WORST_CASE(?,O(1))
* Step 1: RestrictVarsProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,D,E,F,G,H,I,J,K,L,M)  -> f15(50,5,0,D,E,F,G,H,I,J,K,L,M)        True                   (1,1)
          1.  f15(A,B,C,D,E,F,G,H,I,J,K,L,M) -> f19(A,B,C,0,0,F,G,H,I,J,K,L,M)         [B >= C]               (?,1)
          2.  f19(A,B,C,D,E,F,G,H,I,J,K,L,M) -> f19(A,B,C,D + N,1 + E,F,G,H,I,J,K,L,M) [B >= E && E >= 1 + C] (?,1)
          3.  f19(A,B,C,D,E,F,G,H,I,J,K,L,M) -> f19(A,B,C,D + N,1 + E,F,G,H,I,J,K,L,M) [C >= 1 + E && B >= E] (?,1)
          4.  f19(A,B,C,D,E,F,G,H,I,J,K,L,M) -> f19(A,B,C,D + N,1 + C,F,G,H,I,J,K,L,M) [B >= E && C = E]      (?,1)
          5.  f33(A,B,C,D,E,F,G,H,I,J,K,L,M) -> f36(A,B,C,D,E,F,G,1 + G,I,J,K,L,M)     [F >= 1 + G]           (?,1)
          6.  f36(A,B,C,D,E,F,G,H,I,J,K,L,M) -> f41(A,B,C,D,E,F,G,H,N,0,K,L,M)         [0 >= 1 + G && F >= H] (?,1)
          7.  f36(A,B,C,D,E,F,G,H,I,J,K,L,M) -> f41(A,B,C,D,E,F,G,H,N,0,K,L,M)         [G >= 1 && F >= H]     (?,1)
          8.  f41(A,B,C,D,E,F,G,H,I,J,K,L,M) -> f41(A,B,C,D,E,F,G,H,N,1 + J,K,L,M)     [G >= 1 + J]           (?,1)
          9.  f36(A,B,C,D,E,F,G,H,I,J,K,L,M) -> f36(A,B,C,D,E,F,0,1 + H,N,J,K,L,M)     [F >= H && G = 0]      (?,1)
          10. f50(A,B,C,D,E,F,G,H,I,J,K,L,M) -> f54(A,B,C,D,E,F,G,H,N,0,K,L,M)         [F >= H]               (?,1)
          11. f54(A,B,C,D,E,F,G,H,I,J,K,L,M) -> f54(A,B,C,D,E,F,G,H,N,1 + J,K,L,M)     [G >= J]               (?,1)
          12. f66(A,B,C,D,E,F,G,H,I,J,K,L,M) -> f70(A,B,C,D,E,F,G,0,N,J,K,L,M)         [F >= G]               (?,1)
          13. f70(A,B,C,D,E,F,G,H,I,J,K,L,M) -> f70(A,B,C,D,E,F,G,1 + H,N,J,K,L,M)     [G >= 1 + H]           (?,1)
          14. f80(A,B,C,D,E,F,G,H,I,J,K,L,M) -> f84(A,B,C,D,E,F,G,1 + G,N,J,K,L,M)     [G >= 0]               (?,1)
          15. f84(A,B,C,D,E,F,G,H,I,J,K,L,M) -> f84(A,B,C,D,E,F,G,1 + H,N,J,K,L,M)     [F >= H]               (?,1)
          16. f84(A,B,C,D,E,F,G,H,I,J,K,L,M) -> f80(A,B,C,D,E,F,-1 + G,H,I,J,K,L,M)    [H >= 1 + F]           (?,1)
          17. f80(A,B,C,D,E,F,G,H,I,J,K,L,M) -> f96(A,B,C,D,E,F,G,H,I,J,0,0,M)         [0 >= 1 + G]           (?,1)
          18. f70(A,B,C,D,E,F,G,H,I,J,K,L,M) -> f66(A,B,C,D,E,F,1 + G,H,I,J,K,L,M)     [H >= G]               (?,1)
          19. f66(A,B,C,D,E,F,G,H,I,J,K,L,M) -> f80(A,B,C,D,E,F,-1 + F,H,I,J,K,L,M)    [G >= 1 + F]           (?,1)
          20. f54(A,B,C,D,E,F,G,H,I,J,K,L,M) -> f50(A,B,C,D,E,F,G,1 + H,I,J,K,L,M)     [J >= 1 + G]           (?,1)
          21. f50(A,B,C,D,E,F,G,H,I,J,K,L,M) -> f33(A,B,C,D,E,F,1 + G,H,I,J,K,L,M)     [H >= 1 + F]           (?,1)
          22. f41(A,B,C,D,E,F,G,H,I,J,K,L,M) -> f36(A,B,C,D,E,F,G,1 + H,I,J,K,L,M)     [J >= G]               (?,1)
          23. f36(A,B,C,D,E,F,G,H,I,J,K,L,M) -> f50(A,B,C,D,E,F,G,1 + G,I,J,K,L,M)     [H >= 1 + F]           (?,1)
          24. f33(A,B,C,D,E,F,G,H,I,J,K,L,M) -> f66(A,B,C,D,E,F,1,H,I,J,K,L,M)         [G >= F]               (?,1)
          25. f19(A,B,C,D,E,F,G,H,I,J,K,L,M) -> f15(A,B,1 + C,D,E,F,G,H,I,J,K,L,M)     [E >= 1 + B]           (?,1)
          26. f15(A,B,C,D,E,F,G,H,I,J,K,L,M) -> f33(A,B,C,D,E,B,0,H,I,J,K,L,A)         [C >= 1 + B]           (?,1)
        Signature:
          {(f0,13)
          ;(f15,13)
          ;(f19,13)
          ;(f33,13)
          ;(f36,13)
          ;(f41,13)
          ;(f50,13)
          ;(f54,13)
          ;(f66,13)
          ;(f70,13)
          ;(f80,13)
          ;(f84,13)
          ;(f96,13)}
        Flow Graph:
          [0->{1,26},1->{2,3,4,25},2->{2,3,4,25},3->{2,3,4,25},4->{2,3,4,25},5->{6,7,9,23},6->{8,22},7->{8,22},8->{8
          ,22},9->{6,7,9,23},10->{11,20},11->{11,20},12->{13,18},13->{13,18},14->{15,16},15->{15,16},16->{14,17}
          ,17->{},18->{12,19},19->{14,17},20->{10,21},21->{5,24},22->{6,7,9,23},23->{10,21},24->{12,19},25->{1,26}
          ,26->{5,24}]
        
    + Applied Processor:
        RestrictVarsProcessor
    + Details:
        We removed the arguments [D,I,K,L,M] .
* Step 2: LocalSizeboundsProc WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,E,F,G,H,J)  -> f15(50,5,0,E,F,G,H,J)     True                   (1,1)
          1.  f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J)      [B >= C]               (?,1)
          2.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)  [B >= E && E >= 1 + C] (?,1)
          3.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)  [C >= 1 + E && B >= E] (?,1)
          4.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J)  [B >= E && C = E]      (?,1)
          5.  f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J)  [F >= 1 + G]           (?,1)
          6.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)      [0 >= 1 + G && F >= H] (?,1)
          7.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)      [G >= 1 && F >= H]     (?,1)
          8.  f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J)  [G >= 1 + J]           (?,1)
          9.  f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J)  [F >= H && G = 0]      (?,1)
          10. f50(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,0)      [F >= H]               (?,1)
          11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J)  [G >= J]               (?,1)
          12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J)      [F >= G]               (?,1)
          13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J)  [G >= 1 + H]           (?,1)
          14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J)  [G >= 0]               (?,1)
          15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J)  [F >= H]               (?,1)
          16. f84(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + G,H,J) [H >= 1 + F]           (?,1)
          17. f80(A,B,C,E,F,G,H,J) -> f96(A,B,C,E,F,G,H,J)      [0 >= 1 + G]           (?,1)
          18. f70(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1 + G,H,J)  [H >= G]               (?,1)
          19. f66(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J) [G >= 1 + F]           (?,1)
          20. f54(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + H,J)  [J >= 1 + G]           (?,1)
          21. f50(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,H,J)  [H >= 1 + F]           (?,1)
          22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J)  [J >= G]               (?,1)
          23. f36(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + G,J)  [H >= 1 + F]           (?,1)
          24. f33(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J)      [G >= F]               (?,1)
          25. f19(A,B,C,E,F,G,H,J) -> f15(A,B,1 + C,E,F,G,H,J)  [E >= 1 + B]           (?,1)
          26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J)      [C >= 1 + B]           (?,1)
        Signature:
          {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)}
        Flow Graph:
          [0->{1,26},1->{2,3,4,25},2->{2,3,4,25},3->{2,3,4,25},4->{2,3,4,25},5->{6,7,9,23},6->{8,22},7->{8,22},8->{8
          ,22},9->{6,7,9,23},10->{11,20},11->{11,20},12->{13,18},13->{13,18},14->{15,16},15->{15,16},16->{14,17}
          ,17->{},18->{12,19},19->{14,17},20->{10,21},21->{5,24},22->{6,7,9,23},23->{10,21},24->{12,19},25->{1,26}
          ,26->{5,24}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (< 0,0,A>, 50, .= 50) (< 0,0,B>, 5, .= 5) (< 0,0,C>,     0, .= 0) (< 0,0,E>,         E, .= 0) (< 0,0,F>, F, .= 0) (< 0,0,G>,     G, .= 0) (< 0,0,H>,     H, .= 0) (< 0,0,J>,     J, .= 0) 
          (< 1,0,A>,  A,  .= 0) (< 1,0,B>, B, .= 0) (< 1,0,C>,     C, .= 0) (< 1,0,E>,         0, .= 0) (< 1,0,F>, F, .= 0) (< 1,0,G>,     G, .= 0) (< 1,0,H>,     H, .= 0) (< 1,0,J>,     J, .= 0) 
          (< 2,0,A>,  A,  .= 0) (< 2,0,B>, B, .= 0) (< 2,0,C>,     C, .= 0) (< 2,0,E>,     1 + E, .+ 1) (< 2,0,F>, F, .= 0) (< 2,0,G>,     G, .= 0) (< 2,0,H>,     H, .= 0) (< 2,0,J>,     J, .= 0) 
          (< 3,0,A>,  A,  .= 0) (< 3,0,B>, B, .= 0) (< 3,0,C>,     C, .= 0) (< 3,0,E>, 1 + C + E, .* 1) (< 3,0,F>, F, .= 0) (< 3,0,G>,     G, .= 0) (< 3,0,H>,     H, .= 0) (< 3,0,J>,     J, .= 0) 
          (< 4,0,A>,  A,  .= 0) (< 4,0,B>, B, .= 0) (< 4,0,C>,     C, .= 0) (< 4,0,E>,     1 + C, .+ 1) (< 4,0,F>, F, .= 0) (< 4,0,G>,     G, .= 0) (< 4,0,H>,     H, .= 0) (< 4,0,J>,     J, .= 0) 
          (< 5,0,A>,  A,  .= 0) (< 5,0,B>, B, .= 0) (< 5,0,C>,     C, .= 0) (< 5,0,E>,         E, .= 0) (< 5,0,F>, F, .= 0) (< 5,0,G>,     G, .= 0) (< 5,0,H>, 1 + G, .+ 1) (< 5,0,J>,     J, .= 0) 
          (< 6,0,A>,  A,  .= 0) (< 6,0,B>, B, .= 0) (< 6,0,C>,     C, .= 0) (< 6,0,E>,         E, .= 0) (< 6,0,F>, F, .= 0) (< 6,0,G>,     G, .= 0) (< 6,0,H>,     H, .= 0) (< 6,0,J>,     0, .= 0) 
          (< 7,0,A>,  A,  .= 0) (< 7,0,B>, B, .= 0) (< 7,0,C>,     C, .= 0) (< 7,0,E>,         E, .= 0) (< 7,0,F>, F, .= 0) (< 7,0,G>,     G, .= 0) (< 7,0,H>,     H, .= 0) (< 7,0,J>,     0, .= 0) 
          (< 8,0,A>,  A,  .= 0) (< 8,0,B>, B, .= 0) (< 8,0,C>,     C, .= 0) (< 8,0,E>,         E, .= 0) (< 8,0,F>, F, .= 0) (< 8,0,G>,     G, .= 0) (< 8,0,H>,     H, .= 0) (< 8,0,J>, 1 + J, .+ 1) 
          (< 9,0,A>,  A,  .= 0) (< 9,0,B>, B, .= 0) (< 9,0,C>,     C, .= 0) (< 9,0,E>,         E, .= 0) (< 9,0,F>, F, .= 0) (< 9,0,G>,     0, .= 0) (< 9,0,H>, 1 + H, .+ 1) (< 9,0,J>,     J, .= 0) 
          (<10,0,A>,  A,  .= 0) (<10,0,B>, B, .= 0) (<10,0,C>,     C, .= 0) (<10,0,E>,         E, .= 0) (<10,0,F>, F, .= 0) (<10,0,G>,     G, .= 0) (<10,0,H>,     H, .= 0) (<10,0,J>,     0, .= 0) 
          (<11,0,A>,  A,  .= 0) (<11,0,B>, B, .= 0) (<11,0,C>,     C, .= 0) (<11,0,E>,         E, .= 0) (<11,0,F>, F, .= 0) (<11,0,G>,     G, .= 0) (<11,0,H>,     H, .= 0) (<11,0,J>, 1 + J, .+ 1) 
          (<12,0,A>,  A,  .= 0) (<12,0,B>, B, .= 0) (<12,0,C>,     C, .= 0) (<12,0,E>,         E, .= 0) (<12,0,F>, F, .= 0) (<12,0,G>,     G, .= 0) (<12,0,H>,     0, .= 0) (<12,0,J>,     J, .= 0) 
          (<13,0,A>,  A,  .= 0) (<13,0,B>, B, .= 0) (<13,0,C>,     C, .= 0) (<13,0,E>,         E, .= 0) (<13,0,F>, F, .= 0) (<13,0,G>,     G, .= 0) (<13,0,H>, 1 + H, .+ 1) (<13,0,J>,     J, .= 0) 
          (<14,0,A>,  A,  .= 0) (<14,0,B>, B, .= 0) (<14,0,C>,     C, .= 0) (<14,0,E>,         E, .= 0) (<14,0,F>, F, .= 0) (<14,0,G>,     G, .= 0) (<14,0,H>, 1 + G, .+ 1) (<14,0,J>,     J, .= 0) 
          (<15,0,A>,  A,  .= 0) (<15,0,B>, B, .= 0) (<15,0,C>,     C, .= 0) (<15,0,E>,         E, .= 0) (<15,0,F>, F, .= 0) (<15,0,G>,     G, .= 0) (<15,0,H>, 1 + H, .+ 1) (<15,0,J>,     J, .= 0) 
          (<16,0,A>,  A,  .= 0) (<16,0,B>, B, .= 0) (<16,0,C>,     C, .= 0) (<16,0,E>,         E, .= 0) (<16,0,F>, F, .= 0) (<16,0,G>, 1 + G, .+ 1) (<16,0,H>,     H, .= 0) (<16,0,J>,     J, .= 0) 
          (<17,0,A>,  A,  .= 0) (<17,0,B>, B, .= 0) (<17,0,C>,     C, .= 0) (<17,0,E>,         E, .= 0) (<17,0,F>, F, .= 0) (<17,0,G>,     G, .= 0) (<17,0,H>,     H, .= 0) (<17,0,J>,     J, .= 0) 
          (<18,0,A>,  A,  .= 0) (<18,0,B>, B, .= 0) (<18,0,C>,     C, .= 0) (<18,0,E>,         E, .= 0) (<18,0,F>, F, .= 0) (<18,0,G>, 1 + G, .+ 1) (<18,0,H>,     H, .= 0) (<18,0,J>,     J, .= 0) 
          (<19,0,A>,  A,  .= 0) (<19,0,B>, B, .= 0) (<19,0,C>,     C, .= 0) (<19,0,E>,         E, .= 0) (<19,0,F>, F, .= 0) (<19,0,G>, 1 + F, .+ 1) (<19,0,H>,     H, .= 0) (<19,0,J>,     J, .= 0) 
          (<20,0,A>,  A,  .= 0) (<20,0,B>, B, .= 0) (<20,0,C>,     C, .= 0) (<20,0,E>,         E, .= 0) (<20,0,F>, F, .= 0) (<20,0,G>,     G, .= 0) (<20,0,H>, 1 + H, .+ 1) (<20,0,J>,     J, .= 0) 
          (<21,0,A>,  A,  .= 0) (<21,0,B>, B, .= 0) (<21,0,C>,     C, .= 0) (<21,0,E>,         E, .= 0) (<21,0,F>, F, .= 0) (<21,0,G>, 1 + G, .+ 1) (<21,0,H>,     H, .= 0) (<21,0,J>,     J, .= 0) 
          (<22,0,A>,  A,  .= 0) (<22,0,B>, B, .= 0) (<22,0,C>,     C, .= 0) (<22,0,E>,         E, .= 0) (<22,0,F>, F, .= 0) (<22,0,G>,     G, .= 0) (<22,0,H>, 1 + H, .+ 1) (<22,0,J>,     J, .= 0) 
          (<23,0,A>,  A,  .= 0) (<23,0,B>, B, .= 0) (<23,0,C>,     C, .= 0) (<23,0,E>,         E, .= 0) (<23,0,F>, F, .= 0) (<23,0,G>,     G, .= 0) (<23,0,H>, 1 + G, .+ 1) (<23,0,J>,     J, .= 0) 
          (<24,0,A>,  A,  .= 0) (<24,0,B>, B, .= 0) (<24,0,C>,     C, .= 0) (<24,0,E>,         E, .= 0) (<24,0,F>, F, .= 0) (<24,0,G>,     1, .= 1) (<24,0,H>,     H, .= 0) (<24,0,J>,     J, .= 0) 
          (<25,0,A>,  A,  .= 0) (<25,0,B>, B, .= 0) (<25,0,C>, 1 + C, .+ 1) (<25,0,E>,         E, .= 0) (<25,0,F>, F, .= 0) (<25,0,G>,     G, .= 0) (<25,0,H>,     H, .= 0) (<25,0,J>,     J, .= 0) 
          (<26,0,A>,  A,  .= 0) (<26,0,B>, B, .= 0) (<26,0,C>,     C, .= 0) (<26,0,E>,         E, .= 0) (<26,0,F>, B, .= 0) (<26,0,G>,     0, .= 0) (<26,0,H>,     H, .= 0) (<26,0,J>,     J, .= 0) 
* Step 3: SizeboundsProc WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,E,F,G,H,J)  -> f15(50,5,0,E,F,G,H,J)     True                   (1,1)
          1.  f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J)      [B >= C]               (?,1)
          2.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)  [B >= E && E >= 1 + C] (?,1)
          3.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)  [C >= 1 + E && B >= E] (?,1)
          4.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J)  [B >= E && C = E]      (?,1)
          5.  f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J)  [F >= 1 + G]           (?,1)
          6.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)      [0 >= 1 + G && F >= H] (?,1)
          7.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)      [G >= 1 && F >= H]     (?,1)
          8.  f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J)  [G >= 1 + J]           (?,1)
          9.  f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J)  [F >= H && G = 0]      (?,1)
          10. f50(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,0)      [F >= H]               (?,1)
          11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J)  [G >= J]               (?,1)
          12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J)      [F >= G]               (?,1)
          13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J)  [G >= 1 + H]           (?,1)
          14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J)  [G >= 0]               (?,1)
          15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J)  [F >= H]               (?,1)
          16. f84(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + G,H,J) [H >= 1 + F]           (?,1)
          17. f80(A,B,C,E,F,G,H,J) -> f96(A,B,C,E,F,G,H,J)      [0 >= 1 + G]           (?,1)
          18. f70(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1 + G,H,J)  [H >= G]               (?,1)
          19. f66(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J) [G >= 1 + F]           (?,1)
          20. f54(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + H,J)  [J >= 1 + G]           (?,1)
          21. f50(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,H,J)  [H >= 1 + F]           (?,1)
          22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J)  [J >= G]               (?,1)
          23. f36(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + G,J)  [H >= 1 + F]           (?,1)
          24. f33(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J)      [G >= F]               (?,1)
          25. f19(A,B,C,E,F,G,H,J) -> f15(A,B,1 + C,E,F,G,H,J)  [E >= 1 + B]           (?,1)
          26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J)      [C >= 1 + B]           (?,1)
        Signature:
          {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)}
        Flow Graph:
          [0->{1,26},1->{2,3,4,25},2->{2,3,4,25},3->{2,3,4,25},4->{2,3,4,25},5->{6,7,9,23},6->{8,22},7->{8,22},8->{8
          ,22},9->{6,7,9,23},10->{11,20},11->{11,20},12->{13,18},13->{13,18},14->{15,16},15->{15,16},16->{14,17}
          ,17->{},18->{12,19},19->{14,17},20->{10,21},21->{5,24},22->{6,7,9,23},23->{10,21},24->{12,19},25->{1,26}
          ,26->{5,24}]
        Sizebounds:
          (< 0,0,A>, ?) (< 0,0,B>, ?) (< 0,0,C>, ?) (< 0,0,E>, ?) (< 0,0,F>, ?) (< 0,0,G>, ?) (< 0,0,H>, ?) (< 0,0,J>, ?) 
          (< 1,0,A>, ?) (< 1,0,B>, ?) (< 1,0,C>, ?) (< 1,0,E>, ?) (< 1,0,F>, ?) (< 1,0,G>, ?) (< 1,0,H>, ?) (< 1,0,J>, ?) 
          (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,E>, ?) (< 2,0,F>, ?) (< 2,0,G>, ?) (< 2,0,H>, ?) (< 2,0,J>, ?) 
          (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,E>, ?) (< 3,0,F>, ?) (< 3,0,G>, ?) (< 3,0,H>, ?) (< 3,0,J>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 4,0,E>, ?) (< 4,0,F>, ?) (< 4,0,G>, ?) (< 4,0,H>, ?) (< 4,0,J>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, ?) (< 5,0,G>, ?) (< 5,0,H>, ?) (< 5,0,J>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, ?) (< 6,0,G>, ?) (< 6,0,H>, ?) (< 6,0,J>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, ?) (< 7,0,G>, ?) (< 7,0,H>, ?) (< 7,0,J>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,G>, ?) (< 8,0,H>, ?) (< 8,0,J>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) (< 9,0,G>, ?) (< 9,0,H>, ?) (< 9,0,J>, ?) 
          (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,G>, ?) (<10,0,H>, ?) (<10,0,J>, ?) 
          (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,G>, ?) (<11,0,H>, ?) (<11,0,J>, ?) 
          (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,G>, ?) (<12,0,H>, ?) (<12,0,J>, ?) 
          (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,G>, ?) (<13,0,H>, ?) (<13,0,J>, ?) 
          (<14,0,A>, ?) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,E>, ?) (<14,0,F>, ?) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) 
          (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, ?) (<15,0,G>, ?) (<15,0,H>, ?) (<15,0,J>, ?) 
          (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, ?) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) 
          (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,E>, ?) (<17,0,F>, ?) (<17,0,G>, ?) (<17,0,H>, ?) (<17,0,J>, ?) 
          (<18,0,A>, ?) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, ?) (<18,0,G>, ?) (<18,0,H>, ?) (<18,0,J>, ?) 
          (<19,0,A>, ?) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, ?) (<19,0,G>, ?) (<19,0,H>, ?) (<19,0,J>, ?) 
          (<20,0,A>, ?) (<20,0,B>, ?) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, ?) (<20,0,G>, ?) (<20,0,H>, ?) (<20,0,J>, ?) 
          (<21,0,A>, ?) (<21,0,B>, ?) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, ?) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) 
          (<22,0,A>, ?) (<22,0,B>, ?) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,F>, ?) (<22,0,G>, ?) (<22,0,H>, ?) (<22,0,J>, ?) 
          (<23,0,A>, ?) (<23,0,B>, ?) (<23,0,C>, ?) (<23,0,E>, ?) (<23,0,F>, ?) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) 
          (<24,0,A>, ?) (<24,0,B>, ?) (<24,0,C>, ?) (<24,0,E>, ?) (<24,0,F>, ?) (<24,0,G>, ?) (<24,0,H>, ?) (<24,0,J>, ?) 
          (<25,0,A>, ?) (<25,0,B>, ?) (<25,0,C>, ?) (<25,0,E>, ?) (<25,0,F>, ?) (<25,0,G>, ?) (<25,0,H>, ?) (<25,0,J>, ?) 
          (<26,0,A>, ?) (<26,0,B>, ?) (<26,0,C>, ?) (<26,0,E>, ?) (<26,0,F>, ?) (<26,0,G>, ?) (<26,0,H>, ?) (<26,0,J>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (< 0,0,A>, 50) (< 0,0,B>, 5) (< 0,0,C>, 0) (< 0,0,E>,     E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,J>, J) 
          (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>,     0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) 
          (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>,     6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) 
          (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>,     6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) 
          (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>,     5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) 
          (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>,     ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) 
          (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>,     ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) 
          (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>,     ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) 
          (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>,     ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) 
          (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>,     ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) 
          (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>,     ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) 
          (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>,     ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) 
          (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>,     ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) 
          (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>,     ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) 
          (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>,     ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) 
          (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>,     ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) 
          (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>,     ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) 
          (<17,0,A>, 50) (<17,0,B>, 5) (<17,0,C>, ?) (<17,0,E>,     ?) (<17,0,F>, 5) (<17,0,G>, ?) (<17,0,H>, ?) (<17,0,J>, ?) 
          (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>,     ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) 
          (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>,     ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) 
          (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>,     ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) 
          (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>,     ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) 
          (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>,     ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) 
          (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>,     ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) 
          (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>,     ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) 
          (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>,     6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) 
          (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) 
* Step 4: UnsatPaths WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,E,F,G,H,J)  -> f15(50,5,0,E,F,G,H,J)     True                   (1,1)
          1.  f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J)      [B >= C]               (?,1)
          2.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)  [B >= E && E >= 1 + C] (?,1)
          3.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)  [C >= 1 + E && B >= E] (?,1)
          4.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J)  [B >= E && C = E]      (?,1)
          5.  f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J)  [F >= 1 + G]           (?,1)
          6.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)      [0 >= 1 + G && F >= H] (?,1)
          7.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)      [G >= 1 && F >= H]     (?,1)
          8.  f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J)  [G >= 1 + J]           (?,1)
          9.  f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J)  [F >= H && G = 0]      (?,1)
          10. f50(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,0)      [F >= H]               (?,1)
          11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J)  [G >= J]               (?,1)
          12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J)      [F >= G]               (?,1)
          13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J)  [G >= 1 + H]           (?,1)
          14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J)  [G >= 0]               (?,1)
          15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J)  [F >= H]               (?,1)
          16. f84(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + G,H,J) [H >= 1 + F]           (?,1)
          17. f80(A,B,C,E,F,G,H,J) -> f96(A,B,C,E,F,G,H,J)      [0 >= 1 + G]           (?,1)
          18. f70(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1 + G,H,J)  [H >= G]               (?,1)
          19. f66(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J) [G >= 1 + F]           (?,1)
          20. f54(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + H,J)  [J >= 1 + G]           (?,1)
          21. f50(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,H,J)  [H >= 1 + F]           (?,1)
          22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J)  [J >= G]               (?,1)
          23. f36(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + G,J)  [H >= 1 + F]           (?,1)
          24. f33(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J)      [G >= F]               (?,1)
          25. f19(A,B,C,E,F,G,H,J) -> f15(A,B,1 + C,E,F,G,H,J)  [E >= 1 + B]           (?,1)
          26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J)      [C >= 1 + B]           (?,1)
        Signature:
          {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)}
        Flow Graph:
          [0->{1,26},1->{2,3,4,25},2->{2,3,4,25},3->{2,3,4,25},4->{2,3,4,25},5->{6,7,9,23},6->{8,22},7->{8,22},8->{8
          ,22},9->{6,7,9,23},10->{11,20},11->{11,20},12->{13,18},13->{13,18},14->{15,16},15->{15,16},16->{14,17}
          ,17->{},18->{12,19},19->{14,17},20->{10,21},21->{5,24},22->{6,7,9,23},23->{10,21},24->{12,19},25->{1,26}
          ,26->{5,24}]
        Sizebounds:
          (< 0,0,A>, 50) (< 0,0,B>, 5) (< 0,0,C>, 0) (< 0,0,E>,     E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,J>, J) 
          (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>,     0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) 
          (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>,     6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) 
          (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>,     6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) 
          (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>,     5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) 
          (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>,     ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) 
          (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>,     ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) 
          (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>,     ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) 
          (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>,     ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) 
          (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>,     ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) 
          (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>,     ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) 
          (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>,     ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) 
          (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>,     ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) 
          (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>,     ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) 
          (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>,     ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) 
          (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>,     ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) 
          (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>,     ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) 
          (<17,0,A>, 50) (<17,0,B>, 5) (<17,0,C>, ?) (<17,0,E>,     ?) (<17,0,F>, 5) (<17,0,G>, ?) (<17,0,H>, ?) (<17,0,J>, ?) 
          (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>,     ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) 
          (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>,     ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) 
          (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>,     ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) 
          (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>,     ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) 
          (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>,     ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) 
          (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>,     ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) 
          (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>,     ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) 
          (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>,     6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) 
          (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) 
    + Applied Processor:
        UnsatPaths
    + Details:
        We remove following edges from the transition graph: [(0,26)
                                                             ,(2,3)
                                                             ,(2,4)
                                                             ,(3,2)
                                                             ,(4,3)
                                                             ,(4,4)
                                                             ,(5,23)
                                                             ,(6,8)
                                                             ,(7,22)
                                                             ,(9,6)
                                                             ,(9,7)]
* Step 5: LeafRules WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,E,F,G,H,J)  -> f15(50,5,0,E,F,G,H,J)     True                   (1,1)
          1.  f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J)      [B >= C]               (?,1)
          2.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)  [B >= E && E >= 1 + C] (?,1)
          3.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)  [C >= 1 + E && B >= E] (?,1)
          4.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J)  [B >= E && C = E]      (?,1)
          5.  f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J)  [F >= 1 + G]           (?,1)
          6.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)      [0 >= 1 + G && F >= H] (?,1)
          7.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)      [G >= 1 && F >= H]     (?,1)
          8.  f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J)  [G >= 1 + J]           (?,1)
          9.  f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J)  [F >= H && G = 0]      (?,1)
          10. f50(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,0)      [F >= H]               (?,1)
          11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J)  [G >= J]               (?,1)
          12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J)      [F >= G]               (?,1)
          13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J)  [G >= 1 + H]           (?,1)
          14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J)  [G >= 0]               (?,1)
          15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J)  [F >= H]               (?,1)
          16. f84(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + G,H,J) [H >= 1 + F]           (?,1)
          17. f80(A,B,C,E,F,G,H,J) -> f96(A,B,C,E,F,G,H,J)      [0 >= 1 + G]           (?,1)
          18. f70(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1 + G,H,J)  [H >= G]               (?,1)
          19. f66(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J) [G >= 1 + F]           (?,1)
          20. f54(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + H,J)  [J >= 1 + G]           (?,1)
          21. f50(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,H,J)  [H >= 1 + F]           (?,1)
          22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J)  [J >= G]               (?,1)
          23. f36(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + G,J)  [H >= 1 + F]           (?,1)
          24. f33(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J)      [G >= F]               (?,1)
          25. f19(A,B,C,E,F,G,H,J) -> f15(A,B,1 + C,E,F,G,H,J)  [E >= 1 + B]           (?,1)
          26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J)      [C >= 1 + B]           (?,1)
        Signature:
          {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)}
        Flow Graph:
          [0->{1},1->{2,3,4,25},2->{2,25},3->{3,4,25},4->{2,25},5->{6,7,9},6->{22},7->{8},8->{8,22},9->{9,23}
          ,10->{11,20},11->{11,20},12->{13,18},13->{13,18},14->{15,16},15->{15,16},16->{14,17},17->{},18->{12,19}
          ,19->{14,17},20->{10,21},21->{5,24},22->{6,7,9,23},23->{10,21},24->{12,19},25->{1,26},26->{5,24}]
        Sizebounds:
          (< 0,0,A>, 50) (< 0,0,B>, 5) (< 0,0,C>, 0) (< 0,0,E>,     E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,J>, J) 
          (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>,     0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) 
          (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>,     6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) 
          (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>,     6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) 
          (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>,     5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) 
          (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>,     ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) 
          (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>,     ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) 
          (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>,     ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) 
          (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>,     ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) 
          (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>,     ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) 
          (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>,     ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) 
          (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>,     ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) 
          (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>,     ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) 
          (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>,     ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) 
          (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>,     ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) 
          (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>,     ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) 
          (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>,     ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) 
          (<17,0,A>, 50) (<17,0,B>, 5) (<17,0,C>, ?) (<17,0,E>,     ?) (<17,0,F>, 5) (<17,0,G>, ?) (<17,0,H>, ?) (<17,0,J>, ?) 
          (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>,     ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) 
          (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>,     ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) 
          (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>,     ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) 
          (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>,     ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) 
          (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>,     ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) 
          (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>,     ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) 
          (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>,     ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) 
          (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>,     6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) 
          (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [17]
* Step 6: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,E,F,G,H,J)  -> f15(50,5,0,E,F,G,H,J)     True                   (1,1)
          1.  f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J)      [B >= C]               (?,1)
          2.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)  [B >= E && E >= 1 + C] (?,1)
          3.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)  [C >= 1 + E && B >= E] (?,1)
          4.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J)  [B >= E && C = E]      (?,1)
          5.  f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J)  [F >= 1 + G]           (?,1)
          6.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)      [0 >= 1 + G && F >= H] (?,1)
          7.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)      [G >= 1 && F >= H]     (?,1)
          8.  f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J)  [G >= 1 + J]           (?,1)
          9.  f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J)  [F >= H && G = 0]      (?,1)
          10. f50(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,0)      [F >= H]               (?,1)
          11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J)  [G >= J]               (?,1)
          12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J)      [F >= G]               (?,1)
          13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J)  [G >= 1 + H]           (?,1)
          14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J)  [G >= 0]               (?,1)
          15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J)  [F >= H]               (?,1)
          16. f84(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + G,H,J) [H >= 1 + F]           (?,1)
          18. f70(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1 + G,H,J)  [H >= G]               (?,1)
          19. f66(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J) [G >= 1 + F]           (?,1)
          20. f54(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + H,J)  [J >= 1 + G]           (?,1)
          21. f50(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,H,J)  [H >= 1 + F]           (?,1)
          22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J)  [J >= G]               (?,1)
          23. f36(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + G,J)  [H >= 1 + F]           (?,1)
          24. f33(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J)      [G >= F]               (?,1)
          25. f19(A,B,C,E,F,G,H,J) -> f15(A,B,1 + C,E,F,G,H,J)  [E >= 1 + B]           (?,1)
          26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J)      [C >= 1 + B]           (?,1)
        Signature:
          {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)}
        Flow Graph:
          [0->{1},1->{2,3,4,25},2->{2,25},3->{3,4,25},4->{2,25},5->{6,7,9},6->{22},7->{8},8->{8,22},9->{9,23}
          ,10->{11,20},11->{11,20},12->{13,18},13->{13,18},14->{15,16},15->{15,16},16->{14},18->{12,19},19->{14}
          ,20->{10,21},21->{5,24},22->{6,7,9,23},23->{10,21},24->{12,19},25->{1,26},26->{5,24}]
        Sizebounds:
          (< 0,0,A>, 50) (< 0,0,B>, 5) (< 0,0,C>, 0) (< 0,0,E>,     E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,J>, J) 
          (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>,     0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) 
          (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>,     6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) 
          (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>,     6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) 
          (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>,     5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) 
          (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>,     ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) 
          (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>,     ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) 
          (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>,     ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) 
          (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>,     ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) 
          (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>,     ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) 
          (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>,     ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) 
          (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>,     ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) 
          (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>,     ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) 
          (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>,     ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) 
          (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>,     ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) 
          (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>,     ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) 
          (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>,     ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) 
          (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>,     ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) 
          (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>,     ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) 
          (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>,     ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) 
          (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>,     ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) 
          (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>,     ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) 
          (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>,     ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) 
          (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>,     ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) 
          (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>,     6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) 
          (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 1
          p(f15) = 1
          p(f19) = 1
          p(f33) = 0
          p(f36) = 0
          p(f41) = 0
          p(f50) = 0
          p(f54) = 0
          p(f66) = 0
          p(f70) = 0
          p(f80) = 0
          p(f84) = 0
        
        The following rules are strictly oriented:
                  [C >= 1 + B] ==>                     
          f15(A,B,C,E,F,G,H,J)   = 1                   
                                 > 0                   
                                 = f33(A,B,C,E,B,0,H,J)
        
        
        The following rules are weakly oriented:
                          True ==>                          
           f0(A,B,C,E,F,G,H,J)   = 1                        
                                >= 1                        
                                 = f15(50,5,0,E,F,G,H,J)    
        
                      [B >= C] ==>                          
          f15(A,B,C,E,F,G,H,J)   = 1                        
                                >= 1                        
                                 = f19(A,B,C,0,F,G,H,J)     
        
        [B >= E && E >= 1 + C] ==>                          
          f19(A,B,C,E,F,G,H,J)   = 1                        
                                >= 1                        
                                 = f19(A,B,C,1 + E,F,G,H,J) 
        
        [C >= 1 + E && B >= E] ==>                          
          f19(A,B,C,E,F,G,H,J)   = 1                        
                                >= 1                        
                                 = f19(A,B,C,1 + E,F,G,H,J) 
        
             [B >= E && C = E] ==>                          
          f19(A,B,C,E,F,G,H,J)   = 1                        
                                >= 1                        
                                 = f19(A,B,C,1 + C,F,G,H,J) 
        
                  [F >= 1 + G] ==>                          
          f33(A,B,C,E,F,G,H,J)   = 0                        
                                >= 0                        
                                 = f36(A,B,C,E,F,G,1 + G,J) 
        
        [0 >= 1 + G && F >= H] ==>                          
          f36(A,B,C,E,F,G,H,J)   = 0                        
                                >= 0                        
                                 = f41(A,B,C,E,F,G,H,0)     
        
            [G >= 1 && F >= H] ==>                          
          f36(A,B,C,E,F,G,H,J)   = 0                        
                                >= 0                        
                                 = f41(A,B,C,E,F,G,H,0)     
        
                  [G >= 1 + J] ==>                          
          f41(A,B,C,E,F,G,H,J)   = 0                        
                                >= 0                        
                                 = f41(A,B,C,E,F,G,H,1 + J) 
        
             [F >= H && G = 0] ==>                          
          f36(A,B,C,E,F,G,H,J)   = 0                        
                                >= 0                        
                                 = f36(A,B,C,E,F,0,1 + H,J) 
        
                      [F >= H] ==>                          
          f50(A,B,C,E,F,G,H,J)   = 0                        
                                >= 0                        
                                 = f54(A,B,C,E,F,G,H,0)     
        
                      [G >= J] ==>                          
          f54(A,B,C,E,F,G,H,J)   = 0                        
                                >= 0                        
                                 = f54(A,B,C,E,F,G,H,1 + J) 
        
                      [F >= G] ==>                          
          f66(A,B,C,E,F,G,H,J)   = 0                        
                                >= 0                        
                                 = f70(A,B,C,E,F,G,0,J)     
        
                  [G >= 1 + H] ==>                          
          f70(A,B,C,E,F,G,H,J)   = 0                        
                                >= 0                        
                                 = f70(A,B,C,E,F,G,1 + H,J) 
        
                      [G >= 0] ==>                          
          f80(A,B,C,E,F,G,H,J)   = 0                        
                                >= 0                        
                                 = f84(A,B,C,E,F,G,1 + G,J) 
        
                      [F >= H] ==>                          
          f84(A,B,C,E,F,G,H,J)   = 0                        
                                >= 0                        
                                 = f84(A,B,C,E,F,G,1 + H,J) 
        
                  [H >= 1 + F] ==>                          
          f84(A,B,C,E,F,G,H,J)   = 0                        
                                >= 0                        
                                 = f80(A,B,C,E,F,-1 + G,H,J)
        
                      [H >= G] ==>                          
          f70(A,B,C,E,F,G,H,J)   = 0                        
                                >= 0                        
                                 = f66(A,B,C,E,F,1 + G,H,J) 
        
                  [G >= 1 + F] ==>                          
          f66(A,B,C,E,F,G,H,J)   = 0                        
                                >= 0                        
                                 = f80(A,B,C,E,F,-1 + F,H,J)
        
                  [J >= 1 + G] ==>                          
          f54(A,B,C,E,F,G,H,J)   = 0                        
                                >= 0                        
                                 = f50(A,B,C,E,F,G,1 + H,J) 
        
                  [H >= 1 + F] ==>                          
          f50(A,B,C,E,F,G,H,J)   = 0                        
                                >= 0                        
                                 = f33(A,B,C,E,F,1 + G,H,J) 
        
                      [J >= G] ==>                          
          f41(A,B,C,E,F,G,H,J)   = 0                        
                                >= 0                        
                                 = f36(A,B,C,E,F,G,1 + H,J) 
        
                  [H >= 1 + F] ==>                          
          f36(A,B,C,E,F,G,H,J)   = 0                        
                                >= 0                        
                                 = f50(A,B,C,E,F,G,1 + G,J) 
        
                      [G >= F] ==>                          
          f33(A,B,C,E,F,G,H,J)   = 0                        
                                >= 0                        
                                 = f66(A,B,C,E,F,1,H,J)     
        
                  [E >= 1 + B] ==>                          
          f19(A,B,C,E,F,G,H,J)   = 1                        
                                >= 1                        
                                 = f15(A,B,1 + C,E,F,G,H,J) 
        
        
* Step 7: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,E,F,G,H,J)  -> f15(50,5,0,E,F,G,H,J)     True                   (1,1)
          1.  f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J)      [B >= C]               (?,1)
          2.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)  [B >= E && E >= 1 + C] (?,1)
          3.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)  [C >= 1 + E && B >= E] (?,1)
          4.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J)  [B >= E && C = E]      (?,1)
          5.  f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J)  [F >= 1 + G]           (?,1)
          6.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)      [0 >= 1 + G && F >= H] (?,1)
          7.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)      [G >= 1 && F >= H]     (?,1)
          8.  f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J)  [G >= 1 + J]           (?,1)
          9.  f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J)  [F >= H && G = 0]      (?,1)
          10. f50(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,0)      [F >= H]               (?,1)
          11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J)  [G >= J]               (?,1)
          12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J)      [F >= G]               (?,1)
          13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J)  [G >= 1 + H]           (?,1)
          14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J)  [G >= 0]               (?,1)
          15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J)  [F >= H]               (?,1)
          16. f84(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + G,H,J) [H >= 1 + F]           (?,1)
          18. f70(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1 + G,H,J)  [H >= G]               (?,1)
          19. f66(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J) [G >= 1 + F]           (?,1)
          20. f54(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + H,J)  [J >= 1 + G]           (?,1)
          21. f50(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,H,J)  [H >= 1 + F]           (?,1)
          22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J)  [J >= G]               (?,1)
          23. f36(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + G,J)  [H >= 1 + F]           (?,1)
          24. f33(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J)      [G >= F]               (?,1)
          25. f19(A,B,C,E,F,G,H,J) -> f15(A,B,1 + C,E,F,G,H,J)  [E >= 1 + B]           (?,1)
          26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J)      [C >= 1 + B]           (1,1)
        Signature:
          {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)}
        Flow Graph:
          [0->{1},1->{2,3,4,25},2->{2,25},3->{3,4,25},4->{2,25},5->{6,7,9},6->{22},7->{8},8->{8,22},9->{9,23}
          ,10->{11,20},11->{11,20},12->{13,18},13->{13,18},14->{15,16},15->{15,16},16->{14},18->{12,19},19->{14}
          ,20->{10,21},21->{5,24},22->{6,7,9,23},23->{10,21},24->{12,19},25->{1,26},26->{5,24}]
        Sizebounds:
          (< 0,0,A>, 50) (< 0,0,B>, 5) (< 0,0,C>, 0) (< 0,0,E>,     E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,J>, J) 
          (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>,     0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) 
          (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>,     6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) 
          (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>,     6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) 
          (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>,     5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) 
          (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>,     ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) 
          (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>,     ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) 
          (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>,     ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) 
          (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>,     ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) 
          (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>,     ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) 
          (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>,     ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) 
          (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>,     ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) 
          (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>,     ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) 
          (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>,     ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) 
          (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>,     ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) 
          (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>,     ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) 
          (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>,     ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) 
          (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>,     ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) 
          (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>,     ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) 
          (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>,     ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) 
          (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>,     ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) 
          (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>,     ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) 
          (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>,     ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) 
          (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>,     ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) 
          (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>,     6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) 
          (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 1
          p(f15) = 1
          p(f19) = 1
          p(f33) = 1
          p(f36) = 1
          p(f41) = 1
          p(f50) = 1
          p(f54) = 1
          p(f66) = 0
          p(f70) = 0
          p(f80) = 0
          p(f84) = 0
        
        The following rules are strictly oriented:
                      [G >= F] ==>                     
          f33(A,B,C,E,F,G,H,J)   = 1                   
                                 > 0                   
                                 = f66(A,B,C,E,F,1,H,J)
        
        
        The following rules are weakly oriented:
                          True ==>                          
           f0(A,B,C,E,F,G,H,J)   = 1                        
                                >= 1                        
                                 = f15(50,5,0,E,F,G,H,J)    
        
                      [B >= C] ==>                          
          f15(A,B,C,E,F,G,H,J)   = 1                        
                                >= 1                        
                                 = f19(A,B,C,0,F,G,H,J)     
        
        [B >= E && E >= 1 + C] ==>                          
          f19(A,B,C,E,F,G,H,J)   = 1                        
                                >= 1                        
                                 = f19(A,B,C,1 + E,F,G,H,J) 
        
        [C >= 1 + E && B >= E] ==>                          
          f19(A,B,C,E,F,G,H,J)   = 1                        
                                >= 1                        
                                 = f19(A,B,C,1 + E,F,G,H,J) 
        
             [B >= E && C = E] ==>                          
          f19(A,B,C,E,F,G,H,J)   = 1                        
                                >= 1                        
                                 = f19(A,B,C,1 + C,F,G,H,J) 
        
                  [F >= 1 + G] ==>                          
          f33(A,B,C,E,F,G,H,J)   = 1                        
                                >= 1                        
                                 = f36(A,B,C,E,F,G,1 + G,J) 
        
        [0 >= 1 + G && F >= H] ==>                          
          f36(A,B,C,E,F,G,H,J)   = 1                        
                                >= 1                        
                                 = f41(A,B,C,E,F,G,H,0)     
        
            [G >= 1 && F >= H] ==>                          
          f36(A,B,C,E,F,G,H,J)   = 1                        
                                >= 1                        
                                 = f41(A,B,C,E,F,G,H,0)     
        
                  [G >= 1 + J] ==>                          
          f41(A,B,C,E,F,G,H,J)   = 1                        
                                >= 1                        
                                 = f41(A,B,C,E,F,G,H,1 + J) 
        
             [F >= H && G = 0] ==>                          
          f36(A,B,C,E,F,G,H,J)   = 1                        
                                >= 1                        
                                 = f36(A,B,C,E,F,0,1 + H,J) 
        
                      [F >= H] ==>                          
          f50(A,B,C,E,F,G,H,J)   = 1                        
                                >= 1                        
                                 = f54(A,B,C,E,F,G,H,0)     
        
                      [G >= J] ==>                          
          f54(A,B,C,E,F,G,H,J)   = 1                        
                                >= 1                        
                                 = f54(A,B,C,E,F,G,H,1 + J) 
        
                      [F >= G] ==>                          
          f66(A,B,C,E,F,G,H,J)   = 0                        
                                >= 0                        
                                 = f70(A,B,C,E,F,G,0,J)     
        
                  [G >= 1 + H] ==>                          
          f70(A,B,C,E,F,G,H,J)   = 0                        
                                >= 0                        
                                 = f70(A,B,C,E,F,G,1 + H,J) 
        
                      [G >= 0] ==>                          
          f80(A,B,C,E,F,G,H,J)   = 0                        
                                >= 0                        
                                 = f84(A,B,C,E,F,G,1 + G,J) 
        
                      [F >= H] ==>                          
          f84(A,B,C,E,F,G,H,J)   = 0                        
                                >= 0                        
                                 = f84(A,B,C,E,F,G,1 + H,J) 
        
                  [H >= 1 + F] ==>                          
          f84(A,B,C,E,F,G,H,J)   = 0                        
                                >= 0                        
                                 = f80(A,B,C,E,F,-1 + G,H,J)
        
                      [H >= G] ==>                          
          f70(A,B,C,E,F,G,H,J)   = 0                        
                                >= 0                        
                                 = f66(A,B,C,E,F,1 + G,H,J) 
        
                  [G >= 1 + F] ==>                          
          f66(A,B,C,E,F,G,H,J)   = 0                        
                                >= 0                        
                                 = f80(A,B,C,E,F,-1 + F,H,J)
        
                  [J >= 1 + G] ==>                          
          f54(A,B,C,E,F,G,H,J)   = 1                        
                                >= 1                        
                                 = f50(A,B,C,E,F,G,1 + H,J) 
        
                  [H >= 1 + F] ==>                          
          f50(A,B,C,E,F,G,H,J)   = 1                        
                                >= 1                        
                                 = f33(A,B,C,E,F,1 + G,H,J) 
        
                      [J >= G] ==>                          
          f41(A,B,C,E,F,G,H,J)   = 1                        
                                >= 1                        
                                 = f36(A,B,C,E,F,G,1 + H,J) 
        
                  [H >= 1 + F] ==>                          
          f36(A,B,C,E,F,G,H,J)   = 1                        
                                >= 1                        
                                 = f50(A,B,C,E,F,G,1 + G,J) 
        
                  [E >= 1 + B] ==>                          
          f19(A,B,C,E,F,G,H,J)   = 1                        
                                >= 1                        
                                 = f15(A,B,1 + C,E,F,G,H,J) 
        
                  [C >= 1 + B] ==>                          
          f15(A,B,C,E,F,G,H,J)   = 1                        
                                >= 1                        
                                 = f33(A,B,C,E,B,0,H,J)     
        
        
* Step 8: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,E,F,G,H,J)  -> f15(50,5,0,E,F,G,H,J)     True                   (1,1)
          1.  f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J)      [B >= C]               (?,1)
          2.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)  [B >= E && E >= 1 + C] (?,1)
          3.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)  [C >= 1 + E && B >= E] (?,1)
          4.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J)  [B >= E && C = E]      (?,1)
          5.  f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J)  [F >= 1 + G]           (?,1)
          6.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)      [0 >= 1 + G && F >= H] (?,1)
          7.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)      [G >= 1 && F >= H]     (?,1)
          8.  f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J)  [G >= 1 + J]           (?,1)
          9.  f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J)  [F >= H && G = 0]      (?,1)
          10. f50(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,0)      [F >= H]               (?,1)
          11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J)  [G >= J]               (?,1)
          12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J)      [F >= G]               (?,1)
          13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J)  [G >= 1 + H]           (?,1)
          14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J)  [G >= 0]               (?,1)
          15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J)  [F >= H]               (?,1)
          16. f84(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + G,H,J) [H >= 1 + F]           (?,1)
          18. f70(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1 + G,H,J)  [H >= G]               (?,1)
          19. f66(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J) [G >= 1 + F]           (?,1)
          20. f54(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + H,J)  [J >= 1 + G]           (?,1)
          21. f50(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,H,J)  [H >= 1 + F]           (?,1)
          22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J)  [J >= G]               (?,1)
          23. f36(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + G,J)  [H >= 1 + F]           (?,1)
          24. f33(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J)      [G >= F]               (1,1)
          25. f19(A,B,C,E,F,G,H,J) -> f15(A,B,1 + C,E,F,G,H,J)  [E >= 1 + B]           (?,1)
          26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J)      [C >= 1 + B]           (1,1)
        Signature:
          {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)}
        Flow Graph:
          [0->{1},1->{2,3,4,25},2->{2,25},3->{3,4,25},4->{2,25},5->{6,7,9},6->{22},7->{8},8->{8,22},9->{9,23}
          ,10->{11,20},11->{11,20},12->{13,18},13->{13,18},14->{15,16},15->{15,16},16->{14},18->{12,19},19->{14}
          ,20->{10,21},21->{5,24},22->{6,7,9,23},23->{10,21},24->{12,19},25->{1,26},26->{5,24}]
        Sizebounds:
          (< 0,0,A>, 50) (< 0,0,B>, 5) (< 0,0,C>, 0) (< 0,0,E>,     E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,J>, J) 
          (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>,     0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) 
          (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>,     6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) 
          (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>,     6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) 
          (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>,     5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) 
          (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>,     ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) 
          (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>,     ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) 
          (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>,     ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) 
          (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>,     ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) 
          (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>,     ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) 
          (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>,     ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) 
          (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>,     ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) 
          (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>,     ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) 
          (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>,     ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) 
          (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>,     ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) 
          (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>,     ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) 
          (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>,     ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) 
          (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>,     ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) 
          (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>,     ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) 
          (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>,     ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) 
          (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>,     ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) 
          (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>,     ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) 
          (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>,     ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) 
          (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>,     ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) 
          (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>,     6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) 
          (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 1
          p(f15) = 1
          p(f19) = 1
          p(f33) = 1
          p(f36) = 1
          p(f41) = 1
          p(f50) = 1
          p(f54) = 1
          p(f66) = 1
          p(f70) = 1
          p(f80) = 0
          p(f84) = 0
        
