WORST_CASE(?,O(n^1))
* Step 1: RestrictVarsProcessor WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R)  -> f10(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R)         [A >= 2]                   (1,1)
          1.  f10(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R) -> f13(A,B,0,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R)         [A >= 1 + B]               (?,1)
          2.  f13(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R) -> f13(A,B,C,1 + D,C,S,S,H,I,J,K,L,M,N,O,P,Q,R)     [C >= 1 + S && A >= D]     (?,1)
          3.  f13(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R) -> f13(A,B,S,1 + D,C,S,S,H,I,J,K,L,M,N,O,P,Q,R)     [S >= C && A >= D]         (?,1)
          4.  f29(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R) -> f29(A,B,C,1 + D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R)     [A >= D]                   (?,1)
          5.  f34(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R) -> f34(A,B,C,1 + D,E,F,G,0,0,J,K,L,M,N,O,P,Q,R)     [A >= D]                   (?,1)
          6.  f34(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R) -> f34(A,B,C,1 + D,E,F,G,S,T,J + T,K,L,M,N,O,P,Q,R) [0 >= 1 + S && A >= D]     (?,1)
          7.  f34(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R) -> f34(A,B,C,1 + D,E,F,G,S,T,J + T,K,L,M,N,O,P,Q,R) [S >= 1 && A >= D]         (?,1)
          8.  f53(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R) -> f55(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R)         [A >= K]                   (?,1)
          9.  f55(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R) -> f55(A,B,C,1 + D,E,F,G,H,I,S,K,L,M,N,O,P,Q,R)     [A >= D]                   (?,1)
          10. f61(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R) -> f61(A,B,C,1 + D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R)     [A >= D]                   (?,1)
          11. f61(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R) -> f53(A,B,C,D,E,F,G,H,I,J,1 + K,L,M,N,O,P,Q,R)     [D >= 1 + A]               (?,1)
          12. f55(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R) -> f61(A,B,C,D,E,F,G,H,I,J,K,S,M,N,O,P,Q,R)         [D >= 1 + A]               (?,1)
          13. f53(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R) -> f10(A,1 + B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R)     [K >= 1 + A]               (?,1)
          14. f34(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R) -> f53(A,B,C,D,E,F,G,H,I,J,K,L,S,T,T,P,Q,R)         [D >= 1 + A]               (?,1)
          15. f34(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R) -> f53(A,B,C,D,E,F,G,H,I,J,K,L,M,N,-1*S,T,S,R)      [0 >= 1 + U && D >= 1 + A] (?,1)
          16. f29(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R) -> f34(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R)         [D >= 1 + A]               (?,1)
          17. f13(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R) -> f10(A,1 + B,0,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,0)     [D >= 1 + A && C = 0]      (?,1)
          18. f13(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R) -> f29(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R)         [0 >= 1 + C && D >= 1 + A] (?,1)
          19. f13(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R) -> f29(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R)         [C >= 1 && D >= 1 + A]     (?,1)
          20. f10(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R) -> f73(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R)         [B >= A && 0 >= 1 + S]     (?,1)
          21. f10(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R) -> f73(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R)         [B >= A]                   (?,1)
        Signature:
          {(f0,18);(f10,18);(f13,18);(f29,18);(f34,18);(f53,18);(f55,18);(f61,18);(f73,18)}
        Flow Graph:
          [0->{1,20,21},1->{2,3,17,18,19},2->{2,3,17,18,19},3->{2,3,17,18,19},4->{4,16},5->{5,6,7,14,15},6->{5,6,7
          ,14,15},7->{5,6,7,14,15},8->{9,12},9->{9,12},10->{10,11},11->{8,13},12->{10,11},13->{1,20,21},14->{8,13}
          ,15->{8,13},16->{5,6,7,14,15},17->{1,20,21},18->{4,16},19->{4,16},20->{},21->{}]
        
