WORST_CASE(?,O(n^1))
* Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. evalwcet2start(A,B)    -> evalwcet2entryin(A,B)   True               (1,1)
          1. evalwcet2entryin(A,B)  -> evalwcet2bb5in(A,B)     True               (?,1)
          2. evalwcet2bb5in(A,B)    -> evalwcet2bb2in(A,0)     [4 >= A]           (?,1)
          3. evalwcet2bb5in(A,B)    -> evalwcet2returnin(A,B)  [A >= 5]           (?,1)
          4. evalwcet2bb2in(A,B)    -> evalwcet2bb1in(A,B)     [A >= 3 && 9 >= B] (?,1)
          5. evalwcet2bb2in(A,B)    -> evalwcet2bb4in(A,B)     [2 >= A]           (?,1)
          6. evalwcet2bb2in(A,B)    -> evalwcet2bb4in(A,B)     [B >= 10]          (?,1)
          7. evalwcet2bb1in(A,B)    -> evalwcet2bb2in(A,1 + B) True               (?,1)
          8. evalwcet2bb4in(A,B)    -> evalwcet2bb5in(1 + A,B) True               (?,1)
          9. evalwcet2returnin(A,B) -> evalwcet2stop(A,B)      True               (?,1)
        Signature:
          {(evalwcet2bb1in,2)
          ;(evalwcet2bb2in,2)
          ;(evalwcet2bb4in,2)
          ;(evalwcet2bb5in,2)
          ;(evalwcet2entryin,2)
          ;(evalwcet2returnin,2)
          ;(evalwcet2start,2)
          ;(evalwcet2stop,2)}
        Flow Graph:
          [0->{1},1->{2,3},2->{4,5,6},3->{9},4->{7},5->{8},6->{8},7->{4,5,6},8->{2,3},9->{}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (<0,0,A>,     A, .= 0) (<0,0,B>,     B, .= 0) 
          (<1,0,A>,     A, .= 0) (<1,0,B>,     B, .= 0) 
          (<2,0,A>,     A, .= 0) (<2,0,B>,     0, .= 0) 
          (<3,0,A>,     A, .= 0) (<3,0,B>,     B, .= 0) 
          (<4,0,A>,     A, .= 0) (<4,0,B>,     B, .= 0) 
          (<5,0,A>,     A, .= 0) (<5,0,B>,     B, .= 0) 
          (<6,0,A>,     A, .= 0) (<6,0,B>,     B, .= 0) 
          (<7,0,A>,     A, .= 0) (<7,0,B>, 1 + B, .+ 1) 
          (<8,0,A>, 1 + A, .+ 1) (<8,0,B>,     B, .= 0) 
          (<9,0,A>,     A, .= 0) (<9,0,B>,     B, .= 0) 
* Step 2: SizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. evalwcet2start(A,B)    -> evalwcet2entryin(A,B)   True               (1,1)
          1. evalwcet2entryin(A,B)  -> evalwcet2bb5in(A,B)     True               (?,1)
          2. evalwcet2bb5in(A,B)    -> evalwcet2bb2in(A,0)     [4 >= A]           (?,1)
          3. evalwcet2bb5in(A,B)    -> evalwcet2returnin(A,B)  [A >= 5]           (?,1)
          4. evalwcet2bb2in(A,B)    -> evalwcet2bb1in(A,B)     [A >= 3 && 9 >= B] (?,1)
          5. evalwcet2bb2in(A,B)    -> evalwcet2bb4in(A,B)     [2 >= A]           (?,1)
          6. evalwcet2bb2in(A,B)    -> evalwcet2bb4in(A,B)     [B >= 10]          (?,1)
          7. evalwcet2bb1in(A,B)    -> evalwcet2bb2in(A,1 + B) True               (?,1)
          8. evalwcet2bb4in(A,B)    -> evalwcet2bb5in(1 + A,B) True               (?,1)
          9. evalwcet2returnin(A,B) -> evalwcet2stop(A,B)      True               (?,1)
        Signature:
          {(evalwcet2bb1in,2)
          ;(evalwcet2bb2in,2)
          ;(evalwcet2bb4in,2)
          ;(evalwcet2bb5in,2)
          ;(evalwcet2entryin,2)
          ;(evalwcet2returnin,2)
          ;(evalwcet2start,2)
          ;(evalwcet2stop,2)}
        Flow Graph:
