WORST_CASE(?,O(n^2))
* Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0.  evalrsdstart(A,B,C)    -> evalrsdentryin(A,B,C)         True         (1,1)
          1.  evalrsdentryin(A,B,C)  -> evalrsdbbin(A,B,C)            [A >= 0]     (?,1)
          2.  evalrsdentryin(A,B,C)  -> evalrsdreturnin(A,B,C)        [0 >= 1 + A] (?,1)
          3.  evalrsdbbin(A,B,C)     -> evalrsdbb4in(A,2*A,2*A)       True         (?,1)
          4.  evalrsdbb4in(A,B,C)    -> evalrsdbb1in(A,B,C)           [C >= A]     (?,1)
          5.  evalrsdbb4in(A,B,C)    -> evalrsdreturnin(A,B,C)        [A >= 1 + C] (?,1)
          6.  evalrsdbb1in(A,B,C)    -> evalrsdbb2in(A,B,C)           [0 >= 1 + D] (?,1)
          7.  evalrsdbb1in(A,B,C)    -> evalrsdbb2in(A,B,C)           [D >= 1]     (?,1)
          8.  evalrsdbb1in(A,B,C)    -> evalrsdbb3in(A,B,C)           True         (?,1)
          9.  evalrsdbb2in(A,B,C)    -> evalrsdbb4in(A,B,-1 + C)      True         (?,1)
          10. evalrsdbb3in(A,B,C)    -> evalrsdbb4in(A,-1 + B,-1 + B) True         (?,1)
          11. evalrsdreturnin(A,B,C) -> evalrsdstop(A,B,C)            True         (?,1)
        Signature:
          {(evalrsdbb1in,3)
          ;(evalrsdbb2in,3)
          ;(evalrsdbb3in,3)
          ;(evalrsdbb4in,3)
          ;(evalrsdbbin,3)
          ;(evalrsdentryin,3)
          ;(evalrsdreturnin,3)
          ;(evalrsdstart,3)
          ;(evalrsdstop,3)}
        Flow Graph:
          [0->{1,2},1->{3},2->{11},3->{4,5},4->{6,7,8},5->{11},6->{9},7->{9},8->{10},9->{4,5},10->{4,5},11->{}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (< 0,0,A>, A, .= 0) (< 0,0,B>,     B, .= 0) (< 0,0,C>,     C, .= 0) 
          (< 1,0,A>, A, .= 0) (< 1,0,B>,     B, .= 0) (< 1,0,C>,     C, .= 0) 
          (< 2,0,A>, A, .= 0) (< 2,0,B>,     B, .= 0) (< 2,0,C>,     C, .= 0) 
          (< 3,0,A>, A, .= 0) (< 3,0,B>,   2*A,   .?) (< 3,0,C>,   2*A,   .?) 
          (< 4,0,A>, A, .= 0) (< 4,0,B>,     B, .= 0) (< 4,0,C>,     C, .= 0) 
          (< 5,0,A>, A, .= 0) (< 5,0,B>,     B, .= 0) (< 5,0,C>,     C, .= 0) 
          (< 6,0,A>, A, .= 0) (< 6,0,B>,     B, .= 0) (< 6,0,C>,     C, .= 0) 
          (< 7,0,A>, A, .= 0) (< 7,0,B>,     B, .= 0) (< 7,0,C>,     C, .= 0) 
          (< 8,0,A>, A, .= 0) (< 8,0,B>,     B, .= 0) (< 8,0,C>,     C, .= 0) 
          (< 9,0,A>, A, .= 0) (< 9,0,B>,     B, .= 0) (< 9,0,C>, 1 + C, .+ 1) 
          (<10,0,A>, A, .= 0) (<10,0,B>, 1 + B, .+ 1) (<10,0,C>, 1 + B, .+ 1) 
          (<11,0,A>, A, .= 0) (<11,0,B>,     B, .= 0) (<11,0,C>,     C, .= 0) 
* Step 2: SizeboundsProc WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0.  evalrsdstart(A,B,C)    -> evalrsdentryin(A,B,C)         True         (1,1)
          1.  evalrsdentryin(A,B,C)  -> evalrsdbbin(A,B,C)            [A >= 0]     (?,1)
          2.  evalrsdentryin(A,B,C)  -> evalrsdreturnin(A,B,C)        [0 >= 1 + A] (?,1)
          3.  evalrsdbbin(A,B,C)     -> evalrsdbb4in(A,2*A,2*A)       True         (?,1)
          4.  evalrsdbb4in(A,B,C)    -> evalrsdbb1in(A,B,C)           [C >= A]     (?,1)
          5.  evalrsdbb4in(A,B,C)    -> evalrsdreturnin(A,B,C)        [A >= 1 + C] (?,1)
          6.  evalrsdbb1in(A,B,C)    -> evalrsdbb2in(A,B,C)           [0 >= 1 + D] (?,1)
          7.  evalrsdbb1in(A,B,C)    -> evalrsdbb2in(A,B,C)           [D >= 1]     (?,1)
          8.  evalrsdbb1in(A,B,C)    -> evalrsdbb3in(A,B,C)           True         (?,1)
          9.  evalrsdbb2in(A,B,C)    -> evalrsdbb4in(A,B,-1 + C)      True         (?,1)
          10. evalrsdbb3in(A,B,C)    -> evalrsdbb4in(A,-1 + B,-1 + B) True         (?,1)
          11. evalrsdreturnin(A,B,C) -> evalrsdstop(A,B,C)            True         (?,1)
        Signature:
          {(evalrsdbb1in,3)
          ;(evalrsdbb2in,3)
          ;(evalrsdbb3in,3)
          ;(evalrsdbb4in,3)
          ;(evalrsdbbin,3)
          ;(evalrsdentryin,3)
          ;(evalrsdreturnin,3)
          ;(evalrsdstart,3)
          ;(evalrsdstop,3)}
        Flow Graph:
          [0->{1,2},1->{3},2->{11},3->{4,5},4->{6,7,8},5->{11},6->{9},7->{9},8->{10},9->{4,5},10->{4,5},11->{}]
        Sizebounds:
          (< 0,0,A>, ?) (< 0,0,B>, ?) (< 0,0,C>, ?) 
          (< 1,0,A>, ?) (< 1,0,B>, ?) (< 1,0,C>, ?) 
          (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,C>, ?) 
          (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,C>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,C>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,0,C>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) 
          (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) 
          (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (< 0,0,A>, A) (< 0,0,B>,   B) (< 0,0,C>,   C) 
          (< 1,0,A>, A) (< 1,0,B>,   B) (< 1,0,C>,   C) 
          (< 2,0,A>, A) (< 2,0,B>,   B) (< 2,0,C>,   C) 
          (< 3,0,A>, A) (< 3,0,B>, 2*A) (< 3,0,C>, 2*A) 
          (< 4,0,A>, A) (< 4,0,B>,   ?) (< 4,0,C>,   ?) 
          (< 5,0,A>, A) (< 5,0,B>,   ?) (< 5,0,C>,   ?) 
          (< 6,0,A>, A) (< 6,0,B>,   ?) (< 6,0,C>,   ?) 
          (< 7,0,A>, A) (< 7,0,B>,   ?) (< 7,0,C>,   ?) 
          (< 8,0,A>, A) (< 8,0,B>,   ?) (< 8,0,C>,   ?) 
          (< 9,0,A>, A) (< 9,0,B>,   ?) (< 9,0,C>,   ?) 
          (<10,0,A>, A) (<10,0,B>,   ?) (<10,0,C>,   ?) 
          (<11,0,A>, A) (<11,0,B>,   ?) (<11,0,C>,   ?) 
* Step 3: LeafRules WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0.  evalrsdstart(A,B,C)    -> evalrsdentryin(A,B,C)         True         (1,1)
          1.  evalrsdentryin(A,B,C)  -> evalrsdbbin(A,B,C)            [A >= 0]     (?,1)
          2.  evalrsdentryin(A,B,C)  -> evalrsdreturnin(A,B,C)        [0 >= 1 + A] (?,1)
          3.  evalrsdbbin(A,B,C)     -> evalrsdbb4in(A,2*A,2*A)       True         (?,1)
          4.  evalrsdbb4in(A,B,C)    -> evalrsdbb1in(A,B,C)           [C >= A]     (?,1)
          5.  evalrsdbb4in(A,B,C)    -> evalrsdreturnin(A,B,C)        [A >= 1 + C] (?,1)
          6.  evalrsdbb1in(A,B,C)    -> evalrsdbb2in(A,B,C)           [0 >= 1 + D] (?,1)
          7.  evalrsdbb1in(A,B,C)    -> evalrsdbb2in(A,B,C)           [D >= 1]     (?,1)
          8.  evalrsdbb1in(A,B,C)    -> evalrsdbb3in(A,B,C)           True         (?,1)
          9.  evalrsdbb2in(A,B,C)    -> evalrsdbb4in(A,B,-1 + C)      True         (?,1)
          10. evalrsdbb3in(A,B,C)    -> evalrsdbb4in(A,-1 + B,-1 + B) True         (?,1)
          11. evalrsdreturnin(A,B,C) -> evalrsdstop(A,B,C)            True         (?,1)
        Signature:
          {(evalrsdbb1in,3)
          ;(evalrsdbb2in,3)
          ;(evalrsdbb3in,3)
          ;(evalrsdbb4in,3)
          ;(evalrsdbbin,3)
          ;(evalrsdentryin,3)
          ;(evalrsdreturnin,3)
          ;(evalrsdstart,3)
          ;(evalrsdstop,3)}
        Flow Graph:
          [0->{1,2},1->{3},2->{11},3->{4,5},4->{6,7,8},5->{11},6->{9},7->{9},8->{10},9->{4,5},10->{4,5},11->{}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>,   B) (< 0,0,C>,   C) 
          (< 1,0,A>, A) (< 1,0,B>,   B) (< 1,0,C>,   C) 
          (< 2,0,A>, A) (< 2,0,B>,   B) (< 2,0,C>,   C) 
          (< 3,0,A>, A) (< 3,0,B>, 2*A) (< 3,0,C>, 2*A) 
          (< 4,0,A>, A) (< 4,0,B>,   ?) (< 4,0,C>,   ?) 
          (< 5,0,A>, A) (< 5,0,B>,   ?) (< 5,0,C>,   ?) 
          (< 6,0,A>, A) (< 6,0,B>,   ?) (< 6,0,C>,   ?) 
          (< 7,0,A>, A) (< 7,0,B>,   ?) (< 7,0,C>,   ?) 
          (< 8,0,A>, A) (< 8,0,B>,   ?) (< 8,0,C>,   ?) 
          (< 9,0,A>, A) (< 9,0,B>,   ?) (< 9,0,C>,   ?) 
          (<10,0,A>, A) (<10,0,B>,   ?) (<10,0,C>,   ?) 
          (<11,0,A>, A) (<11,0,B>,   ?) (<11,0,C>,   ?) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [2,5,11]
* Step 4: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0.  evalrsdstart(A,B,C)   -> evalrsdentryin(A,B,C)         True         (1,1)
          1.  evalrsdentryin(A,B,C) -> evalrsdbbin(A,B,C)            [A >= 0]     (?,1)
          3.  evalrsdbbin(A,B,C)    -> evalrsdbb4in(A,2*A,2*A)       True         (?,1)
          4.  evalrsdbb4in(A,B,C)   -> evalrsdbb1in(A,B,C)           [C >= A]     (?,1)
          6.  evalrsdbb1in(A,B,C)   -> evalrsdbb2in(A,B,C)           [0 >= 1 + D] (?,1)
          7.  evalrsdbb1in(A,B,C)   -> evalrsdbb2in(A,B,C)           [D >= 1]     (?,1)
          8.  evalrsdbb1in(A,B,C)   -> evalrsdbb3in(A,B,C)           True         (?,1)
          9.  evalrsdbb2in(A,B,C)   -> evalrsdbb4in(A,B,-1 + C)      True         (?,1)
          10. evalrsdbb3in(A,B,C)   -> evalrsdbb4in(A,-1 + B,-1 + B) True         (?,1)
        Signature:
          {(evalrsdbb1in,3)
          ;(evalrsdbb2in,3)
          ;(evalrsdbb3in,3)
          ;(evalrsdbb4in,3)
          ;(evalrsdbbin,3)
          ;(evalrsdentryin,3)
          ;(evalrsdreturnin,3)
          ;(evalrsdstart,3)
          ;(evalrsdstop,3)}
        Flow Graph:
          [0->{1},1->{3},3->{4},4->{6,7,8},6->{9},7->{9},8->{10},9->{4},10->{4}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>,   B) (< 0,0,C>,   C) 
          (< 1,0,A>, A) (< 1,0,B>,   B) (< 1,0,C>,   C) 
          (< 3,0,A>, A) (< 3,0,B>, 2*A) (< 3,0,C>, 2*A) 
          (< 4,0,A>, A) (< 4,0,B>,   ?) (< 4,0,C>,   ?) 
          (< 6,0,A>, A) (< 6,0,B>,   ?) (< 6,0,C>,   ?) 
          (< 7,0,A>, A) (< 7,0,B>,   ?) (< 7,0,C>,   ?) 
          (< 8,0,A>, A) (< 8,0,B>,   ?) (< 8,0,C>,   ?) 
          (< 9,0,A>, A) (< 9,0,B>,   ?) (< 9,0,C>,   ?) 
          (<10,0,A>, A) (<10,0,B>,   ?) (<10,0,C>,   ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
            p(evalrsdbb1in) = 1
            p(evalrsdbb2in) = 1
            p(evalrsdbb3in) = 1
            p(evalrsdbb4in) = 1
             p(evalrsdbbin) = 2
          p(evalrsdentryin) = 2
            p(evalrsdstart) = 2
        
        The following rules are strictly oriented:
                        True ==>                        
          evalrsdbbin(A,B,C)   = 2                      
                               > 1                      
                               = evalrsdbb4in(A,2*A,2*A)
        
        
        The following rules are weakly oriented:
                           True ==>                              
            evalrsdstart(A,B,C)   = 2                            
                                 >= 2                            
                                  = evalrsdentryin(A,B,C)        
        
                       [A >= 0] ==>                              
          evalrsdentryin(A,B,C)   = 2                            
                                 >= 2                            
                                  = evalrsdbbin(A,B,C)           
        
                       [C >= A] ==>                              
            evalrsdbb4in(A,B,C)   = 1                            
                                 >= 1                            
                                  = evalrsdbb1in(A,B,C)          
        
                   [0 >= 1 + D] ==>                              
            evalrsdbb1in(A,B,C)   = 1                            
                                 >= 1                            
                                  = evalrsdbb2in(A,B,C)          
        
                       [D >= 1] ==>                              
            evalrsdbb1in(A,B,C)   = 1                            
                                 >= 1                            
                                  = evalrsdbb2in(A,B,C)          
        
                           True ==>                              
            evalrsdbb1in(A,B,C)   = 1                            
                                 >= 1                            
                                  = evalrsdbb3in(A,B,C)          
        
                           True ==>                              
            evalrsdbb2in(A,B,C)   = 1                            
                                 >= 1                            
                                  = evalrsdbb4in(A,B,-1 + C)     
        
                           True ==>                              
            evalrsdbb3in(A,B,C)   = 1                            
                                 >= 1                            
                                  = evalrsdbb4in(A,-1 + B,-1 + B)
        