        The following rules are strictly oriented:
                  [G >= 1 + F] ==>                          
          f66(A,B,C,E,F,G,H,J)   = 1                        
                                 > 0                        
                                 = f80(A,B,C,E,F,-1 + F,H,J)
        
        
        The following rules are weakly oriented:
                          True ==>                          
           f0(A,B,C,E,F,G,H,J)   = 1                        
                                >= 1                        
                                 = f15(50,5,0,E,F,G,H,J)    
        
                      [B >= C] ==>                          
          f15(A,B,C,E,F,G,H,J)   = 1                        
                                >= 1                        
                                 = f19(A,B,C,0,F,G,H,J)     
        
        [B >= E && E >= 1 + C] ==>                          
          f19(A,B,C,E,F,G,H,J)   = 1                        
                                >= 1                        
                                 = f19(A,B,C,1 + E,F,G,H,J) 
        
        [C >= 1 + E && B >= E] ==>                          
          f19(A,B,C,E,F,G,H,J)   = 1                        
                                >= 1                        
                                 = f19(A,B,C,1 + E,F,G,H,J) 
        
             [B >= E && C = E] ==>                          
          f19(A,B,C,E,F,G,H,J)   = 1                        
                                >= 1                        
                                 = f19(A,B,C,1 + C,F,G,H,J) 
        
                  [F >= 1 + G] ==>                          
          f33(A,B,C,E,F,G,H,J)   = 1                        
                                >= 1                        
                                 = f36(A,B,C,E,F,G,1 + G,J) 
        
        [0 >= 1 + G && F >= H] ==>                          
          f36(A,B,C,E,F,G,H,J)   = 1                        
                                >= 1                        
                                 = f41(A,B,C,E,F,G,H,0)     
        
            [G >= 1 && F >= H] ==>                          
          f36(A,B,C,E,F,G,H,J)   = 1                        
                                >= 1                        
                                 = f41(A,B,C,E,F,G,H,0)     
        
                  [G >= 1 + J] ==>                          
          f41(A,B,C,E,F,G,H,J)   = 1                        
                                >= 1                        
                                 = f41(A,B,C,E,F,G,H,1 + J) 
        
             [F >= H && G = 0] ==>                          
          f36(A,B,C,E,F,G,H,J)   = 1                        
                                >= 1                        
                                 = f36(A,B,C,E,F,0,1 + H,J) 
        
                      [F >= H] ==>                          
          f50(A,B,C,E,F,G,H,J)   = 1                        
                                >= 1                        
                                 = f54(A,B,C,E,F,G,H,0)     
        
                      [G >= J] ==>                          
          f54(A,B,C,E,F,G,H,J)   = 1                        
                                >= 1                        
                                 = f54(A,B,C,E,F,G,H,1 + J) 
        
                      [F >= G] ==>                          
          f66(A,B,C,E,F,G,H,J)   = 1                        
                                >= 1                        
                                 = f70(A,B,C,E,F,G,0,J)     
        
                  [G >= 1 + H] ==>                          
          f70(A,B,C,E,F,G,H,J)   = 1                        
                                >= 1                        
                                 = f70(A,B,C,E,F,G,1 + H,J) 
        
                      [G >= 0] ==>                          
          f80(A,B,C,E,F,G,H,J)   = 0                        
                                >= 0                        
                                 = f84(A,B,C,E,F,G,1 + G,J) 
        
                      [F >= H] ==>                          
          f84(A,B,C,E,F,G,H,J)   = 0                        
                                >= 0                        
                                 = f84(A,B,C,E,F,G,1 + H,J) 
        
                  [H >= 1 + F] ==>                          
          f84(A,B,C,E,F,G,H,J)   = 0                        
                                >= 0                        
                                 = f80(A,B,C,E,F,-1 + G,H,J)
        
                      [H >= G] ==>                          
          f70(A,B,C,E,F,G,H,J)   = 1                        
                                >= 1                        
                                 = f66(A,B,C,E,F,1 + G,H,J) 
        
                  [J >= 1 + G] ==>                          
          f54(A,B,C,E,F,G,H,J)   = 1                        
                                >= 1                        
                                 = f50(A,B,C,E,F,G,1 + H,J) 
        
                  [H >= 1 + F] ==>                          
          f50(A,B,C,E,F,G,H,J)   = 1                        
                                >= 1                        
                                 = f33(A,B,C,E,F,1 + G,H,J) 
        
                      [J >= G] ==>                          
          f41(A,B,C,E,F,G,H,J)   = 1                        
                                >= 1                        
                                 = f36(A,B,C,E,F,G,1 + H,J) 
        
                  [H >= 1 + F] ==>                          
          f36(A,B,C,E,F,G,H,J)   = 1                        
                                >= 1                        
                                 = f50(A,B,C,E,F,G,1 + G,J) 
        
                      [G >= F] ==>                          
          f33(A,B,C,E,F,G,H,J)   = 1                        
                                >= 1                        
                                 = f66(A,B,C,E,F,1,H,J)     
        
                  [E >= 1 + B] ==>                          
          f19(A,B,C,E,F,G,H,J)   = 1                        
                                >= 1                        
                                 = f15(A,B,1 + C,E,F,G,H,J) 
        
                  [C >= 1 + B] ==>                          
          f15(A,B,C,E,F,G,H,J)   = 1                        
                                >= 1                        
                                 = f33(A,B,C,E,B,0,H,J)     
        
        
* Step 9: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,E,F,G,H,J)  -> f15(50,5,0,E,F,G,H,J)     True                   (1,1)
          1.  f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J)      [B >= C]               (?,1)
          2.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)  [B >= E && E >= 1 + C] (?,1)
          3.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)  [C >= 1 + E && B >= E] (?,1)
          4.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J)  [B >= E && C = E]      (?,1)
          5.  f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J)  [F >= 1 + G]           (?,1)
          6.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)      [0 >= 1 + G && F >= H] (?,1)
          7.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)      [G >= 1 && F >= H]     (?,1)
          8.  f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J)  [G >= 1 + J]           (?,1)
          9.  f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J)  [F >= H && G = 0]      (?,1)
          10. f50(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,0)      [F >= H]               (?,1)
          11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J)  [G >= J]               (?,1)
          12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J)      [F >= G]               (?,1)
          13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J)  [G >= 1 + H]           (?,1)
          14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J)  [G >= 0]               (?,1)
          15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J)  [F >= H]               (?,1)
          16. f84(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + G,H,J) [H >= 1 + F]           (?,1)
          18. f70(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1 + G,H,J)  [H >= G]               (?,1)
          19. f66(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J) [G >= 1 + F]           (1,1)
          20. f54(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + H,J)  [J >= 1 + G]           (?,1)
          21. f50(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,H,J)  [H >= 1 + F]           (?,1)
          22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J)  [J >= G]               (?,1)
          23. f36(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + G,J)  [H >= 1 + F]           (?,1)
          24. f33(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J)      [G >= F]               (1,1)
          25. f19(A,B,C,E,F,G,H,J) -> f15(A,B,1 + C,E,F,G,H,J)  [E >= 1 + B]           (?,1)
          26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J)      [C >= 1 + B]           (1,1)
        Signature:
          {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)}
        Flow Graph:
          [0->{1},1->{2,3,4,25},2->{2,25},3->{3,4,25},4->{2,25},5->{6,7,9},6->{22},7->{8},8->{8,22},9->{9,23}
          ,10->{11,20},11->{11,20},12->{13,18},13->{13,18},14->{15,16},15->{15,16},16->{14},18->{12,19},19->{14}
          ,20->{10,21},21->{5,24},22->{6,7,9,23},23->{10,21},24->{12,19},25->{1,26},26->{5,24}]
        Sizebounds:
          (< 0,0,A>, 50) (< 0,0,B>, 5) (< 0,0,C>, 0) (< 0,0,E>,     E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,J>, J) 
          (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>,     0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) 
          (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>,     6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) 
          (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>,     6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) 
          (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>,     5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) 
          (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>,     ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) 
          (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>,     ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) 
          (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>,     ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) 
          (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>,     ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) 
          (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>,     ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) 
          (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>,     ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) 
          (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>,     ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) 
          (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>,     ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) 
          (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>,     ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) 
          (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>,     ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) 
          (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>,     ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) 
          (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>,     ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) 
          (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>,     ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) 
          (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>,     ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) 
          (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>,     ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) 
          (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>,     ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) 
          (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>,     ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) 
          (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>,     ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) 
          (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>,     ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) 
          (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>,     6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) 
          (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 6     
          p(f15) = 1 + x2
          p(f19) = 1 + x2
          p(f33) = 1 + x5
          p(f36) = 1 + x5
          p(f41) = 1 + x5
          p(f50) = 1 + x5
          p(f54) = 1 + x5
          p(f66) = 1 + x5
          p(f70) = 1 + x5
          p(f80) = 2 + x6
          p(f84) = 1 + x6
        
        The following rules are strictly oriented:
                      [G >= 0] ==>                         
          f80(A,B,C,E,F,G,H,J)   = 2 + G                   
                                 > 1 + G                   
                                 = f84(A,B,C,E,F,G,1 + G,J)
        
        
        The following rules are weakly oriented:
                          True ==>                          
           f0(A,B,C,E,F,G,H,J)   = 6                        
                                >= 6                        
                                 = f15(50,5,0,E,F,G,H,J)    
        
                      [B >= C] ==>                          
          f15(A,B,C,E,F,G,H,J)   = 1 + B                    
                                >= 1 + B                    
                                 = f19(A,B,C,0,F,G,H,J)     
        
        [B >= E && E >= 1 + C] ==>                          
          f19(A,B,C,E,F,G,H,J)   = 1 + B                    
                                >= 1 + B                    
                                 = f19(A,B,C,1 + E,F,G,H,J) 
        
        [C >= 1 + E && B >= E] ==>                          
          f19(A,B,C,E,F,G,H,J)   = 1 + B                    
                                >= 1 + B                    
                                 = f19(A,B,C,1 + E,F,G,H,J) 
        
             [B >= E && C = E] ==>                          
          f19(A,B,C,E,F,G,H,J)   = 1 + B                    
                                >= 1 + B                    
                                 = f19(A,B,C,1 + C,F,G,H,J) 
        
                  [F >= 1 + G] ==>                          
          f33(A,B,C,E,F,G,H,J)   = 1 + F                    
                                >= 1 + F                    
                                 = f36(A,B,C,E,F,G,1 + G,J) 
        
        [0 >= 1 + G && F >= H] ==>                          
          f36(A,B,C,E,F,G,H,J)   = 1 + F                    
                                >= 1 + F                    
                                 = f41(A,B,C,E,F,G,H,0)     
        
            [G >= 1 && F >= H] ==>                          
          f36(A,B,C,E,F,G,H,J)   = 1 + F                    
                                >= 1 + F                    
                                 = f41(A,B,C,E,F,G,H,0)     
        
                  [G >= 1 + J] ==>                          
          f41(A,B,C,E,F,G,H,J)   = 1 + F                    
                                >= 1 + F                    
                                 = f41(A,B,C,E,F,G,H,1 + J) 
        
             [F >= H && G = 0] ==>                          
          f36(A,B,C,E,F,G,H,J)   = 1 + F                    
                                >= 1 + F                    
                                 = f36(A,B,C,E,F,0,1 + H,J) 
        
                      [F >= H] ==>                          
          f50(A,B,C,E,F,G,H,J)   = 1 + F                    
                                >= 1 + F                    
                                 = f54(A,B,C,E,F,G,H,0)     
        
                      [G >= J] ==>                          
          f54(A,B,C,E,F,G,H,J)   = 1 + F                    
                                >= 1 + F                    
                                 = f54(A,B,C,E,F,G,H,1 + J) 
        
                      [F >= G] ==>                          
          f66(A,B,C,E,F,G,H,J)   = 1 + F                    
                                >= 1 + F                    
                                 = f70(A,B,C,E,F,G,0,J)     
        
                  [G >= 1 + H] ==>                          
          f70(A,B,C,E,F,G,H,J)   = 1 + F                    
                                >= 1 + F                    
                                 = f70(A,B,C,E,F,G,1 + H,J) 
        
                      [F >= H] ==>                          
          f84(A,B,C,E,F,G,H,J)   = 1 + G                    
                                >= 1 + G                    
                                 = f84(A,B,C,E,F,G,1 + H,J) 
        
                  [H >= 1 + F] ==>                          
          f84(A,B,C,E,F,G,H,J)   = 1 + G                    
                                >= 1 + G                    
                                 = f80(A,B,C,E,F,-1 + G,H,J)
        
                      [H >= G] ==>                          
          f70(A,B,C,E,F,G,H,J)   = 1 + F                    
                                >= 1 + F                    
                                 = f66(A,B,C,E,F,1 + G,H,J) 
        
                  [G >= 1 + F] ==>                          
          f66(A,B,C,E,F,G,H,J)   = 1 + F                    
                                >= 1 + F                    
                                 = f80(A,B,C,E,F,-1 + F,H,J)
        
                  [J >= 1 + G] ==>                          
          f54(A,B,C,E,F,G,H,J)   = 1 + F                    
                                >= 1 + F                    
                                 = f50(A,B,C,E,F,G,1 + H,J) 
        
                  [H >= 1 + F] ==>                          
          f50(A,B,C,E,F,G,H,J)   = 1 + F                    
                                >= 1 + F                    
                                 = f33(A,B,C,E,F,1 + G,H,J) 
        
                      [J >= G] ==>                          
          f41(A,B,C,E,F,G,H,J)   = 1 + F                    
                                >= 1 + F                    
                                 = f36(A,B,C,E,F,G,1 + H,J) 
        
                  [H >= 1 + F] ==>                          
          f36(A,B,C,E,F,G,H,J)   = 1 + F                    
                                >= 1 + F                    
                                 = f50(A,B,C,E,F,G,1 + G,J) 
        
                      [G >= F] ==>                          
          f33(A,B,C,E,F,G,H,J)   = 1 + F                    
                                >= 1 + F                    
                                 = f66(A,B,C,E,F,1,H,J)     
        
                  [E >= 1 + B] ==>                          
          f19(A,B,C,E,F,G,H,J)   = 1 + B                    
                                >= 1 + B                    
                                 = f15(A,B,1 + C,E,F,G,H,J) 
        
                  [C >= 1 + B] ==>                          
          f15(A,B,C,E,F,G,H,J)   = 1 + B                    
                                >= 1 + B                    
                                 = f33(A,B,C,E,B,0,H,J)     
        
        
* Step 10: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,E,F,G,H,J)  -> f15(50,5,0,E,F,G,H,J)     True                   (1,1)
          1.  f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J)      [B >= C]               (?,1)
          2.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)  [B >= E && E >= 1 + C] (?,1)
          3.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)  [C >= 1 + E && B >= E] (?,1)
          4.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J)  [B >= E && C = E]      (?,1)
          5.  f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J)  [F >= 1 + G]           (?,1)
          6.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)      [0 >= 1 + G && F >= H] (?,1)
          7.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)      [G >= 1 && F >= H]     (?,1)
          8.  f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J)  [G >= 1 + J]           (?,1)
          9.  f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J)  [F >= H && G = 0]      (?,1)
          10. f50(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,0)      [F >= H]               (?,1)
          11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J)  [G >= J]               (?,1)
          12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J)      [F >= G]               (?,1)
          13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J)  [G >= 1 + H]           (?,1)
          14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J)  [G >= 0]               (6,1)
          15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J)  [F >= H]               (?,1)
          16. f84(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + G,H,J) [H >= 1 + F]           (?,1)
          18. f70(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1 + G,H,J)  [H >= G]               (?,1)
          19. f66(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J) [G >= 1 + F]           (1,1)
          20. f54(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + H,J)  [J >= 1 + G]           (?,1)
          21. f50(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,H,J)  [H >= 1 + F]           (?,1)
          22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J)  [J >= G]               (?,1)
          23. f36(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + G,J)  [H >= 1 + F]           (?,1)
          24. f33(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J)      [G >= F]               (1,1)
          25. f19(A,B,C,E,F,G,H,J) -> f15(A,B,1 + C,E,F,G,H,J)  [E >= 1 + B]           (?,1)
          26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J)      [C >= 1 + B]           (1,1)
        Signature:
          {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)}
        Flow Graph:
          [0->{1},1->{2,3,4,25},2->{2,25},3->{3,4,25},4->{2,25},5->{6,7,9},6->{22},7->{8},8->{8,22},9->{9,23}
          ,10->{11,20},11->{11,20},12->{13,18},13->{13,18},14->{15,16},15->{15,16},16->{14},18->{12,19},19->{14}
          ,20->{10,21},21->{5,24},22->{6,7,9,23},23->{10,21},24->{12,19},25->{1,26},26->{5,24}]
        Sizebounds:
          (< 0,0,A>, 50) (< 0,0,B>, 5) (< 0,0,C>, 0) (< 0,0,E>,     E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,J>, J) 
          (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>,     0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) 
          (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>,     6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) 
          (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>,     6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) 
          (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>,     5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) 
          (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>,     ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) 
          (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>,     ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) 
          (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>,     ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) 
          (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>,     ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) 
          (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>,     ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) 
          (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>,     ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) 
          (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>,     ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) 
          (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>,     ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) 
          (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>,     ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) 
          (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>,     ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) 
          (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>,     ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) 
          (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>,     ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) 
          (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>,     ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) 
          (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>,     ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) 
          (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>,     ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) 
          (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>,     ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) 
          (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>,     ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) 
          (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>,     ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) 
          (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>,     ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) 
          (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>,     6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) 
          (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 7             
          p(f15) = 2 + x2 + -1*x3
          p(f19) = 1 + x2 + -1*x3
          p(f33) = 1 + x2 + -1*x3
          p(f36) = 1 + x2 + -1*x3
          p(f41) = 1 + x2 + -1*x3
          p(f50) = 1 + x2 + -1*x3
          p(f54) = 1 + x2 + -1*x3
          p(f66) = 1 + x2 + -1*x3
          p(f70) = 1 + x2 + -1*x3
          p(f80) = 1 + x2 + -1*x3
          p(f84) = 1 + x2 + -1*x3
        
        The following rules are strictly oriented:
                      [B >= C] ==>                     
          f15(A,B,C,E,F,G,H,J)   = 2 + B + -1*C        
                                 > 1 + B + -1*C        
                                 = f19(A,B,C,0,F,G,H,J)
        
        
        The following rules are weakly oriented:
                          True ==>                          
           f0(A,B,C,E,F,G,H,J)   = 7                        
                                >= 7                        
                                 = f15(50,5,0,E,F,G,H,J)    
        
        [B >= E && E >= 1 + C] ==>                          
          f19(A,B,C,E,F,G,H,J)   = 1 + B + -1*C             
                                >= 1 + B + -1*C             
                                 = f19(A,B,C,1 + E,F,G,H,J) 
        
        [C >= 1 + E && B >= E] ==>                          
          f19(A,B,C,E,F,G,H,J)   = 1 + B + -1*C             
                                >= 1 + B + -1*C             
                                 = f19(A,B,C,1 + E,F,G,H,J) 
        
             [B >= E && C = E] ==>                          
          f19(A,B,C,E,F,G,H,J)   = 1 + B + -1*C             
                                >= 1 + B + -1*C             
                                 = f19(A,B,C,1 + C,F,G,H,J) 
        
                  [F >= 1 + G] ==>                          
          f33(A,B,C,E,F,G,H,J)   = 1 + B + -1*C             
                                >= 1 + B + -1*C             
                                 = f36(A,B,C,E,F,G,1 + G,J) 
        
        [0 >= 1 + G && F >= H] ==>                          
          f36(A,B,C,E,F,G,H,J)   = 1 + B + -1*C             
                                >= 1 + B + -1*C             
                                 = f41(A,B,C,E,F,G,H,0)     
        
            [G >= 1 && F >= H] ==>                          
          f36(A,B,C,E,F,G,H,J)   = 1 + B + -1*C             
                                >= 1 + B + -1*C             
                                 = f41(A,B,C,E,F,G,H,0)     
        
                  [G >= 1 + J] ==>                          
          f41(A,B,C,E,F,G,H,J)   = 1 + B + -1*C             
                                >= 1 + B + -1*C             
                                 = f41(A,B,C,E,F,G,H,1 + J) 
        
             [F >= H && G = 0] ==>                          
          f36(A,B,C,E,F,G,H,J)   = 1 + B + -1*C             
                                >= 1 + B + -1*C             
                                 = f36(A,B,C,E,F,0,1 + H,J) 
        
                      [F >= H] ==>                          
          f50(A,B,C,E,F,G,H,J)   = 1 + B + -1*C             
                                >= 1 + B + -1*C             
                                 = f54(A,B,C,E,F,G,H,0)     
        
                      [G >= J] ==>                          
          f54(A,B,C,E,F,G,H,J)   = 1 + B + -1*C             
                                >= 1 + B + -1*C             
                                 = f54(A,B,C,E,F,G,H,1 + J) 
        
                      [F >= G] ==>                          
          f66(A,B,C,E,F,G,H,J)   = 1 + B + -1*C             
                                >= 1 + B + -1*C             
                                 = f70(A,B,C,E,F,G,0,J)     
        
                  [G >= 1 + H] ==>                          
          f70(A,B,C,E,F,G,H,J)   = 1 + B + -1*C             
                                >= 1 + B + -1*C             
                                 = f70(A,B,C,E,F,G,1 + H,J) 
        
                      [G >= 0] ==>                          
          f80(A,B,C,E,F,G,H,J)   = 1 + B + -1*C             
                                >= 1 + B + -1*C             
                                 = f84(A,B,C,E,F,G,1 + G,J) 
        
                      [F >= H] ==>                          
          f84(A,B,C,E,F,G,H,J)   = 1 + B + -1*C             
                                >= 1 + B + -1*C             
                                 = f84(A,B,C,E,F,G,1 + H,J) 
        
                  [H >= 1 + F] ==>                          
          f84(A,B,C,E,F,G,H,J)   = 1 + B + -1*C             
                                >= 1 + B + -1*C             
                                 = f80(A,B,C,E,F,-1 + G,H,J)
        
                      [H >= G] ==>                          
          f70(A,B,C,E,F,G,H,J)   = 1 + B + -1*C             
                                >= 1 + B + -1*C             
                                 = f66(A,B,C,E,F,1 + G,H,J) 
        
                  [G >= 1 + F] ==>                          
          f66(A,B,C,E,F,G,H,J)   = 1 + B + -1*C             
                                >= 1 + B + -1*C             
                                 = f80(A,B,C,E,F,-1 + F,H,J)
        
                  [J >= 1 + G] ==>                          
          f54(A,B,C,E,F,G,H,J)   = 1 + B + -1*C             
                                >= 1 + B + -1*C             
                                 = f50(A,B,C,E,F,G,1 + H,J) 
        
                  [H >= 1 + F] ==>                          
          f50(A,B,C,E,F,G,H,J)   = 1 + B + -1*C             
                                >= 1 + B + -1*C             
                                 = f33(A,B,C,E,F,1 + G,H,J) 
        
                      [J >= G] ==>                          
          f41(A,B,C,E,F,G,H,J)   = 1 + B + -1*C             
                                >= 1 + B + -1*C             
                                 = f36(A,B,C,E,F,G,1 + H,J) 
        
                  [H >= 1 + F] ==>                          
          f36(A,B,C,E,F,G,H,J)   = 1 + B + -1*C             
                                >= 1 + B + -1*C             
                                 = f50(A,B,C,E,F,G,1 + G,J) 
        
                      [G >= F] ==>                          
          f33(A,B,C,E,F,G,H,J)   = 1 + B + -1*C             
                                >= 1 + B + -1*C             
                                 = f66(A,B,C,E,F,1,H,J)     
        
                  [E >= 1 + B] ==>                          
          f19(A,B,C,E,F,G,H,J)   = 1 + B + -1*C             
                                >= 1 + B + -1*C             
                                 = f15(A,B,1 + C,E,F,G,H,J) 
        
                  [C >= 1 + B] ==>                          
          f15(A,B,C,E,F,G,H,J)   = 2 + B + -1*C             
                                >= 1 + B + -1*C             
                                 = f33(A,B,C,E,B,0,H,J)     
        
        
* Step 11: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,E,F,G,H,J)  -> f15(50,5,0,E,F,G,H,J)     True                   (1,1)
          1.  f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J)      [B >= C]               (7,1)
          2.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)  [B >= E && E >= 1 + C] (?,1)
          3.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)  [C >= 1 + E && B >= E] (?,1)
          4.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J)  [B >= E && C = E]      (?,1)
          5.  f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J)  [F >= 1 + G]           (?,1)
          6.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)      [0 >= 1 + G && F >= H] (?,1)
          7.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)      [G >= 1 && F >= H]     (?,1)
          8.  f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J)  [G >= 1 + J]           (?,1)
          9.  f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J)  [F >= H && G = 0]      (?,1)
          10. f50(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,0)      [F >= H]               (?,1)
          11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J)  [G >= J]               (?,1)
          12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J)      [F >= G]               (?,1)
          13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J)  [G >= 1 + H]           (?,1)
          14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J)  [G >= 0]               (6,1)
          15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J)  [F >= H]               (?,1)
          16. f84(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + G,H,J) [H >= 1 + F]           (?,1)
          18. f70(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1 + G,H,J)  [H >= G]               (?,1)
          19. f66(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J) [G >= 1 + F]           (1,1)
          20. f54(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + H,J)  [J >= 1 + G]           (?,1)
          21. f50(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,H,J)  [H >= 1 + F]           (?,1)
          22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J)  [J >= G]               (?,1)
          23. f36(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + G,J)  [H >= 1 + F]           (?,1)
          24. f33(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J)      [G >= F]               (1,1)
          25. f19(A,B,C,E,F,G,H,J) -> f15(A,B,1 + C,E,F,G,H,J)  [E >= 1 + B]           (?,1)
          26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J)      [C >= 1 + B]           (1,1)
        Signature:
          {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)}
        Flow Graph:
          [0->{1},1->{2,3,4,25},2->{2,25},3->{3,4,25},4->{2,25},5->{6,7,9},6->{22},7->{8},8->{8,22},9->{9,23}
          ,10->{11,20},11->{11,20},12->{13,18},13->{13,18},14->{15,16},15->{15,16},16->{14},18->{12,19},19->{14}
          ,20->{10,21},21->{5,24},22->{6,7,9,23},23->{10,21},24->{12,19},25->{1,26},26->{5,24}]
        Sizebounds:
          (< 0,0,A>, 50) (< 0,0,B>, 5) (< 0,0,C>, 0) (< 0,0,E>,     E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,J>, J) 
          (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>,     0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) 
          (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>,     6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) 
          (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>,     6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) 
          (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>,     5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) 
          (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>,     ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) 
          (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>,     ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) 
          (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>,     ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) 
          (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>,     ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) 
          (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>,     ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) 
          (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>,     ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) 
          (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>,     ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) 
          (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>,     ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) 
          (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>,     ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) 
          (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>,     ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) 
          (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>,     ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) 
          (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>,     ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) 
          (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>,     ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) 
          (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>,     ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) 
          (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>,     ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) 
          (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>,     ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) 
          (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>,     ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) 
          (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>,     ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) 
          (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>,     ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) 
          (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>,     6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) 
          (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [2,4,3], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f19) = 1 + x3 + -1*x4
        
        The following rules are strictly oriented:
             [B >= E && C = E] ==>                         
          f19(A,B,C,E,F,G,H,J)   = 1 + C + -1*E            
                                 > 0                       
                                 = f19(A,B,C,1 + C,F,G,H,J)
        
        
        The following rules are weakly oriented:
        [B >= E && E >= 1 + C] ==>                         
          f19(A,B,C,E,F,G,H,J)   = 1 + C + -1*E            
                                >= C + -1*E                
                                 = f19(A,B,C,1 + E,F,G,H,J)
        
        [C >= 1 + E && B >= E] ==>                         
          f19(A,B,C,E,F,G,H,J)   = 1 + C + -1*E            
                                >= C + -1*E                
                                 = f19(A,B,C,1 + E,F,G,H,J)
        
        We use the following global sizebounds:
        (< 0,0,A>, 50) (< 0,0,B>, 5) (< 0,0,C>, 0) (< 0,0,E>,     E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,J>, J) 
        (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>,     0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) 
        (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>,     6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) 
        (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>,     6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) 
        (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>,     5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) 
        (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>,     ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) 
        (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>,     ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) 
        (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>,     ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) 
        (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>,     ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) 
        (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>,     ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) 
        (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>,     ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) 
        (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>,     ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) 
        (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>,     ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) 
        (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>,     ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) 
        (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>,     ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) 
        (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>,     ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) 
        (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>,     ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) 
        (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>,     ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) 
        (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>,     ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) 
        (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>,     ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) 
        (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>,     ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) 
        (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>,     ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) 
        (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>,     ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) 
        (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>,     ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) 
        (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>,     6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) 
        (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) 
* Step 12: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,E,F,G,H,J)  -> f15(50,5,0,E,F,G,H,J)     True                   (1,1) 
          1.  f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J)      [B >= C]               (7,1) 
          2.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)  [B >= E && E >= 1 + C] (?,1) 
          3.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)  [C >= 1 + E && B >= E] (?,1) 
          4.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J)  [B >= E && C = E]      (42,1)
          5.  f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J)  [F >= 1 + G]           (?,1) 
          6.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)      [0 >= 1 + G && F >= H] (?,1) 
          7.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)      [G >= 1 && F >= H]     (?,1) 
          8.  f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J)  [G >= 1 + J]           (?,1) 
          9.  f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J)  [F >= H && G = 0]      (?,1) 
          10. f50(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,0)      [F >= H]               (?,1) 
          11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J)  [G >= J]               (?,1) 
          12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J)      [F >= G]               (?,1) 
          13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J)  [G >= 1 + H]           (?,1) 
          14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J)  [G >= 0]               (6,1) 
          15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J)  [F >= H]               (?,1) 
          16. f84(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + G,H,J) [H >= 1 + F]           (?,1) 
          18. f70(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1 + G,H,J)  [H >= G]               (?,1) 
          19. f66(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J) [G >= 1 + F]           (1,1) 
          20. f54(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + H,J)  [J >= 1 + G]           (?,1) 
          21. f50(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,H,J)  [H >= 1 + F]           (?,1) 
          22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J)  [J >= G]               (?,1) 
          23. f36(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + G,J)  [H >= 1 + F]           (?,1) 
          24. f33(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J)      [G >= F]               (1,1) 
          25. f19(A,B,C,E,F,G,H,J) -> f15(A,B,1 + C,E,F,G,H,J)  [E >= 1 + B]           (?,1) 
          26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J)      [C >= 1 + B]           (1,1) 
        Signature:
          {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)}
        Flow Graph:
          [0->{1},1->{2,3,4,25},2->{2,25},3->{3,4,25},4->{2,25},5->{6,7,9},6->{22},7->{8},8->{8,22},9->{9,23}
          ,10->{11,20},11->{11,20},12->{13,18},13->{13,18},14->{15,16},15->{15,16},16->{14},18->{12,19},19->{14}
          ,20->{10,21},21->{5,24},22->{6,7,9,23},23->{10,21},24->{12,19},25->{1,26},26->{5,24}]
        Sizebounds:
          (< 0,0,A>, 50) (< 0,0,B>, 5) (< 0,0,C>, 0) (< 0,0,E>,     E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,J>, J) 
          (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>,     0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) 
          (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>,     6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) 
          (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>,     6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) 
          (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>,     5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) 
          (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>,     ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) 
          (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>,     ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) 
          (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>,     ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) 
          (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>,     ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) 
          (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>,     ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) 
          (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>,     ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) 
          (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>,     ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) 
          (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>,     ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) 
          (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>,     ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) 
          (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>,     ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) 
          (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>,     ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) 
          (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>,     ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) 
          (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>,     ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) 
          (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>,     ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) 
          (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>,     ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) 
          (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>,     ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) 
          (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>,     ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) 
          (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>,     ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) 
          (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>,     ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) 
          (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>,     6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) 
          (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [25,2,4,3], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f15) = 0
          p(f19) = 1
        
        The following rules are strictly oriented:
                  [E >= 1 + B] ==>                         
          f19(A,B,C,E,F,G,H,J)   = 1                       
                                 > 0                       
                                 = f15(A,B,1 + C,E,F,G,H,J)
        
        
        The following rules are weakly oriented:
        [B >= E && E >= 1 + C] ==>                         
          f19(A,B,C,E,F,G,H,J)   = 1                       
                                >= 1                       
                                 = f19(A,B,C,1 + E,F,G,H,J)
        
        [C >= 1 + E && B >= E] ==>                         
          f19(A,B,C,E,F,G,H,J)   = 1                       
                                >= 1                       
                                 = f19(A,B,C,1 + E,F,G,H,J)
        
             [B >= E && C = E] ==>                         
          f19(A,B,C,E,F,G,H,J)   = 1                       
                                >= 1                       
                                 = f19(A,B,C,1 + C,F,G,H,J)
        
        We use the following global sizebounds:
        (< 0,0,A>, 50) (< 0,0,B>, 5) (< 0,0,C>, 0) (< 0,0,E>,     E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,J>, J) 
        (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>,     0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) 
        (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>,     6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) 
        (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>,     6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) 
        (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>,     5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) 
        (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>,     ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) 
        (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>,     ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) 
        (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>,     ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) 
        (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>,     ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) 
        (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>,     ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) 
        (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>,     ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) 
        (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>,     ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) 
        (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>,     ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) 
        (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>,     ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) 
        (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>,     ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) 
        (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>,     ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) 
        (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>,     ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) 
        (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>,     ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) 
        (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>,     ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) 
        (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>,     ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) 
        (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>,     ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) 
        (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>,     ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) 
        (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>,     ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) 
        (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>,     ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) 
        (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>,     6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) 
        (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) 
* Step 13: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,E,F,G,H,J)  -> f15(50,5,0,E,F,G,H,J)     True                   (1,1) 
          1.  f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J)      [B >= C]               (7,1) 
          2.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)  [B >= E && E >= 1 + C] (?,1) 
          3.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)  [C >= 1 + E && B >= E] (?,1) 
          4.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J)  [B >= E && C = E]      (42,1)
          5.  f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J)  [F >= 1 + G]           (?,1) 
          6.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)      [0 >= 1 + G && F >= H] (?,1) 
          7.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)      [G >= 1 && F >= H]     (?,1) 
          8.  f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J)  [G >= 1 + J]           (?,1) 
          9.  f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J)  [F >= H && G = 0]      (?,1) 
          10. f50(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,0)      [F >= H]               (?,1) 
          11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J)  [G >= J]               (?,1) 
          12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J)      [F >= G]               (?,1) 
          13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J)  [G >= 1 + H]           (?,1) 
          14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J)  [G >= 0]               (6,1) 
          15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J)  [F >= H]               (?,1) 
          16. f84(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + G,H,J) [H >= 1 + F]           (?,1) 
          18. f70(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1 + G,H,J)  [H >= G]               (?,1) 
          19. f66(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J) [G >= 1 + F]           (1,1) 
          20. f54(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + H,J)  [J >= 1 + G]           (?,1) 
          21. f50(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,H,J)  [H >= 1 + F]           (?,1) 
          22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J)  [J >= G]               (?,1) 
          23. f36(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + G,J)  [H >= 1 + F]           (?,1) 
          24. f33(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J)      [G >= F]               (1,1) 
          25. f19(A,B,C,E,F,G,H,J) -> f15(A,B,1 + C,E,F,G,H,J)  [E >= 1 + B]           (7,1) 
          26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J)      [C >= 1 + B]           (1,1) 
        Signature:
          {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)}
        Flow Graph:
          [0->{1},1->{2,3,4,25},2->{2,25},3->{3,4,25},4->{2,25},5->{6,7,9},6->{22},7->{8},8->{8,22},9->{9,23}
          ,10->{11,20},11->{11,20},12->{13,18},13->{13,18},14->{15,16},15->{15,16},16->{14},18->{12,19},19->{14}
          ,20->{10,21},21->{5,24},22->{6,7,9,23},23->{10,21},24->{12,19},25->{1,26},26->{5,24}]
        Sizebounds:
          (< 0,0,A>, 50) (< 0,0,B>, 5) (< 0,0,C>, 0) (< 0,0,E>,     E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,J>, J) 
          (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>,     0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) 
          (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>,     6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) 
          (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>,     6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) 
          (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>,     5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) 
          (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>,     ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) 
          (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>,     ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) 
          (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>,     ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) 
          (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>,     ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) 
          (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>,     ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) 
          (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>,     ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) 
          (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>,     ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) 
          (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>,     ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) 
          (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>,     ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) 
          (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>,     ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) 
          (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>,     ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) 
          (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>,     ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) 
          (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>,     ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) 
          (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>,     ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) 
          (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>,     ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) 
          (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>,     ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) 
          (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>,     ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) 
          (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>,     ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) 
          (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>,     ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) 
          (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>,     6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) 
          (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [25,2,4,3], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f15) = 1 + x2 + -1*x4
          p(f19) = 1 + x2 + -1*x4
        
        The following rules are strictly oriented:
        [C >= 1 + E && B >= E] ==>                         
          f19(A,B,C,E,F,G,H,J)   = 1 + B + -1*E            
                                 > B + -1*E                
                                 = f19(A,B,C,1 + E,F,G,H,J)
        
             [B >= E && C = E] ==>                         
          f19(A,B,C,E,F,G,H,J)   = 1 + B + -1*E            
                                 > B + -1*C                
                                 = f19(A,B,C,1 + C,F,G,H,J)
        
        
        The following rules are weakly oriented:
        [B >= E && E >= 1 + C] ==>                         
          f19(A,B,C,E,F,G,H,J)   = 1 + B + -1*E            
                                >= B + -1*E                
                                 = f19(A,B,C,1 + E,F,G,H,J)
        
                  [E >= 1 + B] ==>                         
          f19(A,B,C,E,F,G,H,J)   = 1 + B + -1*E            
                                >= 1 + B + -1*E            
                                 = f15(A,B,1 + C,E,F,G,H,J)
        
        We use the following global sizebounds:
        (< 0,0,A>, 50) (< 0,0,B>, 5) (< 0,0,C>, 0) (< 0,0,E>,     E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,J>, J) 
        (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>,     0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) 
        (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>,     6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) 
        (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>,     6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) 
        (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>,     5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) 
        (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>,     ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) 
        (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>,     ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) 
        (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>,     ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) 
        (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>,     ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) 
        (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>,     ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) 
        (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>,     ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) 
        (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>,     ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) 
        (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>,     ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) 
        (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>,     ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) 
        (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>,     ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) 
        (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>,     ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) 
        (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>,     ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) 
        (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>,     ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) 
        (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>,     ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) 
        (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>,     ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) 
        (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>,     ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) 
        (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>,     ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) 
        (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>,     ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) 
        (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>,     ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) 
        (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>,     6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) 
        (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) 
* Step 14: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,E,F,G,H,J)  -> f15(50,5,0,E,F,G,H,J)     True                   (1,1) 
          1.  f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J)      [B >= C]               (7,1) 
          2.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)  [B >= E && E >= 1 + C] (?,1) 
          3.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)  [C >= 1 + E && B >= E] (42,1)
          4.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J)  [B >= E && C = E]      (42,1)
          5.  f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J)  [F >= 1 + G]           (?,1) 
          6.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)      [0 >= 1 + G && F >= H] (?,1) 
          7.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)      [G >= 1 && F >= H]     (?,1) 
          8.  f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J)  [G >= 1 + J]           (?,1) 
          9.  f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J)  [F >= H && G = 0]      (?,1) 
          10. f50(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,0)      [F >= H]               (?,1) 
          11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J)  [G >= J]               (?,1) 
          12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J)      [F >= G]               (?,1) 
          13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J)  [G >= 1 + H]           (?,1) 
          14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J)  [G >= 0]               (6,1) 
          15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J)  [F >= H]               (?,1) 
          16. f84(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + G,H,J) [H >= 1 + F]           (?,1) 
          18. f70(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1 + G,H,J)  [H >= G]               (?,1) 
          19. f66(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J) [G >= 1 + F]           (1,1) 
          20. f54(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + H,J)  [J >= 1 + G]           (?,1) 
          21. f50(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,H,J)  [H >= 1 + F]           (?,1) 
          22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J)  [J >= G]               (?,1) 
          23. f36(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + G,J)  [H >= 1 + F]           (?,1) 
          24. f33(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J)      [G >= F]               (1,1) 
          25. f19(A,B,C,E,F,G,H,J) -> f15(A,B,1 + C,E,F,G,H,J)  [E >= 1 + B]           (7,1) 
          26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J)      [C >= 1 + B]           (1,1) 
        Signature:
          {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)}
        Flow Graph:
          [0->{1},1->{2,3,4,25},2->{2,25},3->{3,4,25},4->{2,25},5->{6,7,9},6->{22},7->{8},8->{8,22},9->{9,23}
          ,10->{11,20},11->{11,20},12->{13,18},13->{13,18},14->{15,16},15->{15,16},16->{14},18->{12,19},19->{14}
          ,20->{10,21},21->{5,24},22->{6,7,9,23},23->{10,21},24->{12,19},25->{1,26},26->{5,24}]
        Sizebounds:
          (< 0,0,A>, 50) (< 0,0,B>, 5) (< 0,0,C>, 0) (< 0,0,E>,     E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,J>, J) 
          (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>,     0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) 
          (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>,     6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) 
          (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>,     6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) 
          (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>,     5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) 
          (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>,     ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) 
          (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>,     ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) 
          (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>,     ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) 
          (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>,     ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) 
          (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>,     ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) 
          (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>,     ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) 
          (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>,     ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) 
          (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>,     ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) 
          (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>,     ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) 
          (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>,     ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) 
          (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>,     ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) 
          (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>,     ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) 
          (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>,     ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) 
          (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>,     ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) 
          (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>,     ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) 
          (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>,     ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) 
          (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>,     ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) 
          (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>,     ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) 
          (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>,     ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) 
          (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>,     6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) 
          (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [25,2,4,3], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f15) = 1 + x2 + -1*x4
          p(f19) = 1 + x2 + -1*x4
        
        The following rules are strictly oriented:
        [B >= E && E >= 1 + C] ==>                         
          f19(A,B,C,E,F,G,H,J)   = 1 + B + -1*E            
                                 > B + -1*E                
                                 = f19(A,B,C,1 + E,F,G,H,J)
        
        [C >= 1 + E && B >= E] ==>                         
          f19(A,B,C,E,F,G,H,J)   = 1 + B + -1*E            
                                 > B + -1*E                
                                 = f19(A,B,C,1 + E,F,G,H,J)
        
             [B >= E && C = E] ==>                         
          f19(A,B,C,E,F,G,H,J)   = 1 + B + -1*E            
                                 > B + -1*C                
                                 = f19(A,B,C,1 + C,F,G,H,J)
        
        
        The following rules are weakly oriented:
                  [E >= 1 + B] ==>                         
          f19(A,B,C,E,F,G,H,J)   = 1 + B + -1*E            
                                >= 1 + B + -1*E            
                                 = f15(A,B,1 + C,E,F,G,H,J)
        
        We use the following global sizebounds:
        (< 0,0,A>, 50) (< 0,0,B>, 5) (< 0,0,C>, 0) (< 0,0,E>,     E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,J>, J) 
        (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>,     0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) 
        (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>,     6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) 
        (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>,     6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) 
        (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>,     5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) 
        (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>,     ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) 
        (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>,     ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) 
        (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>,     ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) 
        (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>,     ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) 
        (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>,     ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) 
        (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>,     ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) 
        (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>,     ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) 
        (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>,     ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) 
        (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>,     ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) 
        (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>,     ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) 
        (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>,     ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) 
        (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>,     ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) 
        (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>,     ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) 
        (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>,     ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) 
        (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>,     ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) 
        (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>,     ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) 
        (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>,     ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) 
        (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>,     ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) 
        (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>,     ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) 
        (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>,     6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) 
        (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) 
* Step 15: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,E,F,G,H,J)  -> f15(50,5,0,E,F,G,H,J)     True                   (1,1) 
          1.  f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J)      [B >= C]               (7,1) 
          2.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)  [B >= E && E >= 1 + C] (42,1)
          3.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)  [C >= 1 + E && B >= E] (42,1)
          4.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J)  [B >= E && C = E]      (42,1)
          5.  f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J)  [F >= 1 + G]           (?,1) 
          6.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)      [0 >= 1 + G && F >= H] (?,1) 
          7.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)      [G >= 1 && F >= H]     (?,1) 
          8.  f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J)  [G >= 1 + J]           (?,1) 
          9.  f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J)  [F >= H && G = 0]      (?,1) 
          10. f50(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,0)      [F >= H]               (?,1) 
          11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J)  [G >= J]               (?,1) 
          12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J)      [F >= G]               (?,1) 
          13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J)  [G >= 1 + H]           (?,1) 
          14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J)  [G >= 0]               (6,1) 
          15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J)  [F >= H]               (?,1) 
          16. f84(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + G,H,J) [H >= 1 + F]           (?,1) 
          18. f70(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1 + G,H,J)  [H >= G]               (?,1) 
          19. f66(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J) [G >= 1 + F]           (1,1) 
          20. f54(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + H,J)  [J >= 1 + G]           (?,1) 
          21. f50(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,H,J)  [H >= 1 + F]           (?,1) 
          22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J)  [J >= G]               (?,1) 
          23. f36(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + G,J)  [H >= 1 + F]           (?,1) 
          24. f33(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J)      [G >= F]               (1,1) 
          25. f19(A,B,C,E,F,G,H,J) -> f15(A,B,1 + C,E,F,G,H,J)  [E >= 1 + B]           (7,1) 
          26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J)      [C >= 1 + B]           (1,1) 
        Signature:
          {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)}
        Flow Graph:
          [0->{1},1->{2,3,4,25},2->{2,25},3->{3,4,25},4->{2,25},5->{6,7,9},6->{22},7->{8},8->{8,22},9->{9,23}
          ,10->{11,20},11->{11,20},12->{13,18},13->{13,18},14->{15,16},15->{15,16},16->{14},18->{12,19},19->{14}
          ,20->{10,21},21->{5,24},22->{6,7,9,23},23->{10,21},24->{12,19},25->{1,26},26->{5,24}]
        Sizebounds:
          (< 0,0,A>, 50) (< 0,0,B>, 5) (< 0,0,C>, 0) (< 0,0,E>,     E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,J>, J) 
          (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>,     0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) 
          (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>,     6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) 
          (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>,     6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) 
          (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>,     5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) 
          (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>,     ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) 
          (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>,     ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) 
          (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>,     ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) 
          (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>,     ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) 
          (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>,     ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) 
          (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>,     ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) 
          (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>,     ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) 
          (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>,     ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) 
          (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>,     ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) 
          (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>,     ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) 
          (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>,     ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) 
          (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>,     ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) 
          (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>,     ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) 
          (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>,     ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) 
          (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>,     ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) 
          (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>,     ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) 
          (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>,     ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) 
          (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>,     ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) 
          (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>,     ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) 
          (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>,     6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) 
          (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [5,21,20,10,23,9,22,6,8,7,11], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f33) = 2 + x5 + -1*x6
          p(f36) = 1 + x5 + -1*x6
          p(f41) = 1 + x5 + -1*x6
          p(f50) = 1 + x5 + -1*x6
          p(f54) = 1 + x5 + -1*x6
        
        The following rules are strictly oriented:
                  [F >= 1 + G] ==>                         
          f33(A,B,C,E,F,G,H,J)   = 2 + F + -1*G            
                                 > 1 + F + -1*G            
                                 = f36(A,B,C,E,F,G,1 + G,J)
        
        
        The following rules are weakly oriented:
        [0 >= 1 + G && F >= H] ==>                         
          f36(A,B,C,E,F,G,H,J)   = 1 + F + -1*G            
                                >= 1 + F + -1*G            
                                 = f41(A,B,C,E,F,G,H,0)    
        
            [G >= 1 && F >= H] ==>                         
          f36(A,B,C,E,F,G,H,J)   = 1 + F + -1*G            
                                >= 1 + F + -1*G            
                                 = f41(A,B,C,E,F,G,H,0)    
        
                  [G >= 1 + J] ==>                         
          f41(A,B,C,E,F,G,H,J)   = 1 + F + -1*G            
                                >= 1 + F + -1*G            
                                 = f41(A,B,C,E,F,G,H,1 + J)
        
             [F >= H && G = 0] ==>                         
          f36(A,B,C,E,F,G,H,J)   = 1 + F + -1*G            
                                >= 1 + F                   
                                 = f36(A,B,C,E,F,0,1 + H,J)
        
                      [F >= H] ==>                         
          f50(A,B,C,E,F,G,H,J)   = 1 + F + -1*G            
                                >= 1 + F + -1*G            
                                 = f54(A,B,C,E,F,G,H,0)    
        
                      [G >= J] ==>                         
          f54(A,B,C,E,F,G,H,J)   = 1 + F + -1*G            
                                >= 1 + F + -1*G            
                                 = f54(A,B,C,E,F,G,H,1 + J)
        
                  [J >= 1 + G] ==>                         
          f54(A,B,C,E,F,G,H,J)   = 1 + F + -1*G            
                                >= 1 + F + -1*G            
                                 = f50(A,B,C,E,F,G,1 + H,J)
        
                  [H >= 1 + F] ==>                         
          f50(A,B,C,E,F,G,H,J)   = 1 + F + -1*G            
                                >= 1 + F + -1*G            
                                 = f33(A,B,C,E,F,1 + G,H,J)
        
                      [J >= G] ==>                         
          f41(A,B,C,E,F,G,H,J)   = 1 + F + -1*G            
                                >= 1 + F + -1*G            
                                 = f36(A,B,C,E,F,G,1 + H,J)
        
                  [H >= 1 + F] ==>                         
          f36(A,B,C,E,F,G,H,J)   = 1 + F + -1*G            
                                >= 1 + F + -1*G            
                                 = f50(A,B,C,E,F,G,1 + G,J)
        