    + Applied Processor:
        RestrictVarsProcessor
    + Details:
        We removed the arguments [E,F,G,H,I,J,L,M,N,O,P,Q,R] .
* Step 2: LocalSizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,D,K)  -> f10(A,B,C,D,K)     [A >= 2]                   (1,1)
          1.  f10(A,B,C,D,K) -> f13(A,B,0,D,K)     [A >= 1 + B]               (?,1)
          2.  f13(A,B,C,D,K) -> f13(A,B,C,1 + D,K) [C >= 1 + S && A >= D]     (?,1)
          3.  f13(A,B,C,D,K) -> f13(A,B,S,1 + D,K) [S >= C && A >= D]         (?,1)
          4.  f29(A,B,C,D,K) -> f29(A,B,C,1 + D,K) [A >= D]                   (?,1)
          5.  f34(A,B,C,D,K) -> f34(A,B,C,1 + D,K) [A >= D]                   (?,1)
          6.  f34(A,B,C,D,K) -> f34(A,B,C,1 + D,K) [0 >= 1 + S && A >= D]     (?,1)
          7.  f34(A,B,C,D,K) -> f34(A,B,C,1 + D,K) [S >= 1 && A >= D]         (?,1)
          8.  f53(A,B,C,D,K) -> f55(A,B,C,D,K)     [A >= K]                   (?,1)
          9.  f55(A,B,C,D,K) -> f55(A,B,C,1 + D,K) [A >= D]                   (?,1)
          10. f61(A,B,C,D,K) -> f61(A,B,C,1 + D,K) [A >= D]                   (?,1)
          11. f61(A,B,C,D,K) -> f53(A,B,C,D,1 + K) [D >= 1 + A]               (?,1)
          12. f55(A,B,C,D,K) -> f61(A,B,C,D,K)     [D >= 1 + A]               (?,1)
          13. f53(A,B,C,D,K) -> f10(A,1 + B,C,D,K) [K >= 1 + A]               (?,1)
          14. f34(A,B,C,D,K) -> f53(A,B,C,D,K)     [D >= 1 + A]               (?,1)
          15. f34(A,B,C,D,K) -> f53(A,B,C,D,K)     [0 >= 1 + U && D >= 1 + A] (?,1)
          16. f29(A,B,C,D,K) -> f34(A,B,C,D,K)     [D >= 1 + A]               (?,1)
          17. f13(A,B,C,D,K) -> f10(A,1 + B,0,D,K) [D >= 1 + A && C = 0]      (?,1)
          18. f13(A,B,C,D,K) -> f29(A,B,C,D,K)     [0 >= 1 + C && D >= 1 + A] (?,1)
          19. f13(A,B,C,D,K) -> f29(A,B,C,D,K)     [C >= 1 && D >= 1 + A]     (?,1)
          20. f10(A,B,C,D,K) -> f73(A,B,C,D,K)     [B >= A && 0 >= 1 + S]     (?,1)
          21. f10(A,B,C,D,K) -> f73(A,B,C,D,K)     [B >= A]                   (?,1)
        Signature:
          {(f0,5);(f10,5);(f13,5);(f29,5);(f34,5);(f53,5);(f55,5);(f61,5);(f73,5)}
        Flow Graph:
          [0->{1,20,21},1->{2,3,17,18,19},2->{2,3,17,18,19},3->{2,3,17,18,19},4->{4,16},5->{5,6,7,14,15},6->{5,6,7
          ,14,15},7->{5,6,7,14,15},8->{9,12},9->{9,12},10->{10,11},11->{8,13},12->{10,11},13->{1,20,21},14->{8,13}
          ,15->{8,13},16->{5,6,7,14,15},17->{1,20,21},18->{4,16},19->{4,16},20->{},21->{}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (< 0,0,A>, A, .= 0) (< 0,0,B>,     B, .= 0) (< 0,0,C>, C, .= 0) (< 0,0,D>,     D, .= 0) (< 0,0,K>,     K, .= 0) 
          (< 1,0,A>, A, .= 0) (< 1,0,B>,     B, .= 0) (< 1,0,C>, 0, .= 0) (< 1,0,D>,     D, .= 0) (< 1,0,K>,     K, .= 0) 
          (< 2,0,A>, A, .= 0) (< 2,0,B>,     B, .= 0) (< 2,0,C>, C, .= 0) (< 2,0,D>, 1 + D, .+ 1) (< 2,0,K>,     K, .= 0) 
          (< 3,0,A>, A, .= 0) (< 3,0,B>,     B, .= 0) (< 3,0,C>, ?,   .?) (< 3,0,D>, 1 + D, .+ 1) (< 3,0,K>,     K, .= 0) 
          (< 4,0,A>, A, .= 0) (< 4,0,B>,     B, .= 0) (< 4,0,C>, C, .= 0) (< 4,0,D>, 1 + D, .+ 1) (< 4,0,K>,     K, .= 0) 
          (< 5,0,A>, A, .= 0) (< 5,0,B>,     B, .= 0) (< 5,0,C>, C, .= 0) (< 5,0,D>, 1 + D, .+ 1) (< 5,0,K>,     K, .= 0) 
          (< 6,0,A>, A, .= 0) (< 6,0,B>,     B, .= 0) (< 6,0,C>, C, .= 0) (< 6,0,D>, 1 + D, .+ 1) (< 6,0,K>,     K, .= 0) 
          (< 7,0,A>, A, .= 0) (< 7,0,B>,     B, .= 0) (< 7,0,C>, C, .= 0) (< 7,0,D>, 1 + D, .+ 1) (< 7,0,K>,     K, .= 0) 
          (< 8,0,A>, A, .= 0) (< 8,0,B>,     B, .= 0) (< 8,0,C>, C, .= 0) (< 8,0,D>,     D, .= 0) (< 8,0,K>,     K, .= 0) 
          (< 9,0,A>, A, .= 0) (< 9,0,B>,     B, .= 0) (< 9,0,C>, C, .= 0) (< 9,0,D>, 1 + D, .+ 1) (< 9,0,K>,     K, .= 0) 
          (<10,0,A>, A, .= 0) (<10,0,B>,     B, .= 0) (<10,0,C>, C, .= 0) (<10,0,D>, 1 + D, .+ 1) (<10,0,K>,     K, .= 0) 
          (<11,0,A>, A, .= 0) (<11,0,B>,     B, .= 0) (<11,0,C>, C, .= 0) (<11,0,D>,     D, .= 0) (<11,0,K>, 1 + K, .+ 1) 
          (<12,0,A>, A, .= 0) (<12,0,B>,     B, .= 0) (<12,0,C>, C, .= 0) (<12,0,D>,     D, .= 0) (<12,0,K>,     K, .= 0) 
          (<13,0,A>, A, .= 0) (<13,0,B>, 1 + B, .+ 1) (<13,0,C>, C, .= 0) (<13,0,D>,     D, .= 0) (<13,0,K>,     K, .= 0) 
          (<14,0,A>, A, .= 0) (<14,0,B>,     B, .= 0) (<14,0,C>, C, .= 0) (<14,0,D>,     D, .= 0) (<14,0,K>,     K, .= 0) 
          (<15,0,A>, A, .= 0) (<15,0,B>,     B, .= 0) (<15,0,C>, C, .= 0) (<15,0,D>,     D, .= 0) (<15,0,K>,     K, .= 0) 
          (<16,0,A>, A, .= 0) (<16,0,B>,     B, .= 0) (<16,0,C>, C, .= 0) (<16,0,D>,     D, .= 0) (<16,0,K>,     K, .= 0) 
          (<17,0,A>, A, .= 0) (<17,0,B>, 1 + B, .+ 1) (<17,0,C>, 0, .= 0) (<17,0,D>,     D, .= 0) (<17,0,K>,     K, .= 0) 
          (<18,0,A>, A, .= 0) (<18,0,B>,     B, .= 0) (<18,0,C>, C, .= 0) (<18,0,D>,     D, .= 0) (<18,0,K>,     K, .= 0) 
          (<19,0,A>, A, .= 0) (<19,0,B>,     B, .= 0) (<19,0,C>, C, .= 0) (<19,0,D>,     D, .= 0) (<19,0,K>,     K, .= 0) 
          (<20,0,A>, A, .= 0) (<20,0,B>,     B, .= 0) (<20,0,C>, C, .= 0) (<20,0,D>,     D, .= 0) (<20,0,K>,     K, .= 0) 
          (<21,0,A>, A, .= 0) (<21,0,B>,     B, .= 0) (<21,0,C>, C, .= 0) (<21,0,D>,     D, .= 0) (<21,0,K>,     K, .= 0) 
* Step 3: SizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,D,K)  -> f10(A,B,C,D,K)     [A >= 2]                   (1,1)
          1.  f10(A,B,C,D,K) -> f13(A,B,0,D,K)     [A >= 1 + B]               (?,1)
          2.  f13(A,B,C,D,K) -> f13(A,B,C,1 + D,K) [C >= 1 + S && A >= D]     (?,1)
          3.  f13(A,B,C,D,K) -> f13(A,B,S,1 + D,K) [S >= C && A >= D]         (?,1)
          4.  f29(A,B,C,D,K) -> f29(A,B,C,1 + D,K) [A >= D]                   (?,1)
          5.  f34(A,B,C,D,K) -> f34(A,B,C,1 + D,K) [A >= D]                   (?,1)
          6.  f34(A,B,C,D,K) -> f34(A,B,C,1 + D,K) [0 >= 1 + S && A >= D]     (?,1)
          7.  f34(A,B,C,D,K) -> f34(A,B,C,1 + D,K) [S >= 1 && A >= D]         (?,1)
          8.  f53(A,B,C,D,K) -> f55(A,B,C,D,K)     [A >= K]                   (?,1)
          9.  f55(A,B,C,D,K) -> f55(A,B,C,1 + D,K) [A >= D]                   (?,1)
          10. f61(A,B,C,D,K) -> f61(A,B,C,1 + D,K) [A >= D]                   (?,1)
          11. f61(A,B,C,D,K) -> f53(A,B,C,D,1 + K) [D >= 1 + A]               (?,1)
          12. f55(A,B,C,D,K) -> f61(A,B,C,D,K)     [D >= 1 + A]               (?,1)
          13. f53(A,B,C,D,K) -> f10(A,1 + B,C,D,K) [K >= 1 + A]               (?,1)
          14. f34(A,B,C,D,K) -> f53(A,B,C,D,K)     [D >= 1 + A]               (?,1)
          15. f34(A,B,C,D,K) -> f53(A,B,C,D,K)     [0 >= 1 + U && D >= 1 + A] (?,1)
          16. f29(A,B,C,D,K) -> f34(A,B,C,D,K)     [D >= 1 + A]               (?,1)
          17. f13(A,B,C,D,K) -> f10(A,1 + B,0,D,K) [D >= 1 + A && C = 0]      (?,1)
          18. f13(A,B,C,D,K) -> f29(A,B,C,D,K)     [0 >= 1 + C && D >= 1 + A] (?,1)
          19. f13(A,B,C,D,K) -> f29(A,B,C,D,K)     [C >= 1 && D >= 1 + A]     (?,1)
          20. f10(A,B,C,D,K) -> f73(A,B,C,D,K)     [B >= A && 0 >= 1 + S]     (?,1)
          21. f10(A,B,C,D,K) -> f73(A,B,C,D,K)     [B >= A]                   (?,1)
        Signature:
          {(f0,5);(f10,5);(f13,5);(f29,5);(f34,5);(f53,5);(f55,5);(f61,5);(f73,5)}
        Flow Graph:
          [0->{1,20,21},1->{2,3,17,18,19},2->{2,3,17,18,19},3->{2,3,17,18,19},4->{4,16},5->{5,6,7,14,15},6->{5,6,7
          ,14,15},7->{5,6,7,14,15},8->{9,12},9->{9,12},10->{10,11},11->{8,13},12->{10,11},13->{1,20,21},14->{8,13}
          ,15->{8,13},16->{5,6,7,14,15},17->{1,20,21},18->{4,16},19->{4,16},20->{},21->{}]
        Sizebounds:
          (< 0,0,A>, ?) (< 0,0,B>, ?) (< 0,0,C>, ?) (< 0,0,D>, ?) (< 0,0,K>, ?) 
          (< 1,0,A>, ?) (< 1,0,B>, ?) (< 1,0,C>, ?) (< 1,0,D>, ?) (< 1,0,K>, ?) 
          (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, ?) (< 2,0,K>, ?) 
          (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, ?) (< 3,0,K>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,K>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,K>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,K>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,K>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,K>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,K>, ?) 
          (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,K>, ?) 
          (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,K>, ?) 
          (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,K>, ?) 
          (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,K>, ?) 
          (<14,0,A>, ?) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,K>, ?) 
          (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,K>, ?) 
          (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,K>, ?) 
          (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,K>, ?) 
          (<18,0,A>, ?) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,K>, ?) 
          (<19,0,A>, ?) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,K>, ?) 
          (<20,0,A>, ?) (<20,0,B>, ?) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,K>, ?) 
          (<21,0,A>, ?) (<21,0,B>, ?) (<21,0,C>, ?) (<21,0,D>, ?) (<21,0,K>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>,     D) (< 0,0,K>, K) 
          (< 1,0,A>, A) (< 1,0,B>, A) (< 1,0,C>, 0) (< 1,0,D>,     ?) (< 1,0,K>, ?) 
          (< 2,0,A>, A) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, 1 + A) (< 2,0,K>, ?) 
          (< 3,0,A>, A) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, 1 + A) (< 3,0,K>, ?) 
          (< 4,0,A>, A) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 4,0,D>, 1 + A) (< 4,0,K>, ?) 
          (< 5,0,A>, A) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, 1 + A) (< 5,0,K>, ?) 
          (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, 1 + A) (< 6,0,K>, ?) 
          (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, 1 + A) (< 7,0,K>, ?) 
          (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>,     ?) (< 8,0,K>, A) 
          (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, 1 + A) (< 9,0,K>, A) 
          (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, 1 + A) (<10,0,K>, A) 
          (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>,     ?) (<11,0,K>, A) 
          (<12,0,A>, A) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>,     ?) (<12,0,K>, A) 
          (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>,     ?) (<13,0,K>, ?) 
          (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>,     ?) (<14,0,K>, ?) 
          (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>,     ?) (<15,0,K>, ?) 
          (<16,0,A>, A) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>,     ?) (<16,0,K>, ?) 
          (<17,0,A>, A) (<17,0,B>, ?) (<17,0,C>, 0) (<17,0,D>,     ?) (<17,0,K>, ?) 
          (<18,0,A>, A) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>,     ?) (<18,0,K>, ?) 
          (<19,0,A>, A) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>,     ?) (<19,0,K>, ?) 
          (<20,0,A>, A) (<20,0,B>, ?) (<20,0,C>, ?) (<20,0,D>,     ?) (<20,0,K>, ?) 
          (<21,0,A>, A) (<21,0,B>, ?) (<21,0,C>, ?) (<21,0,D>,     ?) (<21,0,K>, ?) 
* Step 4: UnsatPaths WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,D,K)  -> f10(A,B,C,D,K)     [A >= 2]                   (1,1)
          1.  f10(A,B,C,D,K) -> f13(A,B,0,D,K)     [A >= 1 + B]               (?,1)
          2.  f13(A,B,C,D,K) -> f13(A,B,C,1 + D,K) [C >= 1 + S && A >= D]     (?,1)
          3.  f13(A,B,C,D,K) -> f13(A,B,S,1 + D,K) [S >= C && A >= D]         (?,1)
          4.  f29(A,B,C,D,K) -> f29(A,B,C,1 + D,K) [A >= D]                   (?,1)
          5.  f34(A,B,C,D,K) -> f34(A,B,C,1 + D,K) [A >= D]                   (?,1)
          6.  f34(A,B,C,D,K) -> f34(A,B,C,1 + D,K) [0 >= 1 + S && A >= D]     (?,1)
          7.  f34(A,B,C,D,K) -> f34(A,B,C,1 + D,K) [S >= 1 && A >= D]         (?,1)
          8.  f53(A,B,C,D,K) -> f55(A,B,C,D,K)     [A >= K]                   (?,1)
          9.  f55(A,B,C,D,K) -> f55(A,B,C,1 + D,K) [A >= D]                   (?,1)
          10. f61(A,B,C,D,K) -> f61(A,B,C,1 + D,K) [A >= D]                   (?,1)
          11. f61(A,B,C,D,K) -> f53(A,B,C,D,1 + K) [D >= 1 + A]               (?,1)
          12. f55(A,B,C,D,K) -> f61(A,B,C,D,K)     [D >= 1 + A]               (?,1)
          13. f53(A,B,C,D,K) -> f10(A,1 + B,C,D,K) [K >= 1 + A]               (?,1)
          14. f34(A,B,C,D,K) -> f53(A,B,C,D,K)     [D >= 1 + A]               (?,1)
          15. f34(A,B,C,D,K) -> f53(A,B,C,D,K)     [0 >= 1 + U && D >= 1 + A] (?,1)
          16. f29(A,B,C,D,K) -> f34(A,B,C,D,K)     [D >= 1 + A]               (?,1)
          17. f13(A,B,C,D,K) -> f10(A,1 + B,0,D,K) [D >= 1 + A && C = 0]      (?,1)
          18. f13(A,B,C,D,K) -> f29(A,B,C,D,K)     [0 >= 1 + C && D >= 1 + A] (?,1)
          19. f13(A,B,C,D,K) -> f29(A,B,C,D,K)     [C >= 1 && D >= 1 + A]     (?,1)
          20. f10(A,B,C,D,K) -> f73(A,B,C,D,K)     [B >= A && 0 >= 1 + S]     (?,1)
          21. f10(A,B,C,D,K) -> f73(A,B,C,D,K)     [B >= A]                   (?,1)
        Signature:
          {(f0,5);(f10,5);(f13,5);(f29,5);(f34,5);(f53,5);(f55,5);(f61,5);(f73,5)}
        Flow Graph:
          [0->{1,20,21},1->{2,3,17,18,19},2->{2,3,17,18,19},3->{2,3,17,18,19},4->{4,16},5->{5,6,7,14,15},6->{5,6,7
          ,14,15},7->{5,6,7,14,15},8->{9,12},9->{9,12},10->{10,11},11->{8,13},12->{10,11},13->{1,20,21},14->{8,13}
          ,15->{8,13},16->{5,6,7,14,15},17->{1,20,21},18->{4,16},19->{4,16},20->{},21->{}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>,     D) (< 0,0,K>, K) 