          [0->{1},1->{2,3},2->{4,5,6},3->{9},4->{7},5->{8},6->{8},7->{4,5,6},8->{2,3},9->{}]
        Sizebounds:
          (<0,0,A>, ?) (<0,0,B>, ?) 
          (<1,0,A>, ?) (<1,0,B>, ?) 
          (<2,0,A>, ?) (<2,0,B>, ?) 
          (<3,0,A>, ?) (<3,0,B>, ?) 
          (<4,0,A>, ?) (<4,0,B>, ?) 
          (<5,0,A>, ?) (<5,0,B>, ?) 
          (<6,0,A>, ?) (<6,0,B>, ?) 
          (<7,0,A>, ?) (<7,0,B>, ?) 
          (<8,0,A>, ?) (<8,0,B>, ?) 
          (<9,0,A>, ?) (<9,0,B>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (<0,0,A>, A) (<0,0,B>,     B) 
          (<1,0,A>, A) (<1,0,B>,     B) 
          (<2,0,A>, 4) (<2,0,B>,     0) 
          (<3,0,A>, ?) (<3,0,B>, 9 + B) 
          (<4,0,A>, ?) (<4,0,B>,     9) 
          (<5,0,A>, 2) (<5,0,B>,     9) 
          (<6,0,A>, ?) (<6,0,B>,     9) 
          (<7,0,A>, ?) (<7,0,B>,     9) 
          (<8,0,A>, ?) (<8,0,B>,     9) 
          (<9,0,A>, ?) (<9,0,B>, 9 + B) 
* Step 3: UnsatPaths WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. evalwcet2start(A,B)    -> evalwcet2entryin(A,B)   True               (1,1)
          1. evalwcet2entryin(A,B)  -> evalwcet2bb5in(A,B)     True               (?,1)
          2. evalwcet2bb5in(A,B)    -> evalwcet2bb2in(A,0)     [4 >= A]           (?,1)
          3. evalwcet2bb5in(A,B)    -> evalwcet2returnin(A,B)  [A >= 5]           (?,1)
          4. evalwcet2bb2in(A,B)    -> evalwcet2bb1in(A,B)     [A >= 3 && 9 >= B] (?,1)
          5. evalwcet2bb2in(A,B)    -> evalwcet2bb4in(A,B)     [2 >= A]           (?,1)
          6. evalwcet2bb2in(A,B)    -> evalwcet2bb4in(A,B)     [B >= 10]          (?,1)
          7. evalwcet2bb1in(A,B)    -> evalwcet2bb2in(A,1 + B) True               (?,1)
          8. evalwcet2bb4in(A,B)    -> evalwcet2bb5in(1 + A,B) True               (?,1)
          9. evalwcet2returnin(A,B) -> evalwcet2stop(A,B)      True               (?,1)
        Signature:
          {(evalwcet2bb1in,2)
          ;(evalwcet2bb2in,2)
          ;(evalwcet2bb4in,2)
          ;(evalwcet2bb5in,2)
          ;(evalwcet2entryin,2)
          ;(evalwcet2returnin,2)
          ;(evalwcet2start,2)
          ;(evalwcet2stop,2)}
        Flow Graph:
          [0->{1},1->{2,3},2->{4,5,6},3->{9},4->{7},5->{8},6->{8},7->{4,5,6},8->{2,3},9->{}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>,     B) 
          (<1,0,A>, A) (<1,0,B>,     B) 
          (<2,0,A>, 4) (<2,0,B>,     0) 
          (<3,0,A>, ?) (<3,0,B>, 9 + B) 
          (<4,0,A>, ?) (<4,0,B>,     9) 
          (<5,0,A>, 2) (<5,0,B>,     9) 
          (<6,0,A>, ?) (<6,0,B>,     9) 
          (<7,0,A>, ?) (<7,0,B>,     9) 
          (<8,0,A>, ?) (<8,0,B>,     9) 
          (<9,0,A>, ?) (<9,0,B>, 9 + B) 
    + Applied Processor:
        UnsatPaths
    + Details:
        We remove following edges from the transition graph: [(2,6)]
* Step 4: LeafRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. evalwcet2start(A,B)    -> evalwcet2entryin(A,B)   True               (1,1)
          1. evalwcet2entryin(A,B)  -> evalwcet2bb5in(A,B)     True               (?,1)
          2. evalwcet2bb5in(A,B)    -> evalwcet2bb2in(A,0)     [4 >= A]           (?,1)
          3. evalwcet2bb5in(A,B)    -> evalwcet2returnin(A,B)  [A >= 5]           (?,1)