        
* Step 5: KnowledgePropagation WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0.  evalrsdstart(A,B,C)   -> evalrsdentryin(A,B,C)         True         (1,1)
          1.  evalrsdentryin(A,B,C) -> evalrsdbbin(A,B,C)            [A >= 0]     (?,1)
          3.  evalrsdbbin(A,B,C)    -> evalrsdbb4in(A,2*A,2*A)       True         (2,1)
          4.  evalrsdbb4in(A,B,C)   -> evalrsdbb1in(A,B,C)           [C >= A]     (?,1)
          6.  evalrsdbb1in(A,B,C)   -> evalrsdbb2in(A,B,C)           [0 >= 1 + D] (?,1)
          7.  evalrsdbb1in(A,B,C)   -> evalrsdbb2in(A,B,C)           [D >= 1]     (?,1)
          8.  evalrsdbb1in(A,B,C)   -> evalrsdbb3in(A,B,C)           True         (?,1)
          9.  evalrsdbb2in(A,B,C)   -> evalrsdbb4in(A,B,-1 + C)      True         (?,1)
          10. evalrsdbb3in(A,B,C)   -> evalrsdbb4in(A,-1 + B,-1 + B) True         (?,1)
        Signature:
          {(evalrsdbb1in,3)
          ;(evalrsdbb2in,3)
          ;(evalrsdbb3in,3)
          ;(evalrsdbb4in,3)
          ;(evalrsdbbin,3)
          ;(evalrsdentryin,3)
          ;(evalrsdreturnin,3)
          ;(evalrsdstart,3)
          ;(evalrsdstop,3)}
        Flow Graph:
          [0->{1},1->{3},3->{4},4->{6,7,8},6->{9},7->{9},8->{10},9->{4},10->{4}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>,   B) (< 0,0,C>,   C) 
          (< 1,0,A>, A) (< 1,0,B>,   B) (< 1,0,C>,   C) 
          (< 3,0,A>, A) (< 3,0,B>, 2*A) (< 3,0,C>, 2*A) 
          (< 4,0,A>, A) (< 4,0,B>,   ?) (< 4,0,C>,   ?) 
          (< 6,0,A>, A) (< 6,0,B>,   ?) (< 6,0,C>,   ?) 
          (< 7,0,A>, A) (< 7,0,B>,   ?) (< 7,0,C>,   ?) 
          (< 8,0,A>, A) (< 8,0,B>,   ?) (< 8,0,C>,   ?) 
          (< 9,0,A>, A) (< 9,0,B>,   ?) (< 9,0,C>,   ?) 
          (<10,0,A>, A) (<10,0,B>,   ?) (<10,0,C>,   ?) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 6: ChainProcessor WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0.  evalrsdstart(A,B,C)   -> evalrsdentryin(A,B,C)         True         (1,1)
          1.  evalrsdentryin(A,B,C) -> evalrsdbbin(A,B,C)            [A >= 0]     (1,1)
          3.  evalrsdbbin(A,B,C)    -> evalrsdbb4in(A,2*A,2*A)       True         (2,1)
          4.  evalrsdbb4in(A,B,C)   -> evalrsdbb1in(A,B,C)           [C >= A]     (?,1)
          6.  evalrsdbb1in(A,B,C)   -> evalrsdbb2in(A,B,C)           [0 >= 1 + D] (?,1)
          7.  evalrsdbb1in(A,B,C)   -> evalrsdbb2in(A,B,C)           [D >= 1]     (?,1)
          8.  evalrsdbb1in(A,B,C)   -> evalrsdbb3in(A,B,C)           True         (?,1)
          9.  evalrsdbb2in(A,B,C)   -> evalrsdbb4in(A,B,-1 + C)      True         (?,1)
          10. evalrsdbb3in(A,B,C)   -> evalrsdbb4in(A,-1 + B,-1 + B) True         (?,1)
        Signature:
          {(evalrsdbb1in,3)
          ;(evalrsdbb2in,3)
          ;(evalrsdbb3in,3)
          ;(evalrsdbb4in,3)
          ;(evalrsdbbin,3)
          ;(evalrsdentryin,3)
          ;(evalrsdreturnin,3)
          ;(evalrsdstart,3)
          ;(evalrsdstop,3)}
        Flow Graph:
          [0->{1},1->{3},3->{4},4->{6,7,8},6->{9},7->{9},8->{10},9->{4},10->{4}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>,   B) (< 0,0,C>,   C) 
          (< 1,0,A>, A) (< 1,0,B>,   B) (< 1,0,C>,   C) 
          (< 3,0,A>, A) (< 3,0,B>, 2*A) (< 3,0,C>, 2*A) 
          (< 4,0,A>, A) (< 4,0,B>,   ?) (< 4,0,C>,   ?) 
          (< 6,0,A>, A) (< 6,0,B>,   ?) (< 6,0,C>,   ?) 
          (< 7,0,A>, A) (< 7,0,B>,   ?) (< 7,0,C>,   ?) 
          (< 8,0,A>, A) (< 8,0,B>,   ?) (< 8,0,C>,   ?) 
          (< 9,0,A>, A) (< 9,0,B>,   ?) (< 9,0,C>,   ?) 
          (<10,0,A>, A) (<10,0,B>,   ?) (<10,0,C>,   ?) 
    + Applied Processor:
        ChainProcessor False [0,1,3,4,6,7,8,9,10]
    + Details:
        We chained rule 0 to obtain the rules [11] .
* Step 7: UnreachableRules WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          1.  evalrsdentryin(A,B,C) -> evalrsdbbin(A,B,C)            [A >= 0]     (1,1)
          3.  evalrsdbbin(A,B,C)    -> evalrsdbb4in(A,2*A,2*A)       True         (2,1)
          4.  evalrsdbb4in(A,B,C)   -> evalrsdbb1in(A,B,C)           [C >= A]     (?,1)
          6.  evalrsdbb1in(A,B,C)   -> evalrsdbb2in(A,B,C)           [0 >= 1 + D] (?,1)
          7.  evalrsdbb1in(A,B,C)   -> evalrsdbb2in(A,B,C)           [D >= 1]     (?,1)
          8.  evalrsdbb1in(A,B,C)   -> evalrsdbb3in(A,B,C)           True         (?,1)
          9.  evalrsdbb2in(A,B,C)   -> evalrsdbb4in(A,B,-1 + C)      True         (?,1)
          10. evalrsdbb3in(A,B,C)   -> evalrsdbb4in(A,-1 + B,-1 + B) True         (?,1)
          11. evalrsdstart(A,B,C)   -> evalrsdbbin(A,B,C)            [A >= 0]     (1,2)
        Signature:
          {(evalrsdbb1in,3)
          ;(evalrsdbb2in,3)
          ;(evalrsdbb3in,3)
          ;(evalrsdbb4in,3)
          ;(evalrsdbbin,3)
          ;(evalrsdentryin,3)
          ;(evalrsdreturnin,3)
          ;(evalrsdstart,3)
          ;(evalrsdstop,3)}
        Flow Graph:
          [1->{3},3->{4},4->{6,7,8},6->{9},7->{9},8->{10},9->{4},10->{4},11->{3}]
        Sizebounds:
          (< 1,0,A>, A) (< 1,0,B>,   B) (< 1,0,C>,   C) 
          (< 3,0,A>, A) (< 3,0,B>, 2*A) (< 3,0,C>, 2*A) 
          (< 4,0,A>, A) (< 4,0,B>,   ?) (< 4,0,C>,   ?) 
          (< 6,0,A>, A) (< 6,0,B>,   ?) (< 6,0,C>,   ?) 
          (< 7,0,A>, A) (< 7,0,B>,   ?) (< 7,0,C>,   ?) 
          (< 8,0,A>, A) (< 8,0,B>,   ?) (< 8,0,C>,   ?) 
          (< 9,0,A>, A) (< 9,0,B>,   ?) (< 9,0,C>,   ?) 
          (<10,0,A>, A) (<10,0,B>,   ?) (<10,0,C>,   ?) 
          (<11,0,A>, A) (<11,0,B>,   B) (<11,0,C>,   C) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [1]
* Step 8: ChainProcessor WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          3.  evalrsdbbin(A,B,C)  -> evalrsdbb4in(A,2*A,2*A)       True         (2,1)
          4.  evalrsdbb4in(A,B,C) -> evalrsdbb1in(A,B,C)           [C >= A]     (?,1)
          6.  evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,C)           [0 >= 1 + D] (?,1)
          7.  evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,C)           [D >= 1]     (?,1)
          8.  evalrsdbb1in(A,B,C) -> evalrsdbb3in(A,B,C)           True         (?,1)
          9.  evalrsdbb2in(A,B,C) -> evalrsdbb4in(A,B,-1 + C)      True         (?,1)
          10. evalrsdbb3in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True         (?,1)
          11. evalrsdstart(A,B,C) -> evalrsdbbin(A,B,C)            [A >= 0]     (1,2)
        Signature:
          {(evalrsdbb1in,3)
          ;(evalrsdbb2in,3)
          ;(evalrsdbb3in,3)
          ;(evalrsdbb4in,3)
          ;(evalrsdbbin,3)
          ;(evalrsdentryin,3)
          ;(evalrsdreturnin,3)
          ;(evalrsdstart,3)
          ;(evalrsdstop,3)}
        Flow Graph:
          [3->{4},4->{6,7,8},6->{9},7->{9},8->{10},9->{4},10->{4},11->{3}]
        Sizebounds:
          (< 3,0,A>, A) (< 3,0,B>, 2*A) (< 3,0,C>, 2*A) 
          (< 4,0,A>, A) (< 4,0,B>,   ?) (< 4,0,C>,   ?) 
          (< 6,0,A>, A) (< 6,0,B>,   ?) (< 6,0,C>,   ?) 
          (< 7,0,A>, A) (< 7,0,B>,   ?) (< 7,0,C>,   ?) 
          (< 8,0,A>, A) (< 8,0,B>,   ?) (< 8,0,C>,   ?) 
          (< 9,0,A>, A) (< 9,0,B>,   ?) (< 9,0,C>,   ?) 
          (<10,0,A>, A) (<10,0,B>,   ?) (<10,0,C>,   ?) 
          (<11,0,A>, A) (<11,0,B>,   B) (<11,0,C>,   C) 
    + Applied Processor:
        ChainProcessor False [3,4,6,7,8,9,10,11]
    + Details:
        We chained rule 3 to obtain the rules [12] .
* Step 9: ChainProcessor WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          4.  evalrsdbb4in(A,B,C) -> evalrsdbb1in(A,B,C)           [C >= A]     (?,1)
          6.  evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,C)           [0 >= 1 + D] (?,1)
          7.  evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,C)           [D >= 1]     (?,1)
          8.  evalrsdbb1in(A,B,C) -> evalrsdbb3in(A,B,C)           True         (?,1)
          9.  evalrsdbb2in(A,B,C) -> evalrsdbb4in(A,B,-1 + C)      True         (?,1)
          10. evalrsdbb3in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True         (?,1)
          11. evalrsdstart(A,B,C) -> evalrsdbbin(A,B,C)            [A >= 0]     (1,2)
          12. evalrsdbbin(A,B,C)  -> evalrsdbb1in(A,2*A,2*A)       [2*A >= A]   (2,2)
        Signature:
          {(evalrsdbb1in,3)
          ;(evalrsdbb2in,3)
          ;(evalrsdbb3in,3)
          ;(evalrsdbb4in,3)
          ;(evalrsdbbin,3)
          ;(evalrsdentryin,3)
          ;(evalrsdreturnin,3)
          ;(evalrsdstart,3)
          ;(evalrsdstop,3)}
        Flow Graph:
          [4->{6,7,8},6->{9},7->{9},8->{10},9->{4},10->{4},11->{12},12->{6,7,8}]
        Sizebounds:
          (< 4,0,A>, A) (< 4,0,B>, ?) (< 4,0,C>, ?) 
          (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, ?) 
          (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, ?) 
          (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) 
          (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, ?) 
          (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, ?) 
          (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, C) 
          (<12,0,A>, A) (<12,0,B>, ?) (<12,0,C>, ?) 
    + Applied Processor:
        ChainProcessor False [4,6,7,8,9,10,11,12]
    + Details:
        We chained rule 4 to obtain the rules [13,14,15] .
* Step 10: ChainProcessor WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          6.  evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,C)           [0 >= 1 + D]            (?,1)
          7.  evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,C)           [D >= 1]                (?,1)
          8.  evalrsdbb1in(A,B,C) -> evalrsdbb3in(A,B,C)           True                    (?,1)
          9.  evalrsdbb2in(A,B,C) -> evalrsdbb4in(A,B,-1 + C)      True                    (?,1)
          10. evalrsdbb3in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True                    (?,1)
          11. evalrsdstart(A,B,C) -> evalrsdbbin(A,B,C)            [A >= 0]                (1,2)
          12. evalrsdbbin(A,B,C)  -> evalrsdbb1in(A,2*A,2*A)       [2*A >= A]              (2,2)
          13. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C)           [C >= A && 0 >= 1 + D$] (?,2)
          14. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C)           [C >= A && D$ >= 1]     (?,2)
          15. evalrsdbb4in(A,B,C) -> evalrsdbb3in(A,B,C)           [C >= A]                (?,2)
        Signature:
          {(evalrsdbb1in,3)
          ;(evalrsdbb2in,3)
          ;(evalrsdbb3in,3)
          ;(evalrsdbb4in,3)
          ;(evalrsdbbin,3)
          ;(evalrsdentryin,3)
          ;(evalrsdreturnin,3)
          ;(evalrsdstart,3)
          ;(evalrsdstop,3)}
        Flow Graph:
          [6->{9},7->{9},8->{10},9->{13,14,15},10->{13,14,15},11->{12},12->{6,7,8},13->{9},14->{9},15->{10}]
        Sizebounds:
          (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, ?) 
          (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, ?) 
          (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) 
          (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, ?) 
          (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, ?) 
          (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, C) 
          (<12,0,A>, A) (<12,0,B>, ?) (<12,0,C>, ?) 
          (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, ?) 
          (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) 
          (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) 
    + Applied Processor:
        ChainProcessor False [6,7,8,9,10,11,12,13,14,15]
    + Details:
        We chained rule 6 to obtain the rules [16] .
* Step 11: ChainProcessor WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          7.  evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,C)           [D >= 1]                (?,1)
          8.  evalrsdbb1in(A,B,C) -> evalrsdbb3in(A,B,C)           True                    (?,1)
          9.  evalrsdbb2in(A,B,C) -> evalrsdbb4in(A,B,-1 + C)      True                    (?,1)
          10. evalrsdbb3in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True                    (?,1)
          11. evalrsdstart(A,B,C) -> evalrsdbbin(A,B,C)            [A >= 0]                (1,2)
          12. evalrsdbbin(A,B,C)  -> evalrsdbb1in(A,2*A,2*A)       [2*A >= A]              (2,2)
          13. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C)           [C >= A && 0 >= 1 + D$] (?,2)
          14. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C)           [C >= A && D$ >= 1]     (?,2)
          15. evalrsdbb4in(A,B,C) -> evalrsdbb3in(A,B,C)           [C >= A]                (?,2)
          16. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C)      [0 >= 1 + D]            (?,2)
        Signature:
          {(evalrsdbb1in,3)
          ;(evalrsdbb2in,3)
          ;(evalrsdbb3in,3)
          ;(evalrsdbb4in,3)
          ;(evalrsdbbin,3)
          ;(evalrsdentryin,3)
          ;(evalrsdreturnin,3)
          ;(evalrsdstart,3)
          ;(evalrsdstop,3)}
        Flow Graph:
          [7->{9},8->{10},9->{13,14,15},10->{13,14,15},11->{12},12->{7,8,16},13->{9},14->{9},15->{10},16->{13,14
          ,15}]
        Sizebounds:
          (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, ?) 
          (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) 
          (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, ?) 
          (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, ?) 
          (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, C) 
          (<12,0,A>, A) (<12,0,B>, ?) (<12,0,C>, ?) 
          (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, ?) 
          (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) 
          (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) 
          (<16,0,A>, A) (<16,0,B>, ?) (<16,0,C>, ?) 
    + Applied Processor:
        ChainProcessor False [7,8,9,10,11,12,13,14,15,16]
    + Details:
        We chained rule 7 to obtain the rules [17] .
* Step 12: ChainProcessor WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          8.  evalrsdbb1in(A,B,C) -> evalrsdbb3in(A,B,C)           True                    (?,1)
          9.  evalrsdbb2in(A,B,C) -> evalrsdbb4in(A,B,-1 + C)      True                    (?,1)
          10. evalrsdbb3in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True                    (?,1)
          11. evalrsdstart(A,B,C) -> evalrsdbbin(A,B,C)            [A >= 0]                (1,2)
          12. evalrsdbbin(A,B,C)  -> evalrsdbb1in(A,2*A,2*A)       [2*A >= A]              (2,2)
          13. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C)           [C >= A && 0 >= 1 + D$] (?,2)
          14. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C)           [C >= A && D$ >= 1]     (?,2)
          15. evalrsdbb4in(A,B,C) -> evalrsdbb3in(A,B,C)           [C >= A]                (?,2)
          16. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C)      [0 >= 1 + D]            (?,2)
          17. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C)      [D >= 1]                (?,2)
        Signature:
          {(evalrsdbb1in,3)
          ;(evalrsdbb2in,3)
          ;(evalrsdbb3in,3)
          ;(evalrsdbb4in,3)
          ;(evalrsdbbin,3)
          ;(evalrsdentryin,3)
          ;(evalrsdreturnin,3)
          ;(evalrsdstart,3)
          ;(evalrsdstop,3)}
        Flow Graph:
          [8->{10},9->{13,14,15},10->{13,14,15},11->{12},12->{8,16,17},13->{9},14->{9},15->{10},16->{13,14,15}
          ,17->{13,14,15}]
        Sizebounds:
          (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) 
          (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, ?) 
          (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, ?) 
          (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, C) 
          (<12,0,A>, A) (<12,0,B>, ?) (<12,0,C>, ?) 
          (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, ?) 
          (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) 
          (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) 
          (<16,0,A>, A) (<16,0,B>, ?) (<16,0,C>, ?) 
          (<17,0,A>, A) (<17,0,B>, ?) (<17,0,C>, ?) 
    + Applied Processor:
        ChainProcessor False [8,9,10,11,12,13,14,15,16,17]
    + Details:
        We chained rule 8 to obtain the rules [18] .
* Step 13: ChainProcessor WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          9.  evalrsdbb2in(A,B,C) -> evalrsdbb4in(A,B,-1 + C)      True                    (?,1)
          10. evalrsdbb3in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True                    (?,1)
          11. evalrsdstart(A,B,C) -> evalrsdbbin(A,B,C)            [A >= 0]                (1,2)
          12. evalrsdbbin(A,B,C)  -> evalrsdbb1in(A,2*A,2*A)       [2*A >= A]              (2,2)
          13. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C)           [C >= A && 0 >= 1 + D$] (?,2)
          14. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C)           [C >= A && D$ >= 1]     (?,2)
          15. evalrsdbb4in(A,B,C) -> evalrsdbb3in(A,B,C)           [C >= A]                (?,2)
          16. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C)      [0 >= 1 + D]            (?,2)
          17. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C)      [D >= 1]                (?,2)
          18. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True                    (?,2)
        Signature:
          {(evalrsdbb1in,3)
          ;(evalrsdbb2in,3)
          ;(evalrsdbb3in,3)
          ;(evalrsdbb4in,3)
          ;(evalrsdbbin,3)
          ;(evalrsdentryin,3)
          ;(evalrsdreturnin,3)
          ;(evalrsdstart,3)
          ;(evalrsdstop,3)}
        Flow Graph:
          [9->{13,14,15},10->{13,14,15},11->{12},12->{16,17,18},13->{9},14->{9},15->{10},16->{13,14,15},17->{13,14
          ,15},18->{13,14,15}]
        Sizebounds:
          (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, ?) 
          (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, ?) 
          (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, C) 
          (<12,0,A>, A) (<12,0,B>, ?) (<12,0,C>, ?) 
          (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, ?) 
          (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) 
          (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) 
          (<16,0,A>, A) (<16,0,B>, ?) (<16,0,C>, ?) 
          (<17,0,A>, A) (<17,0,B>, ?) (<17,0,C>, ?) 
          (<18,0,A>, A) (<18,0,B>, ?) (<18,0,C>, ?) 
    + Applied Processor:
        ChainProcessor False [9,10,11,12,13,14,15,16,17,18]
    + Details:
        We chained rule 9 to obtain the rules [19,20,21] .
* Step 14: ChainProcessor WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          10. evalrsdbb3in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True                          (?,1)
          11. evalrsdstart(A,B,C) -> evalrsdbbin(A,B,C)            [A >= 0]                      (1,2)
          12. evalrsdbbin(A,B,C)  -> evalrsdbb1in(A,2*A,2*A)       [2*A >= A]                    (2,2)
          13. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C)           [C >= A && 0 >= 1 + D$]       (?,2)
          14. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C)           [C >= A && D$ >= 1]           (?,2)
          15. evalrsdbb4in(A,B,C) -> evalrsdbb3in(A,B,C)           [C >= A]                      (?,2)
          16. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C)      [0 >= 1 + D]                  (?,2)
          17. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C)      [D >= 1]                      (?,2)
          18. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True                          (?,2)
          19. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [-1 + C >= A && 0 >= 1 + D$$] (?,3)
          20. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [-1 + C >= A && D$$ >= 1]     (?,3)
          21. evalrsdbb2in(A,B,C) -> evalrsdbb3in(A,B,-1 + C)      [-1 + C >= A]                 (?,3)
        Signature:
          {(evalrsdbb1in,3)
          ;(evalrsdbb2in,3)
          ;(evalrsdbb3in,3)
          ;(evalrsdbb4in,3)
          ;(evalrsdbbin,3)
          ;(evalrsdentryin,3)
          ;(evalrsdreturnin,3)
          ;(evalrsdstart,3)
          ;(evalrsdstop,3)}
        Flow Graph:
          [10->{13,14,15},11->{12},12->{16,17,18},13->{19,20,21},14->{19,20,21},15->{10},16->{13,14,15},17->{13,14
          ,15},18->{13,14,15},19->{19,20,21},20->{19,20,21},21->{10}]
        Sizebounds:
          (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, ?) 
          (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, C) 
          (<12,0,A>, A) (<12,0,B>, ?) (<12,0,C>, ?) 
          (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, ?) 
          (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) 
          (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) 
          (<16,0,A>, A) (<16,0,B>, ?) (<16,0,C>, ?) 
          (<17,0,A>, A) (<17,0,B>, ?) (<17,0,C>, ?) 
          (<18,0,A>, A) (<18,0,B>, ?) (<18,0,C>, ?) 
          (<19,0,A>, A) (<19,0,B>, ?) (<19,0,C>, ?) 
          (<20,0,A>, A) (<20,0,B>, ?) (<20,0,C>, ?) 
          (<21,0,A>, A) (<21,0,B>, ?) (<21,0,C>, ?) 
    + Applied Processor:
        ChainProcessor False [10,11,12,13,14,15,16,17,18,19,20,21]
    + Details:
        We chained rule 10 to obtain the rules [22,23,24] .
* Step 15: ChainProcessor WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          11. evalrsdstart(A,B,C) -> evalrsdbbin(A,B,C)            [A >= 0]                      (1,2)
          12. evalrsdbbin(A,B,C)  -> evalrsdbb1in(A,2*A,2*A)       [2*A >= A]                    (2,2)
          13. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C)           [C >= A && 0 >= 1 + D$]       (?,2)
          14. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C)           [C >= A && D$ >= 1]           (?,2)
          15. evalrsdbb4in(A,B,C) -> evalrsdbb3in(A,B,C)           [C >= A]                      (?,2)
          16. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C)      [0 >= 1 + D]                  (?,2)
          17. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C)      [D >= 1]                      (?,2)
          18. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True                          (?,2)
          19. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [-1 + C >= A && 0 >= 1 + D$$] (?,3)
          20. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [-1 + C >= A && D$$ >= 1]     (?,3)
          21. evalrsdbb2in(A,B,C) -> evalrsdbb3in(A,B,-1 + C)      [-1 + C >= A]                 (?,3)
          22. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && 0 >= 1 + D$$] (?,3)
          23. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && D$$ >= 1]     (?,3)
          24. evalrsdbb3in(A,B,C) -> evalrsdbb3in(A,-1 + B,-1 + B) [-1 + B >= A]                 (?,3)
        Signature:
          {(evalrsdbb1in,3)
          ;(evalrsdbb2in,3)
          ;(evalrsdbb3in,3)
          ;(evalrsdbb4in,3)
          ;(evalrsdbbin,3)