        We use the following global sizebounds:
        (< 0,0,A>, 50) (< 0,0,B>, 5) (< 0,0,C>, 0) (< 0,0,E>,     E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,J>, J) 
        (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>,     0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) 
        (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>,     6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) 
        (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>,     6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) 
        (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>,     5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) 
        (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>,     ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) 
        (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>,     ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) 
        (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>,     ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) 
        (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>,     ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) 
        (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>,     ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) 
        (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>,     ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) 
        (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>,     ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) 
        (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>,     ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) 
        (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>,     ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) 
        (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>,     ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) 
        (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>,     ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) 
        (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>,     ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) 
        (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>,     ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) 
        (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>,     ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) 
        (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>,     ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) 
        (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>,     ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) 
        (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>,     ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) 
        (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>,     ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) 
        (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>,     ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) 
        (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>,     6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) 
        (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) 
* Step 16: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,E,F,G,H,J)  -> f15(50,5,0,E,F,G,H,J)     True                   (1,1) 
          1.  f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J)      [B >= C]               (7,1) 
          2.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)  [B >= E && E >= 1 + C] (42,1)
          3.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)  [C >= 1 + E && B >= E] (42,1)
          4.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J)  [B >= E && C = E]      (42,1)
          5.  f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J)  [F >= 1 + G]           (7,1) 
          6.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)      [0 >= 1 + G && F >= H] (?,1) 
          7.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)      [G >= 1 && F >= H]     (?,1) 
          8.  f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J)  [G >= 1 + J]           (?,1) 
          9.  f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J)  [F >= H && G = 0]      (?,1) 
          10. f50(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,0)      [F >= H]               (?,1) 
          11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J)  [G >= J]               (?,1) 
          12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J)      [F >= G]               (?,1) 
          13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J)  [G >= 1 + H]           (?,1) 
          14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J)  [G >= 0]               (6,1) 
          15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J)  [F >= H]               (?,1) 
          16. f84(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + G,H,J) [H >= 1 + F]           (?,1) 
          18. f70(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1 + G,H,J)  [H >= G]               (?,1) 
          19. f66(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J) [G >= 1 + F]           (1,1) 
          20. f54(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + H,J)  [J >= 1 + G]           (?,1) 
          21. f50(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,H,J)  [H >= 1 + F]           (?,1) 
          22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J)  [J >= G]               (?,1) 
          23. f36(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + G,J)  [H >= 1 + F]           (?,1) 
          24. f33(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J)      [G >= F]               (1,1) 
          25. f19(A,B,C,E,F,G,H,J) -> f15(A,B,1 + C,E,F,G,H,J)  [E >= 1 + B]           (7,1) 
          26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J)      [C >= 1 + B]           (1,1) 
        Signature:
          {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)}
        Flow Graph:
          [0->{1},1->{2,3,4,25},2->{2,25},3->{3,4,25},4->{2,25},5->{6,7,9},6->{22},7->{8},8->{8,22},9->{9,23}
          ,10->{11,20},11->{11,20},12->{13,18},13->{13,18},14->{15,16},15->{15,16},16->{14},18->{12,19},19->{14}
          ,20->{10,21},21->{5,24},22->{6,7,9,23},23->{10,21},24->{12,19},25->{1,26},26->{5,24}]
        Sizebounds:
          (< 0,0,A>, 50) (< 0,0,B>, 5) (< 0,0,C>, 0) (< 0,0,E>,     E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,J>, J) 
          (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>,     0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) 
          (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>,     6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) 
          (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>,     6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) 
          (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>,     5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) 
          (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>,     ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) 
          (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>,     ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) 
          (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>,     ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) 
          (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>,     ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) 
          (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>,     ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) 
          (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>,     ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) 
          (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>,     ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) 
          (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>,     ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) 
          (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>,     ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) 
          (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>,     ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) 
          (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>,     ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) 
          (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>,     ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) 
          (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>,     ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) 
          (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>,     ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) 
          (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>,     ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) 
          (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>,     ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) 
          (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>,     ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) 
          (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>,     ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) 
          (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>,     ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) 
          (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>,     6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) 
          (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [21,20,10,23,9,22,6,8,7,11], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f33) = 0
          p(f36) = 1
          p(f41) = 1
          p(f50) = 0
          p(f54) = 0
        
        The following rules are strictly oriented:
                  [H >= 1 + F] ==>                         
          f36(A,B,C,E,F,G,H,J)   = 1                       
                                 > 0                       
                                 = f50(A,B,C,E,F,G,1 + G,J)
        
        
        The following rules are weakly oriented:
        [0 >= 1 + G && F >= H] ==>                         
          f36(A,B,C,E,F,G,H,J)   = 1                       
                                >= 1                       
                                 = f41(A,B,C,E,F,G,H,0)    
        
            [G >= 1 && F >= H] ==>                         
          f36(A,B,C,E,F,G,H,J)   = 1                       
                                >= 1                       
                                 = f41(A,B,C,E,F,G,H,0)    
        
                  [G >= 1 + J] ==>                         
          f41(A,B,C,E,F,G,H,J)   = 1                       
                                >= 1                       
                                 = f41(A,B,C,E,F,G,H,1 + J)
        
             [F >= H && G = 0] ==>                         
          f36(A,B,C,E,F,G,H,J)   = 1                       
                                >= 1                       
                                 = f36(A,B,C,E,F,0,1 + H,J)
        
                      [F >= H] ==>                         
          f50(A,B,C,E,F,G,H,J)   = 0                       
                                >= 0                       
                                 = f54(A,B,C,E,F,G,H,0)    
        
                      [G >= J] ==>                         
          f54(A,B,C,E,F,G,H,J)   = 0                       
                                >= 0                       
                                 = f54(A,B,C,E,F,G,H,1 + J)
        
                  [J >= 1 + G] ==>                         
          f54(A,B,C,E,F,G,H,J)   = 0                       
                                >= 0                       
                                 = f50(A,B,C,E,F,G,1 + H,J)
        
                  [H >= 1 + F] ==>                         
          f50(A,B,C,E,F,G,H,J)   = 0                       
                                >= 0                       
                                 = f33(A,B,C,E,F,1 + G,H,J)
        
                      [J >= G] ==>                         
          f41(A,B,C,E,F,G,H,J)   = 1                       
                                >= 1                       
                                 = f36(A,B,C,E,F,G,1 + H,J)
        
        We use the following global sizebounds:
        (< 0,0,A>, 50) (< 0,0,B>, 5) (< 0,0,C>, 0) (< 0,0,E>,     E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,J>, J) 
        (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>,     0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) 
        (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>,     6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) 
        (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>,     6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) 
        (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>,     5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) 
        (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>,     ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) 
        (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>,     ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) 
        (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>,     ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) 
        (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>,     ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) 
        (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>,     ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) 
        (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>,     ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) 
        (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>,     ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) 
        (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>,     ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) 
        (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>,     ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) 
        (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>,     ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) 
        (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>,     ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) 
        (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>,     ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) 
        (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>,     ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) 
        (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>,     ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) 
        (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>,     ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) 
        (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>,     ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) 
        (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>,     ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) 
        (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>,     ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) 
        (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>,     ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) 
        (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>,     6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) 
        (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) 
* Step 17: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,E,F,G,H,J)  -> f15(50,5,0,E,F,G,H,J)     True                   (1,1) 
          1.  f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J)      [B >= C]               (7,1) 
          2.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)  [B >= E && E >= 1 + C] (42,1)
          3.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)  [C >= 1 + E && B >= E] (42,1)
          4.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J)  [B >= E && C = E]      (42,1)
          5.  f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J)  [F >= 1 + G]           (7,1) 
          6.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)      [0 >= 1 + G && F >= H] (?,1) 
          7.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)      [G >= 1 && F >= H]     (?,1) 
          8.  f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J)  [G >= 1 + J]           (?,1) 
          9.  f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J)  [F >= H && G = 0]      (?,1) 
          10. f50(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,0)      [F >= H]               (?,1) 
          11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J)  [G >= J]               (?,1) 
          12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J)      [F >= G]               (?,1) 
          13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J)  [G >= 1 + H]           (?,1) 
          14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J)  [G >= 0]               (6,1) 
          15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J)  [F >= H]               (?,1) 
          16. f84(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + G,H,J) [H >= 1 + F]           (?,1) 
          18. f70(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1 + G,H,J)  [H >= G]               (?,1) 
          19. f66(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J) [G >= 1 + F]           (1,1) 
          20. f54(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + H,J)  [J >= 1 + G]           (?,1) 
          21. f50(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,H,J)  [H >= 1 + F]           (?,1) 
          22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J)  [J >= G]               (?,1) 
          23. f36(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + G,J)  [H >= 1 + F]           (7,1) 
          24. f33(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J)      [G >= F]               (1,1) 
          25. f19(A,B,C,E,F,G,H,J) -> f15(A,B,1 + C,E,F,G,H,J)  [E >= 1 + B]           (7,1) 
          26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J)      [C >= 1 + B]           (1,1) 
        Signature:
          {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)}
        Flow Graph:
          [0->{1},1->{2,3,4,25},2->{2,25},3->{3,4,25},4->{2,25},5->{6,7,9},6->{22},7->{8},8->{8,22},9->{9,23}
          ,10->{11,20},11->{11,20},12->{13,18},13->{13,18},14->{15,16},15->{15,16},16->{14},18->{12,19},19->{14}
          ,20->{10,21},21->{5,24},22->{6,7,9,23},23->{10,21},24->{12,19},25->{1,26},26->{5,24}]
        Sizebounds:
          (< 0,0,A>, 50) (< 0,0,B>, 5) (< 0,0,C>, 0) (< 0,0,E>,     E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,J>, J) 
          (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>,     0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) 
          (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>,     6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) 
          (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>,     6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) 
          (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>,     5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) 
          (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>,     ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) 
          (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>,     ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) 
          (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>,     ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) 
          (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>,     ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) 
          (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>,     ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) 
          (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>,     ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) 
          (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>,     ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) 
          (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>,     ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) 
          (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>,     ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) 
          (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>,     ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) 
          (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>,     ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) 
          (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>,     ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) 
          (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>,     ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) 
          (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>,     ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) 
          (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>,     ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) 
          (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>,     ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) 
          (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>,     ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) 
          (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>,     ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) 
          (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>,     ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) 
          (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>,     6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) 
          (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [21,20,10,23,9,22,6,8,7,11], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f33) = 0
          p(f36) = 1
          p(f41) = 1
          p(f50) = 1
          p(f54) = 1
        
        The following rules are strictly oriented:
                  [H >= 1 + F] ==>                         
          f50(A,B,C,E,F,G,H,J)   = 1                       
                                 > 0                       
                                 = f33(A,B,C,E,F,1 + G,H,J)
        
        
        The following rules are weakly oriented:
        [0 >= 1 + G && F >= H] ==>                         
          f36(A,B,C,E,F,G,H,J)   = 1                       
                                >= 1                       
                                 = f41(A,B,C,E,F,G,H,0)    
        
            [G >= 1 && F >= H] ==>                         
          f36(A,B,C,E,F,G,H,J)   = 1                       
                                >= 1                       
                                 = f41(A,B,C,E,F,G,H,0)    
        
                  [G >= 1 + J] ==>                         
          f41(A,B,C,E,F,G,H,J)   = 1                       
                                >= 1                       
                                 = f41(A,B,C,E,F,G,H,1 + J)
        
             [F >= H && G = 0] ==>                         
          f36(A,B,C,E,F,G,H,J)   = 1                       
                                >= 1                       
                                 = f36(A,B,C,E,F,0,1 + H,J)
        
                      [F >= H] ==>                         
          f50(A,B,C,E,F,G,H,J)   = 1                       
                                >= 1                       
                                 = f54(A,B,C,E,F,G,H,0)    
        
                      [G >= J] ==>                         
          f54(A,B,C,E,F,G,H,J)   = 1                       
                                >= 1                       
                                 = f54(A,B,C,E,F,G,H,1 + J)
        
                  [J >= 1 + G] ==>                         
          f54(A,B,C,E,F,G,H,J)   = 1                       
                                >= 1                       
                                 = f50(A,B,C,E,F,G,1 + H,J)
        
                      [J >= G] ==>                         
          f41(A,B,C,E,F,G,H,J)   = 1                       
                                >= 1                       
                                 = f36(A,B,C,E,F,G,1 + H,J)
        
                  [H >= 1 + F] ==>                         
          f36(A,B,C,E,F,G,H,J)   = 1                       
                                >= 1                       
                                 = f50(A,B,C,E,F,G,1 + G,J)
        
        We use the following global sizebounds:
        (< 0,0,A>, 50) (< 0,0,B>, 5) (< 0,0,C>, 0) (< 0,0,E>,     E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,J>, J) 
        (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>,     0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) 
        (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>,     6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) 
        (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>,     6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) 
        (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>,     5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) 
        (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>,     ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) 
        (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>,     ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) 
        (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>,     ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) 
        (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>,     ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) 
        (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>,     ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) 
        (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>,     ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) 
        (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>,     ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) 
        (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>,     ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) 
        (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>,     ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) 
        (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>,     ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) 
        (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>,     ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) 
        (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>,     ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) 
        (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>,     ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) 
        (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>,     ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) 
        (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>,     ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) 
        (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>,     ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) 
        (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>,     ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) 
        (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>,     ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) 
        (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>,     ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) 
        (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>,     6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) 
        (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) 
* Step 18: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,E,F,G,H,J)  -> f15(50,5,0,E,F,G,H,J)     True                   (1,1) 
          1.  f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J)      [B >= C]               (7,1) 
          2.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)  [B >= E && E >= 1 + C] (42,1)
          3.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)  [C >= 1 + E && B >= E] (42,1)
          4.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J)  [B >= E && C = E]      (42,1)
          5.  f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J)  [F >= 1 + G]           (7,1) 
          6.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)      [0 >= 1 + G && F >= H] (?,1) 
          7.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)      [G >= 1 && F >= H]     (?,1) 
          8.  f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J)  [G >= 1 + J]           (?,1) 
          9.  f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J)  [F >= H && G = 0]      (?,1) 
          10. f50(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,0)      [F >= H]               (?,1) 
          11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J)  [G >= J]               (?,1) 
          12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J)      [F >= G]               (?,1) 
          13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J)  [G >= 1 + H]           (?,1) 
          14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J)  [G >= 0]               (6,1) 
          15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J)  [F >= H]               (?,1) 
          16. f84(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + G,H,J) [H >= 1 + F]           (?,1) 
          18. f70(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1 + G,H,J)  [H >= G]               (?,1) 
          19. f66(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J) [G >= 1 + F]           (1,1) 
          20. f54(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + H,J)  [J >= 1 + G]           (?,1) 
          21. f50(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,H,J)  [H >= 1 + F]           (7,1) 
          22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J)  [J >= G]               (?,1) 
          23. f36(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + G,J)  [H >= 1 + F]           (7,1) 
          24. f33(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J)      [G >= F]               (1,1) 
          25. f19(A,B,C,E,F,G,H,J) -> f15(A,B,1 + C,E,F,G,H,J)  [E >= 1 + B]           (7,1) 
          26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J)      [C >= 1 + B]           (1,1) 
        Signature:
          {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)}
        Flow Graph:
          [0->{1},1->{2,3,4,25},2->{2,25},3->{3,4,25},4->{2,25},5->{6,7,9},6->{22},7->{8},8->{8,22},9->{9,23}
          ,10->{11,20},11->{11,20},12->{13,18},13->{13,18},14->{15,16},15->{15,16},16->{14},18->{12,19},19->{14}
          ,20->{10,21},21->{5,24},22->{6,7,9,23},23->{10,21},24->{12,19},25->{1,26},26->{5,24}]
        Sizebounds:
          (< 0,0,A>, 50) (< 0,0,B>, 5) (< 0,0,C>, 0) (< 0,0,E>,     E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,J>, J) 
          (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>,     0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) 
          (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>,     6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) 
          (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>,     6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) 
          (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>,     5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) 
          (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>,     ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) 
          (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>,     ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) 
          (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>,     ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) 
          (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>,     ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) 
          (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>,     ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) 
          (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>,     ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) 
          (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>,     ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) 
          (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>,     ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) 
          (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>,     ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) 
          (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>,     ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) 
          (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>,     ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) 
          (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>,     ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) 
          (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>,     ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) 
          (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>,     ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) 
          (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>,     ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) 
          (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>,     ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) 
          (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>,     ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) 
          (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>,     ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) 
          (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>,     ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) 
          (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>,     6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) 
          (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [5,21,20,10,9,22,6,8,7,11], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f33) = 1 + x5             
          p(f36) = 2 + x5 + x6 + -1*x7
          p(f41) = 1 + x5 + x6 + -1*x7
          p(f50) = 1 + x5             
          p(f54) = 1 + x5             
        
        The following rules are strictly oriented:
            [G >= 1 && F >= H] ==>                         
          f36(A,B,C,E,F,G,H,J)   = 2 + F + G + -1*H        
                                 > 1 + F + G + -1*H        
                                 = f41(A,B,C,E,F,G,H,0)    
        
             [F >= H && G = 0] ==>                         
          f36(A,B,C,E,F,G,H,J)   = 2 + F + G + -1*H        
                                 > 1 + F + -1*H            
                                 = f36(A,B,C,E,F,0,1 + H,J)
        
        
        The following rules are weakly oriented:
                  [F >= 1 + G] ==>                         
          f33(A,B,C,E,F,G,H,J)   = 1 + F                   
                                >= 1 + F                   
                                 = f36(A,B,C,E,F,G,1 + G,J)
        
        [0 >= 1 + G && F >= H] ==>                         
          f36(A,B,C,E,F,G,H,J)   = 2 + F + G + -1*H        
                                >= 1 + F + G + -1*H        
                                 = f41(A,B,C,E,F,G,H,0)    
        
                  [G >= 1 + J] ==>                         
          f41(A,B,C,E,F,G,H,J)   = 1 + F + G + -1*H        
                                >= 1 + F + G + -1*H        
                                 = f41(A,B,C,E,F,G,H,1 + J)
        
                      [F >= H] ==>                         
          f50(A,B,C,E,F,G,H,J)   = 1 + F                   
                                >= 1 + F                   
                                 = f54(A,B,C,E,F,G,H,0)    
        
                      [G >= J] ==>                         
          f54(A,B,C,E,F,G,H,J)   = 1 + F                   
                                >= 1 + F                   
                                 = f54(A,B,C,E,F,G,H,1 + J)
        
                  [J >= 1 + G] ==>                         
          f54(A,B,C,E,F,G,H,J)   = 1 + F                   
                                >= 1 + F                   
                                 = f50(A,B,C,E,F,G,1 + H,J)
        
                  [H >= 1 + F] ==>                         
          f50(A,B,C,E,F,G,H,J)   = 1 + F                   
                                >= 1 + F                   
                                 = f33(A,B,C,E,F,1 + G,H,J)
        
                      [J >= G] ==>                         
          f41(A,B,C,E,F,G,H,J)   = 1 + F + G + -1*H        
                                >= 1 + F + G + -1*H        
                                 = f36(A,B,C,E,F,G,1 + H,J)
        
        We use the following global sizebounds:
        (< 0,0,A>, 50) (< 0,0,B>, 5) (< 0,0,C>, 0) (< 0,0,E>,     E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,J>, J) 
        (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>,     0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) 
        (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>,     6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) 
        (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>,     6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) 
        (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>,     5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) 
        (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>,     ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) 
        (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>,     ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) 
        (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>,     ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) 
        (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>,     ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) 
        (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>,     ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) 
        (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>,     ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) 
        (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>,     ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) 
        (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>,     ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) 
        (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>,     ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) 
        (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>,     ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) 
        (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>,     ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) 
        (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>,     ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) 
        (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>,     ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) 
        (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>,     ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) 
        (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>,     ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) 
        (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>,     ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) 
        (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>,     ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) 
        (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>,     ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) 
        (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>,     ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) 
        (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>,     6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) 
        (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) 
* Step 19: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,E,F,G,H,J)  -> f15(50,5,0,E,F,G,H,J)     True                   (1,1) 
          1.  f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J)      [B >= C]               (7,1) 
          2.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)  [B >= E && E >= 1 + C] (42,1)
          3.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)  [C >= 1 + E && B >= E] (42,1)
          4.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J)  [B >= E && C = E]      (42,1)
          5.  f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J)  [F >= 1 + G]           (7,1) 
          6.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)      [0 >= 1 + G && F >= H] (?,1) 
          7.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)      [G >= 1 && F >= H]     (48,1)
          8.  f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J)  [G >= 1 + J]           (?,1) 
          9.  f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J)  [F >= H && G = 0]      (48,1)
          10. f50(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,0)      [F >= H]               (?,1) 
          11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J)  [G >= J]               (?,1) 
          12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J)      [F >= G]               (?,1) 
          13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J)  [G >= 1 + H]           (?,1) 
          14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J)  [G >= 0]               (6,1) 
          15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J)  [F >= H]               (?,1) 
          16. f84(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + G,H,J) [H >= 1 + F]           (?,1) 
          18. f70(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1 + G,H,J)  [H >= G]               (?,1) 
          19. f66(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J) [G >= 1 + F]           (1,1) 
          20. f54(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + H,J)  [J >= 1 + G]           (?,1) 
          21. f50(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,H,J)  [H >= 1 + F]           (7,1) 
          22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J)  [J >= G]               (?,1) 
          23. f36(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + G,J)  [H >= 1 + F]           (7,1) 
          24. f33(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J)      [G >= F]               (1,1) 
          25. f19(A,B,C,E,F,G,H,J) -> f15(A,B,1 + C,E,F,G,H,J)  [E >= 1 + B]           (7,1) 
          26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J)      [C >= 1 + B]           (1,1) 
        Signature:
          {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)}
        Flow Graph:
          [0->{1},1->{2,3,4,25},2->{2,25},3->{3,4,25},4->{2,25},5->{6,7,9},6->{22},7->{8},8->{8,22},9->{9,23}
          ,10->{11,20},11->{11,20},12->{13,18},13->{13,18},14->{15,16},15->{15,16},16->{14},18->{12,19},19->{14}
          ,20->{10,21},21->{5,24},22->{6,7,9,23},23->{10,21},24->{12,19},25->{1,26},26->{5,24}]
        Sizebounds:
          (< 0,0,A>, 50) (< 0,0,B>, 5) (< 0,0,C>, 0) (< 0,0,E>,     E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,J>, J) 
          (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>,     0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) 
          (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>,     6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) 
          (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>,     6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) 
          (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>,     5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) 
          (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>,     ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) 
          (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>,     ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) 
          (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>,     ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) 
          (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>,     ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) 
          (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>,     ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) 
          (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>,     ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) 
          (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>,     ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) 
          (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>,     ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) 
          (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>,     ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) 
          (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>,     ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) 
          (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>,     ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) 
          (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>,     ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) 
          (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>,     ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) 
          (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>,     ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) 
          (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>,     ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) 
          (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>,     ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) 
          (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>,     ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) 
          (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>,     ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) 
          (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>,     ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) 
          (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>,     6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) 
          (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [21,20,10,23,9,22,6,8,7,11], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f33) = 2 + x5 + -1*x7
          p(f36) = 1 + x5 + -1*x6
          p(f41) = 1 + x5 + -1*x6
          p(f50) = 2 + x5 + -1*x7
          p(f54) = 1 + x5 + -1*x7
        
        The following rules are strictly oriented:
                      [F >= H] ==>                     
          f50(A,B,C,E,F,G,H,J)   = 2 + F + -1*H        
                                 > 1 + F + -1*H        
                                 = f54(A,B,C,E,F,G,H,0)
        
        
        The following rules are weakly oriented:
        [0 >= 1 + G && F >= H] ==>                         
          f36(A,B,C,E,F,G,H,J)   = 1 + F + -1*G            
                                >= 1 + F + -1*G            
                                 = f41(A,B,C,E,F,G,H,0)    
        
            [G >= 1 && F >= H] ==>                         
          f36(A,B,C,E,F,G,H,J)   = 1 + F + -1*G            
                                >= 1 + F + -1*G            
                                 = f41(A,B,C,E,F,G,H,0)    
        
                  [G >= 1 + J] ==>                         
          f41(A,B,C,E,F,G,H,J)   = 1 + F + -1*G            
                                >= 1 + F + -1*G            
                                 = f41(A,B,C,E,F,G,H,1 + J)
        
             [F >= H && G = 0] ==>                         
          f36(A,B,C,E,F,G,H,J)   = 1 + F + -1*G            
                                >= 1 + F                   
                                 = f36(A,B,C,E,F,0,1 + H,J)
        
                      [G >= J] ==>                         
          f54(A,B,C,E,F,G,H,J)   = 1 + F + -1*H            
                                >= 1 + F + -1*H            
                                 = f54(A,B,C,E,F,G,H,1 + J)
        
                  [J >= 1 + G] ==>                         
          f54(A,B,C,E,F,G,H,J)   = 1 + F + -1*H            
                                >= 1 + F + -1*H            
                                 = f50(A,B,C,E,F,G,1 + H,J)
        
                  [H >= 1 + F] ==>                         
          f50(A,B,C,E,F,G,H,J)   = 2 + F + -1*H            
                                >= 2 + F + -1*H            
                                 = f33(A,B,C,E,F,1 + G,H,J)
        
                      [J >= G] ==>                         
          f41(A,B,C,E,F,G,H,J)   = 1 + F + -1*G            
                                >= 1 + F + -1*G            
                                 = f36(A,B,C,E,F,G,1 + H,J)
        
                  [H >= 1 + F] ==>                         
          f36(A,B,C,E,F,G,H,J)   = 1 + F + -1*G            
                                >= 1 + F + -1*G            
                                 = f50(A,B,C,E,F,G,1 + G,J)
        
        We use the following global sizebounds:
        (< 0,0,A>, 50) (< 0,0,B>, 5) (< 0,0,C>, 0) (< 0,0,E>,     E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,J>, J) 
        (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>,     0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) 
        (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>,     6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) 
        (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>,     6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) 
        (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>,     5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) 
        (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>,     ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) 
        (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>,     ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) 
        (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>,     ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) 
        (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>,     ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) 
        (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>,     ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) 
        (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>,     ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) 
        (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>,     ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) 
        (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>,     ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) 
        (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>,     ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) 
        (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>,     ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) 
        (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>,     ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) 
        (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>,     ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) 
        (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>,     ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) 
        (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>,     ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) 
        (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>,     ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) 
        (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>,     ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) 
        (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>,     ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) 
        (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>,     ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) 
        (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>,     ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) 
        (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>,     6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) 
        (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) 
* Step 20: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,E,F,G,H,J)  -> f15(50,5,0,E,F,G,H,J)     True                   (1,1) 
          1.  f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J)      [B >= C]               (7,1) 
          2.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)  [B >= E && E >= 1 + C] (42,1)
          3.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)  [C >= 1 + E && B >= E] (42,1)
          4.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J)  [B >= E && C = E]      (42,1)
          5.  f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J)  [F >= 1 + G]           (7,1) 
          6.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)      [0 >= 1 + G && F >= H] (?,1) 
          7.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)      [G >= 1 && F >= H]     (48,1)
          8.  f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J)  [G >= 1 + J]           (?,1) 
          9.  f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J)  [F >= H && G = 0]      (48,1)
          10. f50(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,0)      [F >= H]               (77,1)
          11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J)  [G >= J]               (?,1) 
          12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J)      [F >= G]               (?,1) 
          13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J)  [G >= 1 + H]           (?,1) 
          14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J)  [G >= 0]               (6,1) 
          15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J)  [F >= H]               (?,1) 
          16. f84(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + G,H,J) [H >= 1 + F]           (?,1) 
          18. f70(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1 + G,H,J)  [H >= G]               (?,1) 
          19. f66(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J) [G >= 1 + F]           (1,1) 
          20. f54(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + H,J)  [J >= 1 + G]           (?,1) 
          21. f50(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,H,J)  [H >= 1 + F]           (7,1) 
          22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J)  [J >= G]               (?,1) 
          23. f36(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + G,J)  [H >= 1 + F]           (7,1) 
          24. f33(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J)      [G >= F]               (1,1) 
          25. f19(A,B,C,E,F,G,H,J) -> f15(A,B,1 + C,E,F,G,H,J)  [E >= 1 + B]           (7,1) 
          26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J)      [C >= 1 + B]           (1,1) 
        Signature:
          {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)}
        Flow Graph:
          [0->{1},1->{2,3,4,25},2->{2,25},3->{3,4,25},4->{2,25},5->{6,7,9},6->{22},7->{8},8->{8,22},9->{9,23}
          ,10->{11,20},11->{11,20},12->{13,18},13->{13,18},14->{15,16},15->{15,16},16->{14},18->{12,19},19->{14}
          ,20->{10,21},21->{5,24},22->{6,7,9,23},23->{10,21},24->{12,19},25->{1,26},26->{5,24}]
        Sizebounds:
          (< 0,0,A>, 50) (< 0,0,B>, 5) (< 0,0,C>, 0) (< 0,0,E>,     E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,J>, J) 
          (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>,     0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) 
          (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>,     6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) 
          (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>,     6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) 
          (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>,     5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) 
          (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>,     ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) 
          (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>,     ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) 
          (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>,     ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) 
          (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>,     ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) 
          (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>,     ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) 
          (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>,     ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) 
          (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>,     ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) 
          (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>,     ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) 
          (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>,     ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) 
          (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>,     ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) 
          (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>,     ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) 
          (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>,     ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) 
          (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>,     ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) 
          (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>,     ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) 
          (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>,     ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) 
          (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>,     ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) 
          (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>,     ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) 
          (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>,     ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) 
          (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>,     ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) 
          (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>,     6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) 
          (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [5,21,20,23,9,22,6,8,7,11], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f33) = 0
          p(f36) = 0
          p(f41) = 0
          p(f50) = 0
          p(f54) = 1
        
        The following rules are strictly oriented:
                  [J >= 1 + G] ==>                         
          f54(A,B,C,E,F,G,H,J)   = 1                       
                                 > 0                       
                                 = f50(A,B,C,E,F,G,1 + H,J)
        
        
        The following rules are weakly oriented:
                  [F >= 1 + G] ==>                         
          f33(A,B,C,E,F,G,H,J)   = 0                       
                                >= 0                       
                                 = f36(A,B,C,E,F,G,1 + G,J)
        
        [0 >= 1 + G && F >= H] ==>                         
          f36(A,B,C,E,F,G,H,J)   = 0                       
                                >= 0                       
                                 = f41(A,B,C,E,F,G,H,0)    
        
            [G >= 1 && F >= H] ==>                         
          f36(A,B,C,E,F,G,H,J)   = 0                       
                                >= 0                       
                                 = f41(A,B,C,E,F,G,H,0)    
        
                  [G >= 1 + J] ==>                         
          f41(A,B,C,E,F,G,H,J)   = 0                       
                                >= 0                       
                                 = f41(A,B,C,E,F,G,H,1 + J)
        
             [F >= H && G = 0] ==>                         
          f36(A,B,C,E,F,G,H,J)   = 0                       
                                >= 0                       
                                 = f36(A,B,C,E,F,0,1 + H,J)
        
                      [G >= J] ==>                         
          f54(A,B,C,E,F,G,H,J)   = 1                       
                                >= 1                       
                                 = f54(A,B,C,E,F,G,H,1 + J)
        
                  [H >= 1 + F] ==>                         
          f50(A,B,C,E,F,G,H,J)   = 0                       
                                >= 0                       
                                 = f33(A,B,C,E,F,1 + G,H,J)
        
                      [J >= G] ==>                         
          f41(A,B,C,E,F,G,H,J)   = 0                       
                                >= 0                       
                                 = f36(A,B,C,E,F,G,1 + H,J)
        
                  [H >= 1 + F] ==>                         
          f36(A,B,C,E,F,G,H,J)   = 0                       
                                >= 0                       
                                 = f50(A,B,C,E,F,G,1 + G,J)
        
