WORST_CASE(?,O(n^2)) * Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalrsdstart(A,B,C) -> evalrsdentryin(A,B,C) True (1,1) 1. evalrsdentryin(A,B,C) -> evalrsdbbin(A,B,C) [A >= 0] (?,1) 2. evalrsdentryin(A,B,C) -> evalrsdreturnin(A,B,C) [0 >= 1 + A] (?,1) 3. evalrsdbbin(A,B,C) -> evalrsdbb4in(A,2*A,2*A) True (?,1) 4. evalrsdbb4in(A,B,C) -> evalrsdbb1in(A,B,C) [C >= A] (?,1) 5. evalrsdbb4in(A,B,C) -> evalrsdreturnin(A,B,C) [A >= 1 + C] (?,1) 6. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,C) [0 >= 1 + D] (?,1) 7. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,C) [D >= 1] (?,1) 8. evalrsdbb1in(A,B,C) -> evalrsdbb3in(A,B,C) True (?,1) 9. evalrsdbb2in(A,B,C) -> evalrsdbb4in(A,B,-1 + C) True (?,1) 10. evalrsdbb3in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True (?,1) 11. evalrsdreturnin(A,B,C) -> evalrsdstop(A,B,C) True (?,1) Signature: {(evalrsdbb1in,3) ;(evalrsdbb2in,3) ;(evalrsdbb3in,3) ;(evalrsdbb4in,3) ;(evalrsdbbin,3) ;(evalrsdentryin,3) ;(evalrsdreturnin,3) ;(evalrsdstart,3) ;(evalrsdstop,3)} Flow Graph: [0->{1,2},1->{3},2->{11},3->{4,5},4->{6,7,8},5->{11},6->{9},7->{9},8->{10},9->{4,5},10->{4,5},11->{}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (< 0,0,A>, A, .= 0) (< 0,0,B>, B, .= 0) (< 0,0,C>, C, .= 0) (< 1,0,A>, A, .= 0) (< 1,0,B>, B, .= 0) (< 1,0,C>, C, .= 0) (< 2,0,A>, A, .= 0) (< 2,0,B>, B, .= 0) (< 2,0,C>, C, .= 0) (< 3,0,A>, A, .= 0) (< 3,0,B>, 2*A, .?) (< 3,0,C>, 2*A, .?) (< 4,0,A>, A, .= 0) (< 4,0,B>, B, .= 0) (< 4,0,C>, C, .= 0) (< 5,0,A>, A, .= 0) (< 5,0,B>, B, .= 0) (< 5,0,C>, C, .= 0) (< 6,0,A>, A, .= 0) (< 6,0,B>, B, .= 0) (< 6,0,C>, C, .= 0) (< 7,0,A>, A, .= 0) (< 7,0,B>, B, .= 0) (< 7,0,C>, C, .= 0) (< 8,0,A>, A, .= 0) (< 8,0,B>, B, .= 0) (< 8,0,C>, C, .= 0) (< 9,0,A>, A, .= 0) (< 9,0,B>, B, .= 0) (< 9,0,C>, 1 + C, .+ 1) (<10,0,A>, A, .= 0) (<10,0,B>, 1 + B, .+ 1) (<10,0,C>, 1 + B, .+ 1) (<11,0,A>, A, .= 0) (<11,0,B>, B, .= 0) (<11,0,C>, C, .= 0) * Step 2: SizeboundsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalrsdstart(A,B,C) -> evalrsdentryin(A,B,C) True (1,1) 1. evalrsdentryin(A,B,C) -> evalrsdbbin(A,B,C) [A >= 0] (?,1) 2. evalrsdentryin(A,B,C) -> evalrsdreturnin(A,B,C) [0 >= 1 + A] (?,1) 3. evalrsdbbin(A,B,C) -> evalrsdbb4in(A,2*A,2*A) True (?,1) 4. evalrsdbb4in(A,B,C) -> evalrsdbb1in(A,B,C) [C >= A] (?,1) 5. evalrsdbb4in(A,B,C) -> evalrsdreturnin(A,B,C) [A >= 1 + C] (?,1) 6. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,C) [0 >= 1 + D] (?,1) 7. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,C) [D >= 1] (?,1) 8. evalrsdbb1in(A,B,C) -> evalrsdbb3in(A,B,C) True (?,1) 9. evalrsdbb2in(A,B,C) -> evalrsdbb4in(A,B,-1 + C) True (?,1) 10. evalrsdbb3in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True (?,1) 11. evalrsdreturnin(A,B,C) -> evalrsdstop(A,B,C) True (?,1) Signature: {(evalrsdbb1in,3) ;(evalrsdbb2in,3) ;(evalrsdbb3in,3) ;(evalrsdbb4in,3) ;(evalrsdbbin,3) ;(evalrsdentryin,3) ;(evalrsdreturnin,3) ;(evalrsdstart,3) ;(evalrsdstop,3)} Flow Graph: [0->{1,2},1->{3},2->{11},3->{4,5},4->{6,7,8},5->{11},6->{9},7->{9},8->{10},9->{4,5},10->{4,5},11->{}] Sizebounds: (< 0,0,A>, ?) (< 0,0,B>, ?) (< 0,0,C>, ?) (< 1,0,A>, ?) (< 1,0,B>, ?) (< 1,0,C>, ?) (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, C) (< 2,0,A>, A) (< 2,0,B>, B) (< 2,0,C>, C) (< 3,0,A>, A) (< 3,0,B>, 2*A) (< 3,0,C>, 2*A) (< 4,0,A>, A) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 5,0,A>, A) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, ?) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, ?) (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, ?) * Step 3: LeafRules WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalrsdstart(A,B,C) -> evalrsdentryin(A,B,C) True (1,1) 1. evalrsdentryin(A,B,C) -> evalrsdbbin(A,B,C) [A >= 0] (?,1) 2. evalrsdentryin(A,B,C) -> evalrsdreturnin(A,B,C) [0 >= 1 + A] (?,1) 3. evalrsdbbin(A,B,C) -> evalrsdbb4in(A,2*A,2*A) True (?,1) 4. evalrsdbb4in(A,B,C) -> evalrsdbb1in(A,B,C) [C >= A] (?,1) 5. evalrsdbb4in(A,B,C) -> evalrsdreturnin(A,B,C) [A >= 1 + C] (?,1) 6. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,C) [0 >= 1 + D] (?,1) 7. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,C) [D >= 1] (?,1) 8. evalrsdbb1in(A,B,C) -> evalrsdbb3in(A,B,C) True (?,1) 9. evalrsdbb2in(A,B,C) -> evalrsdbb4in(A,B,-1 + C) True (?,1) 10. evalrsdbb3in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True (?,1) 11. evalrsdreturnin(A,B,C) -> evalrsdstop(A,B,C) True (?,1) Signature: {(evalrsdbb1in,3) ;(evalrsdbb2in,3) ;(evalrsdbb3in,3) ;(evalrsdbb4in,3) ;(evalrsdbbin,3) ;(evalrsdentryin,3) ;(evalrsdreturnin,3) ;(evalrsdstart,3) ;(evalrsdstop,3)} Flow Graph: [0->{1,2},1->{3},2->{11},3->{4,5},4->{6,7,8},5->{11},6->{9},7->{9},8->{10},9->{4,5},10->{4,5},11->{}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, C) (< 2,0,A>, A) (< 2,0,B>, B) (< 2,0,C>, C) (< 3,0,A>, A) (< 3,0,B>, 2*A) (< 3,0,C>, 2*A) (< 4,0,A>, A) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 5,0,A>, A) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, ?) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, ?) (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, ?) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [2,5,11] * Step 4: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalrsdstart(A,B,C) -> evalrsdentryin(A,B,C) True (1,1) 1. evalrsdentryin(A,B,C) -> evalrsdbbin(A,B,C) [A >= 0] (?,1) 3. evalrsdbbin(A,B,C) -> evalrsdbb4in(A,2*A,2*A) True (?,1) 4. evalrsdbb4in(A,B,C) -> evalrsdbb1in(A,B,C) [C >= A] (?,1) 6. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,C) [0 >= 1 + D] (?,1) 7. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,C) [D >= 1] (?,1) 8. evalrsdbb1in(A,B,C) -> evalrsdbb3in(A,B,C) True (?,1) 9. evalrsdbb2in(A,B,C) -> evalrsdbb4in(A,B,-1 + C) True (?,1) 10. evalrsdbb3in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True (?,1) Signature: {(evalrsdbb1in,3) ;(evalrsdbb2in,3) ;(evalrsdbb3in,3) ;(evalrsdbb4in,3) ;(evalrsdbbin,3) ;(evalrsdentryin,3) ;(evalrsdreturnin,3) ;(evalrsdstart,3) ;(evalrsdstop,3)} Flow Graph: [0->{1},1->{3},3->{4},4->{6,7,8},6->{9},7->{9},8->{10},9->{4},10->{4}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, C) (< 3,0,A>, A) (< 3,0,B>, 2*A) (< 3,0,C>, 2*A) (< 4,0,A>, A) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, ?) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, ?) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalrsdbb1in) = 1 p(evalrsdbb2in) = 1 p(evalrsdbb3in) = 1 p(evalrsdbb4in) = 1 p(evalrsdbbin) = 2 p(evalrsdentryin) = 2 p(evalrsdstart) = 2 The following rules are strictly oriented: True ==> evalrsdbbin(A,B,C) = 2 > 1 = evalrsdbb4in(A,2*A,2*A) The following rules are weakly oriented: True ==> evalrsdstart(A,B,C) = 2 >= 2 = evalrsdentryin(A,B,C) [A >= 0] ==> evalrsdentryin(A,B,C) = 2 >= 2 = evalrsdbbin(A,B,C) [C >= A] ==> evalrsdbb4in(A,B,C) = 1 >= 1 = evalrsdbb1in(A,B,C) [0 >= 1 + D] ==> evalrsdbb1in(A,B,C) = 1 >= 1 = evalrsdbb2in(A,B,C) [D >= 1] ==> evalrsdbb1in(A,B,C) = 1 >= 1 = evalrsdbb2in(A,B,C) True ==> evalrsdbb1in(A,B,C) = 1 >= 1 = evalrsdbb3in(A,B,C) True ==> evalrsdbb2in(A,B,C) = 1 >= 1 = evalrsdbb4in(A,B,-1 + C) True ==> evalrsdbb3in(A,B,C) = 1 >= 1 = evalrsdbb4in(A,-1 + B,-1 + B) * Step 5: KnowledgePropagation WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalrsdstart(A,B,C) -> evalrsdentryin(A,B,C) True (1,1) 1. evalrsdentryin(A,B,C) -> evalrsdbbin(A,B,C) [A >= 0] (?,1) 3. evalrsdbbin(A,B,C) -> evalrsdbb4in(A,2*A,2*A) True (2,1) 4. evalrsdbb4in(A,B,C) -> evalrsdbb1in(A,B,C) [C >= A] (?,1) 6. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,C) [0 >= 1 + D] (?,1) 7. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,C) [D >= 1] (?,1) 8. evalrsdbb1in(A,B,C) -> evalrsdbb3in(A,B,C) True (?,1) 9. evalrsdbb2in(A,B,C) -> evalrsdbb4in(A,B,-1 + C) True (?,1) 10. evalrsdbb3in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True (?,1) Signature: {(evalrsdbb1in,3) ;(evalrsdbb2in,3) ;(evalrsdbb3in,3) ;(evalrsdbb4in,3) ;(evalrsdbbin,3) ;(evalrsdentryin,3) ;(evalrsdreturnin,3) ;(evalrsdstart,3) ;(evalrsdstop,3)} Flow Graph: [0->{1},1->{3},3->{4},4->{6,7,8},6->{9},7->{9},8->{10},9->{4},10->{4}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, C) (< 3,0,A>, A) (< 3,0,B>, 2*A) (< 3,0,C>, 2*A) (< 4,0,A>, A) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, ?) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, ?) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 6: ChainProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalrsdstart(A,B,C) -> evalrsdentryin(A,B,C) True (1,1) 1. evalrsdentryin(A,B,C) -> evalrsdbbin(A,B,C) [A >= 0] (1,1) 3. evalrsdbbin(A,B,C) -> evalrsdbb4in(A,2*A,2*A) True (2,1) 4. evalrsdbb4in(A,B,C) -> evalrsdbb1in(A,B,C) [C >= A] (?,1) 6. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,C) [0 >= 1 + D] (?,1) 7. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,C) [D >= 1] (?,1) 8. evalrsdbb1in(A,B,C) -> evalrsdbb3in(A,B,C) True (?,1) 9. evalrsdbb2in(A,B,C) -> evalrsdbb4in(A,B,-1 + C) True (?,1) 10. evalrsdbb3in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True (?,1) Signature: {(evalrsdbb1in,3) ;(evalrsdbb2in,3) ;(evalrsdbb3in,3) ;(evalrsdbb4in,3) ;(evalrsdbbin,3) ;(evalrsdentryin,3) ;(evalrsdreturnin,3) ;(evalrsdstart,3) ;(evalrsdstop,3)} Flow Graph: [0->{1},1->{3},3->{4},4->{6,7,8},6->{9},7->{9},8->{10},9->{4},10->{4}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, C) (< 3,0,A>, A) (< 3,0,B>, 2*A) (< 3,0,C>, 2*A) (< 4,0,A>, A) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, ?) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, ?) + Applied Processor: ChainProcessor False [0,1,3,4,6,7,8,9,10] + Details: We chained rule 0 to obtain the rules [11] . * Step 7: UnreachableRules WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 1. evalrsdentryin(A,B,C) -> evalrsdbbin(A,B,C) [A >= 0] (1,1) 3. evalrsdbbin(A,B,C) -> evalrsdbb4in(A,2*A,2*A) True (2,1) 4. evalrsdbb4in(A,B,C) -> evalrsdbb1in(A,B,C) [C >= A] (?,1) 6. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,C) [0 >= 1 + D] (?,1) 7. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,C) [D >= 1] (?,1) 8. evalrsdbb1in(A,B,C) -> evalrsdbb3in(A,B,C) True (?,1) 9. evalrsdbb2in(A,B,C) -> evalrsdbb4in(A,B,-1 + C) True (?,1) 10. evalrsdbb3in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True (?,1) 11. evalrsdstart(A,B,C) -> evalrsdbbin(A,B,C) [A >= 0] (1,2) Signature: {(evalrsdbb1in,3) ;(evalrsdbb2in,3) ;(evalrsdbb3in,3) ;(evalrsdbb4in,3) ;(evalrsdbbin,3) ;(evalrsdentryin,3) ;(evalrsdreturnin,3) ;(evalrsdstart,3) ;(evalrsdstop,3)} Flow Graph: [1->{3},3->{4},4->{6,7,8},6->{9},7->{9},8->{10},9->{4},10->{4},11->{3}] Sizebounds: (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, C) (< 3,0,A>, A) (< 3,0,B>, 2*A) (< 3,0,C>, 2*A) (< 4,0,A>, A) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, ?) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, ?) (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, C) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [1] * Step 8: ChainProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 3. evalrsdbbin(A,B,C) -> evalrsdbb4in(A,2*A,2*A) True (2,1) 4. evalrsdbb4in(A,B,C) -> evalrsdbb1in(A,B,C) [C >= A] (?,1) 6. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,C) [0 >= 1 + D] (?,1) 7. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,C) [D >= 1] (?,1) 8. evalrsdbb1in(A,B,C) -> evalrsdbb3in(A,B,C) True (?,1) 9. evalrsdbb2in(A,B,C) -> evalrsdbb4in(A,B,-1 + C) True (?,1) 10. evalrsdbb3in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True (?,1) 11. evalrsdstart(A,B,C) -> evalrsdbbin(A,B,C) [A >= 0] (1,2) Signature: {(evalrsdbb1in,3) ;(evalrsdbb2in,3) ;(evalrsdbb3in,3) ;(evalrsdbb4in,3) ;(evalrsdbbin,3) ;(evalrsdentryin,3) ;(evalrsdreturnin,3) ;(evalrsdstart,3) ;(evalrsdstop,3)} Flow Graph: [3->{4},4->{6,7,8},6->{9},7->{9},8->{10},9->{4},10->{4},11->{3}] Sizebounds: (< 3,0,A>, A) (< 3,0,B>, 2*A) (< 3,0,C>, 2*A) (< 4,0,A>, A) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, ?) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, ?) (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, C) + Applied Processor: ChainProcessor False [3,4,6,7,8,9,10,11] + Details: We chained rule 3 to obtain the rules [12] . * Step 9: ChainProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 4. evalrsdbb4in(A,B,C) -> evalrsdbb1in(A,B,C) [C >= A] (?,1) 6. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,C) [0 >= 1 + D] (?,1) 7. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,C) [D >= 1] (?,1) 8. evalrsdbb1in(A,B,C) -> evalrsdbb3in(A,B,C) True (?,1) 9. evalrsdbb2in(A,B,C) -> evalrsdbb4in(A,B,-1 + C) True (?,1) 10. evalrsdbb3in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True (?,1) 11. evalrsdstart(A,B,C) -> evalrsdbbin(A,B,C) [A >= 0] (1,2) 12. evalrsdbbin(A,B,C) -> evalrsdbb1in(A,2*A,2*A) [2*A >= A] (2,2) Signature: {(evalrsdbb1in,3) ;(evalrsdbb2in,3) ;(evalrsdbb3in,3) ;(evalrsdbb4in,3) ;(evalrsdbbin,3) ;(evalrsdentryin,3) ;(evalrsdreturnin,3) ;(evalrsdstart,3) ;(evalrsdstop,3)} Flow Graph: [4->{6,7,8},6->{9},7->{9},8->{10},9->{4},10->{4},11->{12},12->{6,7,8}] Sizebounds: (< 4,0,A>, A) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, ?) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, ?) (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, C) (<12,0,A>, A) (<12,0,B>, ?) (<12,0,C>, ?) + Applied Processor: ChainProcessor False [4,6,7,8,9,10,11,12] + Details: We chained rule 4 to obtain the rules [13,14,15] . * Step 10: ChainProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 6. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,C) [0 >= 1 + D] (?,1) 7. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,C) [D >= 1] (?,1) 8. evalrsdbb1in(A,B,C) -> evalrsdbb3in(A,B,C) True (?,1) 9. evalrsdbb2in(A,B,C) -> evalrsdbb4in(A,B,-1 + C) True (?,1) 10. evalrsdbb3in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True (?,1) 11. evalrsdstart(A,B,C) -> evalrsdbbin(A,B,C) [A >= 0] (1,2) 12. evalrsdbbin(A,B,C) -> evalrsdbb1in(A,2*A,2*A) [2*A >= A] (2,2) 13. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C) [C >= A && 0 >= 1 + D$] (?,2) 14. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C) [C >= A && D$ >= 1] (?,2) 15. evalrsdbb4in(A,B,C) -> evalrsdbb3in(A,B,C) [C >= A] (?,2) Signature: {(evalrsdbb1in,3) ;(evalrsdbb2in,3) ;(evalrsdbb3in,3) ;(evalrsdbb4in,3) ;(evalrsdbbin,3) ;(evalrsdentryin,3) ;(evalrsdreturnin,3) ;(evalrsdstart,3) ;(evalrsdstop,3)} Flow Graph: [6->{9},7->{9},8->{10},9->{13,14,15},10->{13,14,15},11->{12},12->{6,7,8},13->{9},14->{9},15->{10}] Sizebounds: (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, ?) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, ?) (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, C) (<12,0,A>, A) (<12,0,B>, ?) (<12,0,C>, ?) (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, ?) (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) + Applied Processor: ChainProcessor False [6,7,8,9,10,11,12,13,14,15] + Details: We chained rule 6 to obtain the rules [16] . * Step 11: ChainProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 7. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,C) [D >= 1] (?,1) 8. evalrsdbb1in(A,B,C) -> evalrsdbb3in(A,B,C) True (?,1) 9. evalrsdbb2in(A,B,C) -> evalrsdbb4in(A,B,-1 + C) True (?,1) 10. evalrsdbb3in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True (?,1) 11. evalrsdstart(A,B,C) -> evalrsdbbin(A,B,C) [A >= 0] (1,2) 12. evalrsdbbin(A,B,C) -> evalrsdbb1in(A,2*A,2*A) [2*A >= A] (2,2) 13. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C) [C >= A && 0 >= 1 + D$] (?,2) 14. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C) [C >= A && D$ >= 1] (?,2) 15. evalrsdbb4in(A,B,C) -> evalrsdbb3in(A,B,C) [C >= A] (?,2) 16. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C) [0 >= 1 + D] (?,2) Signature: {(evalrsdbb1in,3) ;(evalrsdbb2in,3) ;(evalrsdbb3in,3) ;(evalrsdbb4in,3) ;(evalrsdbbin,3) ;(evalrsdentryin,3) ;(evalrsdreturnin,3) ;(evalrsdstart,3) ;(evalrsdstop,3)} Flow Graph: [7->{9},8->{10},9->{13,14,15},10->{13,14,15},11->{12},12->{7,8,16},13->{9},14->{9},15->{10},16->{13,14 ,15}] Sizebounds: (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, ?) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, ?) (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, C) (<12,0,A>, A) (<12,0,B>, ?) (<12,0,C>, ?) (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, ?) (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) (<16,0,A>, A) (<16,0,B>, ?) (<16,0,C>, ?) + Applied Processor: ChainProcessor False [7,8,9,10,11,12,13,14,15,16] + Details: We chained rule 7 to obtain the rules [17] . * Step 12: ChainProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 8. evalrsdbb1in(A,B,C) -> evalrsdbb3in(A,B,C) True (?,1) 9. evalrsdbb2in(A,B,C) -> evalrsdbb4in(A,B,-1 + C) True (?,1) 10. evalrsdbb3in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True (?,1) 11. evalrsdstart(A,B,C) -> evalrsdbbin(A,B,C) [A >= 0] (1,2) 12. evalrsdbbin(A,B,C) -> evalrsdbb1in(A,2*A,2*A) [2*A >= A] (2,2) 13. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C) [C >= A && 0 >= 1 + D$] (?,2) 14. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C) [C >= A && D$ >= 1] (?,2) 15. evalrsdbb4in(A,B,C) -> evalrsdbb3in(A,B,C) [C >= A] (?,2) 16. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C) [0 >= 1 + D] (?,2) 17. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C) [D >= 1] (?,2) Signature: {(evalrsdbb1in,3) ;(evalrsdbb2in,3) ;(evalrsdbb3in,3) ;(evalrsdbb4in,3) ;(evalrsdbbin,3) ;(evalrsdentryin,3) ;(evalrsdreturnin,3) ;(evalrsdstart,3) ;(evalrsdstop,3)} Flow Graph: [8->{10},9->{13,14,15},10->{13,14,15},11->{12},12->{8,16,17},13->{9},14->{9},15->{10},16->{13,14,15} ,17->{13,14,15}] Sizebounds: (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, ?) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, ?) (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, C) (<12,0,A>, A) (<12,0,B>, ?) (<12,0,C>, ?) (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, ?) (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) (<16,0,A>, A) (<16,0,B>, ?) (<16,0,C>, ?) (<17,0,A>, A) (<17,0,B>, ?) (<17,0,C>, ?) + Applied Processor: ChainProcessor False [8,9,10,11,12,13,14,15,16,17] + Details: We chained rule 8 to obtain the rules [18] . * Step 13: ChainProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 9. evalrsdbb2in(A,B,C) -> evalrsdbb4in(A,B,-1 + C) True (?,1) 10. evalrsdbb3in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True (?,1) 11. evalrsdstart(A,B,C) -> evalrsdbbin(A,B,C) [A >= 0] (1,2) 12. evalrsdbbin(A,B,C) -> evalrsdbb1in(A,2*A,2*A) [2*A >= A] (2,2) 13. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C) [C >= A && 0 >= 1 + D$] (?,2) 14. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C) [C >= A && D$ >= 1] (?,2) 15. evalrsdbb4in(A,B,C) -> evalrsdbb3in(A,B,C) [C >= A] (?,2) 16. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C) [0 >= 1 + D] (?,2) 17. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C) [D >= 1] (?,2) 18. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True (?,2) Signature: {(evalrsdbb1in,3) ;(evalrsdbb2in,3) ;(evalrsdbb3in,3) ;(evalrsdbb4in,3) ;(evalrsdbbin,3) ;(evalrsdentryin,3) ;(evalrsdreturnin,3) ;(evalrsdstart,3) ;(evalrsdstop,3)} Flow Graph: [9->{13,14,15},10->{13,14,15},11->{12},12->{16,17,18},13->{9},14->{9},15->{10},16->{13,14,15},17->{13,14 ,15},18->{13,14,15}] Sizebounds: (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, ?) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, ?) (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, C) (<12,0,A>, A) (<12,0,B>, ?) (<12,0,C>, ?) (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, ?) (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) (<16,0,A>, A) (<16,0,B>, ?) (<16,0,C>, ?) (<17,0,A>, A) (<17,0,B>, ?) (<17,0,C>, ?) (<18,0,A>, A) (<18,0,B>, ?) (<18,0,C>, ?) + Applied Processor: ChainProcessor False [9,10,11,12,13,14,15,16,17,18] + Details: We chained rule 9 to obtain the rules [19,20,21] . * Step 14: ChainProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 10. evalrsdbb3in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True (?,1) 11. evalrsdstart(A,B,C) -> evalrsdbbin(A,B,C) [A >= 0] (1,2) 12. evalrsdbbin(A,B,C) -> evalrsdbb1in(A,2*A,2*A) [2*A >= A] (2,2) 13. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C) [C >= A && 0 >= 1 + D$] (?,2) 14. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C) [C >= A && D$ >= 1] (?,2) 15. evalrsdbb4in(A,B,C) -> evalrsdbb3in(A,B,C) [C >= A] (?,2) 16. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C) [0 >= 1 + D] (?,2) 17. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C) [D >= 1] (?,2) 18. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True (?,2) 19. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [-1 + C >= A && 0 >= 1 + D$$] (?,3) 20. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [-1 + C >= A && D$$ >= 1] (?,3) 21. evalrsdbb2in(A,B,C) -> evalrsdbb3in(A,B,-1 + C) [-1 + C >= A] (?,3) Signature: {(evalrsdbb1in,3) ;(evalrsdbb2in,3) ;(evalrsdbb3in,3) ;(evalrsdbb4in,3) ;(evalrsdbbin,3) ;(evalrsdentryin,3) ;(evalrsdreturnin,3) ;(evalrsdstart,3) ;(evalrsdstop,3)} Flow Graph: [10->{13,14,15},11->{12},12->{16,17,18},13->{19,20,21},14->{19,20,21},15->{10},16->{13,14,15},17->{13,14 ,15},18->{13,14,15},19->{19,20,21},20->{19,20,21},21->{10}] Sizebounds: (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, ?) (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, C) (<12,0,A>, A) (<12,0,B>, ?) (<12,0,C>, ?) (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, ?) (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) (<16,0,A>, A) (<16,0,B>, ?) (<16,0,C>, ?) (<17,0,A>, A) (<17,0,B>, ?) (<17,0,C>, ?) (<18,0,A>, A) (<18,0,B>, ?) (<18,0,C>, ?) (<19,0,A>, A) (<19,0,B>, ?) (<19,0,C>, ?) (<20,0,A>, A) (<20,0,B>, ?) (<20,0,C>, ?) (<21,0,A>, A) (<21,0,B>, ?) (<21,0,C>, ?) + Applied Processor: ChainProcessor False [10,11,12,13,14,15,16,17,18,19,20,21] + Details: We chained rule 10 to obtain the rules [22,23,24] . * Step 15: ChainProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 11. evalrsdstart(A,B,C) -> evalrsdbbin(A,B,C) [A >= 0] (1,2) 12. evalrsdbbin(A,B,C) -> evalrsdbb1in(A,2*A,2*A) [2*A >= A] (2,2) 13. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C) [C >= A && 0 >= 1 + D$] (?,2) 14. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C) [C >= A && D$ >= 1] (?,2) 15. evalrsdbb4in(A,B,C) -> evalrsdbb3in(A,B,C) [C >= A] (?,2) 16. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C) [0 >= 1 + D] (?,2) 17. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C) [D >= 1] (?,2) 18. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True (?,2) 19. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [-1 + C >= A && 0 >= 1 + D$$] (?,3) 20. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [-1 + C >= A && D$$ >= 1] (?,3) 21. evalrsdbb2in(A,B,C) -> evalrsdbb3in(A,B,-1 + C) [-1 + C >= A] (?,3) 22. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && 0 >= 1 + D$$] (?,3) 23. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && D$$ >= 1] (?,3) 24. evalrsdbb3in(A,B,C) -> evalrsdbb3in(A,-1 + B,-1 + B) [-1 + B >= A] (?,3) Signature: {(evalrsdbb1in,3) ;(evalrsdbb2in,3) ;(evalrsdbb3in,3) ;(evalrsdbb4in,3) ;(evalrsdbbin,3) ;(evalrsdentryin,3) ;(evalrsdreturnin,3) ;(evalrsdstart,3) ;(evalrsdstop,3)} Flow Graph: [11->{12},12->{16,17,18},13->{19,20,21},14->{19,20,21},15->{22,23,24},16->{13,14,15},17->{13,14,15} ,18->{13,14,15},19->{19,20,21},20->{19,20,21},21->{22,23,24},22->{19,20,21},23->{19,20,21},24->{22,23,24}] Sizebounds: (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, C) (<12,0,A>, A) (<12,0,B>, ?) (<12,0,C>, ?) (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, ?) (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) (<16,0,A>, A) (<16,0,B>, ?) (<16,0,C>, ?) (<17,0,A>, A) (<17,0,B>, ?) (<17,0,C>, ?) (<18,0,A>, A) (<18,0,B>, ?) (<18,0,C>, ?) (<19,0,A>, A) (<19,0,B>, ?) (<19,0,C>, ?) (<20,0,A>, A) (<20,0,B>, ?) (<20,0,C>, ?) (<21,0,A>, A) (<21,0,B>, ?) (<21,0,C>, ?) (<22,0,A>, A) (<22,0,B>, ?) (<22,0,C>, ?) (<23,0,A>, A) (<23,0,B>, ?) (<23,0,C>, ?) (<24,0,A>, A) (<24,0,B>, ?) (<24,0,C>, ?) + Applied Processor: ChainProcessor False [11,12,13,14,15,16,17,18,19,20,21,22,23,24] + Details: We chained rule 11 to obtain the rules [25] . * Step 16: UnreachableRules WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 12. evalrsdbbin(A,B,C) -> evalrsdbb1in(A,2*A,2*A) [2*A >= A] (2,2) 13. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C) [C >= A && 0 >= 1 + D$] (?,2) 14. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C) [C >= A && D$ >= 1] (?,2) 15. evalrsdbb4in(A,B,C) -> evalrsdbb3in(A,B,C) [C >= A] (?,2) 16. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C) [0 >= 1 + D] (?,2) 17. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C) [D >= 1] (?,2) 18. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True (?,2) 19. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [-1 + C >= A && 0 >= 1 + D$$] (?,3) 20. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [-1 + C >= A && D$$ >= 1] (?,3) 21. evalrsdbb2in(A,B,C) -> evalrsdbb3in(A,B,-1 + C) [-1 + C >= A] (?,3) 22. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && 0 >= 1 + D$$] (?,3) 23. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && D$$ >= 1] (?,3) 24. evalrsdbb3in(A,B,C) -> evalrsdbb3in(A,-1 + B,-1 + B) [-1 + B >= A] (?,3) 25. evalrsdstart(A,B,C) -> evalrsdbb1in(A,2*A,2*A) [A >= 0 && 2*A >= A] (1,4) Signature: {(evalrsdbb1in,3) ;(evalrsdbb2in,3) ;(evalrsdbb3in,3) ;(evalrsdbb4in,3) ;(evalrsdbbin,3) ;(evalrsdentryin,3) ;(evalrsdreturnin,3) ;(evalrsdstart,3) ;(evalrsdstop,3)} Flow Graph: [12->{16,17,18},13->{19,20,21},14->{19,20,21},15->{22,23,24},16->{13,14,15},17->{13,14,15},18->{13,14,15} ,19->{19,20,21},20->{19,20,21},21->{22,23,24},22->{19,20,21},23->{19,20,21},24->{22,23,24},25->{16,17,18}] Sizebounds: (<12,0,A>, A) (<12,0,B>, ?) (<12,0,C>, ?) (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, ?) (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) (<16,0,A>, A) (<16,0,B>, ?) (<16,0,C>, ?) (<17,0,A>, A) (<17,0,B>, ?) (<17,0,C>, ?) (<18,0,A>, A) (<18,0,B>, ?) (<18,0,C>, ?) (<19,0,A>, A) (<19,0,B>, ?) (<19,0,C>, ?) (<20,0,A>, A) (<20,0,B>, ?) (<20,0,C>, ?) (<21,0,A>, A) (<21,0,B>, ?) (<21,0,C>, ?) (<22,0,A>, A) (<22,0,B>, ?) (<22,0,C>, ?) (<23,0,A>, A) (<23,0,B>, ?) (<23,0,C>, ?) (<24,0,A>, A) (<24,0,B>, ?) (<24,0,C>, ?) (<25,0,A>, A) (<25,0,B>, ?) (<25,0,C>, ?) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [12] * Step 17: ChainProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 13. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C) [C >= A && 0 >= 1 + D$] (?,2) 14. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C) [C >= A && D$ >= 1] (?,2) 15. evalrsdbb4in(A,B,C) -> evalrsdbb3in(A,B,C) [C >= A] (?,2) 16. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C) [0 >= 1 + D] (?,2) 17. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C) [D >= 1] (?,2) 18. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True (?,2) 19. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [-1 + C >= A && 0 >= 1 + D$$] (?,3) 20. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [-1 + C >= A && D$$ >= 1] (?,3) 21. evalrsdbb2in(A,B,C) -> evalrsdbb3in(A,B,-1 + C) [-1 + C >= A] (?,3) 22. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && 0 >= 1 + D$$] (?,3) 23. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && D$$ >= 1] (?,3) 24. evalrsdbb3in(A,B,C) -> evalrsdbb3in(A,-1 + B,-1 + B) [-1 + B >= A] (?,3) 25. evalrsdstart(A,B,C) -> evalrsdbb1in(A,2*A,2*A) [A >= 0 && 2*A >= A] (1,4) Signature: {(evalrsdbb1in,3) ;(evalrsdbb2in,3) ;(evalrsdbb3in,3) ;(evalrsdbb4in,3) ;(evalrsdbbin,3) ;(evalrsdentryin,3) ;(evalrsdreturnin,3) ;(evalrsdstart,3) ;(evalrsdstop,3)} Flow Graph: [13->{19,20,21},14->{19,20,21},15->{22,23,24},16->{13,14,15},17->{13,14,15},18->{13,14,15},19->{19,20,21} ,20->{19,20,21},21->{22,23,24},22->{19,20,21},23->{19,20,21},24->{22,23,24},25->{16,17,18}] Sizebounds: (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, ?) (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) (<16,0,A>, A) (<16,0,B>, ?) (<16,0,C>, ?) (<17,0,A>, A) (<17,0,B>, ?) (<17,0,C>, ?) (<18,0,A>, A) (<18,0,B>, ?) (<18,0,C>, ?) (<19,0,A>, A) (<19,0,B>, ?) (<19,0,C>, ?) (<20,0,A>, A) (<20,0,B>, ?) (<20,0,C>, ?) (<21,0,A>, A) (<21,0,B>, ?) (<21,0,C>, ?) (<22,0,A>, A) (<22,0,B>, ?) (<22,0,C>, ?) (<23,0,A>, A) (<23,0,B>, ?) (<23,0,C>, ?) (<24,0,A>, A) (<24,0,B>, ?) (<24,0,C>, ?) (<25,0,A>, A) (<25,0,B>, ?) (<25,0,C>, ?) + Applied Processor: ChainProcessor False [13,14,15,16,17,18,19,20,21,22,23,24,25] + Details: We chained rule 16 to obtain the rules [26,27,28] . * Step 18: LocalSizeboundsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 13. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C) [C >= A && 0 >= 1 + D$] (?,2) 14. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C) [C >= A && D$ >= 1] (?,2) 15. evalrsdbb4in(A,B,C) -> evalrsdbb3in(A,B,C) [C >= A] (?,2) 17. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C) [D >= 1] (?,2) 18. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True (?,2) 19. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [-1 + C >= A && 0 >= 1 + D$$] (?,3) 20. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [-1 + C >= A && D$$ >= 1] (?,3) 21. evalrsdbb2in(A,B,C) -> evalrsdbb3in(A,B,-1 + C) [-1 + C >= A] (?,3) 22. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && 0 >= 1 + D$$] (?,3) 23. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && D$$ >= 1] (?,3) 24. evalrsdbb3in(A,B,C) -> evalrsdbb3in(A,-1 + B,-1 + B) [-1 + B >= A] (?,3) 25. evalrsdstart(A,B,C) -> evalrsdbb1in(A,2*A,2*A) [A >= 0 && 2*A >= A] (1,4) 26. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] (?,4) 27. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A && D$$ >= 1] (?,4) 28. evalrsdbb1in(A,B,C) -> evalrsdbb3in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A] (?,4) Signature: {(evalrsdbb1in,3) ;(evalrsdbb2in,3) ;(evalrsdbb3in,3) ;(evalrsdbb4in,3) ;(evalrsdbbin,3) ;(evalrsdentryin,3) ;(evalrsdreturnin,3) ;(evalrsdstart,3) ;(evalrsdstop,3)} Flow Graph: [13->{19,20,21},14->{19,20,21},15->{22,23,24},17->{13,14,15},18->{13,14,15},19->{19,20,21},20->{19,20,21} ,21->{22,23,24},22->{19,20,21},23->{19,20,21},24->{22,23,24},25->{17,18,26,27,28},26->{19,20,21},27->{19,20 ,21},28->{22,23,24}] Sizebounds: (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, ?) (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) (<17,0,A>, A) (<17,0,B>, ?) (<17,0,C>, ?) (<18,0,A>, A) (<18,0,B>, ?) (<18,0,C>, ?) (<19,0,A>, A) (<19,0,B>, ?) (<19,0,C>, ?) (<20,0,A>, A) (<20,0,B>, ?) (<20,0,C>, ?) (<21,0,A>, A) (<21,0,B>, ?) (<21,0,C>, ?) (<22,0,A>, A) (<22,0,B>, ?) (<22,0,C>, ?) (<23,0,A>, A) (<23,0,B>, ?) (<23,0,C>, ?) (<24,0,A>, A) (<24,0,B>, ?) (<24,0,C>, ?) (<25,0,A>, A) (<25,0,B>, ?) (<25,0,C>, ?) (<26,0,A>, A) (<26,0,B>, ?) (<26,0,C>, ?) (<27,0,A>, A) (<27,0,B>, ?) (<27,0,C>, ?) (<28,0,A>, A) (<28,0,B>, ?) (<28,0,C>, ?) + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<13,0,A>, A, .= 0) (<13,0,B>, B, .= 0) (<13,0,C>, C, .= 0) (<14,0,A>, A, .= 0) (<14,0,B>, B, .= 0) (<14,0,C>, C, .= 0) (<15,0,A>, A, .= 0) (<15,0,B>, B, .= 0) (<15,0,C>, C, .= 0) (<17,0,A>, A, .= 0) (<17,0,B>, B, .= 0) (<17,0,C>, 1 + C, .+ 1) (<18,0,A>, A, .= 0) (<18,0,B>, 1 + B, .+ 1) (<18,0,C>, 1 + B, .+ 1) (<19,0,A>, A, .= 0) (<19,0,B>, B, .= 0) (<19,0,C>, 1 + C, .+ 1) (<20,0,A>, A, .= 0) (<20,0,B>, B, .= 0) (<20,0,C>, 1 + C, .+ 1) (<21,0,A>, A, .= 0) (<21,0,B>, B, .= 0) (<21,0,C>, 1 + C, .+ 1) (<22,0,A>, A, .= 0) (<22,0,B>, 1 + B, .+ 1) (<22,0,C>, 1 + B, .+ 1) (<23,0,A>, A, .= 0) (<23,0,B>, 1 + B, .+ 1) (<23,0,C>, 1 + B, .+ 1) (<24,0,A>, A, .= 0) (<24,0,B>, 1 + B, .+ 1) (<24,0,C>, 1 + B, .+ 1) (<25,0,A>, A, .= 0) (<25,0,B>, 2*A, .?) (<25,0,C>, 2*A, .?) (<26,0,A>, A, .= 0) (<26,0,B>, B, .= 0) (<26,0,C>, 1 + C, .+ 1) (<27,0,A>, A, .= 0) (<27,0,B>, B, .= 0) (<27,0,C>, 1 + C, .+ 1) (<28,0,A>, A, .= 0) (<28,0,B>, B, .= 0) (<28,0,C>, 1 + C, .+ 1) * Step 19: SizeboundsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 13. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C) [C >= A && 0 >= 1 + D$] (?,2) 14. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C) [C >= A && D$ >= 1] (?,2) 15. evalrsdbb4in(A,B,C) -> evalrsdbb3in(A,B,C) [C >= A] (?,2) 17. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C) [D >= 1] (?,2) 18. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True (?,2) 19. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [-1 + C >= A && 0 >= 1 + D$$] (?,3) 20. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [-1 + C >= A && D$$ >= 1] (?,3) 21. evalrsdbb2in(A,B,C) -> evalrsdbb3in(A,B,-1 + C) [-1 + C >= A] (?,3) 22. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && 0 >= 1 + D$$] (?,3) 23. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && D$$ >= 1] (?,3) 24. evalrsdbb3in(A,B,C) -> evalrsdbb3in(A,-1 + B,-1 + B) [-1 + B >= A] (?,3) 25. evalrsdstart(A,B,C) -> evalrsdbb1in(A,2*A,2*A) [A >= 0 && 2*A >= A] (1,4) 26. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] (?,4) 27. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A && D$$ >= 1] (?,4) 28. evalrsdbb1in(A,B,C) -> evalrsdbb3in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A] (?,4) Signature: {(evalrsdbb1in,3) ;(evalrsdbb2in,3) ;(evalrsdbb3in,3) ;(evalrsdbb4in,3) ;(evalrsdbbin,3) ;(evalrsdentryin,3) ;(evalrsdreturnin,3) ;(evalrsdstart,3) ;(evalrsdstop,3)} Flow Graph: [13->{19,20,21},14->{19,20,21},15->{22,23,24},17->{13,14,15},18->{13,14,15},19->{19,20,21},20->{19,20,21} ,21->{22,23,24},22->{19,20,21},23->{19,20,21},24->{22,23,24},25->{17,18,26,27,28},26->{19,20,21},27->{19,20 ,21},28->{22,23,24}] Sizebounds: (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<14,0,A>, ?) (<14,0,B>, ?) (<14,0,C>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) (<18,0,A>, ?) (<18,0,B>, ?) (<18,0,C>, ?) (<19,0,A>, ?) (<19,0,B>, ?) (<19,0,C>, ?) (<20,0,A>, ?) (<20,0,B>, ?) (<20,0,C>, ?) (<21,0,A>, ?) (<21,0,B>, ?) (<21,0,C>, ?) (<22,0,A>, ?) (<22,0,B>, ?) (<22,0,C>, ?) (<23,0,A>, ?) (<23,0,B>, ?) (<23,0,C>, ?) (<24,0,A>, ?) (<24,0,B>, ?) (<24,0,C>, ?) (<25,0,A>, ?) (<25,0,B>, ?) (<25,0,C>, ?) (<26,0,A>, ?) (<26,0,B>, ?) (<26,0,C>, ?) (<27,0,A>, ?) (<27,0,B>, ?) (<27,0,C>, ?) (<28,0,A>, ?) (<28,0,B>, ?) (<28,0,C>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<13,0,A>, A) (<13,0,B>, 1 + 2*A) (<13,0,C>, 1 + 2*A) (<14,0,A>, A) (<14,0,B>, 1 + 2*A) (<14,0,C>, 1 + 2*A) (<15,0,A>, A) (<15,0,B>, 1 + 2*A) (<15,0,C>, 1 + 2*A) (<17,0,A>, A) (<17,0,B>, 2*A) (<17,0,C>, 1 + 2*A) (<18,0,A>, A) (<18,0,B>, 1 + 2*A) (<18,0,C>, 1 + 2*A) (<19,0,A>, A) (<19,0,B>, ?) (<19,0,C>, ?) (<20,0,A>, A) (<20,0,B>, ?) (<20,0,C>, ?) (<21,0,A>, A) (<21,0,B>, ?) (<21,0,C>, ?) (<22,0,A>, A) (<22,0,B>, ?) (<22,0,C>, ?) (<23,0,A>, A) (<23,0,B>, ?) (<23,0,C>, ?) (<24,0,A>, A) (<24,0,B>, ?) (<24,0,C>, ?) (<25,0,A>, A) (<25,0,B>, 2*A) (<25,0,C>, 2*A) (<26,0,A>, A) (<26,0,B>, 2*A) (<26,0,C>, 1 + 2*A) (<27,0,A>, A) (<27,0,B>, 2*A) (<27,0,C>, 1 + 2*A) (<28,0,A>, A) (<28,0,B>, 2*A) (<28,0,C>, 1 + 2*A) * Step 20: LocationConstraintsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 13. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C) [C >= A && 0 >= 1 + D$] (?,2) 14. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C) [C >= A && D$ >= 1] (?,2) 15. evalrsdbb4in(A,B,C) -> evalrsdbb3in(A,B,C) [C >= A] (?,2) 17. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C) [D >= 1] (?,2) 18. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True (?,2) 19. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [-1 + C >= A && 0 >= 1 + D$$] (?,3) 20. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [-1 + C >= A && D$$ >= 1] (?,3) 21. evalrsdbb2in(A,B,C) -> evalrsdbb3in(A,B,-1 + C) [-1 + C >= A] (?,3) 22. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && 0 >= 1 + D$$] (?,3) 23. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && D$$ >= 1] (?,3) 24. evalrsdbb3in(A,B,C) -> evalrsdbb3in(A,-1 + B,-1 + B) [-1 + B >= A] (?,3) 25. evalrsdstart(A,B,C) -> evalrsdbb1in(A,2*A,2*A) [A >= 0 && 2*A >= A] (1,4) 26. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] (?,4) 27. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A && D$$ >= 1] (?,4) 28. evalrsdbb1in(A,B,C) -> evalrsdbb3in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A] (?,4) Signature: {(evalrsdbb1in,3) ;(evalrsdbb2in,3) ;(evalrsdbb3in,3) ;(evalrsdbb4in,3) ;(evalrsdbbin,3) ;(evalrsdentryin,3) ;(evalrsdreturnin,3) ;(evalrsdstart,3) ;(evalrsdstop,3)} Flow Graph: [13->{19,20,21},14->{19,20,21},15->{22,23,24},17->{13,14,15},18->{13,14,15},19->{19,20,21},20->{19,20,21} ,21->{22,23,24},22->{19,20,21},23->{19,20,21},24->{22,23,24},25->{17,18,26,27,28},26->{19,20,21},27->{19,20 ,21},28->{22,23,24}] Sizebounds: (<13,0,A>, A) (<13,0,B>, 1 + 2*A) (<13,0,C>, 1 + 2*A) (<14,0,A>, A) (<14,0,B>, 1 + 2*A) (<14,0,C>, 1 + 2*A) (<15,0,A>, A) (<15,0,B>, 1 + 2*A) (<15,0,C>, 1 + 2*A) (<17,0,A>, A) (<17,0,B>, 2*A) (<17,0,C>, 1 + 2*A) (<18,0,A>, A) (<18,0,B>, 1 + 2*A) (<18,0,C>, 1 + 2*A) (<19,0,A>, A) (<19,0,B>, ?) (<19,0,C>, ?) (<20,0,A>, A) (<20,0,B>, ?) (<20,0,C>, ?) (<21,0,A>, A) (<21,0,B>, ?) (<21,0,C>, ?) (<22,0,A>, A) (<22,0,B>, ?) (<22,0,C>, ?) (<23,0,A>, A) (<23,0,B>, ?) (<23,0,C>, ?) (<24,0,A>, A) (<24,0,B>, ?) (<24,0,C>, ?) (<25,0,A>, A) (<25,0,B>, 2*A) (<25,0,C>, 2*A) (<26,0,A>, A) (<26,0,B>, 2*A) (<26,0,C>, 1 + 2*A) (<27,0,A>, A) (<27,0,B>, 2*A) (<27,0,C>, 1 + 2*A) (<28,0,A>, A) (<28,0,B>, 2*A) (<28,0,C>, 1 + 2*A) + Applied Processor: LocationConstraintsProc + Details: We computed the location constraints 13 : True 14 : True 15 : True 17 : [A >= 0] 18 : [A >= 0] 19 : True 20 : True 21 : True 22 : True 23 : True 24 : True 25 : True 26 : [A >= 0] 27 : [A >= 0] 28 : [A >= 0] . * Step 21: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 13. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C) [C >= A && 0 >= 1 + D$] (?,2) 14. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C) [C >= A && D$ >= 1] (?,2) 15. evalrsdbb4in(A,B,C) -> evalrsdbb3in(A,B,C) [C >= A] (?,2) 17. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C) [D >= 1] (?,2) 18. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True (?,2) 19. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [-1 + C >= A && 0 >= 1 + D$$] (?,3) 20. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [-1 + C >= A && D$$ >= 1] (?,3) 21. evalrsdbb2in(A,B,C) -> evalrsdbb3in(A,B,-1 + C) [-1 + C >= A] (?,3) 22. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && 0 >= 1 + D$$] (?,3) 23. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && D$$ >= 1] (?,3) 24. evalrsdbb3in(A,B,C) -> evalrsdbb3in(A,-1 + B,-1 + B) [-1 + B >= A] (?,3) 25. evalrsdstart(A,B,C) -> evalrsdbb1in(A,2*A,2*A) [A >= 0 && 2*A >= A] (1,4) 26. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] (?,4) 27. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A && D$$ >= 1] (?,4) 28. evalrsdbb1in(A,B,C) -> evalrsdbb3in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A] (?,4) Signature: {(evalrsdbb1in,3) ;(evalrsdbb2in,3) ;(evalrsdbb3in,3) ;(evalrsdbb4in,3) ;(evalrsdbbin,3) ;(evalrsdentryin,3) ;(evalrsdreturnin,3) ;(evalrsdstart,3) ;(evalrsdstop,3)} Flow Graph: [13->{19,20,21},14->{19,20,21},15->{22,23,24},17->{13,14,15},18->{13,14,15},19->{19,20,21},20->{19,20,21} ,21->{22,23,24},22->{19,20,21},23->{19,20,21},24->{22,23,24},25->{17,18,26,27,28},26->{19,20,21},27->{19,20 ,21},28->{22,23,24}] Sizebounds: (<13,0,A>, A) (<13,0,B>, 1 + 2*A) (<13,0,C>, 1 + 2*A) (<14,0,A>, A) (<14,0,B>, 1 + 2*A) (<14,0,C>, 1 + 2*A) (<15,0,A>, A) (<15,0,B>, 1 + 2*A) (<15,0,C>, 1 + 2*A) (<17,0,A>, A) (<17,0,B>, 2*A) (<17,0,C>, 1 + 2*A) (<18,0,A>, A) (<18,0,B>, 1 + 2*A) (<18,0,C>, 1 + 2*A) (<19,0,A>, A) (<19,0,B>, ?) (<19,0,C>, ?) (<20,0,A>, A) (<20,0,B>, ?) (<20,0,C>, ?) (<21,0,A>, A) (<21,0,B>, ?) (<21,0,C>, ?) (<22,0,A>, A) (<22,0,B>, ?) (<22,0,C>, ?) (<23,0,A>, A) (<23,0,B>, ?) (<23,0,C>, ?) (<24,0,A>, A) (<24,0,B>, ?) (<24,0,C>, ?) (<25,0,A>, A) (<25,0,B>, 2*A) (<25,0,C>, 2*A) (<26,0,A>, A) (<26,0,B>, 2*A) (<26,0,C>, 1 + 2*A) (<27,0,A>, A) (<27,0,B>, 2*A) (<27,0,C>, 1 + 2*A) (<28,0,A>, A) (<28,0,B>, 2*A) (<28,0,C>, 1 + 2*A) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Constant} + Details: We apply a polynomial interpretation of shape constant: p(evalrsdbb1in) = 1 p(evalrsdbb2in) = 0 p(evalrsdbb3in) = 0 p(evalrsdbb4in) = 0 p(evalrsdstart) = 1 The following rules are strictly oriented: [0 >= 1 + D && -1 + C >= A] ==> evalrsdbb1in(A,B,C) = 1 > 0 = evalrsdbb3in(A,B,-1 + C) The following rules are weakly oriented: [C >= A && 0 >= 1 + D$] ==> evalrsdbb4in(A,B,C) = 0 >= 0 = evalrsdbb2in(A,B,C) [C >= A && D$ >= 1] ==> evalrsdbb4in(A,B,C) = 0 >= 0 = evalrsdbb2in(A,B,C) [C >= A] ==> evalrsdbb4in(A,B,C) = 0 >= 0 = evalrsdbb3in(A,B,C) [D >= 1] ==> evalrsdbb1in(A,B,C) = 1 >= 0 = evalrsdbb4in(A,B,-1 + C) True ==> evalrsdbb1in(A,B,C) = 1 >= 0 = evalrsdbb4in(A,-1 + B,-1 + B) [-1 + C >= A && 0 >= 1 + D$$] ==> evalrsdbb2in(A,B,C) = 0 >= 0 = evalrsdbb2in(A,B,-1 + C) [-1 + C >= A && D$$ >= 1] ==> evalrsdbb2in(A,B,C) = 0 >= 0 = evalrsdbb2in(A,B,-1 + C) [-1 + C >= A] ==> evalrsdbb2in(A,B,C) = 0 >= 0 = evalrsdbb3in(A,B,-1 + C) [-1 + B >= A && 0 >= 1 + D$$] ==> evalrsdbb3in(A,B,C) = 0 >= 0 = evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && D$$ >= 1] ==> evalrsdbb3in(A,B,C) = 0 >= 0 = evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A] ==> evalrsdbb3in(A,B,C) = 0 >= 0 = evalrsdbb3in(A,-1 + B,-1 + B) [A >= 0 && 2*A >= A] ==> evalrsdstart(A,B,C) = 1 >= 1 = evalrsdbb1in(A,2*A,2*A) [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] ==> evalrsdbb1in(A,B,C) = 1 >= 0 = evalrsdbb2in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A && D$$ >= 1] ==> evalrsdbb1in(A,B,C) = 1 >= 0 = evalrsdbb2in(A,B,-1 + C) * Step 22: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 13. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C) [C >= A && 0 >= 1 + D$] (?,2) 14. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C) [C >= A && D$ >= 1] (?,2) 15. evalrsdbb4in(A,B,C) -> evalrsdbb3in(A,B,C) [C >= A] (?,2) 17. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C) [D >= 1] (?,2) 18. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True (?,2) 19. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [-1 + C >= A && 0 >= 1 + D$$] (?,3) 20. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [-1 + C >= A && D$$ >= 1] (?,3) 21. evalrsdbb2in(A,B,C) -> evalrsdbb3in(A,B,-1 + C) [-1 + C >= A] (?,3) 22. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && 0 >= 1 + D$$] (?,3) 23. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && D$$ >= 1] (?,3) 24. evalrsdbb3in(A,B,C) -> evalrsdbb3in(A,-1 + B,-1 + B) [-1 + B >= A] (?,3) 25. evalrsdstart(A,B,C) -> evalrsdbb1in(A,2*A,2*A) [A >= 0 && 2*A >= A] (1,4) 26. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] (?,4) 27. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A && D$$ >= 1] (?,4) 28. evalrsdbb1in(A,B,C) -> evalrsdbb3in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A] (1,4) Signature: {(evalrsdbb1in,3) ;(evalrsdbb2in,3) ;(evalrsdbb3in,3) ;(evalrsdbb4in,3) ;(evalrsdbbin,3) ;(evalrsdentryin,3) ;(evalrsdreturnin,3) ;(evalrsdstart,3) ;(evalrsdstop,3)} Flow Graph: [13->{19,20,21},14->{19,20,21},15->{22,23,24},17->{13,14,15},18->{13,14,15},19->{19,20,21},20->{19,20,21} ,21->{22,23,24},22->{19,20,21},23->{19,20,21},24->{22,23,24},25->{17,18,26,27,28},26->{19,20,21},27->{19,20 ,21},28->{22,23,24}] Sizebounds: (<13,0,A>, A) (<13,0,B>, 1 + 2*A) (<13,0,C>, 1 + 2*A) (<14,0,A>, A) (<14,0,B>, 1 + 2*A) (<14,0,C>, 1 + 2*A) (<15,0,A>, A) (<15,0,B>, 1 + 2*A) (<15,0,C>, 1 + 2*A) (<17,0,A>, A) (<17,0,B>, 2*A) (<17,0,C>, 1 + 2*A) (<18,0,A>, A) (<18,0,B>, 1 + 2*A) (<18,0,C>, 1 + 2*A) (<19,0,A>, A) (<19,0,B>, ?) (<19,0,C>, ?) (<20,0,A>, A) (<20,0,B>, ?) (<20,0,C>, ?) (<21,0,A>, A) (<21,0,B>, ?) (<21,0,C>, ?) (<22,0,A>, A) (<22,0,B>, ?) (<22,0,C>, ?) (<23,0,A>, A) (<23,0,B>, ?) (<23,0,C>, ?) (<24,0,A>, A) (<24,0,B>, ?) (<24,0,C>, ?) (<25,0,A>, A) (<25,0,B>, 2*A) (<25,0,C>, 2*A) (<26,0,A>, A) (<26,0,B>, 2*A) (<26,0,C>, 1 + 2*A) (<27,0,A>, A) (<27,0,B>, 2*A) (<27,0,C>, 1 + 2*A) (<28,0,A>, A) (<28,0,B>, 2*A) (<28,0,C>, 1 + 2*A) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Constant} + Details: We apply a polynomial interpretation of shape constant: p(evalrsdbb1in) = 1 p(evalrsdbb2in) = 0 p(evalrsdbb3in) = 0 p(evalrsdbb4in) = 0 p(evalrsdstart) = 1 The following rules are strictly oriented: [0 >= 1 + D && -1 + C >= A && D$$ >= 1] ==> evalrsdbb1in(A,B,C) = 1 > 0 = evalrsdbb2in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A] ==> evalrsdbb1in(A,B,C) = 1 > 0 = evalrsdbb3in(A,B,-1 + C) The following rules are weakly oriented: [C >= A && 0 >= 1 + D$] ==> evalrsdbb4in(A,B,C) = 0 >= 0 = evalrsdbb2in(A,B,C) [C >= A && D$ >= 1] ==> evalrsdbb4in(A,B,C) = 0 >= 0 = evalrsdbb2in(A,B,C) [C >= A] ==> evalrsdbb4in(A,B,C) = 0 >= 0 = evalrsdbb3in(A,B,C) [D >= 1] ==> evalrsdbb1in(A,B,C) = 1 >= 0 = evalrsdbb4in(A,B,-1 + C) True ==> evalrsdbb1in(A,B,C) = 1 >= 0 = evalrsdbb4in(A,-1 + B,-1 + B) [-1 + C >= A && 0 >= 1 + D$$] ==> evalrsdbb2in(A,B,C) = 0 >= 0 = evalrsdbb2in(A,B,-1 + C) [-1 + C >= A && D$$ >= 1] ==> evalrsdbb2in(A,B,C) = 0 >= 0 = evalrsdbb2in(A,B,-1 + C) [-1 + C >= A] ==> evalrsdbb2in(A,B,C) = 0 >= 0 = evalrsdbb3in(A,B,-1 + C) [-1 + B >= A && 0 >= 1 + D$$] ==> evalrsdbb3in(A,B,C) = 0 >= 0 = evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && D$$ >= 1] ==> evalrsdbb3in(A,B,C) = 0 >= 0 = evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A] ==> evalrsdbb3in(A,B,C) = 0 >= 0 = evalrsdbb3in(A,-1 + B,-1 + B) [A >= 0 && 2*A >= A] ==> evalrsdstart(A,B,C) = 1 >= 1 = evalrsdbb1in(A,2*A,2*A) [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] ==> evalrsdbb1in(A,B,C) = 1 >= 0 = evalrsdbb2in(A,B,-1 + C) * Step 23: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 13. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C) [C >= A && 0 >= 1 + D$] (?,2) 14. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C) [C >= A && D$ >= 1] (?,2) 15. evalrsdbb4in(A,B,C) -> evalrsdbb3in(A,B,C) [C >= A] (?,2) 17. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C) [D >= 1] (?,2) 18. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True (?,2) 19. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [-1 + C >= A && 0 >= 1 + D$$] (?,3) 20. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [-1 + C >= A && D$$ >= 1] (?,3) 21. evalrsdbb2in(A,B,C) -> evalrsdbb3in(A,B,-1 + C) [-1 + C >= A] (?,3) 22. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && 0 >= 1 + D$$] (?,3) 23. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && D$$ >= 1] (?,3) 24. evalrsdbb3in(A,B,C) -> evalrsdbb3in(A,-1 + B,-1 + B) [-1 + B >= A] (?,3) 25. evalrsdstart(A,B,C) -> evalrsdbb1in(A,2*A,2*A) [A >= 0 && 2*A >= A] (1,4) 26. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] (?,4) 27. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A && D$$ >= 1] (1,4) 28. evalrsdbb1in(A,B,C) -> evalrsdbb3in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A] (1,4) Signature: {(evalrsdbb1in,3) ;(evalrsdbb2in,3) ;(evalrsdbb3in,3) ;(evalrsdbb4in,3) ;(evalrsdbbin,3) ;(evalrsdentryin,3) ;(evalrsdreturnin,3) ;(evalrsdstart,3) ;(evalrsdstop,3)} Flow Graph: [13->{19,20,21},14->{19,20,21},15->{22,23,24},17->{13,14,15},18->{13,14,15},19->{19,20,21},20->{19,20,21} ,21->{22,23,24},22->{19,20,21},23->{19,20,21},24->{22,23,24},25->{17,18,26,27,28},26->{19,20,21},27->{19,20 ,21},28->{22,23,24}] Sizebounds: (<13,0,A>, A) (<13,0,B>, 1 + 2*A) (<13,0,C>, 1 + 2*A) (<14,0,A>, A) (<14,0,B>, 1 + 2*A) (<14,0,C>, 1 + 2*A) (<15,0,A>, A) (<15,0,B>, 1 + 2*A) (<15,0,C>, 1 + 2*A) (<17,0,A>, A) (<17,0,B>, 2*A) (<17,0,C>, 1 + 2*A) (<18,0,A>, A) (<18,0,B>, 1 + 2*A) (<18,0,C>, 1 + 2*A) (<19,0,A>, A) (<19,0,B>, ?) (<19,0,C>, ?) (<20,0,A>, A) (<20,0,B>, ?) (<20,0,C>, ?) (<21,0,A>, A) (<21,0,B>, ?) (<21,0,C>, ?) (<22,0,A>, A) (<22,0,B>, ?) (<22,0,C>, ?) (<23,0,A>, A) (<23,0,B>, ?) (<23,0,C>, ?) (<24,0,A>, A) (<24,0,B>, ?) (<24,0,C>, ?) (<25,0,A>, A) (<25,0,B>, 2*A) (<25,0,C>, 2*A) (<26,0,A>, A) (<26,0,B>, 2*A) (<26,0,C>, 1 + 2*A) (<27,0,A>, A) (<27,0,B>, 2*A) (<27,0,C>, 1 + 2*A) (<28,0,A>, A) (<28,0,B>, 2*A) (<28,0,C>, 1 + 2*A) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Constant} + Details: We apply a polynomial interpretation of shape constant: p(evalrsdbb1in) = 1 p(evalrsdbb2in) = 0 p(evalrsdbb3in) = 0 p(evalrsdbb4in) = 0 p(evalrsdstart) = 1 The following rules are strictly oriented: [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] ==> evalrsdbb1in(A,B,C) = 1 > 0 = evalrsdbb2in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A && D$$ >= 1] ==> evalrsdbb1in(A,B,C) = 1 > 0 = evalrsdbb2in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A] ==> evalrsdbb1in(A,B,C) = 1 > 0 = evalrsdbb3in(A,B,-1 + C) The following rules are weakly oriented: [C >= A && 0 >= 1 + D$] ==> evalrsdbb4in(A,B,C) = 0 >= 0 = evalrsdbb2in(A,B,C) [C >= A && D$ >= 1] ==> evalrsdbb4in(A,B,C) = 0 >= 0 = evalrsdbb2in(A,B,C) [C >= A] ==> evalrsdbb4in(A,B,C) = 0 >= 0 = evalrsdbb3in(A,B,C) [D >= 1] ==> evalrsdbb1in(A,B,C) = 1 >= 0 = evalrsdbb4in(A,B,-1 + C) True ==> evalrsdbb1in(A,B,C) = 1 >= 0 = evalrsdbb4in(A,-1 + B,-1 + B) [-1 + C >= A && 0 >= 1 + D$$] ==> evalrsdbb2in(A,B,C) = 0 >= 0 = evalrsdbb2in(A,B,-1 + C) [-1 + C >= A && D$$ >= 1] ==> evalrsdbb2in(A,B,C) = 0 >= 0 = evalrsdbb2in(A,B,-1 + C) [-1 + C >= A] ==> evalrsdbb2in(A,B,C) = 0 >= 0 = evalrsdbb3in(A,B,-1 + C) [-1 + B >= A && 0 >= 1 + D$$] ==> evalrsdbb3in(A,B,C) = 0 >= 0 = evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && D$$ >= 1] ==> evalrsdbb3in(A,B,C) = 0 >= 0 = evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A] ==> evalrsdbb3in(A,B,C) = 0 >= 0 = evalrsdbb3in(A,-1 + B,-1 + B) [A >= 0 && 2*A >= A] ==> evalrsdstart(A,B,C) = 1 >= 1 = evalrsdbb1in(A,2*A,2*A) * Step 24: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 13. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C) [C >= A && 0 >= 1 + D$] (?,2) 14. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C) [C >= A && D$ >= 1] (?,2) 15. evalrsdbb4in(A,B,C) -> evalrsdbb3in(A,B,C) [C >= A] (?,2) 17. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C) [D >= 1] (?,2) 18. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True (?,2) 19. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [-1 + C >= A && 0 >= 1 + D$$] (?,3) 20. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [-1 + C >= A && D$$ >= 1] (?,3) 21. evalrsdbb2in(A,B,C) -> evalrsdbb3in(A,B,-1 + C) [-1 + C >= A] (?,3) 22. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && 0 >= 1 + D$$] (?,3) 23. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && D$$ >= 1] (?,3) 24. evalrsdbb3in(A,B,C) -> evalrsdbb3in(A,-1 + B,-1 + B) [-1 + B >= A] (?,3) 25. evalrsdstart(A,B,C) -> evalrsdbb1in(A,2*A,2*A) [A >= 0 && 2*A >= A] (1,4) 26. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] (1,4) 27. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A && D$$ >= 1] (1,4) 28. evalrsdbb1in(A,B,C) -> evalrsdbb3in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A] (1,4) Signature: {(evalrsdbb1in,3) ;(evalrsdbb2in,3) ;(evalrsdbb3in,3) ;(evalrsdbb4in,3) ;(evalrsdbbin,3) ;(evalrsdentryin,3) ;(evalrsdreturnin,3) ;(evalrsdstart,3) ;(evalrsdstop,3)} Flow Graph: [13->{19,20,21},14->{19,20,21},15->{22,23,24},17->{13,14,15},18->{13,14,15},19->{19,20,21},20->{19,20,21} ,21->{22,23,24},22->{19,20,21},23->{19,20,21},24->{22,23,24},25->{17,18,26,27,28},26->{19,20,21},27->{19,20 ,21},28->{22,23,24}] Sizebounds: (<13,0,A>, A) (<13,0,B>, 1 + 2*A) (<13,0,C>, 1 + 2*A) (<14,0,A>, A) (<14,0,B>, 1 + 2*A) (<14,0,C>, 1 + 2*A) (<15,0,A>, A) (<15,0,B>, 1 + 2*A) (<15,0,C>, 1 + 2*A) (<17,0,A>, A) (<17,0,B>, 2*A) (<17,0,C>, 1 + 2*A) (<18,0,A>, A) (<18,0,B>, 1 + 2*A) (<18,0,C>, 1 + 2*A) (<19,0,A>, A) (<19,0,B>, ?) (<19,0,C>, ?) (<20,0,A>, A) (<20,0,B>, ?) (<20,0,C>, ?) (<21,0,A>, A) (<21,0,B>, ?) (<21,0,C>, ?) (<22,0,A>, A) (<22,0,B>, ?) (<22,0,C>, ?) (<23,0,A>, A) (<23,0,B>, ?) (<23,0,C>, ?) (<24,0,A>, A) (<24,0,B>, ?) (<24,0,C>, ?) (<25,0,A>, A) (<25,0,B>, 2*A) (<25,0,C>, 2*A) (<26,0,A>, A) (<26,0,B>, 2*A) (<26,0,C>, 1 + 2*A) (<27,0,A>, A) (<27,0,B>, 2*A) (<27,0,C>, 1 + 2*A) (<28,0,A>, A) (<28,0,B>, 2*A) (<28,0,C>, 1 + 2*A) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Constant} + Details: We apply a polynomial interpretation of shape constant: p(evalrsdbb1in) = 1 p(evalrsdbb2in) = 0 p(evalrsdbb3in) = 0 p(evalrsdbb4in) = 0 p(evalrsdstart) = 1 The following rules are strictly oriented: True ==> evalrsdbb1in(A,B,C) = 1 > 0 = evalrsdbb4in(A,-1 + B,-1 + B) [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] ==> evalrsdbb1in(A,B,C) = 1 > 0 = evalrsdbb2in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A && D$$ >= 1] ==> evalrsdbb1in(A,B,C) = 1 > 0 = evalrsdbb2in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A] ==> evalrsdbb1in(A,B,C) = 1 > 0 = evalrsdbb3in(A,B,-1 + C) The following rules are weakly oriented: [C >= A && 0 >= 1 + D$] ==> evalrsdbb4in(A,B,C) = 0 >= 0 = evalrsdbb2in(A,B,C) [C >= A && D$ >= 1] ==> evalrsdbb4in(A,B,C) = 0 >= 0 = evalrsdbb2in(A,B,C) [C >= A] ==> evalrsdbb4in(A,B,C) = 0 >= 0 = evalrsdbb3in(A,B,C) [D >= 1] ==> evalrsdbb1in(A,B,C) = 1 >= 0 = evalrsdbb4in(A,B,-1 + C) [-1 + C >= A && 0 >= 1 + D$$] ==> evalrsdbb2in(A,B,C) = 0 >= 0 = evalrsdbb2in(A,B,-1 + C) [-1 + C >= A && D$$ >= 1] ==> evalrsdbb2in(A,B,C) = 0 >= 0 = evalrsdbb2in(A,B,-1 + C) [-1 + C >= A] ==> evalrsdbb2in(A,B,C) = 0 >= 0 = evalrsdbb3in(A,B,-1 + C) [-1 + B >= A && 0 >= 1 + D$$] ==> evalrsdbb3in(A,B,C) = 0 >= 0 = evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && D$$ >= 1] ==> evalrsdbb3in(A,B,C) = 0 >= 0 = evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A] ==> evalrsdbb3in(A,B,C) = 0 >= 0 = evalrsdbb3in(A,-1 + B,-1 + B) [A >= 0 && 2*A >= A] ==> evalrsdstart(A,B,C) = 1 >= 1 = evalrsdbb1in(A,2*A,2*A) * Step 25: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 13. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C) [C >= A && 0 >= 1 + D$] (?,2) 14. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C) [C >= A && D$ >= 1] (?,2) 15. evalrsdbb4in(A,B,C) -> evalrsdbb3in(A,B,C) [C >= A] (?,2) 17. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C) [D >= 1] (?,2) 18. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True (1,2) 19. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [-1 + C >= A && 0 >= 1 + D$$] (?,3) 20. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [-1 + C >= A && D$$ >= 1] (?,3) 21. evalrsdbb2in(A,B,C) -> evalrsdbb3in(A,B,-1 + C) [-1 + C >= A] (?,3) 22. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && 0 >= 1 + D$$] (?,3) 23. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && D$$ >= 1] (?,3) 24. evalrsdbb3in(A,B,C) -> evalrsdbb3in(A,-1 + B,-1 + B) [-1 + B >= A] (?,3) 25. evalrsdstart(A,B,C) -> evalrsdbb1in(A,2*A,2*A) [A >= 0 && 2*A >= A] (1,4) 26. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] (1,4) 27. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A && D$$ >= 1] (1,4) 28. evalrsdbb1in(A,B,C) -> evalrsdbb3in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A] (1,4) Signature: {(evalrsdbb1in,3) ;(evalrsdbb2in,3) ;(evalrsdbb3in,3) ;(evalrsdbb4in,3) ;(evalrsdbbin,3) ;(evalrsdentryin,3) ;(evalrsdreturnin,3) ;(evalrsdstart,3) ;(evalrsdstop,3)} Flow Graph: [13->{19,20,21},14->{19,20,21},15->{22,23,24},17->{13,14,15},18->{13,14,15},19->{19,20,21},20->{19,20,21} ,21->{22,23,24},22->{19,20,21},23->{19,20,21},24->{22,23,24},25->{17,18,26,27,28},26->{19,20,21},27->{19,20 ,21},28->{22,23,24}] Sizebounds: (<13,0,A>, A) (<13,0,B>, 1 + 2*A) (<13,0,C>, 1 + 2*A) (<14,0,A>, A) (<14,0,B>, 1 + 2*A) (<14,0,C>, 1 + 2*A) (<15,0,A>, A) (<15,0,B>, 1 + 2*A) (<15,0,C>, 1 + 2*A) (<17,0,A>, A) (<17,0,B>, 2*A) (<17,0,C>, 1 + 2*A) (<18,0,A>, A) (<18,0,B>, 1 + 2*A) (<18,0,C>, 1 + 2*A) (<19,0,A>, A) (<19,0,B>, ?) (<19,0,C>, ?) (<20,0,A>, A) (<20,0,B>, ?) (<20,0,C>, ?) (<21,0,A>, A) (<21,0,B>, ?) (<21,0,C>, ?) (<22,0,A>, A) (<22,0,B>, ?) (<22,0,C>, ?) (<23,0,A>, A) (<23,0,B>, ?) (<23,0,C>, ?) (<24,0,A>, A) (<24,0,B>, ?) (<24,0,C>, ?) (<25,0,A>, A) (<25,0,B>, 2*A) (<25,0,C>, 2*A) (<26,0,A>, A) (<26,0,B>, 2*A) (<26,0,C>, 1 + 2*A) (<27,0,A>, A) (<27,0,B>, 2*A) (<27,0,C>, 1 + 2*A) (<28,0,A>, A) (<28,0,B>, 2*A) (<28,0,C>, 1 + 2*A) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Constant} + Details: We apply a polynomial interpretation of shape constant: p(evalrsdbb1in) = 1 p(evalrsdbb2in) = 0 p(evalrsdbb3in) = 0 p(evalrsdbb4in) = 0 p(evalrsdstart) = 1 The following rules are strictly oriented: [D >= 1] ==> evalrsdbb1in(A,B,C) = 1 > 0 = evalrsdbb4in(A,B,-1 + C) True ==> evalrsdbb1in(A,B,C) = 1 > 0 = evalrsdbb4in(A,-1 + B,-1 + B) [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] ==> evalrsdbb1in(A,B,C) = 1 > 0 = evalrsdbb2in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A && D$$ >= 1] ==> evalrsdbb1in(A,B,C) = 1 > 0 = evalrsdbb2in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A] ==> evalrsdbb1in(A,B,C) = 1 > 0 = evalrsdbb3in(A,B,-1 + C) The following rules are weakly oriented: [C >= A && 0 >= 1 + D$] ==> evalrsdbb4in(A,B,C) = 0 >= 0 = evalrsdbb2in(A,B,C) [C >= A && D$ >= 1] ==> evalrsdbb4in(A,B,C) = 0 >= 0 = evalrsdbb2in(A,B,C) [C >= A] ==> evalrsdbb4in(A,B,C) = 0 >= 0 = evalrsdbb3in(A,B,C) [-1 + C >= A && 0 >= 1 + D$$] ==> evalrsdbb2in(A,B,C) = 0 >= 0 = evalrsdbb2in(A,B,-1 + C) [-1 + C >= A && D$$ >= 1] ==> evalrsdbb2in(A,B,C) = 0 >= 0 = evalrsdbb2in(A,B,-1 + C) [-1 + C >= A] ==> evalrsdbb2in(A,B,C) = 0 >= 0 = evalrsdbb3in(A,B,-1 + C) [-1 + B >= A && 0 >= 1 + D$$] ==> evalrsdbb3in(A,B,C) = 0 >= 0 = evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && D$$ >= 1] ==> evalrsdbb3in(A,B,C) = 0 >= 0 = evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A] ==> evalrsdbb3in(A,B,C) = 0 >= 0 = evalrsdbb3in(A,-1 + B,-1 + B) [A >= 0 && 2*A >= A] ==> evalrsdstart(A,B,C) = 1 >= 1 = evalrsdbb1in(A,2*A,2*A) * Step 26: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 13. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C) [C >= A && 0 >= 1 + D$] (?,2) 14. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C) [C >= A && D$ >= 1] (?,2) 15. evalrsdbb4in(A,B,C) -> evalrsdbb3in(A,B,C) [C >= A] (?,2) 17. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C) [D >= 1] (1,2) 18. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True (1,2) 19. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [-1 + C >= A && 0 >= 1 + D$$] (?,3) 20. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [-1 + C >= A && D$$ >= 1] (?,3) 21. evalrsdbb2in(A,B,C) -> evalrsdbb3in(A,B,-1 + C) [-1 + C >= A] (?,3) 22. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && 0 >= 1 + D$$] (?,3) 23. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && D$$ >= 1] (?,3) 24. evalrsdbb3in(A,B,C) -> evalrsdbb3in(A,-1 + B,-1 + B) [-1 + B >= A] (?,3) 25. evalrsdstart(A,B,C) -> evalrsdbb1in(A,2*A,2*A) [A >= 0 && 2*A >= A] (1,4) 26. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] (1,4) 27. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A && D$$ >= 1] (1,4) 28. evalrsdbb1in(A,B,C) -> evalrsdbb3in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A] (1,4) Signature: {(evalrsdbb1in,3) ;(evalrsdbb2in,3) ;(evalrsdbb3in,3) ;(evalrsdbb4in,3) ;(evalrsdbbin,3) ;(evalrsdentryin,3) ;(evalrsdreturnin,3) ;(evalrsdstart,3) ;(evalrsdstop,3)} Flow Graph: [13->{19,20,21},14->{19,20,21},15->{22,23,24},17->{13,14,15},18->{13,14,15},19->{19,20,21},20->{19,20,21} ,21->{22,23,24},22->{19,20,21},23->{19,20,21},24->{22,23,24},25->{17,18,26,27,28},26->{19,20,21},27->{19,20 ,21},28->{22,23,24}] Sizebounds: (<13,0,A>, A) (<13,0,B>, 1 + 2*A) (<13,0,C>, 1 + 2*A) (<14,0,A>, A) (<14,0,B>, 1 + 2*A) (<14,0,C>, 1 + 2*A) (<15,0,A>, A) (<15,0,B>, 1 + 2*A) (<15,0,C>, 1 + 2*A) (<17,0,A>, A) (<17,0,B>, 2*A) (<17,0,C>, 1 + 2*A) (<18,0,A>, A) (<18,0,B>, 1 + 2*A) (<18,0,C>, 1 + 2*A) (<19,0,A>, A) (<19,0,B>, ?) (<19,0,C>, ?) (<20,0,A>, A) (<20,0,B>, ?) (<20,0,C>, ?) (<21,0,A>, A) (<21,0,B>, ?) (<21,0,C>, ?) (<22,0,A>, A) (<22,0,B>, ?) (<22,0,C>, ?) (<23,0,A>, A) (<23,0,B>, ?) (<23,0,C>, ?) (<24,0,A>, A) (<24,0,B>, ?) (<24,0,C>, ?) (<25,0,A>, A) (<25,0,B>, 2*A) (<25,0,C>, 2*A) (<26,0,A>, A) (<26,0,B>, 2*A) (<26,0,C>, 1 + 2*A) (<27,0,A>, A) (<27,0,B>, 2*A) (<27,0,C>, 1 + 2*A) (<28,0,A>, A) (<28,0,B>, 2*A) (<28,0,C>, 1 + 2*A) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Constant} + Details: We apply a polynomial interpretation of shape constant: p(evalrsdbb1in) = 1 p(evalrsdbb2in) = 0 p(evalrsdbb3in) = 0 p(evalrsdbb4in) = 1 p(evalrsdstart) = 1 The following rules are strictly oriented: [C >= A] ==> evalrsdbb4in(A,B,C) = 1 > 0 = evalrsdbb3in(A,B,C) [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] ==> evalrsdbb1in(A,B,C) = 1 > 0 = evalrsdbb2in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A && D$$ >= 1] ==> evalrsdbb1in(A,B,C) = 1 > 0 = evalrsdbb2in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A] ==> evalrsdbb1in(A,B,C) = 1 > 0 = evalrsdbb3in(A,B,-1 + C) The following rules are weakly oriented: [C >= A && 0 >= 1 + D$] ==> evalrsdbb4in(A,B,C) = 1 >= 0 = evalrsdbb2in(A,B,C) [C >= A && D$ >= 1] ==> evalrsdbb4in(A,B,C) = 1 >= 0 = evalrsdbb2in(A,B,C) [D >= 1] ==> evalrsdbb1in(A,B,C) = 1 >= 1 = evalrsdbb4in(A,B,-1 + C) True ==> evalrsdbb1in(A,B,C) = 1 >= 1 = evalrsdbb4in(A,-1 + B,-1 + B) [-1 + C >= A && 0 >= 1 + D$$] ==> evalrsdbb2in(A,B,C) = 0 >= 0 = evalrsdbb2in(A,B,-1 + C) [-1 + C >= A && D$$ >= 1] ==> evalrsdbb2in(A,B,C) = 0 >= 0 = evalrsdbb2in(A,B,-1 + C) [-1 + C >= A] ==> evalrsdbb2in(A,B,C) = 0 >= 0 = evalrsdbb3in(A,B,-1 + C) [-1 + B >= A && 0 >= 1 + D$$] ==> evalrsdbb3in(A,B,C) = 0 >= 0 = evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && D$$ >= 1] ==> evalrsdbb3in(A,B,C) = 0 >= 0 = evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A] ==> evalrsdbb3in(A,B,C) = 0 >= 0 = evalrsdbb3in(A,-1 + B,-1 + B) [A >= 0 && 2*A >= A] ==> evalrsdstart(A,B,C) = 1 >= 1 = evalrsdbb1in(A,2*A,2*A) * Step 27: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 13. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C) [C >= A && 0 >= 1 + D$] (?,2) 14. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C) [C >= A && D$ >= 1] (?,2) 15. evalrsdbb4in(A,B,C) -> evalrsdbb3in(A,B,C) [C >= A] (1,2) 17. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C) [D >= 1] (1,2) 18. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True (1,2) 19. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [-1 + C >= A && 0 >= 1 + D$$] (?,3) 20. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [-1 + C >= A && D$$ >= 1] (?,3) 21. evalrsdbb2in(A,B,C) -> evalrsdbb3in(A,B,-1 + C) [-1 + C >= A] (?,3) 22. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && 0 >= 1 + D$$] (?,3) 23. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && D$$ >= 1] (?,3) 24. evalrsdbb3in(A,B,C) -> evalrsdbb3in(A,-1 + B,-1 + B) [-1 + B >= A] (?,3) 25. evalrsdstart(A,B,C) -> evalrsdbb1in(A,2*A,2*A) [A >= 0 && 2*A >= A] (1,4) 26. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] (1,4) 27. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A && D$$ >= 1] (1,4) 28. evalrsdbb1in(A,B,C) -> evalrsdbb3in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A] (1,4) Signature: {(evalrsdbb1in,3) ;(evalrsdbb2in,3) ;(evalrsdbb3in,3) ;(evalrsdbb4in,3) ;(evalrsdbbin,3) ;(evalrsdentryin,3) ;(evalrsdreturnin,3) ;(evalrsdstart,3) ;(evalrsdstop,3)} Flow Graph: [13->{19,20,21},14->{19,20,21},15->{22,23,24},17->{13,14,15},18->{13,14,15},19->{19,20,21},20->{19,20,21} ,21->{22,23,24},22->{19,20,21},23->{19,20,21},24->{22,23,24},25->{17,18,26,27,28},26->{19,20,21},27->{19,20 ,21},28->{22,23,24}] Sizebounds: (<13,0,A>, A) (<13,0,B>, 1 + 2*A) (<13,0,C>, 1 + 2*A) (<14,0,A>, A) (<14,0,B>, 1 + 2*A) (<14,0,C>, 1 + 2*A) (<15,0,A>, A) (<15,0,B>, 1 + 2*A) (<15,0,C>, 1 + 2*A) (<17,0,A>, A) (<17,0,B>, 2*A) (<17,0,C>, 1 + 2*A) (<18,0,A>, A) (<18,0,B>, 1 + 2*A) (<18,0,C>, 1 + 2*A) (<19,0,A>, A) (<19,0,B>, ?) (<19,0,C>, ?) (<20,0,A>, A) (<20,0,B>, ?) (<20,0,C>, ?) (<21,0,A>, A) (<21,0,B>, ?) (<21,0,C>, ?) (<22,0,A>, A) (<22,0,B>, ?) (<22,0,C>, ?) (<23,0,A>, A) (<23,0,B>, ?) (<23,0,C>, ?) (<24,0,A>, A) (<24,0,B>, ?) (<24,0,C>, ?) (<25,0,A>, A) (<25,0,B>, 2*A) (<25,0,C>, 2*A) (<26,0,A>, A) (<26,0,B>, 2*A) (<26,0,C>, 1 + 2*A) (<27,0,A>, A) (<27,0,B>, 2*A) (<27,0,C>, 1 + 2*A) (<28,0,A>, A) (<28,0,B>, 2*A) (<28,0,C>, 1 + 2*A) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Constant} + Details: We apply a polynomial interpretation of shape constant: p(evalrsdbb1in) = 1 p(evalrsdbb2in) = 0 p(evalrsdbb3in) = 0 p(evalrsdbb4in) = 1 p(evalrsdstart) = 1 The following rules are strictly oriented: [C >= A && D$ >= 1] ==> evalrsdbb4in(A,B,C) = 1 > 0 = evalrsdbb2in(A,B,C) [C >= A] ==> evalrsdbb4in(A,B,C) = 1 > 0 = evalrsdbb3in(A,B,C) [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] ==> evalrsdbb1in(A,B,C) = 1 > 0 = evalrsdbb2in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A && D$$ >= 1] ==> evalrsdbb1in(A,B,C) = 1 > 0 = evalrsdbb2in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A] ==> evalrsdbb1in(A,B,C) = 1 > 0 = evalrsdbb3in(A,B,-1 + C) The following rules are weakly oriented: [C >= A && 0 >= 1 + D$] ==> evalrsdbb4in(A,B,C) = 1 >= 0 = evalrsdbb2in(A,B,C) [D >= 1] ==> evalrsdbb1in(A,B,C) = 1 >= 1 = evalrsdbb4in(A,B,-1 + C) True ==> evalrsdbb1in(A,B,C) = 1 >= 1 = evalrsdbb4in(A,-1 + B,-1 + B) [-1 + C >= A && 0 >= 1 + D$$] ==> evalrsdbb2in(A,B,C) = 0 >= 0 = evalrsdbb2in(A,B,-1 + C) [-1 + C >= A && D$$ >= 1] ==> evalrsdbb2in(A,B,C) = 0 >= 0 = evalrsdbb2in(A,B,-1 + C) [-1 + C >= A] ==> evalrsdbb2in(A,B,C) = 0 >= 0 = evalrsdbb3in(A,B,-1 + C) [-1 + B >= A && 0 >= 1 + D$$] ==> evalrsdbb3in(A,B,C) = 0 >= 0 = evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && D$$ >= 1] ==> evalrsdbb3in(A,B,C) = 0 >= 0 = evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A] ==> evalrsdbb3in(A,B,C) = 0 >= 0 = evalrsdbb3in(A,-1 + B,-1 + B) [A >= 0 && 2*A >= A] ==> evalrsdstart(A,B,C) = 1 >= 1 = evalrsdbb1in(A,2*A,2*A) * Step 28: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 13. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C) [C >= A && 0 >= 1 + D$] (?,2) 14. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C) [C >= A && D$ >= 1] (1,2) 15. evalrsdbb4in(A,B,C) -> evalrsdbb3in(A,B,C) [C >= A] (1,2) 17. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C) [D >= 1] (1,2) 18. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True (1,2) 19. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [-1 + C >= A && 0 >= 1 + D$$] (?,3) 20. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [-1 + C >= A && D$$ >= 1] (?,3) 21. evalrsdbb2in(A,B,C) -> evalrsdbb3in(A,B,-1 + C) [-1 + C >= A] (?,3) 22. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && 0 >= 1 + D$$] (?,3) 23. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && D$$ >= 1] (?,3) 24. evalrsdbb3in(A,B,C) -> evalrsdbb3in(A,-1 + B,-1 + B) [-1 + B >= A] (?,3) 25. evalrsdstart(A,B,C) -> evalrsdbb1in(A,2*A,2*A) [A >= 0 && 2*A >= A] (1,4) 26. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] (1,4) 27. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A && D$$ >= 1] (1,4) 28. evalrsdbb1in(A,B,C) -> evalrsdbb3in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A] (1,4) Signature: {(evalrsdbb1in,3) ;(evalrsdbb2in,3) ;(evalrsdbb3in,3) ;(evalrsdbb4in,3) ;(evalrsdbbin,3) ;(evalrsdentryin,3) ;(evalrsdreturnin,3) ;(evalrsdstart,3) ;(evalrsdstop,3)} Flow Graph: [13->{19,20,21},14->{19,20,21},15->{22,23,24},17->{13,14,15},18->{13,14,15},19->{19,20,21},20->{19,20,21} ,21->{22,23,24},22->{19,20,21},23->{19,20,21},24->{22,23,24},25->{17,18,26,27,28},26->{19,20,21},27->{19,20 ,21},28->{22,23,24}] Sizebounds: (<13,0,A>, A) (<13,0,B>, 1 + 2*A) (<13,0,C>, 1 + 2*A) (<14,0,A>, A) (<14,0,B>, 1 + 2*A) (<14,0,C>, 1 + 2*A) (<15,0,A>, A) (<15,0,B>, 1 + 2*A) (<15,0,C>, 1 + 2*A) (<17,0,A>, A) (<17,0,B>, 2*A) (<17,0,C>, 1 + 2*A) (<18,0,A>, A) (<18,0,B>, 1 + 2*A) (<18,0,C>, 1 + 2*A) (<19,0,A>, A) (<19,0,B>, ?) (<19,0,C>, ?) (<20,0,A>, A) (<20,0,B>, ?) (<20,0,C>, ?) (<21,0,A>, A) (<21,0,B>, ?) (<21,0,C>, ?) (<22,0,A>, A) (<22,0,B>, ?) (<22,0,C>, ?) (<23,0,A>, A) (<23,0,B>, ?) (<23,0,C>, ?) (<24,0,A>, A) (<24,0,B>, ?) (<24,0,C>, ?) (<25,0,A>, A) (<25,0,B>, 2*A) (<25,0,C>, 2*A) (<26,0,A>, A) (<26,0,B>, 2*A) (<26,0,C>, 1 + 2*A) (<27,0,A>, A) (<27,0,B>, 2*A) (<27,0,C>, 1 + 2*A) (<28,0,A>, A) (<28,0,B>, 2*A) (<28,0,C>, 1 + 2*A) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Constant} + Details: We apply a polynomial interpretation of shape constant: p(evalrsdbb1in) = 1 p(evalrsdbb2in) = 0 p(evalrsdbb3in) = 0 p(evalrsdbb4in) = 1 p(evalrsdstart) = 1 The following rules are strictly oriented: [C >= A && 0 >= 1 + D$] ==> evalrsdbb4in(A,B,C) = 1 > 0 = evalrsdbb2in(A,B,C) [C >= A && D$ >= 1] ==> evalrsdbb4in(A,B,C) = 1 > 0 = evalrsdbb2in(A,B,C) [C >= A] ==> evalrsdbb4in(A,B,C) = 1 > 0 = evalrsdbb3in(A,B,C) [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] ==> evalrsdbb1in(A,B,C) = 1 > 0 = evalrsdbb2in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A && D$$ >= 1] ==> evalrsdbb1in(A,B,C) = 1 > 0 = evalrsdbb2in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A] ==> evalrsdbb1in(A,B,C) = 1 > 0 = evalrsdbb3in(A,B,-1 + C) The following rules are weakly oriented: [D >= 1] ==> evalrsdbb1in(A,B,C) = 1 >= 1 = evalrsdbb4in(A,B,-1 + C) True ==> evalrsdbb1in(A,B,C) = 1 >= 1 = evalrsdbb4in(A,-1 + B,-1 + B) [-1 + C >= A && 0 >= 1 + D$$] ==> evalrsdbb2in(A,B,C) = 0 >= 0 = evalrsdbb2in(A,B,-1 + C) [-1 + C >= A && D$$ >= 1] ==> evalrsdbb2in(A,B,C) = 0 >= 0 = evalrsdbb2in(A,B,-1 + C) [-1 + C >= A] ==> evalrsdbb2in(A,B,C) = 0 >= 0 = evalrsdbb3in(A,B,-1 + C) [-1 + B >= A && 0 >= 1 + D$$] ==> evalrsdbb3in(A,B,C) = 0 >= 0 = evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && D$$ >= 1] ==> evalrsdbb3in(A,B,C) = 0 >= 0 = evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A] ==> evalrsdbb3in(A,B,C) = 0 >= 0 = evalrsdbb3in(A,-1 + B,-1 + B) [A >= 0 && 2*A >= A] ==> evalrsdstart(A,B,C) = 1 >= 1 = evalrsdbb1in(A,2*A,2*A) * Step 29: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 13. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C) [C >= A && 0 >= 1 + D$] (1,2) 14. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C) [C >= A && D$ >= 1] (1,2) 15. evalrsdbb4in(A,B,C) -> evalrsdbb3in(A,B,C) [C >= A] (1,2) 17. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C) [D >= 1] (1,2) 18. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True (1,2) 19. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [-1 + C >= A && 0 >= 1 + D$$] (?,3) 20. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [-1 + C >= A && D$$ >= 1] (?,3) 21. evalrsdbb2in(A,B,C) -> evalrsdbb3in(A,B,-1 + C) [-1 + C >= A] (?,3) 22. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && 0 >= 1 + D$$] (?,3) 23. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && D$$ >= 1] (?,3) 24. evalrsdbb3in(A,B,C) -> evalrsdbb3in(A,-1 + B,-1 + B) [-1 + B >= A] (?,3) 25. evalrsdstart(A,B,C) -> evalrsdbb1in(A,2*A,2*A) [A >= 0 && 2*A >= A] (1,4) 26. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] (1,4) 27. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A && D$$ >= 1] (1,4) 28. evalrsdbb1in(A,B,C) -> evalrsdbb3in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A] (1,4) Signature: {(evalrsdbb1in,3) ;(evalrsdbb2in,3) ;(evalrsdbb3in,3) ;(evalrsdbb4in,3) ;(evalrsdbbin,3) ;(evalrsdentryin,3) ;(evalrsdreturnin,3) ;(evalrsdstart,3) ;(evalrsdstop,3)} Flow Graph: [13->{19,20,21},14->{19,20,21},15->{22,23,24},17->{13,14,15},18->{13,14,15},19->{19,20,21},20->{19,20,21} ,21->{22,23,24},22->{19,20,21},23->{19,20,21},24->{22,23,24},25->{17,18,26,27,28},26->{19,20,21},27->{19,20 ,21},28->{22,23,24}] Sizebounds: (<13,0,A>, A) (<13,0,B>, 1 + 2*A) (<13,0,C>, 1 + 2*A) (<14,0,A>, A) (<14,0,B>, 1 + 2*A) (<14,0,C>, 1 + 2*A) (<15,0,A>, A) (<15,0,B>, 1 + 2*A) (<15,0,C>, 1 + 2*A) (<17,0,A>, A) (<17,0,B>, 2*A) (<17,0,C>, 1 + 2*A) (<18,0,A>, A) (<18,0,B>, 1 + 2*A) (<18,0,C>, 1 + 2*A) (<19,0,A>, A) (<19,0,B>, ?) (<19,0,C>, ?) (<20,0,A>, A) (<20,0,B>, ?) (<20,0,C>, ?) (<21,0,A>, A) (<21,0,B>, ?) (<21,0,C>, ?) (<22,0,A>, A) (<22,0,B>, ?) (<22,0,C>, ?) (<23,0,A>, A) (<23,0,B>, ?) (<23,0,C>, ?) (<24,0,A>, A) (<24,0,B>, ?) (<24,0,C>, ?) (<25,0,A>, A) (<25,0,B>, 2*A) (<25,0,C>, 2*A) (<26,0,A>, A) (<26,0,B>, 2*A) (<26,0,C>, 1 + 2*A) (<27,0,A>, A) (<27,0,B>, 2*A) (<27,0,C>, 1 + 2*A) (<28,0,A>, A) (<28,0,B>, 2*A) (<28,0,C>, 1 + 2*A) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalrsdbb1in) = -1*x1 + x2 p(evalrsdbb2in) = -1*x1 + x2 p(evalrsdbb3in) = -1*x1 + x2 p(evalrsdbb4in) = -1*x1 + x2 p(evalrsdstart) = x1 The following rules are strictly oriented: [-1 + B >= A] ==> evalrsdbb3in(A,B,C) = -1*A + B > -1 + -1*A + B = evalrsdbb3in(A,-1 + B,-1 + B) The following rules are weakly oriented: [C >= A && 0 >= 1 + D$] ==> evalrsdbb4in(A,B,C) = -1*A + B >= -1*A + B = evalrsdbb2in(A,B,C) [C >= A && D$ >= 1] ==> evalrsdbb4in(A,B,C) = -1*A + B >= -1*A + B = evalrsdbb2in(A,B,C) [C >= A] ==> evalrsdbb4in(A,B,C) = -1*A + B >= -1*A + B = evalrsdbb3in(A,B,C) [D >= 1] ==> evalrsdbb1in(A,B,C) = -1*A + B >= -1*A + B = evalrsdbb4in(A,B,-1 + C) True ==> evalrsdbb1in(A,B,C) = -1*A + B >= -1 + -1*A + B = evalrsdbb4in(A,-1 + B,-1 + B) [-1 + C >= A && 0 >= 1 + D$$] ==> evalrsdbb2in(A,B,C) = -1*A + B >= -1*A + B = evalrsdbb2in(A,B,-1 + C) [-1 + C >= A && D$$ >= 1] ==> evalrsdbb2in(A,B,C) = -1*A + B >= -1*A + B = evalrsdbb2in(A,B,-1 + C) [-1 + C >= A] ==> evalrsdbb2in(A,B,C) = -1*A + B >= -1*A + B = evalrsdbb3in(A,B,-1 + C) [-1 + B >= A && 0 >= 1 + D$$] ==> evalrsdbb3in(A,B,C) = -1*A + B >= -1 + -1*A + B = evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && D$$ >= 1] ==> evalrsdbb3in(A,B,C) = -1*A + B >= -1 + -1*A + B = evalrsdbb2in(A,-1 + B,-1 + B) [A >= 0 && 2*A >= A] ==> evalrsdstart(A,B,C) = A >= A = evalrsdbb1in(A,2*A,2*A) [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] ==> evalrsdbb1in(A,B,C) = -1*A + B >= -1*A + B = evalrsdbb2in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A && D$$ >= 1] ==> evalrsdbb1in(A,B,C) = -1*A + B >= -1*A + B = evalrsdbb2in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A] ==> evalrsdbb1in(A,B,C) = -1*A + B >= -1*A + B = evalrsdbb3in(A,B,-1 + C) * Step 30: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 13. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C) [C >= A && 0 >= 1 + D$] (1,2) 14. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C) [C >= A && D$ >= 1] (1,2) 15. evalrsdbb4in(A,B,C) -> evalrsdbb3in(A,B,C) [C >= A] (1,2) 17. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C) [D >= 1] (1,2) 18. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True (1,2) 19. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [-1 + C >= A && 0 >= 1 + D$$] (?,3) 20. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [-1 + C >= A && D$$ >= 1] (?,3) 21. evalrsdbb2in(A,B,C) -> evalrsdbb3in(A,B,-1 + C) [-1 + C >= A] (?,3) 22. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && 0 >= 1 + D$$] (?,3) 23. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && D$$ >= 1] (?,3) 24. evalrsdbb3in(A,B,C) -> evalrsdbb3in(A,-1 + B,-1 + B) [-1 + B >= A] (A,3) 25. evalrsdstart(A,B,C) -> evalrsdbb1in(A,2*A,2*A) [A >= 0 && 2*A >= A] (1,4) 26. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] (1,4) 27. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A && D$$ >= 1] (1,4) 28. evalrsdbb1in(A,B,C) -> evalrsdbb3in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A] (1,4) Signature: {(evalrsdbb1in,3) ;(evalrsdbb2in,3) ;(evalrsdbb3in,3) ;(evalrsdbb4in,3) ;(evalrsdbbin,3) ;(evalrsdentryin,3) ;(evalrsdreturnin,3) ;(evalrsdstart,3) ;(evalrsdstop,3)} Flow Graph: [13->{19,20,21},14->{19,20,21},15->{22,23,24},17->{13,14,15},18->{13,14,15},19->{19,20,21},20->{19,20,21} ,21->{22,23,24},22->{19,20,21},23->{19,20,21},24->{22,23,24},25->{17,18,26,27,28},26->{19,20,21},27->{19,20 ,21},28->{22,23,24}] Sizebounds: (<13,0,A>, A) (<13,0,B>, 1 + 2*A) (<13,0,C>, 1 + 2*A) (<14,0,A>, A) (<14,0,B>, 1 + 2*A) (<14,0,C>, 1 + 2*A) (<15,0,A>, A) (<15,0,B>, 1 + 2*A) (<15,0,C>, 1 + 2*A) (<17,0,A>, A) (<17,0,B>, 2*A) (<17,0,C>, 1 + 2*A) (<18,0,A>, A) (<18,0,B>, 1 + 2*A) (<18,0,C>, 1 + 2*A) (<19,0,A>, A) (<19,0,B>, ?) (<19,0,C>, ?) (<20,0,A>, A) (<20,0,B>, ?) (<20,0,C>, ?) (<21,0,A>, A) (<21,0,B>, ?) (<21,0,C>, ?) (<22,0,A>, A) (<22,0,B>, ?) (<22,0,C>, ?) (<23,0,A>, A) (<23,0,B>, ?) (<23,0,C>, ?) (<24,0,A>, A) (<24,0,B>, ?) (<24,0,C>, ?) (<25,0,A>, A) (<25,0,B>, 2*A) (<25,0,C>, 2*A) (<26,0,A>, A) (<26,0,B>, 2*A) (<26,0,C>, 1 + 2*A) (<27,0,A>, A) (<27,0,B>, 2*A) (<27,0,C>, 1 + 2*A) (<28,0,A>, A) (<28,0,B>, 2*A) (<28,0,C>, 1 + 2*A) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalrsdbb1in) = -1*x1 + x2 p(evalrsdbb2in) = -1*x1 + x2 p(evalrsdbb3in) = -1*x1 + x2 p(evalrsdbb4in) = -1*x1 + x2 p(evalrsdstart) = x1 The following rules are strictly oriented: [-1 + B >= A && D$$ >= 1] ==> evalrsdbb3in(A,B,C) = -1*A + B > -1 + -1*A + B = evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A] ==> evalrsdbb3in(A,B,C) = -1*A + B > -1 + -1*A + B = evalrsdbb3in(A,-1 + B,-1 + B) The following rules are weakly oriented: [C >= A && 0 >= 1 + D$] ==> evalrsdbb4in(A,B,C) = -1*A + B >= -1*A + B = evalrsdbb2in(A,B,C) [C >= A && D$ >= 1] ==> evalrsdbb4in(A,B,C) = -1*A + B >= -1*A + B = evalrsdbb2in(A,B,C) [C >= A] ==> evalrsdbb4in(A,B,C) = -1*A + B >= -1*A + B = evalrsdbb3in(A,B,C) [D >= 1] ==> evalrsdbb1in(A,B,C) = -1*A + B >= -1*A + B = evalrsdbb4in(A,B,-1 + C) True ==> evalrsdbb1in(A,B,C) = -1*A + B >= -1 + -1*A + B = evalrsdbb4in(A,-1 + B,-1 + B) [-1 + C >= A && 0 >= 1 + D$$] ==> evalrsdbb2in(A,B,C) = -1*A + B >= -1*A + B = evalrsdbb2in(A,B,-1 + C) [-1 + C >= A && D$$ >= 1] ==> evalrsdbb2in(A,B,C) = -1*A + B >= -1*A + B = evalrsdbb2in(A,B,-1 + C) [-1 + C >= A] ==> evalrsdbb2in(A,B,C) = -1*A + B >= -1*A + B = evalrsdbb3in(A,B,-1 + C) [-1 + B >= A && 0 >= 1 + D$$] ==> evalrsdbb3in(A,B,C) = -1*A + B >= -1 + -1*A + B = evalrsdbb2in(A,-1 + B,-1 + B) [A >= 0 && 2*A >= A] ==> evalrsdstart(A,B,C) = A >= A = evalrsdbb1in(A,2*A,2*A) [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] ==> evalrsdbb1in(A,B,C) = -1*A + B >= -1*A + B = evalrsdbb2in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A && D$$ >= 1] ==> evalrsdbb1in(A,B,C) = -1*A + B >= -1*A + B = evalrsdbb2in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A] ==> evalrsdbb1in(A,B,C) = -1*A + B >= -1*A + B = evalrsdbb3in(A,B,-1 + C) * Step 31: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 13. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C) [C >= A && 0 >= 1 + D$] (1,2) 14. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C) [C >= A && D$ >= 1] (1,2) 15. evalrsdbb4in(A,B,C) -> evalrsdbb3in(A,B,C) [C >= A] (1,2) 17. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C) [D >= 1] (1,2) 18. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True (1,2) 19. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [-1 + C >= A && 0 >= 1 + D$$] (?,3) 20. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [-1 + C >= A && D$$ >= 1] (?,3) 21. evalrsdbb2in(A,B,C) -> evalrsdbb3in(A,B,-1 + C) [-1 + C >= A] (?,3) 22. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && 0 >= 1 + D$$] (?,3) 23. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && D$$ >= 1] (A,3) 24. evalrsdbb3in(A,B,C) -> evalrsdbb3in(A,-1 + B,-1 + B) [-1 + B >= A] (A,3) 25. evalrsdstart(A,B,C) -> evalrsdbb1in(A,2*A,2*A) [A >= 0 && 2*A >= A] (1,4) 26. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] (1,4) 27. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A && D$$ >= 1] (1,4) 28. evalrsdbb1in(A,B,C) -> evalrsdbb3in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A] (1,4) Signature: {(evalrsdbb1in,3) ;(evalrsdbb2in,3) ;(evalrsdbb3in,3) ;(evalrsdbb4in,3) ;(evalrsdbbin,3) ;(evalrsdentryin,3) ;(evalrsdreturnin,3) ;(evalrsdstart,3) ;(evalrsdstop,3)} Flow Graph: [13->{19,20,21},14->{19,20,21},15->{22,23,24},17->{13,14,15},18->{13,14,15},19->{19,20,21},20->{19,20,21} ,21->{22,23,24},22->{19,20,21},23->{19,20,21},24->{22,23,24},25->{17,18,26,27,28},26->{19,20,21},27->{19,20 ,21},28->{22,23,24}] Sizebounds: (<13,0,A>, A) (<13,0,B>, 1 + 2*A) (<13,0,C>, 1 + 2*A) (<14,0,A>, A) (<14,0,B>, 1 + 2*A) (<14,0,C>, 1 + 2*A) (<15,0,A>, A) (<15,0,B>, 1 + 2*A) (<15,0,C>, 1 + 2*A) (<17,0,A>, A) (<17,0,B>, 2*A) (<17,0,C>, 1 + 2*A) (<18,0,A>, A) (<18,0,B>, 1 + 2*A) (<18,0,C>, 1 + 2*A) (<19,0,A>, A) (<19,0,B>, ?) (<19,0,C>, ?) (<20,0,A>, A) (<20,0,B>, ?) (<20,0,C>, ?) (<21,0,A>, A) (<21,0,B>, ?) (<21,0,C>, ?) (<22,0,A>, A) (<22,0,B>, ?) (<22,0,C>, ?) (<23,0,A>, A) (<23,0,B>, ?) (<23,0,C>, ?) (<24,0,A>, A) (<24,0,B>, ?) (<24,0,C>, ?) (<25,0,A>, A) (<25,0,B>, 2*A) (<25,0,C>, 2*A) (<26,0,A>, A) (<26,0,B>, 2*A) (<26,0,C>, 1 + 2*A) (<27,0,A>, A) (<27,0,B>, 2*A) (<27,0,C>, 1 + 2*A) (<28,0,A>, A) (<28,0,B>, 2*A) (<28,0,C>, 1 + 2*A) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalrsdbb1in) = -1*x1 + x2 p(evalrsdbb2in) = -1*x1 + x2 p(evalrsdbb3in) = -1*x1 + x2 p(evalrsdbb4in) = -1*x1 + x2 p(evalrsdstart) = x1 The following rules are strictly oriented: [-1 + B >= A && 0 >= 1 + D$$] ==> evalrsdbb3in(A,B,C) = -1*A + B > -1 + -1*A + B = evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && D$$ >= 1] ==> evalrsdbb3in(A,B,C) = -1*A + B > -1 + -1*A + B = evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A] ==> evalrsdbb3in(A,B,C) = -1*A + B > -1 + -1*A + B = evalrsdbb3in(A,-1 + B,-1 + B) The following rules are weakly oriented: [C >= A && 0 >= 1 + D$] ==> evalrsdbb4in(A,B,C) = -1*A + B >= -1*A + B = evalrsdbb2in(A,B,C) [C >= A && D$ >= 1] ==> evalrsdbb4in(A,B,C) = -1*A + B >= -1*A + B = evalrsdbb2in(A,B,C) [C >= A] ==> evalrsdbb4in(A,B,C) = -1*A + B >= -1*A + B = evalrsdbb3in(A,B,C) [D >= 1] ==> evalrsdbb1in(A,B,C) = -1*A + B >= -1*A + B = evalrsdbb4in(A,B,-1 + C) True ==> evalrsdbb1in(A,B,C) = -1*A + B >= -1 + -1*A + B = evalrsdbb4in(A,-1 + B,-1 + B) [-1 + C >= A && 0 >= 1 + D$$] ==> evalrsdbb2in(A,B,C) = -1*A + B >= -1*A + B = evalrsdbb2in(A,B,-1 + C) [-1 + C >= A && D$$ >= 1] ==> evalrsdbb2in(A,B,C) = -1*A + B >= -1*A + B = evalrsdbb2in(A,B,-1 + C) [-1 + C >= A] ==> evalrsdbb2in(A,B,C) = -1*A + B >= -1*A + B = evalrsdbb3in(A,B,-1 + C) [A >= 0 && 2*A >= A] ==> evalrsdstart(A,B,C) = A >= A = evalrsdbb1in(A,2*A,2*A) [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] ==> evalrsdbb1in(A,B,C) = -1*A + B >= -1*A + B = evalrsdbb2in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A && D$$ >= 1] ==> evalrsdbb1in(A,B,C) = -1*A + B >= -1*A + B = evalrsdbb2in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A] ==> evalrsdbb1in(A,B,C) = -1*A + B >= -1*A + B = evalrsdbb3in(A,B,-1 + C) * Step 32: SizeboundsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 13. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C) [C >= A && 0 >= 1 + D$] (1,2) 14. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C) [C >= A && D$ >= 1] (1,2) 15. evalrsdbb4in(A,B,C) -> evalrsdbb3in(A,B,C) [C >= A] (1,2) 17. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C) [D >= 1] (1,2) 18. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True (1,2) 19. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [-1 + C >= A && 0 >= 1 + D$$] (?,3) 20. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [-1 + C >= A && D$$ >= 1] (?,3) 21. evalrsdbb2in(A,B,C) -> evalrsdbb3in(A,B,-1 + C) [-1 + C >= A] (?,3) 22. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && 0 >= 1 + D$$] (A,3) 23. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && D$$ >= 1] (A,3) 24. evalrsdbb3in(A,B,C) -> evalrsdbb3in(A,-1 + B,-1 + B) [-1 + B >= A] (A,3) 25. evalrsdstart(A,B,C) -> evalrsdbb1in(A,2*A,2*A) [A >= 0 && 2*A >= A] (1,4) 26. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] (1,4) 27. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A && D$$ >= 1] (1,4) 28. evalrsdbb1in(A,B,C) -> evalrsdbb3in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A] (1,4) Signature: {(evalrsdbb1in,3) ;(evalrsdbb2in,3) ;(evalrsdbb3in,3) ;(evalrsdbb4in,3) ;(evalrsdbbin,3) ;(evalrsdentryin,3) ;(evalrsdreturnin,3) ;(evalrsdstart,3) ;(evalrsdstop,3)} Flow Graph: [13->{19,20,21},14->{19,20,21},15->{22,23,24},17->{13,14,15},18->{13,14,15},19->{19,20,21},20->{19,20,21} ,21->{22,23,24},22->{19,20,21},23->{19,20,21},24->{22,23,24},25->{17,18,26,27,28},26->{19,20,21},27->{19,20 ,21},28->{22,23,24}] Sizebounds: (<13,0,A>, A) (<13,0,B>, 1 + 2*A) (<13,0,C>, 1 + 2*A) (<14,0,A>, A) (<14,0,B>, 1 + 2*A) (<14,0,C>, 1 + 2*A) (<15,0,A>, A) (<15,0,B>, 1 + 2*A) (<15,0,C>, 1 + 2*A) (<17,0,A>, A) (<17,0,B>, 2*A) (<17,0,C>, 1 + 2*A) (<18,0,A>, A) (<18,0,B>, 1 + 2*A) (<18,0,C>, 1 + 2*A) (<19,0,A>, A) (<19,0,B>, ?) (<19,0,C>, ?) (<20,0,A>, A) (<20,0,B>, ?) (<20,0,C>, ?) (<21,0,A>, A) (<21,0,B>, ?) (<21,0,C>, ?) (<22,0,A>, A) (<22,0,B>, ?) (<22,0,C>, ?) (<23,0,A>, A) (<23,0,B>, ?) (<23,0,C>, ?) (<24,0,A>, A) (<24,0,B>, ?) (<24,0,C>, ?) (<25,0,A>, A) (<25,0,B>, 2*A) (<25,0,C>, 2*A) (<26,0,A>, A) (<26,0,B>, 2*A) (<26,0,C>, 1 + 2*A) (<27,0,A>, A) (<27,0,B>, 2*A) (<27,0,C>, 1 + 2*A) (<28,0,A>, A) (<28,0,B>, 2*A) (<28,0,C>, 1 + 2*A) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<13,0,A>, A) (<13,0,B>, 1 + 2*A) (<13,0,C>, 1 + 2*A) (<14,0,A>, A) (<14,0,B>, 1 + 2*A) (<14,0,C>, 1 + 2*A) (<15,0,A>, A) (<15,0,B>, 1 + 2*A) (<15,0,C>, 1 + 2*A) (<17,0,A>, A) (<17,0,B>, 2*A) (<17,0,C>, 1 + 2*A) (<18,0,A>, A) (<18,0,B>, 1 + 2*A) (<18,0,C>, 1 + 2*A) (<19,0,A>, A) (<19,0,B>, 1 + 5*A) (<19,0,C>, ?) (<20,0,A>, A) (<20,0,B>, 1 + 5*A) (<20,0,C>, ?) (<21,0,A>, A) (<21,0,B>, 1 + 5*A) (<21,0,C>, ?) (<22,0,A>, A) (<22,0,B>, 1 + 5*A) (<22,0,C>, 2 + 5*A) (<23,0,A>, A) (<23,0,B>, 1 + 5*A) (<23,0,C>, 2 + 5*A) (<24,0,A>, A) (<24,0,B>, 1 + 5*A) (<24,0,C>, 2 + 5*A) (<25,0,A>, A) (<25,0,B>, 2*A) (<25,0,C>, 2*A) (<26,0,A>, A) (<26,0,B>, 2*A) (<26,0,C>, 1 + 2*A) (<27,0,A>, A) (<27,0,B>, 2*A) (<27,0,C>, 1 + 2*A) (<28,0,A>, A) (<28,0,B>, 2*A) (<28,0,C>, 1 + 2*A) * Step 33: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 13. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C) [C >= A && 0 >= 1 + D$] (1,2) 14. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C) [C >= A && D$ >= 1] (1,2) 15. evalrsdbb4in(A,B,C) -> evalrsdbb3in(A,B,C) [C >= A] (1,2) 17. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C) [D >= 1] (1,2) 18. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True (1,2) 19. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [-1 + C >= A && 0 >= 1 + D$$] (?,3) 20. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [-1 + C >= A && D$$ >= 1] (?,3) 21. evalrsdbb2in(A,B,C) -> evalrsdbb3in(A,B,-1 + C) [-1 + C >= A] (?,3) 22. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && 0 >= 1 + D$$] (A,3) 23. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && D$$ >= 1] (A,3) 24. evalrsdbb3in(A,B,C) -> evalrsdbb3in(A,-1 + B,-1 + B) [-1 + B >= A] (A,3) 25. evalrsdstart(A,B,C) -> evalrsdbb1in(A,2*A,2*A) [A >= 0 && 2*A >= A] (1,4) 26. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] (1,4) 27. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A && D$$ >= 1] (1,4) 28. evalrsdbb1in(A,B,C) -> evalrsdbb3in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A] (1,4) Signature: {(evalrsdbb1in,3) ;(evalrsdbb2in,3) ;(evalrsdbb3in,3) ;(evalrsdbb4in,3) ;(evalrsdbbin,3) ;(evalrsdentryin,3) ;(evalrsdreturnin,3) ;(evalrsdstart,3) ;(evalrsdstop,3)} Flow Graph: [13->{19,20,21},14->{19,20,21},15->{22,23,24},17->{13,14,15},18->{13,14,15},19->{19,20,21},20->{19,20,21} ,21->{22,23,24},22->{19,20,21},23->{19,20,21},24->{22,23,24},25->{17,18,26,27,28},26->{19,20,21},27->{19,20 ,21},28->{22,23,24}] Sizebounds: (<13,0,A>, A) (<13,0,B>, 1 + 2*A) (<13,0,C>, 1 + 2*A) (<14,0,A>, A) (<14,0,B>, 1 + 2*A) (<14,0,C>, 1 + 2*A) (<15,0,A>, A) (<15,0,B>, 1 + 2*A) (<15,0,C>, 1 + 2*A) (<17,0,A>, A) (<17,0,B>, 2*A) (<17,0,C>, 1 + 2*A) (<18,0,A>, A) (<18,0,B>, 1 + 2*A) (<18,0,C>, 1 + 2*A) (<19,0,A>, A) (<19,0,B>, 1 + 5*A) (<19,0,C>, ?) (<20,0,A>, A) (<20,0,B>, 1 + 5*A) (<20,0,C>, ?) (<21,0,A>, A) (<21,0,B>, 1 + 5*A) (<21,0,C>, ?) (<22,0,A>, A) (<22,0,B>, 1 + 5*A) (<22,0,C>, 2 + 5*A) (<23,0,A>, A) (<23,0,B>, 1 + 5*A) (<23,0,C>, 2 + 5*A) (<24,0,A>, A) (<24,0,B>, 1 + 5*A) (<24,0,C>, 2 + 5*A) (<25,0,A>, A) (<25,0,B>, 2*A) (<25,0,C>, 2*A) (<26,0,A>, A) (<26,0,B>, 2*A) (<26,0,C>, 1 + 2*A) (<27,0,A>, A) (<27,0,B>, 2*A) (<27,0,C>, 1 + 2*A) (<28,0,A>, A) (<28,0,B>, 2*A) (<28,0,C>, 1 + 2*A) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [19,20,21,24], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalrsdbb2in) = 1 p(evalrsdbb3in) = 0 The following rules are strictly oriented: [-1 + C >= A] ==> evalrsdbb2in(A,B,C) = 1 > 0 = evalrsdbb3in(A,B,-1 + C) The following rules are weakly oriented: [-1 + C >= A && 0 >= 1 + D$$] ==> evalrsdbb2in(A,B,C) = 1 >= 1 = evalrsdbb2in(A,B,-1 + C) [-1 + C >= A && D$$ >= 1] ==> evalrsdbb2in(A,B,C) = 1 >= 1 = evalrsdbb2in(A,B,-1 + C) [-1 + B >= A] ==> evalrsdbb3in(A,B,C) = 0 >= 0 = evalrsdbb3in(A,-1 + B,-1 + B) We use the following global sizebounds: (<13,0,A>, A) (<13,0,B>, 1 + 2*A) (<13,0,C>, 1 + 2*A) (<14,0,A>, A) (<14,0,B>, 1 + 2*A) (<14,0,C>, 1 + 2*A) (<15,0,A>, A) (<15,0,B>, 1 + 2*A) (<15,0,C>, 1 + 2*A) (<17,0,A>, A) (<17,0,B>, 2*A) (<17,0,C>, 1 + 2*A) (<18,0,A>, A) (<18,0,B>, 1 + 2*A) (<18,0,C>, 1 + 2*A) (<19,0,A>, A) (<19,0,B>, 1 + 5*A) (<19,0,C>, ?) (<20,0,A>, A) (<20,0,B>, 1 + 5*A) (<20,0,C>, ?) (<21,0,A>, A) (<21,0,B>, 1 + 5*A) (<21,0,C>, ?) (<22,0,A>, A) (<22,0,B>, 1 + 5*A) (<22,0,C>, 2 + 5*A) (<23,0,A>, A) (<23,0,B>, 1 + 5*A) (<23,0,C>, 2 + 5*A) (<24,0,A>, A) (<24,0,B>, 1 + 5*A) (<24,0,C>, 2 + 5*A) (<25,0,A>, A) (<25,0,B>, 2*A) (<25,0,C>, 2*A) (<26,0,A>, A) (<26,0,B>, 2*A) (<26,0,C>, 1 + 2*A) (<27,0,A>, A) (<27,0,B>, 2*A) (<27,0,C>, 1 + 2*A) (<28,0,A>, A) (<28,0,B>, 2*A) (<28,0,C>, 1 + 2*A) * Step 34: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 13. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C) [C >= A && 0 >= 1 + D$] (1,2) 14. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C) [C >= A && D$ >= 1] (1,2) 15. evalrsdbb4in(A,B,C) -> evalrsdbb3in(A,B,C) [C >= A] (1,2) 17. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C) [D >= 1] (1,2) 18. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True (1,2) 19. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [-1 + C >= A && 0 >= 1 + D$$] (?,3) 20. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [-1 + C >= A && D$$ >= 1] (?,3) 21. evalrsdbb2in(A,B,C) -> evalrsdbb3in(A,B,-1 + C) [-1 + C >= A] (4 + 2*A,3) 22. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && 0 >= 1 + D$$] (A,3) 23. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && D$$ >= 1] (A,3) 24. evalrsdbb3in(A,B,C) -> evalrsdbb3in(A,-1 + B,-1 + B) [-1 + B >= A] (A,3) 25. evalrsdstart(A,B,C) -> evalrsdbb1in(A,2*A,2*A) [A >= 0 && 2*A >= A] (1,4) 26. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] (1,4) 27. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A && D$$ >= 1] (1,4) 28. evalrsdbb1in(A,B,C) -> evalrsdbb3in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A] (1,4) Signature: {(evalrsdbb1in,3) ;(evalrsdbb2in,3) ;(evalrsdbb3in,3) ;(evalrsdbb4in,3) ;(evalrsdbbin,3) ;(evalrsdentryin,3) ;(evalrsdreturnin,3) ;(evalrsdstart,3) ;(evalrsdstop,3)} Flow Graph: [13->{19,20,21},14->{19,20,21},15->{22,23,24},17->{13,14,15},18->{13,14,15},19->{19,20,21},20->{19,20,21} ,21->{22,23,24},22->{19,20,21},23->{19,20,21},24->{22,23,24},25->{17,18,26,27,28},26->{19,20,21},27->{19,20 ,21},28->{22,23,24}] Sizebounds: (<13,0,A>, A) (<13,0,B>, 1 + 2*A) (<13,0,C>, 1 + 2*A) (<14,0,A>, A) (<14,0,B>, 1 + 2*A) (<14,0,C>, 1 + 2*A) (<15,0,A>, A) (<15,0,B>, 1 + 2*A) (<15,0,C>, 1 + 2*A) (<17,0,A>, A) (<17,0,B>, 2*A) (<17,0,C>, 1 + 2*A) (<18,0,A>, A) (<18,0,B>, 1 + 2*A) (<18,0,C>, 1 + 2*A) (<19,0,A>, A) (<19,0,B>, 1 + 5*A) (<19,0,C>, ?) (<20,0,A>, A) (<20,0,B>, 1 + 5*A) (<20,0,C>, ?) (<21,0,A>, A) (<21,0,B>, 1 + 5*A) (<21,0,C>, ?) (<22,0,A>, A) (<22,0,B>, 1 + 5*A) (<22,0,C>, 2 + 5*A) (<23,0,A>, A) (<23,0,B>, 1 + 5*A) (<23,0,C>, 2 + 5*A) (<24,0,A>, A) (<24,0,B>, 1 + 5*A) (<24,0,C>, 2 + 5*A) (<25,0,A>, A) (<25,0,B>, 2*A) (<25,0,C>, 2*A) (<26,0,A>, A) (<26,0,B>, 2*A) (<26,0,C>, 1 + 2*A) (<27,0,A>, A) (<27,0,B>, 2*A) (<27,0,C>, 1 + 2*A) (<28,0,A>, A) (<28,0,B>, 2*A) (<28,0,C>, 1 + 2*A) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [19,20,22,23,24], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalrsdbb2in) = -1*x1 + x3 p(evalrsdbb3in) = -1*x1 + x2 The following rules are strictly oriented: [-1 + C >= A && D$$ >= 1] ==> evalrsdbb2in(A,B,C) = -1*A + C > -1 + -1*A + C = evalrsdbb2in(A,B,-1 + C) [-1 + B >= A && 0 >= 1 + D$$] ==> evalrsdbb3in(A,B,C) = -1*A + B > -1 + -1*A + B = evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && D$$ >= 1] ==> evalrsdbb3in(A,B,C) = -1*A + B > -1 + -1*A + B = evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A] ==> evalrsdbb3in(A,B,C) = -1*A + B > -1 + -1*A + B = evalrsdbb3in(A,-1 + B,-1 + B) The following rules are weakly oriented: [-1 + C >= A && 0 >= 1 + D$$] ==> evalrsdbb2in(A,B,C) = -1*A + C >= -1 + -1*A + C = evalrsdbb2in(A,B,-1 + C) We use the following global sizebounds: (<13,0,A>, A) (<13,0,B>, 1 + 2*A) (<13,0,C>, 1 + 2*A) (<14,0,A>, A) (<14,0,B>, 1 + 2*A) (<14,0,C>, 1 + 2*A) (<15,0,A>, A) (<15,0,B>, 1 + 2*A) (<15,0,C>, 1 + 2*A) (<17,0,A>, A) (<17,0,B>, 2*A) (<17,0,C>, 1 + 2*A) (<18,0,A>, A) (<18,0,B>, 1 + 2*A) (<18,0,C>, 1 + 2*A) (<19,0,A>, A) (<19,0,B>, 1 + 5*A) (<19,0,C>, ?) (<20,0,A>, A) (<20,0,B>, 1 + 5*A) (<20,0,C>, ?) (<21,0,A>, A) (<21,0,B>, 1 + 5*A) (<21,0,C>, ?) (<22,0,A>, A) (<22,0,B>, 1 + 5*A) (<22,0,C>, 2 + 5*A) (<23,0,A>, A) (<23,0,B>, 1 + 5*A) (<23,0,C>, 2 + 5*A) (<24,0,A>, A) (<24,0,B>, 1 + 5*A) (<24,0,C>, 2 + 5*A) (<25,0,A>, A) (<25,0,B>, 2*A) (<25,0,C>, 2*A) (<26,0,A>, A) (<26,0,B>, 2*A) (<26,0,C>, 1 + 2*A) (<27,0,A>, A) (<27,0,B>, 2*A) (<27,0,C>, 1 + 2*A) (<28,0,A>, A) (<28,0,B>, 2*A) (<28,0,C>, 1 + 2*A) * Step 35: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 13. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C) [C >= A && 0 >= 1 + D$] (1,2) 14. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C) [C >= A && D$ >= 1] (1,2) 15. evalrsdbb4in(A,B,C) -> evalrsdbb3in(A,B,C) [C >= A] (1,2) 17. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C) [D >= 1] (1,2) 18. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True (1,2) 19. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [-1 + C >= A && 0 >= 1 + D$$] (?,3) 20. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [-1 + C >= A && D$$ >= 1] (9 + 44*A + 12*A^2,3) 21. evalrsdbb2in(A,B,C) -> evalrsdbb3in(A,B,-1 + C) [-1 + C >= A] (4 + 2*A,3) 22. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && 0 >= 1 + D$$] (A,3) 23. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && D$$ >= 1] (A,3) 24. evalrsdbb3in(A,B,C) -> evalrsdbb3in(A,-1 + B,-1 + B) [-1 + B >= A] (A,3) 25. evalrsdstart(A,B,C) -> evalrsdbb1in(A,2*A,2*A) [A >= 0 && 2*A >= A] (1,4) 26. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] (1,4) 27. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A && D$$ >= 1] (1,4) 28. evalrsdbb1in(A,B,C) -> evalrsdbb3in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A] (1,4) Signature: {(evalrsdbb1in,3) ;(evalrsdbb2in,3) ;(evalrsdbb3in,3) ;(evalrsdbb4in,3) ;(evalrsdbbin,3) ;(evalrsdentryin,3) ;(evalrsdreturnin,3) ;(evalrsdstart,3) ;(evalrsdstop,3)} Flow Graph: [13->{19,20,21},14->{19,20,21},15->{22,23,24},17->{13,14,15},18->{13,14,15},19->{19,20,21},20->{19,20,21} ,21->{22,23,24},22->{19,20,21},23->{19,20,21},24->{22,23,24},25->{17,18,26,27,28},26->{19,20,21},27->{19,20 ,21},28->{22,23,24}] Sizebounds: (<13,0,A>, A) (<13,0,B>, 1 + 2*A) (<13,0,C>, 1 + 2*A) (<14,0,A>, A) (<14,0,B>, 1 + 2*A) (<14,0,C>, 1 + 2*A) (<15,0,A>, A) (<15,0,B>, 1 + 2*A) (<15,0,C>, 1 + 2*A) (<17,0,A>, A) (<17,0,B>, 2*A) (<17,0,C>, 1 + 2*A) (<18,0,A>, A) (<18,0,B>, 1 + 2*A) (<18,0,C>, 1 + 2*A) (<19,0,A>, A) (<19,0,B>, 1 + 5*A) (<19,0,C>, ?) (<20,0,A>, A) (<20,0,B>, 1 + 5*A) (<20,0,C>, ?) (<21,0,A>, A) (<21,0,B>, 1 + 5*A) (<21,0,C>, ?) (<22,0,A>, A) (<22,0,B>, 1 + 5*A) (<22,0,C>, 2 + 5*A) (<23,0,A>, A) (<23,0,B>, 1 + 5*A) (<23,0,C>, 2 + 5*A) (<24,0,A>, A) (<24,0,B>, 1 + 5*A) (<24,0,C>, 2 + 5*A) (<25,0,A>, A) (<25,0,B>, 2*A) (<25,0,C>, 2*A) (<26,0,A>, A) (<26,0,B>, 2*A) (<26,0,C>, 1 + 2*A) (<27,0,A>, A) (<27,0,B>, 2*A) (<27,0,C>, 1 + 2*A) (<28,0,A>, A) (<28,0,B>, 2*A) (<28,0,C>, 1 + 2*A) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [19,20,22,23,24], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalrsdbb2in) = -1*x1 + x3 p(evalrsdbb3in) = -1*x1 + x2 The following rules are strictly oriented: [-1 + C >= A && 0 >= 1 + D$$] ==> evalrsdbb2in(A,B,C) = -1*A + C > -1 + -1*A + C = evalrsdbb2in(A,B,-1 + C) [-1 + C >= A && D$$ >= 1] ==> evalrsdbb2in(A,B,C) = -1*A + C > -1 + -1*A + C = evalrsdbb2in(A,B,-1 + C) [-1 + B >= A && 0 >= 1 + D$$] ==> evalrsdbb3in(A,B,C) = -1*A + B > -1 + -1*A + B = evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && D$$ >= 1] ==> evalrsdbb3in(A,B,C) = -1*A + B > -1 + -1*A + B = evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A] ==> evalrsdbb3in(A,B,C) = -1*A + B > -1 + -1*A + B = evalrsdbb3in(A,-1 + B,-1 + B) The following rules are weakly oriented: We use the following global sizebounds: (<13,0,A>, A) (<13,0,B>, 1 + 2*A) (<13,0,C>, 1 + 2*A) (<14,0,A>, A) (<14,0,B>, 1 + 2*A) (<14,0,C>, 1 + 2*A) (<15,0,A>, A) (<15,0,B>, 1 + 2*A) (<15,0,C>, 1 + 2*A) (<17,0,A>, A) (<17,0,B>, 2*A) (<17,0,C>, 1 + 2*A) (<18,0,A>, A) (<18,0,B>, 1 + 2*A) (<18,0,C>, 1 + 2*A) (<19,0,A>, A) (<19,0,B>, 1 + 5*A) (<19,0,C>, ?) (<20,0,A>, A) (<20,0,B>, 1 + 5*A) (<20,0,C>, ?) (<21,0,A>, A) (<21,0,B>, 1 + 5*A) (<21,0,C>, ?) (<22,0,A>, A) (<22,0,B>, 1 + 5*A) (<22,0,C>, 2 + 5*A) (<23,0,A>, A) (<23,0,B>, 1 + 5*A) (<23,0,C>, 2 + 5*A) (<24,0,A>, A) (<24,0,B>, 1 + 5*A) (<24,0,C>, 2 + 5*A) (<25,0,A>, A) (<25,0,B>, 2*A) (<25,0,C>, 2*A) (<26,0,A>, A) (<26,0,B>, 2*A) (<26,0,C>, 1 + 2*A) (<27,0,A>, A) (<27,0,B>, 2*A) (<27,0,C>, 1 + 2*A) (<28,0,A>, A) (<28,0,B>, 2*A) (<28,0,C>, 1 + 2*A) * Step 36: KnowledgePropagation WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 13. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C) [C >= A && 0 >= 1 + D$] (1,2) 14. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C) [C >= A && D$ >= 1] (1,2) 15. evalrsdbb4in(A,B,C) -> evalrsdbb3in(A,B,C) [C >= A] (1,2) 17. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C) [D >= 1] (1,2) 18. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True (1,2) 19. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [-1 + C >= A && 0 >= 1 + D$$] (9 + 44*A + 12*A^2,3) 20. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [-1 + C >= A && D$$ >= 1] (9 + 44*A + 12*A^2,3) 21. evalrsdbb2in(A,B,C) -> evalrsdbb3in(A,B,-1 + C) [-1 + C >= A] (4 + 2*A,3) 22. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && 0 >= 1 + D$$] (A,3) 23. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && D$$ >= 1] (A,3) 24. evalrsdbb3in(A,B,C) -> evalrsdbb3in(A,-1 + B,-1 + B) [-1 + B >= A] (A,3) 25. evalrsdstart(A,B,C) -> evalrsdbb1in(A,2*A,2*A) [A >= 0 && 2*A >= A] (1,4) 26. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] (1,4) 27. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A && D$$ >= 1] (1,4) 28. evalrsdbb1in(A,B,C) -> evalrsdbb3in(A,B,-1 + C) [0 >= 1 + D && -1 + C >= A] (1,4) Signature: {(evalrsdbb1in,3) ;(evalrsdbb2in,3) ;(evalrsdbb3in,3) ;(evalrsdbb4in,3) ;(evalrsdbbin,3) ;(evalrsdentryin,3) ;(evalrsdreturnin,3) ;(evalrsdstart,3) ;(evalrsdstop,3)} Flow Graph: [13->{19,20,21},14->{19,20,21},15->{22,23,24},17->{13,14,15},18->{13,14,15},19->{19,20,21},20->{19,20,21} ,21->{22,23,24},22->{19,20,21},23->{19,20,21},24->{22,23,24},25->{17,18,26,27,28},26->{19,20,21},27->{19,20 ,21},28->{22,23,24}] Sizebounds: (<13,0,A>, A) (<13,0,B>, 1 + 2*A) (<13,0,C>, 1 + 2*A) (<14,0,A>, A) (<14,0,B>, 1 + 2*A) (<14,0,C>, 1 + 2*A) (<15,0,A>, A) (<15,0,B>, 1 + 2*A) (<15,0,C>, 1 + 2*A) (<17,0,A>, A) (<17,0,B>, 2*A) (<17,0,C>, 1 + 2*A) (<18,0,A>, A) (<18,0,B>, 1 + 2*A) (<18,0,C>, 1 + 2*A) (<19,0,A>, A) (<19,0,B>, 1 + 5*A) (<19,0,C>, ?) (<20,0,A>, A) (<20,0,B>, 1 + 5*A) (<20,0,C>, ?) (<21,0,A>, A) (<21,0,B>, 1 + 5*A) (<21,0,C>, ?) (<22,0,A>, A) (<22,0,B>, 1 + 5*A) (<22,0,C>, 2 + 5*A) (<23,0,A>, A) (<23,0,B>, 1 + 5*A) (<23,0,C>, 2 + 5*A) (<24,0,A>, A) (<24,0,B>, 1 + 5*A) (<24,0,C>, 2 + 5*A) (<25,0,A>, A) (<25,0,B>, 2*A) (<25,0,C>, 2*A) (<26,0,A>, A) (<26,0,B>, 2*A) (<26,0,C>, 1 + 2*A) (<27,0,A>, A) (<27,0,B>, 2*A) (<27,0,C>, 1 + 2*A) (<28,0,A>, A) (<28,0,B>, 2*A) (<28,0,C>, 1 + 2*A) + Applied Processor: KnowledgePropagation + Details: The problem is already solved. WORST_CASE(?,O(n^2))