          4. evalwcet2bb2in(A,B)    -> evalwcet2bb1in(A,B)     [A >= 3 && 9 >= B] (?,1)
          5. evalwcet2bb2in(A,B)    -> evalwcet2bb4in(A,B)     [2 >= A]           (?,1)
          6. evalwcet2bb2in(A,B)    -> evalwcet2bb4in(A,B)     [B >= 10]          (?,1)
          7. evalwcet2bb1in(A,B)    -> evalwcet2bb2in(A,1 + B) True               (?,1)
          8. evalwcet2bb4in(A,B)    -> evalwcet2bb5in(1 + A,B) True               (?,1)
          9. evalwcet2returnin(A,B) -> evalwcet2stop(A,B)      True               (?,1)
        Signature:
          {(evalwcet2bb1in,2)
          ;(evalwcet2bb2in,2)
          ;(evalwcet2bb4in,2)
          ;(evalwcet2bb5in,2)
          ;(evalwcet2entryin,2)
          ;(evalwcet2returnin,2)
          ;(evalwcet2start,2)
          ;(evalwcet2stop,2)}
        Flow Graph:
          [0->{1},1->{2,3},2->{4,5},3->{9},4->{7},5->{8},6->{8},7->{4,5,6},8->{2,3},9->{}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>,     B) 
          (<1,0,A>, A) (<1,0,B>,     B) 
          (<2,0,A>, 4) (<2,0,B>,     0) 
          (<3,0,A>, ?) (<3,0,B>, 9 + B) 
          (<4,0,A>, ?) (<4,0,B>,     9) 
          (<5,0,A>, 2) (<5,0,B>,     9) 
          (<6,0,A>, ?) (<6,0,B>,     9) 
          (<7,0,A>, ?) (<7,0,B>,     9) 
          (<8,0,A>, ?) (<8,0,B>,     9) 
          (<9,0,A>, ?) (<9,0,B>, 9 + B) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [3,9]
* Step 5: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. evalwcet2start(A,B)   -> evalwcet2entryin(A,B)   True               (1,1)
          1. evalwcet2entryin(A,B) -> evalwcet2bb5in(A,B)     True               (?,1)
          2. evalwcet2bb5in(A,B)   -> evalwcet2bb2in(A,0)     [4 >= A]           (?,1)
          4. evalwcet2bb2in(A,B)   -> evalwcet2bb1in(A,B)     [A >= 3 && 9 >= B] (?,1)
          5. evalwcet2bb2in(A,B)   -> evalwcet2bb4in(A,B)     [2 >= A]           (?,1)
          6. evalwcet2bb2in(A,B)   -> evalwcet2bb4in(A,B)     [B >= 10]          (?,1)
          7. evalwcet2bb1in(A,B)   -> evalwcet2bb2in(A,1 + B) True               (?,1)
          8. evalwcet2bb4in(A,B)   -> evalwcet2bb5in(1 + A,B) True               (?,1)
        Signature:
          {(evalwcet2bb1in,2)
          ;(evalwcet2bb2in,2)
          ;(evalwcet2bb4in,2)
          ;(evalwcet2bb5in,2)
          ;(evalwcet2entryin,2)
          ;(evalwcet2returnin,2)
          ;(evalwcet2start,2)
          ;(evalwcet2stop,2)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5},4->{7},5->{8},6->{8},7->{4,5,6},8->{2}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>, B) 
          (<1,0,A>, A) (<1,0,B>, B) 
          (<2,0,A>, 4) (<2,0,B>, 0) 
          (<4,0,A>, ?) (<4,0,B>, 9) 
          (<5,0,A>, 2) (<5,0,B>, 9) 
          (<6,0,A>, ?) (<6,0,B>, 9) 
          (<7,0,A>, ?) (<7,0,B>, 9) 
          (<8,0,A>, ?) (<8,0,B>, 9) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
            p(evalwcet2bb1in) = 3 + -1*x1
            p(evalwcet2bb2in) = 3 + -1*x1
            p(evalwcet2bb4in) = 2 + -1*x1
            p(evalwcet2bb5in) = 3 + -1*x1
          p(evalwcet2entryin) = 3 + -1*x1
            p(evalwcet2start) = 3 + -1*x1
        