        We use the following global sizebounds:
        (< 0,0,A>, 50) (< 0,0,B>, 5) (< 0,0,C>, 0) (< 0,0,E>,     E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,J>, J) 
        (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>,     0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) 
        (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>,     6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) 
        (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>,     6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) 
        (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>,     5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) 
        (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>,     ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) 
        (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>,     ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) 
        (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>,     ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) 
        (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>,     ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) 
        (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>,     ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) 
        (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>,     ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) 
        (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>,     ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) 
        (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>,     ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) 
        (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>,     ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) 
        (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>,     ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) 
        (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>,     ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) 
        (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>,     ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) 
        (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>,     ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) 
        (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>,     ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) 
        (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>,     ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) 
        (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>,     ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) 
        (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>,     ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) 
        (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>,     ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) 
        (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>,     ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) 
        (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>,     6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) 
        (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) 
* Step 21: ChainProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,E,F,G,H,J)  -> f15(50,5,0,E,F,G,H,J)     True                   (1,1) 
          1.  f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J)      [B >= C]               (7,1) 
          2.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)  [B >= E && E >= 1 + C] (42,1)
          3.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)  [C >= 1 + E && B >= E] (42,1)
          4.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J)  [B >= E && C = E]      (42,1)
          5.  f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J)  [F >= 1 + G]           (7,1) 
          6.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)      [0 >= 1 + G && F >= H] (?,1) 
          7.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)      [G >= 1 && F >= H]     (48,1)
          8.  f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J)  [G >= 1 + J]           (?,1) 
          9.  f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J)  [F >= H && G = 0]      (48,1)
          10. f50(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,0)      [F >= H]               (77,1)
          11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J)  [G >= J]               (?,1) 
          12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J)      [F >= G]               (?,1) 
          13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J)  [G >= 1 + H]           (?,1) 
          14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J)  [G >= 0]               (6,1) 
          15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J)  [F >= H]               (?,1) 
          16. f84(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + G,H,J) [H >= 1 + F]           (?,1) 
          18. f70(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1 + G,H,J)  [H >= G]               (?,1) 
          19. f66(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J) [G >= 1 + F]           (1,1) 
          20. f54(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + H,J)  [J >= 1 + G]           (77,1)
          21. f50(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,H,J)  [H >= 1 + F]           (7,1) 
          22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J)  [J >= G]               (?,1) 
          23. f36(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + G,J)  [H >= 1 + F]           (7,1) 
          24. f33(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J)      [G >= F]               (1,1) 
          25. f19(A,B,C,E,F,G,H,J) -> f15(A,B,1 + C,E,F,G,H,J)  [E >= 1 + B]           (7,1) 
          26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J)      [C >= 1 + B]           (1,1) 
        Signature:
          {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)}
        Flow Graph:
          [0->{1},1->{2,3,4,25},2->{2,25},3->{3,4,25},4->{2,25},5->{6,7,9},6->{22},7->{8},8->{8,22},9->{9,23}
          ,10->{11,20},11->{11,20},12->{13,18},13->{13,18},14->{15,16},15->{15,16},16->{14},18->{12,19},19->{14}
          ,20->{10,21},21->{5,24},22->{6,7,9,23},23->{10,21},24->{12,19},25->{1,26},26->{5,24}]
        Sizebounds:
          (< 0,0,A>, 50) (< 0,0,B>, 5) (< 0,0,C>, 0) (< 0,0,E>,     E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,J>, J) 
          (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>,     0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) 
          (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>,     6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) 
          (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>,     6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) 
          (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>,     5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) 
          (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>,     ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) 
          (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>,     ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) 
          (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>,     ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) 
          (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>,     ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) 
          (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>,     ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) 
          (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>,     ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) 
          (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>,     ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) 
          (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>,     ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) 
          (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>,     ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) 
          (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>,     ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) 
          (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>,     ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) 
          (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>,     ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) 
          (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>,     ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) 
          (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>,     ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) 
          (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>,     ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) 
          (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>,     ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) 
          (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>,     ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) 
          (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>,     ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) 
          (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>,     ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) 
          (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>,     6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) 
          (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) 
    + Applied Processor:
        ChainProcessor False [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26]
    + Details:
        We chained rule 0 to obtain the rules [27] .
* Step 22: ChainProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          1.  f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J)      [B >= C]               (7,1) 
          2.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)  [B >= E && E >= 1 + C] (42,1)
          3.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)  [C >= 1 + E && B >= E] (42,1)
          4.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J)  [B >= E && C = E]      (42,1)
          5.  f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J)  [F >= 1 + G]           (7,1) 
          6.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)      [0 >= 1 + G && F >= H] (?,1) 
          7.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)      [G >= 1 && F >= H]     (48,1)
          8.  f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J)  [G >= 1 + J]           (?,1) 
          9.  f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J)  [F >= H && G = 0]      (48,1)
          10. f50(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,0)      [F >= H]               (77,1)
          11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J)  [G >= J]               (?,1) 
          12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J)      [F >= G]               (?,1) 
          13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J)  [G >= 1 + H]           (?,1) 
          14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J)  [G >= 0]               (6,1) 
          15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J)  [F >= H]               (?,1) 
          16. f84(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + G,H,J) [H >= 1 + F]           (?,1) 
          18. f70(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1 + G,H,J)  [H >= G]               (?,1) 
          19. f66(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J) [G >= 1 + F]           (1,1) 
          20. f54(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + H,J)  [J >= 1 + G]           (77,1)
          21. f50(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,H,J)  [H >= 1 + F]           (7,1) 
          22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J)  [J >= G]               (?,1) 
          23. f36(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + G,J)  [H >= 1 + F]           (7,1) 
          24. f33(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J)      [G >= F]               (1,1) 
          25. f19(A,B,C,E,F,G,H,J) -> f15(A,B,1 + C,E,F,G,H,J)  [E >= 1 + B]           (7,1) 
          26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J)      [C >= 1 + B]           (1,1) 
          27. f0(A,B,C,E,F,G,H,J)  -> f19(50,5,0,0,F,G,H,J)     [5 >= 0]               (1,2) 
        Signature:
          {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)}
        Flow Graph:
          [1->{2,3,4,25},2->{2,3,4,25},3->{2,3,4,25},4->{2,3,4,25},5->{6,7,9,23},6->{8,22},7->{8,22},8->{8,22},9->{6
          ,7,9,23},10->{11,20},11->{11,20},12->{13,18},13->{13,18},14->{15,16},15->{15,16},16->{14},18->{12,19}
          ,19->{14},20->{10,21},21->{5,24},22->{6,7,9,23},23->{10,21},24->{12,19},25->{1,26},26->{5,24},27->{2,3,4
          ,25}]
        Sizebounds:
          (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>,     0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) 
          (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>,     6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) 
          (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>,     6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) 
          (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>,     5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) 
          (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>,     ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) 
          (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>,     ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) 
          (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>,     ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) 
          (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>,     ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) 
          (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>,     ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) 
          (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>,     ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) 
          (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>,     ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) 
          (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>,     ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) 
          (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>,     ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) 
          (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>,     ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) 
          (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>,     ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) 
          (<16,0,A>, 50) (<16,0,B>, 5) (<16,0,C>, ?) (<16,0,E>,     ?) (<16,0,F>, 5) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,J>, ?) 
          (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>,     ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) 
          (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>,     ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) 
          (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>,     ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) 
          (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>,     ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) 
          (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>,     ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) 
          (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>,     ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) 
          (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>,     ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) 
          (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>,     6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) 
          (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) 
          (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 5) (<27,0,E>,     0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) 
    + Applied Processor:
        ChainProcessor False [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26,27]
    + Details:
        We chained rule 16 to obtain the rules [28] .
* Step 23: ChainProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          1.  f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J)      [B >= C]                    (7,1) 
          2.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)  [B >= E && E >= 1 + C]      (42,1)
          3.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)  [C >= 1 + E && B >= E]      (42,1)
          4.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J)  [B >= E && C = E]           (42,1)
          5.  f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J)  [F >= 1 + G]                (7,1) 
          6.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)      [0 >= 1 + G && F >= H]      (?,1) 
          7.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)      [G >= 1 && F >= H]          (48,1)
          8.  f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J)  [G >= 1 + J]                (?,1) 
          9.  f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J)  [F >= H && G = 0]           (48,1)
          10. f50(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,0)      [F >= H]                    (77,1)
          11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J)  [G >= J]                    (?,1) 
          12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J)      [F >= G]                    (?,1) 
          13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J)  [G >= 1 + H]                (?,1) 
          14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J)  [G >= 0]                    (6,1) 
          15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J)  [F >= H]                    (?,1) 
          18. f70(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1 + G,H,J)  [H >= G]                    (?,1) 
          19. f66(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J) [G >= 1 + F]                (1,1) 
          20. f54(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + H,J)  [J >= 1 + G]                (77,1)
          21. f50(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,H,J)  [H >= 1 + F]                (7,1) 
          22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J)  [J >= G]                    (?,1) 
          23. f36(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + G,J)  [H >= 1 + F]                (7,1) 
          24. f33(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J)      [G >= F]                    (1,1) 
          25. f19(A,B,C,E,F,G,H,J) -> f15(A,B,1 + C,E,F,G,H,J)  [E >= 1 + B]                (7,1) 
          26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J)      [C >= 1 + B]                (1,1) 
          27. f0(A,B,C,E,F,G,H,J)  -> f19(50,5,0,0,F,G,H,J)     [5 >= 0]                    (1,2) 
          28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J) [H >= 1 + F && -1 + G >= 0] (?,2) 
        Signature:
          {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)}
        Flow Graph:
          [1->{2,3,4,25},2->{2,3,4,25},3->{2,3,4,25},4->{2,3,4,25},5->{6,7,9,23},6->{8,22},7->{8,22},8->{8,22},9->{6
          ,7,9,23},10->{11,20},11->{11,20},12->{13,18},13->{13,18},14->{15,28},15->{15,28},18->{12,19},19->{14}
          ,20->{10,21},21->{5,24},22->{6,7,9,23},23->{10,21},24->{12,19},25->{1,26},26->{5,24},27->{2,3,4,25},28->{15
          ,28}]
        Sizebounds:
          (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>,     0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) 
          (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>,     6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) 
          (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>,     6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) 
          (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>,     5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) 
          (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>,     ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) 
          (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>,     ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) 
          (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>,     ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) 
          (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>,     ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) 
          (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>,     ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) 
          (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>,     ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) 
          (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>,     ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) 
          (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>,     ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) 
          (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>,     ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) 
          (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>,     ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) 
          (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>,     ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) 
          (<18,0,A>, 50) (<18,0,B>, 5) (<18,0,C>, ?) (<18,0,E>,     ?) (<18,0,F>, 5) (<18,0,G>, 5) (<18,0,H>, 5) (<18,0,J>, ?) 
          (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>,     ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) 
          (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>,     ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) 
          (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>,     ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) 
          (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>,     ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) 
          (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>,     ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) 
          (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>,     ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) 
          (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>,     6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) 
          (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) 
          (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 5) (<27,0,E>,     0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) 
          (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, ?) (<28,0,E>,     ?) (<28,0,F>, 5) (<28,0,G>, ?) (<28,0,H>, ?) (<28,0,J>, ?) 
    + Applied Processor:
        ChainProcessor False [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,18,19,20,21,22,23,24,25,26,27,28]
    + Details:
        We chained rule 18 to obtain the rules [29,30] .
* Step 24: ChainProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          1.  f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J)      [B >= C]                    (7,1) 
          2.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)  [B >= E && E >= 1 + C]      (42,1)
          3.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)  [C >= 1 + E && B >= E]      (42,1)
          4.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J)  [B >= E && C = E]           (42,1)
          5.  f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J)  [F >= 1 + G]                (7,1) 
          6.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)      [0 >= 1 + G && F >= H]      (?,1) 
          7.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)      [G >= 1 && F >= H]          (48,1)
          8.  f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J)  [G >= 1 + J]                (?,1) 
          9.  f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J)  [F >= H && G = 0]           (48,1)
          10. f50(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,0)      [F >= H]                    (77,1)
          11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J)  [G >= J]                    (?,1) 
          12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J)      [F >= G]                    (?,1) 
          13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J)  [G >= 1 + H]                (?,1) 
          14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J)  [G >= 0]                    (6,1) 
          15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J)  [F >= H]                    (?,1) 
          19. f66(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J) [G >= 1 + F]                (1,1) 
          20. f54(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + H,J)  [J >= 1 + G]                (77,1)
          21. f50(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,H,J)  [H >= 1 + F]                (7,1) 
          22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J)  [J >= G]                    (?,1) 
          23. f36(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + G,J)  [H >= 1 + F]                (7,1) 
          24. f33(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J)      [G >= F]                    (1,1) 
          25. f19(A,B,C,E,F,G,H,J) -> f15(A,B,1 + C,E,F,G,H,J)  [E >= 1 + B]                (7,1) 
          26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J)      [C >= 1 + B]                (1,1) 
          27. f0(A,B,C,E,F,G,H,J)  -> f19(50,5,0,0,F,G,H,J)     [5 >= 0]                    (1,2) 
          28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J) [H >= 1 + F && -1 + G >= 0] (?,2) 
          29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J)  [H >= G && F >= 1 + G]      (?,2) 
          30. f70(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J) [H >= G && 1 + G >= 1 + F]  (?,2) 
        Signature:
          {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)}
        Flow Graph:
          [1->{2,3,4,25},2->{2,3,4,25},3->{2,3,4,25},4->{2,3,4,25},5->{6,7,9,23},6->{8,22},7->{8,22},8->{8,22},9->{6
          ,7,9,23},10->{11,20},11->{11,20},12->{13,29,30},13->{13,29,30},14->{15,28},15->{15,28},19->{14},20->{10,21}
          ,21->{5,24},22->{6,7,9,23},23->{10,21},24->{12,19},25->{1,26},26->{5,24},27->{2,3,4,25},28->{15,28},29->{13
          ,29,30},30->{14}]
        Sizebounds:
          (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>,     0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) 
          (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>,     6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) 
          (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>,     6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) 
          (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>,     5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) 
          (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>,     ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) 
          (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>,     ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) 
          (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>,     ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) 
          (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>,     ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) 
          (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>,     ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) 
          (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>,     ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) 
          (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>,     ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) 
          (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>,     ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) 
          (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>,     ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) 
          (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>,     ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) 
          (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>,     ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) 
          (<19,0,A>, 50) (<19,0,B>, 5) (<19,0,C>, ?) (<19,0,E>,     ?) (<19,0,F>, 5) (<19,0,G>, 6) (<19,0,H>, ?) (<19,0,J>, ?) 
          (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>,     ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) 
          (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>,     ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) 
          (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>,     ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) 
          (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>,     ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) 
          (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>,     ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) 
          (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>,     6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) 
          (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) 
          (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 5) (<27,0,E>,     0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) 
          (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, ?) (<28,0,E>,     ?) (<28,0,F>, 5) (<28,0,G>, ?) (<28,0,H>, ?) (<28,0,J>, ?) 
          (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, ?) (<29,0,E>,     ?) (<29,0,F>, 5) (<29,0,G>, 5) (<29,0,H>, 0) (<29,0,J>, ?) 
          (<30,0,A>, 50) (<30,0,B>, 5) (<30,0,C>, ?) (<30,0,E>,     ?) (<30,0,F>, 5) (<30,0,G>, 6) (<30,0,H>, ?) (<30,0,J>, ?) 
    + Applied Processor:
        ChainProcessor False [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,19,20,21,22,23,24,25,26,27,28,29,30]
    + Details:
        We chained rule 19 to obtain the rules [31] .
* Step 25: ChainProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          1.  f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J)      [B >= C]                    (7,1) 
          2.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)  [B >= E && E >= 1 + C]      (42,1)
          3.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)  [C >= 1 + E && B >= E]      (42,1)
          4.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J)  [B >= E && C = E]           (42,1)
          5.  f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J)  [F >= 1 + G]                (7,1) 
          6.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)      [0 >= 1 + G && F >= H]      (?,1) 
          7.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)      [G >= 1 && F >= H]          (48,1)
          8.  f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J)  [G >= 1 + J]                (?,1) 
          9.  f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J)  [F >= H && G = 0]           (48,1)
          10. f50(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,0)      [F >= H]                    (77,1)
          11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J)  [G >= J]                    (?,1) 
          12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J)      [F >= G]                    (?,1) 
          13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J)  [G >= 1 + H]                (?,1) 
          14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J)  [G >= 0]                    (6,1) 
          15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J)  [F >= H]                    (?,1) 
          20. f54(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + H,J)  [J >= 1 + G]                (77,1)
          21. f50(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,H,J)  [H >= 1 + F]                (7,1) 
          22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J)  [J >= G]                    (?,1) 
          23. f36(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + G,J)  [H >= 1 + F]                (7,1) 
          24. f33(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J)      [G >= F]                    (1,1) 
          25. f19(A,B,C,E,F,G,H,J) -> f15(A,B,1 + C,E,F,G,H,J)  [E >= 1 + B]                (7,1) 
          26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J)      [C >= 1 + B]                (1,1) 
          27. f0(A,B,C,E,F,G,H,J)  -> f19(50,5,0,0,F,G,H,J)     [5 >= 0]                    (1,2) 
          28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J) [H >= 1 + F && -1 + G >= 0] (?,2) 
          29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J)  [H >= G && F >= 1 + G]      (?,2) 
          30. f70(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J) [H >= G && 1 + G >= 1 + F]  (?,2) 
          31. f66(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J) [G >= 1 + F && -1 + F >= 0] (1,2) 
        Signature:
          {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)}
        Flow Graph:
          [1->{2,3,4,25},2->{2,3,4,25},3->{2,3,4,25},4->{2,3,4,25},5->{6,7,9,23},6->{8,22},7->{8,22},8->{8,22},9->{6
          ,7,9,23},10->{11,20},11->{11,20},12->{13,29,30},13->{13,29,30},14->{15,28},15->{15,28},20->{10,21},21->{5
          ,24},22->{6,7,9,23},23->{10,21},24->{12,31},25->{1,26},26->{5,24},27->{2,3,4,25},28->{15,28},29->{13,29,30}
          ,30->{14},31->{15,28}]
        Sizebounds:
          (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>,     0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) 
          (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>,     6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) 
          (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>,     6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) 
          (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>,     5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) 
          (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>,     ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) 
          (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>,     ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) 
          (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>,     ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) 
          (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>,     ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) 
          (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>,     ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) 
          (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>,     ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) 
          (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>,     ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) 
          (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>,     ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) 
          (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>,     ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) 
          (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>,     ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) 
          (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>,     ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) 
          (<20,0,A>, 50) (<20,0,B>, 5) (<20,0,C>, ?) (<20,0,E>,     ?) (<20,0,F>, 5) (<20,0,G>, ?) (<20,0,H>, 5) (<20,0,J>, ?) 
          (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>,     ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) 
          (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>,     ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) 
          (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>,     ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) 
          (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>,     ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) 
          (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>,     6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) 
          (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) 
          (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 5) (<27,0,E>,     0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) 
          (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, ?) (<28,0,E>,     ?) (<28,0,F>, 5) (<28,0,G>, ?) (<28,0,H>, ?) (<28,0,J>, ?) 
          (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, ?) (<29,0,E>,     ?) (<29,0,F>, 5) (<29,0,G>, 5) (<29,0,H>, 0) (<29,0,J>, ?) 
          (<30,0,A>, 50) (<30,0,B>, 5) (<30,0,C>, ?) (<30,0,E>,     ?) (<30,0,F>, 5) (<30,0,G>, 6) (<30,0,H>, ?) (<30,0,J>, ?) 
          (<31,0,A>, 50) (<31,0,B>, 5) (<31,0,C>, ?) (<31,0,E>,     ?) (<31,0,F>, 5) (<31,0,G>, ?) (<31,0,H>, ?) (<31,0,J>, ?) 
    + Applied Processor:
        ChainProcessor False [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,20,21,22,23,24,25,26,27,28,29,30,31]
    + Details:
        We chained rule 20 to obtain the rules [32,33] .
* Step 26: ChainProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          1.  f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J)         [B >= C]                       (7,1) 
          2.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)     [B >= E && E >= 1 + C]         (42,1)
          3.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)     [C >= 1 + E && B >= E]         (42,1)
          4.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J)     [B >= E && C = E]              (42,1)
          5.  f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J)     [F >= 1 + G]                   (7,1) 
          6.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)         [0 >= 1 + G && F >= H]         (?,1) 
          7.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)         [G >= 1 && F >= H]             (48,1)
          8.  f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J)     [G >= 1 + J]                   (?,1) 
          9.  f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J)     [F >= H && G = 0]              (48,1)
          10. f50(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,0)         [F >= H]                       (77,1)
          11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J)     [G >= J]                       (?,1) 
          12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J)         [F >= G]                       (?,1) 
          13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J)     [G >= 1 + H]                   (?,1) 
          14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J)     [G >= 0]                       (6,1) 
          15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J)     [F >= H]                       (?,1) 
          21. f50(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,H,J)     [H >= 1 + F]                   (7,1) 
          22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J)     [J >= G]                       (?,1) 
          23. f36(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + G,J)     [H >= 1 + F]                   (7,1) 
          24. f33(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J)         [G >= F]                       (1,1) 
          25. f19(A,B,C,E,F,G,H,J) -> f15(A,B,1 + C,E,F,G,H,J)     [E >= 1 + B]                   (7,1) 
          26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J)         [C >= 1 + B]                   (1,1) 
          27. f0(A,B,C,E,F,G,H,J)  -> f19(50,5,0,0,F,G,H,J)        [5 >= 0]                       (1,2) 
          28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J)    [H >= 1 + F && -1 + G >= 0]    (?,2) 
          29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J)     [H >= G && F >= 1 + G]         (?,2) 
          30. f70(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J)    [H >= G && 1 + G >= 1 + F]     (?,2) 
          31. f66(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J)    [G >= 1 + F && -1 + F >= 0]    (1,2) 
          32. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + H,0)     [J >= 1 + G && F >= 1 + H]     (77,2)
          33. f54(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,1 + H,J) [J >= 1 + G && 1 + H >= 1 + F] (77,2)
        Signature:
          {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)}
        Flow Graph:
          [1->{2,3,4,25},2->{2,3,4,25},3->{2,3,4,25},4->{2,3,4,25},5->{6,7,9,23},6->{8,22},7->{8,22},8->{8,22},9->{6
          ,7,9,23},10->{11,32,33},11->{11,32,33},12->{13,29,30},13->{13,29,30},14->{15,28},15->{15,28},21->{5,24}
          ,22->{6,7,9,23},23->{10,21},24->{12,31},25->{1,26},26->{5,24},27->{2,3,4,25},28->{15,28},29->{13,29,30}
          ,30->{14},31->{15,28},32->{11,32,33},33->{5,24}]
        Sizebounds:
          (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>,     0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) 
          (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>,     6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) 
          (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>,     6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) 
          (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>,     5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) 
          (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>,     ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) 
          (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>,     ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) 
          (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>,     ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) 
          (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>,     ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) 
          (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>,     ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) 
          (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>,     ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) 
          (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>,     ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) 
          (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>,     ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) 
          (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>,     ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) 
          (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>,     ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) 
          (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>,     ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) 
          (<21,0,A>, 50) (<21,0,B>, 5) (<21,0,C>, ?) (<21,0,E>,     ?) (<21,0,F>, 5) (<21,0,G>, ?) (<21,0,H>, ?) (<21,0,J>, ?) 
          (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>,     ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) 
          (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>,     ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) 
          (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>,     ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) 
          (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>,     6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) 
          (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) 
          (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 5) (<27,0,E>,     0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) 
          (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, ?) (<28,0,E>,     ?) (<28,0,F>, 5) (<28,0,G>, ?) (<28,0,H>, ?) (<28,0,J>, ?) 
          (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, ?) (<29,0,E>,     ?) (<29,0,F>, 5) (<29,0,G>, 5) (<29,0,H>, 0) (<29,0,J>, ?) 
          (<30,0,A>, 50) (<30,0,B>, 5) (<30,0,C>, ?) (<30,0,E>,     ?) (<30,0,F>, 5) (<30,0,G>, 6) (<30,0,H>, ?) (<30,0,J>, ?) 
          (<31,0,A>, 50) (<31,0,B>, 5) (<31,0,C>, ?) (<31,0,E>,     ?) (<31,0,F>, 5) (<31,0,G>, ?) (<31,0,H>, ?) (<31,0,J>, ?) 
          (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, ?) (<32,0,E>,     ?) (<32,0,F>, 5) (<32,0,G>, ?) (<32,0,H>, 5) (<32,0,J>, 0) 
          (<33,0,A>, 50) (<33,0,B>, 5) (<33,0,C>, ?) (<33,0,E>,     ?) (<33,0,F>, 5) (<33,0,G>, ?) (<33,0,H>, ?) (<33,0,J>, ?) 
    + Applied Processor:
        ChainProcessor False [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,21,22,23,24,25,26,27,28,29,30,31,32,33]
    + Details:
        We chained rule 21 to obtain the rules [34,35] .
* Step 27: ChainProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          1.  f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J)         [B >= C]                       (7,1) 
          2.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)     [B >= E && E >= 1 + C]         (42,1)
          3.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)     [C >= 1 + E && B >= E]         (42,1)
          4.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J)     [B >= E && C = E]              (42,1)
          5.  f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J)     [F >= 1 + G]                   (7,1) 
          6.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)         [0 >= 1 + G && F >= H]         (?,1) 
          7.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)         [G >= 1 && F >= H]             (48,1)
          8.  f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J)     [G >= 1 + J]                   (?,1) 
          9.  f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J)     [F >= H && G = 0]              (48,1)
          10. f50(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,0)         [F >= H]                       (77,1)
          11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J)     [G >= J]                       (?,1) 
          12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J)         [F >= G]                       (?,1) 
          13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J)     [G >= 1 + H]                   (?,1) 
          14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J)     [G >= 0]                       (6,1) 
          15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J)     [F >= H]                       (?,1) 
          22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J)     [J >= G]                       (?,1) 
          23. f36(A,B,C,E,F,G,H,J) -> f50(A,B,C,E,F,G,1 + G,J)     [H >= 1 + F]                   (7,1) 
          24. f33(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J)         [G >= F]                       (1,1) 
          25. f19(A,B,C,E,F,G,H,J) -> f15(A,B,1 + C,E,F,G,H,J)     [E >= 1 + B]                   (7,1) 
          26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J)         [C >= 1 + B]                   (1,1) 
          27. f0(A,B,C,E,F,G,H,J)  -> f19(50,5,0,0,F,G,H,J)        [5 >= 0]                       (1,2) 
          28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J)    [H >= 1 + F && -1 + G >= 0]    (?,2) 
          29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J)     [H >= G && F >= 1 + G]         (?,2) 
          30. f70(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J)    [H >= G && 1 + G >= 1 + F]     (?,2) 
          31. f66(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J)    [G >= 1 + F && -1 + F >= 0]    (1,2) 
          32. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + H,0)     [J >= 1 + G && F >= 1 + H]     (77,2)
          33. f54(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,1 + H,J) [J >= 1 + G && 1 + H >= 1 + F] (77,2)
          34. f50(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [H >= 1 + F && F >= 2 + G]     (7,2) 
          35. f50(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J)         [H >= 1 + F && 1 + G >= F]     (7,2) 
        Signature:
          {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)}
        Flow Graph:
          [1->{2,3,4,25},2->{2,3,4,25},3->{2,3,4,25},4->{2,3,4,25},5->{6,7,9,23},6->{8,22},7->{8,22},8->{8,22},9->{6
          ,7,9,23},10->{11,32,33},11->{11,32,33},12->{13,29,30},13->{13,29,30},14->{15,28},15->{15,28},22->{6,7,9,23}
          ,23->{10,34,35},24->{12,31},25->{1,26},26->{5,24},27->{2,3,4,25},28->{15,28},29->{13,29,30},30->{14},31->{15
          ,28},32->{11,32,33},33->{5,24},34->{6,7,9,23},35->{12,31}]
        Sizebounds:
          (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>,     0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) 
          (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>,     6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) 
          (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>,     6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) 
          (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>,     5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) 
          (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>,     ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) 
          (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>,     ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) 
          (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>,     ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) 
          (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>,     ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) 
          (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>,     ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) 
          (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>,     ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) 
          (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>,     ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) 
          (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>,     ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) 
          (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>,     ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) 
          (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>,     ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) 
          (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>,     ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) 
          (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>,     ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) 
          (<23,0,A>, 50) (<23,0,B>, 5) (<23,0,C>, ?) (<23,0,E>,     ?) (<23,0,F>, 5) (<23,0,G>, ?) (<23,0,H>, ?) (<23,0,J>, ?) 
          (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>,     ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) 
          (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>,     6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) 
          (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) 
          (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 5) (<27,0,E>,     0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) 
          (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, ?) (<28,0,E>,     ?) (<28,0,F>, 5) (<28,0,G>, ?) (<28,0,H>, ?) (<28,0,J>, ?) 
          (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, ?) (<29,0,E>,     ?) (<29,0,F>, 5) (<29,0,G>, 5) (<29,0,H>, 0) (<29,0,J>, ?) 
          (<30,0,A>, 50) (<30,0,B>, 5) (<30,0,C>, ?) (<30,0,E>,     ?) (<30,0,F>, 5) (<30,0,G>, 6) (<30,0,H>, ?) (<30,0,J>, ?) 
          (<31,0,A>, 50) (<31,0,B>, 5) (<31,0,C>, ?) (<31,0,E>,     ?) (<31,0,F>, 5) (<31,0,G>, ?) (<31,0,H>, ?) (<31,0,J>, ?) 
          (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, ?) (<32,0,E>,     ?) (<32,0,F>, 5) (<32,0,G>, ?) (<32,0,H>, 5) (<32,0,J>, 0) 
          (<33,0,A>, 50) (<33,0,B>, 5) (<33,0,C>, ?) (<33,0,E>,     ?) (<33,0,F>, 5) (<33,0,G>, ?) (<33,0,H>, ?) (<33,0,J>, ?) 
          (<34,0,A>, 50) (<34,0,B>, 5) (<34,0,C>, ?) (<34,0,E>,     ?) (<34,0,F>, 5) (<34,0,G>, 5) (<34,0,H>, ?) (<34,0,J>, ?) 
          (<35,0,A>, 50) (<35,0,B>, 5) (<35,0,C>, ?) (<35,0,E>,     ?) (<35,0,F>, 5) (<35,0,G>, 1) (<35,0,H>, ?) (<35,0,J>, ?) 
    + Applied Processor:
        ChainProcessor False [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,22,23,24,25,26,27,28,29,30,31,32,33,34,35]
    + Details:
        We chained rule 23 to obtain the rules [36,37,38] .
* Step 28: UnreachableRules WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          1.  f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J)         [B >= C]                                     (7,1) 
          2.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)     [B >= E && E >= 1 + C]                       (42,1)
          3.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)     [C >= 1 + E && B >= E]                       (42,1)
          4.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J)     [B >= E && C = E]                            (42,1)
          5.  f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J)     [F >= 1 + G]                                 (7,1) 
          6.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)         [0 >= 1 + G && F >= H]                       (?,1) 
          7.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)         [G >= 1 && F >= H]                           (48,1)
          8.  f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J)     [G >= 1 + J]                                 (?,1) 
          9.  f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J)     [F >= H && G = 0]                            (48,1)
          10. f50(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,0)         [F >= H]                                     (77,1)
          11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J)     [G >= J]                                     (?,1) 
          12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J)         [F >= G]                                     (?,1) 
          13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J)     [G >= 1 + H]                                 (?,1) 
          14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J)     [G >= 0]                                     (6,1) 
          15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J)     [F >= H]                                     (?,1) 
          22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J)     [J >= G]                                     (?,1) 
          24. f33(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J)         [G >= F]                                     (1,1) 
          25. f19(A,B,C,E,F,G,H,J) -> f15(A,B,1 + C,E,F,G,H,J)     [E >= 1 + B]                                 (7,1) 
          26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J)         [C >= 1 + B]                                 (1,1) 
          27. f0(A,B,C,E,F,G,H,J)  -> f19(50,5,0,0,F,G,H,J)        [5 >= 0]                                     (1,2) 
          28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J)    [H >= 1 + F && -1 + G >= 0]                  (?,2) 
          29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J)     [H >= G && F >= 1 + G]                       (?,2) 
          30. f70(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J)    [H >= G && 1 + G >= 1 + F]                   (?,2) 
          31. f66(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J)    [G >= 1 + F && -1 + F >= 0]                  (1,2) 
          32. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + H,0)     [J >= 1 + G && F >= 1 + H]                   (77,2)
          33. f54(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,1 + H,J) [J >= 1 + G && 1 + H >= 1 + F]               (77,2)
          34. f50(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [H >= 1 + F && F >= 2 + G]                   (7,2) 
          35. f50(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J)         [H >= 1 + F && 1 + G >= F]                   (7,2) 
          36. f36(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + G,0)     [H >= 1 + F && F >= 1 + G]                   (7,2) 
          37. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [H >= 1 + F && 1 + G >= 1 + F && F >= 2 + G] (7,3) 
          38. f36(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,1 + G,J)     [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F] (7,3) 
        Signature:
          {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)}
        Flow Graph:
          [1->{2,3,4,25},2->{2,3,4,25},3->{2,3,4,25},4->{2,3,4,25},5->{6,7,9,36,37,38},6->{8,22},7->{8,22},8->{8,22}
          ,9->{6,7,9,36,37,38},10->{11,32,33},11->{11,32,33},12->{13,29,30},13->{13,29,30},14->{15,28},15->{15,28}
          ,22->{6,7,9,36,37,38},24->{12,31},25->{1,26},26->{5,24},27->{2,3,4,25},28->{15,28},29->{13,29,30},30->{14}
          ,31->{15,28},32->{11,32,33},33->{5,24},34->{6,7,9,36,37,38},35->{12,31},36->{11,32,33},37->{6,7,9,36,37,38}
          ,38->{12,31}]
        Sizebounds:
          (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>,     0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) 
          (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>,     6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) 
          (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>,     6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) 
          (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>,     5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) 
          (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>,     ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) 
          (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>,     ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) 
          (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>,     ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) 
          (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>,     ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) 
          (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>,     ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) 
          (<10,0,A>, 50) (<10,0,B>, 5) (<10,0,C>, ?) (<10,0,E>,     ?) (<10,0,F>, 5) (<10,0,G>, ?) (<10,0,H>, 5) (<10,0,J>, 0) 
          (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>,     ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) 
          (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>,     ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) 
          (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>,     ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) 
          (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>,     ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) 
          (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>,     ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) 
          (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>,     ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) 
          (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>,     ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) 
          (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>,     6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) 
          (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) 
          (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 5) (<27,0,E>,     0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) 
          (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, ?) (<28,0,E>,     ?) (<28,0,F>, 5) (<28,0,G>, ?) (<28,0,H>, ?) (<28,0,J>, ?) 
          (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, ?) (<29,0,E>,     ?) (<29,0,F>, 5) (<29,0,G>, 5) (<29,0,H>, 0) (<29,0,J>, ?) 
          (<30,0,A>, 50) (<30,0,B>, 5) (<30,0,C>, ?) (<30,0,E>,     ?) (<30,0,F>, 5) (<30,0,G>, 6) (<30,0,H>, ?) (<30,0,J>, ?) 
          (<31,0,A>, 50) (<31,0,B>, 5) (<31,0,C>, ?) (<31,0,E>,     ?) (<31,0,F>, 5) (<31,0,G>, ?) (<31,0,H>, ?) (<31,0,J>, ?) 
          (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, ?) (<32,0,E>,     ?) (<32,0,F>, 5) (<32,0,G>, ?) (<32,0,H>, 5) (<32,0,J>, 0) 
          (<33,0,A>, 50) (<33,0,B>, 5) (<33,0,C>, ?) (<33,0,E>,     ?) (<33,0,F>, 5) (<33,0,G>, ?) (<33,0,H>, ?) (<33,0,J>, ?) 
          (<34,0,A>, 50) (<34,0,B>, 5) (<34,0,C>, ?) (<34,0,E>,     ?) (<34,0,F>, 5) (<34,0,G>, 5) (<34,0,H>, ?) (<34,0,J>, ?) 
          (<35,0,A>, 50) (<35,0,B>, 5) (<35,0,C>, ?) (<35,0,E>,     ?) (<35,0,F>, 5) (<35,0,G>, 1) (<35,0,H>, ?) (<35,0,J>, ?) 
          (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, ?) (<36,0,E>,     ?) (<36,0,F>, 5) (<36,0,G>, ?) (<36,0,H>, 5) (<36,0,J>, 0) 
          (<37,0,A>, 50) (<37,0,B>, 5) (<37,0,C>, ?) (<37,0,E>,     ?) (<37,0,F>, 5) (<37,0,G>, 5) (<37,0,H>, ?) (<37,0,J>, ?) 
          (<38,0,A>, 50) (<38,0,B>, 5) (<38,0,C>, ?) (<38,0,E>,     ?) (<38,0,F>, 5) (<38,0,G>, 1) (<38,0,H>, ?) (<38,0,J>, ?) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [10,34,35]
* Step 29: ChainProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          1.  f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J)         [B >= C]                                     (7,1) 
          2.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)     [B >= E && E >= 1 + C]                       (42,1)
          3.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)     [C >= 1 + E && B >= E]                       (42,1)
          4.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J)     [B >= E && C = E]                            (42,1)
          5.  f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J)     [F >= 1 + G]                                 (7,1) 
          6.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)         [0 >= 1 + G && F >= H]                       (?,1) 
          7.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)         [G >= 1 && F >= H]                           (48,1)
          8.  f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J)     [G >= 1 + J]                                 (?,1) 
          9.  f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J)     [F >= H && G = 0]                            (48,1)
          11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J)     [G >= J]                                     (?,1) 
          12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J)         [F >= G]                                     (?,1) 
          13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J)     [G >= 1 + H]                                 (?,1) 
          14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J)     [G >= 0]                                     (6,1) 
          15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J)     [F >= H]                                     (?,1) 
          22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J)     [J >= G]                                     (?,1) 
          24. f33(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,H,J)         [G >= F]                                     (1,1) 
          25. f19(A,B,C,E,F,G,H,J) -> f15(A,B,1 + C,E,F,G,H,J)     [E >= 1 + B]                                 (7,1) 
          26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J)         [C >= 1 + B]                                 (1,1) 
          27. f0(A,B,C,E,F,G,H,J)  -> f19(50,5,0,0,F,G,H,J)        [5 >= 0]                                     (1,2) 
          28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J)    [H >= 1 + F && -1 + G >= 0]                  (?,2) 
          29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J)     [H >= G && F >= 1 + G]                       (?,2) 
          30. f70(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J)    [H >= G && 1 + G >= 1 + F]                   (?,2) 
          31. f66(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J)    [G >= 1 + F && -1 + F >= 0]                  (1,2) 
          32. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + H,0)     [J >= 1 + G && F >= 1 + H]                   (77,2)
          33. f54(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,1 + H,J) [J >= 1 + G && 1 + H >= 1 + F]               (77,2)
          36. f36(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + G,0)     [H >= 1 + F && F >= 1 + G]                   (7,2) 
          37. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [H >= 1 + F && 1 + G >= 1 + F && F >= 2 + G] (7,3) 
          38. f36(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,1 + G,J)     [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F] (7,3) 
        Signature:
          {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)}
        Flow Graph:
          [1->{2,3,4,25},2->{2,3,4,25},3->{2,3,4,25},4->{2,3,4,25},5->{6,7,9,36,37,38},6->{8,22},7->{8,22},8->{8,22}
          ,9->{6,7,9,36,37,38},11->{11,32,33},12->{13,29,30},13->{13,29,30},14->{15,28},15->{15,28},22->{6,7,9,36,37
          ,38},24->{12,31},25->{1,26},26->{5,24},27->{2,3,4,25},28->{15,28},29->{13,29,30},30->{14},31->{15,28}
          ,32->{11,32,33},33->{5,24},36->{11,32,33},37->{6,7,9,36,37,38},38->{12,31}]
        Sizebounds:
          (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>,     0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) 
          (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>,     6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) 
          (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>,     6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) 
          (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>,     5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) 
          (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>,     ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) 
          (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>,     ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) 
          (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>,     ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) 
          (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>,     ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) 
          (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>,     ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) 
          (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>,     ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) 
          (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>,     ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) 
          (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>,     ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) 
          (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>,     ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) 
          (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>,     ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) 
          (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>,     ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) 
          (<24,0,A>, 50) (<24,0,B>, 5) (<24,0,C>, ?) (<24,0,E>,     ?) (<24,0,F>, 5) (<24,0,G>, 1) (<24,0,H>, ?) (<24,0,J>, ?) 
          (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>,     6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) 
          (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) 
          (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 5) (<27,0,E>,     0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) 
          (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, ?) (<28,0,E>,     ?) (<28,0,F>, 5) (<28,0,G>, ?) (<28,0,H>, ?) (<28,0,J>, ?) 
          (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, ?) (<29,0,E>,     ?) (<29,0,F>, 5) (<29,0,G>, 5) (<29,0,H>, 0) (<29,0,J>, ?) 
          (<30,0,A>, 50) (<30,0,B>, 5) (<30,0,C>, ?) (<30,0,E>,     ?) (<30,0,F>, 5) (<30,0,G>, 6) (<30,0,H>, ?) (<30,0,J>, ?) 
          (<31,0,A>, 50) (<31,0,B>, 5) (<31,0,C>, ?) (<31,0,E>,     ?) (<31,0,F>, 5) (<31,0,G>, ?) (<31,0,H>, ?) (<31,0,J>, ?) 
          (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, ?) (<32,0,E>,     ?) (<32,0,F>, 5) (<32,0,G>, ?) (<32,0,H>, 5) (<32,0,J>, 0) 
          (<33,0,A>, 50) (<33,0,B>, 5) (<33,0,C>, ?) (<33,0,E>,     ?) (<33,0,F>, 5) (<33,0,G>, ?) (<33,0,H>, ?) (<33,0,J>, ?) 
          (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, ?) (<36,0,E>,     ?) (<36,0,F>, 5) (<36,0,G>, ?) (<36,0,H>, 5) (<36,0,J>, 0) 
          (<37,0,A>, 50) (<37,0,B>, 5) (<37,0,C>, ?) (<37,0,E>,     ?) (<37,0,F>, 5) (<37,0,G>, 5) (<37,0,H>, ?) (<37,0,J>, ?) 
          (<38,0,A>, 50) (<38,0,B>, 5) (<38,0,C>, ?) (<38,0,E>,     ?) (<38,0,F>, 5) (<38,0,G>, 1) (<38,0,H>, ?) (<38,0,J>, ?) 
    + Applied Processor:
        ChainProcessor False [1,2,3,4,5,6,7,8,9,11,12,13,14,15,22,24,25,26,27,28,29,30,31,32,33,36,37,38]
    + Details:
        We chained rule 24 to obtain the rules [39,40] .
* Step 30: ChainProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          1.  f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J)         [B >= C]                                     (7,1) 
          2.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)     [B >= E && E >= 1 + C]                       (42,1)
          3.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)     [C >= 1 + E && B >= E]                       (42,1)
          4.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J)     [B >= E && C = E]                            (42,1)
          5.  f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J)     [F >= 1 + G]                                 (7,1) 
          6.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)         [0 >= 1 + G && F >= H]                       (?,1) 
          7.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)         [G >= 1 && F >= H]                           (48,1)
          8.  f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J)     [G >= 1 + J]                                 (?,1) 
          9.  f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J)     [F >= H && G = 0]                            (48,1)
          11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J)     [G >= J]                                     (?,1) 
          12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J)         [F >= G]                                     (?,1) 
          13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J)     [G >= 1 + H]                                 (?,1) 
          14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J)     [G >= 0]                                     (6,1) 
          15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J)     [F >= H]                                     (?,1) 
          22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J)     [J >= G]                                     (?,1) 
          25. f19(A,B,C,E,F,G,H,J) -> f15(A,B,1 + C,E,F,G,H,J)     [E >= 1 + B]                                 (7,1) 
          26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J)         [C >= 1 + B]                                 (1,1) 
          27. f0(A,B,C,E,F,G,H,J)  -> f19(50,5,0,0,F,G,H,J)        [5 >= 0]                                     (1,2) 
          28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J)    [H >= 1 + F && -1 + G >= 0]                  (?,2) 
          29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J)     [H >= G && F >= 1 + G]                       (?,2) 
          30. f70(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J)    [H >= G && 1 + G >= 1 + F]                   (?,2) 
          31. f66(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J)    [G >= 1 + F && -1 + F >= 0]                  (1,2) 
          32. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + H,0)     [J >= 1 + G && F >= 1 + H]                   (77,2)
          33. f54(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,1 + H,J) [J >= 1 + G && 1 + H >= 1 + F]               (77,2)
          36. f36(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + G,0)     [H >= 1 + F && F >= 1 + G]                   (7,2) 
          37. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [H >= 1 + F && 1 + G >= 1 + F && F >= 2 + G] (7,3) 
          38. f36(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,1 + G,J)     [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F] (7,3) 
          39. f33(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J)         [G >= F && F >= 1]                           (1,2) 
          40. f33(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J)    [G >= F && 1 >= 1 + F && -1 + F >= 0]        (1,3) 
        Signature:
          {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)}
        Flow Graph:
          [1->{2,3,4,25},2->{2,3,4,25},3->{2,3,4,25},4->{2,3,4,25},5->{6,7,9,36,37,38},6->{8,22},7->{8,22},8->{8,22}
          ,9->{6,7,9,36,37,38},11->{11,32,33},12->{13,29,30},13->{13,29,30},14->{15,28},15->{15,28},22->{6,7,9,36,37
          ,38},25->{1,26},26->{5,39,40},27->{2,3,4,25},28->{15,28},29->{13,29,30},30->{14},31->{15,28},32->{11,32,33}
          ,33->{5,39,40},36->{11,32,33},37->{6,7,9,36,37,38},38->{12,31},39->{13,29,30},40->{15,28}]
        Sizebounds:
          (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>,     0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) 
          (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>,     6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) 
          (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>,     6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) 
          (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>,     5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) 
          (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>,     ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) 
          (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>,     ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) 
          (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>,     ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) 
          (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>,     ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) 
          (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>,     ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) 
          (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>,     ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) 
          (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>,     ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) 
          (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>,     ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) 
          (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>,     ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) 
          (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>,     ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) 
          (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>,     ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) 
          (<25,0,A>, 50) (<25,0,B>, 5) (<25,0,C>, 5) (<25,0,E>,     6) (<25,0,F>, F) (<25,0,G>, G) (<25,0,H>, H) (<25,0,J>, J) 
          (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) 
          (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 5) (<27,0,E>,     0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) 
          (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, ?) (<28,0,E>,     ?) (<28,0,F>, 5) (<28,0,G>, ?) (<28,0,H>, ?) (<28,0,J>, ?) 
          (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, ?) (<29,0,E>,     ?) (<29,0,F>, 5) (<29,0,G>, 5) (<29,0,H>, 0) (<29,0,J>, ?) 
          (<30,0,A>, 50) (<30,0,B>, 5) (<30,0,C>, ?) (<30,0,E>,     ?) (<30,0,F>, 5) (<30,0,G>, 6) (<30,0,H>, ?) (<30,0,J>, ?) 
          (<31,0,A>, 50) (<31,0,B>, 5) (<31,0,C>, ?) (<31,0,E>,     ?) (<31,0,F>, 5) (<31,0,G>, ?) (<31,0,H>, ?) (<31,0,J>, ?) 
          (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, ?) (<32,0,E>,     ?) (<32,0,F>, 5) (<32,0,G>, ?) (<32,0,H>, 5) (<32,0,J>, 0) 
          (<33,0,A>, 50) (<33,0,B>, 5) (<33,0,C>, ?) (<33,0,E>,     ?) (<33,0,F>, 5) (<33,0,G>, ?) (<33,0,H>, ?) (<33,0,J>, ?) 
          (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, ?) (<36,0,E>,     ?) (<36,0,F>, 5) (<36,0,G>, ?) (<36,0,H>, 5) (<36,0,J>, 0) 
          (<37,0,A>, 50) (<37,0,B>, 5) (<37,0,C>, ?) (<37,0,E>,     ?) (<37,0,F>, 5) (<37,0,G>, 5) (<37,0,H>, ?) (<37,0,J>, ?) 
          (<38,0,A>, 50) (<38,0,B>, 5) (<38,0,C>, ?) (<38,0,E>,     ?) (<38,0,F>, 5) (<38,0,G>, 1) (<38,0,H>, ?) (<38,0,J>, ?) 
          (<39,0,A>, 50) (<39,0,B>, 5) (<39,0,C>, ?) (<39,0,E>,     ?) (<39,0,F>, 5) (<39,0,G>, 5) (<39,0,H>, 0) (<39,0,J>, ?) 
          (<40,0,A>, 50) (<40,0,B>, 5) (<40,0,C>, ?) (<40,0,E>,     ?) (<40,0,F>, 5) (<40,0,G>, ?) (<40,0,H>, ?) (<40,0,J>, ?) 
    + Applied Processor:
        ChainProcessor False [1,2,3,4,5,6,7,8,9,11,12,13,14,15,22,25,26,27,28,29,30,31,32,33,36,37,38,39,40]
    + Details:
        We chained rule 25 to obtain the rules [41,42] .
* Step 31: UnreachableRules WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          1.  f15(A,B,C,E,F,G,H,J) -> f19(A,B,C,0,F,G,H,J)         [B >= C]                                     (7,1) 
          2.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)     [B >= E && E >= 1 + C]                       (42,1)
          3.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)     [C >= 1 + E && B >= E]                       (42,1)
          4.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J)     [B >= E && C = E]                            (42,1)
          5.  f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J)     [F >= 1 + G]                                 (7,1) 
          6.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)         [0 >= 1 + G && F >= H]                       (?,1) 
          7.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)         [G >= 1 && F >= H]                           (48,1)
          8.  f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J)     [G >= 1 + J]                                 (?,1) 
          9.  f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J)     [F >= H && G = 0]                            (48,1)
          11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J)     [G >= J]                                     (?,1) 
          12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J)         [F >= G]                                     (?,1) 
          13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J)     [G >= 1 + H]                                 (?,1) 
          14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J)     [G >= 0]                                     (6,1) 
          15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J)     [F >= H]                                     (?,1) 
          22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J)     [J >= G]                                     (?,1) 
          26. f15(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,B,0,H,J)         [C >= 1 + B]                                 (1,1) 
          27. f0(A,B,C,E,F,G,H,J)  -> f19(50,5,0,0,F,G,H,J)        [5 >= 0]                                     (1,2) 
          28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J)    [H >= 1 + F && -1 + G >= 0]                  (?,2) 
          29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J)     [H >= G && F >= 1 + G]                       (?,2) 
          30. f70(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J)    [H >= G && 1 + G >= 1 + F]                   (?,2) 
          31. f66(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J)    [G >= 1 + F && -1 + F >= 0]                  (1,2) 
          32. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + H,0)     [J >= 1 + G && F >= 1 + H]                   (77,2)
          33. f54(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,1 + H,J) [J >= 1 + G && 1 + H >= 1 + F]               (77,2)
          36. f36(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + G,0)     [H >= 1 + F && F >= 1 + G]                   (7,2) 
          37. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [H >= 1 + F && 1 + G >= 1 + F && F >= 2 + G] (7,3) 
          38. f36(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,1 + G,J)     [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F] (7,3) 
          39. f33(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J)         [G >= F && F >= 1]                           (1,2) 
          40. f33(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J)    [G >= F && 1 >= 1 + F && -1 + F >= 0]        (1,3) 
          41. f19(A,B,C,E,F,G,H,J) -> f19(A,B,1 + C,0,F,G,H,J)     [E >= 1 + B && B >= 1 + C]                   (7,2) 
          42. f19(A,B,C,E,F,G,H,J) -> f33(A,B,1 + C,E,B,0,H,J)     [E >= 1 + B && 1 + C >= 1 + B]               (7,2) 
        Signature:
          {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)}
        Flow Graph:
          [1->{2,3,4,41,42},2->{2,3,4,41,42},3->{2,3,4,41,42},4->{2,3,4,41,42},5->{6,7,9,36,37,38},6->{8,22},7->{8
          ,22},8->{8,22},9->{6,7,9,36,37,38},11->{11,32,33},12->{13,29,30},13->{13,29,30},14->{15,28},15->{15,28}
          ,22->{6,7,9,36,37,38},26->{5,39,40},27->{2,3,4,41,42},28->{15,28},29->{13,29,30},30->{14},31->{15,28}
          ,32->{11,32,33},33->{5,39,40},36->{11,32,33},37->{6,7,9,36,37,38},38->{12,31},39->{13,29,30},40->{15,28}
          ,41->{2,3,4,41,42},42->{5,39,40}]
        Sizebounds:
          (< 1,0,A>, 50) (< 1,0,B>, 5) (< 1,0,C>, 5) (< 1,0,E>,     0) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,J>, J) 
          (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>,     6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) 
          (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>,     6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) 
          (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>,     5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) 
          (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>,     ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) 
          (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>,     ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) 
          (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>,     ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) 
          (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>,     ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) 
          (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>,     ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) 
          (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>,     ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) 
          (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>,     ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) 
          (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>,     ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) 
          (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>,     ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) 
          (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>,     ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) 
          (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>,     ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) 
          (<26,0,A>, 50) (<26,0,B>, 5) (<26,0,C>, 5) (<26,0,E>, 6 + E) (<26,0,F>, 5) (<26,0,G>, 0) (<26,0,H>, H) (<26,0,J>, J) 
          (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 5) (<27,0,E>,     0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) 
          (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, ?) (<28,0,E>,     ?) (<28,0,F>, 5) (<28,0,G>, ?) (<28,0,H>, ?) (<28,0,J>, ?) 
          (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, ?) (<29,0,E>,     ?) (<29,0,F>, 5) (<29,0,G>, 5) (<29,0,H>, 0) (<29,0,J>, ?) 
          (<30,0,A>, 50) (<30,0,B>, 5) (<30,0,C>, ?) (<30,0,E>,     ?) (<30,0,F>, 5) (<30,0,G>, 6) (<30,0,H>, ?) (<30,0,J>, ?) 
          (<31,0,A>, 50) (<31,0,B>, 5) (<31,0,C>, ?) (<31,0,E>,     ?) (<31,0,F>, 5) (<31,0,G>, ?) (<31,0,H>, ?) (<31,0,J>, ?) 
          (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, ?) (<32,0,E>,     ?) (<32,0,F>, 5) (<32,0,G>, ?) (<32,0,H>, 5) (<32,0,J>, 0) 
          (<33,0,A>, 50) (<33,0,B>, 5) (<33,0,C>, ?) (<33,0,E>,     ?) (<33,0,F>, 5) (<33,0,G>, ?) (<33,0,H>, ?) (<33,0,J>, ?) 
          (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, ?) (<36,0,E>,     ?) (<36,0,F>, 5) (<36,0,G>, ?) (<36,0,H>, 5) (<36,0,J>, 0) 
          (<37,0,A>, 50) (<37,0,B>, 5) (<37,0,C>, ?) (<37,0,E>,     ?) (<37,0,F>, 5) (<37,0,G>, 5) (<37,0,H>, ?) (<37,0,J>, ?) 
          (<38,0,A>, 50) (<38,0,B>, 5) (<38,0,C>, ?) (<38,0,E>,     ?) (<38,0,F>, 5) (<38,0,G>, 1) (<38,0,H>, ?) (<38,0,J>, ?) 
          (<39,0,A>, 50) (<39,0,B>, 5) (<39,0,C>, ?) (<39,0,E>,     ?) (<39,0,F>, 5) (<39,0,G>, 5) (<39,0,H>, 0) (<39,0,J>, ?) 
          (<40,0,A>, 50) (<40,0,B>, 5) (<40,0,C>, ?) (<40,0,E>,     ?) (<40,0,F>, 5) (<40,0,G>, ?) (<40,0,H>, ?) (<40,0,J>, ?) 
          (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 5) (<41,0,E>,     0) (<41,0,F>, F) (<41,0,G>, G) (<41,0,H>, H) (<41,0,J>, J) 
          (<42,0,A>, 50) (<42,0,B>, 5) (<42,0,C>, 5) (<42,0,E>, 6 + E) (<42,0,F>, 5) (<42,0,G>, 0) (<42,0,H>, H) (<42,0,J>, J) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [1,26]
* Step 32: ChainProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)     [B >= E && E >= 1 + C]                       (42,1)
          3.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)     [C >= 1 + E && B >= E]                       (42,1)
          4.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J)     [B >= E && C = E]                            (42,1)
          5.  f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J)     [F >= 1 + G]                                 (7,1) 
          6.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)         [0 >= 1 + G && F >= H]                       (?,1) 
          7.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)         [G >= 1 && F >= H]                           (48,1)
          8.  f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J)     [G >= 1 + J]                                 (?,1) 
          9.  f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J)     [F >= H && G = 0]                            (48,1)
          11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J)     [G >= J]                                     (?,1) 
          12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J)         [F >= G]                                     (?,1) 
          13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J)     [G >= 1 + H]                                 (?,1) 
          14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J)     [G >= 0]                                     (6,1) 
          15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J)     [F >= H]                                     (?,1) 
          22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J)     [J >= G]                                     (?,1) 
          27. f0(A,B,C,E,F,G,H,J)  -> f19(50,5,0,0,F,G,H,J)        [5 >= 0]                                     (1,2) 
          28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J)    [H >= 1 + F && -1 + G >= 0]                  (?,2) 
          29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J)     [H >= G && F >= 1 + G]                       (?,2) 
          30. f70(A,B,C,E,F,G,H,J) -> f80(A,B,C,E,F,-1 + F,H,J)    [H >= G && 1 + G >= 1 + F]                   (?,2) 
          31. f66(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J)    [G >= 1 + F && -1 + F >= 0]                  (1,2) 
          32. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + H,0)     [J >= 1 + G && F >= 1 + H]                   (77,2)
          33. f54(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,1 + H,J) [J >= 1 + G && 1 + H >= 1 + F]               (77,2)
          36. f36(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + G,0)     [H >= 1 + F && F >= 1 + G]                   (7,2) 
          37. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [H >= 1 + F && 1 + G >= 1 + F && F >= 2 + G] (7,3) 
          38. f36(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,1 + G,J)     [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F] (7,3) 
          39. f33(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J)         [G >= F && F >= 1]                           (1,2) 
          40. f33(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J)    [G >= F && 1 >= 1 + F && -1 + F >= 0]        (1,3) 
          41. f19(A,B,C,E,F,G,H,J) -> f19(A,B,1 + C,0,F,G,H,J)     [E >= 1 + B && B >= 1 + C]                   (7,2) 
          42. f19(A,B,C,E,F,G,H,J) -> f33(A,B,1 + C,E,B,0,H,J)     [E >= 1 + B && 1 + C >= 1 + B]               (7,2) 
        Signature:
          {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)}
        Flow Graph:
          [2->{2,3,4,41,42},3->{2,3,4,41,42},4->{2,3,4,41,42},5->{6,7,9,36,37,38},6->{8,22},7->{8,22},8->{8,22}
          ,9->{6,7,9,36,37,38},11->{11,32,33},12->{13,29,30},13->{13,29,30},14->{15,28},15->{15,28},22->{6,7,9,36,37
          ,38},27->{2,3,4,41,42},28->{15,28},29->{13,29,30},30->{14},31->{15,28},32->{11,32,33},33->{5,39,40},36->{11
          ,32,33},37->{6,7,9,36,37,38},38->{12,31},39->{13,29,30},40->{15,28},41->{2,3,4,41,42},42->{5,39,40}]
        Sizebounds:
          (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>,     6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) 
          (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>,     6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) 
          (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>,     5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) 
          (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>,     ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) 
          (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>,     ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) 
          (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>,     ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) 
          (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>,     ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) 
          (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>,     ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) 
          (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>,     ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) 
          (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>,     ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) 
          (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>,     ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) 
          (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>,     ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) 
          (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>,     ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) 
          (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>,     ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) 
          (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 5) (<27,0,E>,     0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) 
          (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, ?) (<28,0,E>,     ?) (<28,0,F>, 5) (<28,0,G>, ?) (<28,0,H>, ?) (<28,0,J>, ?) 
          (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, ?) (<29,0,E>,     ?) (<29,0,F>, 5) (<29,0,G>, 5) (<29,0,H>, 0) (<29,0,J>, ?) 
          (<30,0,A>, 50) (<30,0,B>, 5) (<30,0,C>, ?) (<30,0,E>,     ?) (<30,0,F>, 5) (<30,0,G>, 6) (<30,0,H>, ?) (<30,0,J>, ?) 
          (<31,0,A>, 50) (<31,0,B>, 5) (<31,0,C>, ?) (<31,0,E>,     ?) (<31,0,F>, 5) (<31,0,G>, ?) (<31,0,H>, ?) (<31,0,J>, ?) 
          (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, ?) (<32,0,E>,     ?) (<32,0,F>, 5) (<32,0,G>, ?) (<32,0,H>, 5) (<32,0,J>, 0) 
          (<33,0,A>, 50) (<33,0,B>, 5) (<33,0,C>, ?) (<33,0,E>,     ?) (<33,0,F>, 5) (<33,0,G>, ?) (<33,0,H>, ?) (<33,0,J>, ?) 
          (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, ?) (<36,0,E>,     ?) (<36,0,F>, 5) (<36,0,G>, ?) (<36,0,H>, 5) (<36,0,J>, 0) 
          (<37,0,A>, 50) (<37,0,B>, 5) (<37,0,C>, ?) (<37,0,E>,     ?) (<37,0,F>, 5) (<37,0,G>, 5) (<37,0,H>, ?) (<37,0,J>, ?) 
          (<38,0,A>, 50) (<38,0,B>, 5) (<38,0,C>, ?) (<38,0,E>,     ?) (<38,0,F>, 5) (<38,0,G>, 1) (<38,0,H>, ?) (<38,0,J>, ?) 
          (<39,0,A>, 50) (<39,0,B>, 5) (<39,0,C>, ?) (<39,0,E>,     ?) (<39,0,F>, 5) (<39,0,G>, 5) (<39,0,H>, 0) (<39,0,J>, ?) 
          (<40,0,A>, 50) (<40,0,B>, 5) (<40,0,C>, ?) (<40,0,E>,     ?) (<40,0,F>, 5) (<40,0,G>, ?) (<40,0,H>, ?) (<40,0,J>, ?) 
          (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 5) (<41,0,E>,     0) (<41,0,F>, F) (<41,0,G>, G) (<41,0,H>, H) (<41,0,J>, J) 
          (<42,0,A>, 50) (<42,0,B>, 5) (<42,0,C>, 5) (<42,0,E>, 6 + E) (<42,0,F>, 5) (<42,0,G>, 0) (<42,0,H>, H) (<42,0,J>, J) 
    + Applied Processor:
        ChainProcessor False [2,3,4,5,6,7,8,9,11,12,13,14,15,22,27,28,29,30,31,32,33,36,37,38,39,40,41,42]
    + Details:
        We chained rule 30 to obtain the rules [43] .
* Step 33: UnreachableRules WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)     [B >= E && E >= 1 + C]                       (42,1)
          3.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)     [C >= 1 + E && B >= E]                       (42,1)
          4.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J)     [B >= E && C = E]                            (42,1)
          5.  f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J)     [F >= 1 + G]                                 (7,1) 
          6.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)         [0 >= 1 + G && F >= H]                       (?,1) 
          7.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)         [G >= 1 && F >= H]                           (48,1)
          8.  f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J)     [G >= 1 + J]                                 (?,1) 
          9.  f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J)     [F >= H && G = 0]                            (48,1)
          11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J)     [G >= J]                                     (?,1) 
          12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J)         [F >= G]                                     (?,1) 
          13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J)     [G >= 1 + H]                                 (?,1) 
          14. f80(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + G,J)     [G >= 0]                                     (6,1) 
          15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J)     [F >= H]                                     (?,1) 
          22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J)     [J >= G]                                     (?,1) 
          27. f0(A,B,C,E,F,G,H,J)  -> f19(50,5,0,0,F,G,H,J)        [5 >= 0]                                     (1,2) 
          28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J)    [H >= 1 + F && -1 + G >= 0]                  (?,2) 
          29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J)     [H >= G && F >= 1 + G]                       (?,2) 
          31. f66(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J)    [G >= 1 + F && -1 + F >= 0]                  (1,2) 
          32. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + H,0)     [J >= 1 + G && F >= 1 + H]                   (77,2)
          33. f54(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,1 + H,J) [J >= 1 + G && 1 + H >= 1 + F]               (77,2)
          36. f36(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + G,0)     [H >= 1 + F && F >= 1 + G]                   (7,2) 
          37. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [H >= 1 + F && 1 + G >= 1 + F && F >= 2 + G] (7,3) 
          38. f36(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,1 + G,J)     [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F] (7,3) 
          39. f33(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J)         [G >= F && F >= 1]                           (1,2) 
          40. f33(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J)    [G >= F && 1 >= 1 + F && -1 + F >= 0]        (1,3) 
          41. f19(A,B,C,E,F,G,H,J) -> f19(A,B,1 + C,0,F,G,H,J)     [E >= 1 + B && B >= 1 + C]                   (7,2) 
          42. f19(A,B,C,E,F,G,H,J) -> f33(A,B,1 + C,E,B,0,H,J)     [E >= 1 + B && 1 + C >= 1 + B]               (7,2) 
          43. f70(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J)    [H >= G && 1 + G >= 1 + F && -1 + F >= 0]    (?,3) 
        Signature:
          {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)}
        Flow Graph:
          [2->{2,3,4,41,42},3->{2,3,4,41,42},4->{2,3,4,41,42},5->{6,7,9,36,37,38},6->{8,22},7->{8,22},8->{8,22}
          ,9->{6,7,9,36,37,38},11->{11,32,33},12->{13,29,43},13->{13,29,43},14->{15,28},15->{15,28},22->{6,7,9,36,37
          ,38},27->{2,3,4,41,42},28->{15,28},29->{13,29,43},31->{15,28},32->{11,32,33},33->{5,39,40},36->{11,32,33}
          ,37->{6,7,9,36,37,38},38->{12,31},39->{13,29,43},40->{15,28},41->{2,3,4,41,42},42->{5,39,40},43->{15,28}]
        Sizebounds:
          (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>,     6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) 
          (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>,     6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) 
          (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>,     5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) 
          (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>,     ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) 
          (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>,     ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) 
          (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>,     ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) 
          (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>,     ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) 
          (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>,     ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) 
          (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>,     ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) 
          (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>,     ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) 
          (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>,     ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) 
          (<14,0,A>, 50) (<14,0,B>, 5) (<14,0,C>, ?) (<14,0,E>,     ?) (<14,0,F>, 5) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,J>, ?) 
          (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>,     ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) 
          (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>,     ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) 
