WORST_CASE(?,O(n^1)) * Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalwcet2start(A,B) -> evalwcet2entryin(A,B) True (1,1) 1. evalwcet2entryin(A,B) -> evalwcet2bb5in(A,B) True (?,1) 2. evalwcet2bb5in(A,B) -> evalwcet2bb2in(A,0) [4 >= A] (?,1) 3. evalwcet2bb5in(A,B) -> evalwcet2returnin(A,B) [A >= 5] (?,1) 4. evalwcet2bb2in(A,B) -> evalwcet2bb1in(A,B) [A >= 3 && 9 >= B] (?,1) 5. evalwcet2bb2in(A,B) -> evalwcet2bb4in(A,B) [2 >= A] (?,1) 6. evalwcet2bb2in(A,B) -> evalwcet2bb4in(A,B) [B >= 10] (?,1) 7. evalwcet2bb1in(A,B) -> evalwcet2bb2in(A,1 + B) True (?,1) 8. evalwcet2bb4in(A,B) -> evalwcet2bb5in(1 + A,B) True (?,1) 9. evalwcet2returnin(A,B) -> evalwcet2stop(A,B) True (?,1) Signature: {(evalwcet2bb1in,2) ;(evalwcet2bb2in,2) ;(evalwcet2bb4in,2) ;(evalwcet2bb5in,2) ;(evalwcet2entryin,2) ;(evalwcet2returnin,2) ;(evalwcet2start,2) ;(evalwcet2stop,2)} Flow Graph: [0->{1},1->{2,3},2->{4,5,6},3->{9},4->{7},5->{8},6->{8},7->{4,5,6},8->{2,3},9->{}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<0,0,A>, A, .= 0) (<0,0,B>, B, .= 0) (<1,0,A>, A, .= 0) (<1,0,B>, B, .= 0) (<2,0,A>, A, .= 0) (<2,0,B>, 0, .= 0) (<3,0,A>, A, .= 0) (<3,0,B>, B, .= 0) (<4,0,A>, A, .= 0) (<4,0,B>, B, .= 0) (<5,0,A>, A, .= 0) (<5,0,B>, B, .= 0) (<6,0,A>, A, .= 0) (<6,0,B>, B, .= 0) (<7,0,A>, A, .= 0) (<7,0,B>, 1 + B, .+ 1) (<8,0,A>, 1 + A, .+ 1) (<8,0,B>, B, .= 0) (<9,0,A>, A, .= 0) (<9,0,B>, B, .= 0) * Step 2: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalwcet2start(A,B) -> evalwcet2entryin(A,B) True (1,1) 1. evalwcet2entryin(A,B) -> evalwcet2bb5in(A,B) True (?,1) 2. evalwcet2bb5in(A,B) -> evalwcet2bb2in(A,0) [4 >= A] (?,1) 3. evalwcet2bb5in(A,B) -> evalwcet2returnin(A,B) [A >= 5] (?,1) 4. evalwcet2bb2in(A,B) -> evalwcet2bb1in(A,B) [A >= 3 && 9 >= B] (?,1) 5. evalwcet2bb2in(A,B) -> evalwcet2bb4in(A,B) [2 >= A] (?,1) 6. evalwcet2bb2in(A,B) -> evalwcet2bb4in(A,B) [B >= 10] (?,1) 7. evalwcet2bb1in(A,B) -> evalwcet2bb2in(A,1 + B) True (?,1) 8. evalwcet2bb4in(A,B) -> evalwcet2bb5in(1 + A,B) True (?,1) 9. evalwcet2returnin(A,B) -> evalwcet2stop(A,B) True (?,1) Signature: {(evalwcet2bb1in,2) ;(evalwcet2bb2in,2) ;(evalwcet2bb4in,2) ;(evalwcet2bb5in,2) ;(evalwcet2entryin,2) ;(evalwcet2returnin,2) ;(evalwcet2start,2) ;(evalwcet2stop,2)} Flow Graph: [0->{1},1->{2,3},2->{4,5,6},3->{9},4->{7},5->{8},6->{8},7->{4,5,6},8->{2,3},9->{}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<1,0,A>, ?) (<1,0,B>, ?) (<2,0,A>, ?) (<2,0,B>, ?) (<3,0,A>, ?) (<3,0,B>, ?) (<4,0,A>, ?) (<4,0,B>, ?) (<5,0,A>, ?) (<5,0,B>, ?) (<6,0,A>, ?) (<6,0,B>, ?) (<7,0,A>, ?) (<7,0,B>, ?) (<8,0,A>, ?) (<8,0,B>, ?) (<9,0,A>, ?) (<9,0,B>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<0,0,A>, A) (<0,0,B>, B) (<1,0,A>, A) (<1,0,B>, B) (<2,0,A>, 