          ;(evalrsdentryin,3)
          ;(evalrsdreturnin,3)
          ;(evalrsdstart,3)
          ;(evalrsdstop,3)}
        Flow Graph:
          [11->{12},12->{16,17,18},13->{19,20,21},14->{19,20,21},15->{22,23,24},16->{13,14,15},17->{13,14,15}
          ,18->{13,14,15},19->{19,20,21},20->{19,20,21},21->{22,23,24},22->{19,20,21},23->{19,20,21},24->{22,23,24}]
        Sizebounds:
          (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, C) 
          (<12,0,A>, A) (<12,0,B>, ?) (<12,0,C>, ?) 
          (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, ?) 
          (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) 
          (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) 
          (<16,0,A>, A) (<16,0,B>, ?) (<16,0,C>, ?) 
          (<17,0,A>, A) (<17,0,B>, ?) (<17,0,C>, ?) 
          (<18,0,A>, A) (<18,0,B>, ?) (<18,0,C>, ?) 
          (<19,0,A>, A) (<19,0,B>, ?) (<19,0,C>, ?) 
          (<20,0,A>, A) (<20,0,B>, ?) (<20,0,C>, ?) 
          (<21,0,A>, A) (<21,0,B>, ?) (<21,0,C>, ?) 
          (<22,0,A>, A) (<22,0,B>, ?) (<22,0,C>, ?) 
          (<23,0,A>, A) (<23,0,B>, ?) (<23,0,C>, ?) 
          (<24,0,A>, A) (<24,0,B>, ?) (<24,0,C>, ?) 
    + Applied Processor:
        ChainProcessor False [11,12,13,14,15,16,17,18,19,20,21,22,23,24]
    + Details:
        We chained rule 11 to obtain the rules [25] .
* Step 16: UnreachableRules WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          12. evalrsdbbin(A,B,C)  -> evalrsdbb1in(A,2*A,2*A)       [2*A >= A]                    (2,2)
          13. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C)           [C >= A && 0 >= 1 + D$]       (?,2)
          14. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C)           [C >= A && D$ >= 1]           (?,2)
          15. evalrsdbb4in(A,B,C) -> evalrsdbb3in(A,B,C)           [C >= A]                      (?,2)
          16. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C)      [0 >= 1 + D]                  (?,2)
          17. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C)      [D >= 1]                      (?,2)
          18. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True                          (?,2)
          19. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [-1 + C >= A && 0 >= 1 + D$$] (?,3)
          20. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [-1 + C >= A && D$$ >= 1]     (?,3)
          21. evalrsdbb2in(A,B,C) -> evalrsdbb3in(A,B,-1 + C)      [-1 + C >= A]                 (?,3)
          22. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && 0 >= 1 + D$$] (?,3)
          23. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && D$$ >= 1]     (?,3)
          24. evalrsdbb3in(A,B,C) -> evalrsdbb3in(A,-1 + B,-1 + B) [-1 + B >= A]                 (?,3)
          25. evalrsdstart(A,B,C) -> evalrsdbb1in(A,2*A,2*A)       [A >= 0 && 2*A >= A]          (1,4)
        Signature:
          {(evalrsdbb1in,3)
          ;(evalrsdbb2in,3)
          ;(evalrsdbb3in,3)
          ;(evalrsdbb4in,3)
          ;(evalrsdbbin,3)
          ;(evalrsdentryin,3)
          ;(evalrsdreturnin,3)
          ;(evalrsdstart,3)
          ;(evalrsdstop,3)}
        Flow Graph:
          [12->{16,17,18},13->{19,20,21},14->{19,20,21},15->{22,23,24},16->{13,14,15},17->{13,14,15},18->{13,14,15}
          ,19->{19,20,21},20->{19,20,21},21->{22,23,24},22->{19,20,21},23->{19,20,21},24->{22,23,24},25->{16,17,18}]
        Sizebounds:
          (<12,0,A>, A) (<12,0,B>, ?) (<12,0,C>, ?) 
          (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, ?) 
          (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) 
          (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) 
          (<16,0,A>, A) (<16,0,B>, ?) (<16,0,C>, ?) 
          (<17,0,A>, A) (<17,0,B>, ?) (<17,0,C>, ?) 
          (<18,0,A>, A) (<18,0,B>, ?) (<18,0,C>, ?) 
          (<19,0,A>, A) (<19,0,B>, ?) (<19,0,C>, ?) 
          (<20,0,A>, A) (<20,0,B>, ?) (<20,0,C>, ?) 
          (<21,0,A>, A) (<21,0,B>, ?) (<21,0,C>, ?) 
          (<22,0,A>, A) (<22,0,B>, ?) (<22,0,C>, ?) 
          (<23,0,A>, A) (<23,0,B>, ?) (<23,0,C>, ?) 
          (<24,0,A>, A) (<24,0,B>, ?) (<24,0,C>, ?) 
          (<25,0,A>, A) (<25,0,B>, ?) (<25,0,C>, ?) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [12]
* Step 17: ChainProcessor WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          13. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C)           [C >= A && 0 >= 1 + D$]       (?,2)
          14. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C)           [C >= A && D$ >= 1]           (?,2)
          15. evalrsdbb4in(A,B,C) -> evalrsdbb3in(A,B,C)           [C >= A]                      (?,2)
          16. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C)      [0 >= 1 + D]                  (?,2)
          17. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C)      [D >= 1]                      (?,2)
          18. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True                          (?,2)
          19. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [-1 + C >= A && 0 >= 1 + D$$] (?,3)
          20. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [-1 + C >= A && D$$ >= 1]     (?,3)
          21. evalrsdbb2in(A,B,C) -> evalrsdbb3in(A,B,-1 + C)      [-1 + C >= A]                 (?,3)
          22. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && 0 >= 1 + D$$] (?,3)
          23. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && D$$ >= 1]     (?,3)
          24. evalrsdbb3in(A,B,C) -> evalrsdbb3in(A,-1 + B,-1 + B) [-1 + B >= A]                 (?,3)
          25. evalrsdstart(A,B,C) -> evalrsdbb1in(A,2*A,2*A)       [A >= 0 && 2*A >= A]          (1,4)
        Signature:
          {(evalrsdbb1in,3)
          ;(evalrsdbb2in,3)
          ;(evalrsdbb3in,3)
          ;(evalrsdbb4in,3)
          ;(evalrsdbbin,3)
          ;(evalrsdentryin,3)
          ;(evalrsdreturnin,3)
          ;(evalrsdstart,3)
          ;(evalrsdstop,3)}
        Flow Graph:
          [13->{19,20,21},14->{19,20,21},15->{22,23,24},16->{13,14,15},17->{13,14,15},18->{13,14,15},19->{19,20,21}
          ,20->{19,20,21},21->{22,23,24},22->{19,20,21},23->{19,20,21},24->{22,23,24},25->{16,17,18}]
        Sizebounds:
          (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, ?) 
          (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) 
          (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) 
          (<16,0,A>, A) (<16,0,B>, ?) (<16,0,C>, ?) 
          (<17,0,A>, A) (<17,0,B>, ?) (<17,0,C>, ?) 
          (<18,0,A>, A) (<18,0,B>, ?) (<18,0,C>, ?) 
          (<19,0,A>, A) (<19,0,B>, ?) (<19,0,C>, ?) 
          (<20,0,A>, A) (<20,0,B>, ?) (<20,0,C>, ?) 
          (<21,0,A>, A) (<21,0,B>, ?) (<21,0,C>, ?) 
          (<22,0,A>, A) (<22,0,B>, ?) (<22,0,C>, ?) 
          (<23,0,A>, A) (<23,0,B>, ?) (<23,0,C>, ?) 
          (<24,0,A>, A) (<24,0,B>, ?) (<24,0,C>, ?) 
          (<25,0,A>, A) (<25,0,B>, ?) (<25,0,C>, ?) 
    + Applied Processor:
        ChainProcessor False [13,14,15,16,17,18,19,20,21,22,23,24,25]
    + Details:
        We chained rule 16 to obtain the rules [26,27,28] .
* Step 18: LocalSizeboundsProc WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          13. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C)           [C >= A && 0 >= 1 + D$]                     (?,2)
          14. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C)           [C >= A && D$ >= 1]                         (?,2)
          15. evalrsdbb4in(A,B,C) -> evalrsdbb3in(A,B,C)           [C >= A]                                    (?,2)
          17. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C)      [D >= 1]                                    (?,2)
          18. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True                                        (?,2)
          19. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [-1 + C >= A && 0 >= 1 + D$$]               (?,3)
          20. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [-1 + C >= A && D$$ >= 1]                   (?,3)
          21. evalrsdbb2in(A,B,C) -> evalrsdbb3in(A,B,-1 + C)      [-1 + C >= A]                               (?,3)
          22. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && 0 >= 1 + D$$]               (?,3)
          23. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && D$$ >= 1]                   (?,3)
          24. evalrsdbb3in(A,B,C) -> evalrsdbb3in(A,-1 + B,-1 + B) [-1 + B >= A]                               (?,3)
          25. evalrsdstart(A,B,C) -> evalrsdbb1in(A,2*A,2*A)       [A >= 0 && 2*A >= A]                        (1,4)
          26. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] (?,4)
          27. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [0 >= 1 + D && -1 + C >= A && D$$ >= 1]     (?,4)
          28. evalrsdbb1in(A,B,C) -> evalrsdbb3in(A,B,-1 + C)      [0 >= 1 + D && -1 + C >= A]                 (?,4)
        Signature:
          {(evalrsdbb1in,3)
          ;(evalrsdbb2in,3)
          ;(evalrsdbb3in,3)
          ;(evalrsdbb4in,3)
          ;(evalrsdbbin,3)
          ;(evalrsdentryin,3)
          ;(evalrsdreturnin,3)
          ;(evalrsdstart,3)
          ;(evalrsdstop,3)}
        Flow Graph:
          [13->{19,20,21},14->{19,20,21},15->{22,23,24},17->{13,14,15},18->{13,14,15},19->{19,20,21},20->{19,20,21}
          ,21->{22,23,24},22->{19,20,21},23->{19,20,21},24->{22,23,24},25->{17,18,26,27,28},26->{19,20,21},27->{19,20
          ,21},28->{22,23,24}]
        Sizebounds:
          (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, ?) 
          (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) 
          (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) 
          (<17,0,A>, A) (<17,0,B>, ?) (<17,0,C>, ?) 
          (<18,0,A>, A) (<18,0,B>, ?) (<18,0,C>, ?) 
          (<19,0,A>, A) (<19,0,B>, ?) (<19,0,C>, ?) 
          (<20,0,A>, A) (<20,0,B>, ?) (<20,0,C>, ?) 
          (<21,0,A>, A) (<21,0,B>, ?) (<21,0,C>, ?) 
          (<22,0,A>, A) (<22,0,B>, ?) (<22,0,C>, ?) 
          (<23,0,A>, A) (<23,0,B>, ?) (<23,0,C>, ?) 
          (<24,0,A>, A) (<24,0,B>, ?) (<24,0,C>, ?) 
          (<25,0,A>, A) (<25,0,B>, ?) (<25,0,C>, ?) 
          (<26,0,A>, A) (<26,0,B>, ?) (<26,0,C>, ?) 
          (<27,0,A>, A) (<27,0,B>, ?) (<27,0,C>, ?) 
          (<28,0,A>, A) (<28,0,B>, ?) (<28,0,C>, ?) 
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (<13,0,A>, A, .= 0) (<13,0,B>,     B, .= 0) (<13,0,C>,     C, .= 0) 
          (<14,0,A>, A, .= 0) (<14,0,B>,     B, .= 0) (<14,0,C>,     C, .= 0) 
          (<15,0,A>, A, .= 0) (<15,0,B>,     B, .= 0) (<15,0,C>,     C, .= 0) 
          (<17,0,A>, A, .= 0) (<17,0,B>,     B, .= 0) (<17,0,C>, 1 + C, .+ 1) 
          (<18,0,A>, A, .= 0) (<18,0,B>, 1 + B, .+ 1) (<18,0,C>, 1 + B, .+ 1) 
          (<19,0,A>, A, .= 0) (<19,0,B>,     B, .= 0) (<19,0,C>, 1 + C, .+ 1) 
          (<20,0,A>, A, .= 0) (<20,0,B>,     B, .= 0) (<20,0,C>, 1 + C, .+ 1) 
          (<21,0,A>, A, .= 0) (<21,0,B>,     B, .= 0) (<21,0,C>, 1 + C, .+ 1) 
          (<22,0,A>, A, .= 0) (<22,0,B>, 1 + B, .+ 1) (<22,0,C>, 1 + B, .+ 1) 
          (<23,0,A>, A, .= 0) (<23,0,B>, 1 + B, .+ 1) (<23,0,C>, 1 + B, .+ 1) 
          (<24,0,A>, A, .= 0) (<24,0,B>, 1 + B, .+ 1) (<24,0,C>, 1 + B, .+ 1) 
          (<25,0,A>, A, .= 0) (<25,0,B>,   2*A,   .?) (<25,0,C>,   2*A,   .?) 
          (<26,0,A>, A, .= 0) (<26,0,B>,     B, .= 0) (<26,0,C>, 1 + C, .+ 1) 
          (<27,0,A>, A, .= 0) (<27,0,B>,     B, .= 0) (<27,0,C>, 1 + C, .+ 1) 
          (<28,0,A>, A, .= 0) (<28,0,B>,     B, .= 0) (<28,0,C>, 1 + C, .+ 1) 
* Step 19: SizeboundsProc WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          13. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C)           [C >= A && 0 >= 1 + D$]                     (?,2)
          14. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C)           [C >= A && D$ >= 1]                         (?,2)
          15. evalrsdbb4in(A,B,C) -> evalrsdbb3in(A,B,C)           [C >= A]                                    (?,2)
          17. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C)      [D >= 1]                                    (?,2)
          18. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True                                        (?,2)
          19. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [-1 + C >= A && 0 >= 1 + D$$]               (?,3)
          20. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [-1 + C >= A && D$$ >= 1]                   (?,3)
          21. evalrsdbb2in(A,B,C) -> evalrsdbb3in(A,B,-1 + C)      [-1 + C >= A]                               (?,3)
          22. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && 0 >= 1 + D$$]               (?,3)
          23. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && D$$ >= 1]                   (?,3)
          24. evalrsdbb3in(A,B,C) -> evalrsdbb3in(A,-1 + B,-1 + B) [-1 + B >= A]                               (?,3)
          25. evalrsdstart(A,B,C) -> evalrsdbb1in(A,2*A,2*A)       [A >= 0 && 2*A >= A]                        (1,4)
          26. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] (?,4)
          27. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [0 >= 1 + D && -1 + C >= A && D$$ >= 1]     (?,4)
          28. evalrsdbb1in(A,B,C) -> evalrsdbb3in(A,B,-1 + C)      [0 >= 1 + D && -1 + C >= A]                 (?,4)
        Signature:
          {(evalrsdbb1in,3)
          ;(evalrsdbb2in,3)
          ;(evalrsdbb3in,3)
          ;(evalrsdbb4in,3)
          ;(evalrsdbbin,3)
          ;(evalrsdentryin,3)
          ;(evalrsdreturnin,3)
          ;(evalrsdstart,3)
          ;(evalrsdstop,3)}
        Flow Graph:
          [13->{19,20,21},14->{19,20,21},15->{22,23,24},17->{13,14,15},18->{13,14,15},19->{19,20,21},20->{19,20,21}
          ,21->{22,23,24},22->{19,20,21},23->{19,20,21},24->{22,23,24},25->{17,18,26,27,28},26->{19,20,21},27->{19,20
          ,21},28->{22,23,24}]
        Sizebounds:
          (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) 
          (<14,0,A>, ?) (<14,0,B>, ?) (<14,0,C>, ?) 
          (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) 
          (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) 
          (<18,0,A>, ?) (<18,0,B>, ?) (<18,0,C>, ?) 
          (<19,0,A>, ?) (<19,0,B>, ?) (<19,0,C>, ?) 
          (<20,0,A>, ?) (<20,0,B>, ?) (<20,0,C>, ?) 
          (<21,0,A>, ?) (<21,0,B>, ?) (<21,0,C>, ?) 
          (<22,0,A>, ?) (<22,0,B>, ?) (<22,0,C>, ?) 
          (<23,0,A>, ?) (<23,0,B>, ?) (<23,0,C>, ?) 
          (<24,0,A>, ?) (<24,0,B>, ?) (<24,0,C>, ?) 
          (<25,0,A>, ?) (<25,0,B>, ?) (<25,0,C>, ?) 
          (<26,0,A>, ?) (<26,0,B>, ?) (<26,0,C>, ?) 
          (<27,0,A>, ?) (<27,0,B>, ?) (<27,0,C>, ?) 
          (<28,0,A>, ?) (<28,0,B>, ?) (<28,0,C>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (<13,0,A>, A) (<13,0,B>, 1 + 2*A) (<13,0,C>, 1 + 2*A) 
          (<14,0,A>, A) (<14,0,B>, 1 + 2*A) (<14,0,C>, 1 + 2*A) 
          (<15,0,A>, A) (<15,0,B>, 1 + 2*A) (<15,0,C>, 1 + 2*A) 
          (<17,0,A>, A) (<17,0,B>,     2*A) (<17,0,C>, 1 + 2*A) 
          (<18,0,A>, A) (<18,0,B>, 1 + 2*A) (<18,0,C>, 1 + 2*A) 
          (<19,0,A>, A) (<19,0,B>,       ?) (<19,0,C>,       ?) 
          (<20,0,A>, A) (<20,0,B>,       ?) (<20,0,C>,       ?) 
          (<21,0,A>, A) (<21,0,B>,       ?) (<21,0,C>,       ?) 
          (<22,0,A>, A) (<22,0,B>,       ?) (<22,0,C>,       ?) 
          (<23,0,A>, A) (<23,0,B>,       ?) (<23,0,C>,       ?) 
          (<24,0,A>, A) (<24,0,B>,       ?) (<24,0,C>,       ?) 
          (<25,0,A>, A) (<25,0,B>,     2*A) (<25,0,C>,     2*A) 
          (<26,0,A>, A) (<26,0,B>,     2*A) (<26,0,C>, 1 + 2*A) 
          (<27,0,A>, A) (<27,0,B>,     2*A) (<27,0,C>, 1 + 2*A) 
          (<28,0,A>, A) (<28,0,B>,     2*A) (<28,0,C>, 1 + 2*A) 
* Step 20: LocationConstraintsProc WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          13. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C)           [C >= A && 0 >= 1 + D$]                     (?,2)
          14. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C)           [C >= A && D$ >= 1]                         (?,2)
          15. evalrsdbb4in(A,B,C) -> evalrsdbb3in(A,B,C)           [C >= A]                                    (?,2)
          17. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C)      [D >= 1]                                    (?,2)
          18. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True                                        (?,2)
          19. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [-1 + C >= A && 0 >= 1 + D$$]               (?,3)
          20. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [-1 + C >= A && D$$ >= 1]                   (?,3)
          21. evalrsdbb2in(A,B,C) -> evalrsdbb3in(A,B,-1 + C)      [-1 + C >= A]                               (?,3)
          22. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && 0 >= 1 + D$$]               (?,3)
          23. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && D$$ >= 1]                   (?,3)
          24. evalrsdbb3in(A,B,C) -> evalrsdbb3in(A,-1 + B,-1 + B) [-1 + B >= A]                               (?,3)
          25. evalrsdstart(A,B,C) -> evalrsdbb1in(A,2*A,2*A)       [A >= 0 && 2*A >= A]                        (1,4)
          26. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] (?,4)
          27. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [0 >= 1 + D && -1 + C >= A && D$$ >= 1]     (?,4)
          28. evalrsdbb1in(A,B,C) -> evalrsdbb3in(A,B,-1 + C)      [0 >= 1 + D && -1 + C >= A]                 (?,4)
        Signature:
          {(evalrsdbb1in,3)
          ;(evalrsdbb2in,3)
          ;(evalrsdbb3in,3)
          ;(evalrsdbb4in,3)
          ;(evalrsdbbin,3)
          ;(evalrsdentryin,3)
          ;(evalrsdreturnin,3)
          ;(evalrsdstart,3)
          ;(evalrsdstop,3)}
        Flow Graph:
          [13->{19,20,21},14->{19,20,21},15->{22,23,24},17->{13,14,15},18->{13,14,15},19->{19,20,21},20->{19,20,21}
          ,21->{22,23,24},22->{19,20,21},23->{19,20,21},24->{22,23,24},25->{17,18,26,27,28},26->{19,20,21},27->{19,20
          ,21},28->{22,23,24}]
        Sizebounds:
          (<13,0,A>, A) (<13,0,B>, 1 + 2*A) (<13,0,C>, 1 + 2*A) 
          (<14,0,A>, A) (<14,0,B>, 1 + 2*A) (<14,0,C>, 1 + 2*A) 
          (<15,0,A>, A) (<15,0,B>, 1 + 2*A) (<15,0,C>, 1 + 2*A) 
          (<17,0,A>, A) (<17,0,B>,     2*A) (<17,0,C>, 1 + 2*A) 
          (<18,0,A>, A) (<18,0,B>, 1 + 2*A) (<18,0,C>, 1 + 2*A) 
          (<19,0,A>, A) (<19,0,B>,       ?) (<19,0,C>,       ?) 
          (<20,0,A>, A) (<20,0,B>,       ?) (<20,0,C>,       ?) 
          (<21,0,A>, A) (<21,0,B>,       ?) (<21,0,C>,       ?) 
          (<22,0,A>, A) (<22,0,B>,       ?) (<22,0,C>,       ?) 
          (<23,0,A>, A) (<23,0,B>,       ?) (<23,0,C>,       ?) 
          (<24,0,A>, A) (<24,0,B>,       ?) (<24,0,C>,       ?) 
          (<25,0,A>, A) (<25,0,B>,     2*A) (<25,0,C>,     2*A) 
          (<26,0,A>, A) (<26,0,B>,     2*A) (<26,0,C>, 1 + 2*A) 
          (<27,0,A>, A) (<27,0,B>,     2*A) (<27,0,C>, 1 + 2*A) 
          (<28,0,A>, A) (<28,0,B>,     2*A) (<28,0,C>, 1 + 2*A) 
    + Applied Processor:
        LocationConstraintsProc
    + Details:
        We computed the location constraints  13 :  True 14 :  True 15 :  True 17 :  [A >= 0] 18 :  [A >= 0] 19 :  True 20 :  True 21 :  True 22 :  True 23 :  True 24 :  True 25 :  True 26 :  [A >= 0] 27 :  [A >= 0] 28 :  [A >= 0] .
* Step 21: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          13. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C)           [C >= A && 0 >= 1 + D$]                     (?,2)
          14. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C)           [C >= A && D$ >= 1]                         (?,2)
          15. evalrsdbb4in(A,B,C) -> evalrsdbb3in(A,B,C)           [C >= A]                                    (?,2)
          17. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C)      [D >= 1]                                    (?,2)
          18. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True                                        (?,2)
          19. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [-1 + C >= A && 0 >= 1 + D$$]               (?,3)
          20. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [-1 + C >= A && D$$ >= 1]                   (?,3)
          21. evalrsdbb2in(A,B,C) -> evalrsdbb3in(A,B,-1 + C)      [-1 + C >= A]                               (?,3)
          22. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && 0 >= 1 + D$$]               (?,3)
          23. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && D$$ >= 1]                   (?,3)
          24. evalrsdbb3in(A,B,C) -> evalrsdbb3in(A,-1 + B,-1 + B) [-1 + B >= A]                               (?,3)
          25. evalrsdstart(A,B,C) -> evalrsdbb1in(A,2*A,2*A)       [A >= 0 && 2*A >= A]                        (1,4)
          26. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] (?,4)
          27. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [0 >= 1 + D && -1 + C >= A && D$$ >= 1]     (?,4)
          28. evalrsdbb1in(A,B,C) -> evalrsdbb3in(A,B,-1 + C)      [0 >= 1 + D && -1 + C >= A]                 (?,4)
        Signature:
          {(evalrsdbb1in,3)
          ;(evalrsdbb2in,3)
          ;(evalrsdbb3in,3)
          ;(evalrsdbb4in,3)
          ;(evalrsdbbin,3)
          ;(evalrsdentryin,3)
          ;(evalrsdreturnin,3)
          ;(evalrsdstart,3)
          ;(evalrsdstop,3)}
        Flow Graph:
          [13->{19,20,21},14->{19,20,21},15->{22,23,24},17->{13,14,15},18->{13,14,15},19->{19,20,21},20->{19,20,21}
          ,21->{22,23,24},22->{19,20,21},23->{19,20,21},24->{22,23,24},25->{17,18,26,27,28},26->{19,20,21},27->{19,20
          ,21},28->{22,23,24}]
        Sizebounds:
          (<13,0,A>, A) (<13,0,B>, 1 + 2*A) (<13,0,C>, 1 + 2*A) 
          (<14,0,A>, A) (<14,0,B>, 1 + 2*A) (<14,0,C>, 1 + 2*A) 
          (<15,0,A>, A) (<15,0,B>, 1 + 2*A) (<15,0,C>, 1 + 2*A) 
          (<17,0,A>, A) (<17,0,B>,     2*A) (<17,0,C>, 1 + 2*A) 
          (<18,0,A>, A) (<18,0,B>, 1 + 2*A) (<18,0,C>, 1 + 2*A) 
          (<19,0,A>, A) (<19,0,B>,       ?) (<19,0,C>,       ?) 
          (<20,0,A>, A) (<20,0,B>,       ?) (<20,0,C>,       ?) 
          (<21,0,A>, A) (<21,0,B>,       ?) (<21,0,C>,       ?) 
          (<22,0,A>, A) (<22,0,B>,       ?) (<22,0,C>,       ?) 
          (<23,0,A>, A) (<23,0,B>,       ?) (<23,0,C>,       ?) 
          (<24,0,A>, A) (<24,0,B>,       ?) (<24,0,C>,       ?) 
          (<25,0,A>, A) (<25,0,B>,     2*A) (<25,0,C>,     2*A) 
          (<26,0,A>, A) (<26,0,B>,     2*A) (<26,0,C>, 1 + 2*A) 
          (<27,0,A>, A) (<27,0,B>,     2*A) (<27,0,C>, 1 + 2*A) 
          (<28,0,A>, A) (<28,0,B>,     2*A) (<28,0,C>, 1 + 2*A) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Constant}
    + Details:
        We apply a polynomial interpretation of shape constant:
          p(evalrsdbb1in) = 1
          p(evalrsdbb2in) = 0
          p(evalrsdbb3in) = 0
          p(evalrsdbb4in) = 0
          p(evalrsdstart) = 1
        