          (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 5) (<27,0,E>,     0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) 
          (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, ?) (<28,0,E>,     ?) (<28,0,F>, 5) (<28,0,G>, ?) (<28,0,H>, ?) (<28,0,J>, ?) 
          (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, ?) (<29,0,E>,     ?) (<29,0,F>, 5) (<29,0,G>, 5) (<29,0,H>, 0) (<29,0,J>, ?) 
          (<31,0,A>, 50) (<31,0,B>, 5) (<31,0,C>, ?) (<31,0,E>,     ?) (<31,0,F>, 5) (<31,0,G>, ?) (<31,0,H>, ?) (<31,0,J>, ?) 
          (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, ?) (<32,0,E>,     ?) (<32,0,F>, 5) (<32,0,G>, ?) (<32,0,H>, 5) (<32,0,J>, 0) 
          (<33,0,A>, 50) (<33,0,B>, 5) (<33,0,C>, ?) (<33,0,E>,     ?) (<33,0,F>, 5) (<33,0,G>, ?) (<33,0,H>, ?) (<33,0,J>, ?) 
          (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, ?) (<36,0,E>,     ?) (<36,0,F>, 5) (<36,0,G>, ?) (<36,0,H>, 5) (<36,0,J>, 0) 
          (<37,0,A>, 50) (<37,0,B>, 5) (<37,0,C>, ?) (<37,0,E>,     ?) (<37,0,F>, 5) (<37,0,G>, 5) (<37,0,H>, ?) (<37,0,J>, ?) 
          (<38,0,A>, 50) (<38,0,B>, 5) (<38,0,C>, ?) (<38,0,E>,     ?) (<38,0,F>, 5) (<38,0,G>, 1) (<38,0,H>, ?) (<38,0,J>, ?) 
          (<39,0,A>, 50) (<39,0,B>, 5) (<39,0,C>, ?) (<39,0,E>,     ?) (<39,0,F>, 5) (<39,0,G>, 5) (<39,0,H>, 0) (<39,0,J>, ?) 
          (<40,0,A>, 50) (<40,0,B>, 5) (<40,0,C>, ?) (<40,0,E>,     ?) (<40,0,F>, 5) (<40,0,G>, ?) (<40,0,H>, ?) (<40,0,J>, ?) 
          (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 5) (<41,0,E>,     0) (<41,0,F>, F) (<41,0,G>, G) (<41,0,H>, H) (<41,0,J>, J) 
          (<42,0,A>, 50) (<42,0,B>, 5) (<42,0,C>, 5) (<42,0,E>, 6 + E) (<42,0,F>, 5) (<42,0,G>, 0) (<42,0,H>, H) (<42,0,J>, J) 
          (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, ?) (<43,0,E>,     ?) (<43,0,F>, 5) (<43,0,G>, ?) (<43,0,H>, ?) (<43,0,J>, ?) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [14]
* Step 34: ChainProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)     [B >= E && E >= 1 + C]                       (42,1)
          3.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)     [C >= 1 + E && B >= E]                       (42,1)
          4.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J)     [B >= E && C = E]                            (42,1)
          5.  f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J)     [F >= 1 + G]                                 (7,1) 
          6.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)         [0 >= 1 + G && F >= H]                       (?,1) 
          7.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)         [G >= 1 && F >= H]                           (48,1)
          8.  f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J)     [G >= 1 + J]                                 (?,1) 
          9.  f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J)     [F >= H && G = 0]                            (48,1)
          11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J)     [G >= J]                                     (?,1) 
          12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J)         [F >= G]                                     (?,1) 
          13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J)     [G >= 1 + H]                                 (?,1) 
          15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J)     [F >= H]                                     (?,1) 
          22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J)     [J >= G]                                     (?,1) 
          27. f0(A,B,C,E,F,G,H,J)  -> f19(50,5,0,0,F,G,H,J)        [5 >= 0]                                     (1,2) 
          28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J)    [H >= 1 + F && -1 + G >= 0]                  (?,2) 
          29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J)     [H >= G && F >= 1 + G]                       (?,2) 
          31. f66(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J)    [G >= 1 + F && -1 + F >= 0]                  (1,2) 
          32. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + H,0)     [J >= 1 + G && F >= 1 + H]                   (77,2)
          33. f54(A,B,C,E,F,G,H,J) -> f33(A,B,C,E,F,1 + G,1 + H,J) [J >= 1 + G && 1 + H >= 1 + F]               (77,2)
          36. f36(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + G,0)     [H >= 1 + F && F >= 1 + G]                   (7,2) 
          37. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [H >= 1 + F && 1 + G >= 1 + F && F >= 2 + G] (7,3) 
          38. f36(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,1 + G,J)     [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F] (7,3) 
          39. f33(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J)         [G >= F && F >= 1]                           (1,2) 
          40. f33(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J)    [G >= F && 1 >= 1 + F && -1 + F >= 0]        (1,3) 
          41. f19(A,B,C,E,F,G,H,J) -> f19(A,B,1 + C,0,F,G,H,J)     [E >= 1 + B && B >= 1 + C]                   (7,2) 
          42. f19(A,B,C,E,F,G,H,J) -> f33(A,B,1 + C,E,B,0,H,J)     [E >= 1 + B && 1 + C >= 1 + B]               (7,2) 
          43. f70(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J)    [H >= G && 1 + G >= 1 + F && -1 + F >= 0]    (?,3) 
        Signature:
          {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)}
        Flow Graph:
          [2->{2,3,4,41,42},3->{2,3,4,41,42},4->{2,3,4,41,42},5->{6,7,9,36,37,38},6->{8,22},7->{8,22},8->{8,22}
          ,9->{6,7,9,36,37,38},11->{11,32,33},12->{13,29,43},13->{13,29,43},15->{15,28},22->{6,7,9,36,37,38},27->{2,3
          ,4,41,42},28->{15,28},29->{13,29,43},31->{15,28},32->{11,32,33},33->{5,39,40},36->{11,32,33},37->{6,7,9,36
          ,37,38},38->{12,31},39->{13,29,43},40->{15,28},41->{2,3,4,41,42},42->{5,39,40},43->{15,28}]
        Sizebounds:
          (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>,     6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) 
          (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>,     6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) 
          (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>,     5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) 
          (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>,     ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) 
          (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>,     ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) 
          (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>,     ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) 
          (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>,     ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) 
          (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>,     ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) 
          (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>,     ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) 
          (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>,     ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) 
          (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>,     ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) 
          (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>,     ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) 
          (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>,     ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) 
          (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 5) (<27,0,E>,     0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) 
          (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, ?) (<28,0,E>,     ?) (<28,0,F>, 5) (<28,0,G>, ?) (<28,0,H>, ?) (<28,0,J>, ?) 
          (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, ?) (<29,0,E>,     ?) (<29,0,F>, 5) (<29,0,G>, 5) (<29,0,H>, 0) (<29,0,J>, ?) 
          (<31,0,A>, 50) (<31,0,B>, 5) (<31,0,C>, ?) (<31,0,E>,     ?) (<31,0,F>, 5) (<31,0,G>, ?) (<31,0,H>, ?) (<31,0,J>, ?) 
          (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, ?) (<32,0,E>,     ?) (<32,0,F>, 5) (<32,0,G>, ?) (<32,0,H>, 5) (<32,0,J>, 0) 
          (<33,0,A>, 50) (<33,0,B>, 5) (<33,0,C>, ?) (<33,0,E>,     ?) (<33,0,F>, 5) (<33,0,G>, ?) (<33,0,H>, ?) (<33,0,J>, ?) 
          (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, ?) (<36,0,E>,     ?) (<36,0,F>, 5) (<36,0,G>, ?) (<36,0,H>, 5) (<36,0,J>, 0) 
          (<37,0,A>, 50) (<37,0,B>, 5) (<37,0,C>, ?) (<37,0,E>,     ?) (<37,0,F>, 5) (<37,0,G>, 5) (<37,0,H>, ?) (<37,0,J>, ?) 
          (<38,0,A>, 50) (<38,0,B>, 5) (<38,0,C>, ?) (<38,0,E>,     ?) (<38,0,F>, 5) (<38,0,G>, 1) (<38,0,H>, ?) (<38,0,J>, ?) 
          (<39,0,A>, 50) (<39,0,B>, 5) (<39,0,C>, ?) (<39,0,E>,     ?) (<39,0,F>, 5) (<39,0,G>, 5) (<39,0,H>, 0) (<39,0,J>, ?) 
          (<40,0,A>, 50) (<40,0,B>, 5) (<40,0,C>, ?) (<40,0,E>,     ?) (<40,0,F>, 5) (<40,0,G>, ?) (<40,0,H>, ?) (<40,0,J>, ?) 
          (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 5) (<41,0,E>,     0) (<41,0,F>, F) (<41,0,G>, G) (<41,0,H>, H) (<41,0,J>, J) 
          (<42,0,A>, 50) (<42,0,B>, 5) (<42,0,C>, 5) (<42,0,E>, 6 + E) (<42,0,F>, 5) (<42,0,G>, 0) (<42,0,H>, H) (<42,0,J>, J) 
          (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, ?) (<43,0,E>,     ?) (<43,0,F>, 5) (<43,0,G>, ?) (<43,0,H>, ?) (<43,0,J>, ?) 
    + Applied Processor:
        ChainProcessor False [2,3,4,5,6,7,8,9,11,12,13,15,22,27,28,29,31,32,33,36,37,38,39,40,41,42,43]
    + Details:
        We chained rule 33 to obtain the rules [44,45,46] .
* Step 35: ChainProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)     [B >= E && E >= 1 + C]                                                    (42,1)
          3.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)     [C >= 1 + E && B >= E]                                                    (42,1)
          4.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J)     [B >= E && C = E]                                                         (42,1)
          5.  f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J)     [F >= 1 + G]                                                              (7,1) 
          6.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)         [0 >= 1 + G && F >= H]                                                    (?,1) 
          7.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)         [G >= 1 && F >= H]                                                        (48,1)
          8.  f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J)     [G >= 1 + J]                                                              (?,1) 
          9.  f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J)     [F >= H && G = 0]                                                         (48,1)
          11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J)     [G >= J]                                                                  (?,1) 
          12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J)         [F >= G]                                                                  (?,1) 
          13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J)     [G >= 1 + H]                                                              (?,1) 
          15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J)     [F >= H]                                                                  (?,1) 
          22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J)     [J >= G]                                                                  (?,1) 
          27. f0(A,B,C,E,F,G,H,J)  -> f19(50,5,0,0,F,G,H,J)        [5 >= 0]                                                                  (1,2) 
          28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J)    [H >= 1 + F && -1 + G >= 0]                                               (?,2) 
          29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J)     [H >= G && F >= 1 + G]                                                    (?,2) 
          31. f66(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J)    [G >= 1 + F && -1 + F >= 0]                                               (1,2) 
          32. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + H,0)     [J >= 1 + G && F >= 1 + H]                                                (77,2)
          36. f36(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + G,0)     [H >= 1 + F && F >= 1 + G]                                                (7,2) 
          37. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [H >= 1 + F && 1 + G >= 1 + F && F >= 2 + G]                              (7,3) 
          38. f36(A,B,C,E,F,G,H,J) -> f66(A,B,C,E,F,1,1 + G,J)     [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F]                              (7,3) 
          39. f33(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J)         [G >= F && F >= 1]                                                        (1,2) 
          40. f33(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J)    [G >= F && 1 >= 1 + F && -1 + F >= 0]                                     (1,3) 
          41. f19(A,B,C,E,F,G,H,J) -> f19(A,B,1 + C,0,F,G,H,J)     [E >= 1 + B && B >= 1 + C]                                                (7,2) 
          42. f19(A,B,C,E,F,G,H,J) -> f33(A,B,1 + C,E,B,0,H,J)     [E >= 1 + B && 1 + C >= 1 + B]                                            (7,2) 
          43. f70(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J)    [H >= G && 1 + G >= 1 + F && -1 + F >= 0]                                 (?,3) 
          44. f54(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [J >= 1 + G && 1 + H >= 1 + F && F >= 2 + G]                              (77,3)
          45. f54(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J)         [J >= 1 + G && 1 + H >= 1 + F && 1 + G >= F && F >= 1]                    (77,4)
          46. f54(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J)    [J >= 1 + G && 1 + H >= 1 + F && 1 + G >= F && 1 >= 1 + F && -1 + F >= 0] (77,5)
        Signature:
          {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)}
        Flow Graph:
          [2->{2,3,4,41,42},3->{2,3,4,41,42},4->{2,3,4,41,42},5->{6,7,9,36,37,38},6->{8,22},7->{8,22},8->{8,22}
          ,9->{6,7,9,36,37,38},11->{11,32,44,45,46},12->{13,29,43},13->{13,29,43},15->{15,28},22->{6,7,9,36,37,38}
          ,27->{2,3,4,41,42},28->{15,28},29->{13,29,43},31->{15,28},32->{11,32,44,45,46},36->{11,32,44,45,46},37->{6,7
          ,9,36,37,38},38->{12,31},39->{13,29,43},40->{15,28},41->{2,3,4,41,42},42->{5,39,40},43->{15,28},44->{6,7,9
          ,36,37,38},45->{13,29,43},46->{15,28}]
        Sizebounds:
          (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>,     6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) 
          (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>,     6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) 
          (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>,     5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) 
          (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>,     ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) 
          (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>,     ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) 
          (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>,     ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) 
          (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>,     ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) 
          (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>,     ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) 
          (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>,     ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) 
          (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>,     ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) 
          (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>,     ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) 
          (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>,     ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) 
          (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>,     ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) 
          (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 5) (<27,0,E>,     0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) 
          (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, ?) (<28,0,E>,     ?) (<28,0,F>, 5) (<28,0,G>, ?) (<28,0,H>, ?) (<28,0,J>, ?) 
          (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, ?) (<29,0,E>,     ?) (<29,0,F>, 5) (<29,0,G>, 5) (<29,0,H>, 0) (<29,0,J>, ?) 
          (<31,0,A>, 50) (<31,0,B>, 5) (<31,0,C>, ?) (<31,0,E>,     ?) (<31,0,F>, 5) (<31,0,G>, ?) (<31,0,H>, ?) (<31,0,J>, ?) 
          (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, ?) (<32,0,E>,     ?) (<32,0,F>, 5) (<32,0,G>, ?) (<32,0,H>, 5) (<32,0,J>, 0) 
          (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, ?) (<36,0,E>,     ?) (<36,0,F>, 5) (<36,0,G>, ?) (<36,0,H>, 5) (<36,0,J>, 0) 
          (<37,0,A>, 50) (<37,0,B>, 5) (<37,0,C>, ?) (<37,0,E>,     ?) (<37,0,F>, 5) (<37,0,G>, 5) (<37,0,H>, ?) (<37,0,J>, ?) 
          (<38,0,A>, 50) (<38,0,B>, 5) (<38,0,C>, ?) (<38,0,E>,     ?) (<38,0,F>, 5) (<38,0,G>, 1) (<38,0,H>, ?) (<38,0,J>, ?) 
          (<39,0,A>, 50) (<39,0,B>, 5) (<39,0,C>, ?) (<39,0,E>,     ?) (<39,0,F>, 5) (<39,0,G>, 5) (<39,0,H>, 0) (<39,0,J>, ?) 
          (<40,0,A>, 50) (<40,0,B>, 5) (<40,0,C>, ?) (<40,0,E>,     ?) (<40,0,F>, 5) (<40,0,G>, ?) (<40,0,H>, ?) (<40,0,J>, ?) 
          (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 5) (<41,0,E>,     0) (<41,0,F>, F) (<41,0,G>, G) (<41,0,H>, H) (<41,0,J>, J) 
          (<42,0,A>, 50) (<42,0,B>, 5) (<42,0,C>, 5) (<42,0,E>, 6 + E) (<42,0,F>, 5) (<42,0,G>, 0) (<42,0,H>, H) (<42,0,J>, J) 
          (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, ?) (<43,0,E>,     ?) (<43,0,F>, 5) (<43,0,G>, ?) (<43,0,H>, ?) (<43,0,J>, ?) 
          (<44,0,A>, 50) (<44,0,B>, 5) (<44,0,C>, ?) (<44,0,E>,     ?) (<44,0,F>, 5) (<44,0,G>, 5) (<44,0,H>, ?) (<44,0,J>, ?) 
          (<45,0,A>, 50) (<45,0,B>, 5) (<45,0,C>, ?) (<45,0,E>,     ?) (<45,0,F>, 5) (<45,0,G>, 5) (<45,0,H>, 0) (<45,0,J>, ?) 
          (<46,0,A>, 50) (<46,0,B>, 5) (<46,0,C>, ?) (<46,0,E>,     ?) (<46,0,F>, 5) (<46,0,G>, ?) (<46,0,H>, ?) (<46,0,J>, ?) 
    + Applied Processor:
        ChainProcessor False [2,3,4,5,6,7,8,9,11,12,13,15,22,27,28,29,31,32,36,37,38,39,40,41,42,43,44,45,46]
    + Details:
        We chained rule 38 to obtain the rules [47,48] .
* Step 36: UnreachableRules WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)     [B >= E && E >= 1 + C]                                                    (42,1)
          3.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)     [C >= 1 + E && B >= E]                                                    (42,1)
          4.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J)     [B >= E && C = E]                                                         (42,1)
          5.  f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J)     [F >= 1 + G]                                                              (7,1) 
          6.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)         [0 >= 1 + G && F >= H]                                                    (?,1) 
          7.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)         [G >= 1 && F >= H]                                                        (48,1)
          8.  f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J)     [G >= 1 + J]                                                              (?,1) 
          9.  f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J)     [F >= H && G = 0]                                                         (48,1)
          11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J)     [G >= J]                                                                  (?,1) 
          12. f66(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,0,J)         [F >= G]                                                                  (?,1) 
          13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J)     [G >= 1 + H]                                                              (?,1) 
          15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J)     [F >= H]                                                                  (?,1) 
          22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J)     [J >= G]                                                                  (?,1) 
          27. f0(A,B,C,E,F,G,H,J)  -> f19(50,5,0,0,F,G,H,J)        [5 >= 0]                                                                  (1,2) 
          28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J)    [H >= 1 + F && -1 + G >= 0]                                               (?,2) 
          29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J)     [H >= G && F >= 1 + G]                                                    (?,2) 
          31. f66(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J)    [G >= 1 + F && -1 + F >= 0]                                               (1,2) 
          32. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + H,0)     [J >= 1 + G && F >= 1 + H]                                                (77,2)
          36. f36(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + G,0)     [H >= 1 + F && F >= 1 + G]                                                (7,2) 
          37. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [H >= 1 + F && 1 + G >= 1 + F && F >= 2 + G]                              (7,3) 
          39. f33(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J)         [G >= F && F >= 1]                                                        (1,2) 
          40. f33(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J)    [G >= F && 1 >= 1 + F && -1 + F >= 0]                                     (1,3) 
          41. f19(A,B,C,E,F,G,H,J) -> f19(A,B,1 + C,0,F,G,H,J)     [E >= 1 + B && B >= 1 + C]                                                (7,2) 
          42. f19(A,B,C,E,F,G,H,J) -> f33(A,B,1 + C,E,B,0,H,J)     [E >= 1 + B && 1 + C >= 1 + B]                                            (7,2) 
          43. f70(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J)    [H >= G && 1 + G >= 1 + F && -1 + F >= 0]                                 (?,3) 
          44. f54(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [J >= 1 + G && 1 + H >= 1 + F && F >= 2 + G]                              (77,3)
          45. f54(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J)         [J >= 1 + G && 1 + H >= 1 + F && 1 + G >= F && F >= 1]                    (77,4)
          46. f54(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J)    [J >= 1 + G && 1 + H >= 1 + F && 1 + G >= F && 1 >= 1 + F && -1 + F >= 0] (77,5)
          47. f36(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J)         [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F && F >= 1]                    (7,4) 
          48. f36(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J)    [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F && 1 >= 1 + F && -1 + F >= 0] (7,5) 
        Signature:
          {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)}
        Flow Graph:
          [2->{2,3,4,41,42},3->{2,3,4,41,42},4->{2,3,4,41,42},5->{6,7,9,36,37,47,48},6->{8,22},7->{8,22},8->{8,22}
          ,9->{6,7,9,36,37,47,48},11->{11,32,44,45,46},12->{13,29,43},13->{13,29,43},15->{15,28},22->{6,7,9,36,37,47
          ,48},27->{2,3,4,41,42},28->{15,28},29->{13,29,43},31->{15,28},32->{11,32,44,45,46},36->{11,32,44,45,46}
          ,37->{6,7,9,36,37,47,48},39->{13,29,43},40->{15,28},41->{2,3,4,41,42},42->{5,39,40},43->{15,28},44->{6,7,9
          ,36,37,47,48},45->{13,29,43},46->{15,28},47->{13,29,43},48->{15,28}]
        Sizebounds:
          (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>,     6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) 
          (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>,     6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) 
          (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>,     5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) 
          (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>,     ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) 
          (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>,     ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) 
          (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>,     ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) 
          (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>,     ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) 
          (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>,     ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) 
          (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>,     ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) 
          (<12,0,A>, 50) (<12,0,B>, 5) (<12,0,C>, ?) (<12,0,E>,     ?) (<12,0,F>, 5) (<12,0,G>, 5) (<12,0,H>, 0) (<12,0,J>, ?) 
          (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>,     ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) 
          (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>,     ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) 
          (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>,     ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) 
          (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 5) (<27,0,E>,     0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) 
          (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, ?) (<28,0,E>,     ?) (<28,0,F>, 5) (<28,0,G>, ?) (<28,0,H>, ?) (<28,0,J>, ?) 
          (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, ?) (<29,0,E>,     ?) (<29,0,F>, 5) (<29,0,G>, 5) (<29,0,H>, 0) (<29,0,J>, ?) 
          (<31,0,A>, 50) (<31,0,B>, 5) (<31,0,C>, ?) (<31,0,E>,     ?) (<31,0,F>, 5) (<31,0,G>, ?) (<31,0,H>, ?) (<31,0,J>, ?) 
          (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, ?) (<32,0,E>,     ?) (<32,0,F>, 5) (<32,0,G>, ?) (<32,0,H>, 5) (<32,0,J>, 0) 
          (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, ?) (<36,0,E>,     ?) (<36,0,F>, 5) (<36,0,G>, ?) (<36,0,H>, 5) (<36,0,J>, 0) 
          (<37,0,A>, 50) (<37,0,B>, 5) (<37,0,C>, ?) (<37,0,E>,     ?) (<37,0,F>, 5) (<37,0,G>, 5) (<37,0,H>, ?) (<37,0,J>, ?) 
          (<39,0,A>, 50) (<39,0,B>, 5) (<39,0,C>, ?) (<39,0,E>,     ?) (<39,0,F>, 5) (<39,0,G>, 5) (<39,0,H>, 0) (<39,0,J>, ?) 
          (<40,0,A>, 50) (<40,0,B>, 5) (<40,0,C>, ?) (<40,0,E>,     ?) (<40,0,F>, 5) (<40,0,G>, ?) (<40,0,H>, ?) (<40,0,J>, ?) 
          (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 5) (<41,0,E>,     0) (<41,0,F>, F) (<41,0,G>, G) (<41,0,H>, H) (<41,0,J>, J) 
          (<42,0,A>, 50) (<42,0,B>, 5) (<42,0,C>, 5) (<42,0,E>, 6 + E) (<42,0,F>, 5) (<42,0,G>, 0) (<42,0,H>, H) (<42,0,J>, J) 
          (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, ?) (<43,0,E>,     ?) (<43,0,F>, 5) (<43,0,G>, ?) (<43,0,H>, ?) (<43,0,J>, ?) 
          (<44,0,A>, 50) (<44,0,B>, 5) (<44,0,C>, ?) (<44,0,E>,     ?) (<44,0,F>, 5) (<44,0,G>, 5) (<44,0,H>, ?) (<44,0,J>, ?) 
          (<45,0,A>, 50) (<45,0,B>, 5) (<45,0,C>, ?) (<45,0,E>,     ?) (<45,0,F>, 5) (<45,0,G>, 5) (<45,0,H>, 0) (<45,0,J>, ?) 
          (<46,0,A>, 50) (<46,0,B>, 5) (<46,0,C>, ?) (<46,0,E>,     ?) (<46,0,F>, 5) (<46,0,G>, ?) (<46,0,H>, ?) (<46,0,J>, ?) 
          (<47,0,A>, 50) (<47,0,B>, 5) (<47,0,C>, ?) (<47,0,E>,     ?) (<47,0,F>, 5) (<47,0,G>, 5) (<47,0,H>, 0) (<47,0,J>, ?) 
          (<48,0,A>, 50) (<48,0,B>, 5) (<48,0,C>, ?) (<48,0,E>,     ?) (<48,0,F>, 5) (<48,0,G>, ?) (<48,0,H>, ?) (<48,0,J>, ?) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [12,31]
* Step 37: ChainProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)     [B >= E && E >= 1 + C]                                                    (42,1)
          3.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)     [C >= 1 + E && B >= E]                                                    (42,1)
          4.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J)     [B >= E && C = E]                                                         (42,1)
          5.  f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J)     [F >= 1 + G]                                                              (7,1) 
          6.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)         [0 >= 1 + G && F >= H]                                                    (?,1) 
          7.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)         [G >= 1 && F >= H]                                                        (48,1)
          8.  f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J)     [G >= 1 + J]                                                              (?,1) 
          9.  f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J)     [F >= H && G = 0]                                                         (48,1)
          11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J)     [G >= J]                                                                  (?,1) 
          13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J)     [G >= 1 + H]                                                              (?,1) 
          15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J)     [F >= H]                                                                  (?,1) 
          22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J)     [J >= G]                                                                  (?,1) 
          27. f0(A,B,C,E,F,G,H,J)  -> f19(50,5,0,0,F,G,H,J)        [5 >= 0]                                                                  (1,2) 
          28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J)    [H >= 1 + F && -1 + G >= 0]                                               (?,2) 
          29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J)     [H >= G && F >= 1 + G]                                                    (?,2) 
          32. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + H,0)     [J >= 1 + G && F >= 1 + H]                                                (77,2)
          36. f36(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + G,0)     [H >= 1 + F && F >= 1 + G]                                                (7,2) 
          37. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [H >= 1 + F && 1 + G >= 1 + F && F >= 2 + G]                              (7,3) 
          39. f33(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J)         [G >= F && F >= 1]                                                        (1,2) 
          40. f33(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J)    [G >= F && 1 >= 1 + F && -1 + F >= 0]                                     (1,3) 
          41. f19(A,B,C,E,F,G,H,J) -> f19(A,B,1 + C,0,F,G,H,J)     [E >= 1 + B && B >= 1 + C]                                                (7,2) 
          42. f19(A,B,C,E,F,G,H,J) -> f33(A,B,1 + C,E,B,0,H,J)     [E >= 1 + B && 1 + C >= 1 + B]                                            (7,2) 
          43. f70(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J)    [H >= G && 1 + G >= 1 + F && -1 + F >= 0]                                 (?,3) 
          44. f54(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [J >= 1 + G && 1 + H >= 1 + F && F >= 2 + G]                              (77,3)
          45. f54(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J)         [J >= 1 + G && 1 + H >= 1 + F && 1 + G >= F && F >= 1]                    (77,4)
          46. f54(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J)    [J >= 1 + G && 1 + H >= 1 + F && 1 + G >= F && 1 >= 1 + F && -1 + F >= 0] (77,5)
          47. f36(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J)         [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F && F >= 1]                    (7,4) 
          48. f36(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J)    [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F && 1 >= 1 + F && -1 + F >= 0] (7,5) 
        Signature:
          {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)}
        Flow Graph:
          [2->{2,3,4,41,42},3->{2,3,4,41,42},4->{2,3,4,41,42},5->{6,7,9,36,37,47,48},6->{8,22},7->{8,22},8->{8,22}
          ,9->{6,7,9,36,37,47,48},11->{11,32,44,45,46},13->{13,29,43},15->{15,28},22->{6,7,9,36,37,47,48},27->{2,3,4
          ,41,42},28->{15,28},29->{13,29,43},32->{11,32,44,45,46},36->{11,32,44,45,46},37->{6,7,9,36,37,47,48},39->{13
          ,29,43},40->{15,28},41->{2,3,4,41,42},42->{5,39,40},43->{15,28},44->{6,7,9,36,37,47,48},45->{13,29,43}
          ,46->{15,28},47->{13,29,43},48->{15,28}]
        Sizebounds:
          (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>,     6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) 
          (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>,     6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) 
          (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>,     5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) 
          (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>,     ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) 
          (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>,     ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) 
          (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>,     ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) 
          (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>,     ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) 
          (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>,     ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) 
          (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>,     ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) 
          (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>,     ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) 
          (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>,     ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) 
          (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>,     ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) 
          (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 5) (<27,0,E>,     0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) 
          (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, ?) (<28,0,E>,     ?) (<28,0,F>, 5) (<28,0,G>, ?) (<28,0,H>, ?) (<28,0,J>, ?) 
          (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, ?) (<29,0,E>,     ?) (<29,0,F>, 5) (<29,0,G>, 5) (<29,0,H>, 0) (<29,0,J>, ?) 
          (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, ?) (<32,0,E>,     ?) (<32,0,F>, 5) (<32,0,G>, ?) (<32,0,H>, 5) (<32,0,J>, 0) 
          (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, ?) (<36,0,E>,     ?) (<36,0,F>, 5) (<36,0,G>, ?) (<36,0,H>, 5) (<36,0,J>, 0) 
          (<37,0,A>, 50) (<37,0,B>, 5) (<37,0,C>, ?) (<37,0,E>,     ?) (<37,0,F>, 5) (<37,0,G>, 5) (<37,0,H>, ?) (<37,0,J>, ?) 
          (<39,0,A>, 50) (<39,0,B>, 5) (<39,0,C>, ?) (<39,0,E>,     ?) (<39,0,F>, 5) (<39,0,G>, 5) (<39,0,H>, 0) (<39,0,J>, ?) 
          (<40,0,A>, 50) (<40,0,B>, 5) (<40,0,C>, ?) (<40,0,E>,     ?) (<40,0,F>, 5) (<40,0,G>, ?) (<40,0,H>, ?) (<40,0,J>, ?) 
          (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 5) (<41,0,E>,     0) (<41,0,F>, F) (<41,0,G>, G) (<41,0,H>, H) (<41,0,J>, J) 
          (<42,0,A>, 50) (<42,0,B>, 5) (<42,0,C>, 5) (<42,0,E>, 6 + E) (<42,0,F>, 5) (<42,0,G>, 0) (<42,0,H>, H) (<42,0,J>, J) 
          (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, ?) (<43,0,E>,     ?) (<43,0,F>, 5) (<43,0,G>, ?) (<43,0,H>, ?) (<43,0,J>, ?) 
          (<44,0,A>, 50) (<44,0,B>, 5) (<44,0,C>, ?) (<44,0,E>,     ?) (<44,0,F>, 5) (<44,0,G>, 5) (<44,0,H>, ?) (<44,0,J>, ?) 
          (<45,0,A>, 50) (<45,0,B>, 5) (<45,0,C>, ?) (<45,0,E>,     ?) (<45,0,F>, 5) (<45,0,G>, 5) (<45,0,H>, 0) (<45,0,J>, ?) 
          (<46,0,A>, 50) (<46,0,B>, 5) (<46,0,C>, ?) (<46,0,E>,     ?) (<46,0,F>, 5) (<46,0,G>, ?) (<46,0,H>, ?) (<46,0,J>, ?) 
          (<47,0,A>, 50) (<47,0,B>, 5) (<47,0,C>, ?) (<47,0,E>,     ?) (<47,0,F>, 5) (<47,0,G>, 5) (<47,0,H>, 0) (<47,0,J>, ?) 
          (<48,0,A>, 50) (<48,0,B>, 5) (<48,0,C>, ?) (<48,0,E>,     ?) (<48,0,F>, 5) (<48,0,G>, ?) (<48,0,H>, ?) (<48,0,J>, ?) 
    + Applied Processor:
        ChainProcessor False [2,3,4,5,6,7,8,9,11,13,15,22,27,28,29,32,36,37,39,40,41,42,43,44,45,46,47,48]
    + Details:
        We chained rule 42 to obtain the rules [49,50,51] .
* Step 38: UnreachableRules WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)      [B >= E && E >= 1 + C]                                                    (42,1)
          3.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)      [C >= 1 + E && B >= E]                                                    (42,1)
          4.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J)      [B >= E && C = E]                                                         (42,1)
          5.  f33(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + G,J)      [F >= 1 + G]                                                              (7,1) 
          6.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)          [0 >= 1 + G && F >= H]                                                    (?,1) 
          7.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)          [G >= 1 && F >= H]                                                        (48,1)
          8.  f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J)      [G >= 1 + J]                                                              (?,1) 
          9.  f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J)      [F >= H && G = 0]                                                         (48,1)
          11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J)      [G >= J]                                                                  (?,1) 
          13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J)      [G >= 1 + H]                                                              (?,1) 
          15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J)      [F >= H]                                                                  (?,1) 
          22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J)      [J >= G]                                                                  (?,1) 
          27. f0(A,B,C,E,F,G,H,J)  -> f19(50,5,0,0,F,G,H,J)         [5 >= 0]                                                                  (1,2) 
          28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J)     [H >= 1 + F && -1 + G >= 0]                                               (?,2) 
          29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J)      [H >= G && F >= 1 + G]                                                    (?,2) 
          32. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + H,0)      [J >= 1 + G && F >= 1 + H]                                                (77,2)
          36. f36(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + G,0)      [H >= 1 + F && F >= 1 + G]                                                (7,2) 
          37. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J)  [H >= 1 + F && 1 + G >= 1 + F && F >= 2 + G]                              (7,3) 
          39. f33(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J)          [G >= F && F >= 1]                                                        (1,2) 
          40. f33(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J)     [G >= F && 1 >= 1 + F && -1 + F >= 0]                                     (1,3) 
          41. f19(A,B,C,E,F,G,H,J) -> f19(A,B,1 + C,0,F,G,H,J)      [E >= 1 + B && B >= 1 + C]                                                (7,2) 
          43. f70(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J)     [H >= G && 1 + G >= 1 + F && -1 + F >= 0]                                 (?,3) 
          44. f54(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J)  [J >= 1 + G && 1 + H >= 1 + F && F >= 2 + G]                              (77,3)
          45. f54(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J)          [J >= 1 + G && 1 + H >= 1 + F && 1 + G >= F && F >= 1]                    (77,4)
          46. f54(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J)     [J >= 1 + G && 1 + H >= 1 + F && 1 + G >= F && 1 >= 1 + F && -1 + F >= 0] (77,5)
          47. f36(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J)          [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F && F >= 1]                    (7,4) 
          48. f36(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J)     [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F && 1 >= 1 + F && -1 + F >= 0] (7,5) 
          49. f19(A,B,C,E,F,G,H,J) -> f36(A,B,1 + C,E,B,0,1,J)      [E >= 1 + B && 1 + C >= 1 + B && B >= 1]                                  (7,3) 
          50. f19(A,B,C,E,F,G,H,J) -> f70(A,B,1 + C,E,B,1,0,J)      [E >= 1 + B && 1 + C >= 1 + B && 0 >= B && B >= 1]                        (7,4) 
          51. f19(A,B,C,E,F,G,H,J) -> f84(A,B,1 + C,E,B,-1 + B,B,J) [E >= 1 + B && 1 + C >= 1 + B && 0 >= B && 1 >= 1 + B && -1 + B >= 0]     (7,5) 
        Signature:
          {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)}
        Flow Graph:
          [2->{2,3,4,41,49,50,51},3->{2,3,4,41,49,50,51},4->{2,3,4,41,49,50,51},5->{6,7,9,36,37,47,48},6->{8,22}
          ,7->{8,22},8->{8,22},9->{6,7,9,36,37,47,48},11->{11,32,44,45,46},13->{13,29,43},15->{15,28},22->{6,7,9,36,37
          ,47,48},27->{2,3,4,41,49,50,51},28->{15,28},29->{13,29,43},32->{11,32,44,45,46},36->{11,32,44,45,46},37->{6
          ,7,9,36,37,47,48},39->{13,29,43},40->{15,28},41->{2,3,4,41,49,50,51},43->{15,28},44->{6,7,9,36,37,47,48}
          ,45->{13,29,43},46->{15,28},47->{13,29,43},48->{15,28},49->{6,7,9,36,37,47,48},50->{13,29,43},51->{15,28}]
        Sizebounds:
          (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>, 6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) 
          (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>, 6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) 
          (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>, 5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) 
          (< 5,0,A>, 50) (< 5,0,B>, 5) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, 5) (< 5,0,G>, 5) (< 5,0,H>, ?) (< 5,0,J>, ?) 
          (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) 
          (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) 
          (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) 
          (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) 
          (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) 
          (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) 
          (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) 
          (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) 
          (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 5) (<27,0,E>, 0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) 
          (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, ?) (<28,0,E>, ?) (<28,0,F>, 5) (<28,0,G>, ?) (<28,0,H>, ?) (<28,0,J>, ?) 
          (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, ?) (<29,0,E>, ?) (<29,0,F>, 5) (<29,0,G>, 5) (<29,0,H>, 0) (<29,0,J>, ?) 
          (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, ?) (<32,0,E>, ?) (<32,0,F>, 5) (<32,0,G>, ?) (<32,0,H>, 5) (<32,0,J>, 0) 
          (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, ?) (<36,0,E>, ?) (<36,0,F>, 5) (<36,0,G>, ?) (<36,0,H>, 5) (<36,0,J>, 0) 
          (<37,0,A>, 50) (<37,0,B>, 5) (<37,0,C>, ?) (<37,0,E>, ?) (<37,0,F>, 5) (<37,0,G>, 5) (<37,0,H>, ?) (<37,0,J>, ?) 
          (<39,0,A>, 50) (<39,0,B>, 5) (<39,0,C>, ?) (<39,0,E>, ?) (<39,0,F>, 5) (<39,0,G>, 5) (<39,0,H>, 0) (<39,0,J>, ?) 
          (<40,0,A>, 50) (<40,0,B>, 5) (<40,0,C>, ?) (<40,0,E>, ?) (<40,0,F>, 5) (<40,0,G>, ?) (<40,0,H>, ?) (<40,0,J>, ?) 
          (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 5) (<41,0,E>, 0) (<41,0,F>, F) (<41,0,G>, G) (<41,0,H>, H) (<41,0,J>, J) 
          (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, ?) (<43,0,E>, ?) (<43,0,F>, 5) (<43,0,G>, ?) (<43,0,H>, ?) (<43,0,J>, ?) 
          (<44,0,A>, 50) (<44,0,B>, 5) (<44,0,C>, ?) (<44,0,E>, ?) (<44,0,F>, 5) (<44,0,G>, 5) (<44,0,H>, ?) (<44,0,J>, ?) 
          (<45,0,A>, 50) (<45,0,B>, 5) (<45,0,C>, ?) (<45,0,E>, ?) (<45,0,F>, 5) (<45,0,G>, 5) (<45,0,H>, 0) (<45,0,J>, ?) 
          (<46,0,A>, 50) (<46,0,B>, 5) (<46,0,C>, ?) (<46,0,E>, ?) (<46,0,F>, 5) (<46,0,G>, ?) (<46,0,H>, ?) (<46,0,J>, ?) 
          (<47,0,A>, 50) (<47,0,B>, 5) (<47,0,C>, ?) (<47,0,E>, ?) (<47,0,F>, 5) (<47,0,G>, 5) (<47,0,H>, 0) (<47,0,J>, ?) 
          (<48,0,A>, 50) (<48,0,B>, 5) (<48,0,C>, ?) (<48,0,E>, ?) (<48,0,F>, 5) (<48,0,G>, ?) (<48,0,H>, ?) (<48,0,J>, ?) 
          (<49,0,A>, 50) (<49,0,B>, 5) (<49,0,C>, ?) (<49,0,E>, ?) (<49,0,F>, 5) (<49,0,G>, 5) (<49,0,H>, ?) (<49,0,J>, ?) 
          (<50,0,A>, 50) (<50,0,B>, 5) (<50,0,C>, ?) (<50,0,E>, ?) (<50,0,F>, 5) (<50,0,G>, 5) (<50,0,H>, 0) (<50,0,J>, ?) 
          (<51,0,A>, 50) (<51,0,B>, 5) (<51,0,C>, ?) (<51,0,E>, ?) (<51,0,F>, 5) (<51,0,G>, ?) (<51,0,H>, ?) (<51,0,J>, ?) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [5,39,40]
* Step 39: UnsatPaths WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)      [B >= E && E >= 1 + C]                                                    (42,1)
          3.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)      [C >= 1 + E && B >= E]                                                    (42,1)
          4.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J)      [B >= E && C = E]                                                         (42,1)
          6.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)          [0 >= 1 + G && F >= H]                                                    (?,1) 
          7.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)          [G >= 1 && F >= H]                                                        (48,1)
          8.  f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J)      [G >= 1 + J]                                                              (?,1) 
          9.  f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J)      [F >= H && G = 0]                                                         (48,1)
          11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J)      [G >= J]                                                                  (?,1) 
          13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J)      [G >= 1 + H]                                                              (?,1) 
          15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J)      [F >= H]                                                                  (?,1) 
          22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J)      [J >= G]                                                                  (?,1) 
          27. f0(A,B,C,E,F,G,H,J)  -> f19(50,5,0,0,F,G,H,J)         [5 >= 0]                                                                  (1,2) 
          28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J)     [H >= 1 + F && -1 + G >= 0]                                               (?,2) 
          29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J)      [H >= G && F >= 1 + G]                                                    (?,2) 
          32. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + H,0)      [J >= 1 + G && F >= 1 + H]                                                (77,2)
          36. f36(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + G,0)      [H >= 1 + F && F >= 1 + G]                                                (7,2) 
          37. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J)  [H >= 1 + F && 1 + G >= 1 + F && F >= 2 + G]                              (7,3) 
          41. f19(A,B,C,E,F,G,H,J) -> f19(A,B,1 + C,0,F,G,H,J)      [E >= 1 + B && B >= 1 + C]                                                (7,2) 
          43. f70(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J)     [H >= G && 1 + G >= 1 + F && -1 + F >= 0]                                 (?,3) 
          44. f54(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J)  [J >= 1 + G && 1 + H >= 1 + F && F >= 2 + G]                              (77,3)
          45. f54(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J)          [J >= 1 + G && 1 + H >= 1 + F && 1 + G >= F && F >= 1]                    (77,4)
          46. f54(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J)     [J >= 1 + G && 1 + H >= 1 + F && 1 + G >= F && 1 >= 1 + F && -1 + F >= 0] (77,5)
          47. f36(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J)          [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F && F >= 1]                    (7,4) 
          48. f36(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J)     [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F && 1 >= 1 + F && -1 + F >= 0] (7,5) 
          49. f19(A,B,C,E,F,G,H,J) -> f36(A,B,1 + C,E,B,0,1,J)      [E >= 1 + B && 1 + C >= 1 + B && B >= 1]                                  (7,3) 
          50. f19(A,B,C,E,F,G,H,J) -> f70(A,B,1 + C,E,B,1,0,J)      [E >= 1 + B && 1 + C >= 1 + B && 0 >= B && B >= 1]                        (7,4) 
          51. f19(A,B,C,E,F,G,H,J) -> f84(A,B,1 + C,E,B,-1 + B,B,J) [E >= 1 + B && 1 + C >= 1 + B && 0 >= B && 1 >= 1 + B && -1 + B >= 0]     (7,5) 
        Signature:
          {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)}
        Flow Graph:
          [2->{2,3,4,41,49,50,51},3->{2,3,4,41,49,50,51},4->{2,3,4,41,49,50,51},6->{8,22},7->{8,22},8->{8,22},9->{6
          ,7,9,36,37,47,48},11->{11,32,44,45,46},13->{13,29,43},15->{15,28},22->{6,7,9,36,37,47,48},27->{2,3,4,41,49
          ,50,51},28->{15,28},29->{13,29,43},32->{11,32,44,45,46},36->{11,32,44,45,46},37->{6,7,9,36,37,47,48},41->{2
          ,3,4,41,49,50,51},43->{15,28},44->{6,7,9,36,37,47,48},45->{13,29,43},46->{15,28},47->{13,29,43},48->{15,28}
          ,49->{6,7,9,36,37,47,48},50->{13,29,43},51->{15,28}]
        Sizebounds:
          (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>, 6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) 
          (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>, 6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) 
          (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>, 5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) 
          (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) 
          (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) 
          (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) 
          (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) 
          (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) 
          (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) 
          (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) 
          (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) 
          (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 5) (<27,0,E>, 0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) 
          (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, ?) (<28,0,E>, ?) (<28,0,F>, 5) (<28,0,G>, ?) (<28,0,H>, ?) (<28,0,J>, ?) 
          (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, ?) (<29,0,E>, ?) (<29,0,F>, 5) (<29,0,G>, 5) (<29,0,H>, 0) (<29,0,J>, ?) 
          (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, ?) (<32,0,E>, ?) (<32,0,F>, 5) (<32,0,G>, ?) (<32,0,H>, 5) (<32,0,J>, 0) 
          (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, ?) (<36,0,E>, ?) (<36,0,F>, 5) (<36,0,G>, ?) (<36,0,H>, 5) (<36,0,J>, 0) 
          (<37,0,A>, 50) (<37,0,B>, 5) (<37,0,C>, ?) (<37,0,E>, ?) (<37,0,F>, 5) (<37,0,G>, 5) (<37,0,H>, ?) (<37,0,J>, ?) 
          (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 5) (<41,0,E>, 0) (<41,0,F>, F) (<41,0,G>, G) (<41,0,H>, H) (<41,0,J>, J) 
          (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, ?) (<43,0,E>, ?) (<43,0,F>, 5) (<43,0,G>, ?) (<43,0,H>, ?) (<43,0,J>, ?) 
          (<44,0,A>, 50) (<44,0,B>, 5) (<44,0,C>, ?) (<44,0,E>, ?) (<44,0,F>, 5) (<44,0,G>, 5) (<44,0,H>, ?) (<44,0,J>, ?) 
          (<45,0,A>, 50) (<45,0,B>, 5) (<45,0,C>, ?) (<45,0,E>, ?) (<45,0,F>, 5) (<45,0,G>, 5) (<45,0,H>, 0) (<45,0,J>, ?) 
          (<46,0,A>, 50) (<46,0,B>, 5) (<46,0,C>, ?) (<46,0,E>, ?) (<46,0,F>, 5) (<46,0,G>, ?) (<46,0,H>, ?) (<46,0,J>, ?) 
          (<47,0,A>, 50) (<47,0,B>, 5) (<47,0,C>, ?) (<47,0,E>, ?) (<47,0,F>, 5) (<47,0,G>, 5) (<47,0,H>, 0) (<47,0,J>, ?) 
          (<48,0,A>, 50) (<48,0,B>, 5) (<48,0,C>, ?) (<48,0,E>, ?) (<48,0,F>, 5) (<48,0,G>, ?) (<48,0,H>, ?) (<48,0,J>, ?) 
          (<49,0,A>, 50) (<49,0,B>, 5) (<49,0,C>, ?) (<49,0,E>, ?) (<49,0,F>, 5) (<49,0,G>, 5) (<49,0,H>, ?) (<49,0,J>, ?) 
          (<50,0,A>, 50) (<50,0,B>, 5) (<50,0,C>, ?) (<50,0,E>, ?) (<50,0,F>, 5) (<50,0,G>, 5) (<50,0,H>, 0) (<50,0,J>, ?) 
          (<51,0,A>, 50) (<51,0,B>, 5) (<51,0,C>, ?) (<51,0,E>, ?) (<51,0,F>, 5) (<51,0,G>, ?) (<51,0,H>, ?) (<51,0,J>, ?) 
    + Applied Processor:
        UnsatPaths
    + Details:
        We remove following edges from the transition graph: [(2,3)
                                                             ,(2,4)
                                                             ,(2,49)
                                                             ,(2,50)
                                                             ,(2,51)
                                                             ,(3,2)
                                                             ,(3,41)
                                                             ,(3,50)
                                                             ,(3,51)
                                                             ,(4,3)
                                                             ,(4,4)
                                                             ,(4,41)
                                                             ,(4,50)
                                                             ,(4,51)
                                                             ,(6,8)
                                                             ,(7,22)
                                                             ,(9,6)
                                                             ,(9,7)
                                                             ,(9,37)
                                                             ,(9,47)
                                                             ,(9,48)
                                                             ,(11,46)
                                                             ,(22,37)
                                                             ,(22,48)
                                                             ,(27,2)
                                                             ,(27,3)
                                                             ,(27,41)
                                                             ,(27,49)
                                                             ,(27,50)
                                                             ,(27,51)
                                                             ,(29,43)
                                                             ,(32,45)
                                                             ,(32,46)
                                                             ,(36,44)
                                                             ,(36,45)
                                                             ,(36,46)
                                                             ,(37,6)
                                                             ,(37,7)
                                                             ,(37,9)
                                                             ,(37,36)
                                                             ,(37,37)
                                                             ,(37,47)
                                                             ,(37,48)
                                                             ,(41,49)
                                                             ,(41,50)
                                                             ,(41,51)
                                                             ,(43,28)
                                                             ,(44,36)
                                                             ,(44,37)
                                                             ,(44,47)
                                                             ,(44,48)
                                                             ,(45,29)
                                                             ,(45,43)
                                                             ,(46,15)
                                                             ,(46,28)
                                                             ,(47,29)
                                                             ,(47,43)
                                                             ,(48,15)
                                                             ,(48,28)
                                                             ,(49,6)
                                                             ,(49,7)
                                                             ,(49,36)
                                                             ,(49,37)
                                                             ,(49,47)
                                                             ,(49,48)
                                                             ,(50,13)
                                                             ,(50,29)
                                                             ,(50,43)
                                                             ,(51,15)
                                                             ,(51,28)]
* Step 40: UnreachableRules WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)      [B >= E && E >= 1 + C]                                                    (42,1)
          3.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)      [C >= 1 + E && B >= E]                                                    (42,1)
          4.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J)      [B >= E && C = E]                                                         (42,1)
          6.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)          [0 >= 1 + G && F >= H]                                                    (?,1) 
          7.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)          [G >= 1 && F >= H]                                                        (48,1)
          8.  f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J)      [G >= 1 + J]                                                              (?,1) 
          9.  f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J)      [F >= H && G = 0]                                                         (48,1)
          11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J)      [G >= J]                                                                  (?,1) 
          13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J)      [G >= 1 + H]                                                              (?,1) 
          15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J)      [F >= H]                                                                  (?,1) 
          22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J)      [J >= G]                                                                  (?,1) 
          27. f0(A,B,C,E,F,G,H,J)  -> f19(50,5,0,0,F,G,H,J)         [5 >= 0]                                                                  (1,2) 
          28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J)     [H >= 1 + F && -1 + G >= 0]                                               (?,2) 
          29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J)      [H >= G && F >= 1 + G]                                                    (?,2) 
          32. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + H,0)      [J >= 1 + G && F >= 1 + H]                                                (77,2)
          36. f36(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + G,0)      [H >= 1 + F && F >= 1 + G]                                                (7,2) 
          37. f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J)  [H >= 1 + F && 1 + G >= 1 + F && F >= 2 + G]                              (7,3) 
          41. f19(A,B,C,E,F,G,H,J) -> f19(A,B,1 + C,0,F,G,H,J)      [E >= 1 + B && B >= 1 + C]                                                (7,2) 
          43. f70(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J)     [H >= G && 1 + G >= 1 + F && -1 + F >= 0]                                 (?,3) 
          44. f54(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J)  [J >= 1 + G && 1 + H >= 1 + F && F >= 2 + G]                              (77,3)
          45. f54(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J)          [J >= 1 + G && 1 + H >= 1 + F && 1 + G >= F && F >= 1]                    (77,4)
          46. f54(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J)     [J >= 1 + G && 1 + H >= 1 + F && 1 + G >= F && 1 >= 1 + F && -1 + F >= 0] (77,5)
          47. f36(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J)          [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F && F >= 1]                    (7,4) 
          48. f36(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J)     [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F && 1 >= 1 + F && -1 + F >= 0] (7,5) 
          49. f19(A,B,C,E,F,G,H,J) -> f36(A,B,1 + C,E,B,0,1,J)      [E >= 1 + B && 1 + C >= 1 + B && B >= 1]                                  (7,3) 
          50. f19(A,B,C,E,F,G,H,J) -> f70(A,B,1 + C,E,B,1,0,J)      [E >= 1 + B && 1 + C >= 1 + B && 0 >= B && B >= 1]                        (7,4) 
          51. f19(A,B,C,E,F,G,H,J) -> f84(A,B,1 + C,E,B,-1 + B,B,J) [E >= 1 + B && 1 + C >= 1 + B && 0 >= B && 1 >= 1 + B && -1 + B >= 0]     (7,5) 
        Signature:
          {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)}
        Flow Graph:
          [2->{2,41},3->{3,4,49},4->{2,49},6->{22},7->{8},8->{8,22},9->{9,36},11->{11,32,44,45},13->{13,29,43}
          ,15->{15,28},22->{6,7,9,36,47},27->{4},28->{15,28},29->{13,29},32->{11,32,44},36->{11,32},37->{},41->{2,3,4
          ,41},43->{15},44->{6,7,9},45->{13},46->{},47->{13},48->{},49->{9},50->{},51->{}]
        Sizebounds:
          (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>, 6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) 
          (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>, 6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) 
          (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>, 5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) 
          (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) 
          (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) 
          (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) 
          (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) 
          (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) 
          (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) 
          (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) 
          (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) 
          (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 5) (<27,0,E>, 0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) 
          (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, ?) (<28,0,E>, ?) (<28,0,F>, 5) (<28,0,G>, ?) (<28,0,H>, ?) (<28,0,J>, ?) 
          (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, ?) (<29,0,E>, ?) (<29,0,F>, 5) (<29,0,G>, 5) (<29,0,H>, 0) (<29,0,J>, ?) 
          (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, ?) (<32,0,E>, ?) (<32,0,F>, 5) (<32,0,G>, ?) (<32,0,H>, 5) (<32,0,J>, 0) 
          (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, ?) (<36,0,E>, ?) (<36,0,F>, 5) (<36,0,G>, ?) (<36,0,H>, 5) (<36,0,J>, 0) 
          (<37,0,A>, 50) (<37,0,B>, 5) (<37,0,C>, ?) (<37,0,E>, ?) (<37,0,F>, 5) (<37,0,G>, 5) (<37,0,H>, ?) (<37,0,J>, ?) 
          (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 5) (<41,0,E>, 0) (<41,0,F>, F) (<41,0,G>, G) (<41,0,H>, H) (<41,0,J>, J) 
          (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, ?) (<43,0,E>, ?) (<43,0,F>, 5) (<43,0,G>, ?) (<43,0,H>, ?) (<43,0,J>, ?) 
          (<44,0,A>, 50) (<44,0,B>, 5) (<44,0,C>, ?) (<44,0,E>, ?) (<44,0,F>, 5) (<44,0,G>, 5) (<44,0,H>, ?) (<44,0,J>, ?) 
          (<45,0,A>, 50) (<45,0,B>, 5) (<45,0,C>, ?) (<45,0,E>, ?) (<45,0,F>, 5) (<45,0,G>, 5) (<45,0,H>, 0) (<45,0,J>, ?) 
          (<46,0,A>, 50) (<46,0,B>, 5) (<46,0,C>, ?) (<46,0,E>, ?) (<46,0,F>, 5) (<46,0,G>, ?) (<46,0,H>, ?) (<46,0,J>, ?) 
          (<47,0,A>, 50) (<47,0,B>, 5) (<47,0,C>, ?) (<47,0,E>, ?) (<47,0,F>, 5) (<47,0,G>, 5) (<47,0,H>, 0) (<47,0,J>, ?) 
          (<48,0,A>, 50) (<48,0,B>, 5) (<48,0,C>, ?) (<48,0,E>, ?) (<48,0,F>, 5) (<48,0,G>, ?) (<48,0,H>, ?) (<48,0,J>, ?) 
          (<49,0,A>, 50) (<49,0,B>, 5) (<49,0,C>, ?) (<49,0,E>, ?) (<49,0,F>, 5) (<49,0,G>, 5) (<49,0,H>, ?) (<49,0,J>, ?) 
          (<50,0,A>, 50) (<50,0,B>, 5) (<50,0,C>, ?) (<50,0,E>, ?) (<50,0,F>, 5) (<50,0,G>, 5) (<50,0,H>, 0) (<50,0,J>, ?) 
          (<51,0,A>, 50) (<51,0,B>, 5) (<51,0,C>, ?) (<51,0,E>, ?) (<51,0,F>, 5) (<51,0,G>, ?) (<51,0,H>, ?) (<51,0,J>, ?) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [37,46,48,50,51]
* Step 41: LocalSizeboundsProc WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)     [B >= E && E >= 1 + C]                                 (42,1)
          3.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)     [C >= 1 + E && B >= E]                                 (42,1)
          4.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J)     [B >= E && C = E]                                      (42,1)
          6.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)         [0 >= 1 + G && F >= H]                                 (?,1) 
          7.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)         [G >= 1 && F >= H]                                     (48,1)
          8.  f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J)     [G >= 1 + J]                                           (?,1) 
          9.  f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J)     [F >= H && G = 0]                                      (48,1)
          11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J)     [G >= J]                                               (?,1) 
          13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J)     [G >= 1 + H]                                           (?,1) 
          15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J)     [F >= H]                                               (?,1) 
          22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J)     [J >= G]                                               (?,1) 
          27. f0(A,B,C,E,F,G,H,J)  -> f19(50,5,0,0,F,G,H,J)        [5 >= 0]                                               (1,2) 
          28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J)    [H >= 1 + F && -1 + G >= 0]                            (?,2) 
          29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J)     [H >= G && F >= 1 + G]                                 (?,2) 
          32. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + H,0)     [J >= 1 + G && F >= 1 + H]                             (77,2)
          36. f36(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + G,0)     [H >= 1 + F && F >= 1 + G]                             (7,2) 
          41. f19(A,B,C,E,F,G,H,J) -> f19(A,B,1 + C,0,F,G,H,J)     [E >= 1 + B && B >= 1 + C]                             (7,2) 
          43. f70(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J)    [H >= G && 1 + G >= 1 + F && -1 + F >= 0]              (?,3) 
          44. f54(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [J >= 1 + G && 1 + H >= 1 + F && F >= 2 + G]           (77,3)
          45. f54(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J)         [J >= 1 + G && 1 + H >= 1 + F && 1 + G >= F && F >= 1] (77,4)
          47. f36(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J)         [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F && F >= 1] (7,4) 
          49. f19(A,B,C,E,F,G,H,J) -> f36(A,B,1 + C,E,B,0,1,J)     [E >= 1 + B && 1 + C >= 1 + B && B >= 1]               (7,3) 
        Signature:
          {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)}
        Flow Graph:
          [2->{2,41},3->{3,4,49},4->{2,49},6->{22},7->{8},8->{8,22},9->{9,36},11->{11,32,44,45},13->{13,29,43}
          ,15->{15,28},22->{6,7,9,36,47},27->{4},28->{15,28},29->{13,29},32->{11,32,44},36->{11,32},41->{2,3,4,41}
          ,43->{15},44->{6,7,9},45->{13},47->{13},49->{9}]
        Sizebounds:
          (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 5) (< 2,0,E>, 6) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,J>, J) 
          (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 5) (< 3,0,E>, 6) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,J>, J) 
          (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 5) (< 4,0,E>, 5) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,J>, J) 
          (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, 5) (< 6,0,G>, 0) (< 6,0,H>, 5) (< 6,0,J>, 0) 
          (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, 5) (< 7,0,G>, ?) (< 7,0,H>, 5) (< 7,0,J>, 0) 
          (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, 5) (< 8,0,G>, ?) (< 8,0,H>, 5) (< 8,0,J>, ?) 
          (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, 5) (< 9,0,G>, 0) (< 9,0,H>, 6) (< 9,0,J>, ?) 
          (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, 5) (<11,0,G>, ?) (<11,0,H>, 5) (<11,0,J>, ?) 
          (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, 5) (<13,0,G>, 5) (<13,0,H>, 5) (<13,0,J>, ?) 
          (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, 5) (<15,0,G>, ?) (<15,0,H>, 6) (<15,0,J>, ?) 
          (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,F>, 5) (<22,0,G>, ?) (<22,0,H>, 5) (<22,0,J>, ?) 
          (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 5) (<27,0,E>, 0) (<27,0,F>, F) (<27,0,G>, G) (<27,0,H>, H) (<27,0,J>, J) 
          (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, ?) (<28,0,E>, ?) (<28,0,F>, 5) (<28,0,G>, ?) (<28,0,H>, ?) (<28,0,J>, ?) 
          (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, ?) (<29,0,E>, ?) (<29,0,F>, 5) (<29,0,G>, 5) (<29,0,H>, 0) (<29,0,J>, ?) 
          (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, ?) (<32,0,E>, ?) (<32,0,F>, 5) (<32,0,G>, ?) (<32,0,H>, 5) (<32,0,J>, 0) 
          (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, ?) (<36,0,E>, ?) (<36,0,F>, 5) (<36,0,G>, ?) (<36,0,H>, 5) (<36,0,J>, 0) 
          (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 5) (<41,0,E>, 0) (<41,0,F>, F) (<41,0,G>, G) (<41,0,H>, H) (<41,0,J>, J) 
          (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, ?) (<43,0,E>, ?) (<43,0,F>, 5) (<43,0,G>, ?) (<43,0,H>, ?) (<43,0,J>, ?) 
          (<44,0,A>, 50) (<44,0,B>, 5) (<44,0,C>, ?) (<44,0,E>, ?) (<44,0,F>, 5) (<44,0,G>, 5) (<44,0,H>, ?) (<44,0,J>, ?) 
          (<45,0,A>, 50) (<45,0,B>, 5) (<45,0,C>, ?) (<45,0,E>, ?) (<45,0,F>, 5) (<45,0,G>, 5) (<45,0,H>, 0) (<45,0,J>, ?) 
          (<47,0,A>, 50) (<47,0,B>, 5) (<47,0,C>, ?) (<47,0,E>, ?) (<47,0,F>, 5) (<47,0,G>, 5) (<47,0,H>, 0) (<47,0,J>, ?) 
          (<49,0,A>, 50) (<49,0,B>, 5) (<49,0,C>, ?) (<49,0,E>, ?) (<49,0,F>, 5) (<49,0,G>, 5) (<49,0,H>, ?) (<49,0,J>, ?) 
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (< 2,0,A>,  A,  .= 0) (< 2,0,B>, B, .= 0) (< 2,0,C>,     C, .= 0) (< 2,0,E>,     1 + E, .+ 1) (< 2,0,F>, F, .= 0) (< 2,0,G>,         G, .= 0) (< 2,0,H>,     H, .= 0) (< 2,0,J>,     J, .= 0) 
          (< 3,0,A>,  A,  .= 0) (< 3,0,B>, B, .= 0) (< 3,0,C>,     C, .= 0) (< 3,0,E>, 1 + C + E, .* 1) (< 3,0,F>, F, .= 0) (< 3,0,G>,         G, .= 0) (< 3,0,H>,     H, .= 0) (< 3,0,J>,     J, .= 0) 
          (< 4,0,A>,  A,  .= 0) (< 4,0,B>, B, .= 0) (< 4,0,C>,     C, .= 0) (< 4,0,E>,     1 + C, .+ 1) (< 4,0,F>, F, .= 0) (< 4,0,G>,         G, .= 0) (< 4,0,H>,     H, .= 0) (< 4,0,J>,     J, .= 0) 
          (< 6,0,A>,  A,  .= 0) (< 6,0,B>, B, .= 0) (< 6,0,C>,     C, .= 0) (< 6,0,E>,         E, .= 0) (< 6,0,F>, F, .= 0) (< 6,0,G>,         G, .= 0) (< 6,0,H>,     H, .= 0) (< 6,0,J>,     0, .= 0) 
          (< 7,0,A>,  A,  .= 0) (< 7,0,B>, B, .= 0) (< 7,0,C>,     C, .= 0) (< 7,0,E>,         E, .= 0) (< 7,0,F>, F, .= 0) (< 7,0,G>,         G, .= 0) (< 7,0,H>,     H, .= 0) (< 7,0,J>,     0, .= 0) 
          (< 8,0,A>,  A,  .= 0) (< 8,0,B>, B, .= 0) (< 8,0,C>,     C, .= 0) (< 8,0,E>,         E, .= 0) (< 8,0,F>, F, .= 0) (< 8,0,G>,         G, .= 0) (< 8,0,H>,     H, .= 0) (< 8,0,J>, 1 + J, .+ 1) 
          (< 9,0,A>,  A,  .= 0) (< 9,0,B>, B, .= 0) (< 9,0,C>,     C, .= 0) (< 9,0,E>,         E, .= 0) (< 9,0,F>, F, .= 0) (< 9,0,G>,         0, .= 0) (< 9,0,H>, 1 + H, .+ 1) (< 9,0,J>,     J, .= 0) 
          (<11,0,A>,  A,  .= 0) (<11,0,B>, B, .= 0) (<11,0,C>,     C, .= 0) (<11,0,E>,         E, .= 0) (<11,0,F>, F, .= 0) (<11,0,G>,         G, .= 0) (<11,0,H>,     H, .= 0) (<11,0,J>, 1 + J, .+ 1) 
          (<13,0,A>,  A,  .= 0) (<13,0,B>, B, .= 0) (<13,0,C>,     C, .= 0) (<13,0,E>,         E, .= 0) (<13,0,F>, F, .= 0) (<13,0,G>,         G, .= 0) (<13,0,H>, 1 + H, .+ 1) (<13,0,J>,     J, .= 0) 
          (<15,0,A>,  A,  .= 0) (<15,0,B>, B, .= 0) (<15,0,C>,     C, .= 0) (<15,0,E>,         E, .= 0) (<15,0,F>, F, .= 0) (<15,0,G>,         G, .= 0) (<15,0,H>, 1 + H, .+ 1) (<15,0,J>,     J, .= 0) 
          (<22,0,A>,  A,  .= 0) (<22,0,B>, B, .= 0) (<22,0,C>,     C, .= 0) (<22,0,E>,         E, .= 0) (<22,0,F>, F, .= 0) (<22,0,G>,         G, .= 0) (<22,0,H>, 1 + H, .+ 1) (<22,0,J>,     J, .= 0) 
          (<27,0,A>, 50, .= 50) (<27,0,B>, 5, .= 5) (<27,0,C>,     0, .= 0) (<27,0,E>,         0, .= 0) (<27,0,F>, F, .= 0) (<27,0,G>,         G, .= 0) (<27,0,H>,     H, .= 0) (<27,0,J>,     J, .= 0) 
          (<28,0,A>,  A,  .= 0) (<28,0,B>, B, .= 0) (<28,0,C>,     C, .= 0) (<28,0,E>,         E, .= 0) (<28,0,F>, F, .= 0) (<28,0,G>,     1 + G, .+ 1) (<28,0,H>,     G, .= 0) (<28,0,J>,     J, .= 0) 
          (<29,0,A>,  A,  .= 0) (<29,0,B>, B, .= 0) (<29,0,C>,     C, .= 0) (<29,0,E>,         E, .= 0) (<29,0,F>, F, .= 0) (<29,0,G>, 1 + G + H, .* 1) (<29,0,H>,     0, .= 0) (<29,0,J>,     J, .= 0) 
          (<32,0,A>,  A,  .= 0) (<32,0,B>, B, .= 0) (<32,0,C>,     C, .= 0) (<32,0,E>,         E, .= 0) (<32,0,F>, F, .= 0) (<32,0,G>,         G, .= 0) (<32,0,H>, 1 + H, .+ 1) (<32,0,J>,     0, .= 0) 
          (<36,0,A>,  A,  .= 0) (<36,0,B>, B, .= 0) (<36,0,C>,     C, .= 0) (<36,0,E>,         E, .= 0) (<36,0,F>, F, .= 0) (<36,0,G>,         G, .= 0) (<36,0,H>, 1 + G, .+ 1) (<36,0,J>,     0, .= 0) 
          (<41,0,A>,  A,  .= 0) (<41,0,B>, B, .= 0) (<41,0,C>, 1 + C, .+ 1) (<41,0,E>,         0, .= 0) (<41,0,F>, F, .= 0) (<41,0,G>,         G, .= 0) (<41,0,H>,     H, .= 0) (<41,0,J>,     J, .= 0) 
          (<43,0,A>,  A,  .= 0) (<43,0,B>, B, .= 0) (<43,0,C>,     C, .= 0) (<43,0,E>,         E, .= 0) (<43,0,F>, F, .= 0) (<43,0,G>,     1 + F, .+ 1) (<43,0,H>,     F, .= 0) (<43,0,J>,     J, .= 0) 
          (<44,0,A>,  A,  .= 0) (<44,0,B>, B, .= 0) (<44,0,C>,     C, .= 0) (<44,0,E>,         E, .= 0) (<44,0,F>, F, .= 0) (<44,0,G>,     1 + G, .+ 1) (<44,0,H>, 2 + G, .+ 2) (<44,0,J>,     J, .= 0) 
          (<45,0,A>,  A,  .= 0) (<45,0,B>, B, .= 0) (<45,0,C>,     C, .= 0) (<45,0,E>,         E, .= 0) (<45,0,F>, F, .= 0) (<45,0,G>,         1, .= 1) (<45,0,H>,     0, .= 0) (<45,0,J>,     J, .= 0) 
          (<47,0,A>,  A,  .= 0) (<47,0,B>, B, .= 0) (<47,0,C>,     C, .= 0) (<47,0,E>,         E, .= 0) (<47,0,F>, F, .= 0) (<47,0,G>,         1, .= 1) (<47,0,H>,     0, .= 0) (<47,0,J>,     J, .= 0) 
          (<49,0,A>,  A,  .= 0) (<49,0,B>, B, .= 0) (<49,0,C>, 1 + C, .+ 1) (<49,0,E>,         E, .= 0) (<49,0,F>, B, .= 0) (<49,0,G>,         0, .= 0) (<49,0,H>,     1, .= 1) (<49,0,J>,     J, .= 0) 
* Step 42: SizeboundsProc WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)     [B >= E && E >= 1 + C]                                 (42,1)
          3.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)     [C >= 1 + E && B >= E]                                 (42,1)
          4.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J)     [B >= E && C = E]                                      (42,1)
          6.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)         [0 >= 1 + G && F >= H]                                 (?,1) 
          7.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)         [G >= 1 && F >= H]                                     (48,1)
          8.  f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J)     [G >= 1 + J]                                           (?,1) 
          9.  f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J)     [F >= H && G = 0]                                      (48,1)
          11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J)     [G >= J]                                               (?,1) 
          13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J)     [G >= 1 + H]                                           (?,1) 
          15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J)     [F >= H]                                               (?,1) 
          22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J)     [J >= G]                                               (?,1) 
          27. f0(A,B,C,E,F,G,H,J)  -> f19(50,5,0,0,F,G,H,J)        [5 >= 0]                                               (1,2) 
          28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J)    [H >= 1 + F && -1 + G >= 0]                            (?,2) 
          29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J)     [H >= G && F >= 1 + G]                                 (?,2) 
          32. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + H,0)     [J >= 1 + G && F >= 1 + H]                             (77,2)
          36. f36(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + G,0)     [H >= 1 + F && F >= 1 + G]                             (7,2) 
          41. f19(A,B,C,E,F,G,H,J) -> f19(A,B,1 + C,0,F,G,H,J)     [E >= 1 + B && B >= 1 + C]                             (7,2) 
          43. f70(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J)    [H >= G && 1 + G >= 1 + F && -1 + F >= 0]              (?,3) 
          44. f54(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [J >= 1 + G && 1 + H >= 1 + F && F >= 2 + G]           (77,3)
          45. f54(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J)         [J >= 1 + G && 1 + H >= 1 + F && 1 + G >= F && F >= 1] (77,4)
          47. f36(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J)         [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F && F >= 1] (7,4) 
          49. f19(A,B,C,E,F,G,H,J) -> f36(A,B,1 + C,E,B,0,1,J)     [E >= 1 + B && 1 + C >= 1 + B && B >= 1]               (7,3) 
        Signature:
          {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)}
        Flow Graph:
          [2->{2,41},3->{3,4,49},4->{2,49},6->{22},7->{8},8->{8,22},9->{9,36},11->{11,32,44,45},13->{13,29,43}
          ,15->{15,28},22->{6,7,9,36,47},27->{4},28->{15,28},29->{13,29},32->{11,32,44},36->{11,32},41->{2,3,4,41}
          ,43->{15},44->{6,7,9},45->{13},47->{13},49->{9}]
        Sizebounds:
          (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,E>, ?) (< 2,0,F>, ?) (< 2,0,G>, ?) (< 2,0,H>, ?) (< 2,0,J>, ?) 
          (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,E>, ?) (< 3,0,F>, ?) (< 3,0,G>, ?) (< 3,0,H>, ?) (< 3,0,J>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 4,0,E>, ?) (< 4,0,F>, ?) (< 4,0,G>, ?) (< 4,0,H>, ?) (< 4,0,J>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, ?) (< 6,0,G>, ?) (< 6,0,H>, ?) (< 6,0,J>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, ?) (< 7,0,G>, ?) (< 7,0,H>, ?) (< 7,0,J>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,G>, ?) (< 8,0,H>, ?) (< 8,0,J>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) (< 9,0,G>, ?) (< 9,0,H>, ?) (< 9,0,J>, ?) 
          (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,G>, ?) (<11,0,H>, ?) (<11,0,J>, ?) 
          (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,G>, ?) (<13,0,H>, ?) (<13,0,J>, ?) 
          (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, ?) (<15,0,G>, ?) (<15,0,H>, ?) (<15,0,J>, ?) 
          (<22,0,A>, ?) (<22,0,B>, ?) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,F>, ?) (<22,0,G>, ?) (<22,0,H>, ?) (<22,0,J>, ?) 
          (<27,0,A>, ?) (<27,0,B>, ?) (<27,0,C>, ?) (<27,0,E>, ?) (<27,0,F>, ?) (<27,0,G>, ?) (<27,0,H>, ?) (<27,0,J>, ?) 
          (<28,0,A>, ?) (<28,0,B>, ?) (<28,0,C>, ?) (<28,0,E>, ?) (<28,0,F>, ?) (<28,0,G>, ?) (<28,0,H>, ?) (<28,0,J>, ?) 
          (<29,0,A>, ?) (<29,0,B>, ?) (<29,0,C>, ?) (<29,0,E>, ?) (<29,0,F>, ?) (<29,0,G>, ?) (<29,0,H>, ?) (<29,0,J>, ?) 
          (<32,0,A>, ?) (<32,0,B>, ?) (<32,0,C>, ?) (<32,0,E>, ?) (<32,0,F>, ?) (<32,0,G>, ?) (<32,0,H>, ?) (<32,0,J>, ?) 
          (<36,0,A>, ?) (<36,0,B>, ?) (<36,0,C>, ?) (<36,0,E>, ?) (<36,0,F>, ?) (<36,0,G>, ?) (<36,0,H>, ?) (<36,0,J>, ?) 
          (<41,0,A>, ?) (<41,0,B>, ?) (<41,0,C>, ?) (<41,0,E>, ?) (<41,0,F>, ?) (<41,0,G>, ?) (<41,0,H>, ?) (<41,0,J>, ?) 
          (<43,0,A>, ?) (<43,0,B>, ?) (<43,0,C>, ?) (<43,0,E>, ?) (<43,0,F>, ?) (<43,0,G>, ?) (<43,0,H>, ?) (<43,0,J>, ?) 
          (<44,0,A>, ?) (<44,0,B>, ?) (<44,0,C>, ?) (<44,0,E>, ?) (<44,0,F>, ?) (<44,0,G>, ?) (<44,0,H>, ?) (<44,0,J>, ?) 
          (<45,0,A>, ?) (<45,0,B>, ?) (<45,0,C>, ?) (<45,0,E>, ?) (<45,0,F>, ?) (<45,0,G>, ?) (<45,0,H>, ?) (<45,0,J>, ?) 
          (<47,0,A>, ?) (<47,0,B>, ?) (<47,0,C>, ?) (<47,0,E>, ?) (<47,0,F>, ?) (<47,0,G>, ?) (<47,0,H>, ?) (<47,0,J>, ?) 
          (<49,0,A>, ?) (<49,0,B>, ?) (<49,0,C>, ?) (<49,0,E>, ?) (<49,0,F>, ?) (<49,0,G>, ?) (<49,0,H>, ?) (<49,0,J>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 7) (< 2,0,E>,  50) (< 2,0,F>, F) (< 2,0,G>,  G) (< 2,0,H>,   H) (< 2,0,J>,      J) 
          (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 7) (< 3,0,E>, 343) (< 3,0,F>, F) (< 3,0,G>,  G) (< 3,0,H>,   H) (< 3,0,J>,      J) 
          (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 7) (< 4,0,E>,   8) (< 4,0,F>, F) (< 4,0,G>,  G) (< 4,0,H>,   H) (< 4,0,J>,      J) 
          (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, 8) (< 6,0,E>, 343) (< 6,0,F>, 5) (< 6,0,G>, 77) (< 6,0,H>,   5) (< 6,0,J>,      0) 
          (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, 8) (< 7,0,E>, 343) (< 7,0,F>, 5) (< 7,0,G>, 77) (< 7,0,H>,   5) (< 7,0,J>,      0) 
          (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, 8) (< 8,0,E>, 343) (< 8,0,F>, 5) (< 8,0,G>, 77) (< 8,0,H>,   5) (< 8,0,J>,     77) 
          (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, 8) (< 9,0,E>, 343) (< 9,0,F>, 5) (< 9,0,G>,  0) (< 9,0,H>,   6) (< 9,0,J>, 78 + J) 
          (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, 8) (<11,0,E>, 343) (<11,0,F>, 5) (<11,0,G>, 77) (<11,0,H>, 155) (<11,0,J>,     78) 
          (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, 8) (<13,0,E>, 343) (<13,0,F>, 5) (<13,0,G>,  5) (<13,0,H>,   5) (<13,0,J>,      ?) 
          (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, 8) (<15,0,E>, 343) (<15,0,F>, 5) (<15,0,G>,  ?) (<15,0,H>,   6) (<15,0,J>,      ?) 
          (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, 8) (<22,0,E>, 343) (<22,0,F>, 5) (<22,0,G>, 77) (<22,0,H>,   5) (<22,0,J>,     77) 
          (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 0) (<27,0,E>,   0) (<27,0,F>, F) (<27,0,G>,  G) (<27,0,H>,   H) (<27,0,J>,      J) 
          (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, 8) (<28,0,E>, 343) (<28,0,F>, 5) (<28,0,G>,  ?) (<28,0,H>,   ?) (<28,0,J>,      ?) 
          (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, 8) (<29,0,E>, 343) (<29,0,F>, 5) (<29,0,G>,  5) (<29,0,H>,   0) (<29,0,J>,      ?) 
          (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, 8) (<32,0,E>, 343) (<32,0,F>, 5) (<32,0,G>, 77) (<32,0,H>, 155) (<32,0,J>,      0) 
          (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, 8) (<36,0,E>, 343) (<36,0,F>, 5) (<36,0,G>, 77) (<36,0,H>,  78) (<36,0,J>,      0) 
          (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 7) (<41,0,E>,   0) (<41,0,F>, F) (<41,0,G>,  G) (<41,0,H>,   H) (<41,0,J>,      J) 
          (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, 8) (<43,0,E>, 343) (<43,0,F>, 5) (<43,0,G>,  6) (<43,0,H>,   5) (<43,0,J>,      ?) 
          (<44,0,A>, 50) (<44,0,B>, 5) (<44,0,C>, 8) (<44,0,E>, 343) (<44,0,F>, 5) (<44,0,G>, 77) (<44,0,H>,  79) (<44,0,J>,     78) 
          (<45,0,A>, 50) (<45,0,B>, 5) (<45,0,C>, 8) (<45,0,E>, 343) (<45,0,F>, 5) (<45,0,G>,  1) (<45,0,H>,   0) (<45,0,J>,     78) 
          (<47,0,A>, 50) (<47,0,B>, 5) (<47,0,C>, 8) (<47,0,E>, 343) (<47,0,F>, 5) (<47,0,G>,  1) (<47,0,H>,   0) (<47,0,J>,     77) 
          (<49,0,A>, 50) (<49,0,B>, 5) (<49,0,C>, 8) (<49,0,E>, 343) (<49,0,F>, 5) (<49,0,G>,  0) (<49,0,H>,   1) (<49,0,J>,      J) 
* Step 43: LocationConstraintsProc WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)     [B >= E && E >= 1 + C]                                 (42,1)
          3.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)     [C >= 1 + E && B >= E]                                 (42,1)
          4.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J)     [B >= E && C = E]                                      (42,1)
          6.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)         [0 >= 1 + G && F >= H]                                 (?,1) 
          7.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)         [G >= 1 && F >= H]                                     (48,1)
          8.  f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J)     [G >= 1 + J]                                           (?,1) 
          9.  f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J)     [F >= H && G = 0]                                      (48,1)
          11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J)     [G >= J]                                               (?,1) 
          13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J)     [G >= 1 + H]                                           (?,1) 
          15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J)     [F >= H]                                               (?,1) 
          22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J)     [J >= G]                                               (?,1) 
          27. f0(A,B,C,E,F,G,H,J)  -> f19(50,5,0,0,F,G,H,J)        [5 >= 0]                                               (1,2) 
          28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J)    [H >= 1 + F && -1 + G >= 0]                            (?,2) 
          29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J)     [H >= G && F >= 1 + G]                                 (?,2) 
          32. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + H,0)     [J >= 1 + G && F >= 1 + H]                             (77,2)
          36. f36(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + G,0)     [H >= 1 + F && F >= 1 + G]                             (7,2) 
          41. f19(A,B,C,E,F,G,H,J) -> f19(A,B,1 + C,0,F,G,H,J)     [E >= 1 + B && B >= 1 + C]                             (7,2) 
          43. f70(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J)    [H >= G && 1 + G >= 1 + F && -1 + F >= 0]              (?,3) 
          44. f54(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [J >= 1 + G && 1 + H >= 1 + F && F >= 2 + G]           (77,3)
          45. f54(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J)         [J >= 1 + G && 1 + H >= 1 + F && 1 + G >= F && F >= 1] (77,4)
          47. f36(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J)         [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F && F >= 1] (7,4) 
          49. f19(A,B,C,E,F,G,H,J) -> f36(A,B,1 + C,E,B,0,1,J)     [E >= 1 + B && 1 + C >= 1 + B && B >= 1]               (7,3) 
        Signature:
          {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)}
        Flow Graph:
          [2->{2,41},3->{3,4,49},4->{2,49},6->{22},7->{8},8->{8,22},9->{9,36},11->{11,32,44,45},13->{13,29,43}
          ,15->{15,28},22->{6,7,9,36,47},27->{4},28->{15,28},29->{13,29},32->{11,32,44},36->{11,32},41->{2,3,4,41}
          ,43->{15},44->{6,7,9},45->{13},47->{13},49->{9}]
        Sizebounds:
          (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 7) (< 2,0,E>,  50) (< 2,0,F>, F) (< 2,0,G>,  G) (< 2,0,H>,   H) (< 2,0,J>,      J) 
          (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 7) (< 3,0,E>, 343) (< 3,0,F>, F) (< 3,0,G>,  G) (< 3,0,H>,   H) (< 3,0,J>,      J) 
          (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 7) (< 4,0,E>,   8) (< 4,0,F>, F) (< 4,0,G>,  G) (< 4,0,H>,   H) (< 4,0,J>,      J) 
          (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, 8) (< 6,0,E>, 343) (< 6,0,F>, 5) (< 6,0,G>, 77) (< 6,0,H>,   5) (< 6,0,J>,      0) 
          (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, 8) (< 7,0,E>, 343) (< 7,0,F>, 5) (< 7,0,G>, 77) (< 7,0,H>,   5) (< 7,0,J>,      0) 
          (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, 8) (< 8,0,E>, 343) (< 8,0,F>, 5) (< 8,0,G>, 77) (< 8,0,H>,   5) (< 8,0,J>,     77) 
          (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, 8) (< 9,0,E>, 343) (< 9,0,F>, 5) (< 9,0,G>,  0) (< 9,0,H>,   6) (< 9,0,J>, 78 + J) 
          (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, 8) (<11,0,E>, 343) (<11,0,F>, 5) (<11,0,G>, 77) (<11,0,H>, 155) (<11,0,J>,     78) 
          (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, 8) (<13,0,E>, 343) (<13,0,F>, 5) (<13,0,G>,  5) (<13,0,H>,   5) (<13,0,J>,      ?) 
          (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, 8) (<15,0,E>, 343) (<15,0,F>, 5) (<15,0,G>,  ?) (<15,0,H>,   6) (<15,0,J>,      ?) 
          (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, 8) (<22,0,E>, 343) (<22,0,F>, 5) (<22,0,G>, 77) (<22,0,H>,   5) (<22,0,J>,     77) 
          (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 0) (<27,0,E>,   0) (<27,0,F>, F) (<27,0,G>,  G) (<27,0,H>,   H) (<27,0,J>,      J) 
          (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, 8) (<28,0,E>, 343) (<28,0,F>, 5) (<28,0,G>,  ?) (<28,0,H>,   ?) (<28,0,J>,      ?) 
          (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, 8) (<29,0,E>, 343) (<29,0,F>, 5) (<29,0,G>,  5) (<29,0,H>,   0) (<29,0,J>,      ?) 
          (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, 8) (<32,0,E>, 343) (<32,0,F>, 5) (<32,0,G>, 77) (<32,0,H>, 155) (<32,0,J>,      0) 
          (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, 8) (<36,0,E>, 343) (<36,0,F>, 5) (<36,0,G>, 77) (<36,0,H>,  78) (<36,0,J>,      0) 
          (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 7) (<41,0,E>,   0) (<41,0,F>, F) (<41,0,G>,  G) (<41,0,H>,   H) (<41,0,J>,      J) 
          (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, 8) (<43,0,E>, 343) (<43,0,F>, 5) (<43,0,G>,  6) (<43,0,H>,   5) (<43,0,J>,      ?) 
          (<44,0,A>, 50) (<44,0,B>, 5) (<44,0,C>, 8) (<44,0,E>, 343) (<44,0,F>, 5) (<44,0,G>, 77) (<44,0,H>,  79) (<44,0,J>,     78) 
          (<45,0,A>, 50) (<45,0,B>, 5) (<45,0,C>, 8) (<45,0,E>, 343) (<45,0,F>, 5) (<45,0,G>,  1) (<45,0,H>,   0) (<45,0,J>,     78) 
          (<47,0,A>, 50) (<47,0,B>, 5) (<47,0,C>, 8) (<47,0,E>, 343) (<47,0,F>, 5) (<47,0,G>,  1) (<47,0,H>,   0) (<47,0,J>,     77) 
          (<49,0,A>, 50) (<49,0,B>, 5) (<49,0,C>, 8) (<49,0,E>, 343) (<49,0,F>, 5) (<49,0,G>,  0) (<49,0,H>,   1) (<49,0,J>,      J) 
    + Applied Processor:
        LocationConstraintsProc
    + Details:
        We computed the location constraints  2 :  True 3 :  [False] 4 :  True 6 :  [J >= G] 7 :  [J >= G] 8 :  [G >= 1] 9 :  True 11 :  True 13 :  True 15 :  True 22 :  True 27 :  True 28 :  [False] 29 :  [False] 32 :  True 36 :  True 41 :  [False] 43 :  [False] 44 :  True 45 :  [False] 47 :  [J >= G] 49 :  True .
* Step 44: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)     [B >= E && E >= 1 + C]                                 (42,1)
          3.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)     [C >= 1 + E && B >= E]                                 (42,1)
          4.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J)     [B >= E && C = E]                                      (42,1)
          6.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)         [0 >= 1 + G && F >= H]                                 (?,1) 
          7.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)         [G >= 1 && F >= H]                                     (48,1)
          8.  f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J)     [G >= 1 + J]                                           (?,1) 
          9.  f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J)     [F >= H && G = 0]                                      (48,1)
          11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J)     [G >= J]                                               (?,1) 
          13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J)     [G >= 1 + H]                                           (?,1) 
          15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J)     [F >= H]                                               (?,1) 
          22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J)     [J >= G]                                               (?,1) 
          27. f0(A,B,C,E,F,G,H,J)  -> f19(50,5,0,0,F,G,H,J)        [5 >= 0]                                               (1,2) 
          28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J)    [H >= 1 + F && -1 + G >= 0]                            (?,2) 
          29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J)     [H >= G && F >= 1 + G]                                 (?,2) 
          32. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + H,0)     [J >= 1 + G && F >= 1 + H]                             (77,2)
          36. f36(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + G,0)     [H >= 1 + F && F >= 1 + G]                             (7,2) 
          41. f19(A,B,C,E,F,G,H,J) -> f19(A,B,1 + C,0,F,G,H,J)     [E >= 1 + B && B >= 1 + C]                             (7,2) 
          43. f70(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J)    [H >= G && 1 + G >= 1 + F && -1 + F >= 0]              (?,3) 
          44. f54(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [J >= 1 + G && 1 + H >= 1 + F && F >= 2 + G]           (77,3)
          45. f54(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J)         [J >= 1 + G && 1 + H >= 1 + F && 1 + G >= F && F >= 1] (77,4)
          47. f36(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J)         [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F && F >= 1] (7,4) 
          49. f19(A,B,C,E,F,G,H,J) -> f36(A,B,1 + C,E,B,0,1,J)     [E >= 1 + B && 1 + C >= 1 + B && B >= 1]               (7,3) 
        Signature:
          {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)}
        Flow Graph:
          [2->{2,41},3->{3,4,49},4->{2,49},6->{22},7->{8},8->{8,22},9->{9,36},11->{11,32,44,45},13->{13,29,43}
          ,15->{15,28},22->{6,7,9,36,47},27->{4},28->{15,28},29->{13,29},32->{11,32,44},36->{11,32},41->{2,3,4,41}
          ,43->{15},44->{6,7,9},45->{13},47->{13},49->{9}]
        Sizebounds:
          (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 7) (< 2,0,E>,  50) (< 2,0,F>, F) (< 2,0,G>,  G) (< 2,0,H>,   H) (< 2,0,J>,      J) 
          (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 7) (< 3,0,E>, 343) (< 3,0,F>, F) (< 3,0,G>,  G) (< 3,0,H>,   H) (< 3,0,J>,      J) 
          (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 7) (< 4,0,E>,   8) (< 4,0,F>, F) (< 4,0,G>,  G) (< 4,0,H>,   H) (< 4,0,J>,      J) 
          (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, 8) (< 6,0,E>, 343) (< 6,0,F>, 5) (< 6,0,G>, 77) (< 6,0,H>,   5) (< 6,0,J>,      0) 
          (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, 8) (< 7,0,E>, 343) (< 7,0,F>, 5) (< 7,0,G>, 77) (< 7,0,H>,   5) (< 7,0,J>,      0) 
          (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, 8) (< 8,0,E>, 343) (< 8,0,F>, 5) (< 8,0,G>, 77) (< 8,0,H>,   5) (< 8,0,J>,     77) 
          (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, 8) (< 9,0,E>, 343) (< 9,0,F>, 5) (< 9,0,G>,  0) (< 9,0,H>,   6) (< 9,0,J>, 78 + J) 
          (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, 8) (<11,0,E>, 343) (<11,0,F>, 5) (<11,0,G>, 77) (<11,0,H>, 155) (<11,0,J>,     78) 
          (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, 8) (<13,0,E>, 343) (<13,0,F>, 5) (<13,0,G>,  5) (<13,0,H>,   5) (<13,0,J>,      ?) 
          (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, 8) (<15,0,E>, 343) (<15,0,F>, 5) (<15,0,G>,  ?) (<15,0,H>,   6) (<15,0,J>,      ?) 
          (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, 8) (<22,0,E>, 343) (<22,0,F>, 5) (<22,0,G>, 77) (<22,0,H>,   5) (<22,0,J>,     77) 
          (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 0) (<27,0,E>,   0) (<27,0,F>, F) (<27,0,G>,  G) (<27,0,H>,   H) (<27,0,J>,      J) 
          (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, 8) (<28,0,E>, 343) (<28,0,F>, 5) (<28,0,G>,  ?) (<28,0,H>,   ?) (<28,0,J>,      ?) 
          (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, 8) (<29,0,E>, 343) (<29,0,F>, 5) (<29,0,G>,  5) (<29,0,H>,   0) (<29,0,J>,      ?) 
          (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, 8) (<32,0,E>, 343) (<32,0,F>, 5) (<32,0,G>, 77) (<32,0,H>, 155) (<32,0,J>,      0) 
          (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, 8) (<36,0,E>, 343) (<36,0,F>, 5) (<36,0,G>, 77) (<36,0,H>,  78) (<36,0,J>,      0) 
          (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 7) (<41,0,E>,   0) (<41,0,F>, F) (<41,0,G>,  G) (<41,0,H>,   H) (<41,0,J>,      J) 
          (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, 8) (<43,0,E>, 343) (<43,0,F>, 5) (<43,0,G>,  6) (<43,0,H>,   5) (<43,0,J>,      ?) 
          (<44,0,A>, 50) (<44,0,B>, 5) (<44,0,C>, 8) (<44,0,E>, 343) (<44,0,F>, 5) (<44,0,G>, 77) (<44,0,H>,  79) (<44,0,J>,     78) 
          (<45,0,A>, 50) (<45,0,B>, 5) (<45,0,C>, 8) (<45,0,E>, 343) (<45,0,F>, 5) (<45,0,G>,  1) (<45,0,H>,   0) (<45,0,J>,     78) 
          (<47,0,A>, 50) (<47,0,B>, 5) (<47,0,C>, 8) (<47,0,E>, 343) (<47,0,F>, 5) (<47,0,G>,  1) (<47,0,H>,   0) (<47,0,J>,     77) 
          (<49,0,A>, 50) (<49,0,B>, 5) (<49,0,C>, 8) (<49,0,E>, 343) (<49,0,F>, 5) (<49,0,G>,  0) (<49,0,H>,   1) (<49,0,J>,      J) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Constant}
    + Details:
        We apply a polynomial interpretation of shape constant:
           p(f0) = 1
          p(f19) = 1
          p(f36) = 1
          p(f41) = 1
          p(f54) = 1
          p(f70) = 1
          p(f84) = 0
        
