WORST_CASE(?,O(1)) * Step 1: RestrictVarsProcessor WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,D,E) -> f4(0,B,C,D,E) True (1,1) 1. f20(A,B,C,D,E) -> f20(A,1 + B,B,D,E) [199 >= B] (?,1) 2. f20(A,B,C,D,E) -> f31(A,B,C,D,E) [B >= 200] (?,1) 3. f4(A,B,C,D,E) -> f4(1 + A,B,C,A,A) [99 >= A] (?,1) 4. f4(A,B,C,D,E) -> f20(A,100,C,D,E) [A >= 100] (?,1) Signature: {(f0,5);(f20,5);(f31,5);(f4,5)} Flow Graph: [0->{3,4},1->{1,2},2->{},3->{3,4},4->{1,2}] + Applied Processor: RestrictVarsProcessor + Details: We removed the arguments [C,D,E] . * Step 2: LocalSizeboundsProc WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B) -> f4(0,B) True (1,1) 1. f20(A,B) -> f20(A,1 + B) [199 >= B] (?,1) 2. f20(A,B) -> f31(A,B) [B >= 200] (?,1) 3. f4(A,B) -> f4(1 + A,B) [99 >= A] (?,1) 4. f4(A,B) -> f20(A,100) [A >= 100] (?,1) Signature: {(f0,2);(f20,2);(f31,2);(f4,2)} Flow Graph: [0->{3,4},1->{1,2},2->{},3->{3,4},4->{1,2}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<0,0,A>, 0, .= 0) (<0,0,B>, B, .= 0) (<1,0,A>, A, .= 0) (<1,0,B>, 1 + B, .+ 1) (<2,0,A>, A, .= 0) (<2,0,B>, B, .= 0) (<3,0,A>, 1 + A, .+ 1) (<3,0,B>, B, .= 0) (<4,0,A>, A, .= 0) (<4,0,B>, 100, .= 100) * Step 3: SizeboundsProc WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B) -> f4(0,B) True (1,1) 1. f20(A,B) -> f20(A,1 + B) [199 >= B] (?,1) 2. f20(A,B) -> f31(A,B) [B >= 200] (?,1) 3. f4(A,B) -> f4(1 + A,B) [99 >= A] (?,1) 4. f4(A,B) -> f20(A,100) [A >= 100] (?,1) Signature: {(f0,2);(f20,2);(f31,2);(f4,2)} Flow Graph: [0->{3,4},1->{1,2},2->{},3->{3,4},4->{1,2}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<1,0,A>, ?) (<1,0,B>, ?) (<2,0,A>, ?) (<2,0,B>, ?) (<3,0,A>, ?) (<3,0,B>, ?) (<4,0,A>, ?) (<4,0,B>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<0,0,A>, 0) (<0,0,B>, B) (<1,0,A>, 100) (<1,0,B>, 200) (<2,0,A>, 100) (<2,0,B>, 200) (<3,0,A>, 100) (<3,0,B>, B) (<4,0,A>, 100) (<4,0,B>, 100) * Step 4: UnsatPaths WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B) -> f4(0,B) True (1,1) 1. f20(A,B) -> f20(A,1 + B) [199 >= B] (?,1) 2. f20(A,B) -> f31(A,B) [B >= 200] (?,1) 3. f4(A,B) -> f4(1 + A,B) [99 >= A] (?,1) 4. f4(A,B) -> f20(A,100) [A >= 100] (?,1) Signature: {(f0,2);(f20,2);(f31,2);(f4,2)} Flow Graph: [0->{3,4},1->{1,2},2->{},3->{3,4},4->{1,2}] Sizebounds: (<0,0,A>, 0) (<0,0,B>, B) (<1,0,A>, 100) (<1,0,B>, 200) (<2,0,A>, 100) (<2,0,B>, 200) (<3,0,A>, 100) (<3,0,B>, B) (<4,0,A>, 100) (<4,0,B>, 100) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(0,4),(4,2)] * Step 