4) (<2,0,B>, 0) (<3,0,A>, ?) (<3,0,B>, 9 + B) (<4,0,A>, ?) (<4,0,B>, 9) (<5,0,A>, 2) (<5,0,B>, 9) (<6,0,A>, ?) (<6,0,B>, 9) (<7,0,A>, ?) (<7,0,B>, 9) (<8,0,A>, ?) (<8,0,B>, 9) (<9,0,A>, ?) (<9,0,B>, 9 + B) * Step 3: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalwcet2start(A,B) -> evalwcet2entryin(A,B) True (1,1) 1. evalwcet2entryin(A,B) -> evalwcet2bb5in(A,B) True (?,1) 2. evalwcet2bb5in(A,B) -> evalwcet2bb2in(A,0) [4 >= A] (?,1) 3. evalwcet2bb5in(A,B) -> evalwcet2returnin(A,B) [A >= 5] (?,1) 4. evalwcet2bb2in(A,B) -> evalwcet2bb1in(A,B) [A >= 3 && 9 >= B] (?,1) 5. evalwcet2bb2in(A,B) -> evalwcet2bb4in(A,B) [2 >= A] (?,1) 6. evalwcet2bb2in(A,B) -> evalwcet2bb4in(A,B) [B >= 10] (?,1) 7. evalwcet2bb1in(A,B) -> evalwcet2bb2in(A,1 + B) True (?,1) 8. evalwcet2bb4in(A,B) -> evalwcet2bb5in(1 + A,B) True (?,1) 9. evalwcet2returnin(A,B) -> evalwcet2stop(A,B) True (?,1) Signature: {(evalwcet2bb1in,2) ;(evalwcet2bb2in,2) ;(evalwcet2bb4in,2) ;(evalwcet2bb5in,2) ;(evalwcet2entryin,2) ;(evalwcet2returnin,2) ;(evalwcet2start,2) ;(evalwcet2stop,2)} Flow Graph: [0->{1},1->{2,3},2->{4,5,6},3->{9},4->{7},5->{8},6->{8},7->{4,5,6},8->{2,3},9->{}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<1,0,A>, A) (<1,0,B>, B) (<2,0,A>, 4) (<2,0,B>, 0) (<3,0,A>, ?) (<3,0,B>, 9 + B) (<4,0,A>, ?) (<4,0,B>, 9) (<5,0,A>, 2) (<5,0,B>, 9) (<6,0,A>, ?) (<6,0,B>, 9) (<7,0,A>, ?) (<7,0,B>, 9) (<8,0,A>, ?) (<8,0,B>, 9) (<9,0,A>, ?) (<9,0,B>, 9 + B) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(2,6)] * Step 4: LeafRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalwcet2start(A,B) -> evalwcet2entryin(A,B) True (1,1) 1. evalwcet2entryin(A,B) -> evalwcet2bb5in(A,B) True (?,1) 2. evalwcet2bb5in(A,B) -> evalwcet2bb2in(A,0) [4 >= A] (?,1) 3. evalwcet2bb5in(A,B) -> evalwcet2returnin(A,B) [A >= 5] (?,1) 4. evalwcet2bb2in(A,B) -> evalwcet2bb1in(A,B) [A >= 3 && 9 >= B] (?,1) 5. evalwcet2bb2in(A,B) -> evalwcet2bb4in(A,B) [2 >= A] (?,1) 6. evalwcet2bb2in(A,B) -> evalwcet2bb4in(A,B) [B >= 10] (?,1) 7. evalwcet2bb1in(A,B) -> evalwcet2bb2in(A,1 + B) True (?,1) 8. evalwcet2bb4in(A,B) -> evalwcet2bb5in(1 + A,B) True (?,1) 9. evalwcet2returnin(A,B) -> evalwcet2stop(A,B) True (?,1) Signature: {(evalwcet2bb1in,2) ;(evalwcet2bb2in,2) ;(evalwcet2bb4in,2) ;(evalwcet2bb5in,2) ;(evalwcet2entryin,2) ;(evalwcet2returnin,2) ;(evalwcet2start,2) ;(evalwcet2stop,2)} Flow