        The following rules are strictly oriented:
                     [2 >= A] ==>                    
          evalwcet2bb2in(A,B)   = 3 + -1*A           
                                > 2 + -1*A           
                                = evalwcet2bb4in(A,B)
        
        
        The following rules are weakly oriented:
                           True ==>                        
            evalwcet2start(A,B)   = 3 + -1*A               
                                 >= 3 + -1*A               
                                  = evalwcet2entryin(A,B)  
        
                           True ==>                        
          evalwcet2entryin(A,B)   = 3 + -1*A               
                                 >= 3 + -1*A               
                                  = evalwcet2bb5in(A,B)    
        
                       [4 >= A] ==>                        
            evalwcet2bb5in(A,B)   = 3 + -1*A               
                                 >= 3 + -1*A               
                                  = evalwcet2bb2in(A,0)    
        
             [A >= 3 && 9 >= B] ==>                        
            evalwcet2bb2in(A,B)   = 3 + -1*A               
                                 >= 3 + -1*A               
                                  = evalwcet2bb1in(A,B)    
        
                      [B >= 10] ==>                        
            evalwcet2bb2in(A,B)   = 3 + -1*A               
                                 >= 2 + -1*A               
                                  = evalwcet2bb4in(A,B)    
        
                           True ==>                        
            evalwcet2bb1in(A,B)   = 3 + -1*A               
                                 >= 3 + -1*A               
                                  = evalwcet2bb2in(A,1 + B)
        
                           True ==>                        
            evalwcet2bb4in(A,B)   = 2 + -1*A               
                                 >= 2 + -1*A               
                                  = evalwcet2bb5in(1 + A,B)
        
        
* Step 6: KnowledgePropagation WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. evalwcet2start(A,B)   -> evalwcet2entryin(A,B)   True               (1,1)    
          1. evalwcet2entryin(A,B) -> evalwcet2bb5in(A,B)     True               (?,1)    
          2. evalwcet2bb5in(A,B)   -> evalwcet2bb2in(A,0)     [4 >= A]           (?,1)    
          4. evalwcet2bb2in(A,B)   -> evalwcet2bb1in(A,B)     [A >= 3 && 9 >= B] (?,1)    
          5. evalwcet2bb2in(A,B)   -> evalwcet2bb4in(A,B)     [2 >= A]           (3 + A,1)
          6. evalwcet2bb2in(A,B)   -> evalwcet2bb4in(A,B)     [B >= 10]          (?,1)    
          7. evalwcet2bb1in(A,B)   -> evalwcet2bb2in(A,1 + B) True               (?,1)    
          8. evalwcet2bb4in(A,B)   -> evalwcet2bb5in(1 + A,B) True               (?,1)    
        Signature:
          {(evalwcet2bb1in,2)
          ;(evalwcet2bb2in,2)
          ;(evalwcet2bb4in,2)
          ;(evalwcet2bb5in,2)
          ;(evalwcet2entryin,2)
          ;(evalwcet2returnin,2)
          ;(evalwcet2start,2)
          ;(evalwcet2stop,2)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5},4->{7},5->{8},6->{8},7->{4,5,6},8->{2}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>, B) 
          (<1,0,A>, A) (<1,0,B>, B) 
          (<2,0,A>, 4) (<2,0,B>, 0) 
          (<4,0,A>, ?) (<4,0,B>, 9) 
          (<5,0,A>, 2) (<5,0,B>, 9) 
          (<6,0,A>, ?) (<6,0,B>, 9) 
          (<7,0,A>, ?) (<7,0,B>, 9) 
          (<8,0,A>, ?) (<8,0,B>, 9) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 7: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. evalwcet2start(A,B)   -> evalwcet2entryin(A,B)   True               (1,1)    
          1. evalwcet2entryin(A,B) -> evalwcet2bb5in(A,B)     True               (1,1)    
          2. evalwcet2bb5in(A,B)   -> evalwcet2bb2in(A,0)     [4 >= A]           (?,1)    
          4. evalwcet2bb2in(A,B)   -> evalwcet2bb1in(A,B)     [A >= 3 && 9 >= B] (?,1)    
          5. evalwcet2bb2in(A,B)   -> evalwcet2bb4in(A,B)     [2 >= A]           (3 + A,1)
          6. evalwcet2bb2in(A,B)   -> evalwcet2bb4in(A,B)     [B >= 10]          (?,1)    
          7. evalwcet2bb1in(A,B)   -> evalwcet2bb2in(A,1 + B) True               (?,1)    
          8. evalwcet2bb4in(A,B)   -> evalwcet2bb5in(1 + A,B) True               (?,1)    
        Signature:
          {(evalwcet2bb1in,2)
          ;(evalwcet2bb2in,2)
          ;(evalwcet2bb4in,2)
          ;(evalwcet2bb5in,2)
          ;(evalwcet2entryin,2)
          ;(evalwcet2returnin,2)
          ;(evalwcet2start,2)
          ;(evalwcet2stop,2)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5},4->{7},5->{8},6->{8},7->{4,5,6},8->{2}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>, B) 
          (<1,0,A>, A) (<1,0,B>, B) 
          (<2,0,A>, 4) (<2,0,B>, 0) 
          (<4,0,A>, ?) (<4,0,B>, 9) 
          (<5,0,A>, 2) (<5,0,B>, 9) 
          (<6,0,A>, ?) (<6,0,B>, 9) 
          (<7,0,A>, ?) (<7,0,B>, 9) 
          (<8,0,A>, ?) (<8,0,B>, 9) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
            p(evalwcet2bb1in) = 4 + -1*x1
            p(evalwcet2bb2in) = 4 + -1*x1
            p(evalwcet2bb4in) = 4 + -1*x1
            p(evalwcet2bb5in) = 5 + -1*x1
          p(evalwcet2entryin) = 5 + -1*x1
            p(evalwcet2start) = 5 + -1*x1
        