        The following rules are strictly oriented:
        [0 >= 1 + D && -1 + C >= A] ==>                         
                evalrsdbb1in(A,B,C)   = 1                       
                                      > 0                       
                                      = evalrsdbb3in(A,B,-1 + C)
        
        
        The following rules are weakly oriented:
                            [C >= A && 0 >= 1 + D$] ==>                              
                                evalrsdbb4in(A,B,C)   = 0                            
                                                     >= 0                            
                                                      = evalrsdbb2in(A,B,C)          
        
                                [C >= A && D$ >= 1] ==>                              
                                evalrsdbb4in(A,B,C)   = 0                            
                                                     >= 0                            
                                                      = evalrsdbb2in(A,B,C)          
        
                                           [C >= A] ==>                              
                                evalrsdbb4in(A,B,C)   = 0                            
                                                     >= 0                            
                                                      = evalrsdbb3in(A,B,C)          
        
                                           [D >= 1] ==>                              
                                evalrsdbb1in(A,B,C)   = 1                            
                                                     >= 0                            
                                                      = evalrsdbb4in(A,B,-1 + C)     
        
                                               True ==>                              
                                evalrsdbb1in(A,B,C)   = 1                            
                                                     >= 0                            
                                                      = evalrsdbb4in(A,-1 + B,-1 + B)
        
                      [-1 + C >= A && 0 >= 1 + D$$] ==>                              
                                evalrsdbb2in(A,B,C)   = 0                            
                                                     >= 0                            
                                                      = evalrsdbb2in(A,B,-1 + C)     
        
                          [-1 + C >= A && D$$ >= 1] ==>                              
                                evalrsdbb2in(A,B,C)   = 0                            
                                                     >= 0                            
                                                      = evalrsdbb2in(A,B,-1 + C)     
        
                                      [-1 + C >= A] ==>                              
                                evalrsdbb2in(A,B,C)   = 0                            
                                                     >= 0                            
                                                      = evalrsdbb3in(A,B,-1 + C)     
        
                      [-1 + B >= A && 0 >= 1 + D$$] ==>                              
                                evalrsdbb3in(A,B,C)   = 0                            
                                                     >= 0                            
                                                      = evalrsdbb2in(A,-1 + B,-1 + B)
        
                          [-1 + B >= A && D$$ >= 1] ==>                              
                                evalrsdbb3in(A,B,C)   = 0                            
                                                     >= 0                            
                                                      = evalrsdbb2in(A,-1 + B,-1 + B)
        
                                      [-1 + B >= A] ==>                              
                                evalrsdbb3in(A,B,C)   = 0                            
                                                     >= 0                            
                                                      = evalrsdbb3in(A,-1 + B,-1 + B)
        
                               [A >= 0 && 2*A >= A] ==>                              
                                evalrsdstart(A,B,C)   = 1                            
                                                     >= 1                            
                                                      = evalrsdbb1in(A,2*A,2*A)      
        
        [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] ==>                              
                                evalrsdbb1in(A,B,C)   = 1                            
                                                     >= 0                            
                                                      = evalrsdbb2in(A,B,-1 + C)     
        
            [0 >= 1 + D && -1 + C >= A && D$$ >= 1] ==>                              
                                evalrsdbb1in(A,B,C)   = 1                            
                                                     >= 0                            
                                                      = evalrsdbb2in(A,B,-1 + C)     
        
        
* Step 22: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          13. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C)           [C >= A && 0 >= 1 + D$]                     (?,2)
          14. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C)           [C >= A && D$ >= 1]                         (?,2)
          15. evalrsdbb4in(A,B,C) -> evalrsdbb3in(A,B,C)           [C >= A]                                    (?,2)
          17. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C)      [D >= 1]                                    (?,2)
          18. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True                                        (?,2)
          19. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [-1 + C >= A && 0 >= 1 + D$$]               (?,3)
          20. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [-1 + C >= A && D$$ >= 1]                   (?,3)
          21. evalrsdbb2in(A,B,C) -> evalrsdbb3in(A,B,-1 + C)      [-1 + C >= A]                               (?,3)
          22. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && 0 >= 1 + D$$]               (?,3)
          23. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && D$$ >= 1]                   (?,3)
          24. evalrsdbb3in(A,B,C) -> evalrsdbb3in(A,-1 + B,-1 + B) [-1 + B >= A]                               (?,3)
          25. evalrsdstart(A,B,C) -> evalrsdbb1in(A,2*A,2*A)       [A >= 0 && 2*A >= A]                        (1,4)
          26. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] (?,4)
          27. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [0 >= 1 + D && -1 + C >= A && D$$ >= 1]     (?,4)
          28. evalrsdbb1in(A,B,C) -> evalrsdbb3in(A,B,-1 + C)      [0 >= 1 + D && -1 + C >= A]                 (1,4)
        Signature:
          {(evalrsdbb1in,3)
          ;(evalrsdbb2in,3)
          ;(evalrsdbb3in,3)
          ;(evalrsdbb4in,3)
          ;(evalrsdbbin,3)
          ;(evalrsdentryin,3)
          ;(evalrsdreturnin,3)
          ;(evalrsdstart,3)
          ;(evalrsdstop,3)}
        Flow Graph:
          [13->{19,20,21},14->{19,20,21},15->{22,23,24},17->{13,14,15},18->{13,14,15},19->{19,20,21},20->{19,20,21}
          ,21->{22,23,24},22->{19,20,21},23->{19,20,21},24->{22,23,24},25->{17,18,26,27,28},26->{19,20,21},27->{19,20
          ,21},28->{22,23,24}]
        Sizebounds:
          (<13,0,A>, A) (<13,0,B>, 1 + 2*A) (<13,0,C>, 1 + 2*A) 
          (<14,0,A>, A) (<14,0,B>, 1 + 2*A) (<14,0,C>, 1 + 2*A) 
          (<15,0,A>, A) (<15,0,B>, 1 + 2*A) (<15,0,C>, 1 + 2*A) 
          (<17,0,A>, A) (<17,0,B>,     2*A) (<17,0,C>, 1 + 2*A) 
          (<18,0,A>, A) (<18,0,B>, 1 + 2*A) (<18,0,C>, 1 + 2*A) 
          (<19,0,A>, A) (<19,0,B>,       ?) (<19,0,C>,       ?) 
          (<20,0,A>, A) (<20,0,B>,       ?) (<20,0,C>,       ?) 
          (<21,0,A>, A) (<21,0,B>,       ?) (<21,0,C>,       ?) 
          (<22,0,A>, A) (<22,0,B>,       ?) (<22,0,C>,       ?) 
          (<23,0,A>, A) (<23,0,B>,       ?) (<23,0,C>,       ?) 
          (<24,0,A>, A) (<24,0,B>,       ?) (<24,0,C>,       ?) 
          (<25,0,A>, A) (<25,0,B>,     2*A) (<25,0,C>,     2*A) 
          (<26,0,A>, A) (<26,0,B>,     2*A) (<26,0,C>, 1 + 2*A) 
          (<27,0,A>, A) (<27,0,B>,     2*A) (<27,0,C>, 1 + 2*A) 
          (<28,0,A>, A) (<28,0,B>,     2*A) (<28,0,C>, 1 + 2*A) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Constant}
    + Details:
        We apply a polynomial interpretation of shape constant:
          p(evalrsdbb1in) = 1
          p(evalrsdbb2in) = 0
          p(evalrsdbb3in) = 0
          p(evalrsdbb4in) = 0
          p(evalrsdstart) = 1
        
        The following rules are strictly oriented:
        [0 >= 1 + D && -1 + C >= A && D$$ >= 1] ==>                         
                            evalrsdbb1in(A,B,C)   = 1                       
                                                  > 0                       
                                                  = evalrsdbb2in(A,B,-1 + C)
        
                    [0 >= 1 + D && -1 + C >= A] ==>                         
                            evalrsdbb1in(A,B,C)   = 1                       
                                                  > 0                       
                                                  = evalrsdbb3in(A,B,-1 + C)
        
        
        The following rules are weakly oriented:
                            [C >= A && 0 >= 1 + D$] ==>                              
                                evalrsdbb4in(A,B,C)   = 0                            
                                                     >= 0                            
                                                      = evalrsdbb2in(A,B,C)          
        
                                [C >= A && D$ >= 1] ==>                              
                                evalrsdbb4in(A,B,C)   = 0                            
                                                     >= 0                            
                                                      = evalrsdbb2in(A,B,C)          
        
                                           [C >= A] ==>                              
                                evalrsdbb4in(A,B,C)   = 0                            
                                                     >= 0                            
                                                      = evalrsdbb3in(A,B,C)          
        
                                           [D >= 1] ==>                              
                                evalrsdbb1in(A,B,C)   = 1                            
                                                     >= 0                            
                                                      = evalrsdbb4in(A,B,-1 + C)     
        
                                               True ==>                              
                                evalrsdbb1in(A,B,C)   = 1                            
                                                     >= 0                            
                                                      = evalrsdbb4in(A,-1 + B,-1 + B)
        
                      [-1 + C >= A && 0 >= 1 + D$$] ==>                              
                                evalrsdbb2in(A,B,C)   = 0                            
                                                     >= 0                            
                                                      = evalrsdbb2in(A,B,-1 + C)     
        
                          [-1 + C >= A && D$$ >= 1] ==>                              
                                evalrsdbb2in(A,B,C)   = 0                            
                                                     >= 0                            
                                                      = evalrsdbb2in(A,B,-1 + C)     
        
                                      [-1 + C >= A] ==>                              
                                evalrsdbb2in(A,B,C)   = 0                            
                                                     >= 0                            
                                                      = evalrsdbb3in(A,B,-1 + C)     
        
                      [-1 + B >= A && 0 >= 1 + D$$] ==>                              
                                evalrsdbb3in(A,B,C)   = 0                            
                                                     >= 0                            
                                                      = evalrsdbb2in(A,-1 + B,-1 + B)
        
                          [-1 + B >= A && D$$ >= 1] ==>                              
                                evalrsdbb3in(A,B,C)   = 0                            
                                                     >= 0                            
                                                      = evalrsdbb2in(A,-1 + B,-1 + B)
        
                                      [-1 + B >= A] ==>                              
                                evalrsdbb3in(A,B,C)   = 0                            
                                                     >= 0                            
                                                      = evalrsdbb3in(A,-1 + B,-1 + B)
        
                               [A >= 0 && 2*A >= A] ==>                              
                                evalrsdstart(A,B,C)   = 1                            
                                                     >= 1                            
                                                      = evalrsdbb1in(A,2*A,2*A)      
        
        [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] ==>                              
                                evalrsdbb1in(A,B,C)   = 1                            
                                                     >= 0                            
                                                      = evalrsdbb2in(A,B,-1 + C)     
        
        
* Step 23: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          13. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C)           [C >= A && 0 >= 1 + D$]                     (?,2)
          14. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C)           [C >= A && D$ >= 1]                         (?,2)
          15. evalrsdbb4in(A,B,C) -> evalrsdbb3in(A,B,C)           [C >= A]                                    (?,2)
          17. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C)      [D >= 1]                                    (?,2)
          18. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True                                        (?,2)
          19. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [-1 + C >= A && 0 >= 1 + D$$]               (?,3)
          20. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [-1 + C >= A && D$$ >= 1]                   (?,3)
          21. evalrsdbb2in(A,B,C) -> evalrsdbb3in(A,B,-1 + C)      [-1 + C >= A]                               (?,3)
          22. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && 0 >= 1 + D$$]               (?,3)
          23. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && D$$ >= 1]                   (?,3)
          24. evalrsdbb3in(A,B,C) -> evalrsdbb3in(A,-1 + B,-1 + B) [-1 + B >= A]                               (?,3)
          25. evalrsdstart(A,B,C) -> evalrsdbb1in(A,2*A,2*A)       [A >= 0 && 2*A >= A]                        (1,4)
          26. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] (?,4)
          27. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [0 >= 1 + D && -1 + C >= A && D$$ >= 1]     (1,4)
          28. evalrsdbb1in(A,B,C) -> evalrsdbb3in(A,B,-1 + C)      [0 >= 1 + D && -1 + C >= A]                 (1,4)
        Signature:
          {(evalrsdbb1in,3)
          ;(evalrsdbb2in,3)
          ;(evalrsdbb3in,3)
          ;(evalrsdbb4in,3)
          ;(evalrsdbbin,3)
          ;(evalrsdentryin,3)
          ;(evalrsdreturnin,3)
          ;(evalrsdstart,3)
          ;(evalrsdstop,3)}
        Flow Graph:
          [13->{19,20,21},14->{19,20,21},15->{22,23,24},17->{13,14,15},18->{13,14,15},19->{19,20,21},20->{19,20,21}
          ,21->{22,23,24},22->{19,20,21},23->{19,20,21},24->{22,23,24},25->{17,18,26,27,28},26->{19,20,21},27->{19,20
          ,21},28->{22,23,24}]
        Sizebounds:
          (<13,0,A>, A) (<13,0,B>, 1 + 2*A) (<13,0,C>, 1 + 2*A) 
          (<14,0,A>, A) (<14,0,B>, 1 + 2*A) (<14,0,C>, 1 + 2*A) 
          (<15,0,A>, A) (<15,0,B>, 1 + 2*A) (<15,0,C>, 1 + 2*A) 
          (<17,0,A>, A) (<17,0,B>,     2*A) (<17,0,C>, 1 + 2*A) 
          (<18,0,A>, A) (<18,0,B>, 1 + 2*A) (<18,0,C>, 1 + 2*A) 
          (<19,0,A>, A) (<19,0,B>,       ?) (<19,0,C>,       ?) 
          (<20,0,A>, A) (<20,0,B>,       ?) (<20,0,C>,       ?) 
          (<21,0,A>, A) (<21,0,B>,       ?) (<21,0,C>,       ?) 
          (<22,0,A>, A) (<22,0,B>,       ?) (<22,0,C>,       ?) 
          (<23,0,A>, A) (<23,0,B>,       ?) (<23,0,C>,       ?) 
          (<24,0,A>, A) (<24,0,B>,       ?) (<24,0,C>,       ?) 
          (<25,0,A>, A) (<25,0,B>,     2*A) (<25,0,C>,     2*A) 
          (<26,0,A>, A) (<26,0,B>,     2*A) (<26,0,C>, 1 + 2*A) 
          (<27,0,A>, A) (<27,0,B>,     2*A) (<27,0,C>, 1 + 2*A) 
          (<28,0,A>, A) (<28,0,B>,     2*A) (<28,0,C>, 1 + 2*A) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Constant}
    + Details:
        We apply a polynomial interpretation of shape constant:
          p(evalrsdbb1in) = 1
          p(evalrsdbb2in) = 0
          p(evalrsdbb3in) = 0
          p(evalrsdbb4in) = 0
          p(evalrsdstart) = 1
        
        The following rules are strictly oriented:
        [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] ==>                         
                                evalrsdbb1in(A,B,C)   = 1                       
                                                      > 0                       
                                                      = evalrsdbb2in(A,B,-1 + C)
        
            [0 >= 1 + D && -1 + C >= A && D$$ >= 1] ==>                         
                                evalrsdbb1in(A,B,C)   = 1                       
                                                      > 0                       
                                                      = evalrsdbb2in(A,B,-1 + C)
        
                        [0 >= 1 + D && -1 + C >= A] ==>                         
                                evalrsdbb1in(A,B,C)   = 1                       
                                                      > 0                       
                                                      = evalrsdbb3in(A,B,-1 + C)
        
        
        The following rules are weakly oriented:
              [C >= A && 0 >= 1 + D$] ==>                              
                  evalrsdbb4in(A,B,C)   = 0                            
                                       >= 0                            
                                        = evalrsdbb2in(A,B,C)          
        
                  [C >= A && D$ >= 1] ==>                              
                  evalrsdbb4in(A,B,C)   = 0                            
                                       >= 0                            
                                        = evalrsdbb2in(A,B,C)          
        
                             [C >= A] ==>                              
                  evalrsdbb4in(A,B,C)   = 0                            
                                       >= 0                            
                                        = evalrsdbb3in(A,B,C)          
        
                             [D >= 1] ==>                              
                  evalrsdbb1in(A,B,C)   = 1                            
                                       >= 0                            
                                        = evalrsdbb4in(A,B,-1 + C)     
        
                                 True ==>                              
                  evalrsdbb1in(A,B,C)   = 1                            
                                       >= 0                            
                                        = evalrsdbb4in(A,-1 + B,-1 + B)
        
        [-1 + C >= A && 0 >= 1 + D$$] ==>                              
                  evalrsdbb2in(A,B,C)   = 0                            
                                       >= 0                            
                                        = evalrsdbb2in(A,B,-1 + C)     
        
            [-1 + C >= A && D$$ >= 1] ==>                              
                  evalrsdbb2in(A,B,C)   = 0                            
                                       >= 0                            
                                        = evalrsdbb2in(A,B,-1 + C)     
        
                        [-1 + C >= A] ==>                              
                  evalrsdbb2in(A,B,C)   = 0                            
                                       >= 0                            
                                        = evalrsdbb3in(A,B,-1 + C)     
        
        [-1 + B >= A && 0 >= 1 + D$$] ==>                              
                  evalrsdbb3in(A,B,C)   = 0                            
                                       >= 0                            
                                        = evalrsdbb2in(A,-1 + B,-1 + B)
        
            [-1 + B >= A && D$$ >= 1] ==>                              
                  evalrsdbb3in(A,B,C)   = 0                            
                                       >= 0                            
                                        = evalrsdbb2in(A,-1 + B,-1 + B)
        
                        [-1 + B >= A] ==>                              
                  evalrsdbb3in(A,B,C)   = 0                            
                                       >= 0                            
                                        = evalrsdbb3in(A,-1 + B,-1 + B)
        
                 [A >= 0 && 2*A >= A] ==>                              
                  evalrsdstart(A,B,C)   = 1                            
                                       >= 1                            
                                        = evalrsdbb1in(A,2*A,2*A)      
        
        
* Step 24: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          13. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C)           [C >= A && 0 >= 1 + D$]                     (?,2)
          14. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C)           [C >= A && D$ >= 1]                         (?,2)
          15. evalrsdbb4in(A,B,C) -> evalrsdbb3in(A,B,C)           [C >= A]                                    (?,2)
          17. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C)      [D >= 1]                                    (?,2)
          18. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True                                        (?,2)
          19. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [-1 + C >= A && 0 >= 1 + D$$]               (?,3)
          20. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [-1 + C >= A && D$$ >= 1]                   (?,3)
          21. evalrsdbb2in(A,B,C) -> evalrsdbb3in(A,B,-1 + C)      [-1 + C >= A]                               (?,3)
          22. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && 0 >= 1 + D$$]               (?,3)
          23. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && D$$ >= 1]                   (?,3)
          24. evalrsdbb3in(A,B,C) -> evalrsdbb3in(A,-1 + B,-1 + B) [-1 + B >= A]                               (?,3)
          25. evalrsdstart(A,B,C) -> evalrsdbb1in(A,2*A,2*A)       [A >= 0 && 2*A >= A]                        (1,4)
          26. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] (1,4)
          27. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [0 >= 1 + D && -1 + C >= A && D$$ >= 1]     (1,4)
          28. evalrsdbb1in(A,B,C) -> evalrsdbb3in(A,B,-1 + C)      [0 >= 1 + D && -1 + C >= A]                 (1,4)
        Signature:
          {(evalrsdbb1in,3)
          ;(evalrsdbb2in,3)
          ;(evalrsdbb3in,3)
          ;(evalrsdbb4in,3)
          ;(evalrsdbbin,3)
          ;(evalrsdentryin,3)
          ;(evalrsdreturnin,3)
          ;(evalrsdstart,3)
          ;(evalrsdstop,3)}
        Flow Graph:
          [13->{19,20,21},14->{19,20,21},15->{22,23,24},17->{13,14,15},18->{13,14,15},19->{19,20,21},20->{19,20,21}
          ,21->{22,23,24},22->{19,20,21},23->{19,20,21},24->{22,23,24},25->{17,18,26,27,28},26->{19,20,21},27->{19,20
          ,21},28->{22,23,24}]
        Sizebounds:
          (<13,0,A>, A) (<13,0,B>, 1 + 2*A) (<13,0,C>, 1 + 2*A) 
          (<14,0,A>, A) (<14,0,B>, 1 + 2*A) (<14,0,C>, 1 + 2*A) 
          (<15,0,A>, A) (<15,0,B>, 1 + 2*A) (<15,0,C>, 1 + 2*A) 
          (<17,0,A>, A) (<17,0,B>,     2*A) (<17,0,C>, 1 + 2*A) 
          (<18,0,A>, A) (<18,0,B>, 1 + 2*A) (<18,0,C>, 1 + 2*A) 
          (<19,0,A>, A) (<19,0,B>,       ?) (<19,0,C>,       ?) 
          (<20,0,A>, A) (<20,0,B>,       ?) (<20,0,C>,       ?) 
          (<21,0,A>, A) (<21,0,B>,       ?) (<21,0,C>,       ?) 
          (<22,0,A>, A) (<22,0,B>,       ?) (<22,0,C>,       ?) 
          (<23,0,A>, A) (<23,0,B>,       ?) (<23,0,C>,       ?) 
          (<24,0,A>, A) (<24,0,B>,       ?) (<24,0,C>,       ?) 
          (<25,0,A>, A) (<25,0,B>,     2*A) (<25,0,C>,     2*A) 
          (<26,0,A>, A) (<26,0,B>,     2*A) (<26,0,C>, 1 + 2*A) 
          (<27,0,A>, A) (<27,0,B>,     2*A) (<27,0,C>, 1 + 2*A) 
          (<28,0,A>, A) (<28,0,B>,     2*A) (<28,0,C>, 1 + 2*A) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Constant}
    + Details:
        We apply a polynomial interpretation of shape constant:
          p(evalrsdbb1in) = 1
          p(evalrsdbb2in) = 0
          p(evalrsdbb3in) = 0
          p(evalrsdbb4in) = 0
          p(evalrsdstart) = 1
        
