,0,A>, 50) (<47,0,B>, 5) (<47,0,C>, ?) (<47,0,E>, ?) (<47,0,F>, 5) (<47,0,G>, 5) (<47,0,H>, 0) (<47,0,J>, ?) (<48,0,A>, 50) (<48,0,B>, 5) (<48,0,C>, ?) (<48,0,E>, ?) (<48,0,F>, 5) (<48,0,G>, ?) (<48,0,H>, ?) (<48,0,J>, ?) + Applied Processor: ChainProcessor False [2,3,4,5,6,7,8,9,11,13,15,22,27,28,29,32,36,37,39,40,41,42,43,44,45,46,47,48] + Details: We chained rule 42 to obtain the rules [49,50,51] . * Step 38: UnreachableRules WORST_CASE(?,O(1)) + Considered Problem: Rules: 2. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [B >= E && E >= 1 + C] (42,1) 3. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] (42,1) 4. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J) [B >= E && C = E] (42,1) 5. f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J) [F >= 1 + G] (7,1) 6. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [0 >= 1 + G && F >= H] (?,1) 7. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] (48,1) 8. f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J) [G >= 1 + J] (?,1) 9. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J) [F >= H && G = 0] (48,1) 11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J) [G >= J] (?,1) 13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J) [G >= 1 + H] (?,1) 15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J) [F >= H] (?,1) 22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J) [J >= G] (?,1) 27. f0(A,B,C,E,F,G,H,J) -> f19(50,5,0,0,F,G,H,J) [5 >= 0] (1,2) 28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J) [H >= 1 + F && -1 + G >= 0] (?,2) 29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J) [H >= G && F >= 1 + G] (?,2) 32. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + H,0) [J >= 1 + G && F >= 1 + H] (77,2) 36. f36(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + G,0) [H >= 1 + F && F >= 1 + G] (7,2) 37. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [H >= 1 + F && 1 + G >= 1 + F && F >= 2 + G] (7,3) 39. f33(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J) [G >= F && F >= 1] (1,2) 40. f33(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J) [G >= F && 1 >= 1 + F && -1 + F >= 0] (1,3) 41. f19(A,B,C,E,F,G,H,J) -> f19(A,B,1 + C,0,F,G,H,J) [E >= 1 + B && B >= 1 + C] (7,2) 43. f70(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J) [H >= G && 1 + G >= 1 + F && -1 + F >= 0] (?,3) 44. f54(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [J >= 1 + G && 1 + H >= 1 + F && F >= 2 + G] (77,3) 45. f54(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J) [J >= 1 + G && 1 + H >= 1 + F && 1 + G >= F && F >= 1] (77,4) 46. f54(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J) [J >= 1 + G && 1 + H >= 1 + F && 1 + G >= F && 1 >= 1 + F && -1 + F >= 0] (77,5) 47. f36(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J) [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F && F >= 1] (7,4) 48. f36(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J) [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F && 1 >= 1 + F && -1 + F >= 0] (7,5) 49. f19(A,B,C,E,F,G,H,J) -> f36(A,B,1 + C,E,B,0,1,J) [E >= 1 + B && 1 + C >= 1 + B && B >= 1] (7,3) 50. f19(A,B,C,E,F,G,H,J) -> f70(A,B,1 + C,E,B,1,0,J) [E >= 1 + B && 1 + C >= 1 + B && 0 >= B && B >= 1] (7,4) 51. f19(A,B,C,E,F,G,H,J) -> f84(A,B,1 + C,E,B,-1 + B,B,J) [E >= 1 + B && 1 + C >= 1 + B && 0 >= B && 1 >= 1 + B && -1 + B >= 0] (7,5) Signature: {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)} Flow Graph: [2->{2,3,4,41,49,50,51},3->{2,3,4,41,49,50,51},4->{2,3,4,41,49,50,51},5->{6,7,9,36,37,47,48},6->{8,22} ,7->{8,22},8->{8,22},9->{6,7,9,36,37,47,48},11->{11,32,44,45,46},13->{13,29,43},15->{15,28},22->{6,7,9,36,37 ,47,48},27->{2,3,4,41,49,50,51},28->{15,28},29->{13,29,43},32->{11,32,44,45,46},36->{11,32,44,45,46},37->{6 ,7,9,36,37,47,48},39->{13,29,43},40->{15,28},41->{2,3,4,41,49,50,51},43->{15,28},44->{6,7,9,36,37,47,48} ,45->{13,29,43},46->{15,28},47->{13,29,43},48->{15,28},49->{6,7,9,36,37,47,48},50->{13,29,43},51->{15,28}] Sizebounds: (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>, 6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>, 6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>, 5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 5) (<27,0,E>, 0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, ?) (<28,0,E>, ?) (<28,0,F>, 5) (<28,0,G>, ?) (<28,0,H>, ?) (<28,0,J>, ?) (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, ?) (<29,0,E>, ?) (<29,0,F>, 5) (<29,0,G>, 5) (<29,0,H>, 0) (<29,0,J>, ?) (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, ?) (<32,0,E>, ?) (<32,0,F>, 5) (<32,0,G>, ?) (<32,0,H>, 5) (<32,0,J>, 0) (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, ?) (<36,0,E>, ?) (<36,0,F>, 5) (<36,0,G>, ?) (<36,0,H>, 5) (<36,0,J>, 0) (<37,0,A>, 50) (<37,0,B>, 5) (<37,0,C>, ?) (<37,0,E>, ?) (<37,0,F>, 5) (<37,0,G>, 5) (<37,0,H>, ?) (<37,0,J>, ?) (<39,0,A>, 50) (<39,0,B>, 5) (<39,0,C>, ?) (<39,0,E>, ?) (<39,0,F>, 5) (<39,0,G>, 5) (<39,0,H>, 0) (<39,0,J>, ?) (<40,0,A>, 50) (<40,0,B>, 5) (<40,0,C>, ?) (<40,0,E>, ?) (<40,0,F>, 5) (<40,0,G>, ?) (<40,0,H>, ?) (<40,0,J>, ?) (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 5) (<41,0,E>, 0) (<41,0,F>, F) (<41,0,G>, G) (<41,0,H>, H) (<41,0,J>, J) (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, ?) (<43,0,E>, ?) (<43,0,F>, 5) (<43,0,G>, ?) (<43,0,H>, ?) (<43,0,J>, ?) (<44,0,A>, 50) (<44,0,B>, 5) (<44,0,C>, ?) (<44,0,E>, ?) (<44,0,F>, 5) (<44,0,G>, 5) (<44,0,H>, ?) (<44,0,J>, ?) (<45,0,A>, 50) (<45,0,B>, 5) (<45,0,C>, ?) (<45,0,E>, ?) (<45,0,F>, 5) (<45,0,G>, 5) (<45,0,H>, 0) (<45,0,J>, ?) (<46,0,A>, 50) (<46,0,B>, 5) (<46,0,C>, ?) (<46,0,E>, ?) (<46,0,F>, 5) (<46,0,G>, ?) (<46,0,H>, ?) (<46,0,J>, ?) (<47,0,A>, 50) (<47,0,B>, 5) (<47,0,C>, ?) (<47,0,E>, ?) (<47,0,F>, 5) (<47,0,G>, 5) (<47,0,H>, 0) (<47,0,J>, ?) (<48,0,A>, 50) (<48,0,B>, 5) (<48,0,C>, ?) (<48,0,E>, ?) (<48,0,F>, 5) (<48,0,G>, ?) (<48,0,H>, ?) (<48,0,J>, ?) (<49,0,A>, 50) (<49,0,B>, 5) (<49,0,C>, ?) (<49,0,E>, ?) (<49,0,F>, 5) (<49,0,G>, 5) (<49,0,H>, ?) (<49,0,J>, ?) (<50,0,A>, 50) (<50,0,B>, 5) (<50,0,C>, ?) (<50,0,E>, ?) (<50,0,F>, 5) (<50,0,G>, 5) (<50,0,H>, 0) (<50,0,J>, ?) (<51,0,A>, 50) (<51,0,B>, 5) (<51,0,C>, ?) (<51,0,E>, ?) (<51,0,F>, 5) (<51,0,G>, ?) (<51,0,H>, ?) (<51,0,J>, ?) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [5,39,40] * Step 39: UnsatPaths WORST_CASE(?,O(1)) + Considered Problem: Rules: 2. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [B >= E && E >= 1 + C] (42,1) 3. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] (42,1) 4. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J) [B >= E && C = E] (42,1) 6. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [0 >= 1 + G && F >= H] (?,1) 7. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] (48,1) 8. f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J) [G >= 1 + J] (?,1) 9. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J) [F >= H && G = 0] (48,1) 11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J) [G >= J] (?,1) 13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J) [G >= 1 + H] (?,1) 15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J) [F >= H] (?,1) 22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J) [J >= G] (?,1) 27. f0(A,B,C,E,F,G,H,J) -> f19(50,5,0,0,F,G,H,J) [5 >= 0] (1,2) 28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J) [H >= 1 + F && -1 + G >= 0] (?,2) 29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J) [H >= G && F >= 1 + G] (?,2) 32. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + H,0) [J >= 1 + G && F >= 1 + H] (77,2) 36. f36(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + G,0) [H >= 1 + F && F >= 1 + G] (7,2) 37. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [H >= 1 + F && 1 + G >= 1 + F && F >= 2 + G] (7,3) 41. f19(A,B,C,E,F,G,H,J) -> f19(A,B,1 + C,0,F,G,H,J) [E >= 1 + B && B >= 1 + C] (7,2) 43. f70(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J) [H >= G && 1 + G >= 1 + F && -1 + F >= 0] (?,3) 44. f54(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [J >= 1 + G && 1 + H >= 1 + F && F >= 2 + G] (77,3) 45. f54(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J) [J >= 1 + G && 1 + H >= 1 + F && 1 + G >= F && F >= 1] (77,4) 46. f54(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J) [J >= 1 + G && 1 + H >= 1 + F && 1 + G >= F && 1 >= 1 + F && -1 + F >= 0] (77,5) 47. f36(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J) [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F && F >= 1] (7,4) 48. f36(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J) [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F && 1 >= 1 + F && -1 + F >= 0] (7,5) 49. f19(A,B,C,E,F,G,H,J) -> f36(A,B,1 + C,E,B,0,1,J) [E >= 1 + B && 1 + C >= 1 + B && B >= 1] (7,3) 50. f19(A,B,C,E,F,G,H,J) -> f70(A,B,1 + C,E,B,1,0,J) [E >= 1 + B && 1 + C >= 1 + B && 0 >= B && B >= 1] (7,4) 51. f19(A,B,C,E,F,G,H,J) -> f84(A,B,1 + C,E,B,-1 + B,B,J) [E >= 1 + B && 1 + C >= 1 + B && 0 >= B && 1 >= 1 + B && -1 + B >= 0] (7,5) Signature: {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)} Flow Graph: [2->{2,3,4,41,49,50,51},3->{2,3,4,41,49,50,51},4->{2,3,4,41,49,50,51},6->{8,22},7->{8,22},8->{8,22},9->{6 ,7,9,36,37,47,48},11->{11,32,44,45,46},13->{13,29,43},15->{15,28},22->{6,7,9,36,37,47,48},27->{2,3,4,41,49 ,50,51},28->{15,28},29->{13,29,43},32->{11,32,44,45,46},36->{11,32,44,45,46},37->{6,7,9,36,37,47,48},41->{2 ,3,4,41,49,50,51},43->{15,28},44->{6,7,9,36,37,47,48},45->{13,29,43},46->{15,28},47->{13,29,43},48->{15,28} ,49->{6,7,9,36,37,47,48},50->{13,29,43},51->{15,28}] Sizebounds: (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>, 6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>, 6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>, 5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 5) (<27,0,E>, 0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, ?) (<28,0,E>, ?) (<28,0,F>, 5) (<28,0,G>, ?) (<28,0,H>, ?) (<28,0,J>, ?) (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, ?) (<29,0,E>, ?) (<29,0,F>, 5) (<29,0,G>, 5) (<29,0,H>, 0) (<29,0,J>, ?) (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, ?) (<32,0,E>, ?) (<32,0,F>, 5) (<32,0,G>, ?) (<32,0,H>, 5) (<32,0,J>, 0) (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, ?) (<36,0,E>, ?) (<36,0,F>, 5) (<36,0,G>, ?) (<36,0,H>, 5) (<36,0,J>, 0) (<37,0,A>, 50) (<37,0,B>, 5) (<37,0,C>, ?) (<37,0,E>, ?) (<37,0,F>, 5) (<37,0,G>, 5) (<37,0,H>, ?) (<37,0,J>, ?) (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 5) (<41,0,E>, 0) (<41,0,F>, F) (<41,0,G>, G) (<41,0,H>, H) (<41,0,J>, J) (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, ?) (<43,0,E>, ?) (<43,0,F>, 5) (<43,0,G>, ?) (<43,0,H>, ?) (<43,0,J>, ?) (<44,0,A>, 50) (<44,0,B>, 5) (<44,0,C>, ?) (<44,0,E>, ?) (<44,0,F>, 5) (<44,0,G>, 5) (<44,0,H>, ?) (<44,0,J>, ?) (<45,0,A>, 50) (<45,0,B>, 5) (<45,0,C>, ?) (<45,0,E>, ?) (<45,0,F>, 5) (<45,0,G>, 5) (<45,0,H>, 0) (<45,0,J>, ?) (<46,0,A>, 50) (<46,0,B>, 5) (<46,0,C>, ?) (<46,0,E>, ?) (<46,0,F>, 5) (<46,0,G>, ?) (<46,0,H>, ?) (<46,0,J>, ?) (<47,0,A>, 50) (<47,0,B>, 5) (<47,0,C>, ?) (<47,0,E>, ?) (<47,0,F>, 5) (<47,0,G>, 5) (<47,0,H>, 0) (<47,0,J>, ?) (<48,0,A>, 50) (<48,0,B>, 5) (<48,0,C>, ?) (<48,0,E>, ?) (<48,0,F>, 5) (<48,0,G>, ?) (<48,0,H>, ?) (<48,0,J>, ?) (<49,0,A>, 50) (<49,0,B>, 5) (<49,0,C>, ?) (<49,0,E>, ?) (<49,0,F>, 5) (<49,0,G>, 5) (<49,0,H>, ?) (<49,0,J>, ?) (<50,0,A>, 50) (<50,0,B>, 5) (<50,0,C>, ?) (<50,0,E>, ?) (<50,0,F>, 5) (<50,0,G>, 5) (<50,0,H>, 0) (<50,0,J>, ?) (<51,0,A>, 50) (<51,0,B>, 5) (<51,0,C>, ?) (<51,0,E>, ?) (<51,0,F>, 5) (<51,0,G>, ?) (<51,0,H>, ?) (<51,0,J>, ?) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(2,3) ,(2,4) ,(2,49) ,(2,50) ,(2,51) ,(3,2) ,(3,41) ,(3,50) ,(3,51) ,(4,3) ,(4,4) ,(4,41) ,(4,50) ,(4,51) ,(6,8) ,(7,22) ,(9,6) ,(9,7) ,(9,37) ,(9,47) ,(9,48) ,(11,46) ,(22,37) ,(22,48) ,(27,2) ,(27,3) ,(27,41) ,(27,49) ,(27,50) ,(27,51) ,(29,43) ,(32,45) ,(32,46) ,(36,44) ,(36,45) ,(36,46) ,(37,6) ,(37,7) ,(37,9) ,(37,36) ,(37,37) ,(37,47) ,(37,48) ,(41,49) ,(41,50) ,(41,51) ,(43,28) ,(44,36) ,(44,37) ,(44,47) ,(44,48) ,(45,29) ,(45,43) ,(46,15) ,(46,28) ,(47,29) ,(47,43) ,(48,15) ,(48,28) ,(49,6) ,(49,7) ,(49,36) ,(49,37) ,(49,47) ,(49,48) ,(50,13) ,(50,29) ,(50,43) ,(51,15) ,(51,28)] * Step 40: UnreachableRules WORST_CASE(?,O(1)) + Considered Problem: Rules: 2. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [B >= E && E >= 1 + C] (42,1) 3. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] (42,1) 4. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J) [B >= E && C = E] (42,1) 6. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [0 >= 1 + G && F >= H] (?,1) 7. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] (48,1) 8. f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J) [G >= 1 + J] (?,1) 9. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J) [F >= H && G = 0] (48,1) 11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J) [G >= J] (?,1) 13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J) [G >= 1 + H] (?,1) 15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J) [F >= H] (?,1) 22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J) [J >= G] (?,1) 27. f0(A,B,C,E,F,G,H,J) -> f19(50,5,0,0,F,G,H,J) [5 >= 0] (1,2) 28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J) [H >= 1 + F && -1 + G >= 0] (?,2) 29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J) [H >= G && F >= 1 + G] (?,2) 32. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + H,0) [J >= 1 + G && F >= 1 + H] (77,2) 36. f36(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + G,0) [H >= 1 + F && F >= 1 + G] (7,2) 37. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [H >= 1 + F && 1 + G >= 1 + F && F >= 2 + G] (7,3) 41. f19(A,B,C,E,F,G,H,J) -> f19(A,B,1 + C,0,F,G,H,J) [E >= 1 + B && B >= 1 + C] (7,2) 43. f70(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J) [H >= G && 1 + G >= 1 + F && -1 + F >= 0] (?,3) 44. f54(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [J >= 1 + G && 1 + H >= 1 + F && F >= 2 + G] (77,3) 45. f54(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J) [J >= 1 + G && 1 + H >= 1 + F && 1 + G >= F && F >= 1] (77,4) 46. f54(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J) [J >= 1 + G && 1 + H >= 1 + F && 1 + G >= F && 1 >= 1 + F && -1 + F >= 0] (77,5) 47. f36(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J) [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F && F >= 1] (7,4) 48. f36(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J) [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F && 1 >= 1 + F && -1 + F >= 0] (7,5) 49. f19(A,B,C,E,F,G,H,J) -> f36(A,B,1 + C,E,B,0,1,J) [E >= 1 + B && 1 + C >= 1 + B && B >= 1] (7,3) 50. f19(A,B,C,E,F,G,H,J) -> f70(A,B,1 + C,E,B,1,0,J) [E >= 1 + B && 1 + C >= 1 + B && 0 >= B && B >= 1] (7,4) 51. f19(A,B,C,E,F,G,H,J) -> f84(A,B,1 + C,E,B,-1 + B,B,J) [E >= 1 + B && 1 + C >= 1 + B && 0 >= B && 1 >= 1 + B && -1 + B >= 0] (7,5) Signature: {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)} Flow Graph: [2->{2,41},3->{3,4,49},4->{2,49},6->{22},7->{8},8->{8,22},9->{9,36},11->{11,32,44,45},13->{13,29,43} ,15->{15,28},22->{6,7,9,36,47},27->{4},28->{15,28},29->{13,29},32->{11,32,44},36->{11,32},37->{},41->{2,3,4 ,41},43->{15},44->{6,7,9},45->{13},46->{},47->{13},48->{},49->{9},50->{},51->{}] Sizebounds: (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>, 6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>, 6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>, 5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 5) (<27,0,E>, 0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, ?) (<28,0,E>, ?) (<28,0,F>, 5) (<28,0,G>, ?) (<28,0,H>, ?) (<28,0,J>, ?) (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, ?) (<29,0,E>, ?) (<29,0,F>, 5) (<29,0,G>, 5) (<29,0,H>, 0) (<29,0,J>, ?) (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, ?) (<32,0,E>, ?) (<32,0,F>, 5) (<32,0,G>, ?) (<32,0,H>, 5) (<32,0,J>, 0) (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, ?) (<36,0,E>, ?) (<36,0,F>, 5) (<36,0,G>, ?) (<36,0,H>, 5) (<36,0,J>, 0) (<37,0,A>, 50) (<37,0,B>, 5) (<37,0,C>, ?) (<37,0,E>, ?) (<37,0,F>, 5) (<37,0,G>, 5) (<37,0,H>, ?) (<37,0,J>, ?) (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 5) (<41,0,E>, 0) (<41,0,F>, F) (<41,0,G>, G) (<41,0,H>, H) (<41,0,J>, J) (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, ?) (<43,0,E>, ?) (<43,0,F>, 5) (<43,0,G>, ?) (<43,0,H>, ?) (<43,0,J>, ?) (<44,0,A>, 50) (<44,0,B>, 5) (<44,0,C>, ?) (<44,0,E>, ?) (<44,0,F>, 5) (<44,0,G>, 5) (<44,0,H>, ?) (<44,0,J>, ?) (<45,0,A>, 50) (<45,0,B>, 5) (<45,0,C>, ?) (<45,0,E>, ?) (<45,0,F>, 5) (<45,0,G>, 5) (<45,0,H>, 0) (<45,0,J>, ?) (<46,0,A>, 50) (<46,0,B>, 5) (<46,0,C>, ?) (<46,0,E>, ?) (<46,0,F>, 5) (<46,0,G>, ?) (<46,0,H>, ?) (<46,0,J>, ?) (<47,0,A>, 50) (<47,0,B>, 5) (<47,0,C>, ?) (<47,0,E>, ?) (<47,0,F>, 5) (<47,0,G>, 5) (<47,0,H>, 0) (<47,0,J>, ?) (<48,0,A>, 50) (<48,0,B>, 5) (<48,0,C>, ?) (<48,0,E>, ?) (<48,0,F>, 5) (<48,0,G>, ?) (<48,0,H>, ?) (<48,0,J>, ?) (<49,0,A>, 50) (<49,0,B>, 5) (<49,0,C>, ?) (<49,0,E>, ?) (<49,0,F>, 5) (<49,0,G>, 5) (<49,0,H>, ?) (<49,0,J>, ?) (<50,0,A>, 50) (<50,0,B>, 5) (<50,0,C>, ?) (<50,0,E>, ?) (<50,0,F>, 5) (<50,0,G>, 5) (<50,0,H>, 0) (<50,0,J>, ?) (<51,0,A>, 50) (<51,0,B>, 5) (<51,0,C>, ?) (<51,0,E>, ?) (<51,0,F>, 5) (<51,0,G>, ?) (<51,0,H>, ?) (<51,0,J>, ?) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [37,46,48,50,51] * Step 41: LocalSizeboundsProc WORST_CASE(?,O(1)) + Considered Problem: Rules: 2. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [B >= E && E >= 1 + C] (42,1) 3. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] (42,1) 4. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J) [B >= E && C = E] (42,1) 6. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [0 >= 1 + G && F >= H] (?,1) 7. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] (48,1) 8. f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J) [G >= 1 + J] (?,1) 9. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J) [F >= H && G = 0] (48,1) 11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J) [G >= J] (?,1) 13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J) [G >= 1 + H] (?,1) 15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J) [F >= H] (?,1) 22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J) [J >= G] (?,1) 27. f0(A,B,C,E,F,G,H,J) -> f19(50,5,0,0,F,G,H,J) [5 >= 0] (1,2) 28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J) [H >= 1 + F && -1 + G >= 0] (?,2) 29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J) [H >= G && F >= 1 + G] (?,2) 32. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + H,0) [J >= 1 + G && F >= 1 + H] (77,2) 36. f36(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + G,0) [H >= 1 + F && F >= 1 + G] (7,2) 41. f19(A,B,C,E,F,G,H,J) -> f19(A,B,1 + C,0,F,G,H,J) [E >= 1 + B && B >= 1 + C] (7,2) 43. f70(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J) [H >= G && 1 + G >= 1 + F && -1 + F >= 0] (?,3) 44. f54(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [J >= 1 + G && 1 + H >= 1 + F && F >= 2 + G] (77,3) 45. f54(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J) [J >= 1 + G && 1 + H >= 1 + F && 1 + G >= F && F >= 1] (77,4) 47. f36(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J) [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F && F >= 1] (7,4) 49. f19(A,B,C,E,F,G,H,J) -> f36(A,B,1 + C,E,B,0,1,J) [E >= 1 + B && 1 + C >= 1 + B && B >= 1] (7,3) Signature: {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)} Flow Graph: [2->{2,41},3->{3,4,49},4->{2,49},6->{22},7->{8},8->{8,22},9->{9,36},11->{11,32,44,45},13->{13,29,43} ,15->{15,28},22->{6,7,9,36,47},27->{4},28->{15,28},29->{13,29},32->{11,32,44},36->{11,32},41->{2,3,4,41} ,43->{15},44->{6,7,9},45->{13},47->{13},49->{9}] Sizebounds: (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>, 6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>, 6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>, 5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 5) (<27,0,E>, 0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, ?) (<28,0,E>, ?) (<28,0,F>, 5) (<28,0,G>, ?) (<28,0,H>, ?) (<28,0,J>, ?) (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, ?) (<29,0,E>, ?) (<29,0,F>, 5) (<29,0,G>, 5) (<29,0,H>, 0) (<29,0,J>, ?) (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, ?) (<32,0,E>, ?) (<32,0,F>, 5) (<32,0,G>, ?) (<32,0,H>, 5) (<32,0,J>, 0) (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, ?) (<36,0,E>, ?) (<36,0,F>, 5) (<36,0,G>, ?) (<36,0,H>, 5) (<36,0,J>, 0) (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 5) (<41,0,E>, 0) (<41,0,F>, F) (<41,0,G>, G) (<41,0,H>, H) (<41,0,J>, J) (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, ?) (<43,0,E>, ?) (<43,0,F>, 5) (<43,0,G>, ?) (<43,0,H>, ?) (<43,0,J>, ?) (<44,0,A>, 50) (<44,0,B>, 5) (<44,0,C>, ?) (<44,0,E>, ?) (<44,0,F>, 5) (<44,0,G>, 5) (<44,0,H>, ?) (<44,0,J>, ?) (<45,0,A>, 50) (<45,0,B>, 5) (<45,0,C>, ?) (<45,0,E>, ?) (<45,0,F>, 5) (<45,0,G>, 5) (<45,0,H>, 0) (<45,0,J>, ?) (<47,0,A>, 50) (<47,0,B>, 5) (<47,0,C>, ?) (<47,0,E>, ?) (<47,0,F>, 5) (<47,0,G>, 5) (<47,0,H>, 0) (<47,0,J>, ?) (<49,0,A>, 50) (<49,0,B>, 5) (<49,0,C>, ?) (<49,0,E>, ?) (<49,0,F>, 5) (<49,0,G>, 5) (<49,0,H>, ?) (<49,0,J>, ?) + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (< 2,0,A>, A, .= 0) (< 2,0,B>, B, .= 0) (< 2,0,C>, C, .= 0) (< 2,0,E>, 1 + E, .+ 1) (< 2,0,F>, F, .= 0) (< 2,0,G>, G, .= 0) (< 2,0,H>, H, .= 0) (< 2,0,J>, J, .= 0) (< 3,0,A>, A, .= 0) (< 3,0,B>, B, .= 0) (< 3,0,C>, C, .= 0) (< 3,0,E>, 1 + C + E, .* 1) (< 3,0,F>, F, .= 0) (< 3,0,G>, G, .= 0) (< 3,0,H>, H, .= 0) (< 3,0,J>, J, .= 0) (< 4,0,A>, A, .= 0) (< 4,0,B>, B, .= 0) (< 4,0,C>, C, .= 0) (< 4,0,E>, 1 + C, .+ 1) (< 4,0,F>, F, .= 0) (< 4,0,G>, G, .= 0) (< 4,0,H>, H, .= 0) (< 4,0,J>, J, .= 0) (< 6,0,A>, A, .= 0) (< 6,0,B>, B, .= 0) (< 6,0,C>, C, .= 0) (< 6,0,E>, E, .= 0) (< 6,0,F>, F, .= 0) (< 6,0,G>, G, .= 0) (< 6,0,H>, H, .= 0) (< 6,0,J>, 0, .= 0) (< 7,0,A>, A, .= 0) (< 7,0,B>, B, .= 0) (< 7,0,C>, C, .= 0) (< 7,0,E>, E, .= 0) (< 7,0,F>, F, .= 0) (< 7,0,G>, G, .= 0) (< 7,0,H>, H, .= 0) (< 7,0,J>, 0, .= 0) (< 8,0,A>, A, .= 0) (< 8,0,B>, B, .= 0) (< 8,0,C>, C, .= 0) (< 8,0,E>, E, .= 0) (< 8,0,F>, F, .= 0) (< 8,0,G>, G, .= 0) (< 8,0,H>, H, .= 0) (< 8,0,J>, 1 + J, .+ 1) (< 9,0,A>, A, .= 0) (< 9,0,B>, B, .= 0) (< 9,0,C>, C, .= 0) (< 9,0,E>, E, .= 0) (< 9,0,F>, F, .= 0) (< 9,0,G>, 0, .= 0) (< 9,0,H>, 1 + H, .+ 1) (< 9,0,J>, J, .= 0) (<11,0,A>, A, .= 0) (<11,0,B>, B, .= 0) (<11,0,C>, C, .= 0) (<11,0,E>, E, .= 0) (<11,0,F>, F, .= 0) (<11,0,G>, G, .= 0) (<11,0,H>, H, .= 0) (<11,0,J>, 1 + J, .+ 1) (<13,0,A>, A, .= 0) (<13,0,B>, B, .= 0) (<13,0,C>, C, .= 0) (<13,0,E>, E, .= 0) (<13,0,F>, F, .= 0) (<13,0,G>, G, .= 0) (<13,0,H>, 1 + H, .+ 1) (<13,0,J>, J, .= 0) (<15,0,A>, A, .= 0) (<15,0,B>, B, .= 0) (<15,0,C>, C, .= 0) (<15,0,E>, E, .= 0) (<15,0,F>, F, .= 0) (<15,0,G>, G, .= 0) (<15,0,H>, 1 + H, .+ 1) (<15,0,J>, J, .= 0) (<22,0,A>, A, .= 0) (<22,0,B>, B, .= 0) (<22,0,C>, C, .= 0) (<22,0,E>, E, .= 0) (<22,0,F>, F, .= 0) (<22,0,G>, G, .= 0) (<22,0,H>, 1 + H, .+ 1) (<22,0,J>, J, .= 0) (<27,0,A>, 50, .= 50) (<27,0,B>, 5, .= 5) (<27,0,C>, 0, .= 0) (<27,0,E>, 0, .= 0) (<27,0,F>, F, .= 0) (<27,0,G>, G, .= 0) (<27,0,H>, H, .= 0) (<27,0,J>, J, .= 0) (<28,0,A>, A, .= 0) (<28,0,B>, B, .= 0) (<28,0,C>, C, .= 0) (<28,0,E>, E, .= 0) (<28,0,F>, F, .= 0) (<28,0,G>, 1 + G, .+ 1) (<28,0,H>, G, .= 0) (<28,0,J>, J, .= 0) (<29,0,A>, A, .= 0) (<29,0,B>, B, .= 0) (<29,0,C>, C, .= 0) (<29,0,E>, E, .= 0) (<29,0,F>, F, .= 0) (<29,0,G>, 1 + G + H, .* 1) (<29,0,H>, 0, .= 0) (<29,0,J>, J, .= 0) (<32,0,A>, A, .= 0) (<32,0,B>, B, .= 0) (<32,0,C>, C, .= 0) (<32,0,E>, E, .= 0) (<32,0,F>, F, .= 0) (<32,0,G>, G, .= 0) (<32,0,H>, 1 + H, .+ 1) (<32,0,J>, 0, .= 0) (<36,0,A>, A, .= 0) (<36,0,B>, B, .= 0) (<36,0,C>, C, .= 0) (<36,0,E>, E, .= 0) (<36,0,F>, F, .= 0) (<36,0,G>, G, .= 0) (<36,0,H>, 1 + G, .+ 1) (<36,0,J>, 0, .= 0) (<41,0,A>, A, .= 0) (<41,0,B>, B, .= 0) (<41,0,C>, 1 + C, .+ 1) (<41,0,E>, 0, .= 0) (<41,0,F>, F, .= 0) (<41,0,G>, G, .= 0) (<41,0,H>, H, .= 0) (<41,0,J>, J, .= 0) (<43,0,A>, A, .= 0) (<43,0,B>, B, .= 0) (<43,0,C>, C, .= 0) (<43,0,E>, E, .= 0) (<43,0,F>, F, .= 0) (<43,0,G>, 1 + F, .+ 1) (<43,0,H>, F, .= 0) (<43,0,J>, J, .= 0) (<44,0,A>, A, .= 0) (<44,0,B>, B, .= 0) (<44,0,C>, C, .= 0) (<44,0,E>, E, .= 0) (<44,0,F>, F, .= 0) (<44,0,G>, 1 + G, .+ 1) (<44,0,H>, 2 + G, .+ 2) (<44,0,J>, J, .= 0) (<45,0,A>, A, .= 0) (<45,0,B>, B, .= 0) (<45,0,C>, C, .= 0) (<45,0,E>, E, .= 0) (<45,0,F>, F, .= 0) (<45,0,G>, 1, .= 1) (<45,0,H>, 0, .= 0) (<45,0,J>, J, .= 0) (<47,0,A>, A, .= 0) (<47,0,B>, B, .= 0) (<47,0,C>, C, .= 0) (<47,0,E>, E, .= 0) (<47,0,F>, F, .= 0) (<47,0,G>, 1, .= 1) (<47,0,H>, 0, .= 0) (<47,0,J>, J, .= 0) (<49,0,A>, A, .= 0) (<49,0,B>, B, .= 0) (<49,0,C>, 1 + C, .+ 1) (<49,0,E>, E, .= 0) (<49,0,F>, B, .= 0) (<49,0,G>, 0, .= 0) (<49,0,H>, 1, .= 1) (<49,0,J>, J, .= 0) * Step 42: SizeboundsProc WORST_CASE(?,O(1)) + Considered Problem: Rules: 2. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [B >= E && E >= 1 + C] (42,1) 3. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] (42,1) 4. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J) [B >= E && C = E] (42,1) 6. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [0 >= 1 + G && F >= H] (?,1) 7. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] (48,1) 8. f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J) [G >= 1 + J] (?,1) 9. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J) [F >= H && G = 0] (48,1) 11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J) [G >= J] (?,1) 13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J) [G >= 1 + H] (?,1) 15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J) [F >= H] (?,1) 22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J) [J >= G] (?,1) 27. f0(A,B,C,E,F,G,H,J) -> f19(50,5,0,0,F,G,H,J) [5 >= 0] (1,2) 28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J) [H >= 1 + F && -1 + G >= 0] (?,2) 29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J) [H >= G && F >= 1 + G] (?,2) 32. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + H,0) [J >= 1 + G && F >= 1 + H] (77,2) 36. f36(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + G,0) [H >= 1 + F && F >= 1 + G] (7,2) 41. f19(A,B,C,E,F,G,H,J) -> f19(A,B,1 + C,0,F,G,H,J) [E >= 1 + B && B >= 1 + C] (7,2) 43. f70(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J) [H >= G && 1 + G >= 1 + F && -1 + F >= 0] (?,3) 44. f54(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [J >= 1 + G && 1 + H >= 1 + F && F >= 2 + G] (77,3) 45. f54(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J) [J >= 1 + G && 1 + H >= 1 + F && 1 + G >= F && F >= 1] (77,4) 47. f36(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J) [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F && F >= 1] (7,4) 49. f19(A,B,C,E,F,G,H,J) -> f36(A,B,1 + C,E,B,0,1,J) [E >= 1 + B && 1 + C >= 1 + B && B >= 1] (7,3) Signature: {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)} Flow Graph: [2->{2,41},3->{3,4,49},4->{2,49},6->{22},7->{8},8->{8,22},9->{9,36},11->{11,32,44,45},13->{13,29,43} ,15->{15,28},22->{6,7,9,36,47},27->{4},28->{15,28},29->{13,29},32->{11,32,44},36->{11,32},41->{2,3,4,41} ,43->{15},44->{6,7,9},45->{13},47->{13},49->{9}] Sizebounds: (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,E>, ?) (< 2,0,F>, ?) (< 2,0,G>, ?) (< 2,0,H>, ?) (< 2,0,J>, ?) (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,E>, ?) (< 3,0,F>, ?) (< 3,0,G>, ?) (< 3,0,H>, ?) (< 3,0,J>, ?) (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 4,0,E>, ?) (< 4,0,F>, ?) (< 4,0,G>, ?) (< 4,0,H>, ?) (< 4,0,J>, ?) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, ?) (< 6,0,G>, ?) (< 6,0,H>, ?) (< 6,0,J>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, ?) (< 7,0,G>, ?) (< 7,0,H>, ?) (< 7,0,J>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,G>, ?) (< 8,0,H>, ?) (< 8,0,J>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) (< 9,0,G>, ?) (< 9,0,H>, ?) (< 9,0,J>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,G>, ?) (<11,0,H>, ?) (<11,0,J>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,G>, ?) (<13,0,H>, ?) (<13,0,J>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, ?) (<15,0,G>, ?) (<15,0,H>, ?) (<15,0,J>, ?) (<22,0,A>, ?) (<22,0,B>, ?) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,F>, ?) (<22,0,G>, ?) (<22,0,H>, ?) (<22,0,J>, ?) (<27,0,A>, ?) (<27,0,B>, ?) (<27,0,C>, ?) (<27,0,E>, ?) (<27,0,F>, ?) (<27,0,G>, ?) (<27,0,H>, ?) (<27,0,J>, ?) (<28,0,A>, ?) (<28,0,B>, ?) (<28,0,C>, ?) (<28,0,E>, ?) (<28,0,F>, ?) (<28,0,G>, ?) (<28,0,H>, ?) (<28,0,J>, ?) (<29,0,A>, ?) (<29,0,B>, ?) (<29,0,C>, ?) (<29,0,E>, ?) (<29,0,F>, ?) (<29,0,G>, ?) (<29,0,H>, ?) (<29,0,J>, ?) (<32,0,A>, ?) (<32,0,B>, ?) (<32,0,C>, ?) (<32,0,E>, ?) (<32,0,F>, ?) (<32,0,G>, ?) (<32,0,H>, ?) (<32,0,J>, ?) (<36,0,A>, ?) (<36,0,B>, ?) (<36,0,C>, ?) (<36,0,E>, ?) (<36,0,F>, ?) (<36,0,G>, ?) (<36,0,H>, ?) (<36,0,J>, ?) (<41,0,A>, ?) (<41,0,B>, ?) (<41,0,C>, ?) (<41,0,E>, ?) (<41,0,F>, ?) (<41,0,G>, ?) (<41,0,H>, ?) (<41,0,J>, ?) (<43,0,A>, ?) (<43,0,B>, ?) (<43,0,C>, ?) (<43,0,E>, ?) (<43,0,F>, ?) (<43,0,G>, ?) (<43,0,H>, ?) (<43,0,J>, ?) (<44,0,A>, ?) (<44,0,B>, ?) (<44,0,C>, ?) (<44,0,E>, ?) (<44,0,F>, ?) (<44,0,G>, ?) (<44,0,H>, ?) (<44,0,J>, ?) (<45,0,A>, ?) (<45,0,B>, ?) (<45,0,C>, ?) (<45,0,E>, ?) (<45,0,F>, ?) (<45,0,G>, ?) (<45,0,H>, ?) (<45,0,J>, ?) (<47,0,A>, ?) (<47,0,B>, ?) (<47,0,C>, ?) (<47,0,E>, ?) (<47,0,F>, ?) (<47,0,G>, ?) (<47,0,H>, ?) (<47,0,J>, ?) (<49,0,A>, ?) (<49,0,B>, ?) (<49,0,C>, ?) (<49,0,E>, ?) (<49,0,F>, ?) (<49,0,G>, ?) (<49,0,H>, ?) (<49,0,J>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 7) (< 2,0,E>, 50) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 7) (< 3,0,E>, 343) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 7) (< 4,0,E>, 8) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, 8) (< 6,0,E>, 343) (< 6,0,F>, 5) (< 6,0,G>, 77) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, 8) (< 7,0,E>, 343) (< 7,0,F>, 5) (< 7,0,G>, 77) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, 8) (< 8,0,E>, 343) (< 8,0,F>, 5) (< 8,0,G>, 77) (< 8,0,H>, 5) (< 8,0,J>, 77) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, 8) (< 9,0,E>, 343) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, 78 + J) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, 8) (<11,0,E>, 343) (<11,0,F>, 5) (<11,0,G>, 77) (<11,0,H>, 155) (<11,0,J>, 78) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, 8) (<13,0,E>, 343) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, 8) (<15,0,E>, 343) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, 8) (<22,0,E>, 343) (<22,0,F>, 5) (<22,0,G>, 77) (<22,0,H>, 5) (<22,0,J>, 77) (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 0) (<27,0,E>, 0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, 8) (<28,0,E>, 343) (<28,0,F>, 5) (<28,0,G>, ?) (<28,0,H>, ?) (<28,0,J>, ?) (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, 8) (<29,0,E>, 343) (<29,0,F>, 5) (<29,0,G>, 5) (<29,0,H>, 0) (<29,0,J>, ?) (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, 8) (<32,0,E>, 343) (<32,0,F>, 5) (<32,0,G>, 77) (<32,0,H>, 155) (<32,0,J>, 0) (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, 8) (<36,0,E>, 343) (<36,0,F>, 5) (<36,0,G>, 77) (<36,0,H>, 78) (<36,0,J>, 0) (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 7) (<41,0,E>, 0) (<41,0,F>, F) (<41,0,G>, G) (<41,0,H>, H) (<41,0,J>, J) (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, 8) (<43,0,E>, 343) (<43,0,F>, 5) (<43,0,G>, 6) (<43,0,H>, 5) (<43,0,J>, ?) (<44,0,A>, 50) (<44,0,B>, 5) (<44,0,C>, 8) (<44,0,E>, 343) (<44,0,F>, 5) (<44,0,G>, 77) (<44,0,H>, 79) (<44,0,J>, 78) (<45,0,A>, 50) (<45,0,B>, 5) (<45,0,C>, 8) (<45,0,E>, 343) (<45,0,F>, 5) (<45,0,G>, 1) (<45,0,H>, 0) (<45,0,J>, 78) (<47,0,A>, 50) (<47,0,B>, 5) (<47,0,C>, 8) (<47,0,E>, 343) (<47,0,F>, 5) (<47,0,G>, 1) (<47,0,H>, 0) (<47,0,J>, 77) (<49,0,A>, 50) (<49,0,B>, 5) (<49,0,C>, 8) (<49,0,E>, 343) (<49,0,F>, 5) (<49,0,G>, 0) (<49,0,H>, 1) (<49,0,J>, J) * Step 43: LocationConstraintsProc WORST_CASE(?,O(1)) + Considered Problem: Rules: 2. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [B >= E && E >= 1 + C] (42,1) 3. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] (42,1) 4. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J) [B >= E && C = E] (42,1) 6. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [0 >= 1 + G && F >= H] (?,1) 7. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] (48,1) 8. f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J) [G >= 1 + J] (?,1) 9. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J) [F >= H && G = 0] (48,1) 11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J) [G >= J] (?,1) 13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J) [G >= 1 + H] (?,1) 15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J) [F >= H] (?,1) 22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J) [J >= G] (?,1) 27. f0(A,B,C,E,F,G,H,J) -> f19(50,5,0,0,F,G,H,J) [5 >= 0] (1,2) 28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J) [H >= 1 + F && -1 + G >= 0] (?,2) 29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J) [H >= G && F >= 1 + G] (?,2) 32. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + H,0) [J >= 1 + G && F >= 1 + H] (77,2) 36. f36(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + G,0) [H >= 1 + F && F >= 1 + G] (7,2) 41. f19(A,B,C,E,F,G,H,J) -> f19(A,B,1 + C,0,F,G,H,J) [E >= 1 + B && B >= 1 + C] (7,2) 43. f70(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J) [H >= G && 1 + G >= 1 + F && -1 + F >= 0] (?,3) 44. f54(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [J >= 1 + G && 1 + H >= 1 + F && F >= 2 + G] (77,3) 45. f54(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J) [J >= 1 + G && 1 + H >= 1 + F && 1 + G >= F && F >= 1] (77,4) 47. f36(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J) [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F && F >= 1] (7,4) 49. f19(A,B,C,E,F,G,H,J) -> f36(A,B,1 + C,E,B,0,1,J) [E >= 1 + B && 1 + C >= 1 + B && B >= 1] (7,3) Signature: {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)} Flow Graph: [2->{2,41},3->{3,4,49},4->{2,49},6->{22},7->{8},8->{8,22},9->{9,36},11->{11,32,44,45},13->{13,29,43} ,15->{15,28},22->{6,7,9,36,47},27->{4},28->{15,28},29->{13,29},32->{11,32,44},36->{11,32},41->{2,3,4,41} ,43->{15},44->{6,7,9},45->{13},47->{13},49->{9}] Sizebounds: (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 7) (< 2,0,E>, 50) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 7) (< 3,0,E>, 343) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 7) (< 4,0,E>, 8) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, 8) (< 6,0,E>, 343) (< 6,0,F>, 5) (< 6,0,G>, 77) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, 8) (< 7,0,E>, 343) (< 7,0,F>, 5) (< 7,0,G>, 77) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, 8) (< 8,0,E>, 343) (< 8,0,F>, 5) (< 8,0,G>, 77) (< 8,0,H>, 5) (< 8,0,J>, 77) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, 8) (< 9,0,E>, 343) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, 78 + J) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, 8) (<11,0,E>, 343) (<11,0,F>, 5) (<11,0,G>, 77) (<11,0,H>, 155) (<11,0,J>, 78) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, 8) (<13,0,E>, 343) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, 8) (<15,0,E>, 343) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, 8) (<22,0,E>, 343) (<22,0,F>, 5) (<22,0,G>, 77) (<22,0,H>, 5) (<22,0,J>, 77) (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 0) (<27,0,E>, 0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, 8) (<28,0,E>, 343) (<28,0,F>, 5) (<28,0,G>, ?) (<28,0,H>, ?) (<28,0,J>, ?) (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, 8) (<29,0,E>, 343) (<29,0,F>, 5) (<29,0,G>, 5) (<29,0,H>, 0) (<29,0,J>, ?) (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, 8) (<32,0,E>, 343) (<32,0,F>, 5) (<32,0,G>, 77) (<32,0,H>, 155) (<32,0,J>, 0) (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, 8) (<36,0,E>, 343) (<36,0,F>, 5) (<36,0,G>, 77) (<36,0,H>, 78) (<36,0,J>, 0) (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 7) (<41,0,E>, 0) (<41,0,F>, F) (<41,0,G>, G) (<41,0,H>, H) (<41,0,J>, J) (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, 8) (<43,0,E>, 343) (<43,0,F>, 5) (<43,0,G>, 6) (<43,0,H>, 5) (<43,0,J>, ?) (<44,0,A>, 50) (<44,0,B>, 5) (<44,0,C>, 8) (<44,0,E>, 343) (<44,0,F>, 5) (<44,0,G>, 77) (<44,0,H>, 79) (<44,0,J>, 78) (<45,0,A>, 50) (<45,0,B>, 5) (<45,0,C>, 8) (<45,0,E>, 343) (<45,0,F>, 5) (<45,0,G>, 1) (<45,0,H>, 0) (<45,0,J>, 78) (<47,0,A>, 50) (<47,0,B>, 5) (<47,0,C>, 8) (<47,0,E>, 343) (<47,0,F>, 5) (<47,0,G>, 1) (<47,0,H>, 0) (<47,0,J>, 77) (<49,0,A>, 50) (<49,0,B>, 5) (<49,0,C>, 8) (<49,0,E>, 343) (<49,0,F>, 5) (<49,0,G>, 0) (<49,0,H>, 1) (<49,0,J>, J) + Applied Processor: LocationConstraintsProc + Details: We computed the location constraints 2 : True 3 : [False] 4 : True 6 : [J >= G] 7 : [J >= G] 8 : [G >= 1] 9 : True 11 : True 13 : True 15 : True 22 : True 27 : True 28 : [False] 29 : [False] 32 : True 36 : True 41 : [False] 43 : [False] 44 : True 45 : [False] 47 : [J >= G] 49 : True . * Step 44: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 2. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [B >= E && E >= 1 + C] (42,1) 3. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] (42,1) 4. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J) [B >= E && C = E] (42,1) 6. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [0 >= 1 + G && F >= H] (?,1) 7. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] (48,1) 8. f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J) [G >= 1 + J] (?,1) 9. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J) [F >= H && G = 0] (48,1) 11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J) [G >= J] (?,1) 13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J) [G >= 1 + H] (?,1) 15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J) [F >= H] (?,1) 22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J) [J >= G] (?,1) 27. f0(A,B,C,E,F,G,H,J) -> f19(50,5,0,0,F,G,H,J) [5 >= 0] (1,2) 28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J) [H >= 1 + F && -1 + G >= 0] (?,2) 29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J) [H >= G && F >= 1 + G] (?,2) 32. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + H,0) [J >= 1 + G && F >= 1 + H] (77,2) 36. f36(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + G,0) [H >= 1 + F && F >= 1 + G] (7,2) 41. f19(A,B,C,E,F,G,H,J) -> f19(A,B,1 + C,0,F,G,H,J) [E >= 1 + B && B >= 1 + C] (7,2) 43. f70(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J) [H >= G && 1 + G >= 1 + F && -1 + F >= 0] (?,3) 44. f54(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [J >= 1 + G && 1 + H >= 1 + F && F >= 2 + G] (77,3) 45. f54(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J) [J >= 1 + G && 1 + H >= 1 + F && 1 + G >= F && F >= 1] (77,4) 47. f36(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J) [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F && F >= 1] (7,4) 49. f19(A,B,C,E,F,G,H,J) -> f36(A,B,1 + C,E,B,0,1,J) [E >= 1 + B && 1 + C >= 1 + B && B >= 1] (7,3) Signature: {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)} Flow Graph: [2->{2,41},3->{3,4,49},4->{2,49},6->{22},7->{8},8->{8,22},9->{9,36},11->{11,32,44,45},13->{13,29,43} ,15->{15,28},22->{6,7,9,36,47},27->{4},28->{15,28},29->{13,29},32->{11,32,44},36->{11,32},41->{2,3,4,41} ,43->{15},44->{6,7,9},45->{13},47->{13},49->{9}] Sizebounds: (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 7) (< 2,0,E>, 50) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 7) (< 3,0,E>, 343) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 7) (< 4,0,E>, 8) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, 8) (< 6,0,E>, 343) (< 6,0,F>, 5) (< 6,0,G>, 77) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, 8) (< 7,0,E>, 343) (< 7,0,F>, 5) (< 7,0,G>, 77) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, 8) (< 8,0,E>, 343) (< 8,0,F>, 5) (< 8,0,G>, 77) (< 8,0,H>, 5) (< 8,0,J>, 77) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, 8) (< 9,0,E>, 343) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, 78 + J) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, 8) (<11,0,E>, 343) (<11,0,F>, 5) (<11,0,G>, 77) (<11,0,H>, 155) (<11,0,J>, 78) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, 8) (<13,0,E>, 343) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, 8) (<15,0,E>, 343) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, 8) (<22,0,E>, 343) (<22,0,F>, 5) (<22,0,G>, 77) (<22,0,H>, 5) (<22,0,J>, 77) (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 0) (<27,0,E>, 0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, 8) (<28,0,E>, 343) (<28,0,F>, 5) (<28,0,G>, ?) (<28,0,H>, ?) (<28,0,J>, ?) (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, 8) (<29,0,E>, 343) (<29,0,F>, 5) (<29,0,G>, 5) (<29,0,H>, 0) (<29,0,J>, ?) (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, 8) (<32,0,E>, 343) (<32,0,F>, 5) (<32,0,G>, 77) (<32,0,H>, 155) (<32,0,J>, 0) (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, 8) (<36,0,E>, 343) (<36,0,F>, 5) (<36,0,G>, 77) (<36,0,H>, 78) (<36,0,J>, 0) (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 7) (<41,0,E>, 0) (<41,0,F>, F) (<41,0,G>, G) (<41,0,H>, H) (<41,0,J>, J) (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, 8) (<43,0,E>, 343) (<43,0,F>, 5) (<43,0,G>, 6) (<43,0,H>, 5) (<43,0,J>, ?) (<44,0,A>, 50) (<44,0,B>, 5) (<44,0,C>, 8) (<44,0,E>, 343) (<44,0,F>, 5) (<44,0,G>, 77) (<44,0,H>, 79) (<44,0,J>, 78) (<45,0,A>, 50) (<45,0,B>, 5) (<45,0,C>, 8) (<45,0,E>, 343) (<45,0,F>, 5) (<45,0,G>, 1) (<45,0,H>, 0) (<45,0,J>, 78) (<47,0,A>, 50) (<47,0,B>, 5) (<47,0,C>, 8) (<47,0,E>, 343) (<47,0,F>, 5) (<47,0,G>, 1) (<47,0,H>, 0) (<47,0,J>, 77) (<49,0,A>, 50) (<49,0,B>, 5) (<49,0,C>, 8) (<49,0,E>, 343) (<49,0,F>, 5) (<49,0,G>, 0) (<49,0,H>, 1) (<49,0,J>, J) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Constant} + Details: We apply a polynomial interpretation of shape constant: p(f0) = 1 p(f19) = 1 p(f36) = 1 p(f41) = 1 p(f54) = 1 p(f70) = 1 p(f84) = 0 The following rules are strictly oriented: [H >= G && 1 + G >= 1 + F && -1 + F >= 0] ==> f70(A,B,C,E,F,G,H,J) = 1 > 0 = f84(A,B,C,E,F,-1 + F,F,J) The following rules are weakly oriented: [B >= E && E >= 1 + C] ==> f19(A,B,C,E,F,G,H,J) = 1 >= 1 = f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] ==> f19(A,B,C,E,F,G,H,J) = 1 >= 1 = f19(A,B,C,1 + E,F,G,H,J) [B >= E && C = E] ==> f19(A,B,C,E,F,G,H,J) = 1 >= 1 = f19(A,B,C,1 + C,F,G,H,J) [0 >= 1 + G && F >= H] ==> f36(A,B,C,E,F,G,H,J) = 1 >= 1 = f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] ==> f36(A,B,C,E,F,G,H,J) = 1 >= 1 = f41(A,B,C,E,F,G,H,0) [G >= 1 + J] ==> f41(A,B,C,E,F,G,H,J) = 1 >= 1 = f41(A,B,C,E,F,G,H,1 + J) [F >= H && G = 0] ==> f36(A,B,C,E,F,G,H,J) = 1 >= 1 = f36(A,B,C,E,F,0,1 + H,J) [G >= J] ==> f54(A,B,C,E,F,G,H,J) = 1 >= 1 = f54(A,B,C,E,F,G,H,1 + J) [G >= 1 + H] ==> f70(A,B,C,E,F,G,H,J) = 1 >= 1 = f70(A,B,C,E,F,G,1 + H,J) [F >= H] ==> f84(A,B,C,E,F,G,H,J) = 0 >= 0 = f84(A,B,C,E,F,G,1 + H,J) [J >= G] ==> f41(A,B,C,E,F,G,H,J) = 1 >= 1 = f36(A,B,C,E,F,G,1 + H,J) [5 >= 0] ==> f0(A,B,C,E,F,G,H,J) = 1 >= 1 = f19(50,5,0,0,F,G,H,J) [H >= 1 + F && -1 + G >= 0] ==> f84(A,B,C,E,F,G,H,J) = 0 >= 0 = f84(A,B,C,E,F,-1 + G,G,J) [H >= G && F >= 1 + G] ==> f70(A,B,C,E,F,G,H,J) = 1 >= 1 = f70(A,B,C,E,F,1 + G,0,J) [J >= 1 + G && F >= 1 + H] ==> f54(A,B,C,E,F,G,H,J) = 1 >= 1 = f54(A,B,C,E,F,G,1 + H,0) [H >= 1 + F && F >= 1 + G] ==> f36(A,B,C,E,F,G,H,J) = 1 >= 1 = f54(A,B,C,E,F,G,1 + G,0) [E >= 1 + B && B >= 1 + C] ==> f19(A,B,C,E,F,G,H,J) = 1 >= 1 = f19(A,B,1 + C,0,F,G,H,J) [J >= 1 + G && 1 + H >= 1 + F && F >= 2 + G] ==> f54(A,B,C,E,F,G,H,J) = 1 >= 1 = f36(A,B,C,E,F,1 + G,2 + G,J) [J >= 1 + G && 1 + H >= 1 + F && 1 + G >= F && F >= 1] ==> f54(A,B,C,E,F,G,H,J) = 1 >= 1 = f70(A,B,C,E,F,1,0,J) [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F && F >= 1] ==> f36(A,B,C,E,F,G,H,J) = 1 >= 1 = f70(A,B,C,E,F,1,0,J) [E >= 1 + B && 1 + C >= 1 + B && B >= 1] ==> f19(A,B,C,E,F,G,H,J) = 1 >= 1 = f36(A,B,1 + C,E,B,0,1,J) * Step 45: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 2. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [B >= E && E >= 1 + C] (42,1) 3. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] (42,1) 4. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J) [B >= E && C = E] (42,1) 6. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [0 >= 1 + G && F >= H] (?,1) 7. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] (48,1) 8. f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J) [G >= 1 + J] (?,1) 9. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J) [F >= H && G = 0] (48,1) 11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J) [G >= J] (?,1) 13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J) [G >= 1 + H] (?,1) 15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J) [F >= H] (?,1) 22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J) [J >= G] (?,1) 27. f0(A,B,C,E,F,G,H,J) -> f19(50,5,0,0,F,G,H,J) [5 >= 0] (1,2) 28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J) [H >= 1 + F && -1 + G >= 0] (?,2) 29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J) [H >= G && F >= 1 + G] (?,2) 32. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + H,0) [J >= 1 + G && F >= 1 + H] (77,2) 36. f36(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + G,0) [H >= 1 + F && F >= 1 + G] (7,2) 41. f19(A,B,C,E,F,G,H,J) -> f19(A,B,1 + C,0,F,G,H,J) [E >= 1 + B && B >= 1 + C] (7,2) 43. f70(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J) [H >= G && 1 + G >= 1 + F && -1 + F >= 0] (1,3) 44. f54(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [J >= 1 + G && 1 + H >= 1 + F && F >= 2 + G] (77,3) 45. f54(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J) [J >= 1 + G && 1 + H >= 1 + F && 1 + G >= F && F >= 1] (77,4) 47. f36(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J) [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F && F >= 1] (7,4) 49. f19(A,B,C,E,F,G,H,J) -> f36(A,B,1 + C,E,B,0,1,J) [E >= 1 + B && 1 + C >= 1 + B && B >= 1] (7,3) Signature: {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)} Flow Graph: [2->{2,41},3->{3,4,49},4->{2,49},6->{22},7->{8},8->{8,22},9->{9,36},11->{11,32,44,45},13->{13,29,43} ,15->{15,28},22->{6,7,9,36,47},27->{4},28->{15,28},29->{13,29},32->{11,32,44},36->{11,32},41->{2,3,4,41} ,43->{15},44->{6,7,9},45->{13},47->{13},49->{9}] Sizebounds: (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 7) (< 2,0,E>, 50) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 7) (< 3,0,E>, 343) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 7) (< 4,0,E>, 8) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, 8) (< 6,0,E>, 343) (< 6,0,F>, 5) (< 6,0,G>, 77) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, 8) (< 7,0,E>, 343) (< 7,0,F>, 5) (< 7,0,G>, 77) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, 8) (< 8,0,E>, 343) (< 8,0,F>, 5) (< 8,0,G>, 77) (< 8,0,H>, 5) (< 8,0,J>, 77) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, 8) (< 9,0,E>, 343) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, 78 + J) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, 8) (<11,0,E>, 343) (<11,0,F>, 5) (<11,0,G>, 77) (<11,0,H>, 155) (<11,0,J>, 78) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, 8) (<13,0,E>, 343) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, 8) (<15,0,E>, 343) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, 8) (<22,0,E>, 343) (<22,0,F>, 5) (<22,0,G>, 77) (<22,0,H>, 5) (<22,0,J>, 77) (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 0) (<27,0,E>, 0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, 8) (<28,0,E>, 343) (<28,0,F>, 5) (<28,0,G>, ?) (<28,0,H>, ?) (<28,0,J>, ?) (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, 8) (<29,0,E>, 343) (<29,0,F>, 5) (<29,0,G>, 5) (<29,0,H>, 0) (<29,0,J>, ?) (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, 8) (<32,0,E>, 343) (<32,0,F>, 5) (<32,0,G>, 77) (<32,0,H>, 155) (<32,0,J>, 0) (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, 8) (<36,0,E>, 343) (<36,0,F>, 5) (<36,0,G>, 77) (<36,0,H>, 78) (<36,0,J>, 0) (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 7) (<41,0,E>, 0) (<41,0,F>, F) (<41,0,G>, G) (<41,0,H>, H) (<41,0,J>, J) (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, 8) (<43,0,E>, 343) (<43,0,F>, 5) (<43,0,G>, 6) (<43,0,H>, 5) (<43,0,J>, ?) (<44,0,A>, 50) (<44,0,B>, 5) (<44,0,C>, 8) (<44,0,E>, 343) (<44,0,F>, 5) (<44,0,G>, 77) (<44,0,H>, 79) (<44,0,J>, 78) (<45,0,A>, 50) (<45,0,B>, 5) (<45,0,C>, 8) (<45,0,E>, 343) (<45,0,F>, 5) (<45,0,G>, 1) (<45,0,H>, 0) (<45,0,J>, 78) (<47,0,A>, 50) (<47,0,B>, 5) (<47,0,C>, 8) (<47,0,E>, 343) (<47,0,F>, 5) (<47,0,G>, 1) (<47,0,H>, 0) (<47,0,J>, 77) (<49,0,A>, 50) (<49,0,B>, 5) (<49,0,C>, 8) (<49,0,E>, 343) (<49,0,F>, 5) (<49,0,G>, 0) (<49,0,H>, 1) (<49,0,J>, J) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 5 p(f19) = x2 p(f36) = x5 p(f41) = x5 p(f54) = x5 p(f70) = x5 p(f84) = x6 The following rules are strictly oriented: [H >= 1 + F && -1 + G >= 0] ==> f84(A,B,C,E,F,G,H,J) = G > -1 + G = f84(A,B,C,E,F,-1 + G,G,J) [H >= G && 1 + G >= 1 + F && -1 + F >= 0] ==> f70(A,B,C,E,F,G,H,J) = F > -1 + F = f84(A,B,C,E,F,-1 + F,F,J) The following rules are weakly oriented: [B >= E && E >= 1 + C] ==> f19(A,B,C,E,F,G,H,J) = B >= B = f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] ==> f19(A,B,C,E,F,G,H,J) = B >= B = f19(A,B,C,1 + E,F,G,H,J) [B >= E && C = E] ==> f19(A,B,C,E,F,G,H,J) = B >= B = f19(A,B,C,1 + C,F,G,H,J) [0 >= 1 + G && F >= H] ==> f36(A,B,C,E,F,G,H,J) = F >= F = f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] ==> f36(A,B,C,E,F,G,H,J) = F >= F = f41(A,B,C,E,F,G,H,0) [G >= 1 + J] ==> f41(A,B,C,E,F,G,H,J) = F >= F = f41(A,B,C,E,F,G,H,1 + J) [F >= H && G = 0] ==> f36(A,B,C,E,F,G,H,J) = F >= F = f36(A,B,C,E,F,0,1 + H,J) [G >= J] ==> f54(A,B,C,E,F,G,H,J) = F >= F = f54(A,B,C,E,F,G,H,1 + J) [G >= 1 + H] ==> f70(A,B,C,E,F,G,H,J) = F >= F = f70(A,B,C,E,F,G,1 + H,J) [F >= H] ==> f84(A,B,C,E,F,G,H,J) = G >= G = f84(A,B,C,E,F,G,1 + H,J) [J >= G] ==> f41(A,B,C,E,F,G,H,J) = F >= F = f36(A,B,C,E,F,G,1 + H,J) [5 >= 0] ==> f0(A,B,C,E,F,G,H,J) = 5 >= 5 = f19(50,5,0,0,F,G,H,J) [H >= G && F >= 1 + G] ==> f70(A,B,C,E,F,G,H,J) = F >= F = f70(A,B,C,E,F,1 + G,0,J) [J >= 1 + G && F >= 1 + H] ==> f54(A,B,C,E,F,G,H,J) = F >= F = f54(A,B,C,E,F,G,1 + H,0) [H >= 1 + F && F >= 1 + G] ==> f36(A,B,C,E,F,G,H,J) = F >= F = f54(A,B,C,E,F,G,1 + G,0) [E >= 1 + B && B >= 1 + C] ==> f19(A,B,C,E,F,G,H,J) = B >= B = f19(A,B,1 + C,0,F,G,H,J) [J >= 1 + G && 1 + H >= 1 + F && F >= 2 + G] ==> f54(A,B,C,E,F,G,H,J) = F >= F = f36(A,B,C,E,F,1 + G,2 + G,J) [J >= 1 + G && 1 + H >= 1 + F && 1 + G >= F && F >= 1] ==> f54(A,B,C,E,F,G,H,J) = F >= F = f70(A,B,C,E,F,1,0,J) [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F && F >= 1] ==> f36(A,B,C,E,F,G,H,J) = F >= F = f70(A,B,C,E,F,1,0,J) [E >= 1 + B && 1 + C >= 1 + B && B >= 1] ==> f19(A,B,C,E,F,G,H,J) = B >= B = f36(A,B,1 + C,E,B,0,1,J) * Step 46: SizeboundsProc WORST_CASE(?,O(1)) + Considered Problem: Rules: 2. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [B >= E && E >= 1 + C] (42,1) 3. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] (42,1) 4. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J) [B >= E && C = E] (42,1) 6. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [0 >= 1 + G && F >= H] (?,1) 7. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] (48,1) 8. f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J) [G >= 1 + J] (?,1) 9. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J) [F >= H && G = 0] (48,1) 11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J) [G >= J] (?,1) 13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J) [G >= 1 + H] (?,1) 15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J) [F >= H] (?,1) 22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J) [J >= G] (?,1) 27. f0(A,B,C,E,F,G,H,J) -> f19(50,5,0,0,F,G,H,J) [5 >= 0] (1,2) 28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J) [H >= 1 + F && -1 + G >= 0] (5,2) 29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J) [H >= G && F >= 1 + G] (?,2) 32. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + H,0) [J >= 1 + G && F >= 1 + H] (77,2) 36. f36(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + G,0) [H >= 1 + F && F >= 1 + G] (7,2) 41. f19(A,B,C,E,F,G,H,J) -> f19(A,B,1 + C,0,F,G,H,J) [E >= 1 + B && B >= 1 + C] (7,2) 43. f70(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J) [H >= G && 1 + G >= 1 + F && -1 + F >= 0] (1,3) 44. f54(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [J >= 1 + G && 1 + H >= 1 + F && F >= 2 + G] (77,3) 45. f54(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J) [J >= 1 + G && 1 + H >= 1 + F && 1 + G >= F && F >= 1] (77,4) 47. f36(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J) [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F && F >= 1] (7,4) 49. f19(A,B,C,E,F,G,H,J) -> f36(A,B,1 + C,E,B,0,1,J) [E >= 1 + B && 1 + C >= 1 + B && B >= 1] (7,3) Signature: {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)} Flow Graph: [2->{2,41},3->{3,4,49},4->{2,49},6->{22},7->{8},8->{8,22},9->{9,36},11->{11,32,44,45},13->{13,29,43} ,15->{15,28},22->{6,7,9,36,47},27->{4},28->{15,28},29->{13,29},32->{11,32,44},36->{11,32},41->{2,3,4,41} ,43->{15},44->{6,7,9},45->{13},47->{13},49->{9}] Sizebounds: (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 7) (< 2,0,E>, 50) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 7) (< 3,0,E>, 343) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 7) (< 4,0,E>, 8) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, 8) (< 6,0,E>, 343) (< 6,0,F>, 5) (< 6,0,G>, 77) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, 8) (< 7,0,E>, 343) (< 7,0,F>, 5) (< 7,0,G>, 77) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, 8) (< 8,0,E>, 343) (< 8,0,F>, 5) (< 8,0,G>, 77) (< 8,0,H>, 5) (< 8,0,J>, 77) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, 8) (< 9,0,E>, 343) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, 78 + J) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, 8) (<11,0,E>, 343) (<11,0,F>, 5) (<11,0,G>, 77) (<11,0,H>, 155) (<11,0,J>, 78) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, 8) (<13,0,E>, 343) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, 8) (<15,0,E>, 343) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, 8) (<22,0,E>, 343) (<22,0,F>, 5) (<22,0,G>, 77) (<22,0,H>, 5) (<22,0,J>, 77) (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 0) (<27,0,E>, 0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, 8) (<28,0,E>, 343) (<28,0,F>, 5) (<28,0,G>, ?) (<28,0,H>, ?) (<28,0,J>, ?) (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, 8) (<29,0,E>, 343) (<29,0,F>, 5) (<29,0,G>, 5) (<29,0,H>, 0) (<29,0,J>, ?) (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, 8) (<32,0,E>, 343) (<32,0,F>, 5) (<32,0,G>, 77) (<32,0,H>, 155) (<32,0,J>, 0) (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, 8) (<36,0,E>, 343) (<36,0,F>, 5) (<36,0,G>, 77) (<36,0,H>, 78) (<36,0,J>, 0) (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 7) (<41,0,E>, 0) (<41,0,F>, F) (<41,0,G>, G) (<41,0,H>, H) (<41,0,J>, J) (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, 8) (<43,0,E>, 343) (<43,0,F>, 5) (<43,0,G>, 6) (<43,0,H>, 5) (<43,0,J>, ?) (<44,0,A>, 50) (<44,0,B>, 5) (<44,0,C>, 8) (<44,0,E>, 343) (<44,0,F>, 5) (<44,0,G>, 77) (<44,0,H>, 79) (<44,0,J>, 78) (<45,0,A>, 50) (<45,0,B>, 5) (<45,0,C>, 8) (<45,0,E>, 343) (<45,0,F>, 5) (<45,0,G>, 1) (<45,0,H>, 0) (<45,0,J>, 78) (<47,0,A>, 50) (<47,0,B>, 5) (<47,0,C>, 8) (<47,0,E>, 343) (<47,0,F>, 5) (<47,0,G>, 1) (<47,0,H>, 0) (<47,0,J>, 77) (<49,0,A>, 50) (<49,0,B>, 5) (<49,0,C>, 8) (<49,0,E>, 343) (<49,0,F>, 5) (<49,0,G>, 0) (<49,0,H>, 1) (<49,0,J>, J) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 7) (< 2,0,E>, 50) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 7) (< 3,0,E>, 343) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 7) (< 4,0,E>, 8) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, 8) (< 6,0,E>, 343) (< 6,0,F>, 5) (< 6,0,G>, 77) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, 8) (< 7,0,E>, 343) (< 7,0,F>, 5) (< 7,0,G>, 77) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, 8) (< 8,0,E>, 343) (< 8,0,F>, 5) (< 8,0,G>, 77) (< 8,0,H>, 5) (< 8,0,J>, 77) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, 8) (< 9,0,E>, 343) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, 78 + J) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, 8) (<11,0,E>, 343) (<11,0,F>, 5) (<11,0,G>, 77) (<11,0,H>, 155) (<11,0,J>, 78) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, 8) (<13,0,E>, 343) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, 78) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, 8) (<15,0,E>, 343) (<15,0,F>, 5) (<15,0,G>, 11) (<15,0,H>, 6) (<15,0,J>, 78) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, 8) (<22,0,E>, 343) (<22,0,F>, 5) (<22,0,G>, 77) (<22,0,H>, 5) (<22,0,J>, 77) (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 0) (<27,0,E>, 0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, 8) (<28,0,E>, 343) (<28,0,F>, 5) (<28,0,G>, 11) (<28,0,H>, 11) (<28,0,J>, 78) (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, 8) (<29,0,E>, 343) (<29,0,F>, 5) (<29,0,G>, 5) (<29,0,H>, 0) (<29,0,J>, 78) (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, 8) (<32,0,E>, 343) (<32,0,F>, 5) (<32,0,G>, 77) (<32,0,H>, 155) (<32,0,J>, 0) (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, 8) (<36,0,E>, 343) (<36,0,F>, 5) (<36,0,G>, 77) (<36,0,H>, 78) (<36,0,J>, 0) (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 7) (<41,0,E>, 0) (<41,0,F>, F) (<41,0,G>, G) (<41,0,H>, H) (<41,0,J>, J) (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, 8) (<43,0,E>, 343) (<43,0,F>, 5) (<43,0,G>, 6) (<43,0,H>, 5) (<43,0,J>, 78) (<44,0,A>, 50) (<44,0,B>, 5) (<44,0,C>, 8) (<44,0,E>, 343) (<44,0,F>, 5) (<44,0,G>, 77) (<44,0,H>, 79) (<44,0,J>, 78) (<45,0,A>, 50) (<45,0,B>, 5) (<45,0,C>, 8) (<45,0,E>, 343) (<45,0,F>, 5) (<45,0,G>, 1) (<45,0,H>, 0) (<45,0,J>, 78) (<47,0,A>, 50) (<47,0,B>, 5) (<47,0,C>, 8) (<47,0,E>, 343) (<47,0,F>, 5) (<47,0,G>, 1) (<47,0,H>, 0) (<47,0,J>, 77) (<49,0,A>, 50) (<49,0,B>, 5) (<49,0,C>, 8) (<49,0,E>, 343) (<49,0,F>, 5) (<49,0,G>, 0) (<49,0,H>, 1) (<49,0,J>, J) * Step 47: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 2. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [B >= E && E >= 1 + C] (42,1) 3. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] (42,1) 4. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J) [B >= E && C = E] (42,1) 6. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [0 >= 1 + G && F >= H] (?,1) 7. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] (48,1) 8. f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J) [G >= 1 + J] (?,1) 9. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J) [F >= H && G = 0] (48,1) 11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J) [G >= J] (?,1) 13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J) [G >= 1 + H] (?,1) 15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J) [F >= H] (?,1) 22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J) [J >= G] (?,1) 27. f0(A,B,C,E,F,G,H,J) -> f19(50,5,0,0,F,G,H,J) [5 >= 0] (1,2) 28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J) [H >= 1 + F && -1 + G >= 0] (5,2) 29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J) [H >= G && F >= 1 + G] (?,2) 32. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + H,0) [J >= 1 + G && F >= 1 + H] (77,2) 36. f36(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + G,0) [H >= 1 + F && F >= 1 + G] (7,2) 41. f19(A,B,C,E,F,G,H,J) -> f19(A,B,1 + C,0,F,G,H,J) [E >= 1 + B && B >= 1 + C] (7,2) 43. f70(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J) [H >= G && 1 + G >= 1 + F && -1 + F >= 0] (1,3) 44. f54(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [J >= 1 + G && 1 + H >= 1 + F && F >= 2 + G] (77,3) 45. f54(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J) [J >= 1 + G && 1 + H >= 1 + F && 1 + G >= F && F >= 1] (77,4) 47. f36(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J) [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F && F >= 1] (7,4) 49. f19(A,B,C,E,F,G,H,J) -> f36(A,B,1 + C,E,B,0,1,J) [E >= 1 + B && 1 + C >= 1 + B && B >= 1] (7,3) Signature: {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)} Flow Graph: [2->{2,41},3->{3,4,49},4->{2,49},6->{22},7->{8},8->{8,22},9->{9,36},11->{11,32,44,45},13->{13,29,43} ,15->{15,28},22->{6,7,9,36,47},27->{4},28->{15,28},29->{13,29},32->{11,32,44},36->{11,32},41->{2,3,4,41} ,43->{15},44->{6,7,9},45->{13},47->{13},49->{9}] Sizebounds: (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 7) (< 2,0,E>, 50) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 7) (< 3,0,E>, 343) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 7) (< 4,0,E>, 8) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, 8) (< 6,0,E>, 343) (< 6,0,F>, 5) (< 6,0,G>, 77) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, 8) (< 7,0,E>, 343) (< 7,0,F>, 5) (< 7,0,G>, 77) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, 8) (< 8,0,E>, 343) (< 8,0,F>, 5) (< 8,0,G>, 77) (< 8,0,H>, 5) (< 8,0,J>, 77) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, 8) (< 9,0,E>, 343) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, 78 + J) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, 8) (<11,0,E>, 343) (<11,0,F>, 5) (<11,0,G>, 77) (<11,0,H>, 155) (<11,0,J>, 78) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, 8) (<13,0,E>, 343) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, 78) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, 8) (<15,0,E>, 343) (<15,0,F>, 5) (<15,0,G>, 11) (<15,0,H>, 6) (<15,0,J>, 78) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, 8) (<22,0,E>, 343) (<22,0,F>, 5) (<22,0,G>, 77) (<22,0,H>, 5) (<22,0,J>, 77) (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 0) (<27,0,E>, 0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, 8) (<28,0,E>, 343) (<28,0,F>, 5) (<28,0,G>, 11) (<28,0,H>, 11) (<28,0,J>, 78) (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, 8) (<29,0,E>, 343) (<29,0,F>, 5) (<29,0,G>, 5) (<29,0,H>, 0) (<29,0,J>, 78) (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, 8) (<32,0,E>, 343) (<32,0,F>, 5) (<32,0,G>, 77) (<32,0,H>, 155) (<32,0,J>, 0) (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, 8) (<36,0,E>, 343) (<36,0,F>, 5) (<36,0,G>, 77) (<36,0,H>, 78) (<36,0,J>, 0) (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 7) (<41,0,E>, 0) (<41,0,F>, F) (<41,0,G>, G) (<41,0,H>, H) (<41,0,J>, J) (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, 8) (<43,0,E>, 343) (<43,0,F>, 5) (<43,0,G>, 6) (<43,0,H>, 5) (<43,0,J>, 78) (<44,0,A>, 50) (<44,0,B>, 5) (<44,0,C>, 8) (<44,0,E>, 343) (<44,0,F>, 5) (<44,0,G>, 77) (<44,0,H>, 79) (<44,0,J>, 78) (<45,0,A>, 50) (<45,0,B>, 5) (<45,0,C>, 8) (<45,0,E>, 343) (<45,0,F>, 5) (<45,0,G>, 1) (<45,0,H>, 0) (<45,0,J>, 78) (<47,0,A>, 50) (<47,0,B>, 5) (<47,0,C>, 8) (<47,0,E>, 343) (<47,0,F>, 5) (<47,0,G>, 1) (<47,0,H>, 0) (<47,0,J>, 77) (<49,0,A>, 50) (<49,0,B>, 5) (<49,0,C>, 8) (<49,0,E>, 343) (<49,0,F>, 5) (<49,0,G>, 0) (<49,0,H>, 1) (<49,0,J>, J) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [9,22,6,44,11,32,8,7], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f36) = 2 + x5 + -1*x7 p(f41) = 1 + x5 + -1*x7 p(f54) = 1 + x5 + -1*x6 The following rules are strictly oriented: [0 >= 1 + G && F >= H] ==> f36(A,B,C,E,F,G,H,J) = 2 + F + -1*H > 1 + F + -1*H = f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] ==> f36(A,B,C,E,F,G,H,J) = 2 + F + -1*H > 1 + F + -1*H = f41(A,B,C,E,F,G,H,0) [F >= H && G = 0] ==> f36(A,B,C,E,F,G,H,J) = 2 + F + -1*H > 1 + F + -1*H = f36(A,B,C,E,F,0,1 + H,J) [J >= 1 + G && 1 + H >= 1 + F && F >= 2 + G] ==> f54(A,B,C,E,F,G,H,J) = 1 + F + -1*G > F + -1*G = f36(A,B,C,E,F,1 + G,2 + G,J) The following rules are weakly oriented: [G >= 1 + J] ==> f41(A,B,C,E,F,G,H,J) = 1 + F + -1*H >= 1 + F + -1*H = f41(A,B,C,E,F,G,H,1 + J) [G >= J] ==> f54(A,B,C,E,F,G,H,J) = 1 + F + -1*G >= 1 + F + -1*G = f54(A,B,C,E,F,G,H,1 + J) [J >= G] ==> f41(A,B,C,E,F,G,H,J) = 1 + F + -1*H >= 1 + F + -1*H = f36(A,B,C,E,F,G,1 + H,J) [J >= 1 + G && F >= 1 + H] ==> f54(A,B,C,E,F,G,H,J) = 1 + F + -1*G >= 1 + F + -1*G = f54(A,B,C,E,F,G,1 + H,0) We use the following global sizebounds: (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 7) (< 2,0,E>, 50) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 7) (< 3,0,E>, 343) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 7) (< 4,0,E>, 8) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, 8) (< 6,0,E>, 343) (< 6,0,F>, 5) (< 6,0,G>, 77) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, 8) (< 7,0,E>, 343) (< 7,0,F>, 5) (< 7,0,G>, 77) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, 8) (< 8,0,E>, 343) (< 8,0,F>, 5) (< 8,0,G>, 77) (< 8,0,H>, 5) (< 8,0,J>, 77) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, 8) (< 9,0,E>, 343) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, 78 + J) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, 8) (<11,0,E>, 343) (<11,0,F>, 5) (<11,0,G>, 77) (<11,0,H>, 155) (<11,0,J>, 78) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, 8) (<13,0,E>, 343) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, 78) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, 8) (<15,0,E>, 343) (<15,0,F>, 5) (<15,0,G>, 11) (<15,0,H>, 6) (<15,0,J>, 78) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, 8) (<22,0,E>, 343) (<22,0,F>, 5) (<22,0,G>, 77) (<22,0,H>, 5) (<22,0,J>, 77) (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 0) (<27,0,E>, 0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, 8) (<28,0,E>, 343) (<28,0,F>, 5) (<28,0,G>, 11) (<28,0,H>, 11) (<28,0,J>, 78) (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, 8) (<29,0,E>, 343) (<29,0,F>, 5) (<29,0,G>, 5) (<29,0,H>, 0) (<29,0,J>, 78) (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, 8) (<32,0,E>, 343) (<32,0,F>, 5) (<32,0,G>, 77) (<32,0,H>, 155) (<32,0,J>, 0) (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, 8) (<36,0,E>, 343) (<36,0,F>, 5) (<36,0,G>, 77) (<36,0,H>, 78) (<36,0,J>, 0) (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 7) (<41,0,E>, 0) (<41,0,F>, F) (<41,0,G>, G) (<41,0,H>, H) (<41,0,J>, J) (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, 8) (<43,0,E>, 343) (<43,0,F>, 5) (<43,0,G>, 6) (<43,0,H>, 5) (<43,0,J>, 78) (<44,0,A>, 50) (<44,0,B>, 5) (<44,0,C>, 8) (<44,0,E>, 343) (<44,0,F>, 5) (<44,0,G>, 77) (<44,0,H>, 79) (<44,0,J>, 78) (<45,0,A>, 50) (<45,0,B>, 5) (<45,0,C>, 8) (<45,0,E>, 343) (<45,0,F>, 5) (<45,0,G>, 1) (<45,0,H>, 0) (<45,0,J>, 78) (<47,0,A>, 50) (<47,0,B>, 5) (<47,0,C>, 8) (<47,0,E>, 343) (<47,0,F>, 5) (<47,0,G>, 1) (<47,0,H>, 0) (<47,0,J>, 77) (<49,0,A>, 50) (<49,0,B>, 5) (<49,0,C>, 8) (<49,0,E>, 343) (<49,0,F>, 5) (<49,0,G>, 0) (<49,0,H>, 1) (<49,0,J>, J) * Step 48: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 2. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [B >= E && E >= 1 + C] (42,1) 3. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] (42,1) 4. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J) [B >= E && C = E] (42,1) 6. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [0 >= 1 + G && F >= H] (637,1) 7. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] (48,1) 8. f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J) [G >= 1 + J] (?,1) 9. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J) [F >= H && G = 0] (48,1) 11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J) [G >= J] (?,1) 13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J) [G >= 1 + H] (?,1) 15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J) [F >= H] (?,1) 22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J) [J >= G] (?,1) 27. f0(A,B,C,E,F,G,H,J) -> f19(50,5,0,0,F,G,H,J) [5 >= 0] (1,2) 28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J) [H >= 1 + F && -1 + G >= 0] (5,2) 29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J) [H >= G && F >= 1 + G] (?,2) 32. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + H,0) [J >= 1 + G && F >= 1 + H] (77,2) 36. f36(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + G,0) [H >= 1 + F && F >= 1 + G] (7,2) 41. f19(A,B,C,E,F,G,H,J) -> f19(A,B,1 + C,0,F,G,H,J) [E >= 1 + B && B >= 1 + C] (7,2) 43. f70(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J) [H >= G && 1 + G >= 1 + F && -1 + F >= 0] (1,3) 44. f54(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [J >= 1 + G && 1 + H >= 1 + F && F >= 2 + G] (77,3) 45. f54(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J) [J >= 1 + G && 1 + H >= 1 + F && 1 + G >= F && F >= 1] (77,4) 47. f36(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J) [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F && F >= 1] (7,4) 49. f19(A,B,C,E,F,G,H,J) -> f36(A,B,1 + C,E,B,0,1,J) [E >= 1 + B && 1 + C >= 1 + B && B >= 1] (7,3) Signature: {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)} Flow Graph: [2->{2,41},3->{3,4,49},4->{2,49},6->{22},7->{8},8->{8,22},9->{9,36},11->{11,32,44,45},13->{13,29,43} ,15->{15,28},22->{6,7,9,36,47},27->{4},28->{15,28},29->{13,29},32->{11,32,44},36->{11,32},41->{2,3,4,41} ,43->{15},44->{6,7,9},45->{13},47->{13},49->{9}] Sizebounds: (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 7) (< 2,0,E>, 50) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 7) (< 3,0,E>, 343) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 7) (< 4,0,E>, 8) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, 8) (< 6,0,E>, 343) (< 6,0,F>, 5) (< 6,0,G>, 77) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, 8) (< 7,0,E>, 343) (< 7,0,F>, 5) (< 7,0,G>, 77) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, 8) (< 8,0,E>, 343) (< 8,0,F>, 5) (< 8,0,G>, 77) (< 8,0,H>, 5) (< 8,0,J>, 77) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, 8) (< 9,0,E>, 343) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, 78 + J) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, 8) (<11,0,E>, 343) (<11,0,F>, 5) (<11,0,G>, 77) (<11,0,H>, 155) (<11,0,J>, 78) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, 8) (<13,0,E>, 343) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, 78) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, 8) (<15,0,E>, 343) (<15,0,F>, 5) (<15,0,G>, 11) (<15,0,H>, 6) (<15,0,J>, 78) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, 8) (<22,0,E>, 343) (<22,0,F>, 5) (<22,0,G>, 77) (<22,0,H>, 5) (<22,0,J>, 77) (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 0) (<27,0,E>, 0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, 8) (<28,0,E>, 343) (<28,0,F>, 5) (<28,0,G>, 11) (<28,0,H>, 11) (<28,0,J>, 78) (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, 8) (<29,0,E>, 343) (<29,0,F>, 5) (<29,0,G>, 5) (<29,0,H>, 0) (<29,0,J>, 78) (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, 8) (<32,0,E>, 343) (<32,0,F>, 5) (<32,0,G>, 77) (<32,0,H>, 155) (<32,0,J>, 0) (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, 8) (<36,0,E>, 343) (<36,0,F>, 5) (<36,0,G>, 77) (<36,0,H>, 78) (<36,0,J>, 0) (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 7) (<41,0,E>, 0) (<41,0,F>, F) (<41,0,G>, G) (<41,0,H>, H) (<41,0,J>, J) (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, 8) (<43,0,E>, 343) (<43,0,F>, 5) (<43,0,G>, 6) (<43,0,H>, 5) (<43,0,J>, 78) (<44,0,A>, 50) (<44,0,B>, 5) (<44,0,C>, 8) (<44,0,E>, 343) (<44,0,F>, 5) (<44,0,G>, 77) (<44,0,H>, 79) (<44,0,J>, 78) (<45,0,A>, 50) (<45,0,B>, 5) (<45,0,C>, 8) (<45,0,E>, 343) (<45,0,F>, 5) (<45,0,G>, 1) (<45,0,H>, 0) (<45,0,J>, 78) (<47,0,A>, 50) (<47,0,B>, 5) (<47,0,C>, 8) (<47,0,E>, 343) (<47,0,F>, 5) (<47,0,G>, 1) (<47,0,H>, 0) (<47,0,J>, 77) (<49,0,A>, 50) (<49,0,B>, 5) (<49,0,C>, 8) (<49,0,E>, 343) (<49,0,F>, 5) (<49,0,G>, 0) (<49,0,H>, 1) (<49,0,J>, J) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [9,22,6,11,36,8,7], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f36) = x5 p(f41) = x5 p(f54) = 1 + x6 + -1*x8 The following rules are strictly oriented: [G >= J] ==> f54(A,B,C,E,F,G,H,J) = 1 + G + -1*J > G + -1*J = f54(A,B,C,E,F,G,H,1 + J) The following rules are weakly oriented: [0 >= 1 + G && F >= H] ==> f36(A,B,C,E,F,G,H,J) = F >= F = f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] ==> f36(A,B,C,E,F,G,H,J) = F >= F = f41(A,B,C,E,F,G,H,0) [G >= 1 + J] ==> f41(A,B,C,E,F,G,H,J) = F >= F = f41(A,B,C,E,F,G,H,1 + J) [F >= H && G = 0] ==> f36(A,B,C,E,F,G,H,J) = F >= F = f36(A,B,C,E,F,0,1 + H,J) [J >= G] ==> f41(A,B,C,E,F,G,H,J) = F >= F = f36(A,B,C,E,F,G,1 + H,J) [H >= 1 + F && F >= 1 + G] ==> f36(A,B,C,E,F,G,H,J) = F >= 1 + G = f54(A,B,C,E,F,G,1 + G,0) We use the following global sizebounds: (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 7) (< 2,0,E>, 50) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 7) (< 3,0,E>, 343) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 7) (< 4,0,E>, 8) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, 8) (< 6,0,E>, 343) (< 6,0,F>, 5) (< 6,0,G>, 77) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, 8) (< 7,0,E>, 343) (< 7,0,F>, 5) (< 7,0,G>, 77) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, 8) (< 8,0,E>, 343) (< 8,0,F>, 5) (< 8,0,G>, 77) (< 8,0,H>, 5) (< 8,0,J>, 77) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, 8) (< 9,0,E>, 343) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, 78 + J) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, 8) (<11,0,E>, 343) (<11,0,F>, 5) (<11,0,G>, 77) (<11,0,H>, 155) (<11,0,J>, 78) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, 8) (<13,0,E>, 343) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, 78) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, 8) (<15,0,E>, 343) (<15,0,F>, 5) (<15,0,G>, 11) (<15,0,H>, 6) (<15,0,J>, 78) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, 8) (<22,0,E>, 343) (<22,0,F>, 5) (<22,0,G>, 77) (<22,0,H>, 5) (<22,0,J>, 77) (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 0) (<27,0,E>, 0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, 8) (<28,0,E>, 343) (<28,0,F>, 5) (<28,0,G>, 11) (<28,0,H>, 11) (<28,0,J>, 78) (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, 8) (<29,0,E>, 343) (<29,0,F>, 5) (<29,0,G>, 5) (<29,0,H>, 0) (<29,0,J>, 78) (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, 8) (<32,0,E>, 343) (<32,0,F>, 5) (<32,0,G>, 77) (<32,0,H>, 155) (<32,0,J>, 0) (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, 8) (<36,0,E>, 343) (<36,0,F>, 5) (<36,0,G>, 77) (<36,0,H>, 78) (<36,0,J>, 0) (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 7) (<41,0,E>, 0) (<41,0,F>, F) (<41,0,G>, G) (<41,0,H>, H) (<41,0,J>, J) (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, 8) (<43,0,E>, 343) (<43,0,F>, 5) (<43,0,G>, 6) (<43,0,H>, 5) (<43,0,J>, 78) (<44,0,A>, 50) (<44,0,B>, 5) (<44,0,C>, 8) (<44,0,E>, 343) (<44,0,F>, 5) (<44,0,G>, 77) (<44,0,H>, 79) (<44,0,J>, 78) (<45,0,A>, 50) (<45,0,B>, 5) (<45,0,C>, 8) (<45,0,E>, 343) (<45,0,F>, 5) (<45,0,G>, 1) (<45,0,H>, 0) (<45,0,J>, 78) (<47,0,A>, 50) (<47,0,B>, 5) (<47,0,C>, 8) (<47,0,E>, 343) (<47,0,F>, 5) (<47,0,G>, 1) (<47,0,H>, 0) (<47,0,J>, 77) (<49,0,A>, 50) (<49,0,B>, 5) (<49,0,C>, 8) (<49,0,E>, 343) (<49,0,F>, 5) (<49,0,G>, 0) (<49,0,H>, 1) (<49,0,J>, J) * Step 49: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 2. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [B >= E && E >= 1 + C] (42,1) 3. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] (42,1) 4. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J) [B >= E && C = E] (42,1) 6. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [0 >= 1 + G && F >= H] (637,1) 7. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] (48,1) 8. f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J) [G >= 1 + J] (?,1) 9. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J) [F >= H && G = 0] (48,1) 11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J) [G >= J] (6426,1) 13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J) [G >= 1 + H] (?,1) 15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J) [F >= H] (?,1) 22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J) [J >= G] (?,1) 27. f0(A,B,C,E,F,G,H,J) -> f19(50,5,0,0,F,G,H,J) [5 >= 0] (1,2) 28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J) [H >= 1 + F && -1 + G >= 0] (5,2) 29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J) [H >= G && F >= 1 + G] (?,2) 32. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + H,0) [J >= 1 + G && F >= 1 + H] (77,2) 36. f36(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + G,0) [H >= 1 + F && F >= 1 + G] (7,2) 41. f19(A,B,C,E,F,G,H,J) -> f19(A,B,1 + C,0,F,G,H,J) [E >= 1 + B && B >= 1 + C] (7,2) 43. f70(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J) [H >= G && 1 + G >= 1 + F && -1 + F >= 0] (1,3) 44. f54(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [J >= 1 + G && 1 + H >= 1 + F && F >= 2 + G] (77,3) 45. f54(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J) [J >= 1 + G && 1 + H >= 1 + F && 1 + G >= F && F >= 1] (77,4) 47. f36(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J) [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F && F >= 1] (7,4) 49. f19(A,B,C,E,F,G,H,J) -> f36(A,B,1 + C,E,B,0,1,J) [E >= 1 + B && 1 + C >= 1 + B && B >= 1] (7,3) Signature: {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)} Flow Graph: [2->{2,41},3->{3,4,49},4->{2,49},6->{22},7->{8},8->{8,22},9->{9,36},11->{11,32,44,45},13->{13,29,43} ,15->{15,28},22->{6,7,9,36,47},27->{4},28->{15,28},29->{13,29},32->{11,32,44},36->{11,32},41->{2,3,4,41} ,43->{15},44->{6,7,9},45->{13},47->{13},49->{9}] Sizebounds: (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 7) (< 2,0,E>, 50) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 7) (< 3,0,E>, 343) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 7) (< 4,0,E>, 8) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, 8) (< 6,0,E>, 343) (< 6,0,F>, 5) (< 6,0,G>, 77) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, 8) (< 7,0,E>, 343) (< 7,0,F>, 5) (< 7,0,G>, 77) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, 8) (< 8,0,E>, 343) (< 8,0,F>, 5) (< 8,0,G>, 77) (< 8,0,H>, 5) (< 8,0,J>, 77) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, 8) (< 9,0,E>, 343) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, 78 + J) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, 8) (<11,0,E>, 343) (<11,0,F>, 5) (<11,0,G>, 77) (<11,0,H>, 155) (<11,0,J>, 78) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, 8) (<13,0,E>, 343) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, 78) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, 8) (<15,0,E>, 343) (<15,0,F>, 5) (<15,0,G>, 11) (<15,0,H>, 6) (<15,0,J>, 78) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, 8) (<22,0,E>, 343) (<22,0,F>, 5) (<22,0,G>, 77) (<22,0,H>, 5) (<22,0,J>, 77) (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 0) (<27,0,E>, 0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, 8) (<28,0,E>, 343) (<28,0,F>, 5) (<28,0,G>, 11) (<28,0,H>, 11) (<28,0,J>, 78) (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, 8) (<29,0,E>, 343) (<29,0,F>, 5) (<29,0,G>, 5) (<29,0,H>, 0) (<29,0,J>, 78) (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, 8) (<32,0,E>, 343) (<32,0,F>, 5) (<32,0,G>, 77) (<32,0,H>, 155) (<32,0,J>, 0) (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, 8) (<36,0,E>, 343) (<36,0,F>, 5) (<36,0,G>, 77) (<36,0,H>, 78) (<36,0,J>, 0) (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 7) (<41,0,E>, 0) (<41,0,F>, F) (<41,0,G>, G) (<41,0,H>, H) (<41,0,J>, J) (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, 8) (<43,0,E>, 343) (<43,0,F>, 5) (<43,0,G>, 6) (<43,0,H>, 5) (<43,0,J>, 78) (<44,0,A>, 50) (<44,0,B>, 5) (<44,0,C>, 8) (<44,0,E>, 343) (<44,0,F>, 5) (<44,0,G>, 77) (<44,0,H>, 79) (<44,0,J>, 78) (<45,0,A>, 50) (<45,0,B>, 5) (<45,0,C>, 8) (<45,0,E>, 343) (<45,0,F>, 5) (<45,0,G>, 1) (<45,0,H>, 0) (<45,0,J>, 78) (<47,0,A>, 50) (<47,0,B>, 5) (<47,0,C>, 8) (<47,0,E>, 343) (<47,0,F>, 5) (<47,0,G>, 1) (<47,0,H>, 0) (<47,0,J>, 77) (<49,0,A>, 50) (<49,0,B>, 5) (<49,0,C>, 8) (<49,0,E>, 343) (<49,0,F>, 5) (<49,0,G>, 0) (<49,0,H>, 1) (<49,0,J>, J) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [9,22,44,11,32,36,8], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f36) = 0 p(f41) = 1 p(f54) = 0 The following rules are strictly oriented: [J >= G] ==> f41(A,B,C,E,F,G,H,J) = 1 > 0 = f36(A,B,C,E,F,G,1 + H,J) The following rules are weakly oriented: [G >= 1 + J] ==> f41(A,B,C,E,F,G,H,J) = 1 >= 1 = f41(A,B,C,E,F,G,H,1 + J) [F >= H && G = 0] ==> f36(A,B,C,E,F,G,H,J) = 0 >= 0 = f36(A,B,C,E,F,0,1 + H,J) [G >= J] ==> f54(A,B,C,E,F,G,H,J) = 0 >= 0 = f54(A,B,C,E,F,G,H,1 + J) [J >= 1 + G && F >= 1 + H] ==> f54(A,B,C,E,F,G,H,J) = 0 >= 0 = f54(A,B,C,E,F,G,1 + H,0) [H >= 1 + F && F >= 1 + G] ==> f36(A,B,C,E,F,G,H,J) = 0 >= 0 = f54(A,B,C,E,F,G,1 + G,0) [J >= 1 + G && 1 + H >= 1 + F && F >= 2 + G] ==> f54(A,B,C,E,F,G,H,J) = 0 >= 0 = f36(A,B,C,E,F,1 + G,2 + G,J) We use the following global sizebounds: (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 7) (< 2,0,E>, 50) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 7) (< 3,0,E>, 343) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 7) (< 4,0,E>, 8) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, 8) (< 6,0,E>, 343) (< 6,0,F>, 5) (< 6,0,G>, 77) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, 8) (< 7,0,E>, 343) (< 7,0,F>, 5) (< 7,0,G>, 77) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, 8) (< 8,0,E>, 343) (< 8,0,F>, 5) (< 8,0,G>, 77) (< 8,0,H>, 5) (< 8,0,J>, 77) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, 8) (< 9,0,E>, 343) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, 78 + J) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, 8) (<11,0,E>, 343) (<11,0,F>, 5) (<11,0,G>, 77) (<11,0,H>, 155) (<11,0,J>, 78) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, 8) (<13,0,E>, 343) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, 78) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, 8) (<15,0,E>, 343) (<15,0,F>, 5) (<15,0,G>, 11) (<15,0,H>, 6) (<15,0,J>, 78) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, 8) (<22,0,E>, 343) (<22,0,F>, 5) (<22,0,G>, 77) (<22,0,H>, 5) (<22,0,J>, 77) (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 0) (<27,0,E>, 0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, 8) (<28,0,E>, 343) (<28,0,F>, 5) (<28,0,G>, 11) (<28,0,H>, 11) (<28,0,J>, 78) (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, 8) (<29,0,E>, 343) (<29,0,F>, 5) (<29,0,G>, 5) (<29,0,H>, 0) (<29,0,J>, 78) (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, 8) (<32,0,E>, 343) (<32,0,F>, 5) (<32,0,G>, 77) (<32,0,H>, 155) (<32,0,J>, 0) (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, 8) (<36,0,E>, 343) (<36,0,F>, 5) (<36,0,G>, 77) (<36,0,H>, 78) (<36,0,J>, 0) (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 7) (<41,0,E>, 0) (<41,0,F>, F) (<41,0,G>, G) (<41,0,H>, H) (<41,0,J>, J) (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, 8) (<43,0,E>, 343) (<43,0,F>, 5) (<43,0,G>, 6) (<43,0,H>, 5) (<43,0,J>, 78) (<44,0,A>, 50) (<44,0,B>, 5) (<44,0,C>, 8) (<44,0,E>, 343) (<44,0,F>, 5) (<44,0,G>, 77) (<44,0,H>, 79) (<44,0,J>, 78) (<45,0,A>, 50) (<45,0,B>, 5) (<45,0,C>, 8) (<45,0,E>, 343) (<45,0,F>, 5) (<45,0,G>, 1) (<45,0,H>, 0) (<45,0,J>, 78) (<47,0,A>, 50) (<47,0,B>, 5) (<47,0,C>, 8) (<47,0,E>, 343) (<47,0,F>, 5) (<47,0,G>, 1) (<47,0,H>, 0) (<47,0,J>, 77) (<49,0,A>, 50) (<49,0,B>, 5) (<49,0,C>, 8) (<49,0,E>, 343) (<49,0,F>, 5) (<49,0,G>, 0) (<49,0,H>, 1) (<49,0,J>, J) * Step 50: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 2. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [B >= E && E >= 1 + C] (42,1) 3. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] (42,1) 4. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J) [B >= E && C = E] (42,1) 6. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [0 >= 1 + G && F >= H] (637,1) 7. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] (48,1) 8. f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J) [G >= 1 + J] (?,1) 9. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J) [F >= H && G = 0] (48,1) 11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J) [G >= J] (6426,1) 13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J) [G >= 1 + H] (?,1) 15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J) [F >= H] (?,1) 22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J) [J >= G] (685,1) 27. f0(A,B,C,E,F,G,H,J) -> f19(50,5,0,0,F,G,H,J) [5 >= 0] (1,2) 28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J) [H >= 1 + F && -1 + G >= 0] (5,2) 29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J) [H >= G && F >= 1 + G] (?,2) 32. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + H,0) [J >= 1 + G && F >= 1 + H] (77,2) 36. f36(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + G,0) [H >= 1 + F && F >= 1 + G] (7,2) 41. f19(A,B,C,E,F,G,H,J) -> f19(A,B,1 + C,0,F,G,H,J) [E >= 1 + B && B >= 1 + C] (7,2) 43. f70(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J) [H >= G && 1 + G >= 1 + F && -1 + F >= 0] (1,3) 44. f54(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [J >= 1 + G && 1 + H >= 1 + F && F >= 2 + G] (77,3) 45. f54(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J) [J >= 1 + G && 1 + H >= 1 + F && 1 + G >= F && F >= 1] (77,4) 47. f36(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J) [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F && F >= 1] (7,4) 49. f19(A,B,C,E,F,G,H,J) -> f36(A,B,1 + C,E,B,0,1,J) [E >= 1 + B && 1 + C >= 1 + B && B >= 1] (7,3) Signature: {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)} Flow Graph: [2->{2,41},3->{3,4,49},4->{2,49},6->{22},7->{8},8->{8,22},9->{9,36},11->{11,32,44,45},13->{13,29,43} ,15->{15,28},22->{6,7,9,36,47},27->{4},28->{15,28},29->{13,29},32->{11,32,44},36->{11,32},41->{2,3,4,41} ,43->{15},44->{6,7,9},45->{13},47->{13},49->{9}] Sizebounds: (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 7) (< 2,0,E>, 50) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 7) (< 3,0,E>, 343) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 7) (< 4,0,E>, 8) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, 8) (< 6,0,E>, 343) (< 6,0,F>, 5) (< 6,0,G>, 77) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, 8) (< 7,0,E>, 343) (< 7,0,F>, 5) (< 7,0,G>, 77) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, 8) (< 8,0,E>, 343) (< 8,0,F>, 5) (< 8,0,G>, 77) (< 8,0,H>, 5) (< 8,0,J>, 77) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, 8) (< 9,0,E>, 343) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, 78 + J) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, 8) (<11,0,E>, 343) (<11,0,F>, 5) (<11,0,G>, 77) (<11,0,H>, 155) (<11,0,J>, 78) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, 8) (<13,0,E>, 343) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, 78) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, 8) (<15,0,E>, 343) (<15,0,F>, 5) (<15,0,G>, 11) (<15,0,H>, 6) (<15,0,J>, 78) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, 8) (<22,0,E>, 343) (<22,0,F>, 5) (<22,0,G>, 77) (<22,0,H>, 5) (<22,0,J>, 77) (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 0) (<27,0,E>, 0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, 8) (<28,0,E>, 343) (<28,0,F>, 5) (<28,0,G>, 11) (<28,0,H>, 11) (<28,0,J>, 78) (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, 8) (<29,0,E>, 343) (<29,0,F>, 5) (<29,0,G>, 5) (<29,0,H>, 0) (<29,0,J>, 78) (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, 8) (<32,0,E>, 343) (<32,0,F>, 5) (<32,0,G>, 77) (<32,0,H>, 155) (<32,0,J>, 0) (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, 8) (<36,0,E>, 343) (<36,0,F>, 5) (<36,0,G>, 77) (<36,0,H>, 78) (<36,0,J>, 0) (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 7) (<41,0,E>, 0) (<41,0,F>, F) (<41,0,G>, G) (<41,0,H>, H) (<41,0,J>, J) (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, 8) (<43,0,E>, 343) (<43,0,F>, 5) (<43,0,G>, 6) (<43,0,H>, 5) (<43,0,J>, 78) (<44,0,A>, 50) (<44,0,B>, 5) (<44,0,C>, 8) (<44,0,E>, 343) (<44,0,F>, 5) (<44,0,G>, 77) (<44,0,H>, 79) (<44,0,J>, 78) (<45,0,A>, 50) (<45,0,B>, 5) (<45,0,C>, 8) (<45,0,E>, 343) (<45,0,F>, 5) (<45,0,G>, 1) (<45,0,H>, 0) (<45,0,J>, 78) (<47,0,A>, 50) (<47,0,B>, 5) (<47,0,C>, 8) (<47,0,E>, 343) (<47,0,F>, 5) (<47,0,G>, 1) (<47,0,H>, 0) (<47,0,J>, 77) (<49,0,A>, 50) (<49,0,B>, 5) (<49,0,C>, 8) (<49,0,E>, 343) (<49,0,F>, 5) (<49,0,G>, 0) (<49,0,H>, 1) (<49,0,J>, J) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [9,6,11,32,36,8,7], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f36) = x6 p(f41) = x6 + -1*x8 p(f54) = x6 The following rules are strictly oriented: [G >= 1 + J] ==> f41(A,B,C,E,F,G,H,J) = G + -1*J > -1 + G + -1*J = f41(A,B,C,E,F,G,H,1 + J) The following rules are weakly oriented: [0 >= 1 + G && F >= H] ==> f36(A,B,C,E,F,G,H,J) = G >= G = f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] ==> f36(A,B,C,E,F,G,H,J) = G >= G = f41(A,B,C,E,F,G,H,0) [F >= H && G = 0] ==> f36(A,B,C,E,F,G,H,J) = G >= 0 = f36(A,B,C,E,F,0,1 + H,J) [G >= J] ==> f54(A,B,C,E,F,G,H,J) = G >= G = f54(A,B,C,E,F,G,H,1 + J) [J >= 1 + G && F >= 1 + H] ==> f54(A,B,C,E,F,G,H,J) = G >= G = f54(A,B,C,E,F,G,1 + H,0) [H >= 1 + F && F >= 1 + G] ==> f36(A,B,C,E,F,G,H,J) = G >= G = f54(A,B,C,E,F,G,1 + G,0) We use the following global sizebounds: (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 7) (< 2,0,E>, 50) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 7) (< 3,0,E>, 343) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 7) (< 4,0,E>, 8) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, 8) (< 6,0,E>, 343) (< 6,0,F>, 5) (< 6,0,G>, 77) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, 8) (< 7,0,E>, 343) (< 7,0,F>, 5) (< 7,0,G>, 77) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, 8) (< 8,0,E>, 343) (< 8,0,F>, 5) (< 8,0,G>, 77) (< 8,0,H>, 5) (< 8,0,J>, 77) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, 8) (< 9,0,E>, 343) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, 78 + J) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, 8) (<11,0,E>, 343) (<11,0,F>, 5) (<11,0,G>, 77) (<11,0,H>, 155) (<11,0,J>, 78) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, 8) (<13,0,E>, 343) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, 78) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, 8) (<15,0,E>, 343) (<15,0,F>, 5) (<15,0,G>, 11) (<15,0,H>, 6) (<15,0,J>, 78) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, 8) (<22,0,E>, 343) (<22,0,F>, 5) (<22,0,G>, 77) (<22,0,H>, 5) (<22,0,J>, 77) (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 0) (<27,0,E>, 0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, 8) (<28,0,E>, 343) (<28,0,F>, 5) (<28,0,G>, 11) (<28,0,H>, 11) (<28,0,J>, 78) (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, 8) (<29,0,E>, 343) (<29,0,F>, 5) (<29,0,G>, 5) (<29,0,H>, 0) (<29,0,J>, 78) (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, 8) (<32,0,E>, 343) (<32,0,F>, 5) (<32,0,G>, 77) (<32,0,H>, 155) (<32,0,J>, 0) (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, 8) (<36,0,E>, 343) (<36,0,F>, 5) (<36,0,G>, 77) (<36,0,H>, 78) (<36,0,J>, 0) (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 7) (<41,0,E>, 0) (<41,0,F>, F) (<41,0,G>, G) (<41,0,H>, H) (<41,0,J>, J) (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, 8) (<43,0,E>, 343) (<43,0,F>, 5) (<43,0,G>, 6) (<43,0,H>, 5) (<43,0,J>, 78) (<44,0,A>, 50) (<44,0,B>, 5) (<44,0,C>, 8) (<44,0,E>, 343) (<44,0,F>, 5) (<44,0,G>, 77) (<44,0,H>, 79) (<44,0,J>, 78) (<45,0,A>, 50) (<45,0,B>, 5) (<45,0,C>, 8) (<45,0,E>, 343) (<45,0,F>, 5) (<45,0,G>, 1) (<45,0,H>, 0) (<45,0,J>, 78) (<47,0,A>, 50) (<47,0,B>, 5) (<47,0,C>, 8) (<47,0,E>, 343) (<47,0,F>, 5) (<47,0,G>, 1) (<47,0,H>, 0) (<47,0,J>, 77) (<49,0,A>, 50) (<49,0,B>, 5) (<49,0,C>, 8) (<49,0,E>, 343) (<49,0,F>, 5) (<49,0,G>, 0) (<49,0,H>, 1) (<49,0,J>, J) * Step 51: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 2. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [B >= E && E >= 1 + C] (42,1) 3. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] (42,1) 4. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J) [B >= E && C = E] (42,1) 6. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [0 >= 1 + G && F >= H] (637,1) 7. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] (48,1) 8. f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J) [G >= 1 + J] (58674,1) 9. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J) [F >= H && G = 0] (48,1) 11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J) [G >= J] (6426,1) 13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J) [G >= 1 + H] (?,1) 15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J) [F >= H] (?,1) 22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J) [J >= G] (685,1) 27. f0(A,B,C,E,F,G,H,J) -> f19(50,5,0,0,F,G,H,J) [5 >= 0] (1,2) 28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J) [H >= 1 + F && -1 + G >= 0] (5,2) 29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J) [H >= G && F >= 1 + G] (?,2) 32. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + H,0) [J >= 1 + G && F >= 1 + H] (77,2) 36. f36(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + G,0) [H >= 1 + F && F >= 1 + G] (7,2) 41. f19(A,B,C,E,F,G,H,J) -> f19(A,B,1 + C,0,F,G,H,J) [E >= 1 + B && B >= 1 + C] (7,2) 43. f70(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J) [H >= G && 1 + G >= 1 + F && -1 + F >= 0] (1,3) 44. f54(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [J >= 1 + G && 1 + H >= 1 + F && F >= 2 + G] (77,3) 45. f54(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J) [J >= 1 + G && 1 + H >= 1 + F && 1 + G >= F && F >= 1] (77,4) 47. f36(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J) [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F && F >= 1] (7,4) 49. f19(A,B,C,E,F,G,H,J) -> f36(A,B,1 + C,E,B,0,1,J) [E >= 1 + B && 1 + C >= 1 + B && B >= 1] (7,3) Signature: {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)} Flow Graph: [2->{2,41},3->{3,4,49},4->{2,49},6->{22},7->{8},8->{8,22},9->{9,36},11->{11,32,44,45},13->{13,29,43} ,15->{15,28},22->{6,7,9,36,47},27->{4},28->{15,28},29->{13,29},32->{11,32,44},36->{11,32},41->{2,3,4,41} ,43->{15},44->{6,7,9},45->{13},47->{13},49->{9}] Sizebounds: (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 7) (< 2,0,E>, 50) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 7) (< 3,0,E>, 343) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 7) (< 4,0,E>, 8) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, 8) (< 6,0,E>, 343) (< 6,0,F>, 5) (< 6,0,G>, 77) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, 8) (< 7,0,E>, 343) (< 7,0,F>, 5) (< 7,0,G>, 77) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, 8) (< 8,0,E>, 343) (< 8,0,F>, 5) (< 8,0,G>, 77) (< 8,0,H>, 5) (< 8,0,J>, 77) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, 8) (< 9,0,E>, 343) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, 78 + J) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, 8) (<11,0,E>, 343) (<11,0,F>, 5) (<11,0,G>, 77) (<11,0,H>, 155) (<11,0,J>, 78) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, 8) (<13,0,E>, 343) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, 78) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, 8) (<15,0,E>, 343) (<15,0,F>, 5) (<15,0,G>, 11) (<15,0,H>, 6) (<15,0,J>, 78) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, 8) (<22,0,E>, 343) (<22,0,F>, 5) (<22,0,G>, 77) (<22,0,H>, 5) (<22,0,J>, 77) (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 0) (<27,0,E>, 0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, 8) (<28,0,E>, 343) (<28,0,F>, 5) (<28,0,G>, 11) (<28,0,H>, 11) (<28,0,J>, 78) (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, 8) (<29,0,E>, 343) (<29,0,F>, 5) (<29,0,G>, 5) (<29,0,H>, 0) (<29,0,J>, 78) (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, 8) (<32,0,E>, 343) (<32,0,F>, 5) (<32,0,G>, 77) (<32,0,H>, 155) (<32,0,J>, 0) (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, 8) (<36,0,E>, 343) (<36,0,F>, 5) (<36,0,G>, 77) (<36,0,H>, 78) (<36,0,J>, 0) (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 7) (<41,0,E>, 0) (<41,0,F>, F) (<41,0,G>, G) (<41,0,H>, H) (<41,0,J>, J) (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, 8) (<43,0,E>, 343) (<43,0,F>, 5) (<43,0,G>, 6) (<43,0,H>, 5) (<43,0,J>, 78) (<44,0,A>, 50) (<44,0,B>, 5) (<44,0,C>, 8) (<44,0,E>, 343) (<44,0,F>, 5) (<44,0,G>, 77) (<44,0,H>, 79) (<44,0,J>, 78) (<45,0,A>, 50) (<45,0,B>, 5) (<45,0,C>, 8) (<45,0,E>, 343) (<45,0,F>, 5) (<45,0,G>, 1) (<45,0,H>, 0) (<45,0,J>, 78) (<47,0,A>, 50) (<47,0,B>, 5) (<47,0,C>, 8) (<47,0,E>, 343) (<47,0,F>, 5) (<47,0,G>, 1) (<47,0,H>, 0) (<47,0,J>, 77) (<49,0,A>, 50) (<49,0,B>, 5) (<49,0,C>, 8) (<49,0,E>, 343) (<49,0,F>, 5) (<49,0,G>, 0) (<49,0,H>, 1) (<49,0,J>, J) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [13,29], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f70) = x5 + -1*x6 The following rules are strictly oriented: [H >= G && F >= 1 + G] ==> f70(A,B,C,E,F,G,H,J) = F + -1*G > -1 + F + -1*G = f70(A,B,C,E,F,1 + G,0,J) The following rules are weakly oriented: [G >= 1 + H] ==> f70(A,B,C,E,F,G,H,J) = F + -1*G >= F + -1*G = f70(A,B,C,E,F,G,1 + H,J) We use the following global sizebounds: (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 7) (< 2,0,E>, 50) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 7) (< 3,0,E>, 343) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 7) (< 4,0,E>, 8) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, 8) (< 6,0,E>, 343) (< 6,0,F>, 5) (< 6,0,G>, 77) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, 8) (< 7,0,E>, 343) (< 7,0,F>, 5) (< 7,0,G>, 77) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, 8) (< 8,0,E>, 343) (< 8,0,F>, 5) (< 8,0,G>, 77) (< 8,0,H>, 5) (< 8,0,J>, 77) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, 8) (< 9,0,E>, 343) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, 78 + J) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, 8) (<11,0,E>, 343) (<11,0,F>, 5) (<11,0,G>, 77) (<11,0,H>, 155) (<11,0,J>, 78) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, 8) (<13,0,E>, 343) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, 78) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, 8) (<15,0,E>, 343) (<15,0,F>, 5) (<15,0,G>, 11) (<15,0,H>, 6) (<15,0,J>, 78) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, 8) (<22,0,E>, 343) (<22,0,F>, 5) (<22,0,G>, 77) (<22,0,H>, 5) (<22,0,J>, 77) (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 0) (<27,0,E>, 0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, 8) (<28,0,E>, 343) (<28,0,F>, 5) (<28,0,G>, 11) (<28,0,H>, 11) (<28,0,J>, 78) (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, 8) (<29,0,E>, 343) (<29,0,F>, 5) (<29,0,G>, 5) (<29,0,H>, 0) (<29,0,J>, 78) (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, 8) (<32,0,E>, 343) (<32,0,F>, 5) (<32,0,G>, 77) (<32,0,H>, 155) (<32,0,J>, 0) (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, 8) (<36,0,E>, 343) (<36,0,F>, 5) (<36,0,G>, 77) (<36,0,H>, 78) (<36,0,J>, 0) (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 7) (<41,0,E>, 0) (<41,0,F>, F) (<41,0,G>, G) (<41,0,H>, H) (<41,0,J>, J) (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, 8) (<43,0,E>, 343) (<43,0,F>, 5) (<43,0,G>, 6) (<43,0,H>, 5) (<43,0,J>, 78) (<44,0,A>, 50) (<44,0,B>, 5) (<44,0,C>, 8) (<44,0,E>, 343) (<44,0,F>, 5) (<44,0,G>, 77) (<44,0,H>, 79) (<44,0,J>, 78) (<45,0,A>, 50) (<45,0,B>, 5) (<45,0,C>, 8) (<45,0,E>, 343) (<45,0,F>, 5) (<45,0,G>, 1) (<45,0,H>, 0) (<45,0,J>, 78) (<47,0,A>, 50) (<47,0,B>, 5) (<47,0,C>, 8) (<47,0,E>, 343) (<47,0,F>, 5) (<47,0,G>, 1) (<47,0,H>, 0) (<47,0,J>, 77) (<49,0,A>, 50) (<49,0,B>, 5) (<49,0,C>, 8) (<49,0,E>, 343) (<49,0,F>, 5) (<49,0,G>, 0) (<49,0,H>, 1) (<49,0,J>, J) * Step 52: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 2. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [B >= E && E >= 1 + C] (42,1) 3. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] (42,1) 4. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J) [B >= E && C = E] (42,1) 6. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [0 >= 1 + G && F >= H] (637,1) 7. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] (48,1) 8. f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J) [G >= 1 + J] (58674,1) 9. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J) [F >= H && G = 0] (48,1) 11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J) [G >= J] (6426,1) 13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J) [G >= 1 + H] (?,1) 15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J) [F >= H] (?,1) 22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J) [J >= G] (685,1) 27. f0(A,B,C,E,F,G,H,J) -> f19(50,5,0,0,F,G,H,J) [5 >= 0] (1,2) 28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J) [H >= 1 + F && -1 + G >= 0] (5,2) 29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J) [H >= G && F >= 1 + G] (504,2) 32. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + H,0) [J >= 1 + G && F >= 1 + H] (77,2) 36. f36(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + G,0) [H >= 1 + F && F >= 1 + G] (7,2) 41. f19(A,B,C,E,F,G,H,J) -> f19(A,B,1 + C,0,F,G,H,J) [E >= 1 + B && B >= 1 + C] (7,2) 43. f70(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J) [H >= G && 1 + G >= 1 + F && -1 + F >= 0] (1,3) 44. f54(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [J >= 1 + G && 1 + H >= 1 + F && F >= 2 + G] (77,3) 45. f54(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J) [J >= 1 + G && 1 + H >= 1 + F && 1 + G >= F && F >= 1] (77,4) 47. f36(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J) [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F && F >= 1] (7,4) 49. f19(A,B,C,E,F,G,H,J) -> f36(A,B,1 + C,E,B,0,1,J) [E >= 1 + B && 1 + C >= 1 + B && B >= 1] (7,3) Signature: {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)} Flow Graph: [2->{2,41},3->{3,4,49},4->{2,49},6->{22},7->{8},8->{8,22},9->{9,36},11->{11,32,44,45},13->{13,29,43} ,15->{15,28},22->{6,7,9,36,47},27->{4},28->{15,28},29->{13,29},32->{11,32,44},36->{11,32},41->{2,3,4,41} ,43->{15},44->{6,7,9},45->{13},47->{13},49->{9}] Sizebounds: (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 7) (< 2,0,E>, 50) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 7) (< 3,0,E>, 343) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 7) (< 4,0,E>, 8) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, 8) (< 6,0,E>, 343) (< 6,0,F>, 5) (< 6,0,G>, 77) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, 8) (< 7,0,E>, 343) (< 7,0,F>, 5) (< 7,0,G>, 77) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, 8) (< 8,0,E>, 343) (< 8,0,F>, 5) (< 8,0,G>, 77) (< 8,0,H>, 5) (< 8,0,J>, 77) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, 8) (< 9,0,E>, 343) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, 78 + J) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, 8) (<11,0,E>, 343) (<11,0,F>, 5) (<11,0,G>, 77) (<11,0,H>, 155) (<11,0,J>, 78) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, 8) (<13,0,E>, 343) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, 78) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, 8) (<15,0,E>, 343) (<15,0,F>, 5) (<15,0,G>, 11) (<15,0,H>, 6) (<15,0,J>, 78) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, 8) (<22,0,E>, 343) (<22,0,F>, 5) (<22,0,G>, 77) (<22,0,H>, 5) (<22,0,J>, 77) (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 0) (<27,0,E>, 0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, 8) (<28,0,E>, 343) (<28,0,F>, 5) (<28,0,G>, 11) (<28,0,H>, 11) (<28,0,J>, 78) (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, 8) (<29,0,E>, 343) (<29,0,F>, 5) (<29,0,G>, 5) (<29,0,H>, 0) (<29,0,J>, 78) (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, 8) (<32,0,E>, 343) (<32,0,F>, 5) (<32,0,G>, 77) (<32,0,H>, 155) (<32,0,J>, 0) (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, 8) (<36,0,E>, 343) (<36,0,F>, 5) (<36,0,G>, 77) (<36,0,H>, 78) (<36,0,J>, 0) (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 7) (<41,0,E>, 0) (<41,0,F>, F) (<41,0,G>, G) (<41,0,H>, H) (<41,0,J>, J) (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, 8) (<43,0,E>, 343) (<43,0,F>, 5) (<43,0,G>, 6) (<43,0,H>, 5) (<43,0,J>, 78) (<44,0,A>, 50) (<44,0,B>, 5) (<44,0,C>, 8) (<44,0,E>, 343) (<44,0,F>, 5) (<44,0,G>, 77) (<44,0,H>, 79) (<44,0,J>, 78) (<45,0,A>, 50) (<45,0,B>, 5) (<45,0,C>, 8) (<45,0,E>, 343) (<45,0,F>, 5) (<45,0,G>, 1) (<45,0,H>, 0) (<45,0,J>, 78) (<47,0,A>, 50) (<47,0,B>, 5) (<47,0,C>, 8) (<47,0,E>, 343) (<47,0,F>, 5) (<47,0,G>, 1) (<47,0,H>, 0) (<47,0,J>, 77) (<49,0,A>, 50) (<49,0,B>, 5) (<49,0,C>, 8) (<49,0,E>, 343) (<49,0,F>, 5) (<49,0,G>, 0) (<49,0,H>, 1) (<49,0,J>, J) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [13], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f70) = x6 + -1*x7 The following rules are strictly oriented: [G >= 1 + H] ==> f70(A,B,C,E,F,G,H,J) = G + -1*H > -1 + G + -1*H = f70(A,B,C,E,F,G,1 + H,J) The following rules are weakly oriented: We use the following global sizebounds: (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 7) (< 2,0,E>, 50) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 7) (< 3,0,E>, 343) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 7) (< 4,0,E>, 8) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, 8) (< 6,0,E>, 343) (< 6,0,F>, 5) (< 6,0,G>, 77) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, 8) (< 7,0,E>, 343) (< 7,0,F>, 5) (< 7,0,G>, 77) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, 8) (< 8,0,E>, 343) (< 8,0,F>, 5) (< 8,0,G>, 77) (< 8,0,H>, 5) (< 8,0,J>, 77) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, 8) (< 9,0,E>, 343) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, 78 + J) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, 8) (<11,0,E>, 343) (<11,0,F>, 5) (<11,0,G>, 77) (<11,0,H>, 155) (<11,0,J>, 78) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, 8) (<13,0,E>, 343) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, 78) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, 8) (<15,0,E>, 343) (<15,0,F>, 5) (<15,0,G>, 11) (<15,0,H>, 6) (<15,0,J>, 78) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, 8) (<22,0,E>, 343) (<22,0,F>, 5) (<22,0,G>, 77) (<22,0,H>, 5) (<22,0,J>, 77) (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 0) (<27,0,E>, 0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, 8) (<28,0,E>, 343) (<28,0,F>, 5) (<28,0,G>, 11) (<28,0,H>, 11) (<28,0,J>, 78) (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, 8) (<29,0,E>, 343) (<29,0,F>, 5) (<29,0,G>, 5) (<29,0,H>, 0) (<29,0,J>, 78) (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, 8) (<32,0,E>, 343) (<32,0,F>, 5) (<32,0,G>, 77) (<32,0,H>, 155) (<32,0,J>, 0) (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, 8) (<36,0,E>, 343) (<36,0,F>, 5) (<36,0,G>, 77) (<36,0,H>, 78) (<36,0,J>, 0) (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 7) (<41,0,E>, 0) (<41,0,F>, F) (<41,0,G>, G) (<41,0,H>, H) (<41,0,J>, J) (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, 8) (<43,0,E>, 343) (<43,0,F>, 5) (<43,0,G>, 6) (<43,0,H>, 5) (<43,0,J>, 78) (<44,0,A>, 50) (<44,0,B>, 5) (<44,0,C>, 8) (<44,0,E>, 343) (<44,0,F>, 5) (<44,0,G>, 77) (<44,0,H>, 79) (<44,0,J>, 78) (<45,0,A>, 50) (<45,0,B>, 5) (<45,0,C>, 8) (<45,0,E>, 343) (<45,0,F>, 5) (<45,0,G>, 1) (<45,0,H>, 0) (<45,0,J>, 78) (<47,0,A>, 50) (<47,0,B>, 5) (<47,0,C>, 8) (<47,0,E>, 343) (<47,0,F>, 5) (<47,0,G>, 1) (<47,0,H>, 0) (<47,0,J>, 77) (<49,0,A>, 50) (<49,0,B>, 5) (<49,0,C>, 8) (<49,0,E>, 343) (<49,0,F>, 5) (<49,0,G>, 0) (<49,0,H>, 1) (<49,0,J>, J) * Step 53: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 2. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [B >= E && E >= 1 + C] (42,1) 3. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] (42,1) 4. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J) [B >= E && C = E] (42,1) 6. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [0 >= 1 + G && F >= H] (637,1) 7. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] (48,1) 8. f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J) [G >= 1 + J] (58674,1) 9. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J) [F >= H && G = 0] (48,1) 11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J) [G >= J] (6426,1) 13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J) [G >= 1 + H] (2604,1) 15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J) [F >= H] (?,1) 22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J) [J >= G] (685,1) 27. f0(A,B,C,E,F,G,H,J) -> f19(50,5,0,0,F,G,H,J) [5 >= 0] (1,2) 28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J) [H >= 1 + F && -1 + G >= 0] (5,2) 29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J) [H >= G && F >= 1 + G] (504,2) 32. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + H,0) [J >= 1 + G && F >= 1 + H] (77,2) 36. f36(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + G,0) [H >= 1 + F && F >= 1 + G] (7,2) 41. f19(A,B,C,E,F,G,H,J) -> f19(A,B,1 + C,0,F,G,H,J) [E >= 1 + B && B >= 1 + C] (7,2) 43. f70(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J) [H >= G && 1 + G >= 1 + F && -1 + F >= 0] (1,3) 44. f54(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [J >= 1 + G && 1 + H >= 1 + F && F >= 2 + G] (77,3) 45. f54(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J) [J >= 1 + G && 1 + H >= 1 + F && 1 + G >= F && F >= 1] (77,4) 47. f36(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J) [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F && F >= 1] (7,4) 49. f19(A,B,C,E,F,G,H,J) -> f36(A,B,1 + C,E,B,0,1,J) [E >= 1 + B && 1 + C >= 1 + B && B >= 1] (7,3) Signature: {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)} Flow Graph: [2->{2,41},3->{3,4,49},4->{2,49},6->{22},7->{8},8->{8,22},9->{9,36},11->{11,32,44,45},13->{13,29,43} ,15->{15,28},22->{6,7,9,36,47},27->{4},28->{15,28},29->{13,29},32->{11,32,44},36->{11,32},41->{2,3,4,41} ,43->{15},44->{6,7,9},45->{13},47->{13},49->{9}] Sizebounds: (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 7) (< 2,0,E>, 50) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 7) (< 3,0,E>, 343) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 7) (< 4,0,E>, 8) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, 8) (< 6,0,E>, 343) (< 6,0,F>, 5) (< 6,0,G>, 77) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, 8) (< 7,0,E>, 343) (< 7,0,F>, 5) (< 7,0,G>, 77) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, 8) (< 8,0,E>, 343) (< 8,0,F>, 5) (< 8,0,G>, 77) (< 8,0,H>, 5) (< 8,0,J>, 77) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, 8) (< 9,0,E>, 343) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, 78 + J) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, 8) (<11,0,E>, 343) (<11,0,F>, 5) (<11,0,G>, 77) (<11,0,H>, 155) (<11,0,J>, 78) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, 8) (<13,0,E>, 343) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, 78) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, 8) (<15,0,E>, 343) (<15,0,F>, 5) (<15,0,G>, 11) (<15,0,H>, 6) (<15,0,J>, 78) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, 8) (<22,0,E>, 343) (<22,0,F>, 5) (<22,0,G>, 77) (<22,0,H>, 5) (<22,0,J>, 77) (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 0) (<27,0,E>, 0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, 8) (<28,0,E>, 343) (<28,0,F>, 5) (<28,0,G>, 11) (<28,0,H>, 11) (<28,0,J>, 78) (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, 8) (<29,0,E>, 343) (<29,0,F>, 5) (<29,0,G>, 5) (<29,0,H>, 0) (<29,0,J>, 78) (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, 8) (<32,0,E>, 343) (<32,0,F>, 5) (<32,0,G>, 77) (<32,0,H>, 155) (<32,0,J>, 0) (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, 8) (<36,0,E>, 343) (<36,0,F>, 5) (<36,0,G>, 77) (<36,0,H>, 78) (<36,0,J>, 0) (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 7) (<41,0,E>, 0) (<41,0,F>, F) (<41,0,G>, G) (<41,0,H>, H) (<41,0,J>, J) (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, 8) (<43,0,E>, 343) (<43,0,F>, 5) (<43,0,G>, 6) (<43,0,H>, 5) (<43,0,J>, 78) (<44,0,A>, 50) (<44,0,B>, 5) (<44,0,C>, 8) (<44,0,E>, 343) (<44,0,F>, 5) (<44,0,G>, 77) (<44,0,H>, 79) (<44,0,J>, 78) (<45,0,A>, 50) (<45,0,B>, 5) (<45,0,C>, 8) (<45,0,E>, 343) (<45,0,F>, 5) (<45,0,G>, 1) (<45,0,H>, 0) (<45,0,J>, 78) (<47,0,A>, 50) (<47,0,B>, 5) (<47,0,C>, 8) (<47,0,E>, 343) (<47,0,F>, 5) (<47,0,G>, 1) (<47,0,H>, 0) (<47,0,J>, 77) (<49,0,A>, 50) (<49,0,B>, 5) (<49,0,C>, 8) (<49,0,E>, 343) (<49,0,F>, 5) (<49,0,G>, 0) (<49,0,H>, 1) (<49,0,J>, J) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [15], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f84) = 1 + x5 + -1*x7 The following rules are strictly oriented: [F >= H] ==> f84(A,B,C,E,F,G,H,J) = 1 + F + -1*H > F + -1*H = f84(A,B,C,E,F,G,1 + H,J) The following rules are weakly oriented: We use the following global sizebounds: (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 7) (< 2,0,E>, 50) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 7) (< 3,0,E>, 343) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 7) (< 4,0,E>, 8) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, 8) (< 6,0,E>, 343) (< 6,0,F>, 5) (< 6,0,G>, 77) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, 8) (< 7,0,E>, 343) (< 7,0,F>, 5) (< 7,0,G>, 77) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, 8) (< 8,0,E>, 343) (< 8,0,F>, 5) (< 8,0,G>, 77) (< 8,0,H>, 5) (< 8,0,J>, 77) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, 8) (< 9,0,E>, 343) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, 78 + J) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, 8) (<11,0,E>, 343) (<11,0,F>, 5) (<11,0,G>, 77) (<11,0,H>, 155) (<11,0,J>, 78) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, 8) (<13,0,E>, 343) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, 78) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, 8) (<15,0,E>, 343) (<15,0,F>, 5) (<15,0,G>, 11) (<15,0,H>, 6) (<15,0,J>, 78) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, 8) (<22,0,E>, 343) (<22,0,F>, 5) (<22,0,G>, 77) (<22,0,H>, 5) (<22,0,J>, 77) (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 0) (<27,0,E>, 0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, 8) (<28,0,E>, 343) (<28,0,F>, 5) (<28,0,G>, 11) (<28,0,H>, 11) (<28,0,J>, 78) (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, 8) (<29,0,E>, 343) (<29,0,F>, 5) (<29,0,G>, 5) (<29,0,H>, 0) (<29,0,J>, 78) (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, 8) (<32,0,E>, 343) (<32,0,F>, 5) (<32,0,G>, 77) (<32,0,H>, 155) (<32,0,J>, 0) (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, 8) (<36,0,E>, 343) (<36,0,F>, 5) (<36,0,G>, 77) (<36,0,H>, 78) (<36,0,J>, 0) (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 7) (<41,0,E>, 0) (<41,0,F>, F) (<41,0,G>, G) (<41,0,H>, H) (<41,0,J>, J) (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, 8) (<43,0,E>, 343) (<43,0,F>, 5) (<43,0,G>, 6) (<43,0,H>, 5) (<43,0,J>, 78) (<44,0,A>, 50) (<44,0,B>, 5) (<44,0,C>, 8) (<44,0,E>, 343) (<44,0,F>, 5) (<44,0,G>, 77) (<44,0,H>, 79) (<44,0,J>, 78) (<45,0,A>, 50) (<45,0,B>, 5) (<45,0,C>, 8) (<45,0,E>, 343) (<45,0,F>, 5) (<45,0,G>, 1) (<45,0,H>, 0) (<45,0,J>, 78) (<47,0,A>, 50) (<47,0,B>, 5) (<47,0,C>, 8) (<47,0,E>, 343) (<47,0,F>, 5) (<47,0,G>, 1) (<47,0,H>, 0) (<47,0,J>, 77) (<49,0,A>, 50) (<49,0,B>, 5) (<49,0,C>, 8) (<49,0,E>, 343) (<49,0,F>, 5) (<49,0,G>, 0) (<49,0,H>, 1) (<49,0,J>, J) * Step 54: KnowledgePropagation WORST_CASE(?,O(1)) + Considered Problem: Rules: 2. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [B >= E && E >= 1 + C] (42,1) 3. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J) [C >= 1 + E && B >= E] (42,1) 4. f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J) [B >= E && C = E] (42,1) 6. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [0 >= 1 + G && F >= H] (637,1) 7. f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0) [G >= 1 && F >= H] (48,1) 8. f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J) [G >= 1 + J] (58674,1) 9. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J) [F >= H && G = 0] (48,1) 11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J) [G >= J] (6426,1) 13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J) [G >= 1 + H] (2604,1) 15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J) [F >= H] (96,1) 22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J) [J >= G] (685,1) 27. f0(A,B,C,E,F,G,H,J) -> f19(50,5,0,0,F,G,H,J) [5 >= 0] (1,2) 28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J) [H >= 1 + F && -1 + G >= 0] (5,2) 29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J) [H >= G && F >= 1 + G] (504,2) 32. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + H,0) [J >= 1 + G && F >= 1 + H] (77,2) 36. f36(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + G,0) [H >= 1 + F && F >= 1 + G] (7,2) 41. f19(A,B,C,E,F,G,H,J) -> f19(A,B,1 + C,0,F,G,H,J) [E >= 1 + B && B >= 1 + C] (7,2) 43. f70(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J) [H >= G && 1 + G >= 1 + F && -1 + F >= 0] (1,3) 44. f54(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [J >= 1 + G && 1 + H >= 1 + F && F >= 2 + G] (77,3) 45. f54(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J) [J >= 1 + G && 1 + H >= 1 + F && 1 + G >= F && F >= 1] (77,4) 47. f36(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J) [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F && F >= 1] (7,4) 49. f19(A,B,C,E,F,G,H,J) -> f36(A,B,1 + C,E,B,0,1,J) [E >= 1 + B && 1 + C >= 1 + B && B >= 1] (7,3) Signature: {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)} Flow Graph: [2->{2,41},3->{3,4,49},4->{2,49},6->{22},7->{8},8->{8,22},9->{9,36},11->{11,32,44,45},13->{13,29,43} ,15->{15,28},22->{6,7,9,36,47},27->{4},28->{15,28},29->{13,29},32->{11,32,44},36->{11,32},41->{2,3,4,41} ,43->{15},44->{6,7,9},45->{13},47->{13},49->{9}] Sizebounds: (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 7) (< 2,0,E>, 50) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 7) (< 3,0,E>, 343) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 7) (< 4,0,E>, 8) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, 8) (< 6,0,E>, 343) (< 6,0,F>, 5) (< 6,0,G>, 77) (< 6,0,H>, 5) (< 6,0,J>, 0) (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, 8) (< 7,0,E>, 343) (< 7,0,F>, 5) (< 7,0,G>, 77) (< 7,0,H>, 5) (< 7,0,J>, 0) (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, 8) (< 8,0,E>, 343) (< 8,0,F>, 5) (< 8,0,G>, 77) (< 8,0,H>, 5) (< 8,0,J>, 77) (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, 8) (< 9,0,E>, 343) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, 78 + J) (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, 8) (<11,0,E>, 343) (<11,0,F>, 5) (<11,0,G>, 77) (<11,0,H>, 155) (<11,0,J>, 78) (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, 8) (<13,0,E>, 343) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, 78) (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, 8) (<15,0,E>, 343) (<15,0,F>, 5) (<15,0,G>, 11) (<15,0,H>, 6) (<15,0,J>, 78) (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, 8) (<22,0,E>, 343) (<22,0,F>, 5) (<22,0,G>, 77) (<22,0,H>, 5) (<22,0,J>, 77) (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 0) (<27,0,E>, 0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, 8) (<28,0,E>, 343) (<28,0,F>, 5) (<28,0,G>, 11) (<28,0,H>, 11) (<28,0,J>, 78) (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, 8) (<29,0,E>, 343) (<29,0,F>, 5) (<29,0,G>, 5) (<29,0,H>, 0) (<29,0,J>, 78) (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, 8) (<32,0,E>, 343) (<32,0,F>, 5) (<32,0,G>, 77) (<32,0,H>, 155) (<32,0,J>, 0) (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, 8) (<36,0,E>, 343) (<36,0,F>, 5) (<36,0,G>, 77) (<36,0,H>, 78) (<36,0,J>, 0) (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 7) (<41,0,E>, 0) (<41,0,F>, F) (<41,0,G>, G) (<41,0,H>, H) (<41,0,J>, J) (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, 8) (<43,0,E>, 343) (<43,0,F>, 5) (<43,0,G>, 6) (<43,0,H>, 5) (<43,0,J>, 78) (<44,0,A>, 50) (<44,0,B>, 5) (<44,0,C>, 8) (<44,0,E>, 343) (<44,0,F>, 5) (<44,0,G>, 77) (<44,0,H>, 79) (<44,0,J>, 78) (<45,0,A>, 50) (<45,0,B>, 5) (<45,0,C>, 8) (<45,0,E>, 343) (<45,0,F>, 5) (<45,0,G>, 1) (<45,0,H>, 0) (<45,0,J>, 78) (<47,0,A>, 50) (<47,0,B>, 5) (<47,0,C>, 8) (<47,0,E>, 343) (<47,0,F>, 5) (<47,0,G>, 1) (<47,0,H>, 0) (<47,0,J>, 77) (<49,0,A>, 50) (<49,0,B>, 5) (<49,0,C>, 8) (<49,0,E>, 343) (<49,0,F>, 5) (<49,0,G>, 0) (<49,0,H>, 1) (<49,0,J>, J) + Applied Processor: KnowledgePropagation + Details: The problem is already solved. WORST_CASE(?,O(1))