        The following rules are strictly oriented:
                     [4 >= A] ==>                    
          evalwcet2bb5in(A,B)   = 5 + -1*A           
                                > 4 + -1*A           
                                = evalwcet2bb2in(A,0)
        
        
        The following rules are weakly oriented:
                           True ==>                        
            evalwcet2start(A,B)   = 5 + -1*A               
                                 >= 5 + -1*A               
                                  = evalwcet2entryin(A,B)  
        
                           True ==>                        
          evalwcet2entryin(A,B)   = 5 + -1*A               
                                 >= 5 + -1*A               
                                  = evalwcet2bb5in(A,B)    
        
             [A >= 3 && 9 >= B] ==>                        
            evalwcet2bb2in(A,B)   = 4 + -1*A               
                                 >= 4 + -1*A               
                                  = evalwcet2bb1in(A,B)    
        
                       [2 >= A] ==>                        
            evalwcet2bb2in(A,B)   = 4 + -1*A               
                                 >= 4 + -1*A               
                                  = evalwcet2bb4in(A,B)    
        
                      [B >= 10] ==>                        
            evalwcet2bb2in(A,B)   = 4 + -1*A               
                                 >= 4 + -1*A               
                                  = evalwcet2bb4in(A,B)    
        
                           True ==>                        
            evalwcet2bb1in(A,B)   = 4 + -1*A               
                                 >= 4 + -1*A               
                                  = evalwcet2bb2in(A,1 + B)
        
                           True ==>                        
            evalwcet2bb4in(A,B)   = 4 + -1*A               
                                 >= 4 + -1*A               
                                  = evalwcet2bb5in(1 + A,B)
        