        The following rules are strictly oriented:
                                               True ==>                              
                                evalrsdbb1in(A,B,C)   = 1                            
                                                      > 0                            
                                                      = evalrsdbb4in(A,-1 + B,-1 + B)
        
        [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] ==>                              
                                evalrsdbb1in(A,B,C)   = 1                            
                                                      > 0                            
                                                      = evalrsdbb2in(A,B,-1 + C)     
        
            [0 >= 1 + D && -1 + C >= A && D$$ >= 1] ==>                              
                                evalrsdbb1in(A,B,C)   = 1                            
                                                      > 0                            
                                                      = evalrsdbb2in(A,B,-1 + C)     
        
                        [0 >= 1 + D && -1 + C >= A] ==>                              
                                evalrsdbb1in(A,B,C)   = 1                            
                                                      > 0                            
                                                      = evalrsdbb3in(A,B,-1 + C)     
        
        
        The following rules are weakly oriented:
              [C >= A && 0 >= 1 + D$] ==>                              
                  evalrsdbb4in(A,B,C)   = 0                            
                                       >= 0                            
                                        = evalrsdbb2in(A,B,C)          
        
                  [C >= A && D$ >= 1] ==>                              
                  evalrsdbb4in(A,B,C)   = 0                            
                                       >= 0                            
                                        = evalrsdbb2in(A,B,C)          
        
                             [C >= A] ==>                              
                  evalrsdbb4in(A,B,C)   = 0                            
                                       >= 0                            
                                        = evalrsdbb3in(A,B,C)          
        
                             [D >= 1] ==>                              
                  evalrsdbb1in(A,B,C)   = 1                            
                                       >= 0                            
                                        = evalrsdbb4in(A,B,-1 + C)     
        
        [-1 + C >= A && 0 >= 1 + D$$] ==>                              
                  evalrsdbb2in(A,B,C)   = 0                            
                                       >= 0                            
                                        = evalrsdbb2in(A,B,-1 + C)     
        
            [-1 + C >= A && D$$ >= 1] ==>                              
                  evalrsdbb2in(A,B,C)   = 0                            
                                       >= 0                            
                                        = evalrsdbb2in(A,B,-1 + C)     
        
                        [-1 + C >= A] ==>                              
                  evalrsdbb2in(A,B,C)   = 0                            
                                       >= 0                            
                                        = evalrsdbb3in(A,B,-1 + C)     
        
        [-1 + B >= A && 0 >= 1 + D$$] ==>                              
                  evalrsdbb3in(A,B,C)   = 0                            
                                       >= 0                            
                                        = evalrsdbb2in(A,-1 + B,-1 + B)
        
            [-1 + B >= A && D$$ >= 1] ==>                              
                  evalrsdbb3in(A,B,C)   = 0                            
                                       >= 0                            
                                        = evalrsdbb2in(A,-1 + B,-1 + B)
        
                        [-1 + B >= A] ==>                              
                  evalrsdbb3in(A,B,C)   = 0                            
                                       >= 0                            
                                        = evalrsdbb3in(A,-1 + B,-1 + B)
        
                 [A >= 0 && 2*A >= A] ==>                              
                  evalrsdstart(A,B,C)   = 1                            
                                       >= 1                            
                                        = evalrsdbb1in(A,2*A,2*A)      
        
        
* Step 25: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          13. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C)           [C >= A && 0 >= 1 + D$]                     (?,2)
          14. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C)           [C >= A && D$ >= 1]                         (?,2)
          15. evalrsdbb4in(A,B,C) -> evalrsdbb3in(A,B,C)           [C >= A]                                    (?,2)
          17. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C)      [D >= 1]                                    (?,2)
          18. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True                                        (1,2)
          19. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [-1 + C >= A && 0 >= 1 + D$$]               (?,3)
          20. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [-1 + C >= A && D$$ >= 1]                   (?,3)
          21. evalrsdbb2in(A,B,C) -> evalrsdbb3in(A,B,-1 + C)      [-1 + C >= A]                               (?,3)
          22. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && 0 >= 1 + D$$]               (?,3)
          23. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && D$$ >= 1]                   (?,3)
          24. evalrsdbb3in(A,B,C) -> evalrsdbb3in(A,-1 + B,-1 + B) [-1 + B >= A]                               (?,3)
          25. evalrsdstart(A,B,C) -> evalrsdbb1in(A,2*A,2*A)       [A >= 0 && 2*A >= A]                        (1,4)
          26. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] (1,4)
          27. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [0 >= 1 + D && -1 + C >= A && D$$ >= 1]     (1,4)
          28. evalrsdbb1in(A,B,C) -> evalrsdbb3in(A,B,-1 + C)      [0 >= 1 + D && -1 + C >= A]                 (1,4)
        Signature:
          {(evalrsdbb1in,3)
          ;(evalrsdbb2in,3)
          ;(evalrsdbb3in,3)
          ;(evalrsdbb4in,3)
          ;(evalrsdbbin,3)
          ;(evalrsdentryin,3)
          ;(evalrsdreturnin,3)
          ;(evalrsdstart,3)
          ;(evalrsdstop,3)}
        Flow Graph:
          [13->{19,20,21},14->{19,20,21},15->{22,23,24},17->{13,14,15},18->{13,14,15},19->{19,20,21},20->{19,20,21}
          ,21->{22,23,24},22->{19,20,21},23->{19,20,21},24->{22,23,24},25->{17,18,26,27,28},26->{19,20,21},27->{19,20
          ,21},28->{22,23,24}]
        Sizebounds:
          (<13,0,A>, A) (<13,0,B>, 1 + 2*A) (<13,0,C>, 1 + 2*A) 
          (<14,0,A>, A) (<14,0,B>, 1 + 2*A) (<14,0,C>, 1 + 2*A) 
          (<15,0,A>, A) (<15,0,B>, 1 + 2*A) (<15,0,C>, 1 + 2*A) 
          (<17,0,A>, A) (<17,0,B>,     2*A) (<17,0,C>, 1 + 2*A) 
          (<18,0,A>, A) (<18,0,B>, 1 + 2*A) (<18,0,C>, 1 + 2*A) 
          (<19,0,A>, A) (<19,0,B>,       ?) (<19,0,C>,       ?) 
          (<20,0,A>, A) (<20,0,B>,       ?) (<20,0,C>,       ?) 
          (<21,0,A>, A) (<21,0,B>,       ?) (<21,0,C>,       ?) 
          (<22,0,A>, A) (<22,0,B>,       ?) (<22,0,C>,       ?) 
          (<23,0,A>, A) (<23,0,B>,       ?) (<23,0,C>,       ?) 
          (<24,0,A>, A) (<24,0,B>,       ?) (<24,0,C>,       ?) 
          (<25,0,A>, A) (<25,0,B>,     2*A) (<25,0,C>,     2*A) 
          (<26,0,A>, A) (<26,0,B>,     2*A) (<26,0,C>, 1 + 2*A) 
          (<27,0,A>, A) (<27,0,B>,     2*A) (<27,0,C>, 1 + 2*A) 
          (<28,0,A>, A) (<28,0,B>,     2*A) (<28,0,C>, 1 + 2*A) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Constant}
    + Details:
        We apply a polynomial interpretation of shape constant:
          p(evalrsdbb1in) = 1
          p(evalrsdbb2in) = 0
          p(evalrsdbb3in) = 0
          p(evalrsdbb4in) = 0
          p(evalrsdstart) = 1
        
        The following rules are strictly oriented:
                                           [D >= 1] ==>                              
                                evalrsdbb1in(A,B,C)   = 1                            
                                                      > 0                            
                                                      = evalrsdbb4in(A,B,-1 + C)     
        
                                               True ==>                              
                                evalrsdbb1in(A,B,C)   = 1                            
                                                      > 0                            
                                                      = evalrsdbb4in(A,-1 + B,-1 + B)
        
        [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] ==>                              
                                evalrsdbb1in(A,B,C)   = 1                            
                                                      > 0                            
                                                      = evalrsdbb2in(A,B,-1 + C)     
        
            [0 >= 1 + D && -1 + C >= A && D$$ >= 1] ==>                              
                                evalrsdbb1in(A,B,C)   = 1                            
                                                      > 0                            
                                                      = evalrsdbb2in(A,B,-1 + C)     
        
                        [0 >= 1 + D && -1 + C >= A] ==>                              
                                evalrsdbb1in(A,B,C)   = 1                            
                                                      > 0                            
                                                      = evalrsdbb3in(A,B,-1 + C)     
        
        
        The following rules are weakly oriented:
              [C >= A && 0 >= 1 + D$] ==>                              
                  evalrsdbb4in(A,B,C)   = 0                            
                                       >= 0                            
                                        = evalrsdbb2in(A,B,C)          
        
                  [C >= A && D$ >= 1] ==>                              
                  evalrsdbb4in(A,B,C)   = 0                            
                                       >= 0                            
                                        = evalrsdbb2in(A,B,C)          
        
                             [C >= A] ==>                              
                  evalrsdbb4in(A,B,C)   = 0                            
                                       >= 0                            
                                        = evalrsdbb3in(A,B,C)          
        
        [-1 + C >= A && 0 >= 1 + D$$] ==>                              
                  evalrsdbb2in(A,B,C)   = 0                            
                                       >= 0                            
                                        = evalrsdbb2in(A,B,-1 + C)     
        
            [-1 + C >= A && D$$ >= 1] ==>                              
                  evalrsdbb2in(A,B,C)   = 0                            
                                       >= 0                            
                                        = evalrsdbb2in(A,B,-1 + C)     
        
                        [-1 + C >= A] ==>                              
                  evalrsdbb2in(A,B,C)   = 0                            
                                       >= 0                            
                                        = evalrsdbb3in(A,B,-1 + C)     
        
        [-1 + B >= A && 0 >= 1 + D$$] ==>                              
                  evalrsdbb3in(A,B,C)   = 0                            
                                       >= 0                            
                                        = evalrsdbb2in(A,-1 + B,-1 + B)
        
            [-1 + B >= A && D$$ >= 1] ==>                              
                  evalrsdbb3in(A,B,C)   = 0                            
                                       >= 0                            
                                        = evalrsdbb2in(A,-1 + B,-1 + B)
        
                        [-1 + B >= A] ==>                              
                  evalrsdbb3in(A,B,C)   = 0                            
                                       >= 0                            
                                        = evalrsdbb3in(A,-1 + B,-1 + B)
        
                 [A >= 0 && 2*A >= A] ==>                              
                  evalrsdstart(A,B,C)   = 1                            
                                       >= 1                            
                                        = evalrsdbb1in(A,2*A,2*A)      
        
        
* Step 26: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          13. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C)           [C >= A && 0 >= 1 + D$]                     (?,2)
          14. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C)           [C >= A && D$ >= 1]                         (?,2)
          15. evalrsdbb4in(A,B,C) -> evalrsdbb3in(A,B,C)           [C >= A]                                    (?,2)
          17. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C)      [D >= 1]                                    (1,2)
          18. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True                                        (1,2)
          19. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [-1 + C >= A && 0 >= 1 + D$$]               (?,3)
          20. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [-1 + C >= A && D$$ >= 1]                   (?,3)
          21. evalrsdbb2in(A,B,C) -> evalrsdbb3in(A,B,-1 + C)      [-1 + C >= A]                               (?,3)
          22. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && 0 >= 1 + D$$]               (?,3)
          23. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && D$$ >= 1]                   (?,3)
          24. evalrsdbb3in(A,B,C) -> evalrsdbb3in(A,-1 + B,-1 + B) [-1 + B >= A]                               (?,3)
          25. evalrsdstart(A,B,C) -> evalrsdbb1in(A,2*A,2*A)       [A >= 0 && 2*A >= A]                        (1,4)
          26. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] (1,4)
          27. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [0 >= 1 + D && -1 + C >= A && D$$ >= 1]     (1,4)
          28. evalrsdbb1in(A,B,C) -> evalrsdbb3in(A,B,-1 + C)      [0 >= 1 + D && -1 + C >= A]                 (1,4)
        Signature:
          {(evalrsdbb1in,3)
          ;(evalrsdbb2in,3)
          ;(evalrsdbb3in,3)
          ;(evalrsdbb4in,3)
          ;(evalrsdbbin,3)
          ;(evalrsdentryin,3)
          ;(evalrsdreturnin,3)
          ;(evalrsdstart,3)
          ;(evalrsdstop,3)}
        Flow Graph:
          [13->{19,20,21},14->{19,20,21},15->{22,23,24},17->{13,14,15},18->{13,14,15},19->{19,20,21},20->{19,20,21}
          ,21->{22,23,24},22->{19,20,21},23->{19,20,21},24->{22,23,24},25->{17,18,26,27,28},26->{19,20,21},27->{19,20
          ,21},28->{22,23,24}]
        Sizebounds:
          (<13,0,A>, A) (<13,0,B>, 1 + 2*A) (<13,0,C>, 1 + 2*A) 
          (<14,0,A>, A) (<14,0,B>, 1 + 2*A) (<14,0,C>, 1 + 2*A) 
          (<15,0,A>, A) (<15,0,B>, 1 + 2*A) (<15,0,C>, 1 + 2*A) 
          (<17,0,A>, A) (<17,0,B>,     2*A) (<17,0,C>, 1 + 2*A) 
          (<18,0,A>, A) (<18,0,B>, 1 + 2*A) (<18,0,C>, 1 + 2*A) 
          (<19,0,A>, A) (<19,0,B>,       ?) (<19,0,C>,       ?) 
          (<20,0,A>, A) (<20,0,B>,       ?) (<20,0,C>,       ?) 
          (<21,0,A>, A) (<21,0,B>,       ?) (<21,0,C>,       ?) 
          (<22,0,A>, A) (<22,0,B>,       ?) (<22,0,C>,       ?) 
          (<23,0,A>, A) (<23,0,B>,       ?) (<23,0,C>,       ?) 
          (<24,0,A>, A) (<24,0,B>,       ?) (<24,0,C>,       ?) 
          (<25,0,A>, A) (<25,0,B>,     2*A) (<25,0,C>,     2*A) 
          (<26,0,A>, A) (<26,0,B>,     2*A) (<26,0,C>, 1 + 2*A) 
          (<27,0,A>, A) (<27,0,B>,     2*A) (<27,0,C>, 1 + 2*A) 
          (<28,0,A>, A) (<28,0,B>,     2*A) (<28,0,C>, 1 + 2*A) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Constant}
    + Details:
        We apply a polynomial interpretation of shape constant:
          p(evalrsdbb1in) = 1
          p(evalrsdbb2in) = 0
          p(evalrsdbb3in) = 0
          p(evalrsdbb4in) = 1
          p(evalrsdstart) = 1
        
        The following rules are strictly oriented:
                                           [C >= A] ==>                         
                                evalrsdbb4in(A,B,C)   = 1                       
                                                      > 0                       
                                                      = evalrsdbb3in(A,B,C)     
        
        [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] ==>                         
                                evalrsdbb1in(A,B,C)   = 1                       
                                                      > 0                       
                                                      = evalrsdbb2in(A,B,-1 + C)
        
            [0 >= 1 + D && -1 + C >= A && D$$ >= 1] ==>                         
                                evalrsdbb1in(A,B,C)   = 1                       
                                                      > 0                       
                                                      = evalrsdbb2in(A,B,-1 + C)
        
                        [0 >= 1 + D && -1 + C >= A] ==>                         
                                evalrsdbb1in(A,B,C)   = 1                       
                                                      > 0                       
                                                      = evalrsdbb3in(A,B,-1 + C)
        
        
        The following rules are weakly oriented:
              [C >= A && 0 >= 1 + D$] ==>                              
                  evalrsdbb4in(A,B,C)   = 1                            
                                       >= 0                            
                                        = evalrsdbb2in(A,B,C)          
        
                  [C >= A && D$ >= 1] ==>                              
                  evalrsdbb4in(A,B,C)   = 1                            
                                       >= 0                            
                                        = evalrsdbb2in(A,B,C)          
        
                             [D >= 1] ==>                              
                  evalrsdbb1in(A,B,C)   = 1                            
                                       >= 1                            
                                        = evalrsdbb4in(A,B,-1 + C)     
        
                                 True ==>                              
                  evalrsdbb1in(A,B,C)   = 1                            
                                       >= 1                            
                                        = evalrsdbb4in(A,-1 + B,-1 + B)
        
        [-1 + C >= A && 0 >= 1 + D$$] ==>                              
                  evalrsdbb2in(A,B,C)   = 0                            
                                       >= 0                            
                                        = evalrsdbb2in(A,B,-1 + C)     
        
            [-1 + C >= A && D$$ >= 1] ==>                              
                  evalrsdbb2in(A,B,C)   = 0                            
                                       >= 0                            
                                        = evalrsdbb2in(A,B,-1 + C)     
        
                        [-1 + C >= A] ==>                              
                  evalrsdbb2in(A,B,C)   = 0                            
                                       >= 0                            
                                        = evalrsdbb3in(A,B,-1 + C)     
        
        [-1 + B >= A && 0 >= 1 + D$$] ==>                              
                  evalrsdbb3in(A,B,C)   = 0                            
                                       >= 0                            
                                        = evalrsdbb2in(A,-1 + B,-1 + B)
        
            [-1 + B >= A && D$$ >= 1] ==>                              
                  evalrsdbb3in(A,B,C)   = 0                            
                                       >= 0                            
                                        = evalrsdbb2in(A,-1 + B,-1 + B)
        
                        [-1 + B >= A] ==>                              
                  evalrsdbb3in(A,B,C)   = 0                            
                                       >= 0                            
                                        = evalrsdbb3in(A,-1 + B,-1 + B)
        
                 [A >= 0 && 2*A >= A] ==>                              
                  evalrsdstart(A,B,C)   = 1                            
                                       >= 1                            
                                        = evalrsdbb1in(A,2*A,2*A)      
        
        
* Step 27: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          13. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C)           [C >= A && 0 >= 1 + D$]                     (?,2)
          14. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C)           [C >= A && D$ >= 1]                         (?,2)
          15. evalrsdbb4in(A,B,C) -> evalrsdbb3in(A,B,C)           [C >= A]                                    (1,2)
          17. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C)      [D >= 1]                                    (1,2)
          18. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True                                        (1,2)
          19. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [-1 + C >= A && 0 >= 1 + D$$]               (?,3)
          20. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [-1 + C >= A && D$$ >= 1]                   (?,3)
          21. evalrsdbb2in(A,B,C) -> evalrsdbb3in(A,B,-1 + C)      [-1 + C >= A]                               (?,3)
          22. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && 0 >= 1 + D$$]               (?,3)
          23. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && D$$ >= 1]                   (?,3)
          24. evalrsdbb3in(A,B,C) -> evalrsdbb3in(A,-1 + B,-1 + B) [-1 + B >= A]                               (?,3)
          25. evalrsdstart(A,B,C) -> evalrsdbb1in(A,2*A,2*A)       [A >= 0 && 2*A >= A]                        (1,4)
          26. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] (1,4)
          27. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [0 >= 1 + D && -1 + C >= A && D$$ >= 1]     (1,4)
          28. evalrsdbb1in(A,B,C) -> evalrsdbb3in(A,B,-1 + C)      [0 >= 1 + D && -1 + C >= A]                 (1,4)
        Signature:
          {(evalrsdbb1in,3)
          ;(evalrsdbb2in,3)
          ;(evalrsdbb3in,3)
          ;(evalrsdbb4in,3)
          ;(evalrsdbbin,3)
          ;(evalrsdentryin,3)
          ;(evalrsdreturnin,3)
          ;(evalrsdstart,3)
          ;(evalrsdstop,3)}
        Flow Graph:
          [13->{19,20,21},14->{19,20,21},15->{22,23,24},17->{13,14,15},18->{13,14,15},19->{19,20,21},20->{19,20,21}
          ,21->{22,23,24},22->{19,20,21},23->{19,20,21},24->{22,23,24},25->{17,18,26,27,28},26->{19,20,21},27->{19,20
          ,21},28->{22,23,24}]
        Sizebounds:
          (<13,0,A>, A) (<13,0,B>, 1 + 2*A) (<13,0,C>, 1 + 2*A) 
          (<14,0,A>, A) (<14,0,B>, 1 + 2*A) (<14,0,C>, 1 + 2*A) 
          (<15,0,A>, A) (<15,0,B>, 1 + 2*A) (<15,0,C>, 1 + 2*A) 
          (<17,0,A>, A) (<17,0,B>,     2*A) (<17,0,C>, 1 + 2*A) 
          (<18,0,A>, A) (<18,0,B>, 1 + 2*A) (<18,0,C>, 1 + 2*A) 
          (<19,0,A>, A) (<19,0,B>,       ?) (<19,0,C>,       ?) 
          (<20,0,A>, A) (<20,0,B>,       ?) (<20,0,C>,       ?) 
          (<21,0,A>, A) (<21,0,B>,       ?) (<21,0,C>,       ?) 
          (<22,0,A>, A) (<22,0,B>,       ?) (<22,0,C>,       ?) 
          (<23,0,A>, A) (<23,0,B>,       ?) (<23,0,C>,       ?) 
          (<24,0,A>, A) (<24,0,B>,       ?) (<24,0,C>,       ?) 
          (<25,0,A>, A) (<25,0,B>,     2*A) (<25,0,C>,     2*A) 
          (<26,0,A>, A) (<26,0,B>,     2*A) (<26,0,C>, 1 + 2*A) 
          (<27,0,A>, A) (<27,0,B>,     2*A) (<27,0,C>, 1 + 2*A) 
          (<28,0,A>, A) (<28,0,B>,     2*A) (<28,0,C>, 1 + 2*A) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Constant}
    + Details:
        We apply a polynomial interpretation of shape constant:
          p(evalrsdbb1in) = 1
          p(evalrsdbb2in) = 0
          p(evalrsdbb3in) = 0
          p(evalrsdbb4in) = 1
          p(evalrsdstart) = 1
        