Graph: [0->{1},1->{2,3},2->{4,5},3->{9},4->{7},5->{8},6->{8},7->{4,5,6},8->{2,3},9->{}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<1,0,A>, A) (<1,0,B>, B) (<2,0,A>, 4) (<2,0,B>, 0) (<3,0,A>, ?) (<3,0,B>, 9 + B) (<4,0,A>, ?) (<4,0,B>, 9) (<5,0,A>, 2) (<5,0,B>, 9) (<6,0,A>, ?) (<6,0,B>, 9) (<7,0,A>, ?) (<7,0,B>, 9) (<8,0,A>, ?) (<8,0,B>, 9) (<9,0,A>, ?) (<9,0,B>, 9 + B) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [3,9] * Step 5: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalwcet2start(A,B) -> evalwcet2entryin(A,B) True (1,1) 1. evalwcet2entryin(A,B) -> evalwcet2bb5in(A,B) True (?,1) 2. evalwcet2bb5in(A,B) -> evalwcet2bb2in(A,0) [4 >= A] (?,1) 4. evalwcet2bb2in(A,B) -> evalwcet2bb1in(A,B) [A >= 3 && 9 >= B] (?,1) 5. evalwcet2bb2in(A,B) -> evalwcet2bb4in(A,B) [2 >= A] (?,1) 6. evalwcet2bb2in(A,B) -> evalwcet2bb4in(A,B) [B >= 10] (?,1) 7. evalwcet2bb1in(A,B) -> evalwcet2bb2in(A,1 + B) True (?,1) 8. evalwcet2bb4in(A,B) -> evalwcet2bb5in(1 + A,B) True (?,1) Signature: {(evalwcet2bb1in,2) ;(evalwcet2bb2in,2) ;(evalwcet2bb4in,2) ;(evalwcet2bb5in,2) ;(evalwcet2entryin,2) ;(evalwcet2returnin,2) ;(evalwcet2start,2) ;(evalwcet2stop,2)} Flow Graph: [0->{1},1->{2},2->{4,5},4->{7},5->{8},6->{8},7->{4,5,6},8->{2}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<1,0,A>, A) (<1,0,B>, B) (<2,0,A>, 4) (<2,0,B>, 0) (<4,0,A>, ?) (<4,0,B>, 9) (<5,0,A>, 2) (<5,0,B>, 9) (<6,0,A>, ?) (<6,0,B>, 9) (<7,0,A>, ?) (<7,0,B>, 9) (<8,0,A>, ?) (<8,0,B>, 9) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalwcet2bb1in) = 3 + -1*x1 p(evalwcet2bb2in) = 3 + -1*x1 p(evalwcet2bb4in) = 2 + -1*x1 p(evalwcet2bb5in) = 3 + -1*x1 p(evalwcet2entryin) = 3 + -1*x1 p(evalwcet2start) = 3 + -1*x1 The following rules are strictly oriented: [2 >= A] ==> evalwcet2bb2in(A,B) = 3 + -1*A > 2 + -1*A = evalwcet2bb4in(A,B) The following rules are weakly oriented: True ==> evalwcet2start(A,B) = 3 + -1*A >= 3 + -1*A = evalwcet2entryin(A,B) True ==> evalwcet2entryin(A,B) = 3 + -1*A >= 3 + -1*A = evalwcet2bb5in(A,B) [4 >= A] ==> evalwcet2bb5in(A,B) = 3 + -1*A >= 3 + -1*A = evalwcet2bb2in(A,0) [A >= 3 && 9 >= B] ==> evalwcet2bb2in(A,B) = 3 + -1*A >= 3 + -1*A = evalwcet2bb1in(A,B) [B >= 10] ==> evalwcet2bb2in(A,B) = 3 + -1*A >= 2 + -1*A = evalwcet2bb4in(A,B) True ==> evalwcet2bb1in(A,B) = 3 + -1*A >= 3 + -1*A = evalwcet2bb2in(A,1 + B) True ==> evalwcet2bb4in(A,B) = 2 + -1*A >= 2 + -1*A = evalwcet2bb5in(1 + A,B) * Step 6: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalwcet2start(A,B) -> evalwcet2entryin(A,B) True (1,1) 