        
* Step 8: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. evalwcet2start(A,B)   -> evalwcet2entryin(A,B)   True               (1,1)    
          1. evalwcet2entryin(A,B) -> evalwcet2bb5in(A,B)     True               (1,1)    
          2. evalwcet2bb5in(A,B)   -> evalwcet2bb2in(A,0)     [4 >= A]           (5 + A,1)
          4. evalwcet2bb2in(A,B)   -> evalwcet2bb1in(A,B)     [A >= 3 && 9 >= B] (?,1)    
          5. evalwcet2bb2in(A,B)   -> evalwcet2bb4in(A,B)     [2 >= A]           (3 + A,1)
          6. evalwcet2bb2in(A,B)   -> evalwcet2bb4in(A,B)     [B >= 10]          (?,1)    
          7. evalwcet2bb1in(A,B)   -> evalwcet2bb2in(A,1 + B) True               (?,1)    
          8. evalwcet2bb4in(A,B)   -> evalwcet2bb5in(1 + A,B) True               (?,1)    
        Signature:
          {(evalwcet2bb1in,2)
          ;(evalwcet2bb2in,2)
          ;(evalwcet2bb4in,2)
          ;(evalwcet2bb5in,2)
          ;(evalwcet2entryin,2)
          ;(evalwcet2returnin,2)
          ;(evalwcet2start,2)
          ;(evalwcet2stop,2)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5},4->{7},5->{8},6->{8},7->{4,5,6},8->{2}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>, B) 
          (<1,0,A>, A) (<1,0,B>, B) 
          (<2,0,A>, 4) (<2,0,B>, 0) 
          (<4,0,A>, ?) (<4,0,B>, 9) 
          (<5,0,A>, 2) (<5,0,B>, 9) 
          (<6,0,A>, ?) (<6,0,B>, 9) 
          (<7,0,A>, ?) (<7,0,B>, 9) 
          (<8,0,A>, ?) (<8,0,B>, 9) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [5,7,4,6], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalwcet2bb1in) = 1
          p(evalwcet2bb2in) = 1
          p(evalwcet2bb4in) = 0
        
        The following rules are strictly oriented:
                     [2 >= A] ==>                    
          evalwcet2bb2in(A,B)   = 1                  
                                > 0                  
                                = evalwcet2bb4in(A,B)
        
                    [B >= 10] ==>                    
          evalwcet2bb2in(A,B)   = 1                  
                                > 0                  
                                = evalwcet2bb4in(A,B)
        
        
        The following rules are weakly oriented:
           [A >= 3 && 9 >= B] ==>                        
          evalwcet2bb2in(A,B)   = 1                      
                               >= 1                      
                                = evalwcet2bb1in(A,B)    
        
                         True ==>                        
          evalwcet2bb1in(A,B)   = 1                      
                               >= 1                      
                                = evalwcet2bb2in(A,1 + B)
        