          (< 1,0,A>, A) (< 1,0,B>, A) (< 1,0,C>, 0) (< 1,0,D>,     ?) (< 1,0,K>, ?) 
          (< 2,0,A>, A) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, 1 + A) (< 2,0,K>, ?) 
          (< 3,0,A>, A) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, 1 + A) (< 3,0,K>, ?) 
          (< 4,0,A>, A) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 4,0,D>, 1 + A) (< 4,0,K>, ?) 
          (< 5,0,A>, A) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, 1 + A) (< 5,0,K>, ?) 
          (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, 1 + A) (< 6,0,K>, ?) 
          (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, 1 + A) (< 7,0,K>, ?) 
          (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>,     ?) (< 8,0,K>, A) 
          (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, 1 + A) (< 9,0,K>, A) 
          (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, 1 + A) (<10,0,K>, A) 
          (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>,     ?) (<11,0,K>, A) 
          (<12,0,A>, A) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>,     ?) (<12,0,K>, A) 
          (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>,     ?) (<13,0,K>, ?) 
          (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>,     ?) (<14,0,K>, ?) 
          (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>,     ?) (<15,0,K>, ?) 
          (<16,0,A>, A) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>,     ?) (<16,0,K>, ?) 
          (<17,0,A>, A) (<17,0,B>, ?) (<17,0,C>, 0) (<17,0,D>,     ?) (<17,0,K>, ?) 
          (<18,0,A>, A) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>,     ?) (<18,0,K>, ?) 
          (<19,0,A>, A) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>,     ?) (<19,0,K>, ?) 
          (<20,0,A>, A) (<20,0,B>, ?) (<20,0,C>, ?) (<20,0,D>,     ?) (<20,0,K>, ?) 
          (<21,0,A>, A) (<21,0,B>, ?) (<21,0,C>, ?) (<21,0,D>,     ?) (<21,0,K>, ?) 
    + Applied Processor:
        UnsatPaths
    + Details:
        We remove following edges from the transition graph: [(1,18)
                                                             ,(1,19)
                                                             ,(12,10)
                                                             ,(16,5)
                                                             ,(16,6)
                                                             ,(16,7)
                                                             ,(18,4)
                                                             ,(19,4)]
* Step 5: UnreachableRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,D,K)  -> f10(A,B,C,D,K)     [A >= 2]                   (1,1)
          1.  f10(A,B,C,D,K) -> f13(A,B,0,D,K)     [A >= 1 + B]               (?,1)
          2.  f13(A,B,C,D,K) -> f13(A,B,C,1 + D,K) [C >= 1 + S && A >= D]     (?,1)
          3.  f13(A,B,C,D,K) -> f13(A,B,S,1 + D,K) [S >= C && A >= D]         (?,1)
          4.  f29(A,B,C,D,K) -> f29(A,B,C,1 + D,K) [A >= D]                   (?,1)
          5.  f34(A,B,C,D,K) -> f34(A,B,C,1 + D,K) [A >= D]                   (?,1)
          6.  f34(A,B,C,D,K) -> f34(A,B,C,1 + D,K) [0 >= 1 + S && A >= D]     (?,1)
          7.  f34(A,B,C,D,K) -> f34(A,B,C,1 + D,K) [S >= 1 && A >= D]         (?,1)
          8.  f53(A,B,C,D,K) -> f55(A,B,C,D,K)     [A >= K]                   (?,1)
          9.  f55(A,B,C,D,K) -> f55(A,B,C,1 + D,K) [A >= D]                   (?,1)
          10. f61(A,B,C,D,K) -> f61(A,B,C,1 + D,K) [A >= D]                   (?,1)
          11. f61(A,B,C,D,K) -> f53(A,B,C,D,1 + K) [D >= 1 + A]               (?,1)
          12. f55(A,B,C,D,K) -> f61(A,B,C,D,K)     [D >= 1 + A]               (?,1)
          13. f53(A,B,C,D,K) -> f10(A,1 + B,C,D,K) [K >= 1 + A]               (?,1)
          14. f34(A,B,C,D,K) -> f53(A,B,C,D,K)     [D >= 1 + A]               (?,1)
          15. f34(A,B,C,D,K) -> f53(A,B,C,D,K)     [0 >= 1 + U && D >= 1 + A] (?,1)
          16. f29(A,B,C,D,K) -> f34(A,B,C,D,K)     [D >= 1 + A]               (?,1)
          17. f13(A,B,C,D,K) -> f10(A,1 + B,0,D,K) [D >= 1 + A && C = 0]      (?,1)
          18. f13(A,B,C,D,K) -> f29(A,B,C,D,K)     [0 >= 1 + C && D >= 1 + A] (?,1)
          19. f13(A,B,C,D,K) -> f29(A,B,C,D,K)     [C >= 1 && D >= 1 + A]     (?,1)
          20. f10(A,B,C,D,K) -> f73(A,B,C,D,K)     [B >= A && 0 >= 1 + S]     (?,1)
          21. f10(A,B,C,D,K) -> f73(A,B,C,D,K)     [B >= A]                   (?,1)
        Signature:
          {(f0,5);(f10,5);(f13,5);(f29,5);(f34,5);(f53,5);(f55,5);(f61,5);(f73,5)}
        Flow Graph:
          [0->{1,20,21},1->{2,3,17},2->{2,3,17,18,19},3->{2,3,17,18,19},4->{4,16},5->{5,6,7,14,15},6->{5,6,7,14,15}
          ,7->{5,6,7,14,15},8->{9,12},9->{9,12},10->{10,11},11->{8,13},12->{11},13->{1,20,21},14->{8,13},15->{8,13}
          ,16->{14,15},17->{1,20,21},18->{16},19->{16},20->{},21->{}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>,     D) (< 0,0,K>, K) 
          (< 1,0,A>, A) (< 1,0,B>, A) (< 1,0,C>, 0) (< 1,0,D>,     ?) (< 1,0,K>, ?) 
          (< 2,0,A>, A) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, 1 + A) (< 2,0,K>, ?) 
          (< 3,0,A>, A) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, 1 + A) (< 3,0,K>, ?) 
          (< 4,0,A>, A) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 4,0,D>, 1 + A) (< 4,0,K>, ?) 
          (< 5,0,A>, A) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, 1 + A) (< 5,0,K>, ?) 
          (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, 1 + A) (< 6,0,K>, ?) 
          (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, 1 + A) (< 7,0,K>, ?) 
          (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>,     ?) (< 8,0,K>, A) 
          (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, 1 + A) (< 9,0,K>, A) 
          (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, 1 + A) (<10,0,K>, A) 
          (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>,     ?) (<11,0,K>, A) 
          (<12,0,A>, A) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>,     ?) (<12,0,K>, A) 
          (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>,     ?) (<13,0,K>, ?) 
          (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>,     ?) (<14,0,K>, ?) 
          (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>,     ?) (<15,0,K>, ?) 
          (<16,0,A>, A) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>,     ?) (<16,0,K>, ?) 
          (<17,0,A>, A) (<17,0,B>, ?) (<17,0,C>, 0) (<17,0,D>,     ?) (<17,0,K>, ?) 
          (<18,0,A>, A) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>,     ?) (<18,0,K>, ?) 
          (<19,0,A>, A) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>,     ?) (<19,0,K>, ?) 
          (<20,0,A>, A) (<20,0,B>, ?) (<20,0,C>, ?) (<20,0,D>,     ?) (<20,0,K>, ?) 
          (<21,0,A>, A) (<21,0,B>, ?) (<21,0,C>, ?) (<21,0,D>,     ?) (<21,0,K>, ?) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [4,5,6,7,10]
* Step 6: LeafRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,D,K)  -> f10(A,B,C,D,K)     [A >= 2]                   (1,1)
          1.  f10(A,B,C,D,K) -> f13(A,B,0,D,K)     [A >= 1 + B]               (?,1)
          2.  f13(A,B,C,D,K) -> f13(A,B,C,1 + D,K) [C >= 1 + S && A >= D]     (?,1)
          3.  f13(A,B,C,D,K) -> f13(A,B,S,1 + D,K) [S >= C && A >= D]         (?,1)
          8.  f53(A,B,C,D,K) -> f55(A,B,C,D,K)     [A >= K]                   (?,1)
          9.  f55(A,B,C,D,K) -> f55(A,B,C,1 + D,K) [A >= D]                   (?,1)
          11. f61(A,B,C,D,K) -> f53(A,B,C,D,1 + K) [D >= 1 + A]               (?,1)
          12. f55(A,B,C,D,K) -> f61(A,B,C,D,K)     [D >= 1 + A]               (?,1)
          13. f53(A,B,C,D,K) -> f10(A,1 + B,C,D,K) [K >= 1 + A]               (?,1)
          14. f34(A,B,C,D,K) -> f53(A,B,C,D,K)     [D >= 1 + A]               (?,1)
          15. f34(A,B,C,D,K) -> f53(A,B,C,D,K)     [0 >= 1 + U && D >= 1 + A] (?,1)
          16. f29(A,B,C,D,K) -> f34(A,B,C,D,K)     [D >= 1 + A]               (?,1)
          17. f13(A,B,C,D,K) -> f10(A,1 + B,0,D,K) [D >= 1 + A && C = 0]      (?,1)
          18. f13(A,B,C,D,K) -> f29(A,B,C,D,K)     [0 >= 1 + C && D >= 1 + A] (?,1)
          19. f13(A,B,C,D,K) -> f29(A,B,C,D,K)     [C >= 1 && D >= 1 + A]     (?,1)
          20. f10(A,B,C,D,K) -> f73(A,B,C,D,K)     [B >= A && 0 >= 1 + S]     (?,1)
          21. f10(A,B,C,D,K) -> f73(A,B,C,D,K)     [B >= A]                   (?,1)
        Signature:
          {(f0,5);(f10,5);(f13,5);(f29,5);(f34,5);(f53,5);(f55,5);(f61,5);(f73,5)}
        Flow Graph:
          [0->{1,20,21},1->{2,3,17},2->{2,3,17,18,19},3->{2,3,17,18,19},8->{9,12},9->{9,12},11->{8,13},12->{11}
          ,13->{1,20,21},14->{8,13},15->{8,13},16->{14,15},17->{1,20,21},18->{16},19->{16},20->{},21->{}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>,     D) (< 0,0,K>, K) 
          (< 1,0,A>, A) (< 1,0,B>, A) (< 1,0,C>, 0) (< 1,0,D>,     ?) (< 1,0,K>, ?) 
          (< 2,0,A>, A) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, 1 + A) (< 2,0,K>, ?) 
          (< 3,0,A>, A) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, 1 + A) (< 3,0,K>, ?) 
          (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>,     ?) (< 8,0,K>, A) 
          (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, 1 + A) (< 9,0,K>, A) 
          (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>,     ?) (<11,0,K>, A) 
          (<12,0,A>, A) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>,     ?) (<12,0,K>, A) 
          (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>,     ?) (<13,0,K>, ?) 
          (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>,     ?) (<14,0,K>, ?) 
          (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>,     ?) (<15,0,K>, ?) 
          (<16,0,A>, A) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>,     ?) (<16,0,K>, ?) 
          (<17,0,A>, A) (<17,0,B>, ?) (<17,0,C>, 0) (<17,0,D>,     ?) (<17,0,K>, ?) 
          (<18,0,A>, A) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>,     ?) (<18,0,K>, ?) 
          (<19,0,A>, A) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>,     ?) (<19,0,K>, ?) 
          (<20,0,A>, A) (<20,0,B>, ?) (<20,0,C>, ?) (<20,0,D>,     ?) (<20,0,K>, ?) 
          (<21,0,A>, A) (<21,0,B>, ?) (<21,0,C>, ?) (<21,0,D>,     ?) (<21,0,K>, ?) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [20,21]
* Step 7: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,D,K)  -> f10(A,B,C,D,K)     [A >= 2]                   (1,1)
          1.  f10(A,B,C,D,K) -> f13(A,B,0,D,K)     [A >= 1 + B]               (?,1)
          2.  f13(A,B,C,D,K) -> f13(A,B,C,1 + D,K) [C >= 1 + S && A >= D]     (?,1)
          3.  f13(A,B,C,D,K) -> f13(A,B,S,1 + D,K) [S >= C && A >= D]         (?,1)
          8.  f53(A,B,C,D,K) -> f55(A,B,C,D,K)     [A >= K]                   (?,1)
          9.  f55(A,B,C,D,K) -> f55(A,B,C,1 + D,K) [A >= D]                   (?,1)
          11. f61(A,B,C,D,K) -> f53(A,B,C,D,1 + K) [D >= 1 + A]               (?,1)
          12. f55(A,B,C,D,K) -> f61(A,B,C,D,K)     [D >= 1 + A]               (?,1)
          13. f53(A,B,C,D,K) -> f10(A,1 + B,C,D,K) [K >= 1 + A]               (?,1)
          14. f34(A,B,C,D,K) -> f53(A,B,C,D,K)     [D >= 1 + A]               (?,1)
          15. f34(A,B,C,D,K) -> f53(A,B,C,D,K)     [0 >= 1 + U && D >= 1 + A] (?,1)
          16. f29(A,B,C,D,K) -> f34(A,B,C,D,K)     [D >= 1 + A]               (?,1)
          17. f13(A,B,C,D,K) -> f10(A,1 + B,0,D,K) [D >= 1 + A && C = 0]      (?,1)
          18. f13(A,B,C,D,K) -> f29(A,B,C,D,K)     [0 >= 1 + C && D >= 1 + A] (?,1)
          19. f13(A,B,C,D,K) -> f29(A,B,C,D,K)     [C >= 1 && D >= 1 + A]     (?,1)
        Signature:
          {(f0,5);(f10,5);(f13,5);(f29,5);(f34,5);(f53,5);(f55,5);(f61,5);(f73,5)}
        Flow Graph:
          [0->{1},1->{2,3,17},2->{2,3,17,18,19},3->{2,3,17,18,19},8->{9,12},9->{9,12},11->{8,13},12->{11},13->{1}
          ,14->{8,13},15->{8,13},16->{14,15},17->{1},18->{16},19->{16}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>,     D) (< 0,0,K>, K) 
          (< 1,0,A>, A) (< 1,0,B>, A) (< 1,0,C>, 0) (< 1,0,D>,     ?) (< 1,0,K>, ?) 
          (< 2,0,A>, A) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, 1 + A) (< 2,0,K>, ?) 
          (< 3,0,A>, A) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, 1 + A) (< 3,0,K>, ?) 
          (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>,     ?) (< 8,0,K>, A) 
          (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, 1 + A) (< 9,0,K>, A) 
          (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>,     ?) (<11,0,K>, A) 
          (<12,0,A>, A) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>,     ?) (<12,0,K>, A) 
          (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>,     ?) (<13,0,K>, ?) 
          (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>,     ?) (<14,0,K>, ?) 
          (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>,     ?) (<15,0,K>, ?) 
          (<16,0,A>, A) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>,     ?) (<16,0,K>, ?) 
          (<17,0,A>, A) (<17,0,B>, ?) (<17,0,C>, 0) (<17,0,D>,     ?) (<17,0,K>, ?) 
          (<18,0,A>, A) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>,     ?) (<18,0,K>, ?) 
          (<19,0,A>, A) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>,     ?) (<19,0,K>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 2 + x1 + -1*x2
          p(f10) = 2 + x1 + -1*x2
          p(f13) = 1 + x1 + -1*x2
          p(f29) = 1 + x1 + -1*x2
          p(f34) = 1 + x1 + -1*x2
          p(f53) = 1 + x1 + -1*x2
          p(f55) = 1 + x1 + -1*x2
          p(f61) = 1 + x1 + -1*x2
        