        The following rules are strictly oriented:
                                [C >= A && D$ >= 1] ==>                         
                                evalrsdbb4in(A,B,C)   = 1                       
                                                      > 0                       
                                                      = evalrsdbb2in(A,B,C)     
        
                                           [C >= A] ==>                         
                                evalrsdbb4in(A,B,C)   = 1                       
                                                      > 0                       
                                                      = evalrsdbb3in(A,B,C)     
        
        [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] ==>                         
                                evalrsdbb1in(A,B,C)   = 1                       
                                                      > 0                       
                                                      = evalrsdbb2in(A,B,-1 + C)
        
            [0 >= 1 + D && -1 + C >= A && D$$ >= 1] ==>                         
                                evalrsdbb1in(A,B,C)   = 1                       
                                                      > 0                       
                                                      = evalrsdbb2in(A,B,-1 + C)
        
                        [0 >= 1 + D && -1 + C >= A] ==>                         
                                evalrsdbb1in(A,B,C)   = 1                       
                                                      > 0                       
                                                      = evalrsdbb3in(A,B,-1 + C)
        
        
        The following rules are weakly oriented:
              [C >= A && 0 >= 1 + D$] ==>                              
                  evalrsdbb4in(A,B,C)   = 1                            
                                       >= 0                            
                                        = evalrsdbb2in(A,B,C)          
        
                             [D >= 1] ==>                              
                  evalrsdbb1in(A,B,C)   = 1                            
                                       >= 1                            
                                        = evalrsdbb4in(A,B,-1 + C)     
        
                                 True ==>                              
                  evalrsdbb1in(A,B,C)   = 1                            
                                       >= 1                            
                                        = evalrsdbb4in(A,-1 + B,-1 + B)
        
        [-1 + C >= A && 0 >= 1 + D$$] ==>                              
                  evalrsdbb2in(A,B,C)   = 0                            
                                       >= 0                            
                                        = evalrsdbb2in(A,B,-1 + C)     
        
            [-1 + C >= A && D$$ >= 1] ==>                              
                  evalrsdbb2in(A,B,C)   = 0                            
                                       >= 0                            
                                        = evalrsdbb2in(A,B,-1 + C)     
        
                        [-1 + C >= A] ==>                              
                  evalrsdbb2in(A,B,C)   = 0                            
                                       >= 0                            
                                        = evalrsdbb3in(A,B,-1 + C)     
        
        [-1 + B >= A && 0 >= 1 + D$$] ==>                              
                  evalrsdbb3in(A,B,C)   = 0                            
                                       >= 0                            
                                        = evalrsdbb2in(A,-1 + B,-1 + B)
        
            [-1 + B >= A && D$$ >= 1] ==>                              
                  evalrsdbb3in(A,B,C)   = 0                            
                                       >= 0                            
                                        = evalrsdbb2in(A,-1 + B,-1 + B)
        
                        [-1 + B >= A] ==>                              
                  evalrsdbb3in(A,B,C)   = 0                            
                                       >= 0                            
                                        = evalrsdbb3in(A,-1 + B,-1 + B)
        
                 [A >= 0 && 2*A >= A] ==>                              
                  evalrsdstart(A,B,C)   = 1                            
                                       >= 1                            
                                        = evalrsdbb1in(A,2*A,2*A)      
        
        
* Step 28: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          13. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C)           [C >= A && 0 >= 1 + D$]                     (?,2)
          14. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C)           [C >= A && D$ >= 1]                         (1,2)
          15. evalrsdbb4in(A,B,C) -> evalrsdbb3in(A,B,C)           [C >= A]                                    (1,2)
          17. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C)      [D >= 1]                                    (1,2)
          18. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True                                        (1,2)
          19. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [-1 + C >= A && 0 >= 1 + D$$]               (?,3)
          20. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [-1 + C >= A && D$$ >= 1]                   (?,3)
          21. evalrsdbb2in(A,B,C) -> evalrsdbb3in(A,B,-1 + C)      [-1 + C >= A]                               (?,3)
          22. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && 0 >= 1 + D$$]               (?,3)
          23. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && D$$ >= 1]                   (?,3)
          24. evalrsdbb3in(A,B,C) -> evalrsdbb3in(A,-1 + B,-1 + B) [-1 + B >= A]                               (?,3)
          25. evalrsdstart(A,B,C) -> evalrsdbb1in(A,2*A,2*A)       [A >= 0 && 2*A >= A]                        (1,4)
          26. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] (1,4)
          27. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [0 >= 1 + D && -1 + C >= A && D$$ >= 1]     (1,4)
          28. evalrsdbb1in(A,B,C) -> evalrsdbb3in(A,B,-1 + C)      [0 >= 1 + D && -1 + C >= A]                 (1,4)
        Signature:
          {(evalrsdbb1in,3)
          ;(evalrsdbb2in,3)
          ;(evalrsdbb3in,3)
          ;(evalrsdbb4in,3)
          ;(evalrsdbbin,3)
          ;(evalrsdentryin,3)
          ;(evalrsdreturnin,3)
          ;(evalrsdstart,3)
          ;(evalrsdstop,3)}
        Flow Graph:
          [13->{19,20,21},14->{19,20,21},15->{22,23,24},17->{13,14,15},18->{13,14,15},19->{19,20,21},20->{19,20,21}
          ,21->{22,23,24},22->{19,20,21},23->{19,20,21},24->{22,23,24},25->{17,18,26,27,28},26->{19,20,21},27->{19,20
          ,21},28->{22,23,24}]
        Sizebounds:
          (<13,0,A>, A) (<13,0,B>, 1 + 2*A) (<13,0,C>, 1 + 2*A) 
          (<14,0,A>, A) (<14,0,B>, 1 + 2*A) (<14,0,C>, 1 + 2*A) 
          (<15,0,A>, A) (<15,0,B>, 1 + 2*A) (<15,0,C>, 1 + 2*A) 
          (<17,0,A>, A) (<17,0,B>,     2*A) (<17,0,C>, 1 + 2*A) 
          (<18,0,A>, A) (<18,0,B>, 1 + 2*A) (<18,0,C>, 1 + 2*A) 
          (<19,0,A>, A) (<19,0,B>,       ?) (<19,0,C>,       ?) 
          (<20,0,A>, A) (<20,0,B>,       ?) (<20,0,C>,       ?) 
          (<21,0,A>, A) (<21,0,B>,       ?) (<21,0,C>,       ?) 
          (<22,0,A>, A) (<22,0,B>,       ?) (<22,0,C>,       ?) 
          (<23,0,A>, A) (<23,0,B>,       ?) (<23,0,C>,       ?) 
          (<24,0,A>, A) (<24,0,B>,       ?) (<24,0,C>,       ?) 
          (<25,0,A>, A) (<25,0,B>,     2*A) (<25,0,C>,     2*A) 
          (<26,0,A>, A) (<26,0,B>,     2*A) (<26,0,C>, 1 + 2*A) 
          (<27,0,A>, A) (<27,0,B>,     2*A) (<27,0,C>, 1 + 2*A) 
          (<28,0,A>, A) (<28,0,B>,     2*A) (<28,0,C>, 1 + 2*A) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Constant}
    + Details:
        We apply a polynomial interpretation of shape constant:
          p(evalrsdbb1in) = 1
          p(evalrsdbb2in) = 0
          p(evalrsdbb3in) = 0
          p(evalrsdbb4in) = 1
          p(evalrsdstart) = 1
        
        The following rules are strictly oriented:
                            [C >= A && 0 >= 1 + D$] ==>                         
                                evalrsdbb4in(A,B,C)   = 1                       
                                                      > 0                       
                                                      = evalrsdbb2in(A,B,C)     
        
                                [C >= A && D$ >= 1] ==>                         
                                evalrsdbb4in(A,B,C)   = 1                       
                                                      > 0                       
                                                      = evalrsdbb2in(A,B,C)     
        
                                           [C >= A] ==>                         
                                evalrsdbb4in(A,B,C)   = 1                       
                                                      > 0                       
                                                      = evalrsdbb3in(A,B,C)     
        
        [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] ==>                         
                                evalrsdbb1in(A,B,C)   = 1                       
                                                      > 0                       
                                                      = evalrsdbb2in(A,B,-1 + C)
        
            [0 >= 1 + D && -1 + C >= A && D$$ >= 1] ==>                         
                                evalrsdbb1in(A,B,C)   = 1                       
                                                      > 0                       
                                                      = evalrsdbb2in(A,B,-1 + C)
        
                        [0 >= 1 + D && -1 + C >= A] ==>                         
                                evalrsdbb1in(A,B,C)   = 1                       
                                                      > 0                       
                                                      = evalrsdbb3in(A,B,-1 + C)
        
        
        The following rules are weakly oriented:
                             [D >= 1] ==>                              
                  evalrsdbb1in(A,B,C)   = 1                            
                                       >= 1                            
                                        = evalrsdbb4in(A,B,-1 + C)     
        
                                 True ==>                              
                  evalrsdbb1in(A,B,C)   = 1                            
                                       >= 1                            
                                        = evalrsdbb4in(A,-1 + B,-1 + B)
        
        [-1 + C >= A && 0 >= 1 + D$$] ==>                              
                  evalrsdbb2in(A,B,C)   = 0                            
                                       >= 0                            
                                        = evalrsdbb2in(A,B,-1 + C)     
        
            [-1 + C >= A && D$$ >= 1] ==>                              
                  evalrsdbb2in(A,B,C)   = 0                            
                                       >= 0                            
                                        = evalrsdbb2in(A,B,-1 + C)     
        
                        [-1 + C >= A] ==>                              
                  evalrsdbb2in(A,B,C)   = 0                            
                                       >= 0                            
                                        = evalrsdbb3in(A,B,-1 + C)     
        
        [-1 + B >= A && 0 >= 1 + D$$] ==>                              
                  evalrsdbb3in(A,B,C)   = 0                            
                                       >= 0                            
                                        = evalrsdbb2in(A,-1 + B,-1 + B)
        
            [-1 + B >= A && D$$ >= 1] ==>                              
                  evalrsdbb3in(A,B,C)   = 0                            
                                       >= 0                            
                                        = evalrsdbb2in(A,-1 + B,-1 + B)
        
                        [-1 + B >= A] ==>                              
                  evalrsdbb3in(A,B,C)   = 0                            
                                       >= 0                            
                                        = evalrsdbb3in(A,-1 + B,-1 + B)
        
                 [A >= 0 && 2*A >= A] ==>                              
                  evalrsdstart(A,B,C)   = 1                            
                                       >= 1                            
                                        = evalrsdbb1in(A,2*A,2*A)      
        
        
* Step 29: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          13. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C)           [C >= A && 0 >= 1 + D$]                     (1,2)
          14. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C)           [C >= A && D$ >= 1]                         (1,2)
          15. evalrsdbb4in(A,B,C) -> evalrsdbb3in(A,B,C)           [C >= A]                                    (1,2)
          17. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C)      [D >= 1]                                    (1,2)
          18. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True                                        (1,2)
          19. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [-1 + C >= A && 0 >= 1 + D$$]               (?,3)
          20. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [-1 + C >= A && D$$ >= 1]                   (?,3)
          21. evalrsdbb2in(A,B,C) -> evalrsdbb3in(A,B,-1 + C)      [-1 + C >= A]                               (?,3)
          22. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && 0 >= 1 + D$$]               (?,3)
          23. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && D$$ >= 1]                   (?,3)
          24. evalrsdbb3in(A,B,C) -> evalrsdbb3in(A,-1 + B,-1 + B) [-1 + B >= A]                               (?,3)
          25. evalrsdstart(A,B,C) -> evalrsdbb1in(A,2*A,2*A)       [A >= 0 && 2*A >= A]                        (1,4)
          26. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] (1,4)
          27. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [0 >= 1 + D && -1 + C >= A && D$$ >= 1]     (1,4)
          28. evalrsdbb1in(A,B,C) -> evalrsdbb3in(A,B,-1 + C)      [0 >= 1 + D && -1 + C >= A]                 (1,4)
        Signature:
          {(evalrsdbb1in,3)
          ;(evalrsdbb2in,3)
          ;(evalrsdbb3in,3)
          ;(evalrsdbb4in,3)
          ;(evalrsdbbin,3)
          ;(evalrsdentryin,3)
          ;(evalrsdreturnin,3)
          ;(evalrsdstart,3)
          ;(evalrsdstop,3)}
        Flow Graph:
          [13->{19,20,21},14->{19,20,21},15->{22,23,24},17->{13,14,15},18->{13,14,15},19->{19,20,21},20->{19,20,21}
          ,21->{22,23,24},22->{19,20,21},23->{19,20,21},24->{22,23,24},25->{17,18,26,27,28},26->{19,20,21},27->{19,20
          ,21},28->{22,23,24}]
        Sizebounds:
          (<13,0,A>, A) (<13,0,B>, 1 + 2*A) (<13,0,C>, 1 + 2*A) 
          (<14,0,A>, A) (<14,0,B>, 1 + 2*A) (<14,0,C>, 1 + 2*A) 
          (<15,0,A>, A) (<15,0,B>, 1 + 2*A) (<15,0,C>, 1 + 2*A) 
          (<17,0,A>, A) (<17,0,B>,     2*A) (<17,0,C>, 1 + 2*A) 
          (<18,0,A>, A) (<18,0,B>, 1 + 2*A) (<18,0,C>, 1 + 2*A) 
          (<19,0,A>, A) (<19,0,B>,       ?) (<19,0,C>,       ?) 
          (<20,0,A>, A) (<20,0,B>,       ?) (<20,0,C>,       ?) 
          (<21,0,A>, A) (<21,0,B>,       ?) (<21,0,C>,       ?) 
          (<22,0,A>, A) (<22,0,B>,       ?) (<22,0,C>,       ?) 
          (<23,0,A>, A) (<23,0,B>,       ?) (<23,0,C>,       ?) 
          (<24,0,A>, A) (<24,0,B>,       ?) (<24,0,C>,       ?) 
          (<25,0,A>, A) (<25,0,B>,     2*A) (<25,0,C>,     2*A) 
          (<26,0,A>, A) (<26,0,B>,     2*A) (<26,0,C>, 1 + 2*A) 
          (<27,0,A>, A) (<27,0,B>,     2*A) (<27,0,C>, 1 + 2*A) 
          (<28,0,A>, A) (<28,0,B>,     2*A) (<28,0,C>, 1 + 2*A) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalrsdbb1in) = -1*x1 + x2
          p(evalrsdbb2in) = -1*x1 + x2
          p(evalrsdbb3in) = -1*x1 + x2
          p(evalrsdbb4in) = -1*x1 + x2
          p(evalrsdstart) = x1        
        
        The following rules are strictly oriented:
                [-1 + B >= A] ==>                              
          evalrsdbb3in(A,B,C)   = -1*A + B                     
                                > -1 + -1*A + B                
                                = evalrsdbb3in(A,-1 + B,-1 + B)
        
        
        The following rules are weakly oriented:
                            [C >= A && 0 >= 1 + D$] ==>                              
                                evalrsdbb4in(A,B,C)   = -1*A + B                     
                                                     >= -1*A + B                     
                                                      = evalrsdbb2in(A,B,C)          
        
                                [C >= A && D$ >= 1] ==>                              
                                evalrsdbb4in(A,B,C)   = -1*A + B                     
                                                     >= -1*A + B                     
                                                      = evalrsdbb2in(A,B,C)          
        
                                           [C >= A] ==>                              
                                evalrsdbb4in(A,B,C)   = -1*A + B                     
                                                     >= -1*A + B                     
                                                      = evalrsdbb3in(A,B,C)          
        
                                           [D >= 1] ==>                              
                                evalrsdbb1in(A,B,C)   = -1*A + B                     
                                                     >= -1*A + B                     
                                                      = evalrsdbb4in(A,B,-1 + C)     
        
                                               True ==>                              
                                evalrsdbb1in(A,B,C)   = -1*A + B                     
                                                     >= -1 + -1*A + B                
                                                      = evalrsdbb4in(A,-1 + B,-1 + B)
        
                      [-1 + C >= A && 0 >= 1 + D$$] ==>                              
                                evalrsdbb2in(A,B,C)   = -1*A + B                     
                                                     >= -1*A + B                     
                                                      = evalrsdbb2in(A,B,-1 + C)     
        
                          [-1 + C >= A && D$$ >= 1] ==>                              
                                evalrsdbb2in(A,B,C)   = -1*A + B                     
                                                     >= -1*A + B                     
                                                      = evalrsdbb2in(A,B,-1 + C)     
        
                                      [-1 + C >= A] ==>                              
                                evalrsdbb2in(A,B,C)   = -1*A + B                     
                                                     >= -1*A + B                     
                                                      = evalrsdbb3in(A,B,-1 + C)     
        
                      [-1 + B >= A && 0 >= 1 + D$$] ==>                              
                                evalrsdbb3in(A,B,C)   = -1*A + B                     
                                                     >= -1 + -1*A + B                
                                                      = evalrsdbb2in(A,-1 + B,-1 + B)
        
                          [-1 + B >= A && D$$ >= 1] ==>                              
                                evalrsdbb3in(A,B,C)   = -1*A + B                     
                                                     >= -1 + -1*A + B                
                                                      = evalrsdbb2in(A,-1 + B,-1 + B)
        
                               [A >= 0 && 2*A >= A] ==>                              
                                evalrsdstart(A,B,C)   = A                            
                                                     >= A                            
                                                      = evalrsdbb1in(A,2*A,2*A)      
        
        [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] ==>                              
                                evalrsdbb1in(A,B,C)   = -1*A + B                     
                                                     >= -1*A + B                     
                                                      = evalrsdbb2in(A,B,-1 + C)     
        
            [0 >= 1 + D && -1 + C >= A && D$$ >= 1] ==>                              
                                evalrsdbb1in(A,B,C)   = -1*A + B                     
                                                     >= -1*A + B                     
                                                      = evalrsdbb2in(A,B,-1 + C)     
        
                        [0 >= 1 + D && -1 + C >= A] ==>                              
                                evalrsdbb1in(A,B,C)   = -1*A + B                     
                                                     >= -1*A + B                     
                                                      = evalrsdbb3in(A,B,-1 + C)     
        
        
* Step 30: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          13. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C)           [C >= A && 0 >= 1 + D$]                     (1,2)
          14. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C)           [C >= A && D$ >= 1]                         (1,2)
          15. evalrsdbb4in(A,B,C) -> evalrsdbb3in(A,B,C)           [C >= A]                                    (1,2)
          17. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C)      [D >= 1]                                    (1,2)
          18. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True                                        (1,2)
          19. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [-1 + C >= A && 0 >= 1 + D$$]               (?,3)
          20. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [-1 + C >= A && D$$ >= 1]                   (?,3)
          21. evalrsdbb2in(A,B,C) -> evalrsdbb3in(A,B,-1 + C)      [-1 + C >= A]                               (?,3)
          22. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && 0 >= 1 + D$$]               (?,3)
          23. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && D$$ >= 1]                   (?,3)
          24. evalrsdbb3in(A,B,C) -> evalrsdbb3in(A,-1 + B,-1 + B) [-1 + B >= A]                               (A,3)
          25. evalrsdstart(A,B,C) -> evalrsdbb1in(A,2*A,2*A)       [A >= 0 && 2*A >= A]                        (1,4)
          26. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] (1,4)
          27. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [0 >= 1 + D && -1 + C >= A && D$$ >= 1]     (1,4)
          28. evalrsdbb1in(A,B,C) -> evalrsdbb3in(A,B,-1 + C)      [0 >= 1 + D && -1 + C >= A]                 (1,4)
        Signature:
          {(evalrsdbb1in,3)
          ;(evalrsdbb2in,3)
          ;(evalrsdbb3in,3)
          ;(evalrsdbb4in,3)
          ;(evalrsdbbin,3)
          ;(evalrsdentryin,3)
          ;(evalrsdreturnin,3)
          ;(evalrsdstart,3)
          ;(evalrsdstop,3)}
        Flow Graph:
          [13->{19,20,21},14->{19,20,21},15->{22,23,24},17->{13,14,15},18->{13,14,15},19->{19,20,21},20->{19,20,21}
          ,21->{22,23,24},22->{19,20,21},23->{19,20,21},24->{22,23,24},25->{17,18,26,27,28},26->{19,20,21},27->{19,20
          ,21},28->{22,23,24}]
        Sizebounds:
          (<13,0,A>, A) (<13,0,B>, 1 + 2*A) (<13,0,C>, 1 + 2*A) 
          (<14,0,A>, A) (<14,0,B>, 1 + 2*A) (<14,0,C>, 1 + 2*A) 
          (<15,0,A>, A) (<15,0,B>, 1 + 2*A) (<15,0,C>, 1 + 2*A) 
          (<17,0,A>, A) (<17,0,B>,     2*A) (<17,0,C>, 1 + 2*A) 
          (<18,0,A>, A) (<18,0,B>, 1 + 2*A) (<18,0,C>, 1 + 2*A) 
          (<19,0,A>, A) (<19,0,B>,       ?) (<19,0,C>,       ?) 
          (<20,0,A>, A) (<20,0,B>,       ?) (<20,0,C>,       ?) 
          (<21,0,A>, A) (<21,0,B>,       ?) (<21,0,C>,       ?) 
          (<22,0,A>, A) (<22,0,B>,       ?) (<22,0,C>,       ?) 
          (<23,0,A>, A) (<23,0,B>,       ?) (<23,0,C>,       ?) 
          (<24,0,A>, A) (<24,0,B>,       ?) (<24,0,C>,       ?) 
          (<25,0,A>, A) (<25,0,B>,     2*A) (<25,0,C>,     2*A) 
          (<26,0,A>, A) (<26,0,B>,     2*A) (<26,0,C>, 1 + 2*A) 
          (<27,0,A>, A) (<27,0,B>,     2*A) (<27,0,C>, 1 + 2*A) 
          (<28,0,A>, A) (<28,0,B>,     2*A) (<28,0,C>, 1 + 2*A) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalrsdbb1in) = -1*x1 + x2
          p(evalrsdbb2in) = -1*x1 + x2
          p(evalrsdbb3in) = -1*x1 + x2
          p(evalrsdbb4in) = -1*x1 + x2
          p(evalrsdstart) = x1        
        