        We use the following global sizebounds:
        (<0,0,A>, A) (<0,0,B>, B) 
        (<1,0,A>, A) (<1,0,B>, B) 
        (<2,0,A>, 4) (<2,0,B>, 0) 
        (<4,0,A>, ?) (<4,0,B>, 9) 
        (<5,0,A>, 2) (<5,0,B>, 9) 
        (<6,0,A>, ?) (<6,0,B>, 9) 
        (<7,0,A>, ?) (<7,0,B>, 9) 
        (<8,0,A>, ?) (<8,0,B>, 9) 
* Step 9: KnowledgePropagation WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. evalwcet2start(A,B)   -> evalwcet2entryin(A,B)   True               (1,1)    
          1. evalwcet2entryin(A,B) -> evalwcet2bb5in(A,B)     True               (1,1)    
          2. evalwcet2bb5in(A,B)   -> evalwcet2bb2in(A,0)     [4 >= A]           (5 + A,1)
          4. evalwcet2bb2in(A,B)   -> evalwcet2bb1in(A,B)     [A >= 3 && 9 >= B] (?,1)    
          5. evalwcet2bb2in(A,B)   -> evalwcet2bb4in(A,B)     [2 >= A]           (3 + A,1)
          6. evalwcet2bb2in(A,B)   -> evalwcet2bb4in(A,B)     [B >= 10]          (5 + A,1)
          7. evalwcet2bb1in(A,B)   -> evalwcet2bb2in(A,1 + B) True               (?,1)    
          8. evalwcet2bb4in(A,B)   -> evalwcet2bb5in(1 + A,B) True               (?,1)    
        Signature:
          {(evalwcet2bb1in,2)
          ;(evalwcet2bb2in,2)
          ;(evalwcet2bb4in,2)
          ;(evalwcet2bb5in,2)
          ;(evalwcet2entryin,2)
          ;(evalwcet2returnin,2)
          ;(evalwcet2start,2)
          ;(evalwcet2stop,2)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5},4->{7},5->{8},6->{8},7->{4,5,6},8->{2}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>, B) 
          (<1,0,A>, A) (<1,0,B>, B) 
          (<2,0,A>, 4) (<2,0,B>, 0) 
          (<4,0,A>, ?) (<4,0,B>, 9) 
          (<5,0,A>, 2) (<5,0,B>, 9) 
          (<6,0,A>, ?) (<6,0,B>, 9) 
          (<7,0,A>, ?) (<7,0,B>, 9) 
          (<8,0,A>, ?) (<8,0,B>, 9) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 10: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. evalwcet2start(A,B)   -> evalwcet2entryin(A,B)   True               (1,1)      
          1. evalwcet2entryin(A,B) -> evalwcet2bb5in(A,B)     True               (1,1)      
          2. evalwcet2bb5in(A,B)   -> evalwcet2bb2in(A,0)     [4 >= A]           (5 + A,1)  
          4. evalwcet2bb2in(A,B)   -> evalwcet2bb1in(A,B)     [A >= 3 && 9 >= B] (?,1)      
          5. evalwcet2bb2in(A,B)   -> evalwcet2bb4in(A,B)     [2 >= A]           (3 + A,1)  
          6. evalwcet2bb2in(A,B)   -> evalwcet2bb4in(A,B)     [B >= 10]          (5 + A,1)  
          7. evalwcet2bb1in(A,B)   -> evalwcet2bb2in(A,1 + B) True               (?,1)      
          8. evalwcet2bb4in(A,B)   -> evalwcet2bb5in(1 + A,B) True               (8 + 2*A,1)
        Signature:
          {(evalwcet2bb1in,2)
          ;(evalwcet2bb2in,2)
          ;(evalwcet2bb4in,2)
          ;(evalwcet2bb5in,2)
          ;(evalwcet2entryin,2)
          ;(evalwcet2returnin,2)
          ;(evalwcet2start,2)
          ;(evalwcet2stop,2)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5},4->{7},5->{8},6->{8},7->{4,5,6},8->{2}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>, B) 
          (<1,0,A>, A) (<1,0,B>, B) 
          (<2,0,A>, 4) (<2,0,B>, 0) 
          (<4,0,A>, ?) (<4,0,B>, 9) 
          (<5,0,A>, 2) (<5,0,B>, 9) 
          (<6,0,A>, ?) (<6,0,B>, 9) 
          (<7,0,A>, ?) (<7,0,B>, 9) 
          (<8,0,A>, ?) (<8,0,B>, 9) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [8,5,7,4,6], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalwcet2bb1in) = 9 + -1*x2 
          p(evalwcet2bb2in) = 10 + -1*x2
          p(evalwcet2bb4in) = 10 + -1*x2
          p(evalwcet2bb5in) = 10 + -1*x2
        
        The following rules are strictly oriented:
           [A >= 3 && 9 >= B] ==>                    
          evalwcet2bb2in(A,B)   = 10 + -1*B          
                                > 9 + -1*B           
                                = evalwcet2bb1in(A,B)
        
        
        The following rules are weakly oriented:
                     [2 >= A] ==>                        
          evalwcet2bb2in(A,B)   = 10 + -1*B              
                               >= 10 + -1*B              
                                = evalwcet2bb4in(A,B)    
        
                    [B >= 10] ==>                        
          evalwcet2bb2in(A,B)   = 10 + -1*B              
                               >= 10 + -1*B              
                                = evalwcet2bb4in(A,B)    
        
                         True ==>                        
          evalwcet2bb1in(A,B)   = 9 + -1*B               
                               >= 9 + -1*B               
                                = evalwcet2bb2in(A,1 + B)
        
                         True ==>                        
          evalwcet2bb4in(A,B)   = 10 + -1*B              
                               >= 10 + -1*B              
                                = evalwcet2bb5in(1 + A,B)
        