        The following rules are strictly oriented:
            [A >= 1 + B] ==>               
          f10(A,B,C,D,K)   = 2 + A + -1*B  
                           > 1 + A + -1*B  
                           = f13(A,B,0,D,K)
        
        
        The following rules are weakly oriented:
                          [A >= 2] ==>                   
                     f0(A,B,C,D,K)   = 2 + A + -1*B      
                                    >= 2 + A + -1*B      
                                     = f10(A,B,C,D,K)    
        
            [C >= 1 + S && A >= D] ==>                   
                    f13(A,B,C,D,K)   = 1 + A + -1*B      
                                    >= 1 + A + -1*B      
                                     = f13(A,B,C,1 + D,K)
        
                [S >= C && A >= D] ==>                   
                    f13(A,B,C,D,K)   = 1 + A + -1*B      
                                    >= 1 + A + -1*B      
                                     = f13(A,B,S,1 + D,K)
        
                          [A >= K] ==>                   
                    f53(A,B,C,D,K)   = 1 + A + -1*B      
                                    >= 1 + A + -1*B      
                                     = f55(A,B,C,D,K)    
        
                          [A >= D] ==>                   
                    f55(A,B,C,D,K)   = 1 + A + -1*B      
                                    >= 1 + A + -1*B      
                                     = f55(A,B,C,1 + D,K)
        
                      [D >= 1 + A] ==>                   
                    f61(A,B,C,D,K)   = 1 + A + -1*B      
                                    >= 1 + A + -1*B      
                                     = f53(A,B,C,D,1 + K)
        
                      [D >= 1 + A] ==>                   
                    f55(A,B,C,D,K)   = 1 + A + -1*B      
                                    >= 1 + A + -1*B      
                                     = f61(A,B,C,D,K)    
        
                      [K >= 1 + A] ==>                   
                    f53(A,B,C,D,K)   = 1 + A + -1*B      
                                    >= 1 + A + -1*B      
                                     = f10(A,1 + B,C,D,K)
        
                      [D >= 1 + A] ==>                   
                    f34(A,B,C,D,K)   = 1 + A + -1*B      
                                    >= 1 + A + -1*B      
                                     = f53(A,B,C,D,K)    
        
        [0 >= 1 + U && D >= 1 + A] ==>                   
                    f34(A,B,C,D,K)   = 1 + A + -1*B      
                                    >= 1 + A + -1*B      
                                     = f53(A,B,C,D,K)    
        
                      [D >= 1 + A] ==>                   
                    f29(A,B,C,D,K)   = 1 + A + -1*B      
                                    >= 1 + A + -1*B      
                                     = f34(A,B,C,D,K)    
        
             [D >= 1 + A && C = 0] ==>                   
                    f13(A,B,C,D,K)   = 1 + A + -1*B      
                                    >= 1 + A + -1*B      
                                     = f10(A,1 + B,0,D,K)
        
        [0 >= 1 + C && D >= 1 + A] ==>                   
                    f13(A,B,C,D,K)   = 1 + A + -1*B      
                                    >= 1 + A + -1*B      
                                     = f29(A,B,C,D,K)    
        