        The following rules are strictly oriented:
        [H >= G && 1 + G >= 1 + F && -1 + F >= 0] ==>                          
                             f70(A,B,C,E,F,G,H,J)   = 1                        
                                                    > 0                        
                                                    = f84(A,B,C,E,F,-1 + F,F,J)
        
        
        The following rules are weakly oriented:
                                        [B >= E && E >= 1 + C] ==>                             
                                          f19(A,B,C,E,F,G,H,J)   = 1                           
                                                                >= 1                           
                                                                 = f19(A,B,C,1 + E,F,G,H,J)    
        
                                        [C >= 1 + E && B >= E] ==>                             
                                          f19(A,B,C,E,F,G,H,J)   = 1                           
                                                                >= 1                           
                                                                 = f19(A,B,C,1 + E,F,G,H,J)    
        
                                             [B >= E && C = E] ==>                             
                                          f19(A,B,C,E,F,G,H,J)   = 1                           
                                                                >= 1                           
                                                                 = f19(A,B,C,1 + C,F,G,H,J)    
        
                                        [0 >= 1 + G && F >= H] ==>                             
                                          f36(A,B,C,E,F,G,H,J)   = 1                           
                                                                >= 1                           
                                                                 = f41(A,B,C,E,F,G,H,0)        
        
                                            [G >= 1 && F >= H] ==>                             
                                          f36(A,B,C,E,F,G,H,J)   = 1                           
                                                                >= 1                           
                                                                 = f41(A,B,C,E,F,G,H,0)        
        
                                                  [G >= 1 + J] ==>                             
                                          f41(A,B,C,E,F,G,H,J)   = 1                           
                                                                >= 1                           
                                                                 = f41(A,B,C,E,F,G,H,1 + J)    
        
                                             [F >= H && G = 0] ==>                             
                                          f36(A,B,C,E,F,G,H,J)   = 1                           
                                                                >= 1                           
                                                                 = f36(A,B,C,E,F,0,1 + H,J)    
        
                                                      [G >= J] ==>                             
                                          f54(A,B,C,E,F,G,H,J)   = 1                           
                                                                >= 1                           
                                                                 = f54(A,B,C,E,F,G,H,1 + J)    
        
                                                  [G >= 1 + H] ==>                             
                                          f70(A,B,C,E,F,G,H,J)   = 1                           
                                                                >= 1                           
                                                                 = f70(A,B,C,E,F,G,1 + H,J)    
        
                                                      [F >= H] ==>                             
                                          f84(A,B,C,E,F,G,H,J)   = 0                           
                                                                >= 0                           
                                                                 = f84(A,B,C,E,F,G,1 + H,J)    
        
                                                      [J >= G] ==>                             
                                          f41(A,B,C,E,F,G,H,J)   = 1                           
                                                                >= 1                           
                                                                 = f36(A,B,C,E,F,G,1 + H,J)    
        
                                                      [5 >= 0] ==>                             
                                           f0(A,B,C,E,F,G,H,J)   = 1                           
                                                                >= 1                           
                                                                 = f19(50,5,0,0,F,G,H,J)       
        
                                   [H >= 1 + F && -1 + G >= 0] ==>                             
                                          f84(A,B,C,E,F,G,H,J)   = 0                           
                                                                >= 0                           
                                                                 = f84(A,B,C,E,F,-1 + G,G,J)   
        
                                        [H >= G && F >= 1 + G] ==>                             
                                          f70(A,B,C,E,F,G,H,J)   = 1                           
                                                                >= 1                           
                                                                 = f70(A,B,C,E,F,1 + G,0,J)    
        
                                    [J >= 1 + G && F >= 1 + H] ==>                             
                                          f54(A,B,C,E,F,G,H,J)   = 1                           
                                                                >= 1                           
                                                                 = f54(A,B,C,E,F,G,1 + H,0)    
        
                                    [H >= 1 + F && F >= 1 + G] ==>                             
                                          f36(A,B,C,E,F,G,H,J)   = 1                           
                                                                >= 1                           
                                                                 = f54(A,B,C,E,F,G,1 + G,0)    
        
                                    [E >= 1 + B && B >= 1 + C] ==>                             
                                          f19(A,B,C,E,F,G,H,J)   = 1                           
                                                                >= 1                           
                                                                 = f19(A,B,1 + C,0,F,G,H,J)    
        
                  [J >= 1 + G && 1 + H >= 1 + F && F >= 2 + G] ==>                             
                                          f54(A,B,C,E,F,G,H,J)   = 1                           
                                                                >= 1                           
                                                                 = f36(A,B,C,E,F,1 + G,2 + G,J)
        
        [J >= 1 + G && 1 + H >= 1 + F && 1 + G >= F && F >= 1] ==>                             
                                          f54(A,B,C,E,F,G,H,J)   = 1                           
                                                                >= 1                           
                                                                 = f70(A,B,C,E,F,1,0,J)        
        
        [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F && F >= 1] ==>                             
                                          f36(A,B,C,E,F,G,H,J)   = 1                           
                                                                >= 1                           
                                                                 = f70(A,B,C,E,F,1,0,J)        
        
                      [E >= 1 + B && 1 + C >= 1 + B && B >= 1] ==>                             
                                          f19(A,B,C,E,F,G,H,J)   = 1                           
                                                                >= 1                           
                                                                 = f36(A,B,1 + C,E,B,0,1,J)    
        
        
* Step 45: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)     [B >= E && E >= 1 + C]                                 (42,1)
          3.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)     [C >= 1 + E && B >= E]                                 (42,1)
          4.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J)     [B >= E && C = E]                                      (42,1)
          6.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)         [0 >= 1 + G && F >= H]                                 (?,1) 
          7.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)         [G >= 1 && F >= H]                                     (48,1)
          8.  f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J)     [G >= 1 + J]                                           (?,1) 
          9.  f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J)     [F >= H && G = 0]                                      (48,1)
          11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J)     [G >= J]                                               (?,1) 
          13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J)     [G >= 1 + H]                                           (?,1) 
          15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J)     [F >= H]                                               (?,1) 
          22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J)     [J >= G]                                               (?,1) 
          27. f0(A,B,C,E,F,G,H,J)  -> f19(50,5,0,0,F,G,H,J)        [5 >= 0]                                               (1,2) 
          28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J)    [H >= 1 + F && -1 + G >= 0]                            (?,2) 
          29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J)     [H >= G && F >= 1 + G]                                 (?,2) 
          32. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + H,0)     [J >= 1 + G && F >= 1 + H]                             (77,2)
          36. f36(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + G,0)     [H >= 1 + F && F >= 1 + G]                             (7,2) 
          41. f19(A,B,C,E,F,G,H,J) -> f19(A,B,1 + C,0,F,G,H,J)     [E >= 1 + B && B >= 1 + C]                             (7,2) 
          43. f70(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J)    [H >= G && 1 + G >= 1 + F && -1 + F >= 0]              (1,3) 
          44. f54(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [J >= 1 + G && 1 + H >= 1 + F && F >= 2 + G]           (77,3)
          45. f54(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J)         [J >= 1 + G && 1 + H >= 1 + F && 1 + G >= F && F >= 1] (77,4)
          47. f36(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J)         [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F && F >= 1] (7,4) 
          49. f19(A,B,C,E,F,G,H,J) -> f36(A,B,1 + C,E,B,0,1,J)     [E >= 1 + B && 1 + C >= 1 + B && B >= 1]               (7,3) 
        Signature:
          {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)}
        Flow Graph:
          [2->{2,41},3->{3,4,49},4->{2,49},6->{22},7->{8},8->{8,22},9->{9,36},11->{11,32,44,45},13->{13,29,43}
          ,15->{15,28},22->{6,7,9,36,47},27->{4},28->{15,28},29->{13,29},32->{11,32,44},36->{11,32},41->{2,3,4,41}
          ,43->{15},44->{6,7,9},45->{13},47->{13},49->{9}]
        Sizebounds:
          (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 7) (< 2,0,E>,  50) (< 2,0,F>, F) (< 2,0,G>,  G) (< 2,0,H>,   H) (< 2,0,J>,      J) 
          (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 7) (< 3,0,E>, 343) (< 3,0,F>, F) (< 3,0,G>,  G) (< 3,0,H>,   H) (< 3,0,J>,      J) 
          (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 7) (< 4,0,E>,   8) (< 4,0,F>, F) (< 4,0,G>,  G) (< 4,0,H>,   H) (< 4,0,J>,      J) 
          (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, 8) (< 6,0,E>, 343) (< 6,0,F>, 5) (< 6,0,G>, 77) (< 6,0,H>,   5) (< 6,0,J>,      0) 
          (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, 8) (< 7,0,E>, 343) (< 7,0,F>, 5) (< 7,0,G>, 77) (< 7,0,H>,   5) (< 7,0,J>,      0) 
          (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, 8) (< 8,0,E>, 343) (< 8,0,F>, 5) (< 8,0,G>, 77) (< 8,0,H>,   5) (< 8,0,J>,     77) 
          (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, 8) (< 9,0,E>, 343) (< 9,0,F>, 5) (< 9,0,G>,  0) (< 9,0,H>,   6) (< 9,0,J>, 78 + J) 
          (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, 8) (<11,0,E>, 343) (<11,0,F>, 5) (<11,0,G>, 77) (<11,0,H>, 155) (<11,0,J>,     78) 
          (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, 8) (<13,0,E>, 343) (<13,0,F>, 5) (<13,0,G>,  5) (<13,0,H>,   5) (<13,0,J>,      ?) 
          (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, 8) (<15,0,E>, 343) (<15,0,F>, 5) (<15,0,G>,  ?) (<15,0,H>,   6) (<15,0,J>,      ?) 
          (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, 8) (<22,0,E>, 343) (<22,0,F>, 5) (<22,0,G>, 77) (<22,0,H>,   5) (<22,0,J>,     77) 
          (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 0) (<27,0,E>,   0) (<27,0,F>, F) (<27,0,G>,  G) (<27,0,H>,   H) (<27,0,J>,      J) 
          (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, 8) (<28,0,E>, 343) (<28,0,F>, 5) (<28,0,G>,  ?) (<28,0,H>,   ?) (<28,0,J>,      ?) 
          (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, 8) (<29,0,E>, 343) (<29,0,F>, 5) (<29,0,G>,  5) (<29,0,H>,   0) (<29,0,J>,      ?) 
          (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, 8) (<32,0,E>, 343) (<32,0,F>, 5) (<32,0,G>, 77) (<32,0,H>, 155) (<32,0,J>,      0) 
          (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, 8) (<36,0,E>, 343) (<36,0,F>, 5) (<36,0,G>, 77) (<36,0,H>,  78) (<36,0,J>,      0) 
          (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 7) (<41,0,E>,   0) (<41,0,F>, F) (<41,0,G>,  G) (<41,0,H>,   H) (<41,0,J>,      J) 
          (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, 8) (<43,0,E>, 343) (<43,0,F>, 5) (<43,0,G>,  6) (<43,0,H>,   5) (<43,0,J>,      ?) 
          (<44,0,A>, 50) (<44,0,B>, 5) (<44,0,C>, 8) (<44,0,E>, 343) (<44,0,F>, 5) (<44,0,G>, 77) (<44,0,H>,  79) (<44,0,J>,     78) 
          (<45,0,A>, 50) (<45,0,B>, 5) (<45,0,C>, 8) (<45,0,E>, 343) (<45,0,F>, 5) (<45,0,G>,  1) (<45,0,H>,   0) (<45,0,J>,     78) 
          (<47,0,A>, 50) (<47,0,B>, 5) (<47,0,C>, 8) (<47,0,E>, 343) (<47,0,F>, 5) (<47,0,G>,  1) (<47,0,H>,   0) (<47,0,J>,     77) 
          (<49,0,A>, 50) (<49,0,B>, 5) (<49,0,C>, 8) (<49,0,E>, 343) (<49,0,F>, 5) (<49,0,G>,  0) (<49,0,H>,   1) (<49,0,J>,      J) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 5 
          p(f19) = x2
          p(f36) = x5
          p(f41) = x5
          p(f54) = x5
          p(f70) = x5
          p(f84) = x6
        
        The following rules are strictly oriented:
                      [H >= 1 + F && -1 + G >= 0] ==>                          
                             f84(A,B,C,E,F,G,H,J)   = G                        
                                                    > -1 + G                   
                                                    = f84(A,B,C,E,F,-1 + G,G,J)
        
        [H >= G && 1 + G >= 1 + F && -1 + F >= 0] ==>                          
                             f70(A,B,C,E,F,G,H,J)   = F                        
                                                    > -1 + F                   
                                                    = f84(A,B,C,E,F,-1 + F,F,J)
        
        
        The following rules are weakly oriented:
                                        [B >= E && E >= 1 + C] ==>                             
                                          f19(A,B,C,E,F,G,H,J)   = B                           
                                                                >= B                           
                                                                 = f19(A,B,C,1 + E,F,G,H,J)    
        
                                        [C >= 1 + E && B >= E] ==>                             
                                          f19(A,B,C,E,F,G,H,J)   = B                           
                                                                >= B                           
                                                                 = f19(A,B,C,1 + E,F,G,H,J)    
        
                                             [B >= E && C = E] ==>                             
                                          f19(A,B,C,E,F,G,H,J)   = B                           
                                                                >= B                           
                                                                 = f19(A,B,C,1 + C,F,G,H,J)    
        
                                        [0 >= 1 + G && F >= H] ==>                             
                                          f36(A,B,C,E,F,G,H,J)   = F                           
                                                                >= F                           
                                                                 = f41(A,B,C,E,F,G,H,0)        
        
                                            [G >= 1 && F >= H] ==>                             
                                          f36(A,B,C,E,F,G,H,J)   = F                           
                                                                >= F                           
                                                                 = f41(A,B,C,E,F,G,H,0)        
        
                                                  [G >= 1 + J] ==>                             
                                          f41(A,B,C,E,F,G,H,J)   = F                           
                                                                >= F                           
                                                                 = f41(A,B,C,E,F,G,H,1 + J)    
        
                                             [F >= H && G = 0] ==>                             
                                          f36(A,B,C,E,F,G,H,J)   = F                           
                                                                >= F                           
                                                                 = f36(A,B,C,E,F,0,1 + H,J)    
        
                                                      [G >= J] ==>                             
                                          f54(A,B,C,E,F,G,H,J)   = F                           
                                                                >= F                           
                                                                 = f54(A,B,C,E,F,G,H,1 + J)    
        
                                                  [G >= 1 + H] ==>                             
                                          f70(A,B,C,E,F,G,H,J)   = F                           
                                                                >= F                           
                                                                 = f70(A,B,C,E,F,G,1 + H,J)    
        
                                                      [F >= H] ==>                             
                                          f84(A,B,C,E,F,G,H,J)   = G                           
                                                                >= G                           
                                                                 = f84(A,B,C,E,F,G,1 + H,J)    
        
                                                      [J >= G] ==>                             
                                          f41(A,B,C,E,F,G,H,J)   = F                           
                                                                >= F                           
                                                                 = f36(A,B,C,E,F,G,1 + H,J)    
        
                                                      [5 >= 0] ==>                             
                                           f0(A,B,C,E,F,G,H,J)   = 5                           
                                                                >= 5                           
                                                                 = f19(50,5,0,0,F,G,H,J)       
        
                                        [H >= G && F >= 1 + G] ==>                             
                                          f70(A,B,C,E,F,G,H,J)   = F                           
                                                                >= F                           
                                                                 = f70(A,B,C,E,F,1 + G,0,J)    
        
                                    [J >= 1 + G && F >= 1 + H] ==>                             
                                          f54(A,B,C,E,F,G,H,J)   = F                           
                                                                >= F                           
                                                                 = f54(A,B,C,E,F,G,1 + H,0)    
        
                                    [H >= 1 + F && F >= 1 + G] ==>                             
                                          f36(A,B,C,E,F,G,H,J)   = F                           
                                                                >= F                           
                                                                 = f54(A,B,C,E,F,G,1 + G,0)    
        
                                    [E >= 1 + B && B >= 1 + C] ==>                             
                                          f19(A,B,C,E,F,G,H,J)   = B                           
                                                                >= B                           
                                                                 = f19(A,B,1 + C,0,F,G,H,J)    
        