        The following rules are strictly oriented:
        [-1 + B >= A && D$$ >= 1] ==>                              
              evalrsdbb3in(A,B,C)   = -1*A + B                     
                                    > -1 + -1*A + B                
                                    = evalrsdbb2in(A,-1 + B,-1 + B)
        
                    [-1 + B >= A] ==>                              
              evalrsdbb3in(A,B,C)   = -1*A + B                     
                                    > -1 + -1*A + B                
                                    = evalrsdbb3in(A,-1 + B,-1 + B)
        
        
        The following rules are weakly oriented:
                            [C >= A && 0 >= 1 + D$] ==>                              
                                evalrsdbb4in(A,B,C)   = -1*A + B                     
                                                     >= -1*A + B                     
                                                      = evalrsdbb2in(A,B,C)          
        
                                [C >= A && D$ >= 1] ==>                              
                                evalrsdbb4in(A,B,C)   = -1*A + B                     
                                                     >= -1*A + B                     
                                                      = evalrsdbb2in(A,B,C)          
        
                                           [C >= A] ==>                              
                                evalrsdbb4in(A,B,C)   = -1*A + B                     
                                                     >= -1*A + B                     
                                                      = evalrsdbb3in(A,B,C)          
        
                                           [D >= 1] ==>                              
                                evalrsdbb1in(A,B,C)   = -1*A + B                     
                                                     >= -1*A + B                     
                                                      = evalrsdbb4in(A,B,-1 + C)     
        
                                               True ==>                              
                                evalrsdbb1in(A,B,C)   = -1*A + B                     
                                                     >= -1 + -1*A + B                
                                                      = evalrsdbb4in(A,-1 + B,-1 + B)
        
                      [-1 + C >= A && 0 >= 1 + D$$] ==>                              
                                evalrsdbb2in(A,B,C)   = -1*A + B                     
                                                     >= -1*A + B                     
                                                      = evalrsdbb2in(A,B,-1 + C)     
        
                          [-1 + C >= A && D$$ >= 1] ==>                              
                                evalrsdbb2in(A,B,C)   = -1*A + B                     
                                                     >= -1*A + B                     
                                                      = evalrsdbb2in(A,B,-1 + C)     
        
                                      [-1 + C >= A] ==>                              
                                evalrsdbb2in(A,B,C)   = -1*A + B                     
                                                     >= -1*A + B                     
                                                      = evalrsdbb3in(A,B,-1 + C)     
        
                      [-1 + B >= A && 0 >= 1 + D$$] ==>                              
                                evalrsdbb3in(A,B,C)   = -1*A + B                     
                                                     >= -1 + -1*A + B                
                                                      = evalrsdbb2in(A,-1 + B,-1 + B)
        
                               [A >= 0 && 2*A >= A] ==>                              
                                evalrsdstart(A,B,C)   = A                            
                                                     >= A                            
                                                      = evalrsdbb1in(A,2*A,2*A)      
        
        [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] ==>                              
                                evalrsdbb1in(A,B,C)   = -1*A + B                     
                                                     >= -1*A + B                     
                                                      = evalrsdbb2in(A,B,-1 + C)     
        
            [0 >= 1 + D && -1 + C >= A && D$$ >= 1] ==>                              
                                evalrsdbb1in(A,B,C)   = -1*A + B                     
                                                     >= -1*A + B                     
                                                      = evalrsdbb2in(A,B,-1 + C)     
        
                        [0 >= 1 + D && -1 + C >= A] ==>                              
                                evalrsdbb1in(A,B,C)   = -1*A + B                     
                                                     >= -1*A + B                     
                                                      = evalrsdbb3in(A,B,-1 + C)     
        
        
* Step 31: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          13. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C)           [C >= A && 0 >= 1 + D$]                     (1,2)
          14. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C)           [C >= A && D$ >= 1]                         (1,2)
          15. evalrsdbb4in(A,B,C) -> evalrsdbb3in(A,B,C)           [C >= A]                                    (1,2)
          17. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C)      [D >= 1]                                    (1,2)
          18. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True                                        (1,2)
          19. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [-1 + C >= A && 0 >= 1 + D$$]               (?,3)
          20. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [-1 + C >= A && D$$ >= 1]                   (?,3)
          21. evalrsdbb2in(A,B,C) -> evalrsdbb3in(A,B,-1 + C)      [-1 + C >= A]                               (?,3)
          22. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && 0 >= 1 + D$$]               (?,3)
          23. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && D$$ >= 1]                   (A,3)
          24. evalrsdbb3in(A,B,C) -> evalrsdbb3in(A,-1 + B,-1 + B) [-1 + B >= A]                               (A,3)
          25. evalrsdstart(A,B,C) -> evalrsdbb1in(A,2*A,2*A)       [A >= 0 && 2*A >= A]                        (1,4)
          26. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] (1,4)
          27. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [0 >= 1 + D && -1 + C >= A && D$$ >= 1]     (1,4)
          28. evalrsdbb1in(A,B,C) -> evalrsdbb3in(A,B,-1 + C)      [0 >= 1 + D && -1 + C >= A]                 (1,4)
        Signature:
          {(evalrsdbb1in,3)
          ;(evalrsdbb2in,3)
          ;(evalrsdbb3in,3)
          ;(evalrsdbb4in,3)
          ;(evalrsdbbin,3)
          ;(evalrsdentryin,3)
          ;(evalrsdreturnin,3)
          ;(evalrsdstart,3)
          ;(evalrsdstop,3)}
        Flow Graph:
          [13->{19,20,21},14->{19,20,21},15->{22,23,24},17->{13,14,15},18->{13,14,15},19->{19,20,21},20->{19,20,21}
          ,21->{22,23,24},22->{19,20,21},23->{19,20,21},24->{22,23,24},25->{17,18,26,27,28},26->{19,20,21},27->{19,20
          ,21},28->{22,23,24}]
        Sizebounds:
          (<13,0,A>, A) (<13,0,B>, 1 + 2*A) (<13,0,C>, 1 + 2*A) 
          (<14,0,A>, A) (<14,0,B>, 1 + 2*A) (<14,0,C>, 1 + 2*A) 
          (<15,0,A>, A) (<15,0,B>, 1 + 2*A) (<15,0,C>, 1 + 2*A) 
          (<17,0,A>, A) (<17,0,B>,     2*A) (<17,0,C>, 1 + 2*A) 
          (<18,0,A>, A) (<18,0,B>, 1 + 2*A) (<18,0,C>, 1 + 2*A) 
          (<19,0,A>, A) (<19,0,B>,       ?) (<19,0,C>,       ?) 
          (<20,0,A>, A) (<20,0,B>,       ?) (<20,0,C>,       ?) 
          (<21,0,A>, A) (<21,0,B>,       ?) (<21,0,C>,       ?) 
          (<22,0,A>, A) (<22,0,B>,       ?) (<22,0,C>,       ?) 
          (<23,0,A>, A) (<23,0,B>,       ?) (<23,0,C>,       ?) 
          (<24,0,A>, A) (<24,0,B>,       ?) (<24,0,C>,       ?) 
          (<25,0,A>, A) (<25,0,B>,     2*A) (<25,0,C>,     2*A) 
          (<26,0,A>, A) (<26,0,B>,     2*A) (<26,0,C>, 1 + 2*A) 
          (<27,0,A>, A) (<27,0,B>,     2*A) (<27,0,C>, 1 + 2*A) 
          (<28,0,A>, A) (<28,0,B>,     2*A) (<28,0,C>, 1 + 2*A) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalrsdbb1in) = -1*x1 + x2
          p(evalrsdbb2in) = -1*x1 + x2
          p(evalrsdbb3in) = -1*x1 + x2
          p(evalrsdbb4in) = -1*x1 + x2
          p(evalrsdstart) = x1        
        
        The following rules are strictly oriented:
        [-1 + B >= A && 0 >= 1 + D$$] ==>                              
                  evalrsdbb3in(A,B,C)   = -1*A + B                     
                                        > -1 + -1*A + B                
                                        = evalrsdbb2in(A,-1 + B,-1 + B)
        
            [-1 + B >= A && D$$ >= 1] ==>                              
                  evalrsdbb3in(A,B,C)   = -1*A + B                     
                                        > -1 + -1*A + B                
                                        = evalrsdbb2in(A,-1 + B,-1 + B)
        
                        [-1 + B >= A] ==>                              
                  evalrsdbb3in(A,B,C)   = -1*A + B                     
                                        > -1 + -1*A + B                
                                        = evalrsdbb3in(A,-1 + B,-1 + B)
        
        
        The following rules are weakly oriented:
                            [C >= A && 0 >= 1 + D$] ==>                              
                                evalrsdbb4in(A,B,C)   = -1*A + B                     
                                                     >= -1*A + B                     
                                                      = evalrsdbb2in(A,B,C)          
        
                                [C >= A && D$ >= 1] ==>                              
                                evalrsdbb4in(A,B,C)   = -1*A + B                     
                                                     >= -1*A + B                     
                                                      = evalrsdbb2in(A,B,C)          
        
                                           [C >= A] ==>                              
                                evalrsdbb4in(A,B,C)   = -1*A + B                     
                                                     >= -1*A + B                     
                                                      = evalrsdbb3in(A,B,C)          
        
                                           [D >= 1] ==>                              
                                evalrsdbb1in(A,B,C)   = -1*A + B                     
                                                     >= -1*A + B                     
                                                      = evalrsdbb4in(A,B,-1 + C)     
        
                                               True ==>                              
                                evalrsdbb1in(A,B,C)   = -1*A + B                     
                                                     >= -1 + -1*A + B                
                                                      = evalrsdbb4in(A,-1 + B,-1 + B)
        
                      [-1 + C >= A && 0 >= 1 + D$$] ==>                              
                                evalrsdbb2in(A,B,C)   = -1*A + B                     
                                                     >= -1*A + B                     
                                                      = evalrsdbb2in(A,B,-1 + C)     
        
                          [-1 + C >= A && D$$ >= 1] ==>                              
                                evalrsdbb2in(A,B,C)   = -1*A + B                     
                                                     >= -1*A + B                     
                                                      = evalrsdbb2in(A,B,-1 + C)     
        
                                      [-1 + C >= A] ==>                              
                                evalrsdbb2in(A,B,C)   = -1*A + B                     
                                                     >= -1*A + B                     
                                                      = evalrsdbb3in(A,B,-1 + C)     
        
                               [A >= 0 && 2*A >= A] ==>                              
                                evalrsdstart(A,B,C)   = A                            
                                                     >= A                            
                                                      = evalrsdbb1in(A,2*A,2*A)      
        
        [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] ==>                              
                                evalrsdbb1in(A,B,C)   = -1*A + B                     
                                                     >= -1*A + B                     
                                                      = evalrsdbb2in(A,B,-1 + C)     
        
            [0 >= 1 + D && -1 + C >= A && D$$ >= 1] ==>                              
                                evalrsdbb1in(A,B,C)   = -1*A + B                     
                                                     >= -1*A + B                     
                                                      = evalrsdbb2in(A,B,-1 + C)     
        
                        [0 >= 1 + D && -1 + C >= A] ==>                              
                                evalrsdbb1in(A,B,C)   = -1*A + B                     
                                                     >= -1*A + B                     
                                                      = evalrsdbb3in(A,B,-1 + C)     
        
        
* Step 32: SizeboundsProc WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          13. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C)           [C >= A && 0 >= 1 + D$]                     (1,2)
          14. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C)           [C >= A && D$ >= 1]                         (1,2)
          15. evalrsdbb4in(A,B,C) -> evalrsdbb3in(A,B,C)           [C >= A]                                    (1,2)
          17. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C)      [D >= 1]                                    (1,2)
          18. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True                                        (1,2)
          19. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [-1 + C >= A && 0 >= 1 + D$$]               (?,3)
          20. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [-1 + C >= A && D$$ >= 1]                   (?,3)
          21. evalrsdbb2in(A,B,C) -> evalrsdbb3in(A,B,-1 + C)      [-1 + C >= A]                               (?,3)
          22. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && 0 >= 1 + D$$]               (A,3)
          23. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && D$$ >= 1]                   (A,3)
          24. evalrsdbb3in(A,B,C) -> evalrsdbb3in(A,-1 + B,-1 + B) [-1 + B >= A]                               (A,3)
          25. evalrsdstart(A,B,C) -> evalrsdbb1in(A,2*A,2*A)       [A >= 0 && 2*A >= A]                        (1,4)
          26. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] (1,4)
          27. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [0 >= 1 + D && -1 + C >= A && D$$ >= 1]     (1,4)
          28. evalrsdbb1in(A,B,C) -> evalrsdbb3in(A,B,-1 + C)      [0 >= 1 + D && -1 + C >= A]                 (1,4)
        Signature:
          {(evalrsdbb1in,3)
          ;(evalrsdbb2in,3)
          ;(evalrsdbb3in,3)
          ;(evalrsdbb4in,3)
          ;(evalrsdbbin,3)
          ;(evalrsdentryin,3)
          ;(evalrsdreturnin,3)
          ;(evalrsdstart,3)
          ;(evalrsdstop,3)}
        Flow Graph:
          [13->{19,20,21},14->{19,20,21},15->{22,23,24},17->{13,14,15},18->{13,14,15},19->{19,20,21},20->{19,20,21}
          ,21->{22,23,24},22->{19,20,21},23->{19,20,21},24->{22,23,24},25->{17,18,26,27,28},26->{19,20,21},27->{19,20
          ,21},28->{22,23,24}]
        Sizebounds:
          (<13,0,A>, A) (<13,0,B>, 1 + 2*A) (<13,0,C>, 1 + 2*A) 
          (<14,0,A>, A) (<14,0,B>, 1 + 2*A) (<14,0,C>, 1 + 2*A) 
          (<15,0,A>, A) (<15,0,B>, 1 + 2*A) (<15,0,C>, 1 + 2*A) 
          (<17,0,A>, A) (<17,0,B>,     2*A) (<17,0,C>, 1 + 2*A) 
          (<18,0,A>, A) (<18,0,B>, 1 + 2*A) (<18,0,C>, 1 + 2*A) 
          (<19,0,A>, A) (<19,0,B>,       ?) (<19,0,C>,       ?) 
          (<20,0,A>, A) (<20,0,B>,       ?) (<20,0,C>,       ?) 
          (<21,0,A>, A) (<21,0,B>,       ?) (<21,0,C>,       ?) 
          (<22,0,A>, A) (<22,0,B>,       ?) (<22,0,C>,       ?) 
          (<23,0,A>, A) (<23,0,B>,       ?) (<23,0,C>,       ?) 
          (<24,0,A>, A) (<24,0,B>,       ?) (<24,0,C>,       ?) 
          (<25,0,A>, A) (<25,0,B>,     2*A) (<25,0,C>,     2*A) 
          (<26,0,A>, A) (<26,0,B>,     2*A) (<26,0,C>, 1 + 2*A) 
          (<27,0,A>, A) (<27,0,B>,     2*A) (<27,0,C>, 1 + 2*A) 
          (<28,0,A>, A) (<28,0,B>,     2*A) (<28,0,C>, 1 + 2*A) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (<13,0,A>, A) (<13,0,B>, 1 + 2*A) (<13,0,C>, 1 + 2*A) 
          (<14,0,A>, A) (<14,0,B>, 1 + 2*A) (<14,0,C>, 1 + 2*A) 
          (<15,0,A>, A) (<15,0,B>, 1 + 2*A) (<15,0,C>, 1 + 2*A) 
          (<17,0,A>, A) (<17,0,B>,     2*A) (<17,0,C>, 1 + 2*A) 
          (<18,0,A>, A) (<18,0,B>, 1 + 2*A) (<18,0,C>, 1 + 2*A) 
          (<19,0,A>, A) (<19,0,B>, 1 + 5*A) (<19,0,C>,       ?) 
          (<20,0,A>, A) (<20,0,B>, 1 + 5*A) (<20,0,C>,       ?) 
          (<21,0,A>, A) (<21,0,B>, 1 + 5*A) (<21,0,C>,       ?) 
          (<22,0,A>, A) (<22,0,B>, 1 + 5*A) (<22,0,C>, 2 + 5*A) 
          (<23,0,A>, A) (<23,0,B>, 1 + 5*A) (<23,0,C>, 2 + 5*A) 
          (<24,0,A>, A) (<24,0,B>, 1 + 5*A) (<24,0,C>, 2 + 5*A) 
          (<25,0,A>, A) (<25,0,B>,     2*A) (<25,0,C>,     2*A) 
          (<26,0,A>, A) (<26,0,B>,     2*A) (<26,0,C>, 1 + 2*A) 
          (<27,0,A>, A) (<27,0,B>,     2*A) (<27,0,C>, 1 + 2*A) 
          (<28,0,A>, A) (<28,0,B>,     2*A) (<28,0,C>, 1 + 2*A) 
* Step 33: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          13. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C)           [C >= A && 0 >= 1 + D$]                     (1,2)
          14. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C)           [C >= A && D$ >= 1]                         (1,2)
          15. evalrsdbb4in(A,B,C) -> evalrsdbb3in(A,B,C)           [C >= A]                                    (1,2)
          17. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C)      [D >= 1]                                    (1,2)
          18. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True                                        (1,2)
          19. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [-1 + C >= A && 0 >= 1 + D$$]               (?,3)
          20. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [-1 + C >= A && D$$ >= 1]                   (?,3)
          21. evalrsdbb2in(A,B,C) -> evalrsdbb3in(A,B,-1 + C)      [-1 + C >= A]                               (?,3)
          22. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && 0 >= 1 + D$$]               (A,3)
          23. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && D$$ >= 1]                   (A,3)
          24. evalrsdbb3in(A,B,C) -> evalrsdbb3in(A,-1 + B,-1 + B) [-1 + B >= A]                               (A,3)
          25. evalrsdstart(A,B,C) -> evalrsdbb1in(A,2*A,2*A)       [A >= 0 && 2*A >= A]                        (1,4)
          26. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] (1,4)
          27. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [0 >= 1 + D && -1 + C >= A && D$$ >= 1]     (1,4)
          28. evalrsdbb1in(A,B,C) -> evalrsdbb3in(A,B,-1 + C)      [0 >= 1 + D && -1 + C >= A]                 (1,4)
        Signature:
          {(evalrsdbb1in,3)
          ;(evalrsdbb2in,3)
          ;(evalrsdbb3in,3)
          ;(evalrsdbb4in,3)
          ;(evalrsdbbin,3)
          ;(evalrsdentryin,3)
          ;(evalrsdreturnin,3)
          ;(evalrsdstart,3)
          ;(evalrsdstop,3)}
        Flow Graph:
          [13->{19,20,21},14->{19,20,21},15->{22,23,24},17->{13,14,15},18->{13,14,15},19->{19,20,21},20->{19,20,21}
          ,21->{22,23,24},22->{19,20,21},23->{19,20,21},24->{22,23,24},25->{17,18,26,27,28},26->{19,20,21},27->{19,20
          ,21},28->{22,23,24}]
        Sizebounds:
          (<13,0,A>, A) (<13,0,B>, 1 + 2*A) (<13,0,C>, 1 + 2*A) 
          (<14,0,A>, A) (<14,0,B>, 1 + 2*A) (<14,0,C>, 1 + 2*A) 
          (<15,0,A>, A) (<15,0,B>, 1 + 2*A) (<15,0,C>, 1 + 2*A) 
          (<17,0,A>, A) (<17,0,B>,     2*A) (<17,0,C>, 1 + 2*A) 
          (<18,0,A>, A) (<18,0,B>, 1 + 2*A) (<18,0,C>, 1 + 2*A) 
          (<19,0,A>, A) (<19,0,B>, 1 + 5*A) (<19,0,C>,       ?) 
          (<20,0,A>, A) (<20,0,B>, 1 + 5*A) (<20,0,C>,       ?) 
          (<21,0,A>, A) (<21,0,B>, 1 + 5*A) (<21,0,C>,       ?) 
          (<22,0,A>, A) (<22,0,B>, 1 + 5*A) (<22,0,C>, 2 + 5*A) 
          (<23,0,A>, A) (<23,0,B>, 1 + 5*A) (<23,0,C>, 2 + 5*A) 
          (<24,0,A>, A) (<24,0,B>, 1 + 5*A) (<24,0,C>, 2 + 5*A) 
          (<25,0,A>, A) (<25,0,B>,     2*A) (<25,0,C>,     2*A) 
          (<26,0,A>, A) (<26,0,B>,     2*A) (<26,0,C>, 1 + 2*A) 
          (<27,0,A>, A) (<27,0,B>,     2*A) (<27,0,C>, 1 + 2*A) 
          (<28,0,A>, A) (<28,0,B>,     2*A) (<28,0,C>, 1 + 2*A) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [19,20,21,24], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalrsdbb2in) = 1
          p(evalrsdbb3in) = 0
        
