WORST_CASE(?,O(1))
* Step 1: RestrictVarsProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(A,B,C,D,E)  -> f4(0,B,C,D,E)      True       (1,1)
          1. f20(A,B,C,D,E) -> f20(A,1 + B,B,D,E) [199 >= B] (?,1)
          2. f20(A,B,C,D,E) -> f31(A,B,C,D,E)     [B >= 200] (?,1)
          3. f4(A,B,C,D,E)  -> f4(1 + A,B,C,A,A)  [99 >= A]  (?,1)
          4. f4(A,B,C,D,E)  -> f20(A,100,C,D,E)   [A >= 100] (?,1)
        Signature:
          {(f0,5);(f20,5);(f31,5);(f4,5)}
        Flow Graph:
          [0->{3,4},1->{1,2},2->{},3->{3,4},4->{1,2}]
        
    + Applied Processor:
        RestrictVarsProcessor
    + Details:
        We removed the arguments [C,D,E] .
* Step 2: LocalSizeboundsProc WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(A,B)  -> f4(0,B)      True       (1,1)
          1. f20(A,B) -> f20(A,1 + B) [199 >= B] (?,1)
          2. f20(A,B) -> f31(A,B)     [B >= 200] (?,1)
          3. f4(A,B)  -> f4(1 + A,B)  [99 >= A]  (?,1)
          4. f4(A,B)  -> f20(A,100)   [A >= 100] (?,1)
        Signature:
          {(f0,2);(f20,2);(f31,2);(f4,2)}
        Flow Graph:
          [0->{3,4},1->{1,2},2->{},3->{3,4},4->{1,2}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (<0,0,A>,     0, .= 0) (<0,0,B>,     B,   .= 0) 
          (<1,0,A>,     A, .= 0) (<1,0,B>, 1 + B,   .+ 1) 
          (<2,0,A>,     A, .= 0) (<2,0,B>,     B,   .= 0) 
          (<3,0,A>, 1 + A, .+ 1) (<3,0,B>,     B,   .= 0) 
          (<4,0,A>,     A, .= 0) (<4,0,B>,   100, .= 100) 
* Step 3: SizeboundsProc WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(A,B)  -> f4(0,B)      True       (1,1)
          1. f20(A,B) -> f20(A,1 + B) [199 >= B] (?,1)
          2. f20(A,B) -> f31(A,B)     [B >= 200] (?,1)
          3. f4(A,B)  -> f4(1 + A,B)  [99 >= A]  (?,1)
          4. f4(A,B)  -> f20(A,100)   [A >= 100] (?,1)
        Signature:
          {(f0,2);(f20,2);(f31,2);(f4,2)}
        Flow Graph:
          [0->{3,4},1->{1,2},2->{},3->{3,4},4->{1,2}]
        Sizebounds:
          (<0,0,A>, ?) (<0,0,B>, ?) 
          (<1,0,A>, ?) (<1,0,B>, ?) 
          (<2,0,A>, ?) (<2,0,B>, ?) 
          (<3,0,A>, ?) (<3,0,B>, ?) 
          (<4,0,A>, ?) (<4,0,B>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (<0,0,A>,   0) (<0,0,B>,   B) 
          (<1,0,A>, 100) (<1,0,B>, 200) 
          (<2,0,A>, 100) (<2,0,B>, 200) 
          (<3,0,A>, 100) (<3,0,B>,   B) 
          (<4,0,A>, 100) (<4,0,B>, 100) 
* Step 4: UnsatPaths WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(A,B)  -> f4(0,B)      True       (1,1)
          1. f20(A,B) -> f20(A,1 + B) [199 >= B] (?,1)
          2. f20(A,B) -> f31(A,B)     [B >= 200] (?,1)
          3. f4(A,B)  -> f4(1 + A,B)  [99 >= A]  (?,1)
          4. f4(A,B)  -> f20(A,100)   [A >= 100] (?,1)
        Signature:
          {(f0,2);(f20,2);(f31,2);(f4,2)}
        Flow Graph:
          [0->{3,4},1->{1,2},2->{},3->{3,4},4->{1,2}]
        Sizebounds:
          (<0,0,A>,   0) (<0,0,B>,   B) 
          (<1,0,A>, 100) (<1,0,B>, 200) 
          (<2,0,A>, 100) (<2,0,B>, 200) 
          (<3,0,A>, 100) (<3,0,B>,   B) 
          (<4,0,A>, 100) (<4,0,B>, 100) 
    + Applied Processor:
        UnsatPaths
    + Details:
        We remove following edges from the transition graph: [(0,4),(4,2)]
* Step 5: LeafRules WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(A,B)  -> f4(0,B)      True       (1,1)
          1. f20(A,B) -> f20(A,1 + B) [199 >= B] (?,1)
          2. f20(A,B) -> f31(A,B)     [B >= 200] (?,1)
          3. f4(A,B)  -> f4(1 + A,B)  [99 >= A]  (?,1)
          4. f4(A,B)  -> f20(A,100)   [A >= 100] (?,1)
        Signature:
          {(f0,2);(f20,2);(f31,2);(f4,2)}
        Flow Graph:
          [0->{3},1->{1,2},2->{},3->{3,4},4->{1}]
        Sizebounds:
          (<0,0,A>,   0) (<0,0,B>,   B) 
          (<1,0,A>, 100) (<1,0,B>, 200) 
          (<2,0,A>, 100) (<2,0,B>, 200) 
          (<3,0,A>, 100) (<3,0,B>,   B) 
          (<4,0,A>, 100) (<4,0,B>, 100) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [2]
* Step 6: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(A,B)  -> f4(0,B)      True       (1,1)
          1. f20(A,B) -> f20(A,1 + B) [199 >= B] (?,1)
          3. f4(A,B)  -> f4(1 + A,B)  [99 >= A]  (?,1)
          4. f4(A,B)  -> f20(A,100)   [A >= 100] (?,1)
        Signature:
          {(f0,2);(f20,2);(f31,2);(f4,2)}
        Flow Graph:
          [0->{3},1->{1},3->{3,4},4->{1}]
        Sizebounds:
          (<0,0,A>,   0) (<0,0,B>,   B) 
          (<1,0,A>, 100) (<1,0,B>, 200) 
          (<3,0,A>, 100) (<3,0,B>,   B) 
          (<4,0,A>, 100) (<4,0,B>, 100) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 1
          p(f20) = 0
           p(f4) = 1
        