            [C >= 1 && D >= 1 + A] ==>                   
                    f13(A,B,C,D,K)   = 1 + A + -1*B      
                                    >= 1 + A + -1*B      
                                     = f29(A,B,C,D,K)    
        
        
* Step 8: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,D,K)  -> f10(A,B,C,D,K)     [A >= 2]                   (1,1)        
          1.  f10(A,B,C,D,K) -> f13(A,B,0,D,K)     [A >= 1 + B]               (2 + A + B,1)
          2.  f13(A,B,C,D,K) -> f13(A,B,C,1 + D,K) [C >= 1 + S && A >= D]     (?,1)        
          3.  f13(A,B,C,D,K) -> f13(A,B,S,1 + D,K) [S >= C && A >= D]         (?,1)        
          8.  f53(A,B,C,D,K) -> f55(A,B,C,D,K)     [A >= K]                   (?,1)        
          9.  f55(A,B,C,D,K) -> f55(A,B,C,1 + D,K) [A >= D]                   (?,1)        
          11. f61(A,B,C,D,K) -> f53(A,B,C,D,1 + K) [D >= 1 + A]               (?,1)        
          12. f55(A,B,C,D,K) -> f61(A,B,C,D,K)     [D >= 1 + A]               (?,1)        
          13. f53(A,B,C,D,K) -> f10(A,1 + B,C,D,K) [K >= 1 + A]               (?,1)        
          14. f34(A,B,C,D,K) -> f53(A,B,C,D,K)     [D >= 1 + A]               (?,1)        
          15. f34(A,B,C,D,K) -> f53(A,B,C,D,K)     [0 >= 1 + U && D >= 1 + A] (?,1)        
          16. f29(A,B,C,D,K) -> f34(A,B,C,D,K)     [D >= 1 + A]               (?,1)        
          17. f13(A,B,C,D,K) -> f10(A,1 + B,0,D,K) [D >= 1 + A && C = 0]      (?,1)        
          18. f13(A,B,C,D,K) -> f29(A,B,C,D,K)     [0 >= 1 + C && D >= 1 + A] (?,1)        
          19. f13(A,B,C,D,K) -> f29(A,B,C,D,K)     [C >= 1 && D >= 1 + A]     (?,1)        
        Signature:
          {(f0,5);(f10,5);(f13,5);(f29,5);(f34,5);(f53,5);(f55,5);(f61,5);(f73,5)}
        Flow Graph:
          [0->{1},1->{2,3,17},2->{2,3,17,18,19},3->{2,3,17,18,19},8->{9,12},9->{9,12},11->{8,13},12->{11},13->{1}
          ,14->{8,13},15->{8,13},16->{14,15},17->{1},18->{16},19->{16}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>,     D) (< 0,0,K>, K) 
          (< 1,0,A>, A) (< 1,0,B>, A) (< 1,0,C>, 0) (< 1,0,D>,     ?) (< 1,0,K>, ?) 
          (< 2,0,A>, A) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, 1 + A) (< 2,0,K>, ?) 
          (< 3,0,A>, A) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, 1 + A) (< 3,0,K>, ?) 
          (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>,     ?) (< 8,0,K>, A) 
          (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, 1 + A) (< 9,0,K>, A) 
          (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>,     ?) (<11,0,K>, A) 
          (<12,0,A>, A) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>,     ?) (<12,0,K>, A) 
          (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>,     ?) (<13,0,K>, ?) 
          (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>,     ?) (<14,0,K>, ?) 
          (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>,     ?) (<15,0,K>, ?) 
          (<16,0,A>, A) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>,     ?) (<16,0,K>, ?) 
          (<17,0,A>, A) (<17,0,B>, ?) (<17,0,C>, 0) (<17,0,D>,     ?) (<17,0,K>, ?) 
          (<18,0,A>, A) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>,     ?) (<18,0,K>, ?) 
          (<19,0,A>, A) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>,     ?) (<19,0,K>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 1 + x1 + -1*x5
          p(f10) = 1 + x1 + -1*x5
          p(f13) = 1 + x1 + -1*x5
          p(f29) = 1 + x1 + -1*x5
          p(f34) = 1 + x1 + -1*x5
          p(f53) = 1 + x1 + -1*x5
          p(f55) = x1 + -1*x5    
          p(f61) = x1 + -1*x5    
        
        The following rules are strictly oriented:
                [A >= K] ==>               
          f53(A,B,C,D,K)   = 1 + A + -1*K  
                           > A + -1*K      
                           = f55(A,B,C,D,K)
        
        
        The following rules are weakly oriented:
                          [A >= 2] ==>                   
                     f0(A,B,C,D,K)   = 1 + A + -1*K      
                                    >= 1 + A + -1*K      
                                     = f10(A,B,C,D,K)    
        
                      [A >= 1 + B] ==>                   
                    f10(A,B,C,D,K)   = 1 + A + -1*K      
                                    >= 1 + A + -1*K      
                                     = f13(A,B,0,D,K)    
        
            [C >= 1 + S && A >= D] ==>                   
                    f13(A,B,C,D,K)   = 1 + A + -1*K      
                                    >= 1 + A + -1*K      
                                     = f13(A,B,C,1 + D,K)
        
                [S >= C && A >= D] ==>                   
                    f13(A,B,C,D,K)   = 1 + A + -1*K      
                                    >= 1 + A + -1*K      
                                     = f13(A,B,S,1 + D,K)
        
                          [A >= D] ==>                   
                    f55(A,B,C,D,K)   = A + -1*K          
                                    >= A + -1*K          
                                     = f55(A,B,C,1 + D,K)
        
                      [D >= 1 + A] ==>                   
                    f61(A,B,C,D,K)   = A + -1*K          
                                    >= A + -1*K          
                                     = f53(A,B,C,D,1 + K)
        
                      [D >= 1 + A] ==>                   
                    f55(A,B,C,D,K)   = A + -1*K          
                                    >= A + -1*K          
                                     = f61(A,B,C,D,K)    
        
                      [K >= 1 + A] ==>                   
                    f53(A,B,C,D,K)   = 1 + A + -1*K      
                                    >= 1 + A + -1*K      
                                     = f10(A,1 + B,C,D,K)
        
                      [D >= 1 + A] ==>                   
                    f34(A,B,C,D,K)   = 1 + A + -1*K      
                                    >= 1 + A + -1*K      
                                     = f53(A,B,C,D,K)    
        
        [0 >= 1 + U && D >= 1 + A] ==>                   
                    f34(A,B,C,D,K)   = 1 + A + -1*K      
                                    >= 1 + A + -1*K      
                                     = f53(A,B,C,D,K)    
        
                      [D >= 1 + A] ==>                   
                    f29(A,B,C,D,K)   = 1 + A + -1*K      
                                    >= 1 + A + -1*K      
                                     = f34(A,B,C,D,K)    
        
             [D >= 1 + A && C = 0] ==>                   
                    f13(A,B,C,D,K)   = 1 + A + -1*K      
                                    >= 1 + A + -1*K      
                                     = f10(A,1 + B,0,D,K)
        
        [0 >= 1 + C && D >= 1 + A] ==>                   
                    f13(A,B,C,D,K)   = 1 + A + -1*K      
                                    >= 1 + A + -1*K      
                                     = f29(A,B,C,D,K)    
        
            [C >= 1 && D >= 1 + A] ==>                   
                    f13(A,B,C,D,K)   = 1 + A + -1*K      
                                    >= 1 + A + -1*K      
                                     = f29(A,B,C,D,K)    
        
        
* Step 9: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,D,K)  -> f10(A,B,C,D,K)     [A >= 2]                   (1,1)        
          1.  f10(A,B,C,D,K) -> f13(A,B,0,D,K)     [A >= 1 + B]               (2 + A + B,1)
          2.  f13(A,B,C,D,K) -> f13(A,B,C,1 + D,K) [C >= 1 + S && A >= D]     (?,1)        
          3.  f13(A,B,C,D,K) -> f13(A,B,S,1 + D,K) [S >= C && A >= D]         (?,1)        
          8.  f53(A,B,C,D,K) -> f55(A,B,C,D,K)     [A >= K]                   (1 + A + K,1)
          9.  f55(A,B,C,D,K) -> f55(A,B,C,1 + D,K) [A >= D]                   (?,1)        
          11. f61(A,B,C,D,K) -> f53(A,B,C,D,1 + K) [D >= 1 + A]               (?,1)        
          12. f55(A,B,C,D,K) -> f61(A,B,C,D,K)     [D >= 1 + A]               (?,1)        
          13. f53(A,B,C,D,K) -> f10(A,1 + B,C,D,K) [K >= 1 + A]               (?,1)        
          14. f34(A,B,C,D,K) -> f53(A,B,C,D,K)     [D >= 1 + A]               (?,1)        
          15. f34(A,B,C,D,K) -> f53(A,B,C,D,K)     [0 >= 1 + U && D >= 1 + A] (?,1)        
          16. f29(A,B,C,D,K) -> f34(A,B,C,D,K)     [D >= 1 + A]               (?,1)        
          17. f13(A,B,C,D,K) -> f10(A,1 + B,0,D,K) [D >= 1 + A && C = 0]      (?,1)        
          18. f13(A,B,C,D,K) -> f29(A,B,C,D,K)     [0 >= 1 + C && D >= 1 + A] (?,1)        
          19. f13(A,B,C,D,K) -> f29(A,B,C,D,K)     [C >= 1 && D >= 1 + A]     (?,1)        
        Signature:
          {(f0,5);(f10,5);(f13,5);(f29,5);(f34,5);(f53,5);(f55,5);(f61,5);(f73,5)}
        Flow Graph:
          [0->{1},1->{2,3,17},2->{2,3,17,18,19},3->{2,3,17,18,19},8->{9,12},9->{9,12},11->{8,13},12->{11},13->{1}
          ,14->{8,13},15->{8,13},16->{14,15},17->{1},18->{16},19->{16}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>,     D) (< 0,0,K>, K) 
          (< 1,0,A>, A) (< 1,0,B>, A) (< 1,0,C>, 0) (< 1,0,D>,     ?) (< 1,0,K>, ?) 
          (< 2,0,A>, A) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, 1 + A) (< 2,0,K>, ?) 
          (< 3,0,A>, A) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, 1 + A) (< 3,0,K>, ?) 
          (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>,     ?) (< 8,0,K>, A) 
          (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, 1 + A) (< 9,0,K>, A) 
          (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>,     ?) (<11,0,K>, A) 
          (<12,0,A>, A) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>,     ?) (<12,0,K>, A) 
          (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>,     ?) (<13,0,K>, ?) 
          (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>,     ?) (<14,0,K>, ?) 
          (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>,     ?) (<15,0,K>, ?) 
          (<16,0,A>, A) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>,     ?) (<16,0,K>, ?) 
          (<17,0,A>, A) (<17,0,B>, ?) (<17,0,C>, 0) (<17,0,D>,     ?) (<17,0,K>, ?) 
          (<18,0,A>, A) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>,     ?) (<18,0,K>, ?) 
          (<19,0,A>, A) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>,     ?) (<19,0,K>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 1 + x1 + -1*x4
          p(f10) = 1 + x1 + -1*x4
          p(f13) = 1 + x1 + -1*x4
          p(f29) = 1 + x1 + -1*x4
          p(f34) = 1 + x1 + -1*x4
          p(f53) = 1 + x1 + -1*x4
          p(f55) = 1 + x1 + -1*x4
          p(f61) = 1 + x1 + -1*x4
        