                  [J >= 1 + G && 1 + H >= 1 + F && F >= 2 + G] ==>                             
                                          f54(A,B,C,E,F,G,H,J)   = F                           
                                                                >= F                           
                                                                 = f36(A,B,C,E,F,1 + G,2 + G,J)
        
        [J >= 1 + G && 1 + H >= 1 + F && 1 + G >= F && F >= 1] ==>                             
                                          f54(A,B,C,E,F,G,H,J)   = F                           
                                                                >= F                           
                                                                 = f70(A,B,C,E,F,1,0,J)        
        
        [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F && F >= 1] ==>                             
                                          f36(A,B,C,E,F,G,H,J)   = F                           
                                                                >= F                           
                                                                 = f70(A,B,C,E,F,1,0,J)        
        
                      [E >= 1 + B && 1 + C >= 1 + B && B >= 1] ==>                             
                                          f19(A,B,C,E,F,G,H,J)   = B                           
                                                                >= B                           
                                                                 = f36(A,B,1 + C,E,B,0,1,J)    
        
        
* Step 46: SizeboundsProc WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)     [B >= E && E >= 1 + C]                                 (42,1)
          3.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)     [C >= 1 + E && B >= E]                                 (42,1)
          4.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J)     [B >= E && C = E]                                      (42,1)
          6.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)         [0 >= 1 + G && F >= H]                                 (?,1) 
          7.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)         [G >= 1 && F >= H]                                     (48,1)
          8.  f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J)     [G >= 1 + J]                                           (?,1) 
          9.  f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J)     [F >= H && G = 0]                                      (48,1)
          11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J)     [G >= J]                                               (?,1) 
          13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J)     [G >= 1 + H]                                           (?,1) 
          15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J)     [F >= H]                                               (?,1) 
          22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J)     [J >= G]                                               (?,1) 
          27. f0(A,B,C,E,F,G,H,J)  -> f19(50,5,0,0,F,G,H,J)        [5 >= 0]                                               (1,2) 
          28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J)    [H >= 1 + F && -1 + G >= 0]                            (5,2) 
          29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J)     [H >= G && F >= 1 + G]                                 (?,2) 
          32. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + H,0)     [J >= 1 + G && F >= 1 + H]                             (77,2)
          36. f36(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + G,0)     [H >= 1 + F && F >= 1 + G]                             (7,2) 
          41. f19(A,B,C,E,F,G,H,J) -> f19(A,B,1 + C,0,F,G,H,J)     [E >= 1 + B && B >= 1 + C]                             (7,2) 
          43. f70(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J)    [H >= G && 1 + G >= 1 + F && -1 + F >= 0]              (1,3) 
          44. f54(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [J >= 1 + G && 1 + H >= 1 + F && F >= 2 + G]           (77,3)
          45. f54(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J)         [J >= 1 + G && 1 + H >= 1 + F && 1 + G >= F && F >= 1] (77,4)
          47. f36(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J)         [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F && F >= 1] (7,4) 
          49. f19(A,B,C,E,F,G,H,J) -> f36(A,B,1 + C,E,B,0,1,J)     [E >= 1 + B && 1 + C >= 1 + B && B >= 1]               (7,3) 
        Signature:
          {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)}
        Flow Graph:
          [2->{2,41},3->{3,4,49},4->{2,49},6->{22},7->{8},8->{8,22},9->{9,36},11->{11,32,44,45},13->{13,29,43}
          ,15->{15,28},22->{6,7,9,36,47},27->{4},28->{15,28},29->{13,29},32->{11,32,44},36->{11,32},41->{2,3,4,41}
          ,43->{15},44->{6,7,9},45->{13},47->{13},49->{9}]
        Sizebounds:
          (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 7) (< 2,0,E>,  50) (< 2,0,F>, F) (< 2,0,G>,  G) (< 2,0,H>,   H) (< 2,0,J>,      J) 
          (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 7) (< 3,0,E>, 343) (< 3,0,F>, F) (< 3,0,G>,  G) (< 3,0,H>,   H) (< 3,0,J>,      J) 
          (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 7) (< 4,0,E>,   8) (< 4,0,F>, F) (< 4,0,G>,  G) (< 4,0,H>,   H) (< 4,0,J>,      J) 
          (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, 8) (< 6,0,E>, 343) (< 6,0,F>, 5) (< 6,0,G>, 77) (< 6,0,H>,   5) (< 6,0,J>,      0) 
          (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, 8) (< 7,0,E>, 343) (< 7,0,F>, 5) (< 7,0,G>, 77) (< 7,0,H>,   5) (< 7,0,J>,      0) 
          (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, 8) (< 8,0,E>, 343) (< 8,0,F>, 5) (< 8,0,G>, 77) (< 8,0,H>,   5) (< 8,0,J>,     77) 
          (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, 8) (< 9,0,E>, 343) (< 9,0,F>, 5) (< 9,0,G>,  0) (< 9,0,H>,   6) (< 9,0,J>, 78 + J) 
          (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, 8) (<11,0,E>, 343) (<11,0,F>, 5) (<11,0,G>, 77) (<11,0,H>, 155) (<11,0,J>,     78) 
          (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, 8) (<13,0,E>, 343) (<13,0,F>, 5) (<13,0,G>,  5) (<13,0,H>,   5) (<13,0,J>,      ?) 
          (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, 8) (<15,0,E>, 343) (<15,0,F>, 5) (<15,0,G>,  ?) (<15,0,H>,   6) (<15,0,J>,      ?) 
          (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, 8) (<22,0,E>, 343) (<22,0,F>, 5) (<22,0,G>, 77) (<22,0,H>,   5) (<22,0,J>,     77) 
          (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 0) (<27,0,E>,   0) (<27,0,F>, F) (<27,0,G>,  G) (<27,0,H>,   H) (<27,0,J>,      J) 
          (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, 8) (<28,0,E>, 343) (<28,0,F>, 5) (<28,0,G>,  ?) (<28,0,H>,   ?) (<28,0,J>,      ?) 
          (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, 8) (<29,0,E>, 343) (<29,0,F>, 5) (<29,0,G>,  5) (<29,0,H>,   0) (<29,0,J>,      ?) 
          (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, 8) (<32,0,E>, 343) (<32,0,F>, 5) (<32,0,G>, 77) (<32,0,H>, 155) (<32,0,J>,      0) 
          (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, 8) (<36,0,E>, 343) (<36,0,F>, 5) (<36,0,G>, 77) (<36,0,H>,  78) (<36,0,J>,      0) 
          (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 7) (<41,0,E>,   0) (<41,0,F>, F) (<41,0,G>,  G) (<41,0,H>,   H) (<41,0,J>,      J) 
          (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, 8) (<43,0,E>, 343) (<43,0,F>, 5) (<43,0,G>,  6) (<43,0,H>,   5) (<43,0,J>,      ?) 
          (<44,0,A>, 50) (<44,0,B>, 5) (<44,0,C>, 8) (<44,0,E>, 343) (<44,0,F>, 5) (<44,0,G>, 77) (<44,0,H>,  79) (<44,0,J>,     78) 
          (<45,0,A>, 50) (<45,0,B>, 5) (<45,0,C>, 8) (<45,0,E>, 343) (<45,0,F>, 5) (<45,0,G>,  1) (<45,0,H>,   0) (<45,0,J>,     78) 
          (<47,0,A>, 50) (<47,0,B>, 5) (<47,0,C>, 8) (<47,0,E>, 343) (<47,0,F>, 5) (<47,0,G>,  1) (<47,0,H>,   0) (<47,0,J>,     77) 
          (<49,0,A>, 50) (<49,0,B>, 5) (<49,0,C>, 8) (<49,0,E>, 343) (<49,0,F>, 5) (<49,0,G>,  0) (<49,0,H>,   1) (<49,0,J>,      J) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 7) (< 2,0,E>,  50) (< 2,0,F>, F) (< 2,0,G>,  G) (< 2,0,H>,   H) (< 2,0,J>,      J) 
          (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 7) (< 3,0,E>, 343) (< 3,0,F>, F) (< 3,0,G>,  G) (< 3,0,H>,   H) (< 3,0,J>,      J) 
          (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 7) (< 4,0,E>,   8) (< 4,0,F>, F) (< 4,0,G>,  G) (< 4,0,H>,   H) (< 4,0,J>,      J) 
          (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, 8) (< 6,0,E>, 343) (< 6,0,F>, 5) (< 6,0,G>, 77) (< 6,0,H>,   5) (< 6,0,J>,      0) 
          (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, 8) (< 7,0,E>, 343) (< 7,0,F>, 5) (< 7,0,G>, 77) (< 7,0,H>,   5) (< 7,0,J>,      0) 
          (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, 8) (< 8,0,E>, 343) (< 8,0,F>, 5) (< 8,0,G>, 77) (< 8,0,H>,   5) (< 8,0,J>,     77) 
          (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, 8) (< 9,0,E>, 343) (< 9,0,F>, 5) (< 9,0,G>,  0) (< 9,0,H>,   6) (< 9,0,J>, 78 + J) 
          (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, 8) (<11,0,E>, 343) (<11,0,F>, 5) (<11,0,G>, 77) (<11,0,H>, 155) (<11,0,J>,     78) 
          (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, 8) (<13,0,E>, 343) (<13,0,F>, 5) (<13,0,G>,  5) (<13,0,H>,   5) (<13,0,J>,     78) 
          (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, 8) (<15,0,E>, 343) (<15,0,F>, 5) (<15,0,G>, 11) (<15,0,H>,   6) (<15,0,J>,     78) 
          (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, 8) (<22,0,E>, 343) (<22,0,F>, 5) (<22,0,G>, 77) (<22,0,H>,   5) (<22,0,J>,     77) 
          (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 0) (<27,0,E>,   0) (<27,0,F>, F) (<27,0,G>,  G) (<27,0,H>,   H) (<27,0,J>,      J) 
          (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, 8) (<28,0,E>, 343) (<28,0,F>, 5) (<28,0,G>, 11) (<28,0,H>,  11) (<28,0,J>,     78) 
          (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, 8) (<29,0,E>, 343) (<29,0,F>, 5) (<29,0,G>,  5) (<29,0,H>,   0) (<29,0,J>,     78) 
          (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, 8) (<32,0,E>, 343) (<32,0,F>, 5) (<32,0,G>, 77) (<32,0,H>, 155) (<32,0,J>,      0) 
          (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, 8) (<36,0,E>, 343) (<36,0,F>, 5) (<36,0,G>, 77) (<36,0,H>,  78) (<36,0,J>,      0) 
          (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 7) (<41,0,E>,   0) (<41,0,F>, F) (<41,0,G>,  G) (<41,0,H>,   H) (<41,0,J>,      J) 
          (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, 8) (<43,0,E>, 343) (<43,0,F>, 5) (<43,0,G>,  6) (<43,0,H>,   5) (<43,0,J>,     78) 
          (<44,0,A>, 50) (<44,0,B>, 5) (<44,0,C>, 8) (<44,0,E>, 343) (<44,0,F>, 5) (<44,0,G>, 77) (<44,0,H>,  79) (<44,0,J>,     78) 
          (<45,0,A>, 50) (<45,0,B>, 5) (<45,0,C>, 8) (<45,0,E>, 343) (<45,0,F>, 5) (<45,0,G>,  1) (<45,0,H>,   0) (<45,0,J>,     78) 
          (<47,0,A>, 50) (<47,0,B>, 5) (<47,0,C>, 8) (<47,0,E>, 343) (<47,0,F>, 5) (<47,0,G>,  1) (<47,0,H>,   0) (<47,0,J>,     77) 
          (<49,0,A>, 50) (<49,0,B>, 5) (<49,0,C>, 8) (<49,0,E>, 343) (<49,0,F>, 5) (<49,0,G>,  0) (<49,0,H>,   1) (<49,0,J>,      J) 
* Step 47: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)     [B >= E && E >= 1 + C]                                 (42,1)
          3.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)     [C >= 1 + E && B >= E]                                 (42,1)
          4.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J)     [B >= E && C = E]                                      (42,1)
          6.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)         [0 >= 1 + G && F >= H]                                 (?,1) 
          7.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)         [G >= 1 && F >= H]                                     (48,1)
          8.  f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J)     [G >= 1 + J]                                           (?,1) 
          9.  f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J)     [F >= H && G = 0]                                      (48,1)
          11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J)     [G >= J]                                               (?,1) 
          13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J)     [G >= 1 + H]                                           (?,1) 
          15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J)     [F >= H]                                               (?,1) 
          22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J)     [J >= G]                                               (?,1) 
          27. f0(A,B,C,E,F,G,H,J)  -> f19(50,5,0,0,F,G,H,J)        [5 >= 0]                                               (1,2) 
          28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J)    [H >= 1 + F && -1 + G >= 0]                            (5,2) 
          29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J)     [H >= G && F >= 1 + G]                                 (?,2) 
          32. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + H,0)     [J >= 1 + G && F >= 1 + H]                             (77,2)
          36. f36(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + G,0)     [H >= 1 + F && F >= 1 + G]                             (7,2) 
          41. f19(A,B,C,E,F,G,H,J) -> f19(A,B,1 + C,0,F,G,H,J)     [E >= 1 + B && B >= 1 + C]                             (7,2) 
          43. f70(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J)    [H >= G && 1 + G >= 1 + F && -1 + F >= 0]              (1,3) 
          44. f54(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [J >= 1 + G && 1 + H >= 1 + F && F >= 2 + G]           (77,3)
          45. f54(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J)         [J >= 1 + G && 1 + H >= 1 + F && 1 + G >= F && F >= 1] (77,4)
          47. f36(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J)         [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F && F >= 1] (7,4) 
          49. f19(A,B,C,E,F,G,H,J) -> f36(A,B,1 + C,E,B,0,1,J)     [E >= 1 + B && 1 + C >= 1 + B && B >= 1]               (7,3) 
        Signature:
          {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)}
        Flow Graph:
          [2->{2,41},3->{3,4,49},4->{2,49},6->{22},7->{8},8->{8,22},9->{9,36},11->{11,32,44,45},13->{13,29,43}
          ,15->{15,28},22->{6,7,9,36,47},27->{4},28->{15,28},29->{13,29},32->{11,32,44},36->{11,32},41->{2,3,4,41}
          ,43->{15},44->{6,7,9},45->{13},47->{13},49->{9}]
        Sizebounds:
          (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 7) (< 2,0,E>,  50) (< 2,0,F>, F) (< 2,0,G>,  G) (< 2,0,H>,   H) (< 2,0,J>,      J) 
          (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 7) (< 3,0,E>, 343) (< 3,0,F>, F) (< 3,0,G>,  G) (< 3,0,H>,   H) (< 3,0,J>,      J) 
          (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 7) (< 4,0,E>,   8) (< 4,0,F>, F) (< 4,0,G>,  G) (< 4,0,H>,   H) (< 4,0,J>,      J) 
          (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, 8) (< 6,0,E>, 343) (< 6,0,F>, 5) (< 6,0,G>, 77) (< 6,0,H>,   5) (< 6,0,J>,      0) 
          (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, 8) (< 7,0,E>, 343) (< 7,0,F>, 5) (< 7,0,G>, 77) (< 7,0,H>,   5) (< 7,0,J>,      0) 
          (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, 8) (< 8,0,E>, 343) (< 8,0,F>, 5) (< 8,0,G>, 77) (< 8,0,H>,   5) (< 8,0,J>,     77) 
          (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, 8) (< 9,0,E>, 343) (< 9,0,F>, 5) (< 9,0,G>,  0) (< 9,0,H>,   6) (< 9,0,J>, 78 + J) 
          (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, 8) (<11,0,E>, 343) (<11,0,F>, 5) (<11,0,G>, 77) (<11,0,H>, 155) (<11,0,J>,     78) 
          (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, 8) (<13,0,E>, 343) (<13,0,F>, 5) (<13,0,G>,  5) (<13,0,H>,   5) (<13,0,J>,     78) 
          (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, 8) (<15,0,E>, 343) (<15,0,F>, 5) (<15,0,G>, 11) (<15,0,H>,   6) (<15,0,J>,     78) 
          (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, 8) (<22,0,E>, 343) (<22,0,F>, 5) (<22,0,G>, 77) (<22,0,H>,   5) (<22,0,J>,     77) 
          (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 0) (<27,0,E>,   0) (<27,0,F>, F) (<27,0,G>,  G) (<27,0,H>,   H) (<27,0,J>,      J) 
          (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, 8) (<28,0,E>, 343) (<28,0,F>, 5) (<28,0,G>, 11) (<28,0,H>,  11) (<28,0,J>,     78) 
          (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, 8) (<29,0,E>, 343) (<29,0,F>, 5) (<29,0,G>,  5) (<29,0,H>,   0) (<29,0,J>,     78) 
          (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, 8) (<32,0,E>, 343) (<32,0,F>, 5) (<32,0,G>, 77) (<32,0,H>, 155) (<32,0,J>,      0) 
          (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, 8) (<36,0,E>, 343) (<36,0,F>, 5) (<36,0,G>, 77) (<36,0,H>,  78) (<36,0,J>,      0) 
          (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 7) (<41,0,E>,   0) (<41,0,F>, F) (<41,0,G>,  G) (<41,0,H>,   H) (<41,0,J>,      J) 
          (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, 8) (<43,0,E>, 343) (<43,0,F>, 5) (<43,0,G>,  6) (<43,0,H>,   5) (<43,0,J>,     78) 
          (<44,0,A>, 50) (<44,0,B>, 5) (<44,0,C>, 8) (<44,0,E>, 343) (<44,0,F>, 5) (<44,0,G>, 77) (<44,0,H>,  79) (<44,0,J>,     78) 
          (<45,0,A>, 50) (<45,0,B>, 5) (<45,0,C>, 8) (<45,0,E>, 343) (<45,0,F>, 5) (<45,0,G>,  1) (<45,0,H>,   0) (<45,0,J>,     78) 
          (<47,0,A>, 50) (<47,0,B>, 5) (<47,0,C>, 8) (<47,0,E>, 343) (<47,0,F>, 5) (<47,0,G>,  1) (<47,0,H>,   0) (<47,0,J>,     77) 
          (<49,0,A>, 50) (<49,0,B>, 5) (<49,0,C>, 8) (<49,0,E>, 343) (<49,0,F>, 5) (<49,0,G>,  0) (<49,0,H>,   1) (<49,0,J>,      J) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [9,22,6,44,11,32,8,7], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f36) = 2 + x5 + -1*x7
          p(f41) = 1 + x5 + -1*x7
          p(f54) = 1 + x5 + -1*x6
        
        The following rules are strictly oriented:
                              [0 >= 1 + G && F >= H] ==>                             
                                f36(A,B,C,E,F,G,H,J)   = 2 + F + -1*H                
                                                       > 1 + F + -1*H                
                                                       = f41(A,B,C,E,F,G,H,0)        
        
                                  [G >= 1 && F >= H] ==>                             
                                f36(A,B,C,E,F,G,H,J)   = 2 + F + -1*H                
                                                       > 1 + F + -1*H                
                                                       = f41(A,B,C,E,F,G,H,0)        
        
                                   [F >= H && G = 0] ==>                             
                                f36(A,B,C,E,F,G,H,J)   = 2 + F + -1*H                
                                                       > 1 + F + -1*H                
                                                       = f36(A,B,C,E,F,0,1 + H,J)    
        
        [J >= 1 + G && 1 + H >= 1 + F && F >= 2 + G] ==>                             
                                f54(A,B,C,E,F,G,H,J)   = 1 + F + -1*G                
                                                       > F + -1*G                    
                                                       = f36(A,B,C,E,F,1 + G,2 + G,J)
        
        
        The following rules are weakly oriented:
                      [G >= 1 + J] ==>                         
              f41(A,B,C,E,F,G,H,J)   = 1 + F + -1*H            
                                    >= 1 + F + -1*H            
                                     = f41(A,B,C,E,F,G,H,1 + J)
        
                          [G >= J] ==>                         
              f54(A,B,C,E,F,G,H,J)   = 1 + F + -1*G            
                                    >= 1 + F + -1*G            
                                     = f54(A,B,C,E,F,G,H,1 + J)
        
                          [J >= G] ==>                         
              f41(A,B,C,E,F,G,H,J)   = 1 + F + -1*H            
                                    >= 1 + F + -1*H            
                                     = f36(A,B,C,E,F,G,1 + H,J)
        
        [J >= 1 + G && F >= 1 + H] ==>                         
              f54(A,B,C,E,F,G,H,J)   = 1 + F + -1*G            
                                    >= 1 + F + -1*G            
                                     = f54(A,B,C,E,F,G,1 + H,0)
        
        We use the following global sizebounds:
        (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 7) (< 2,0,E>,  50) (< 2,0,F>, F) (< 2,0,G>,  G) (< 2,0,H>,   H) (< 2,0,J>,      J) 
        (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 7) (< 3,0,E>, 343) (< 3,0,F>, F) (< 3,0,G>,  G) (< 3,0,H>,   H) (< 3,0,J>,      J) 
        (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 7) (< 4,0,E>,   8) (< 4,0,F>, F) (< 4,0,G>,  G) (< 4,0,H>,   H) (< 4,0,J>,      J) 
        (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, 8) (< 6,0,E>, 343) (< 6,0,F>, 5) (< 6,0,G>, 77) (< 6,0,H>,   5) (< 6,0,J>,      0) 
        (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, 8) (< 7,0,E>, 343) (< 7,0,F>, 5) (< 7,0,G>, 77) (< 7,0,H>,   5) (< 7,0,J>,      0) 
        (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, 8) (< 8,0,E>, 343) (< 8,0,F>, 5) (< 8,0,G>, 77) (< 8,0,H>,   5) (< 8,0,J>,     77) 
        (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, 8) (< 9,0,E>, 343) (< 9,0,F>, 5) (< 9,0,G>,  0) (< 9,0,H>,   6) (< 9,0,J>, 78 + J) 
        (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, 8) (<11,0,E>, 343) (<11,0,F>, 5) (<11,0,G>, 77) (<11,0,H>, 155) (<11,0,J>,     78) 
        (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, 8) (<13,0,E>, 343) (<13,0,F>, 5) (<13,0,G>,  5) (<13,0,H>,   5) (<13,0,J>,     78) 
        (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, 8) (<15,0,E>, 343) (<15,0,F>, 5) (<15,0,G>, 11) (<15,0,H>,   6) (<15,0,J>,     78) 
        (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, 8) (<22,0,E>, 343) (<22,0,F>, 5) (<22,0,G>, 77) (<22,0,H>,   5) (<22,0,J>,     77) 
        (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 0) (<27,0,E>,   0) (<27,0,F>, F) (<27,0,G>,  G) (<27,0,H>,   H) (<27,0,J>,      J) 
        (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, 8) (<28,0,E>, 343) (<28,0,F>, 5) (<28,0,G>, 11) (<28,0,H>,  11) (<28,0,J>,     78) 
        (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, 8) (<29,0,E>, 343) (<29,0,F>, 5) (<29,0,G>,  5) (<29,0,H>,   0) (<29,0,J>,     78) 
        (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, 8) (<32,0,E>, 343) (<32,0,F>, 5) (<32,0,G>, 77) (<32,0,H>, 155) (<32,0,J>,      0) 
        (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, 8) (<36,0,E>, 343) (<36,0,F>, 5) (<36,0,G>, 77) (<36,0,H>,  78) (<36,0,J>,      0) 
        (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 7) (<41,0,E>,   0) (<41,0,F>, F) (<41,0,G>,  G) (<41,0,H>,   H) (<41,0,J>,      J) 
        (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, 8) (<43,0,E>, 343) (<43,0,F>, 5) (<43,0,G>,  6) (<43,0,H>,   5) (<43,0,J>,     78) 
        (<44,0,A>, 50) (<44,0,B>, 5) (<44,0,C>, 8) (<44,0,E>, 343) (<44,0,F>, 5) (<44,0,G>, 77) (<44,0,H>,  79) (<44,0,J>,     78) 
        (<45,0,A>, 50) (<45,0,B>, 5) (<45,0,C>, 8) (<45,0,E>, 343) (<45,0,F>, 5) (<45,0,G>,  1) (<45,0,H>,   0) (<45,0,J>,     78) 
        (<47,0,A>, 50) (<47,0,B>, 5) (<47,0,C>, 8) (<47,0,E>, 343) (<47,0,F>, 5) (<47,0,G>,  1) (<47,0,H>,   0) (<47,0,J>,     77) 
        (<49,0,A>, 50) (<49,0,B>, 5) (<49,0,C>, 8) (<49,0,E>, 343) (<49,0,F>, 5) (<49,0,G>,  0) (<49,0,H>,   1) (<49,0,J>,      J) 
* Step 48: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)     [B >= E && E >= 1 + C]                                 (42,1) 
          3.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)     [C >= 1 + E && B >= E]                                 (42,1) 
          4.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J)     [B >= E && C = E]                                      (42,1) 
          6.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)         [0 >= 1 + G && F >= H]                                 (637,1)
          7.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)         [G >= 1 && F >= H]                                     (48,1) 
          8.  f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J)     [G >= 1 + J]                                           (?,1)  
          9.  f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J)     [F >= H && G = 0]                                      (48,1) 
          11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J)     [G >= J]                                               (?,1)  
          13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J)     [G >= 1 + H]                                           (?,1)  
          15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J)     [F >= H]                                               (?,1)  
          22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J)     [J >= G]                                               (?,1)  
          27. f0(A,B,C,E,F,G,H,J)  -> f19(50,5,0,0,F,G,H,J)        [5 >= 0]                                               (1,2)  
          28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J)    [H >= 1 + F && -1 + G >= 0]                            (5,2)  
          29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J)     [H >= G && F >= 1 + G]                                 (?,2)  
          32. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + H,0)     [J >= 1 + G && F >= 1 + H]                             (77,2) 
          36. f36(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + G,0)     [H >= 1 + F && F >= 1 + G]                             (7,2)  
          41. f19(A,B,C,E,F,G,H,J) -> f19(A,B,1 + C,0,F,G,H,J)     [E >= 1 + B && B >= 1 + C]                             (7,2)  
          43. f70(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J)    [H >= G && 1 + G >= 1 + F && -1 + F >= 0]              (1,3)  
          44. f54(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [J >= 1 + G && 1 + H >= 1 + F && F >= 2 + G]           (77,3) 
          45. f54(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J)         [J >= 1 + G && 1 + H >= 1 + F && 1 + G >= F && F >= 1] (77,4) 
          47. f36(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J)         [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F && F >= 1] (7,4)  
          49. f19(A,B,C,E,F,G,H,J) -> f36(A,B,1 + C,E,B,0,1,J)     [E >= 1 + B && 1 + C >= 1 + B && B >= 1]               (7,3)  
        Signature:
          {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)}
        Flow Graph:
          [2->{2,41},3->{3,4,49},4->{2,49},6->{22},7->{8},8->{8,22},9->{9,36},11->{11,32,44,45},13->{13,29,43}
          ,15->{15,28},22->{6,7,9,36,47},27->{4},28->{15,28},29->{13,29},32->{11,32,44},36->{11,32},41->{2,3,4,41}
          ,43->{15},44->{6,7,9},45->{13},47->{13},49->{9}]
        Sizebounds:
          (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 7) (< 2,0,E>,  50) (< 2,0,F>, F) (< 2,0,G>,  G) (< 2,0,H>,   H) (< 2,0,J>,      J) 
          (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 7) (< 3,0,E>, 343) (< 3,0,F>, F) (< 3,0,G>,  G) (< 3,0,H>,   H) (< 3,0,J>,      J) 
          (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 7) (< 4,0,E>,   8) (< 4,0,F>, F) (< 4,0,G>,  G) (< 4,0,H>,   H) (< 4,0,J>,      J) 
          (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, 8) (< 6,0,E>, 343) (< 6,0,F>, 5) (< 6,0,G>, 77) (< 6,0,H>,   5) (< 6,0,J>,      0) 
          (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, 8) (< 7,0,E>, 343) (< 7,0,F>, 5) (< 7,0,G>, 77) (< 7,0,H>,   5) (< 7,0,J>,      0) 
          (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, 8) (< 8,0,E>, 343) (< 8,0,F>, 5) (< 8,0,G>, 77) (< 8,0,H>,   5) (< 8,0,J>,     77) 
          (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, 8) (< 9,0,E>, 343) (< 9,0,F>, 5) (< 9,0,G>,  0) (< 9,0,H>,   6) (< 9,0,J>, 78 + J) 
          (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, 8) (<11,0,E>, 343) (<11,0,F>, 5) (<11,0,G>, 77) (<11,0,H>, 155) (<11,0,J>,     78) 
          (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, 8) (<13,0,E>, 343) (<13,0,F>, 5) (<13,0,G>,  5) (<13,0,H>,   5) (<13,0,J>,     78) 
          (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, 8) (<15,0,E>, 343) (<15,0,F>, 5) (<15,0,G>, 11) (<15,0,H>,   6) (<15,0,J>,     78) 
          (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, 8) (<22,0,E>, 343) (<22,0,F>, 5) (<22,0,G>, 77) (<22,0,H>,   5) (<22,0,J>,     77) 
          (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 0) (<27,0,E>,   0) (<27,0,F>, F) (<27,0,G>,  G) (<27,0,H>,   H) (<27,0,J>,      J) 
          (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, 8) (<28,0,E>, 343) (<28,0,F>, 5) (<28,0,G>, 11) (<28,0,H>,  11) (<28,0,J>,     78) 
          (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, 8) (<29,0,E>, 343) (<29,0,F>, 5) (<29,0,G>,  5) (<29,0,H>,   0) (<29,0,J>,     78) 
          (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, 8) (<32,0,E>, 343) (<32,0,F>, 5) (<32,0,G>, 77) (<32,0,H>, 155) (<32,0,J>,      0) 
          (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, 8) (<36,0,E>, 343) (<36,0,F>, 5) (<36,0,G>, 77) (<36,0,H>,  78) (<36,0,J>,      0) 
          (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 7) (<41,0,E>,   0) (<41,0,F>, F) (<41,0,G>,  G) (<41,0,H>,   H) (<41,0,J>,      J) 
          (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, 8) (<43,0,E>, 343) (<43,0,F>, 5) (<43,0,G>,  6) (<43,0,H>,   5) (<43,0,J>,     78) 
          (<44,0,A>, 50) (<44,0,B>, 5) (<44,0,C>, 8) (<44,0,E>, 343) (<44,0,F>, 5) (<44,0,G>, 77) (<44,0,H>,  79) (<44,0,J>,     78) 
          (<45,0,A>, 50) (<45,0,B>, 5) (<45,0,C>, 8) (<45,0,E>, 343) (<45,0,F>, 5) (<45,0,G>,  1) (<45,0,H>,   0) (<45,0,J>,     78) 
          (<47,0,A>, 50) (<47,0,B>, 5) (<47,0,C>, 8) (<47,0,E>, 343) (<47,0,F>, 5) (<47,0,G>,  1) (<47,0,H>,   0) (<47,0,J>,     77) 
          (<49,0,A>, 50) (<49,0,B>, 5) (<49,0,C>, 8) (<49,0,E>, 343) (<49,0,F>, 5) (<49,0,G>,  0) (<49,0,H>,   1) (<49,0,J>,      J) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [9,22,6,11,36,8,7], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f36) = x5            
          p(f41) = x5            
          p(f54) = 1 + x6 + -1*x8
        
        The following rules are strictly oriented:
                      [G >= J] ==>                         
          f54(A,B,C,E,F,G,H,J)   = 1 + G + -1*J            
                                 > G + -1*J                
                                 = f54(A,B,C,E,F,G,H,1 + J)
        
        
        The following rules are weakly oriented:
            [0 >= 1 + G && F >= H] ==>                         
              f36(A,B,C,E,F,G,H,J)   = F                       
                                    >= F                       
                                     = f41(A,B,C,E,F,G,H,0)    
        
                [G >= 1 && F >= H] ==>                         
              f36(A,B,C,E,F,G,H,J)   = F                       
                                    >= F                       
                                     = f41(A,B,C,E,F,G,H,0)    
        
                      [G >= 1 + J] ==>                         
              f41(A,B,C,E,F,G,H,J)   = F                       
                                    >= F                       
                                     = f41(A,B,C,E,F,G,H,1 + J)
        
                 [F >= H && G = 0] ==>                         
              f36(A,B,C,E,F,G,H,J)   = F                       
                                    >= F                       
                                     = f36(A,B,C,E,F,0,1 + H,J)
        
                          [J >= G] ==>                         
              f41(A,B,C,E,F,G,H,J)   = F                       
                                    >= F                       
                                     = f36(A,B,C,E,F,G,1 + H,J)
        
        [H >= 1 + F && F >= 1 + G] ==>                         
              f36(A,B,C,E,F,G,H,J)   = F                       
                                    >= 1 + G                   
                                     = f54(A,B,C,E,F,G,1 + G,0)
        
        We use the following global sizebounds:
        (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 7) (< 2,0,E>,  50) (< 2,0,F>, F) (< 2,0,G>,  G) (< 2,0,H>,   H) (< 2,0,J>,      J) 
        (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 7) (< 3,0,E>, 343) (< 3,0,F>, F) (< 3,0,G>,  G) (< 3,0,H>,   H) (< 3,0,J>,      J) 
        (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 7) (< 4,0,E>,   8) (< 4,0,F>, F) (< 4,0,G>,  G) (< 4,0,H>,   H) (< 4,0,J>,      J) 
        (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, 8) (< 6,0,E>, 343) (< 6,0,F>, 5) (< 6,0,G>, 77) (< 6,0,H>,   5) (< 6,0,J>,      0) 
        (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, 8) (< 7,0,E>, 343) (< 7,0,F>, 5) (< 7,0,G>, 77) (< 7,0,H>,   5) (< 7,0,J>,      0) 
        (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, 8) (< 8,0,E>, 343) (< 8,0,F>, 5) (< 8,0,G>, 77) (< 8,0,H>,   5) (< 8,0,J>,     77) 
        (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, 8) (< 9,0,E>, 343) (< 9,0,F>, 5) (< 9,0,G>,  0) (< 9,0,H>,   6) (< 9,0,J>, 78 + J) 
        (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, 8) (<11,0,E>, 343) (<11,0,F>, 5) (<11,0,G>, 77) (<11,0,H>, 155) (<11,0,J>,     78) 
        (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, 8) (<13,0,E>, 343) (<13,0,F>, 5) (<13,0,G>,  5) (<13,0,H>,   5) (<13,0,J>,     78) 
        (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, 8) (<15,0,E>, 343) (<15,0,F>, 5) (<15,0,G>, 11) (<15,0,H>,   6) (<15,0,J>,     78) 
        (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, 8) (<22,0,E>, 343) (<22,0,F>, 5) (<22,0,G>, 77) (<22,0,H>,   5) (<22,0,J>,     77) 
        (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 0) (<27,0,E>,   0) (<27,0,F>, F) (<27,0,G>,  G) (<27,0,H>,   H) (<27,0,J>,      J) 
        (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, 8) (<28,0,E>, 343) (<28,0,F>, 5) (<28,0,G>, 11) (<28,0,H>,  11) (<28,0,J>,     78) 
        (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, 8) (<29,0,E>, 343) (<29,0,F>, 5) (<29,0,G>,  5) (<29,0,H>,   0) (<29,0,J>,     78) 
        (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, 8) (<32,0,E>, 343) (<32,0,F>, 5) (<32,0,G>, 77) (<32,0,H>, 155) (<32,0,J>,      0) 
        (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, 8) (<36,0,E>, 343) (<36,0,F>, 5) (<36,0,G>, 77) (<36,0,H>,  78) (<36,0,J>,      0) 
        (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 7) (<41,0,E>,   0) (<41,0,F>, F) (<41,0,G>,  G) (<41,0,H>,   H) (<41,0,J>,      J) 
        (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, 8) (<43,0,E>, 343) (<43,0,F>, 5) (<43,0,G>,  6) (<43,0,H>,   5) (<43,0,J>,     78) 
        (<44,0,A>, 50) (<44,0,B>, 5) (<44,0,C>, 8) (<44,0,E>, 343) (<44,0,F>, 5) (<44,0,G>, 77) (<44,0,H>,  79) (<44,0,J>,     78) 
        (<45,0,A>, 50) (<45,0,B>, 5) (<45,0,C>, 8) (<45,0,E>, 343) (<45,0,F>, 5) (<45,0,G>,  1) (<45,0,H>,   0) (<45,0,J>,     78) 
        (<47,0,A>, 50) (<47,0,B>, 5) (<47,0,C>, 8) (<47,0,E>, 343) (<47,0,F>, 5) (<47,0,G>,  1) (<47,0,H>,   0) (<47,0,J>,     77) 
        (<49,0,A>, 50) (<49,0,B>, 5) (<49,0,C>, 8) (<49,0,E>, 343) (<49,0,F>, 5) (<49,0,G>,  0) (<49,0,H>,   1) (<49,0,J>,      J) 
* Step 49: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)     [B >= E && E >= 1 + C]                                 (42,1)  
          3.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)     [C >= 1 + E && B >= E]                                 (42,1)  
          4.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J)     [B >= E && C = E]                                      (42,1)  
          6.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)         [0 >= 1 + G && F >= H]                                 (637,1) 
          7.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)         [G >= 1 && F >= H]                                     (48,1)  
          8.  f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J)     [G >= 1 + J]                                           (?,1)   
          9.  f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J)     [F >= H && G = 0]                                      (48,1)  
          11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J)     [G >= J]                                               (6426,1)
          13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J)     [G >= 1 + H]                                           (?,1)   
          15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J)     [F >= H]                                               (?,1)   
          22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J)     [J >= G]                                               (?,1)   
          27. f0(A,B,C,E,F,G,H,J)  -> f19(50,5,0,0,F,G,H,J)        [5 >= 0]                                               (1,2)   
          28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J)    [H >= 1 + F && -1 + G >= 0]                            (5,2)   
          29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J)     [H >= G && F >= 1 + G]                                 (?,2)   
          32. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + H,0)     [J >= 1 + G && F >= 1 + H]                             (77,2)  
          36. f36(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + G,0)     [H >= 1 + F && F >= 1 + G]                             (7,2)   
          41. f19(A,B,C,E,F,G,H,J) -> f19(A,B,1 + C,0,F,G,H,J)     [E >= 1 + B && B >= 1 + C]                             (7,2)   
          43. f70(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J)    [H >= G && 1 + G >= 1 + F && -1 + F >= 0]              (1,3)   
          44. f54(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [J >= 1 + G && 1 + H >= 1 + F && F >= 2 + G]           (77,3)  
          45. f54(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J)         [J >= 1 + G && 1 + H >= 1 + F && 1 + G >= F && F >= 1] (77,4)  
          47. f36(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J)         [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F && F >= 1] (7,4)   
          49. f19(A,B,C,E,F,G,H,J) -> f36(A,B,1 + C,E,B,0,1,J)     [E >= 1 + B && 1 + C >= 1 + B && B >= 1]               (7,3)   
        Signature:
          {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)}
        Flow Graph:
          [2->{2,41},3->{3,4,49},4->{2,49},6->{22},7->{8},8->{8,22},9->{9,36},11->{11,32,44,45},13->{13,29,43}
          ,15->{15,28},22->{6,7,9,36,47},27->{4},28->{15,28},29->{13,29},32->{11,32,44},36->{11,32},41->{2,3,4,41}
          ,43->{15},44->{6,7,9},45->{13},47->{13},49->{9}]
        Sizebounds:
          (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 7) (< 2,0,E>,  50) (< 2,0,F>, F) (< 2,0,G>,  G) (< 2,0,H>,   H) (< 2,0,J>,      J) 
          (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 7) (< 3,0,E>, 343) (< 3,0,F>, F) (< 3,0,G>,  G) (< 3,0,H>,   H) (< 3,0,J>,      J) 
          (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 7) (< 4,0,E>,   8) (< 4,0,F>, F) (< 4,0,G>,  G) (< 4,0,H>,   H) (< 4,0,J>,      J) 
          (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, 8) (< 6,0,E>, 343) (< 6,0,F>, 5) (< 6,0,G>, 77) (< 6,0,H>,   5) (< 6,0,J>,      0) 
          (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, 8) (< 7,0,E>, 343) (< 7,0,F>, 5) (< 7,0,G>, 77) (< 7,0,H>,   5) (< 7,0,J>,      0) 
          (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, 8) (< 8,0,E>, 343) (< 8,0,F>, 5) (< 8,0,G>, 77) (< 8,0,H>,   5) (< 8,0,J>,     77) 
          (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, 8) (< 9,0,E>, 343) (< 9,0,F>, 5) (< 9,0,G>,  0) (< 9,0,H>,   6) (< 9,0,J>, 78 + J) 
          (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, 8) (<11,0,E>, 343) (<11,0,F>, 5) (<11,0,G>, 77) (<11,0,H>, 155) (<11,0,J>,     78) 
          (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, 8) (<13,0,E>, 343) (<13,0,F>, 5) (<13,0,G>,  5) (<13,0,H>,   5) (<13,0,J>,     78) 
          (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, 8) (<15,0,E>, 343) (<15,0,F>, 5) (<15,0,G>, 11) (<15,0,H>,   6) (<15,0,J>,     78) 
          (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, 8) (<22,0,E>, 343) (<22,0,F>, 5) (<22,0,G>, 77) (<22,0,H>,   5) (<22,0,J>,     77) 
          (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 0) (<27,0,E>,   0) (<27,0,F>, F) (<27,0,G>,  G) (<27,0,H>,   H) (<27,0,J>,      J) 
          (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, 8) (<28,0,E>, 343) (<28,0,F>, 5) (<28,0,G>, 11) (<28,0,H>,  11) (<28,0,J>,     78) 
          (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, 8) (<29,0,E>, 343) (<29,0,F>, 5) (<29,0,G>,  5) (<29,0,H>,   0) (<29,0,J>,     78) 
          (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, 8) (<32,0,E>, 343) (<32,0,F>, 5) (<32,0,G>, 77) (<32,0,H>, 155) (<32,0,J>,      0) 
          (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, 8) (<36,0,E>, 343) (<36,0,F>, 5) (<36,0,G>, 77) (<36,0,H>,  78) (<36,0,J>,      0) 
          (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 7) (<41,0,E>,   0) (<41,0,F>, F) (<41,0,G>,  G) (<41,0,H>,   H) (<41,0,J>,      J) 
          (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, 8) (<43,0,E>, 343) (<43,0,F>, 5) (<43,0,G>,  6) (<43,0,H>,   5) (<43,0,J>,     78) 
          (<44,0,A>, 50) (<44,0,B>, 5) (<44,0,C>, 8) (<44,0,E>, 343) (<44,0,F>, 5) (<44,0,G>, 77) (<44,0,H>,  79) (<44,0,J>,     78) 
          (<45,0,A>, 50) (<45,0,B>, 5) (<45,0,C>, 8) (<45,0,E>, 343) (<45,0,F>, 5) (<45,0,G>,  1) (<45,0,H>,   0) (<45,0,J>,     78) 
          (<47,0,A>, 50) (<47,0,B>, 5) (<47,0,C>, 8) (<47,0,E>, 343) (<47,0,F>, 5) (<47,0,G>,  1) (<47,0,H>,   0) (<47,0,J>,     77) 
          (<49,0,A>, 50) (<49,0,B>, 5) (<49,0,C>, 8) (<49,0,E>, 343) (<49,0,F>, 5) (<49,0,G>,  0) (<49,0,H>,   1) (<49,0,J>,      J) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [9,22,44,11,32,36,8], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f36) = 0
          p(f41) = 1
          p(f54) = 0
        
        The following rules are strictly oriented:
                      [J >= G] ==>                         
          f41(A,B,C,E,F,G,H,J)   = 1                       
                                 > 0                       
                                 = f36(A,B,C,E,F,G,1 + H,J)
        
        
        The following rules are weakly oriented:
                                        [G >= 1 + J] ==>                             
                                f41(A,B,C,E,F,G,H,J)   = 1                           
                                                      >= 1                           
                                                       = f41(A,B,C,E,F,G,H,1 + J)    
        
                                   [F >= H && G = 0] ==>                             
                                f36(A,B,C,E,F,G,H,J)   = 0                           
                                                      >= 0                           
                                                       = f36(A,B,C,E,F,0,1 + H,J)    
        
                                            [G >= J] ==>                             
                                f54(A,B,C,E,F,G,H,J)   = 0                           
                                                      >= 0                           
                                                       = f54(A,B,C,E,F,G,H,1 + J)    
        
                          [J >= 1 + G && F >= 1 + H] ==>                             
                                f54(A,B,C,E,F,G,H,J)   = 0                           
                                                      >= 0                           
                                                       = f54(A,B,C,E,F,G,1 + H,0)    
        
                          [H >= 1 + F && F >= 1 + G] ==>                             
                                f36(A,B,C,E,F,G,H,J)   = 0                           
                                                      >= 0                           
                                                       = f54(A,B,C,E,F,G,1 + G,0)    
        
        [J >= 1 + G && 1 + H >= 1 + F && F >= 2 + G] ==>                             
                                f54(A,B,C,E,F,G,H,J)   = 0                           
                                                      >= 0                           
                                                       = f36(A,B,C,E,F,1 + G,2 + G,J)
        
        We use the following global sizebounds:
        (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 7) (< 2,0,E>,  50) (< 2,0,F>, F) (< 2,0,G>,  G) (< 2,0,H>,   H) (< 2,0,J>,      J) 
        (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 7) (< 3,0,E>, 343) (< 3,0,F>, F) (< 3,0,G>,  G) (< 3,0,H>,   H) (< 3,0,J>,      J) 
        (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 7) (< 4,0,E>,   8) (< 4,0,F>, F) (< 4,0,G>,  G) (< 4,0,H>,   H) (< 4,0,J>,      J) 
        (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, 8) (< 6,0,E>, 343) (< 6,0,F>, 5) (< 6,0,G>, 77) (< 6,0,H>,   5) (< 6,0,J>,      0) 
        (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, 8) (< 7,0,E>, 343) (< 7,0,F>, 5) (< 7,0,G>, 77) (< 7,0,H>,   5) (< 7,0,J>,      0) 
        (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, 8) (< 8,0,E>, 343) (< 8,0,F>, 5) (< 8,0,G>, 77) (< 8,0,H>,   5) (< 8,0,J>,     77) 
        (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, 8) (< 9,0,E>, 343) (< 9,0,F>, 5) (< 9,0,G>,  0) (< 9,0,H>,   6) (< 9,0,J>, 78 + J) 
        (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, 8) (<11,0,E>, 343) (<11,0,F>, 5) (<11,0,G>, 77) (<11,0,H>, 155) (<11,0,J>,     78) 
        (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, 8) (<13,0,E>, 343) (<13,0,F>, 5) (<13,0,G>,  5) (<13,0,H>,   5) (<13,0,J>,     78) 
        (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, 8) (<15,0,E>, 343) (<15,0,F>, 5) (<15,0,G>, 11) (<15,0,H>,   6) (<15,0,J>,     78) 
        (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, 8) (<22,0,E>, 343) (<22,0,F>, 5) (<22,0,G>, 77) (<22,0,H>,   5) (<22,0,J>,     77) 
        (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 0) (<27,0,E>,   0) (<27,0,F>, F) (<27,0,G>,  G) (<27,0,H>,   H) (<27,0,J>,      J) 
        (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, 8) (<28,0,E>, 343) (<28,0,F>, 5) (<28,0,G>, 11) (<28,0,H>,  11) (<28,0,J>,     78) 
        (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, 8) (<29,0,E>, 343) (<29,0,F>, 5) (<29,0,G>,  5) (<29,0,H>,   0) (<29,0,J>,     78) 
        (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, 8) (<32,0,E>, 343) (<32,0,F>, 5) (<32,0,G>, 77) (<32,0,H>, 155) (<32,0,J>,      0) 
        (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, 8) (<36,0,E>, 343) (<36,0,F>, 5) (<36,0,G>, 77) (<36,0,H>,  78) (<36,0,J>,      0) 
        (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 7) (<41,0,E>,   0) (<41,0,F>, F) (<41,0,G>,  G) (<41,0,H>,   H) (<41,0,J>,      J) 
        (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, 8) (<43,0,E>, 343) (<43,0,F>, 5) (<43,0,G>,  6) (<43,0,H>,   5) (<43,0,J>,     78) 
        (<44,0,A>, 50) (<44,0,B>, 5) (<44,0,C>, 8) (<44,0,E>, 343) (<44,0,F>, 5) (<44,0,G>, 77) (<44,0,H>,  79) (<44,0,J>,     78) 
        (<45,0,A>, 50) (<45,0,B>, 5) (<45,0,C>, 8) (<45,0,E>, 343) (<45,0,F>, 5) (<45,0,G>,  1) (<45,0,H>,   0) (<45,0,J>,     78) 
        (<47,0,A>, 50) (<47,0,B>, 5) (<47,0,C>, 8) (<47,0,E>, 343) (<47,0,F>, 5) (<47,0,G>,  1) (<47,0,H>,   0) (<47,0,J>,     77) 
        (<49,0,A>, 50) (<49,0,B>, 5) (<49,0,C>, 8) (<49,0,E>, 343) (<49,0,F>, 5) (<49,0,G>,  0) (<49,0,H>,   1) (<49,0,J>,      J) 
* Step 50: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)     [B >= E && E >= 1 + C]                                 (42,1)  
          3.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)     [C >= 1 + E && B >= E]                                 (42,1)  
          4.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J)     [B >= E && C = E]                                      (42,1)  
          6.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)         [0 >= 1 + G && F >= H]                                 (637,1) 
          7.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)         [G >= 1 && F >= H]                                     (48,1)  
          8.  f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J)     [G >= 1 + J]                                           (?,1)   
          9.  f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J)     [F >= H && G = 0]                                      (48,1)  
          11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J)     [G >= J]                                               (6426,1)
          13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J)     [G >= 1 + H]                                           (?,1)   
          15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J)     [F >= H]                                               (?,1)   
          22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J)     [J >= G]                                               (685,1) 
          27. f0(A,B,C,E,F,G,H,J)  -> f19(50,5,0,0,F,G,H,J)        [5 >= 0]                                               (1,2)   
          28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J)    [H >= 1 + F && -1 + G >= 0]                            (5,2)   
          29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J)     [H >= G && F >= 1 + G]                                 (?,2)   
          32. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + H,0)     [J >= 1 + G && F >= 1 + H]                             (77,2)  
          36. f36(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + G,0)     [H >= 1 + F && F >= 1 + G]                             (7,2)   
          41. f19(A,B,C,E,F,G,H,J) -> f19(A,B,1 + C,0,F,G,H,J)     [E >= 1 + B && B >= 1 + C]                             (7,2)   
          43. f70(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J)    [H >= G && 1 + G >= 1 + F && -1 + F >= 0]              (1,3)   
          44. f54(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [J >= 1 + G && 1 + H >= 1 + F && F >= 2 + G]           (77,3)  
          45. f54(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J)         [J >= 1 + G && 1 + H >= 1 + F && 1 + G >= F && F >= 1] (77,4)  
          47. f36(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J)         [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F && F >= 1] (7,4)   
          49. f19(A,B,C,E,F,G,H,J) -> f36(A,B,1 + C,E,B,0,1,J)     [E >= 1 + B && 1 + C >= 1 + B && B >= 1]               (7,3)   
        Signature:
          {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)}
        Flow Graph:
          [2->{2,41},3->{3,4,49},4->{2,49},6->{22},7->{8},8->{8,22},9->{9,36},11->{11,32,44,45},13->{13,29,43}
          ,15->{15,28},22->{6,7,9,36,47},27->{4},28->{15,28},29->{13,29},32->{11,32,44},36->{11,32},41->{2,3,4,41}
          ,43->{15},44->{6,7,9},45->{13},47->{13},49->{9}]
        Sizebounds:
          (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 7) (< 2,0,E>,  50) (< 2,0,F>, F) (< 2,0,G>,  G) (< 2,0,H>,   H) (< 2,0,J>,      J) 
          (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 7) (< 3,0,E>, 343) (< 3,0,F>, F) (< 3,0,G>,  G) (< 3,0,H>,   H) (< 3,0,J>,      J) 
          (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 7) (< 4,0,E>,   8) (< 4,0,F>, F) (< 4,0,G>,  G) (< 4,0,H>,   H) (< 4,0,J>,      J) 
          (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, 8) (< 6,0,E>, 343) (< 6,0,F>, 5) (< 6,0,G>, 77) (< 6,0,H>,   5) (< 6,0,J>,      0) 
          (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, 8) (< 7,0,E>, 343) (< 7,0,F>, 5) (< 7,0,G>, 77) (< 7,0,H>,   5) (< 7,0,J>,      0) 
          (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, 8) (< 8,0,E>, 343) (< 8,0,F>, 5) (< 8,0,G>, 77) (< 8,0,H>,   5) (< 8,0,J>,     77) 
          (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, 8) (< 9,0,E>, 343) (< 9,0,F>, 5) (< 9,0,G>,  0) (< 9,0,H>,   6) (< 9,0,J>, 78 + J) 
          (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, 8) (<11,0,E>, 343) (<11,0,F>, 5) (<11,0,G>, 77) (<11,0,H>, 155) (<11,0,J>,     78) 
          (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, 8) (<13,0,E>, 343) (<13,0,F>, 5) (<13,0,G>,  5) (<13,0,H>,   5) (<13,0,J>,     78) 
          (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, 8) (<15,0,E>, 343) (<15,0,F>, 5) (<15,0,G>, 11) (<15,0,H>,   6) (<15,0,J>,     78) 
          (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, 8) (<22,0,E>, 343) (<22,0,F>, 5) (<22,0,G>, 77) (<22,0,H>,   5) (<22,0,J>,     77) 
          (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 0) (<27,0,E>,   0) (<27,0,F>, F) (<27,0,G>,  G) (<27,0,H>,   H) (<27,0,J>,      J) 
          (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, 8) (<28,0,E>, 343) (<28,0,F>, 5) (<28,0,G>, 11) (<28,0,H>,  11) (<28,0,J>,     78) 
          (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, 8) (<29,0,E>, 343) (<29,0,F>, 5) (<29,0,G>,  5) (<29,0,H>,   0) (<29,0,J>,     78) 
          (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, 8) (<32,0,E>, 343) (<32,0,F>, 5) (<32,0,G>, 77) (<32,0,H>, 155) (<32,0,J>,      0) 
          (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, 8) (<36,0,E>, 343) (<36,0,F>, 5) (<36,0,G>, 77) (<36,0,H>,  78) (<36,0,J>,      0) 
          (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 7) (<41,0,E>,   0) (<41,0,F>, F) (<41,0,G>,  G) (<41,0,H>,   H) (<41,0,J>,      J) 
          (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, 8) (<43,0,E>, 343) (<43,0,F>, 5) (<43,0,G>,  6) (<43,0,H>,   5) (<43,0,J>,     78) 
          (<44,0,A>, 50) (<44,0,B>, 5) (<44,0,C>, 8) (<44,0,E>, 343) (<44,0,F>, 5) (<44,0,G>, 77) (<44,0,H>,  79) (<44,0,J>,     78) 
          (<45,0,A>, 50) (<45,0,B>, 5) (<45,0,C>, 8) (<45,0,E>, 343) (<45,0,F>, 5) (<45,0,G>,  1) (<45,0,H>,   0) (<45,0,J>,     78) 
          (<47,0,A>, 50) (<47,0,B>, 5) (<47,0,C>, 8) (<47,0,E>, 343) (<47,0,F>, 5) (<47,0,G>,  1) (<47,0,H>,   0) (<47,0,J>,     77) 
          (<49,0,A>, 50) (<49,0,B>, 5) (<49,0,C>, 8) (<49,0,E>, 343) (<49,0,F>, 5) (<49,0,G>,  0) (<49,0,H>,   1) (<49,0,J>,      J) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [9,6,11,32,36,8,7], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f36) = x6        
          p(f41) = x6 + -1*x8
          p(f54) = x6        
        