1. evalwcet2entryin(A,B) -> evalwcet2bb5in(A,B) True (?,1) 2. evalwcet2bb5in(A,B) -> evalwcet2bb2in(A,0) [4 >= A] (?,1) 4. evalwcet2bb2in(A,B) -> evalwcet2bb1in(A,B) [A >= 3 && 9 >= B] (?,1) 5. evalwcet2bb2in(A,B) -> evalwcet2bb4in(A,B) [2 >= A] (3 + A,1) 6. evalwcet2bb2in(A,B) -> evalwcet2bb4in(A,B) [B >= 10] (?,1) 7. evalwcet2bb1in(A,B) -> evalwcet2bb2in(A,1 + B) True (?,1) 8. evalwcet2bb4in(A,B) -> evalwcet2bb5in(1 + A,B) True (?,1) Signature: {(evalwcet2bb1in,2) ;(evalwcet2bb2in,2) ;(evalwcet2bb4in,2) ;(evalwcet2bb5in,2) ;(evalwcet2entryin,2) ;(evalwcet2returnin,2) ;(evalwcet2start,2) ;(evalwcet2stop,2)} Flow Graph: [0->{1},1->{2},2->{4,5},4->{7},5->{8},6->{8},7->{4,5,6},8->{2}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<1,0,A>, A) (<1,0,B>, B) (<2,0,A>, 4) (<2,0,B>, 0) (<4,0,A>, ?) (<4,0,B>, 9) (<5,0,A>, 2) (<5,0,B>, 9) (<6,0,A>, ?) (<6,0,B>, 9) (<7,0,A>, ?) (<7,0,B>, 9) (<8,0,A>, ?) (<8,0,B>, 9) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 7: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalwcet2start(A,B) -> evalwcet2entryin(A,B) True (1,1) 1. evalwcet2entryin(A,B) -> evalwcet2bb5in(A,B) True (1,1) 2. evalwcet2bb5in(A,B) -> evalwcet2bb2in(A,0) [4 >= A] (?,1) 4. evalwcet2bb2in(A,B) -> evalwcet2bb1in(A,B) [A >= 3 && 9 >= B] (?,1) 5. evalwcet2bb2in(A,B) -> evalwcet2bb4in(A,B) [2 >= A] (3 + A,1) 6. evalwcet2bb2in(A,B) -> evalwcet2bb4in(A,B) [B >= 10] (?,1) 7. evalwcet2bb1in(A,B) -> evalwcet2bb2in(A,1 + B) True (?,1) 8. evalwcet2bb4in(A,B) -> evalwcet2bb5in(1 + A,B) True (?,1) Signature: {(evalwcet2bb1in,2) ;(evalwcet2bb2in,2) ;(evalwcet2bb4in,2) ;(evalwcet2bb5in,2) ;(evalwcet2entryin,2) ;(evalwcet2returnin,2) ;(evalwcet2start,2) ;(evalwcet2stop,2)} Flow Graph: [0->{1},1->{2},2->{4,5},4->{7},5->{8},6->{8},7->{4,5,6},8->{2}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<1,0,A>, A) (<1,0,B>, B) (<2,0,A>, 4) (<2,0,B>, 0) (<4,0,A>, ?) (<4,0,B>, 9) (<5,0,A>, 2) (<5,0,B>, 9) (<6,0,A>, ?) (<6,0,B>, 9) (<7,0,A>, ?) (<7,0,B>, 9) (<8,0,A>, ?) (<8,0,B>, 9) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalwcet2bb1in) = 4 + -1*x1 p(evalwcet2bb2in) = 4 + -1*x1 p(evalwcet2bb4in) = 4 + -1*x1 p(evalwcet2bb5in) = 5 + -1*x1 p(evalwcet2entryin) = 5 + -1*x1 p(evalwcet2start) = 5 + -1*x1 The following rules are strictly oriented: [4 >= A] ==> evalwcet2bb5in(A,B) = 5 + -1*A > 4 + -1*A = evalwcet2bb2in(A,0) The following rules are weakly oriented: True ==> evalwcet2start(A,B) = 5 + -1*A >= 5 + -1*A = evalwcet2entryin(A,B) True ==> evalwcet2entryin(A,B) = 5 + -1*A >= 5 + -1*A = evalwcet2bb5in(A,B) [A >= 3 && 9 >= B] ==> evalwcet2bb2in(A,B) = 4 + -1*A >= 4 + -1*A = evalwcet2bb1in(A,B) [2 >= A] ==> evalwcet2bb2in(A,B) = 4 + -1*A >= 4 + -1*A = evalwcet2bb4in(A,B) [B >= 10] ==> evalwcet2bb2in(A,B) = 4 + -1*A >= 4 + -1*A = evalwcet2bb4in(A,B) True ==> evalwcet2bb1in(A,B) = 4 + -1*A >= 4 + -1*A = evalwcet2bb2in(A,1 + B) True ==> evalwcet2bb4in(A,B) = 4 + -1*A >= 4 + -1*A = evalwcet2bb5in(1 + A,B) * Step 8: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalwcet2start(A,B) -> evalwcet2entryin(A,B) True (1,1) 1. evalwcet2entryin(A,B) -> evalwcet2bb5in(A,B) True (1,1) 2. evalwcet2bb5in(A,B) -> evalwcet2bb2in(A,0) [4 >= A] (5 + A,1) 4. evalwcet2bb2in(A,B) -> evalwcet2bb1in(A,B) [A >= 3 && 9 >= B] (?,1) 5. evalwcet2bb2in(A,B) -> evalwcet2bb4in(A,B) [2 >= A] (3 + A,1) 6. evalwcet2bb2in(A,B) -> evalwcet2bb4in(A,B) [B >= 10] (?,1) 7. evalwcet2bb1in(A,B) -> evalwcet2bb2in(A,1 + B) True (?,1) 8. evalwcet2bb4in(A,B) -> evalwcet2bb5in(1 + A,B) True (?,1) Signature: {(evalwcet2bb1in,2) ;(evalwcet2bb2in,2) ;(evalwcet2bb4in,2) ;(evalwcet2bb5in,2) ;(evalwcet2entryin,2) ;(evalwcet2returnin,2) ;(evalwcet2start,2) ;(evalwcet2stop,2)} Flow Graph: [0->{1},1->{2},2->{4,5},4->{7},5->{8},6->{8},7->{4,5,6},8->{2}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<1,0,A>, A) (<1,0,B>, B) (<2,0,A>, 4) (<2,0,B>, 0) (<4,0,A>, ?) (<4,0,B>, 9) (<5,0,A>, 2) (<5,0,B>, 9) (<6,0,A>, ?) (<6,0,B>, 9) (<7,0,A>, ?) (<7,0,B>, 9) (<8,0,A>, ?) (<8,0,B>, 9) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [5,7,4,6], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalwcet2bb1in) = 1 p(evalwcet2bb2in) = 1 p(evalwcet2bb4in) = 0 The following rules are strictly oriented: [2 >= A] ==> evalwcet2bb2in(A,B) = 1 > 0 = evalwcet2bb4in(A,B) [B >= 10] ==> evalwcet2bb2in(A,B) = 1 > 0 = evalwcet2bb4in(A,B) The following rules are weakly oriented: [A >= 3 && 9 >= B] ==> evalwcet2bb2in(A,B) = 1 >= 1 = evalwcet2bb1in(A,B) True ==> evalwcet2bb1in(A,B) = 1 >= 1 = evalwcet2bb2in(A,1 + B) We use the following global sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<1,0,A>, A) (<1,0,B>, B) (<2,0,A>, 4) (<2,0,B>, 0) (<4,0,A>, ?) (<4,0,B>, 9) (<5,0,A>, 2) (<5,0,B>, 9) (<6,0,A>, ?) (<6,0,B>, 9) (<7,0,A>, ?) (<7,0,B>, 9) (<8,0,A>, ?) (<8,0,B>, 9) * Step 9: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalwcet2start(A,B) -> evalwcet2entryin(A,B) True (1,1) 1. evalwcet2entryin(A,B) -> evalwcet2bb5in(A,B) True (1,1) 2. evalwcet2bb5in(A,B) -> evalwcet2bb2in(A,0) [4 >= A] (5 + A,1) 4. evalwcet2bb2in(A,B) -> evalwcet2bb1in(A,B) [A >= 3 && 9 >= B] (?,1) 