        The following rules are strictly oriented:
        [A >= 100] ==>           
           f4(A,B)   = 1         
                     > 0         
                     = f20(A,100)
        
        
        The following rules are weakly oriented:
              True ==>             
           f0(A,B)   = 1           
                    >= 1           
                     = f4(0,B)     
        
        [199 >= B] ==>             
          f20(A,B)   = 0           
                    >= 0           
                     = f20(A,1 + B)
        
         [99 >= A] ==>             
           f4(A,B)   = 1           
                    >= 1           
                     = f4(1 + A,B) 
        
        
* Step 7: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(A,B)  -> f4(0,B)      True       (1,1)
          1. f20(A,B) -> f20(A,1 + B) [199 >= B] (?,1)
          3. f4(A,B)  -> f4(1 + A,B)  [99 >= A]  (?,1)
          4. f4(A,B)  -> f20(A,100)   [A >= 100] (1,1)
        Signature:
          {(f0,2);(f20,2);(f31,2);(f4,2)}
        Flow Graph:
          [0->{3},1->{1},3->{3,4},4->{1}]
        Sizebounds:
          (<0,0,A>,   0) (<0,0,B>,   B) 
          (<1,0,A>, 100) (<1,0,B>, 200) 
          (<3,0,A>, 100) (<3,0,B>,   B) 
          (<4,0,A>, 100) (<4,0,B>, 100) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 100        
          p(f20) = 100 + -1*x1
           p(f4) = 100 + -1*x1
        
        The following rules are strictly oriented:
        [99 >= A] ==>            
          f4(A,B)   = 100 + -1*A 
                    > 99 + -1*A  
                    = f4(1 + A,B)
        
        
        The following rules are weakly oriented:
              True ==>             
           f0(A,B)   = 100         
                    >= 100         
                     = f4(0,B)     
        
        [199 >= B] ==>             
          f20(A,B)   = 100 + -1*A  
                    >= 100 + -1*A  
                     = f20(A,1 + B)
        
        [A >= 100] ==>             
           f4(A,B)   = 100 + -1*A  
                    >= 100 + -1*A  
                     = f20(A,100)  
        
        
* Step 8: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(A,B)  -> f4(0,B)      True       (1,1)  
          1. f20(A,B) -> f20(A,1 + B) [199 >= B] (?,1)  
          3. f4(A,B)  -> f4(1 + A,B)  [99 >= A]  (100,1)
          4. f4(A,B)  -> f20(A,100)   [A >= 100] (1,1)  
        Signature:
          {(f0,2);(f20,2);(f31,2);(f4,2)}
        Flow Graph:
          [0->{3},1->{1},3->{3,4},4->{1}]
        Sizebounds:
          (<0,0,A>,   0) (<0,0,B>,   B) 
          (<1,0,A>, 100) (<1,0,B>, 200) 
          (<3,0,A>, 100) (<3,0,B>,   B) 
          (<4,0,A>, 100) (<4,0,B>, 100) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 100        
          p(f20) = 200 + -1*x2
           p(f4) = 100        
        
        The following rules are strictly oriented:
        [199 >= B] ==>             
          f20(A,B)   = 200 + -1*B  
                     > 199 + -1*B  
                     = f20(A,1 + B)
        
        
        The following rules are weakly oriented:
              True ==>            
           f0(A,B)   = 100        
                    >= 100        
                     = f4(0,B)    
        
         [99 >= A] ==>            
           f4(A,B)   = 100        
                    >= 100        
                     = f4(1 + A,B)
        
        [A >= 100] ==>            
           f4(A,B)   = 100        
                    >= 100        
                     = f20(A,100) 
        
        
* Step 9: KnowledgePropagation WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(A,B)  -> f4(0,B)      True       (1,1)  
          1. f20(A,B) -> f20(A,1 + B) [199 >= B] (100,1)
          3. f4(A,B)  -> f4(1 + A,B)  [99 >= A]  (100,1)
          4. f4(A,B)  -> f20(A,100)   [A >= 100] (1,1)  
        Signature:
          {(f0,2);(f20,2);(f31,2);(f4,2)}
        Flow Graph:
          [0->{3},1->{1},3->{3,4},4->{1}]
        Sizebounds:
          (<0,0,A>,   0) (<0,0,B>,   B) 
          (<1,0,A>, 100) (<1,0,B>, 200) 
          (<3,0,A>, 100) (<3,0,B>,   B) 
          (<4,0,A>, 100) (<4,0,B>, 100) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        The problem is already solved.

WORST_CASE(?,O(1))