        We use the following global sizebounds:
        (<0,0,A>, A) (<0,0,B>, B) 
        (<1,0,A>, A) (<1,0,B>, B) 
        (<2,0,A>, 4) (<2,0,B>, 0) 
        (<4,0,A>, ?) (<4,0,B>, 9) 
        (<5,0,A>, 2) (<5,0,B>, 9) 
        (<6,0,A>, ?) (<6,0,B>, 9) 
        (<7,0,A>, ?) (<7,0,B>, 9) 
        (<8,0,A>, ?) (<8,0,B>, 9) 
* Step 11: KnowledgePropagation WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. evalwcet2start(A,B)   -> evalwcet2entryin(A,B)   True               (1,1)        
          1. evalwcet2entryin(A,B) -> evalwcet2bb5in(A,B)     True               (1,1)        
          2. evalwcet2bb5in(A,B)   -> evalwcet2bb2in(A,0)     [4 >= A]           (5 + A,1)    
          4. evalwcet2bb2in(A,B)   -> evalwcet2bb1in(A,B)     [A >= 3 && 9 >= B] (50 + 10*A,1)
          5. evalwcet2bb2in(A,B)   -> evalwcet2bb4in(A,B)     [2 >= A]           (3 + A,1)    
          6. evalwcet2bb2in(A,B)   -> evalwcet2bb4in(A,B)     [B >= 10]          (5 + A,1)    
          7. evalwcet2bb1in(A,B)   -> evalwcet2bb2in(A,1 + B) True               (?,1)        
          8. evalwcet2bb4in(A,B)   -> evalwcet2bb5in(1 + A,B) True               (8 + 2*A,1)  
        Signature:
          {(evalwcet2bb1in,2)
          ;(evalwcet2bb2in,2)
          ;(evalwcet2bb4in,2)
          ;(evalwcet2bb5in,2)
          ;(evalwcet2entryin,2)
          ;(evalwcet2returnin,2)
          ;(evalwcet2start,2)
          ;(evalwcet2stop,2)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5},4->{7},5->{8},6->{8},7->{4,5,6},8->{2}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>, B) 
          (<1,0,A>, A) (<1,0,B>, B) 
          (<2,0,A>, 4) (<2,0,B>, 0) 
          (<4,0,A>, ?) (<4,0,B>, 9) 
          (<5,0,A>, 2) (<5,0,B>, 9) 
          (<6,0,A>, ?) (<6,0,B>, 9) 
          (<7,0,A>, ?) (<7,0,B>, 9) 
          (<8,0,A>, ?) (<8,0,B>, 9) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 12: LocalSizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. evalwcet2start(A,B)   -> evalwcet2entryin(A,B)   True               (1,1)        
          1. evalwcet2entryin(A,B) -> evalwcet2bb5in(A,B)     True               (1,1)        
          2. evalwcet2bb5in(A,B)   -> evalwcet2bb2in(A,0)     [4 >= A]           (5 + A,1)    
          4. evalwcet2bb2in(A,B)   -> evalwcet2bb1in(A,B)     [A >= 3 && 9 >= B] (50 + 10*A,1)
          5. evalwcet2bb2in(A,B)   -> evalwcet2bb4in(A,B)     [2 >= A]           (3 + A,1)    
          6. evalwcet2bb2in(A,B)   -> evalwcet2bb4in(A,B)     [B >= 10]          (5 + A,1)    
          7. evalwcet2bb1in(A,B)   -> evalwcet2bb2in(A,1 + B) True               (50 + 10*A,1)
          8. evalwcet2bb4in(A,B)   -> evalwcet2bb5in(1 + A,B) True               (8 + 2*A,1)  
        Signature:
          {(evalwcet2bb1in,2)
          ;(evalwcet2bb2in,2)
          ;(evalwcet2bb4in,2)
          ;(evalwcet2bb5in,2)
          ;(evalwcet2entryin,2)
          ;(evalwcet2returnin,2)
          ;(evalwcet2start,2)
          ;(evalwcet2stop,2)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5},4->{7},5->{8},6->{8},7->{4,5,6},8->{2}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>, B) 
          (<1,0,A>, A) (<1,0,B>, B) 
          (<2,0,A>, 4) (<2,0,B>, 0) 
          (<4,0,A>, ?) (<4,0,B>, 9) 
          (<5,0,A>, 2) (<5,0,B>, 9) 
          (<6,0,A>, ?) (<6,0,B>, 9) 
          (<7,0,A>, ?) (<7,0,B>, 9) 
          (<8,0,A>, ?) (<8,0,B>, 9) 
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        The problem is already solved.

WORST_CASE(?,O(n^1))