        The following rules are strictly oriented:
        [S >= C && A >= D] ==>                   
            f13(A,B,C,D,K)   = 1 + A + -1*D      
                             > A + -1*D          
                             = f13(A,B,S,1 + D,K)
        
        
        The following rules are weakly oriented:
                          [A >= 2] ==>                   
                     f0(A,B,C,D,K)   = 1 + A + -1*D      
                                    >= 1 + A + -1*D      
                                     = f10(A,B,C,D,K)    
        
                      [A >= 1 + B] ==>                   
                    f10(A,B,C,D,K)   = 1 + A + -1*D      
                                    >= 1 + A + -1*D      
                                     = f13(A,B,0,D,K)    
        
            [C >= 1 + S && A >= D] ==>                   
                    f13(A,B,C,D,K)   = 1 + A + -1*D      
                                    >= A + -1*D          
                                     = f13(A,B,C,1 + D,K)
        
                          [A >= K] ==>                   
                    f53(A,B,C,D,K)   = 1 + A + -1*D      
                                    >= 1 + A + -1*D      
                                     = f55(A,B,C,D,K)    
        
                          [A >= D] ==>                   
                    f55(A,B,C,D,K)   = 1 + A + -1*D      
                                    >= A + -1*D          
                                     = f55(A,B,C,1 + D,K)
        
                      [D >= 1 + A] ==>                   
                    f61(A,B,C,D,K)   = 1 + A + -1*D      
                                    >= 1 + A + -1*D      
                                     = f53(A,B,C,D,1 + K)
        
                      [D >= 1 + A] ==>                   
                    f55(A,B,C,D,K)   = 1 + A + -1*D      
                                    >= 1 + A + -1*D      
                                     = f61(A,B,C,D,K)    
        
                      [K >= 1 + A] ==>                   
                    f53(A,B,C,D,K)   = 1 + A + -1*D      
                                    >= 1 + A + -1*D      
                                     = f10(A,1 + B,C,D,K)
        
                      [D >= 1 + A] ==>                   
                    f34(A,B,C,D,K)   = 1 + A + -1*D      
                                    >= 1 + A + -1*D      
                                     = f53(A,B,C,D,K)    
        
        [0 >= 1 + U && D >= 1 + A] ==>                   
                    f34(A,B,C,D,K)   = 1 + A + -1*D      
                                    >= 1 + A + -1*D      
                                     = f53(A,B,C,D,K)    
        
                      [D >= 1 + A] ==>                   
                    f29(A,B,C,D,K)   = 1 + A + -1*D      
                                    >= 1 + A + -1*D      
                                     = f34(A,B,C,D,K)    
        
             [D >= 1 + A && C = 0] ==>                   
                    f13(A,B,C,D,K)   = 1 + A + -1*D      
                                    >= 1 + A + -1*D      
                                     = f10(A,1 + B,0,D,K)
        
        [0 >= 1 + C && D >= 1 + A] ==>                   
                    f13(A,B,C,D,K)   = 1 + A + -1*D      
                                    >= 1 + A + -1*D      
                                     = f29(A,B,C,D,K)    
        
            [C >= 1 && D >= 1 + A] ==>                   
                    f13(A,B,C,D,K)   = 1 + A + -1*D      
                                    >= 1 + A + -1*D      
                                     = f29(A,B,C,D,K)    
        
        
* Step 10: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,D,K)  -> f10(A,B,C,D,K)     [A >= 2]                   (1,1)        
          1.  f10(A,B,C,D,K) -> f13(A,B,0,D,K)     [A >= 1 + B]               (2 + A + B,1)
          2.  f13(A,B,C,D,K) -> f13(A,B,C,1 + D,K) [C >= 1 + S && A >= D]     (?,1)        
          3.  f13(A,B,C,D,K) -> f13(A,B,S,1 + D,K) [S >= C && A >= D]         (1 + A + D,1)
          8.  f53(A,B,C,D,K) -> f55(A,B,C,D,K)     [A >= K]                   (1 + A + K,1)
          9.  f55(A,B,C,D,K) -> f55(A,B,C,1 + D,K) [A >= D]                   (?,1)        
          11. f61(A,B,C,D,K) -> f53(A,B,C,D,1 + K) [D >= 1 + A]               (?,1)        
          12. f55(A,B,C,D,K) -> f61(A,B,C,D,K)     [D >= 1 + A]               (?,1)        
          13. f53(A,B,C,D,K) -> f10(A,1 + B,C,D,K) [K >= 1 + A]               (?,1)        
          14. f34(A,B,C,D,K) -> f53(A,B,C,D,K)     [D >= 1 + A]               (?,1)        
          15. f34(A,B,C,D,K) -> f53(A,B,C,D,K)     [0 >= 1 + U && D >= 1 + A] (?,1)        
          16. f29(A,B,C,D,K) -> f34(A,B,C,D,K)     [D >= 1 + A]               (?,1)        
          17. f13(A,B,C,D,K) -> f10(A,1 + B,0,D,K) [D >= 1 + A && C = 0]      (?,1)        
          18. f13(A,B,C,D,K) -> f29(A,B,C,D,K)     [0 >= 1 + C && D >= 1 + A] (?,1)        
          19. f13(A,B,C,D,K) -> f29(A,B,C,D,K)     [C >= 1 && D >= 1 + A]     (?,1)        
        Signature:
          {(f0,5);(f10,5);(f13,5);(f29,5);(f34,5);(f53,5);(f55,5);(f61,5);(f73,5)}
        Flow Graph:
          [0->{1},1->{2,3,17},2->{2,3,17,18,19},3->{2,3,17,18,19},8->{9,12},9->{9,12},11->{8,13},12->{11},13->{1}
          ,14->{8,13},15->{8,13},16->{14,15},17->{1},18->{16},19->{16}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>,     D) (< 0,0,K>, K) 
          (< 1,0,A>, A) (< 1,0,B>, A) (< 1,0,C>, 0) (< 1,0,D>,     ?) (< 1,0,K>, ?) 
          (< 2,0,A>, A) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, 1 + A) (< 2,0,K>, ?) 
          (< 3,0,A>, A) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, 1 + A) (< 3,0,K>, ?) 
          (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>,     ?) (< 8,0,K>, A) 
          (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, 1 + A) (< 9,0,K>, A) 
          (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>,     ?) (<11,0,K>, A) 
          (<12,0,A>, A) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>,     ?) (<12,0,K>, A) 
          (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>,     ?) (<13,0,K>, ?) 
          (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>,     ?) (<14,0,K>, ?) 
          (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>,     ?) (<15,0,K>, ?) 
          (<16,0,A>, A) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>,     ?) (<16,0,K>, ?) 
          (<17,0,A>, A) (<17,0,B>, ?) (<17,0,C>, 0) (<17,0,D>,     ?) (<17,0,K>, ?) 
          (<18,0,A>, A) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>,     ?) (<18,0,K>, ?) 
          (<19,0,A>, A) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>,     ?) (<19,0,K>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 1 + x1 + -1*x4
          p(f10) = 1 + x1 + -1*x4
          p(f13) = 1 + x1 + -1*x4
          p(f29) = 1 + x1 + -1*x4
          p(f34) = 1 + x1 + -1*x4
          p(f53) = 1 + x1 + -1*x4
          p(f55) = 1 + x1 + -1*x4
          p(f61) = 1 + x1 + -1*x4
        
        The following rules are strictly oriented:
        [C >= 1 + S && A >= D] ==>                   
                f13(A,B,C,D,K)   = 1 + A + -1*D      
                                 > A + -1*D          
                                 = f13(A,B,C,1 + D,K)
        
            [S >= C && A >= D] ==>                   
                f13(A,B,C,D,K)   = 1 + A + -1*D      
                                 > A + -1*D          
                                 = f13(A,B,S,1 + D,K)
        
        
        The following rules are weakly oriented:
                          [A >= 2] ==>                   
                     f0(A,B,C,D,K)   = 1 + A + -1*D      
                                    >= 1 + A + -1*D      
                                     = f10(A,B,C,D,K)    
        
                      [A >= 1 + B] ==>                   
                    f10(A,B,C,D,K)   = 1 + A + -1*D      
                                    >= 1 + A + -1*D      
                                     = f13(A,B,0,D,K)    
        
                          [A >= K] ==>                   
                    f53(A,B,C,D,K)   = 1 + A + -1*D      
                                    >= 1 + A + -1*D      
                                     = f55(A,B,C,D,K)    
        
                          [A >= D] ==>                   
                    f55(A,B,C,D,K)   = 1 + A + -1*D      
                                    >= A + -1*D          
                                     = f55(A,B,C,1 + D,K)
        
                      [D >= 1 + A] ==>                   
                    f61(A,B,C,D,K)   = 1 + A + -1*D      
                                    >= 1 + A + -1*D      
                                     = f53(A,B,C,D,1 + K)
        
                      [D >= 1 + A] ==>                   
                    f55(A,B,C,D,K)   = 1 + A + -1*D      
                                    >= 1 + A + -1*D      
                                     = f61(A,B,C,D,K)    
        