        The following rules are strictly oriented:
                [-1 + C >= A] ==>                         
          evalrsdbb2in(A,B,C)   = 1                       
                                > 0                       
                                = evalrsdbb3in(A,B,-1 + C)
        
        
        The following rules are weakly oriented:
        [-1 + C >= A && 0 >= 1 + D$$] ==>                              
                  evalrsdbb2in(A,B,C)   = 1                            
                                       >= 1                            
                                        = evalrsdbb2in(A,B,-1 + C)     
        
            [-1 + C >= A && D$$ >= 1] ==>                              
                  evalrsdbb2in(A,B,C)   = 1                            
                                       >= 1                            
                                        = evalrsdbb2in(A,B,-1 + C)     
        
                        [-1 + B >= A] ==>                              
                  evalrsdbb3in(A,B,C)   = 0                            
                                       >= 0                            
                                        = evalrsdbb3in(A,-1 + B,-1 + B)
        
        We use the following global sizebounds:
        (<13,0,A>, A) (<13,0,B>, 1 + 2*A) (<13,0,C>, 1 + 2*A) 
        (<14,0,A>, A) (<14,0,B>, 1 + 2*A) (<14,0,C>, 1 + 2*A) 
        (<15,0,A>, A) (<15,0,B>, 1 + 2*A) (<15,0,C>, 1 + 2*A) 
        (<17,0,A>, A) (<17,0,B>,     2*A) (<17,0,C>, 1 + 2*A) 
        (<18,0,A>, A) (<18,0,B>, 1 + 2*A) (<18,0,C>, 1 + 2*A) 
        (<19,0,A>, A) (<19,0,B>, 1 + 5*A) (<19,0,C>,       ?) 
        (<20,0,A>, A) (<20,0,B>, 1 + 5*A) (<20,0,C>,       ?) 
        (<21,0,A>, A) (<21,0,B>, 1 + 5*A) (<21,0,C>,       ?) 
        (<22,0,A>, A) (<22,0,B>, 1 + 5*A) (<22,0,C>, 2 + 5*A) 
        (<23,0,A>, A) (<23,0,B>, 1 + 5*A) (<23,0,C>, 2 + 5*A) 
        (<24,0,A>, A) (<24,0,B>, 1 + 5*A) (<24,0,C>, 2 + 5*A) 
        (<25,0,A>, A) (<25,0,B>,     2*A) (<25,0,C>,     2*A) 
        (<26,0,A>, A) (<26,0,B>,     2*A) (<26,0,C>, 1 + 2*A) 
        (<27,0,A>, A) (<27,0,B>,     2*A) (<27,0,C>, 1 + 2*A) 
        (<28,0,A>, A) (<28,0,B>,     2*A) (<28,0,C>, 1 + 2*A) 
* Step 34: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          13. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C)           [C >= A && 0 >= 1 + D$]                     (1,2)      
          14. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C)           [C >= A && D$ >= 1]                         (1,2)      
          15. evalrsdbb4in(A,B,C) -> evalrsdbb3in(A,B,C)           [C >= A]                                    (1,2)      
          17. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C)      [D >= 1]                                    (1,2)      
          18. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True                                        (1,2)      
          19. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [-1 + C >= A && 0 >= 1 + D$$]               (?,3)      
          20. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [-1 + C >= A && D$$ >= 1]                   (?,3)      
          21. evalrsdbb2in(A,B,C) -> evalrsdbb3in(A,B,-1 + C)      [-1 + C >= A]                               (4 + 2*A,3)
          22. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && 0 >= 1 + D$$]               (A,3)      
          23. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && D$$ >= 1]                   (A,3)      
          24. evalrsdbb3in(A,B,C) -> evalrsdbb3in(A,-1 + B,-1 + B) [-1 + B >= A]                               (A,3)      
          25. evalrsdstart(A,B,C) -> evalrsdbb1in(A,2*A,2*A)       [A >= 0 && 2*A >= A]                        (1,4)      
          26. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] (1,4)      
          27. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [0 >= 1 + D && -1 + C >= A && D$$ >= 1]     (1,4)      
          28. evalrsdbb1in(A,B,C) -> evalrsdbb3in(A,B,-1 + C)      [0 >= 1 + D && -1 + C >= A]                 (1,4)      
        Signature:
          {(evalrsdbb1in,3)
          ;(evalrsdbb2in,3)
          ;(evalrsdbb3in,3)
          ;(evalrsdbb4in,3)
          ;(evalrsdbbin,3)
          ;(evalrsdentryin,3)
          ;(evalrsdreturnin,3)
          ;(evalrsdstart,3)
          ;(evalrsdstop,3)}
        Flow Graph:
          [13->{19,20,21},14->{19,20,21},15->{22,23,24},17->{13,14,15},18->{13,14,15},19->{19,20,21},20->{19,20,21}
          ,21->{22,23,24},22->{19,20,21},23->{19,20,21},24->{22,23,24},25->{17,18,26,27,28},26->{19,20,21},27->{19,20
          ,21},28->{22,23,24}]
        Sizebounds:
          (<13,0,A>, A) (<13,0,B>, 1 + 2*A) (<13,0,C>, 1 + 2*A) 
          (<14,0,A>, A) (<14,0,B>, 1 + 2*A) (<14,0,C>, 1 + 2*A) 
          (<15,0,A>, A) (<15,0,B>, 1 + 2*A) (<15,0,C>, 1 + 2*A) 
          (<17,0,A>, A) (<17,0,B>,     2*A) (<17,0,C>, 1 + 2*A) 
          (<18,0,A>, A) (<18,0,B>, 1 + 2*A) (<18,0,C>, 1 + 2*A) 
          (<19,0,A>, A) (<19,0,B>, 1 + 5*A) (<19,0,C>,       ?) 
          (<20,0,A>, A) (<20,0,B>, 1 + 5*A) (<20,0,C>,       ?) 
          (<21,0,A>, A) (<21,0,B>, 1 + 5*A) (<21,0,C>,       ?) 
          (<22,0,A>, A) (<22,0,B>, 1 + 5*A) (<22,0,C>, 2 + 5*A) 
          (<23,0,A>, A) (<23,0,B>, 1 + 5*A) (<23,0,C>, 2 + 5*A) 
          (<24,0,A>, A) (<24,0,B>, 1 + 5*A) (<24,0,C>, 2 + 5*A) 
          (<25,0,A>, A) (<25,0,B>,     2*A) (<25,0,C>,     2*A) 
          (<26,0,A>, A) (<26,0,B>,     2*A) (<26,0,C>, 1 + 2*A) 
          (<27,0,A>, A) (<27,0,B>,     2*A) (<27,0,C>, 1 + 2*A) 
          (<28,0,A>, A) (<28,0,B>,     2*A) (<28,0,C>, 1 + 2*A) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [19,20,22,23,24], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalrsdbb2in) = -1*x1 + x3
          p(evalrsdbb3in) = -1*x1 + x2
        
        The following rules are strictly oriented:
            [-1 + C >= A && D$$ >= 1] ==>                              
                  evalrsdbb2in(A,B,C)   = -1*A + C                     
                                        > -1 + -1*A + C                
                                        = evalrsdbb2in(A,B,-1 + C)     
        
        [-1 + B >= A && 0 >= 1 + D$$] ==>                              
                  evalrsdbb3in(A,B,C)   = -1*A + B                     
                                        > -1 + -1*A + B                
                                        = evalrsdbb2in(A,-1 + B,-1 + B)
        
            [-1 + B >= A && D$$ >= 1] ==>                              
                  evalrsdbb3in(A,B,C)   = -1*A + B                     
                                        > -1 + -1*A + B                
                                        = evalrsdbb2in(A,-1 + B,-1 + B)
        
                        [-1 + B >= A] ==>                              
                  evalrsdbb3in(A,B,C)   = -1*A + B                     
                                        > -1 + -1*A + B                
                                        = evalrsdbb3in(A,-1 + B,-1 + B)
        
        
        The following rules are weakly oriented:
        [-1 + C >= A && 0 >= 1 + D$$] ==>                         
                  evalrsdbb2in(A,B,C)   = -1*A + C                
                                       >= -1 + -1*A + C           
                                        = evalrsdbb2in(A,B,-1 + C)
        
        We use the following global sizebounds:
        (<13,0,A>, A) (<13,0,B>, 1 + 2*A) (<13,0,C>, 1 + 2*A) 
        (<14,0,A>, A) (<14,0,B>, 1 + 2*A) (<14,0,C>, 1 + 2*A) 
        (<15,0,A>, A) (<15,0,B>, 1 + 2*A) (<15,0,C>, 1 + 2*A) 
        (<17,0,A>, A) (<17,0,B>,     2*A) (<17,0,C>, 1 + 2*A) 
        (<18,0,A>, A) (<18,0,B>, 1 + 2*A) (<18,0,C>, 1 + 2*A) 
        (<19,0,A>, A) (<19,0,B>, 1 + 5*A) (<19,0,C>,       ?) 
        (<20,0,A>, A) (<20,0,B>, 1 + 5*A) (<20,0,C>,       ?) 
        (<21,0,A>, A) (<21,0,B>, 1 + 5*A) (<21,0,C>,       ?) 
        (<22,0,A>, A) (<22,0,B>, 1 + 5*A) (<22,0,C>, 2 + 5*A) 
        (<23,0,A>, A) (<23,0,B>, 1 + 5*A) (<23,0,C>, 2 + 5*A) 
        (<24,0,A>, A) (<24,0,B>, 1 + 5*A) (<24,0,C>, 2 + 5*A) 
        (<25,0,A>, A) (<25,0,B>,     2*A) (<25,0,C>,     2*A) 
        (<26,0,A>, A) (<26,0,B>,     2*A) (<26,0,C>, 1 + 2*A) 
        (<27,0,A>, A) (<27,0,B>,     2*A) (<27,0,C>, 1 + 2*A) 
        (<28,0,A>, A) (<28,0,B>,     2*A) (<28,0,C>, 1 + 2*A) 
* Step 35: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          13. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C)           [C >= A && 0 >= 1 + D$]                     (1,2)                
          14. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C)           [C >= A && D$ >= 1]                         (1,2)                
          15. evalrsdbb4in(A,B,C) -> evalrsdbb3in(A,B,C)           [C >= A]                                    (1,2)                
          17. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C)      [D >= 1]                                    (1,2)                
          18. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True                                        (1,2)                
          19. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [-1 + C >= A && 0 >= 1 + D$$]               (?,3)                
          20. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [-1 + C >= A && D$$ >= 1]                   (9 + 44*A + 12*A^2,3)
          21. evalrsdbb2in(A,B,C) -> evalrsdbb3in(A,B,-1 + C)      [-1 + C >= A]                               (4 + 2*A,3)          
          22. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && 0 >= 1 + D$$]               (A,3)                
          23. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && D$$ >= 1]                   (A,3)                
          24. evalrsdbb3in(A,B,C) -> evalrsdbb3in(A,-1 + B,-1 + B) [-1 + B >= A]                               (A,3)                
          25. evalrsdstart(A,B,C) -> evalrsdbb1in(A,2*A,2*A)       [A >= 0 && 2*A >= A]                        (1,4)                
          26. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] (1,4)                
          27. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [0 >= 1 + D && -1 + C >= A && D$$ >= 1]     (1,4)                
          28. evalrsdbb1in(A,B,C) -> evalrsdbb3in(A,B,-1 + C)      [0 >= 1 + D && -1 + C >= A]                 (1,4)                
        Signature:
          {(evalrsdbb1in,3)
          ;(evalrsdbb2in,3)
          ;(evalrsdbb3in,3)
          ;(evalrsdbb4in,3)
          ;(evalrsdbbin,3)
          ;(evalrsdentryin,3)
          ;(evalrsdreturnin,3)
          ;(evalrsdstart,3)
          ;(evalrsdstop,3)}
        Flow Graph:
          [13->{19,20,21},14->{19,20,21},15->{22,23,24},17->{13,14,15},18->{13,14,15},19->{19,20,21},20->{19,20,21}
          ,21->{22,23,24},22->{19,20,21},23->{19,20,21},24->{22,23,24},25->{17,18,26,27,28},26->{19,20,21},27->{19,20
          ,21},28->{22,23,24}]
        Sizebounds:
          (<13,0,A>, A) (<13,0,B>, 1 + 2*A) (<13,0,C>, 1 + 2*A) 
          (<14,0,A>, A) (<14,0,B>, 1 + 2*A) (<14,0,C>, 1 + 2*A) 
          (<15,0,A>, A) (<15,0,B>, 1 + 2*A) (<15,0,C>, 1 + 2*A) 
          (<17,0,A>, A) (<17,0,B>,     2*A) (<17,0,C>, 1 + 2*A) 
          (<18,0,A>, A) (<18,0,B>, 1 + 2*A) (<18,0,C>, 1 + 2*A) 
          (<19,0,A>, A) (<19,0,B>, 1 + 5*A) (<19,0,C>,       ?) 
          (<20,0,A>, A) (<20,0,B>, 1 + 5*A) (<20,0,C>,       ?) 
          (<21,0,A>, A) (<21,0,B>, 1 + 5*A) (<21,0,C>,       ?) 
          (<22,0,A>, A) (<22,0,B>, 1 + 5*A) (<22,0,C>, 2 + 5*A) 
          (<23,0,A>, A) (<23,0,B>, 1 + 5*A) (<23,0,C>, 2 + 5*A) 
          (<24,0,A>, A) (<24,0,B>, 1 + 5*A) (<24,0,C>, 2 + 5*A) 
          (<25,0,A>, A) (<25,0,B>,     2*A) (<25,0,C>,     2*A) 
          (<26,0,A>, A) (<26,0,B>,     2*A) (<26,0,C>, 1 + 2*A) 
          (<27,0,A>, A) (<27,0,B>,     2*A) (<27,0,C>, 1 + 2*A) 
          (<28,0,A>, A) (<28,0,B>,     2*A) (<28,0,C>, 1 + 2*A) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [19,20,22,23,24], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalrsdbb2in) = -1*x1 + x3
          p(evalrsdbb3in) = -1*x1 + x2
        
        The following rules are strictly oriented:
        [-1 + C >= A && 0 >= 1 + D$$] ==>                              
                  evalrsdbb2in(A,B,C)   = -1*A + C                     
                                        > -1 + -1*A + C                
                                        = evalrsdbb2in(A,B,-1 + C)     
        
            [-1 + C >= A && D$$ >= 1] ==>                              
                  evalrsdbb2in(A,B,C)   = -1*A + C                     
                                        > -1 + -1*A + C                
                                        = evalrsdbb2in(A,B,-1 + C)     
        
        [-1 + B >= A && 0 >= 1 + D$$] ==>                              
                  evalrsdbb3in(A,B,C)   = -1*A + B                     
                                        > -1 + -1*A + B                
                                        = evalrsdbb2in(A,-1 + B,-1 + B)
        
            [-1 + B >= A && D$$ >= 1] ==>                              
                  evalrsdbb3in(A,B,C)   = -1*A + B                     
                                        > -1 + -1*A + B                
                                        = evalrsdbb2in(A,-1 + B,-1 + B)
        
                        [-1 + B >= A] ==>                              
                  evalrsdbb3in(A,B,C)   = -1*A + B                     
                                        > -1 + -1*A + B                
                                        = evalrsdbb3in(A,-1 + B,-1 + B)
        
        
        The following rules are weakly oriented:
        
        We use the following global sizebounds:
        (<13,0,A>, A) (<13,0,B>, 1 + 2*A) (<13,0,C>, 1 + 2*A) 
        (<14,0,A>, A) (<14,0,B>, 1 + 2*A) (<14,0,C>, 1 + 2*A) 
        (<15,0,A>, A) (<15,0,B>, 1 + 2*A) (<15,0,C>, 1 + 2*A) 
        (<17,0,A>, A) (<17,0,B>,     2*A) (<17,0,C>, 1 + 2*A) 
        (<18,0,A>, A) (<18,0,B>, 1 + 2*A) (<18,0,C>, 1 + 2*A) 
        (<19,0,A>, A) (<19,0,B>, 1 + 5*A) (<19,0,C>,       ?) 
        (<20,0,A>, A) (<20,0,B>, 1 + 5*A) (<20,0,C>,       ?) 
        (<21,0,A>, A) (<21,0,B>, 1 + 5*A) (<21,0,C>,       ?) 
        (<22,0,A>, A) (<22,0,B>, 1 + 5*A) (<22,0,C>, 2 + 5*A) 
        (<23,0,A>, A) (<23,0,B>, 1 + 5*A) (<23,0,C>, 2 + 5*A) 
        (<24,0,A>, A) (<24,0,B>, 1 + 5*A) (<24,0,C>, 2 + 5*A) 
        (<25,0,A>, A) (<25,0,B>,     2*A) (<25,0,C>,     2*A) 
        (<26,0,A>, A) (<26,0,B>,     2*A) (<26,0,C>, 1 + 2*A) 
        (<27,0,A>, A) (<27,0,B>,     2*A) (<27,0,C>, 1 + 2*A) 
        (<28,0,A>, A) (<28,0,B>,     2*A) (<28,0,C>, 1 + 2*A) 
* Step 36: KnowledgePropagation WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          13. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C)           [C >= A && 0 >= 1 + D$]                     (1,2)                
          14. evalrsdbb4in(A,B,C) -> evalrsdbb2in(A,B,C)           [C >= A && D$ >= 1]                         (1,2)                
          15. evalrsdbb4in(A,B,C) -> evalrsdbb3in(A,B,C)           [C >= A]                                    (1,2)                
          17. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,B,-1 + C)      [D >= 1]                                    (1,2)                
          18. evalrsdbb1in(A,B,C) -> evalrsdbb4in(A,-1 + B,-1 + B) True                                        (1,2)                
          19. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [-1 + C >= A && 0 >= 1 + D$$]               (9 + 44*A + 12*A^2,3)
          20. evalrsdbb2in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [-1 + C >= A && D$$ >= 1]                   (9 + 44*A + 12*A^2,3)
          21. evalrsdbb2in(A,B,C) -> evalrsdbb3in(A,B,-1 + C)      [-1 + C >= A]                               (4 + 2*A,3)          
          22. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && 0 >= 1 + D$$]               (A,3)                
          23. evalrsdbb3in(A,B,C) -> evalrsdbb2in(A,-1 + B,-1 + B) [-1 + B >= A && D$$ >= 1]                   (A,3)                
          24. evalrsdbb3in(A,B,C) -> evalrsdbb3in(A,-1 + B,-1 + B) [-1 + B >= A]                               (A,3)                
          25. evalrsdstart(A,B,C) -> evalrsdbb1in(A,2*A,2*A)       [A >= 0 && 2*A >= A]                        (1,4)                
          26. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [0 >= 1 + D && -1 + C >= A && 0 >= 1 + D$$] (1,4)                
          27. evalrsdbb1in(A,B,C) -> evalrsdbb2in(A,B,-1 + C)      [0 >= 1 + D && -1 + C >= A && D$$ >= 1]     (1,4)                
          28. evalrsdbb1in(A,B,C) -> evalrsdbb3in(A,B,-1 + C)      [0 >= 1 + D && -1 + C >= A]                 (1,4)                
        Signature:
          {(evalrsdbb1in,3)
          ;(evalrsdbb2in,3)
          ;(evalrsdbb3in,3)
          ;(evalrsdbb4in,3)
          ;(evalrsdbbin,3)
          ;(evalrsdentryin,3)
          ;(evalrsdreturnin,3)
          ;(evalrsdstart,3)
          ;(evalrsdstop,3)}
        Flow Graph:
          [13->{19,20,21},14->{19,20,21},15->{22,23,24},17->{13,14,15},18->{13,14,15},19->{19,20,21},20->{19,20,21}
          ,21->{22,23,24},22->{19,20,21},23->{19,20,21},24->{22,23,24},25->{17,18,26,27,28},26->{19,20,21},27->{19,20
          ,21},28->{22,23,24}]
        Sizebounds:
          (<13,0,A>, A) (<13,0,B>, 1 + 2*A) (<13,0,C>, 1 + 2*A) 
          (<14,0,A>, A) (<14,0,B>, 1 + 2*A) (<14,0,C>, 1 + 2*A) 
          (<15,0,A>, A) (<15,0,B>, 1 + 2*A) (<15,0,C>, 1 + 2*A) 
          (<17,0,A>, A) (<17,0,B>,     2*A) (<17,0,C>, 1 + 2*A) 
          (<18,0,A>, A) (<18,0,B>, 1 + 2*A) (<18,0,C>, 1 + 2*A) 
          (<19,0,A>, A) (<19,0,B>, 1 + 5*A) (<19,0,C>,       ?) 
          (<20,0,A>, A) (<20,0,B>, 1 + 5*A) (<20,0,C>,       ?) 
          (<21,0,A>, A) (<21,0,B>, 1 + 5*A) (<21,0,C>,       ?) 
          (<22,0,A>, A) (<22,0,B>, 1 + 5*A) (<22,0,C>, 2 + 5*A) 
          (<23,0,A>, A) (<23,0,B>, 1 + 5*A) (<23,0,C>, 2 + 5*A) 
          (<24,0,A>, A) (<24,0,B>, 1 + 5*A) (<24,0,C>, 2 + 5*A) 
          (<25,0,A>, A) (<25,0,B>,     2*A) (<25,0,C>,     2*A) 
          (<26,0,A>, A) (<26,0,B>,     2*A) (<26,0,C>, 1 + 2*A) 
          (<27,0,A>, A) (<27,0,B>,     2*A) (<27,0,C>, 1 + 2*A) 
          (<28,0,A>, A) (<28,0,B>,     2*A) (<28,0,C>, 1 + 2*A) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        The problem is already solved.

WORST_CASE(?,O(n^2))