        The following rules are strictly oriented:
                  [G >= 1 + J] ==>                         
          f41(A,B,C,E,F,G,H,J)   = G + -1*J                
                                 > -1 + G + -1*J           
                                 = f41(A,B,C,E,F,G,H,1 + J)
        
        
        The following rules are weakly oriented:
            [0 >= 1 + G && F >= H] ==>                         
              f36(A,B,C,E,F,G,H,J)   = G                       
                                    >= G                       
                                     = f41(A,B,C,E,F,G,H,0)    
        
                [G >= 1 && F >= H] ==>                         
              f36(A,B,C,E,F,G,H,J)   = G                       
                                    >= G                       
                                     = f41(A,B,C,E,F,G,H,0)    
        
                 [F >= H && G = 0] ==>                         
              f36(A,B,C,E,F,G,H,J)   = G                       
                                    >= 0                       
                                     = f36(A,B,C,E,F,0,1 + H,J)
        
                          [G >= J] ==>                         
              f54(A,B,C,E,F,G,H,J)   = G                       
                                    >= G                       
                                     = f54(A,B,C,E,F,G,H,1 + J)
        
        [J >= 1 + G && F >= 1 + H] ==>                         
              f54(A,B,C,E,F,G,H,J)   = G                       
                                    >= G                       
                                     = f54(A,B,C,E,F,G,1 + H,0)
        
        [H >= 1 + F && F >= 1 + G] ==>                         
              f36(A,B,C,E,F,G,H,J)   = G                       
                                    >= G                       
                                     = f54(A,B,C,E,F,G,1 + G,0)
        
        We use the following global sizebounds:
        (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 7) (< 2,0,E>,  50) (< 2,0,F>, F) (< 2,0,G>,  G) (< 2,0,H>,   H) (< 2,0,J>,      J) 
        (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 7) (< 3,0,E>, 343) (< 3,0,F>, F) (< 3,0,G>,  G) (< 3,0,H>,   H) (< 3,0,J>,      J) 
        (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 7) (< 4,0,E>,   8) (< 4,0,F>, F) (< 4,0,G>,  G) (< 4,0,H>,   H) (< 4,0,J>,      J) 
        (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, 8) (< 6,0,E>, 343) (< 6,0,F>, 5) (< 6,0,G>, 77) (< 6,0,H>,   5) (< 6,0,J>,      0) 
        (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, 8) (< 7,0,E>, 343) (< 7,0,F>, 5) (< 7,0,G>, 77) (< 7,0,H>,   5) (< 7,0,J>,      0) 
        (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, 8) (< 8,0,E>, 343) (< 8,0,F>, 5) (< 8,0,G>, 77) (< 8,0,H>,   5) (< 8,0,J>,     77) 
        (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, 8) (< 9,0,E>, 343) (< 9,0,F>, 5) (< 9,0,G>,  0) (< 9,0,H>,   6) (< 9,0,J>, 78 + J) 
        (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, 8) (<11,0,E>, 343) (<11,0,F>, 5) (<11,0,G>, 77) (<11,0,H>, 155) (<11,0,J>,     78) 
        (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, 8) (<13,0,E>, 343) (<13,0,F>, 5) (<13,0,G>,  5) (<13,0,H>,   5) (<13,0,J>,     78) 
        (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, 8) (<15,0,E>, 343) (<15,0,F>, 5) (<15,0,G>, 11) (<15,0,H>,   6) (<15,0,J>,     78) 
        (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, 8) (<22,0,E>, 343) (<22,0,F>, 5) (<22,0,G>, 77) (<22,0,H>,   5) (<22,0,J>,     77) 
        (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 0) (<27,0,E>,   0) (<27,0,F>, F) (<27,0,G>,  G) (<27,0,H>,   H) (<27,0,J>,      J) 
        (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, 8) (<28,0,E>, 343) (<28,0,F>, 5) (<28,0,G>, 11) (<28,0,H>,  11) (<28,0,J>,     78) 
        (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, 8) (<29,0,E>, 343) (<29,0,F>, 5) (<29,0,G>,  5) (<29,0,H>,   0) (<29,0,J>,     78) 
        (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, 8) (<32,0,E>, 343) (<32,0,F>, 5) (<32,0,G>, 77) (<32,0,H>, 155) (<32,0,J>,      0) 
        (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, 8) (<36,0,E>, 343) (<36,0,F>, 5) (<36,0,G>, 77) (<36,0,H>,  78) (<36,0,J>,      0) 
        (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 7) (<41,0,E>,   0) (<41,0,F>, F) (<41,0,G>,  G) (<41,0,H>,   H) (<41,0,J>,      J) 
        (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, 8) (<43,0,E>, 343) (<43,0,F>, 5) (<43,0,G>,  6) (<43,0,H>,   5) (<43,0,J>,     78) 
        (<44,0,A>, 50) (<44,0,B>, 5) (<44,0,C>, 8) (<44,0,E>, 343) (<44,0,F>, 5) (<44,0,G>, 77) (<44,0,H>,  79) (<44,0,J>,     78) 
        (<45,0,A>, 50) (<45,0,B>, 5) (<45,0,C>, 8) (<45,0,E>, 343) (<45,0,F>, 5) (<45,0,G>,  1) (<45,0,H>,   0) (<45,0,J>,     78) 
        (<47,0,A>, 50) (<47,0,B>, 5) (<47,0,C>, 8) (<47,0,E>, 343) (<47,0,F>, 5) (<47,0,G>,  1) (<47,0,H>,   0) (<47,0,J>,     77) 
        (<49,0,A>, 50) (<49,0,B>, 5) (<49,0,C>, 8) (<49,0,E>, 343) (<49,0,F>, 5) (<49,0,G>,  0) (<49,0,H>,   1) (<49,0,J>,      J) 
* Step 51: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)     [B >= E && E >= 1 + C]                                 (42,1)   
          3.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)     [C >= 1 + E && B >= E]                                 (42,1)   
          4.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J)     [B >= E && C = E]                                      (42,1)   
          6.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)         [0 >= 1 + G && F >= H]                                 (637,1)  
          7.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)         [G >= 1 && F >= H]                                     (48,1)   
          8.  f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J)     [G >= 1 + J]                                           (58674,1)
          9.  f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J)     [F >= H && G = 0]                                      (48,1)   
          11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J)     [G >= J]                                               (6426,1) 
          13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J)     [G >= 1 + H]                                           (?,1)    
          15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J)     [F >= H]                                               (?,1)    
          22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J)     [J >= G]                                               (685,1)  
          27. f0(A,B,C,E,F,G,H,J)  -> f19(50,5,0,0,F,G,H,J)        [5 >= 0]                                               (1,2)    
          28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J)    [H >= 1 + F && -1 + G >= 0]                            (5,2)    
          29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J)     [H >= G && F >= 1 + G]                                 (?,2)    
          32. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + H,0)     [J >= 1 + G && F >= 1 + H]                             (77,2)   
          36. f36(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + G,0)     [H >= 1 + F && F >= 1 + G]                             (7,2)    
          41. f19(A,B,C,E,F,G,H,J) -> f19(A,B,1 + C,0,F,G,H,J)     [E >= 1 + B && B >= 1 + C]                             (7,2)    
          43. f70(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J)    [H >= G && 1 + G >= 1 + F && -1 + F >= 0]              (1,3)    
          44. f54(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [J >= 1 + G && 1 + H >= 1 + F && F >= 2 + G]           (77,3)   
          45. f54(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J)         [J >= 1 + G && 1 + H >= 1 + F && 1 + G >= F && F >= 1] (77,4)   
          47. f36(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J)         [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F && F >= 1] (7,4)    
          49. f19(A,B,C,E,F,G,H,J) -> f36(A,B,1 + C,E,B,0,1,J)     [E >= 1 + B && 1 + C >= 1 + B && B >= 1]               (7,3)    
        Signature:
          {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)}
        Flow Graph:
          [2->{2,41},3->{3,4,49},4->{2,49},6->{22},7->{8},8->{8,22},9->{9,36},11->{11,32,44,45},13->{13,29,43}
          ,15->{15,28},22->{6,7,9,36,47},27->{4},28->{15,28},29->{13,29},32->{11,32,44},36->{11,32},41->{2,3,4,41}
          ,43->{15},44->{6,7,9},45->{13},47->{13},49->{9}]
        Sizebounds:
          (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 7) (< 2,0,E>,  50) (< 2,0,F>, F) (< 2,0,G>,  G) (< 2,0,H>,   H) (< 2,0,J>,      J) 
          (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 7) (< 3,0,E>, 343) (< 3,0,F>, F) (< 3,0,G>,  G) (< 3,0,H>,   H) (< 3,0,J>,      J) 
          (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 7) (< 4,0,E>,   8) (< 4,0,F>, F) (< 4,0,G>,  G) (< 4,0,H>,   H) (< 4,0,J>,      J) 
          (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, 8) (< 6,0,E>, 343) (< 6,0,F>, 5) (< 6,0,G>, 77) (< 6,0,H>,   5) (< 6,0,J>,      0) 
          (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, 8) (< 7,0,E>, 343) (< 7,0,F>, 5) (< 7,0,G>, 77) (< 7,0,H>,   5) (< 7,0,J>,      0) 
          (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, 8) (< 8,0,E>, 343) (< 8,0,F>, 5) (< 8,0,G>, 77) (< 8,0,H>,   5) (< 8,0,J>,     77) 
          (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, 8) (< 9,0,E>, 343) (< 9,0,F>, 5) (< 9,0,G>,  0) (< 9,0,H>,   6) (< 9,0,J>, 78 + J) 
          (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, 8) (<11,0,E>, 343) (<11,0,F>, 5) (<11,0,G>, 77) (<11,0,H>, 155) (<11,0,J>,     78) 
          (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, 8) (<13,0,E>, 343) (<13,0,F>, 5) (<13,0,G>,  5) (<13,0,H>,   5) (<13,0,J>,     78) 
          (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, 8) (<15,0,E>, 343) (<15,0,F>, 5) (<15,0,G>, 11) (<15,0,H>,   6) (<15,0,J>,     78) 
          (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, 8) (<22,0,E>, 343) (<22,0,F>, 5) (<22,0,G>, 77) (<22,0,H>,   5) (<22,0,J>,     77) 
          (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 0) (<27,0,E>,   0) (<27,0,F>, F) (<27,0,G>,  G) (<27,0,H>,   H) (<27,0,J>,      J) 
          (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, 8) (<28,0,E>, 343) (<28,0,F>, 5) (<28,0,G>, 11) (<28,0,H>,  11) (<28,0,J>,     78) 
          (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, 8) (<29,0,E>, 343) (<29,0,F>, 5) (<29,0,G>,  5) (<29,0,H>,   0) (<29,0,J>,     78) 
          (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, 8) (<32,0,E>, 343) (<32,0,F>, 5) (<32,0,G>, 77) (<32,0,H>, 155) (<32,0,J>,      0) 
          (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, 8) (<36,0,E>, 343) (<36,0,F>, 5) (<36,0,G>, 77) (<36,0,H>,  78) (<36,0,J>,      0) 
          (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 7) (<41,0,E>,   0) (<41,0,F>, F) (<41,0,G>,  G) (<41,0,H>,   H) (<41,0,J>,      J) 
          (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, 8) (<43,0,E>, 343) (<43,0,F>, 5) (<43,0,G>,  6) (<43,0,H>,   5) (<43,0,J>,     78) 
          (<44,0,A>, 50) (<44,0,B>, 5) (<44,0,C>, 8) (<44,0,E>, 343) (<44,0,F>, 5) (<44,0,G>, 77) (<44,0,H>,  79) (<44,0,J>,     78) 
          (<45,0,A>, 50) (<45,0,B>, 5) (<45,0,C>, 8) (<45,0,E>, 343) (<45,0,F>, 5) (<45,0,G>,  1) (<45,0,H>,   0) (<45,0,J>,     78) 
          (<47,0,A>, 50) (<47,0,B>, 5) (<47,0,C>, 8) (<47,0,E>, 343) (<47,0,F>, 5) (<47,0,G>,  1) (<47,0,H>,   0) (<47,0,J>,     77) 
          (<49,0,A>, 50) (<49,0,B>, 5) (<49,0,C>, 8) (<49,0,E>, 343) (<49,0,F>, 5) (<49,0,G>,  0) (<49,0,H>,   1) (<49,0,J>,      J) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [13,29], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f70) = x5 + -1*x6
        
        The following rules are strictly oriented:
        [H >= G && F >= 1 + G] ==>                         
          f70(A,B,C,E,F,G,H,J)   = F + -1*G                
                                 > -1 + F + -1*G           
                                 = f70(A,B,C,E,F,1 + G,0,J)
        
        
        The following rules are weakly oriented:
                  [G >= 1 + H] ==>                         
          f70(A,B,C,E,F,G,H,J)   = F + -1*G                
                                >= F + -1*G                
                                 = f70(A,B,C,E,F,G,1 + H,J)
        
        We use the following global sizebounds:
        (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 7) (< 2,0,E>,  50) (< 2,0,F>, F) (< 2,0,G>,  G) (< 2,0,H>,   H) (< 2,0,J>,      J) 
        (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 7) (< 3,0,E>, 343) (< 3,0,F>, F) (< 3,0,G>,  G) (< 3,0,H>,   H) (< 3,0,J>,      J) 
        (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 7) (< 4,0,E>,   8) (< 4,0,F>, F) (< 4,0,G>,  G) (< 4,0,H>,   H) (< 4,0,J>,      J) 
        (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, 8) (< 6,0,E>, 343) (< 6,0,F>, 5) (< 6,0,G>, 77) (< 6,0,H>,   5) (< 6,0,J>,      0) 
        (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, 8) (< 7,0,E>, 343) (< 7,0,F>, 5) (< 7,0,G>, 77) (< 7,0,H>,   5) (< 7,0,J>,      0) 
        (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, 8) (< 8,0,E>, 343) (< 8,0,F>, 5) (< 8,0,G>, 77) (< 8,0,H>,   5) (< 8,0,J>,     77) 
        (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, 8) (< 9,0,E>, 343) (< 9,0,F>, 5) (< 9,0,G>,  0) (< 9,0,H>,   6) (< 9,0,J>, 78 + J) 
        (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, 8) (<11,0,E>, 343) (<11,0,F>, 5) (<11,0,G>, 77) (<11,0,H>, 155) (<11,0,J>,     78) 
        (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, 8) (<13,0,E>, 343) (<13,0,F>, 5) (<13,0,G>,  5) (<13,0,H>,   5) (<13,0,J>,     78) 
        (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, 8) (<15,0,E>, 343) (<15,0,F>, 5) (<15,0,G>, 11) (<15,0,H>,   6) (<15,0,J>,     78) 
        (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, 8) (<22,0,E>, 343) (<22,0,F>, 5) (<22,0,G>, 77) (<22,0,H>,   5) (<22,0,J>,     77) 
        (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 0) (<27,0,E>,   0) (<27,0,F>, F) (<27,0,G>,  G) (<27,0,H>,   H) (<27,0,J>,      J) 
        (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, 8) (<28,0,E>, 343) (<28,0,F>, 5) (<28,0,G>, 11) (<28,0,H>,  11) (<28,0,J>,     78) 
        (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, 8) (<29,0,E>, 343) (<29,0,F>, 5) (<29,0,G>,  5) (<29,0,H>,   0) (<29,0,J>,     78) 
        (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, 8) (<32,0,E>, 343) (<32,0,F>, 5) (<32,0,G>, 77) (<32,0,H>, 155) (<32,0,J>,      0) 
        (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, 8) (<36,0,E>, 343) (<36,0,F>, 5) (<36,0,G>, 77) (<36,0,H>,  78) (<36,0,J>,      0) 
        (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 7) (<41,0,E>,   0) (<41,0,F>, F) (<41,0,G>,  G) (<41,0,H>,   H) (<41,0,J>,      J) 
        (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, 8) (<43,0,E>, 343) (<43,0,F>, 5) (<43,0,G>,  6) (<43,0,H>,   5) (<43,0,J>,     78) 
        (<44,0,A>, 50) (<44,0,B>, 5) (<44,0,C>, 8) (<44,0,E>, 343) (<44,0,F>, 5) (<44,0,G>, 77) (<44,0,H>,  79) (<44,0,J>,     78) 
        (<45,0,A>, 50) (<45,0,B>, 5) (<45,0,C>, 8) (<45,0,E>, 343) (<45,0,F>, 5) (<45,0,G>,  1) (<45,0,H>,   0) (<45,0,J>,     78) 
        (<47,0,A>, 50) (<47,0,B>, 5) (<47,0,C>, 8) (<47,0,E>, 343) (<47,0,F>, 5) (<47,0,G>,  1) (<47,0,H>,   0) (<47,0,J>,     77) 
        (<49,0,A>, 50) (<49,0,B>, 5) (<49,0,C>, 8) (<49,0,E>, 343) (<49,0,F>, 5) (<49,0,G>,  0) (<49,0,H>,   1) (<49,0,J>,      J) 
* Step 52: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)     [B >= E && E >= 1 + C]                                 (42,1)   
          3.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)     [C >= 1 + E && B >= E]                                 (42,1)   
          4.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J)     [B >= E && C = E]                                      (42,1)   
          6.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)         [0 >= 1 + G && F >= H]                                 (637,1)  
          7.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)         [G >= 1 && F >= H]                                     (48,1)   
          8.  f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J)     [G >= 1 + J]                                           (58674,1)
          9.  f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J)     [F >= H && G = 0]                                      (48,1)   
          11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J)     [G >= J]                                               (6426,1) 
          13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J)     [G >= 1 + H]                                           (?,1)    
          15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J)     [F >= H]                                               (?,1)    
          22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J)     [J >= G]                                               (685,1)  
          27. f0(A,B,C,E,F,G,H,J)  -> f19(50,5,0,0,F,G,H,J)        [5 >= 0]                                               (1,2)    
          28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J)    [H >= 1 + F && -1 + G >= 0]                            (5,2)    
          29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J)     [H >= G && F >= 1 + G]                                 (504,2)  
          32. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + H,0)     [J >= 1 + G && F >= 1 + H]                             (77,2)   
          36. f36(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + G,0)     [H >= 1 + F && F >= 1 + G]                             (7,2)    
          41. f19(A,B,C,E,F,G,H,J) -> f19(A,B,1 + C,0,F,G,H,J)     [E >= 1 + B && B >= 1 + C]                             (7,2)    
          43. f70(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J)    [H >= G && 1 + G >= 1 + F && -1 + F >= 0]              (1,3)    
          44. f54(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [J >= 1 + G && 1 + H >= 1 + F && F >= 2 + G]           (77,3)   
          45. f54(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J)         [J >= 1 + G && 1 + H >= 1 + F && 1 + G >= F && F >= 1] (77,4)   
          47. f36(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J)         [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F && F >= 1] (7,4)    
          49. f19(A,B,C,E,F,G,H,J) -> f36(A,B,1 + C,E,B,0,1,J)     [E >= 1 + B && 1 + C >= 1 + B && B >= 1]               (7,3)    
        Signature:
          {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)}
        Flow Graph:
          [2->{2,41},3->{3,4,49},4->{2,49},6->{22},7->{8},8->{8,22},9->{9,36},11->{11,32,44,45},13->{13,29,43}
          ,15->{15,28},22->{6,7,9,36,47},27->{4},28->{15,28},29->{13,29},32->{11,32,44},36->{11,32},41->{2,3,4,41}
          ,43->{15},44->{6,7,9},45->{13},47->{13},49->{9}]
        Sizebounds:
          (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 7) (< 2,0,E>,  50) (< 2,0,F>, F) (< 2,0,G>,  G) (< 2,0,H>,   H) (< 2,0,J>,      J) 
          (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 7) (< 3,0,E>, 343) (< 3,0,F>, F) (< 3,0,G>,  G) (< 3,0,H>,   H) (< 3,0,J>,      J) 
          (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 7) (< 4,0,E>,   8) (< 4,0,F>, F) (< 4,0,G>,  G) (< 4,0,H>,   H) (< 4,0,J>,      J) 
          (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, 8) (< 6,0,E>, 343) (< 6,0,F>, 5) (< 6,0,G>, 77) (< 6,0,H>,   5) (< 6,0,J>,      0) 
          (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, 8) (< 7,0,E>, 343) (< 7,0,F>, 5) (< 7,0,G>, 77) (< 7,0,H>,   5) (< 7,0,J>,      0) 
          (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, 8) (< 8,0,E>, 343) (< 8,0,F>, 5) (< 8,0,G>, 77) (< 8,0,H>,   5) (< 8,0,J>,     77) 
          (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, 8) (< 9,0,E>, 343) (< 9,0,F>, 5) (< 9,0,G>,  0) (< 9,0,H>,   6) (< 9,0,J>, 78 + J) 
          (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, 8) (<11,0,E>, 343) (<11,0,F>, 5) (<11,0,G>, 77) (<11,0,H>, 155) (<11,0,J>,     78) 
          (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, 8) (<13,0,E>, 343) (<13,0,F>, 5) (<13,0,G>,  5) (<13,0,H>,   5) (<13,0,J>,     78) 
          (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, 8) (<15,0,E>, 343) (<15,0,F>, 5) (<15,0,G>, 11) (<15,0,H>,   6) (<15,0,J>,     78) 
          (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, 8) (<22,0,E>, 343) (<22,0,F>, 5) (<22,0,G>, 77) (<22,0,H>,   5) (<22,0,J>,     77) 
          (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 0) (<27,0,E>,   0) (<27,0,F>, F) (<27,0,G>,  G) (<27,0,H>,   H) (<27,0,J>,      J) 
          (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, 8) (<28,0,E>, 343) (<28,0,F>, 5) (<28,0,G>, 11) (<28,0,H>,  11) (<28,0,J>,     78) 
          (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, 8) (<29,0,E>, 343) (<29,0,F>, 5) (<29,0,G>,  5) (<29,0,H>,   0) (<29,0,J>,     78) 
          (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, 8) (<32,0,E>, 343) (<32,0,F>, 5) (<32,0,G>, 77) (<32,0,H>, 155) (<32,0,J>,      0) 
          (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, 8) (<36,0,E>, 343) (<36,0,F>, 5) (<36,0,G>, 77) (<36,0,H>,  78) (<36,0,J>,      0) 
          (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 7) (<41,0,E>,   0) (<41,0,F>, F) (<41,0,G>,  G) (<41,0,H>,   H) (<41,0,J>,      J) 
          (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, 8) (<43,0,E>, 343) (<43,0,F>, 5) (<43,0,G>,  6) (<43,0,H>,   5) (<43,0,J>,     78) 
          (<44,0,A>, 50) (<44,0,B>, 5) (<44,0,C>, 8) (<44,0,E>, 343) (<44,0,F>, 5) (<44,0,G>, 77) (<44,0,H>,  79) (<44,0,J>,     78) 
          (<45,0,A>, 50) (<45,0,B>, 5) (<45,0,C>, 8) (<45,0,E>, 343) (<45,0,F>, 5) (<45,0,G>,  1) (<45,0,H>,   0) (<45,0,J>,     78) 
          (<47,0,A>, 50) (<47,0,B>, 5) (<47,0,C>, 8) (<47,0,E>, 343) (<47,0,F>, 5) (<47,0,G>,  1) (<47,0,H>,   0) (<47,0,J>,     77) 
          (<49,0,A>, 50) (<49,0,B>, 5) (<49,0,C>, 8) (<49,0,E>, 343) (<49,0,F>, 5) (<49,0,G>,  0) (<49,0,H>,   1) (<49,0,J>,      J) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [13], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f70) = x6 + -1*x7
        
        The following rules are strictly oriented:
                  [G >= 1 + H] ==>                         
          f70(A,B,C,E,F,G,H,J)   = G + -1*H                
                                 > -1 + G + -1*H           
                                 = f70(A,B,C,E,F,G,1 + H,J)
        
        
        The following rules are weakly oriented:
        
        We use the following global sizebounds:
        (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 7) (< 2,0,E>,  50) (< 2,0,F>, F) (< 2,0,G>,  G) (< 2,0,H>,   H) (< 2,0,J>,      J) 
        (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 7) (< 3,0,E>, 343) (< 3,0,F>, F) (< 3,0,G>,  G) (< 3,0,H>,   H) (< 3,0,J>,      J) 
        (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 7) (< 4,0,E>,   8) (< 4,0,F>, F) (< 4,0,G>,  G) (< 4,0,H>,   H) (< 4,0,J>,      J) 
        (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, 8) (< 6,0,E>, 343) (< 6,0,F>, 5) (< 6,0,G>, 77) (< 6,0,H>,   5) (< 6,0,J>,      0) 
        (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, 8) (< 7,0,E>, 343) (< 7,0,F>, 5) (< 7,0,G>, 77) (< 7,0,H>,   5) (< 7,0,J>,      0) 
        (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, 8) (< 8,0,E>, 343) (< 8,0,F>, 5) (< 8,0,G>, 77) (< 8,0,H>,   5) (< 8,0,J>,     77) 
        (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, 8) (< 9,0,E>, 343) (< 9,0,F>, 5) (< 9,0,G>,  0) (< 9,0,H>,   6) (< 9,0,J>, 78 + J) 
        (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, 8) (<11,0,E>, 343) (<11,0,F>, 5) (<11,0,G>, 77) (<11,0,H>, 155) (<11,0,J>,     78) 
        (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, 8) (<13,0,E>, 343) (<13,0,F>, 5) (<13,0,G>,  5) (<13,0,H>,   5) (<13,0,J>,     78) 
        (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, 8) (<15,0,E>, 343) (<15,0,F>, 5) (<15,0,G>, 11) (<15,0,H>,   6) (<15,0,J>,     78) 
        (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, 8) (<22,0,E>, 343) (<22,0,F>, 5) (<22,0,G>, 77) (<22,0,H>,   5) (<22,0,J>,     77) 
        (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 0) (<27,0,E>,   0) (<27,0,F>, F) (<27,0,G>,  G) (<27,0,H>,   H) (<27,0,J>,      J) 
        (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, 8) (<28,0,E>, 343) (<28,0,F>, 5) (<28,0,G>, 11) (<28,0,H>,  11) (<28,0,J>,     78) 
        (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, 8) (<29,0,E>, 343) (<29,0,F>, 5) (<29,0,G>,  5) (<29,0,H>,   0) (<29,0,J>,     78) 
        (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, 8) (<32,0,E>, 343) (<32,0,F>, 5) (<32,0,G>, 77) (<32,0,H>, 155) (<32,0,J>,      0) 
        (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, 8) (<36,0,E>, 343) (<36,0,F>, 5) (<36,0,G>, 77) (<36,0,H>,  78) (<36,0,J>,      0) 
        (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 7) (<41,0,E>,   0) (<41,0,F>, F) (<41,0,G>,  G) (<41,0,H>,   H) (<41,0,J>,      J) 
        (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, 8) (<43,0,E>, 343) (<43,0,F>, 5) (<43,0,G>,  6) (<43,0,H>,   5) (<43,0,J>,     78) 
        (<44,0,A>, 50) (<44,0,B>, 5) (<44,0,C>, 8) (<44,0,E>, 343) (<44,0,F>, 5) (<44,0,G>, 77) (<44,0,H>,  79) (<44,0,J>,     78) 
        (<45,0,A>, 50) (<45,0,B>, 5) (<45,0,C>, 8) (<45,0,E>, 343) (<45,0,F>, 5) (<45,0,G>,  1) (<45,0,H>,   0) (<45,0,J>,     78) 
        (<47,0,A>, 50) (<47,0,B>, 5) (<47,0,C>, 8) (<47,0,E>, 343) (<47,0,F>, 5) (<47,0,G>,  1) (<47,0,H>,   0) (<47,0,J>,     77) 
        (<49,0,A>, 50) (<49,0,B>, 5) (<49,0,C>, 8) (<49,0,E>, 343) (<49,0,F>, 5) (<49,0,G>,  0) (<49,0,H>,   1) (<49,0,J>,      J) 
* Step 53: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)     [B >= E && E >= 1 + C]                                 (42,1)   
          3.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)     [C >= 1 + E && B >= E]                                 (42,1)   
          4.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J)     [B >= E && C = E]                                      (42,1)   
          6.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)         [0 >= 1 + G && F >= H]                                 (637,1)  
          7.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)         [G >= 1 && F >= H]                                     (48,1)   
          8.  f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J)     [G >= 1 + J]                                           (58674,1)
          9.  f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J)     [F >= H && G = 0]                                      (48,1)   
          11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J)     [G >= J]                                               (6426,1) 
          13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J)     [G >= 1 + H]                                           (2604,1) 
          15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J)     [F >= H]                                               (?,1)    
          22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J)     [J >= G]                                               (685,1)  
          27. f0(A,B,C,E,F,G,H,J)  -> f19(50,5,0,0,F,G,H,J)        [5 >= 0]                                               (1,2)    
          28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J)    [H >= 1 + F && -1 + G >= 0]                            (5,2)    
          29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J)     [H >= G && F >= 1 + G]                                 (504,2)  
          32. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + H,0)     [J >= 1 + G && F >= 1 + H]                             (77,2)   
          36. f36(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + G,0)     [H >= 1 + F && F >= 1 + G]                             (7,2)    
          41. f19(A,B,C,E,F,G,H,J) -> f19(A,B,1 + C,0,F,G,H,J)     [E >= 1 + B && B >= 1 + C]                             (7,2)    
          43. f70(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J)    [H >= G && 1 + G >= 1 + F && -1 + F >= 0]              (1,3)    
          44. f54(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [J >= 1 + G && 1 + H >= 1 + F && F >= 2 + G]           (77,3)   
          45. f54(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J)         [J >= 1 + G && 1 + H >= 1 + F && 1 + G >= F && F >= 1] (77,4)   
          47. f36(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J)         [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F && F >= 1] (7,4)    
          49. f19(A,B,C,E,F,G,H,J) -> f36(A,B,1 + C,E,B,0,1,J)     [E >= 1 + B && 1 + C >= 1 + B && B >= 1]               (7,3)    
        Signature:
          {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)}
        Flow Graph:
          [2->{2,41},3->{3,4,49},4->{2,49},6->{22},7->{8},8->{8,22},9->{9,36},11->{11,32,44,45},13->{13,29,43}
          ,15->{15,28},22->{6,7,9,36,47},27->{4},28->{15,28},29->{13,29},32->{11,32,44},36->{11,32},41->{2,3,4,41}
          ,43->{15},44->{6,7,9},45->{13},47->{13},49->{9}]
        Sizebounds:
          (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 7) (< 2,0,E>,  50) (< 2,0,F>, F) (< 2,0,G>,  G) (< 2,0,H>,   H) (< 2,0,J>,      J) 
          (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 7) (< 3,0,E>, 343) (< 3,0,F>, F) (< 3,0,G>,  G) (< 3,0,H>,   H) (< 3,0,J>,      J) 
          (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 7) (< 4,0,E>,   8) (< 4,0,F>, F) (< 4,0,G>,  G) (< 4,0,H>,   H) (< 4,0,J>,      J) 
          (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, 8) (< 6,0,E>, 343) (< 6,0,F>, 5) (< 6,0,G>, 77) (< 6,0,H>,   5) (< 6,0,J>,      0) 
          (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, 8) (< 7,0,E>, 343) (< 7,0,F>, 5) (< 7,0,G>, 77) (< 7,0,H>,   5) (< 7,0,J>,      0) 
          (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, 8) (< 8,0,E>, 343) (< 8,0,F>, 5) (< 8,0,G>, 77) (< 8,0,H>,   5) (< 8,0,J>,     77) 
          (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, 8) (< 9,0,E>, 343) (< 9,0,F>, 5) (< 9,0,G>,  0) (< 9,0,H>,   6) (< 9,0,J>, 78 + J) 
          (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, 8) (<11,0,E>, 343) (<11,0,F>, 5) (<11,0,G>, 77) (<11,0,H>, 155) (<11,0,J>,     78) 
          (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, 8) (<13,0,E>, 343) (<13,0,F>, 5) (<13,0,G>,  5) (<13,0,H>,   5) (<13,0,J>,     78) 
          (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, 8) (<15,0,E>, 343) (<15,0,F>, 5) (<15,0,G>, 11) (<15,0,H>,   6) (<15,0,J>,     78) 
          (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, 8) (<22,0,E>, 343) (<22,0,F>, 5) (<22,0,G>, 77) (<22,0,H>,   5) (<22,0,J>,     77) 
          (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 0) (<27,0,E>,   0) (<27,0,F>, F) (<27,0,G>,  G) (<27,0,H>,   H) (<27,0,J>,      J) 
          (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, 8) (<28,0,E>, 343) (<28,0,F>, 5) (<28,0,G>, 11) (<28,0,H>,  11) (<28,0,J>,     78) 
          (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, 8) (<29,0,E>, 343) (<29,0,F>, 5) (<29,0,G>,  5) (<29,0,H>,   0) (<29,0,J>,     78) 
          (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, 8) (<32,0,E>, 343) (<32,0,F>, 5) (<32,0,G>, 77) (<32,0,H>, 155) (<32,0,J>,      0) 
          (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, 8) (<36,0,E>, 343) (<36,0,F>, 5) (<36,0,G>, 77) (<36,0,H>,  78) (<36,0,J>,      0) 
          (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 7) (<41,0,E>,   0) (<41,0,F>, F) (<41,0,G>,  G) (<41,0,H>,   H) (<41,0,J>,      J) 
          (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, 8) (<43,0,E>, 343) (<43,0,F>, 5) (<43,0,G>,  6) (<43,0,H>,   5) (<43,0,J>,     78) 
          (<44,0,A>, 50) (<44,0,B>, 5) (<44,0,C>, 8) (<44,0,E>, 343) (<44,0,F>, 5) (<44,0,G>, 77) (<44,0,H>,  79) (<44,0,J>,     78) 
          (<45,0,A>, 50) (<45,0,B>, 5) (<45,0,C>, 8) (<45,0,E>, 343) (<45,0,F>, 5) (<45,0,G>,  1) (<45,0,H>,   0) (<45,0,J>,     78) 
          (<47,0,A>, 50) (<47,0,B>, 5) (<47,0,C>, 8) (<47,0,E>, 343) (<47,0,F>, 5) (<47,0,G>,  1) (<47,0,H>,   0) (<47,0,J>,     77) 
          (<49,0,A>, 50) (<49,0,B>, 5) (<49,0,C>, 8) (<49,0,E>, 343) (<49,0,F>, 5) (<49,0,G>,  0) (<49,0,H>,   1) (<49,0,J>,      J) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [15], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f84) = 1 + x5 + -1*x7
        
        The following rules are strictly oriented:
                      [F >= H] ==>                         
          f84(A,B,C,E,F,G,H,J)   = 1 + F + -1*H            
                                 > F + -1*H                
                                 = f84(A,B,C,E,F,G,1 + H,J)
        
        
        The following rules are weakly oriented:
        
        We use the following global sizebounds:
        (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 7) (< 2,0,E>,  50) (< 2,0,F>, F) (< 2,0,G>,  G) (< 2,0,H>,   H) (< 2,0,J>,      J) 
        (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 7) (< 3,0,E>, 343) (< 3,0,F>, F) (< 3,0,G>,  G) (< 3,0,H>,   H) (< 3,0,J>,      J) 
        (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 7) (< 4,0,E>,   8) (< 4,0,F>, F) (< 4,0,G>,  G) (< 4,0,H>,   H) (< 4,0,J>,      J) 
        (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, 8) (< 6,0,E>, 343) (< 6,0,F>, 5) (< 6,0,G>, 77) (< 6,0,H>,   5) (< 6,0,J>,      0) 
        (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, 8) (< 7,0,E>, 343) (< 7,0,F>, 5) (< 7,0,G>, 77) (< 7,0,H>,   5) (< 7,0,J>,      0) 
        (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, 8) (< 8,0,E>, 343) (< 8,0,F>, 5) (< 8,0,G>, 77) (< 8,0,H>,   5) (< 8,0,J>,     77) 
        (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, 8) (< 9,0,E>, 343) (< 9,0,F>, 5) (< 9,0,G>,  0) (< 9,0,H>,   6) (< 9,0,J>, 78 + J) 
        (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, 8) (<11,0,E>, 343) (<11,0,F>, 5) (<11,0,G>, 77) (<11,0,H>, 155) (<11,0,J>,     78) 
        (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, 8) (<13,0,E>, 343) (<13,0,F>, 5) (<13,0,G>,  5) (<13,0,H>,   5) (<13,0,J>,     78) 
        (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, 8) (<15,0,E>, 343) (<15,0,F>, 5) (<15,0,G>, 11) (<15,0,H>,   6) (<15,0,J>,     78) 
        (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, 8) (<22,0,E>, 343) (<22,0,F>, 5) (<22,0,G>, 77) (<22,0,H>,   5) (<22,0,J>,     77) 
        (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 0) (<27,0,E>,   0) (<27,0,F>, F) (<27,0,G>,  G) (<27,0,H>,   H) (<27,0,J>,      J) 
        (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, 8) (<28,0,E>, 343) (<28,0,F>, 5) (<28,0,G>, 11) (<28,0,H>,  11) (<28,0,J>,     78) 
        (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, 8) (<29,0,E>, 343) (<29,0,F>, 5) (<29,0,G>,  5) (<29,0,H>,   0) (<29,0,J>,     78) 
        (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, 8) (<32,0,E>, 343) (<32,0,F>, 5) (<32,0,G>, 77) (<32,0,H>, 155) (<32,0,J>,      0) 
        (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, 8) (<36,0,E>, 343) (<36,0,F>, 5) (<36,0,G>, 77) (<36,0,H>,  78) (<36,0,J>,      0) 
        (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 7) (<41,0,E>,   0) (<41,0,F>, F) (<41,0,G>,  G) (<41,0,H>,   H) (<41,0,J>,      J) 
        (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, 8) (<43,0,E>, 343) (<43,0,F>, 5) (<43,0,G>,  6) (<43,0,H>,   5) (<43,0,J>,     78) 
        (<44,0,A>, 50) (<44,0,B>, 5) (<44,0,C>, 8) (<44,0,E>, 343) (<44,0,F>, 5) (<44,0,G>, 77) (<44,0,H>,  79) (<44,0,J>,     78) 
        (<45,0,A>, 50) (<45,0,B>, 5) (<45,0,C>, 8) (<45,0,E>, 343) (<45,0,F>, 5) (<45,0,G>,  1) (<45,0,H>,   0) (<45,0,J>,     78) 
        (<47,0,A>, 50) (<47,0,B>, 5) (<47,0,C>, 8) (<47,0,E>, 343) (<47,0,F>, 5) (<47,0,G>,  1) (<47,0,H>,   0) (<47,0,J>,     77) 
        (<49,0,A>, 50) (<49,0,B>, 5) (<49,0,C>, 8) (<49,0,E>, 343) (<49,0,F>, 5) (<49,0,G>,  0) (<49,0,H>,   1) (<49,0,J>,      J) 
* Step 54: KnowledgePropagation WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)     [B >= E && E >= 1 + C]                                 (42,1)   
          3.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + E,F,G,H,J)     [C >= 1 + E && B >= E]                                 (42,1)   
          4.  f19(A,B,C,E,F,G,H,J) -> f19(A,B,C,1 + C,F,G,H,J)     [B >= E && C = E]                                      (42,1)   
          6.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)         [0 >= 1 + G && F >= H]                                 (637,1)  
          7.  f36(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,0)         [G >= 1 && F >= H]                                     (48,1)   
          8.  f41(A,B,C,E,F,G,H,J) -> f41(A,B,C,E,F,G,H,1 + J)     [G >= 1 + J]                                           (58674,1)
          9.  f36(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,0,1 + H,J)     [F >= H && G = 0]                                      (48,1)   
          11. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,H,1 + J)     [G >= J]                                               (6426,1) 
          13. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,G,1 + H,J)     [G >= 1 + H]                                           (2604,1) 
          15. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,G,1 + H,J)     [F >= H]                                               (96,1)   
          22. f41(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,G,1 + H,J)     [J >= G]                                               (685,1)  
          27. f0(A,B,C,E,F,G,H,J)  -> f19(50,5,0,0,F,G,H,J)        [5 >= 0]                                               (1,2)    
          28. f84(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + G,G,J)    [H >= 1 + F && -1 + G >= 0]                            (5,2)    
          29. f70(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1 + G,0,J)     [H >= G && F >= 1 + G]                                 (504,2)  
          32. f54(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + H,0)     [J >= 1 + G && F >= 1 + H]                             (77,2)   
          36. f36(A,B,C,E,F,G,H,J) -> f54(A,B,C,E,F,G,1 + G,0)     [H >= 1 + F && F >= 1 + G]                             (7,2)    
          41. f19(A,B,C,E,F,G,H,J) -> f19(A,B,1 + C,0,F,G,H,J)     [E >= 1 + B && B >= 1 + C]                             (7,2)    
          43. f70(A,B,C,E,F,G,H,J) -> f84(A,B,C,E,F,-1 + F,F,J)    [H >= G && 1 + G >= 1 + F && -1 + F >= 0]              (1,3)    
          44. f54(A,B,C,E,F,G,H,J) -> f36(A,B,C,E,F,1 + G,2 + G,J) [J >= 1 + G && 1 + H >= 1 + F && F >= 2 + G]           (77,3)   
          45. f54(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J)         [J >= 1 + G && 1 + H >= 1 + F && 1 + G >= F && F >= 1] (77,4)   
          47. f36(A,B,C,E,F,G,H,J) -> f70(A,B,C,E,F,1,0,J)         [H >= 1 + F && 1 + G >= 1 + F && 1 + G >= F && F >= 1] (7,4)    
          49. f19(A,B,C,E,F,G,H,J) -> f36(A,B,1 + C,E,B,0,1,J)     [E >= 1 + B && 1 + C >= 1 + B && B >= 1]               (7,3)    
        Signature:
          {(f0,8);(f15,8);(f19,8);(f33,8);(f36,8);(f41,8);(f50,8);(f54,8);(f66,8);(f70,8);(f80,8);(f84,8);(f96,8)}
        Flow Graph:
          [2->{2,41},3->{3,4,49},4->{2,49},6->{22},7->{8},8->{8,22},9->{9,36},11->{11,32,44,45},13->{13,29,43}
          ,15->{15,28},22->{6,7,9,36,47},27->{4},28->{15,28},29->{13,29},32->{11,32,44},36->{11,32},41->{2,3,4,41}
          ,43->{15},44->{6,7,9},45->{13},47->{13},49->{9}]
        Sizebounds:
          (< 2,0,A>, 50) (< 2,0,B>, 5) (< 2,0,C>, 7) (< 2,0,E>,  50) (< 2,0,F>, F) (< 2,0,G>,  G) (< 2,0,H>,   H) (< 2,0,J>,      J) 
          (< 3,0,A>, 50) (< 3,0,B>, 5) (< 3,0,C>, 7) (< 3,0,E>, 343) (< 3,0,F>, F) (< 3,0,G>,  G) (< 3,0,H>,   H) (< 3,0,J>,      J) 
          (< 4,0,A>, 50) (< 4,0,B>, 5) (< 4,0,C>, 7) (< 4,0,E>,   8) (< 4,0,F>, F) (< 4,0,G>,  G) (< 4,0,H>,   H) (< 4,0,J>,      J) 
          (< 6,0,A>, 50) (< 6,0,B>, 5) (< 6,0,C>, 8) (< 6,0,E>, 343) (< 6,0,F>, 5) (< 6,0,G>, 77) (< 6,0,H>,   5) (< 6,0,J>,      0) 
          (< 7,0,A>, 50) (< 7,0,B>, 5) (< 7,0,C>, 8) (< 7,0,E>, 343) (< 7,0,F>, 5) (< 7,0,G>, 77) (< 7,0,H>,   5) (< 7,0,J>,      0) 
          (< 8,0,A>, 50) (< 8,0,B>, 5) (< 8,0,C>, 8) (< 8,0,E>, 343) (< 8,0,F>, 5) (< 8,0,G>, 77) (< 8,0,H>,   5) (< 8,0,J>,     77) 
          (< 9,0,A>, 50) (< 9,0,B>, 5) (< 9,0,C>, 8) (< 9,0,E>, 343) (< 9,0,F>, 5) (< 9,0,G>,  0) (< 9,0,H>,   6) (< 9,0,J>, 78 + J) 
          (<11,0,A>, 50) (<11,0,B>, 5) (<11,0,C>, 8) (<11,0,E>, 343) (<11,0,F>, 5) (<11,0,G>, 77) (<11,0,H>, 155) (<11,0,J>,     78) 
          (<13,0,A>, 50) (<13,0,B>, 5) (<13,0,C>, 8) (<13,0,E>, 343) (<13,0,F>, 5) (<13,0,G>,  5) (<13,0,H>,   5) (<13,0,J>,     78) 
          (<15,0,A>, 50) (<15,0,B>, 5) (<15,0,C>, 8) (<15,0,E>, 343) (<15,0,F>, 5) (<15,0,G>, 11) (<15,0,H>,   6) (<15,0,J>,     78) 
          (<22,0,A>, 50) (<22,0,B>, 5) (<22,0,C>, 8) (<22,0,E>, 343) (<22,0,F>, 5) (<22,0,G>, 77) (<22,0,H>,   5) (<22,0,J>,     77) 
          (<27,0,A>, 50) (<27,0,B>, 5) (<27,0,C>, 0) (<27,0,E>,   0) (<27,0,F>, F) (<27,0,G>,  G) (<27,0,H>,   H) (<27,0,J>,      J) 
          (<28,0,A>, 50) (<28,0,B>, 5) (<28,0,C>, 8) (<28,0,E>, 343) (<28,0,F>, 5) (<28,0,G>, 11) (<28,0,H>,  11) (<28,0,J>,     78) 
          (<29,0,A>, 50) (<29,0,B>, 5) (<29,0,C>, 8) (<29,0,E>, 343) (<29,0,F>, 5) (<29,0,G>,  5) (<29,0,H>,   0) (<29,0,J>,     78) 
          (<32,0,A>, 50) (<32,0,B>, 5) (<32,0,C>, 8) (<32,0,E>, 343) (<32,0,F>, 5) (<32,0,G>, 77) (<32,0,H>, 155) (<32,0,J>,      0) 
          (<36,0,A>, 50) (<36,0,B>, 5) (<36,0,C>, 8) (<36,0,E>, 343) (<36,0,F>, 5) (<36,0,G>, 77) (<36,0,H>,  78) (<36,0,J>,      0) 
          (<41,0,A>, 50) (<41,0,B>, 5) (<41,0,C>, 7) (<41,0,E>,   0) (<41,0,F>, F) (<41,0,G>,  G) (<41,0,H>,   H) (<41,0,J>,      J) 
          (<43,0,A>, 50) (<43,0,B>, 5) (<43,0,C>, 8) (<43,0,E>, 343) (<43,0,F>, 5) (<43,0,G>,  6) (<43,0,H>,   5) (<43,0,J>,     78) 
          (<44,0,A>, 50) (<44,0,B>, 5) (<44,0,C>, 8) (<44,0,E>, 343) (<44,0,F>, 5) (<44,0,G>, 77) (<44,0,H>,  79) (<44,0,J>,     78) 
          (<45,0,A>, 50) (<45,0,B>, 5) (<45,0,C>, 8) (<45,0,E>, 343) (<45,0,F>, 5) (<45,0,G>,  1) (<45,0,H>,   0) (<45,0,J>,     78) 
          (<47,0,A>, 50) (<47,0,B>, 5) (<47,0,C>, 8) (<47,0,E>, 343) (<47,0,F>, 5) (<47,0,G>,  1) (<47,0,H>,   0) (<47,0,J>,     77) 
          (<49,0,A>, 50) (<49,0,B>, 5) (<49,0,C>, 8) (<49,0,E>, 343) (<49,0,F>, 5) (<49,0,G>,  0) (<49,0,H>,   1) (<49,0,J>,      J) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        The problem is already solved.

WORST_CASE(?,O(1))