                      [K >= 1 + A] ==>                   
                    f53(A,B,C,D,K)   = 1 + A + -1*D      
                                    >= 1 + A + -1*D      
                                     = f10(A,1 + B,C,D,K)
        
                      [D >= 1 + A] ==>                   
                    f34(A,B,C,D,K)   = 1 + A + -1*D      
                                    >= 1 + A + -1*D      
                                     = f53(A,B,C,D,K)    
        
        [0 >= 1 + U && D >= 1 + A] ==>                   
                    f34(A,B,C,D,K)   = 1 + A + -1*D      
                                    >= 1 + A + -1*D      
                                     = f53(A,B,C,D,K)    
        
                      [D >= 1 + A] ==>                   
                    f29(A,B,C,D,K)   = 1 + A + -1*D      
                                    >= 1 + A + -1*D      
                                     = f34(A,B,C,D,K)    
        
             [D >= 1 + A && C = 0] ==>                   
                    f13(A,B,C,D,K)   = 1 + A + -1*D      
                                    >= 1 + A + -1*D      
                                     = f10(A,1 + B,0,D,K)
        
        [0 >= 1 + C && D >= 1 + A] ==>                   
                    f13(A,B,C,D,K)   = 1 + A + -1*D      
                                    >= 1 + A + -1*D      
                                     = f29(A,B,C,D,K)    
        
            [C >= 1 && D >= 1 + A] ==>                   
                    f13(A,B,C,D,K)   = 1 + A + -1*D      
                                    >= 1 + A + -1*D      
                                     = f29(A,B,C,D,K)    
        
        
* Step 11: KnowledgePropagation WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,D,K)  -> f10(A,B,C,D,K)     [A >= 2]                   (1,1)        
          1.  f10(A,B,C,D,K) -> f13(A,B,0,D,K)     [A >= 1 + B]               (2 + A + B,1)
          2.  f13(A,B,C,D,K) -> f13(A,B,C,1 + D,K) [C >= 1 + S && A >= D]     (1 + A + D,1)
          3.  f13(A,B,C,D,K) -> f13(A,B,S,1 + D,K) [S >= C && A >= D]         (1 + A + D,1)
          8.  f53(A,B,C,D,K) -> f55(A,B,C,D,K)     [A >= K]                   (1 + A + K,1)
          9.  f55(A,B,C,D,K) -> f55(A,B,C,1 + D,K) [A >= D]                   (?,1)        
          11. f61(A,B,C,D,K) -> f53(A,B,C,D,1 + K) [D >= 1 + A]               (?,1)        
          12. f55(A,B,C,D,K) -> f61(A,B,C,D,K)     [D >= 1 + A]               (?,1)        
          13. f53(A,B,C,D,K) -> f10(A,1 + B,C,D,K) [K >= 1 + A]               (?,1)        
          14. f34(A,B,C,D,K) -> f53(A,B,C,D,K)     [D >= 1 + A]               (?,1)        
          15. f34(A,B,C,D,K) -> f53(A,B,C,D,K)     [0 >= 1 + U && D >= 1 + A] (?,1)        
          16. f29(A,B,C,D,K) -> f34(A,B,C,D,K)     [D >= 1 + A]               (?,1)        
          17. f13(A,B,C,D,K) -> f10(A,1 + B,0,D,K) [D >= 1 + A && C = 0]      (?,1)        
          18. f13(A,B,C,D,K) -> f29(A,B,C,D,K)     [0 >= 1 + C && D >= 1 + A] (?,1)        
          19. f13(A,B,C,D,K) -> f29(A,B,C,D,K)     [C >= 1 && D >= 1 + A]     (?,1)        
        Signature:
          {(f0,5);(f10,5);(f13,5);(f29,5);(f34,5);(f53,5);(f55,5);(f61,5);(f73,5)}
        Flow Graph:
          [0->{1},1->{2,3,17},2->{2,3,17,18,19},3->{2,3,17,18,19},8->{9,12},9->{9,12},11->{8,13},12->{11},13->{1}
          ,14->{8,13},15->{8,13},16->{14,15},17->{1},18->{16},19->{16}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>,     D) (< 0,0,K>, K) 
          (< 1,0,A>, A) (< 1,0,B>, A) (< 1,0,C>, 0) (< 1,0,D>,     ?) (< 1,0,K>, ?) 
          (< 2,0,A>, A) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, 1 + A) (< 2,0,K>, ?) 
          (< 3,0,A>, A) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, 1 + A) (< 3,0,K>, ?) 
          (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>,     ?) (< 8,0,K>, A) 
          (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, 1 + A) (< 9,0,K>, A) 
          (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>,     ?) (<11,0,K>, A) 
          (<12,0,A>, A) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>,     ?) (<12,0,K>, A) 
          (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>,     ?) (<13,0,K>, ?) 
          (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>,     ?) (<14,0,K>, ?) 
          (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>,     ?) (<15,0,K>, ?) 
          (<16,0,A>, A) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>,     ?) (<16,0,K>, ?) 
          (<17,0,A>, A) (<17,0,B>, ?) (<17,0,C>, 0) (<17,0,D>,     ?) (<17,0,K>, ?) 
          (<18,0,A>, A) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>,     ?) (<18,0,K>, ?) 
          (<19,0,A>, A) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>,     ?) (<19,0,K>, ?) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 12: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,D,K)  -> f10(A,B,C,D,K)     [A >= 2]                   (1,1)                
          1.  f10(A,B,C,D,K) -> f13(A,B,0,D,K)     [A >= 1 + B]               (2 + A + B,1)        
          2.  f13(A,B,C,D,K) -> f13(A,B,C,1 + D,K) [C >= 1 + S && A >= D]     (1 + A + D,1)        
          3.  f13(A,B,C,D,K) -> f13(A,B,S,1 + D,K) [S >= C && A >= D]         (1 + A + D,1)        
          8.  f53(A,B,C,D,K) -> f55(A,B,C,D,K)     [A >= K]                   (1 + A + K,1)        
          9.  f55(A,B,C,D,K) -> f55(A,B,C,1 + D,K) [A >= D]                   (?,1)                
          11. f61(A,B,C,D,K) -> f53(A,B,C,D,1 + K) [D >= 1 + A]               (?,1)                
          12. f55(A,B,C,D,K) -> f61(A,B,C,D,K)     [D >= 1 + A]               (?,1)                
          13. f53(A,B,C,D,K) -> f10(A,1 + B,C,D,K) [K >= 1 + A]               (?,1)                
          14. f34(A,B,C,D,K) -> f53(A,B,C,D,K)     [D >= 1 + A]               (4 + 4*A + 4*D,1)    
          15. f34(A,B,C,D,K) -> f53(A,B,C,D,K)     [0 >= 1 + U && D >= 1 + A] (4 + 4*A + 4*D,1)    
          16. f29(A,B,C,D,K) -> f34(A,B,C,D,K)     [D >= 1 + A]               (4 + 4*A + 4*D,1)    
          17. f13(A,B,C,D,K) -> f10(A,1 + B,0,D,K) [D >= 1 + A && C = 0]      (4 + 3*A + B + 2*D,1)
          18. f13(A,B,C,D,K) -> f29(A,B,C,D,K)     [0 >= 1 + C && D >= 1 + A] (2 + 2*A + 2*D,1)    
          19. f13(A,B,C,D,K) -> f29(A,B,C,D,K)     [C >= 1 && D >= 1 + A]     (2 + 2*A + 2*D,1)    
        Signature:
          {(f0,5);(f10,5);(f13,5);(f29,5);(f34,5);(f53,5);(f55,5);(f61,5);(f73,5)}
        Flow Graph:
          [0->{1},1->{2,3,17},2->{2,3,17,18,19},3->{2,3,17,18,19},8->{9,12},9->{9,12},11->{8,13},12->{11},13->{1}
          ,14->{8,13},15->{8,13},16->{14,15},17->{1},18->{16},19->{16}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>,     D) (< 0,0,K>, K) 
          (< 1,0,A>, A) (< 1,0,B>, A) (< 1,0,C>, 0) (< 1,0,D>,     ?) (< 1,0,K>, ?) 
          (< 2,0,A>, A) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, 1 + A) (< 2,0,K>, ?) 
          (< 3,0,A>, A) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, 1 + A) (< 3,0,K>, ?) 
          (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>,     ?) (< 8,0,K>, A) 
          (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, 1 + A) (< 9,0,K>, A) 
          (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>,     ?) (<11,0,K>, A) 
          (<12,0,A>, A) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>,     ?) (<12,0,K>, A) 
          (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>,     ?) (<13,0,K>, ?) 
          (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>,     ?) (<14,0,K>, ?) 
          (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>,     ?) (<15,0,K>, ?) 
          (<16,0,A>, A) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>,     ?) (<16,0,K>, ?) 
          (<17,0,A>, A) (<17,0,B>, ?) (<17,0,C>, 0) (<17,0,D>,     ?) (<17,0,K>, ?) 
          (<18,0,A>, A) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>,     ?) (<18,0,K>, ?) 
          (<19,0,A>, A) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>,     ?) (<19,0,K>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 1 + x1 + -1*x4
          p(f10) = 1 + x1 + -1*x4
          p(f13) = 1 + x1 + -1*x4
          p(f29) = 1 + x1 + -1*x4
          p(f34) = 1 + x1 + -1*x4
          p(f53) = 1 + x1 + -1*x4
          p(f55) = 1 + x1 + -1*x4
          p(f61) = 1 + x1 + -1*x4
        
        The following rules are strictly oriented:
        [C >= 1 + S && A >= D] ==>                   
                f13(A,B,C,D,K)   = 1 + A + -1*D      
                                 > A + -1*D          
                                 = f13(A,B,C,1 + D,K)
        
            [S >= C && A >= D] ==>                   
                f13(A,B,C,D,K)   = 1 + A + -1*D      
                                 > A + -1*D          
                                 = f13(A,B,S,1 + D,K)
        
                      [A >= D] ==>                   
                f55(A,B,C,D,K)   = 1 + A + -1*D      
                                 > A + -1*D          
                                 = f55(A,B,C,1 + D,K)
        
        
        The following rules are weakly oriented:
                          [A >= 2] ==>                   
                     f0(A,B,C,D,K)   = 1 + A + -1*D      
                                    >= 1 + A + -1*D      
                                     = f10(A,B,C,D,K)    
        