5. evalwcet2bb2in(A,B) -> evalwcet2bb4in(A,B) [2 >= A] (3 + A,1) 6. evalwcet2bb2in(A,B) -> evalwcet2bb4in(A,B) [B >= 10] (5 + A,1) 7. evalwcet2bb1in(A,B) -> evalwcet2bb2in(A,1 + B) True (?,1) 8. evalwcet2bb4in(A,B) -> evalwcet2bb5in(1 + A,B) True (?,1) Signature: {(evalwcet2bb1in,2) ;(evalwcet2bb2in,2) ;(evalwcet2bb4in,2) ;(evalwcet2bb5in,2) ;(evalwcet2entryin,2) ;(evalwcet2returnin,2) ;(evalwcet2start,2) ;(evalwcet2stop,2)} Flow Graph: [0->{1},1->{2},2->{4,5},4->{7},5->{8},6->{8},7->{4,5,6},8->{2}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<1,0,A>, A) (<1,0,B>, B) (<2,0,A>, 4) (<2,0,B>, 0) (<4,0,A>, ?) (<4,0,B>, 9) (<5,0,A>, 2) (<5,0,B>, 9) (<6,0,A>, ?) (<6,0,B>, 9) (<7,0,A>, ?) (<7,0,B>, 9) (<8,0,A>, ?) (<8,0,B>, 9) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 10: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalwcet2start(A,B) -> evalwcet2entryin(A,B) True (1,1) 1. evalwcet2entryin(A,B) -> evalwcet2bb5in(A,B) True (1,1) 2. evalwcet2bb5in(A,B) -> evalwcet2bb2in(A,0) [4 >= A] (5 + A,1) 4. evalwcet2bb2in(A,B) -> evalwcet2bb1in(A,B) [A >= 3 && 9 >= B] (?,1) 5. evalwcet2bb2in(A,B) -> evalwcet2bb4in(A,B) [2 >= A] (3 + A,1) 6. evalwcet2bb2in(A,B) -> evalwcet2bb4in(A,B) [B >= 10] (5 + A,1) 7. evalwcet2bb1in(A,B) -> evalwcet2bb2in(A,1 + B) True (?,1) 8. evalwcet2bb4in(A,B) -> evalwcet2bb5in(1 + A,B) True (8 + 2*A,1) Signature: {(evalwcet2bb1in,2) ;(evalwcet2bb2in,2) ;(evalwcet2bb4in,2) ;(evalwcet2bb5in,2) ;(evalwcet2entryin,2) ;(evalwcet2returnin,2) ;(evalwcet2start,2) ;(evalwcet2stop,2)} Flow Graph: [0->{1},1->{2},2->{4,5},4->{7},5->{8},6->{8},7->{4,5,6},8->{2}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<1,0,A>, A) (<1,0,B>, B) (<2,0,A>, 4) (<2,0,B>, 0) (<4,0,A>, ?) (<4,0,B>, 9) (<5,0,A>, 2) (<5,0,B>, 9) (<6,0,A>, ?) (<6,0,B>, 9) (<7,0,A>, ?) (<7,0,B>, 9) (<8,0,A>, ?) (<8,0,B>, 9) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [8,5,7,4,6], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalwcet2bb1in) = 9 + -1*x2 p(evalwcet2bb2in) = 10 + -1*x2 p(evalwcet2bb4in) = 10 + -1*x2 p(evalwcet2bb5in) = 10 + -1*x2 The following rules are strictly oriented: [A >= 3 && 9 >= B] ==> evalwcet2bb2in(A,B) = 10 + -1*B > 9 + -1*B = evalwcet2bb1in(A,B) The following rules are weakly oriented: [2 >= A] ==> evalwcet2bb2in(A,B) = 10 + -1*B >= 10 + -1*B = evalwcet2bb4in(A,B) [B >= 10] ==> evalwcet2bb2in(A,B) = 10 + -1*B >= 10 + -1*B = evalwcet2bb4in(A,B) True ==> evalwcet2bb1in(A,B) = 9 + -1*B >= 9 + -1*B = evalwcet2bb2in(A,1 + B) True ==> evalwcet2bb4in(A,B) = 10 + -1*B >= 10 + -1*B = evalwcet2bb5in(1 + A,B) We use the following global sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<1,0,A>, A) (<1,0,B>, B) (<2,0,A>, 4) (<2,0,B>, 0) (<4,0,A>, ?) (<4,0,B>, 9) (<5,0,A>, 2) (<5,0,B>, 9) (<6,0,A>, ?) (<6,0,B>, 9) (<7,0,A>, ?) (<7,0,B>, 9) (<8,0,A>, ?) (<8,0,B>, 9) * Step 11: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalwcet2start(A,B) -> evalwcet2entryin(A,B) True (1,1) 1. evalwcet2entryin(A,B) -> evalwcet2bb5in(A,B) True (1,1) 2. evalwcet2bb5in(A,B) -> evalwcet2bb2in(A,0) [4 >= A] (5 + A,1) 4. evalwcet2bb2in(A,B) -> evalwcet2bb1in(A,B) [A >= 3 && 9 >= B] (50 + 10*A,1) 5. evalwcet2bb2in(A,B) -> evalwcet2bb4in(A,B) [2 >= A] (3 + A,1) 6. evalwcet2bb2in(A,B) -> evalwcet2bb4in(A,B) [B >= 10] (5 + A,1) 7. evalwcet2bb1in(A,B) -> evalwcet2bb2in(A,1 + B) True (?,1) 8. evalwcet2bb4in(A,B) -> evalwcet2bb5in(1 + A,B) True (8 + 2*A,1) Signature: {(evalwcet2bb1in,2) ;(evalwcet2bb2in,2) ;(evalwcet2bb4in,2) ;(evalwcet2bb5in,2) ;(evalwcet2entryin,2) ;(evalwcet2returnin,2) ;(evalwcet2start,2) ;(evalwcet2stop,2)} Flow Graph: [0->{1},1->{2},2->{4,5},4->{7},5->{8},6->{8},7->{4,5,6},8->{2}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<1,0,A>, A) (<1,0,B>, B) (<2,0,A>, 4) (<2,0,B>, 0) (<4,0,A>, ?) (<4,0,B>, 9) (<5,0,A>, 2) (<5,0,B>, 9) (<6,0,A>, ?) (<6,0,B>, 9) (<7,0,A>, ?) (<7,0,B>, 9) (<8,0,A>, ?) (<8,0,B>, 9) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 12: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalwcet2start(A,B) -> evalwcet2entryin(A,B) True (1,1) 1. evalwcet2entryin(A,B) -> evalwcet2bb5in(A,B) True (1,1) 2. evalwcet2bb5in(A,B) -> evalwcet2bb2in(A,0) [4 >= A] (5 + A,1) 4. evalwcet2bb2in(A,B) -> evalwcet2bb1in(A,B) [A >= 3 && 9 >= B] (50 + 10*A,1) 5. evalwcet2bb2in(A,B) -> evalwcet2bb4in(A,B) [2 >= A] (3 + A,1) 6. evalwcet2bb2in(A,B) -> evalwcet2bb4in(A,B) [B >= 10] (5 + A,1) 7. evalwcet2bb1in(A,B) -> evalwcet2bb2in(A,1 + B) True (50 + 10*A,1) 8. evalwcet2bb4in(A,B) -> evalwcet2bb5in(1 + A,B) True (8 + 2*A,1) Signature: {(evalwcet2bb1in,2) ;(evalwcet2bb2in,2) ;(evalwcet2bb4in,2) ;(evalwcet2bb5in,2) ;(evalwcet2entryin,2) ;(evalwcet2returnin,2) ;(evalwcet2start,2) ;(evalwcet2stop,2)} Flow Graph: [0->{1},1->{2},2->{4,5},4->{7},5->{8},6->{8},7->{4,5,6},8->{2}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<1,0,A>, A) (<1,0,B>, B) (<2,0,A>, 4) (<2,0,B>, 0) (<4,0,A>, ?) (<4,0,B>, 9) (<5,0,A>, 2) (<5,0,B>, 9) (<6,0,A>, ?) (<6,0,B>, 9) (<7,0,A>, ?) (<7,0,B>, 9) (<8,0,A>, ?) (<8,0,B>, 9) + Applied Processor: LocalSizeboundsProc + Details: The problem is already solved. WORST_CASE(?,O(n^1))