                      [A >= 1 + B] ==>                   
                    f10(A,B,C,D,K)   = 1 + A + -1*D      
                                    >= 1 + A + -1*D      
                                     = f13(A,B,0,D,K)    
        
                          [A >= K] ==>                   
                    f53(A,B,C,D,K)   = 1 + A + -1*D      
                                    >= 1 + A + -1*D      
                                     = f55(A,B,C,D,K)    
        
                      [D >= 1 + A] ==>                   
                    f61(A,B,C,D,K)   = 1 + A + -1*D      
                                    >= 1 + A + -1*D      
                                     = f53(A,B,C,D,1 + K)
        
                      [D >= 1 + A] ==>                   
                    f55(A,B,C,D,K)   = 1 + A + -1*D      
                                    >= 1 + A + -1*D      
                                     = f61(A,B,C,D,K)    
        
                      [K >= 1 + A] ==>                   
                    f53(A,B,C,D,K)   = 1 + A + -1*D      
                                    >= 1 + A + -1*D      
                                     = f10(A,1 + B,C,D,K)
        
                      [D >= 1 + A] ==>                   
                    f34(A,B,C,D,K)   = 1 + A + -1*D      
                                    >= 1 + A + -1*D      
                                     = f53(A,B,C,D,K)    
        
        [0 >= 1 + U && D >= 1 + A] ==>                   
                    f34(A,B,C,D,K)   = 1 + A + -1*D      
                                    >= 1 + A + -1*D      
                                     = f53(A,B,C,D,K)    
        
                      [D >= 1 + A] ==>                   
                    f29(A,B,C,D,K)   = 1 + A + -1*D      
                                    >= 1 + A + -1*D      
                                     = f34(A,B,C,D,K)    
        
             [D >= 1 + A && C = 0] ==>                   
                    f13(A,B,C,D,K)   = 1 + A + -1*D      
                                    >= 1 + A + -1*D      
                                     = f10(A,1 + B,0,D,K)
        
        [0 >= 1 + C && D >= 1 + A] ==>                   
                    f13(A,B,C,D,K)   = 1 + A + -1*D      
                                    >= 1 + A + -1*D      
                                     = f29(A,B,C,D,K)    
        
            [C >= 1 && D >= 1 + A] ==>                   
                    f13(A,B,C,D,K)   = 1 + A + -1*D      
                                    >= 1 + A + -1*D      
                                     = f29(A,B,C,D,K)    
        
        
* Step 13: KnowledgePropagation WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,D,K)  -> f10(A,B,C,D,K)     [A >= 2]                   (1,1)                
          1.  f10(A,B,C,D,K) -> f13(A,B,0,D,K)     [A >= 1 + B]               (2 + A + B,1)        
          2.  f13(A,B,C,D,K) -> f13(A,B,C,1 + D,K) [C >= 1 + S && A >= D]     (1 + A + D,1)        
          3.  f13(A,B,C,D,K) -> f13(A,B,S,1 + D,K) [S >= C && A >= D]         (1 + A + D,1)        
          8.  f53(A,B,C,D,K) -> f55(A,B,C,D,K)     [A >= K]                   (1 + A + K,1)        
          9.  f55(A,B,C,D,K) -> f55(A,B,C,1 + D,K) [A >= D]                   (1 + A + D,1)        
          11. f61(A,B,C,D,K) -> f53(A,B,C,D,1 + K) [D >= 1 + A]               (?,1)                
          12. f55(A,B,C,D,K) -> f61(A,B,C,D,K)     [D >= 1 + A]               (?,1)                
          13. f53(A,B,C,D,K) -> f10(A,1 + B,C,D,K) [K >= 1 + A]               (?,1)                
          14. f34(A,B,C,D,K) -> f53(A,B,C,D,K)     [D >= 1 + A]               (4 + 4*A + 4*D,1)    
          15. f34(A,B,C,D,K) -> f53(A,B,C,D,K)     [0 >= 1 + U && D >= 1 + A] (4 + 4*A + 4*D,1)    
          16. f29(A,B,C,D,K) -> f34(A,B,C,D,K)     [D >= 1 + A]               (4 + 4*A + 4*D,1)    
          17. f13(A,B,C,D,K) -> f10(A,1 + B,0,D,K) [D >= 1 + A && C = 0]      (4 + 3*A + B + 2*D,1)
          18. f13(A,B,C,D,K) -> f29(A,B,C,D,K)     [0 >= 1 + C && D >= 1 + A] (2 + 2*A + 2*D,1)    
          19. f13(A,B,C,D,K) -> f29(A,B,C,D,K)     [C >= 1 && D >= 1 + A]     (2 + 2*A + 2*D,1)    
        Signature:
          {(f0,5);(f10,5);(f13,5);(f29,5);(f34,5);(f53,5);(f55,5);(f61,5);(f73,5)}
        Flow Graph:
          [0->{1},1->{2,3,17},2->{2,3,17,18,19},3->{2,3,17,18,19},8->{9,12},9->{9,12},11->{8,13},12->{11},13->{1}
          ,14->{8,13},15->{8,13},16->{14,15},17->{1},18->{16},19->{16}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>,     D) (< 0,0,K>, K) 
          (< 1,0,A>, A) (< 1,0,B>, A) (< 1,0,C>, 0) (< 1,0,D>,     ?) (< 1,0,K>, ?) 
          (< 2,0,A>, A) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, 1 + A) (< 2,0,K>, ?) 
          (< 3,0,A>, A) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, 1 + A) (< 3,0,K>, ?) 
          (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>,     ?) (< 8,0,K>, A) 
          (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, 1 + A) (< 9,0,K>, A) 
          (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>,     ?) (<11,0,K>, A) 
          (<12,0,A>, A) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>,     ?) (<12,0,K>, A) 
          (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>,     ?) (<13,0,K>, ?) 
          (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>,     ?) (<14,0,K>, ?) 
          (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>,     ?) (<15,0,K>, ?) 
          (<16,0,A>, A) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>,     ?) (<16,0,K>, ?) 
          (<17,0,A>, A) (<17,0,B>, ?) (<17,0,C>, 0) (<17,0,D>,     ?) (<17,0,K>, ?) 
          (<18,0,A>, A) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>,     ?) (<18,0,K>, ?) 
          (<19,0,A>, A) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>,     ?) (<19,0,K>, ?) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 14: LocalSizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,D,K)  -> f10(A,B,C,D,K)     [A >= 2]                   (1,1)                  
          1.  f10(A,B,C,D,K) -> f13(A,B,0,D,K)     [A >= 1 + B]               (2 + A + B,1)          
          2.  f13(A,B,C,D,K) -> f13(A,B,C,1 + D,K) [C >= 1 + S && A >= D]     (1 + A + D,1)          
          3.  f13(A,B,C,D,K) -> f13(A,B,S,1 + D,K) [S >= C && A >= D]         (1 + A + D,1)          
          8.  f53(A,B,C,D,K) -> f55(A,B,C,D,K)     [A >= K]                   (1 + A + K,1)          
          9.  f55(A,B,C,D,K) -> f55(A,B,C,1 + D,K) [A >= D]                   (1 + A + D,1)          
          11. f61(A,B,C,D,K) -> f53(A,B,C,D,1 + K) [D >= 1 + A]               (2 + 2*A + D + K,1)    
          12. f55(A,B,C,D,K) -> f61(A,B,C,D,K)     [D >= 1 + A]               (2 + 2*A + D + K,1)    
          13. f53(A,B,C,D,K) -> f10(A,1 + B,C,D,K) [K >= 1 + A]               (10 + 10*A + 9*D + K,1)
          14. f34(A,B,C,D,K) -> f53(A,B,C,D,K)     [D >= 1 + A]               (4 + 4*A + 4*D,1)      
          15. f34(A,B,C,D,K) -> f53(A,B,C,D,K)     [0 >= 1 + U && D >= 1 + A] (4 + 4*A + 4*D,1)      
          16. f29(A,B,C,D,K) -> f34(A,B,C,D,K)     [D >= 1 + A]               (4 + 4*A + 4*D,1)      
          17. f13(A,B,C,D,K) -> f10(A,1 + B,0,D,K) [D >= 1 + A && C = 0]      (4 + 3*A + B + 2*D,1)  
          18. f13(A,B,C,D,K) -> f29(A,B,C,D,K)     [0 >= 1 + C && D >= 1 + A] (2 + 2*A + 2*D,1)      
          19. f13(A,B,C,D,K) -> f29(A,B,C,D,K)     [C >= 1 && D >= 1 + A]     (2 + 2*A + 2*D,1)      
        Signature:
          {(f0,5);(f10,5);(f13,5);(f29,5);(f34,5);(f53,5);(f55,5);(f61,5);(f73,5)}
        Flow Graph:
          [0->{1},1->{2,3,17},2->{2,3,17,18,19},3->{2,3,17,18,19},8->{9,12},9->{9,12},11->{8,13},12->{11},13->{1}
          ,14->{8,13},15->{8,13},16->{14,15},17->{1},18->{16},19->{16}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>,     D) (< 0,0,K>, K) 
          (< 1,0,A>, A) (< 1,0,B>, A) (< 1,0,C>, 0) (< 1,0,D>,     ?) (< 1,0,K>, ?) 
          (< 2,0,A>, A) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, 1 + A) (< 2,0,K>, ?) 
          (< 3,0,A>, A) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, 1 + A) (< 3,0,K>, ?) 
          (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>,     ?) (< 8,0,K>, A) 
          (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, 1 + A) (< 9,0,K>, A) 
          (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>,     ?) (<11,0,K>, A) 
          (<12,0,A>, A) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>,     ?) (<12,0,K>, A) 
          (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>,     ?) (<13,0,K>, ?) 
          (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>,     ?) (<14,0,K>, ?) 
          (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>,     ?) (<15,0,K>, ?) 
          (<16,0,A>, A) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>,     ?) (<16,0,K>, ?) 
          (<17,0,A>, A) (<17,0,B>, ?) (<17,0,C>, 0) (<17,0,D>,     ?) (<17,0,K>, ?) 
          (<18,0,A>, A) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>,     ?) (<18,0,K>, ?) 
          (<19,0,A>, A) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>,     ?) (<19,0,K>, ?) 
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        The problem is already solved.

WORST_CASE(?,O(n^1))