5: LeafRules WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B) -> f4(0,B) True (1,1) 1. f20(A,B) -> f20(A,1 + B) [199 >= B] (?,1) 2. f20(A,B) -> f31(A,B) [B >= 200] (?,1) 3. f4(A,B) -> f4(1 + A,B) [99 >= A] (?,1) 4. f4(A,B) -> f20(A,100) [A >= 100] (?,1) Signature: {(f0,2);(f20,2);(f31,2);(f4,2)} Flow Graph: [0->{3},1->{1,2},2->{},3->{3,4},4->{1}] Sizebounds: (<0,0,A>, 0) (<0,0,B>, B) (<1,0,A>, 100) (<1,0,B>, 200) (<2,0,A>, 100) (<2,0,B>, 200) (<3,0,A>, 100) (<3,0,B>, B) (<4,0,A>, 100) (<4,0,B>, 100) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [2] * Step 6: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B) -> f4(0,B) True (1,1) 1. f20(A,B) -> f20(A,1 + B) [199 >= B] (?,1) 3. f4(A,B) -> f4(1 + A,B) [99 >= A] (?,1) 4. f4(A,B) -> f20(A,100) [A >= 100] (?,1) Signature: {(f0,2);(f20,2);(f31,2);(f4,2)} Flow Graph: [0->{3},1->{1},3->{3,4},4->{1}] Sizebounds: (<0,0,A>, 0) (<0,0,B>, B) (<1,0,A>, 100) (<1,0,B>, 200) (<3,0,A>, 100) (<3,0,B>, B) (<4,0,A>, 100) (<4,0,B>, 100) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 1 p(f20) = 0 p(f4) = 1 The following rules are strictly oriented: [A >= 100] ==> f4(A,B) = 1 > 0 = f20(A,100) The following rules are weakly oriented: True ==> f0(A,B) = 1 >= 1 = f4(0,B) [199 >= B] ==> f20(A,B) = 0 >= 0 = f20(A,1 + B) [99 >= A] ==> f4(A,B) = 1 >= 1 = f4(1 + A,B) * Step 7: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B) -> f4(0,B) True (1,1) 1. f20(A,B) -> f20(A,1 + B) [199 >= B] (?,1) 3. f4(A,B) -> f4(1 + A,B) [99 >= A] (?,1) 4. f4(A,B) -> f20(A,100) [A >= 100] (1,1) Signature: {(f0,2);(f20,2);(f31,2);(f4,2)} Flow Graph: [0->{3},1->{1},3->{3,4},4->{1}] Sizebounds: (<0,0,A>, 0) (<0,0,B>, B) (<1,0,A>, 100) (<1,0,B>, 200) (<3,0,A>, 100) (<3,0,B>, B) (<4,0,A>, 100) (<4,0,B>, 100) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 100 p(f20) = 100 + -1*x1 p(f4) = 100 + -1*x1 The following rules are strictly oriented: [99 >= A] ==> f4(A,B) = 100 + -1*A > 99 + -1*A = f4(1 + A,B) The following rules are weakly oriented: True ==> f0(A,B) = 100 >= 100 = f4(0,B) [199 >= B] ==> f20(A,B) = 100 + -1*A >= 100 + -1*A = f20(A,1 + B) [A >= 100] ==> f4(A,B) = 100 + -1*A >= 100 + -1*A = f20(A,100) * Step 8: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B) -> f4(0,B) True (1,1) 1. f20(A,B) -> f20(A,1 + B) [199 >= B] (?,1) 3. f4(A,B) -> f4(1 + A,B) [99 >= A] (100,1) 4. f4(A,B) -> f20(A,100) [A >= 100] (1,1) Signature: {(f0,2);(f20,2);(f31,2);(f4,2)} Flow Graph: [0->{3},1->{1},3->{3,4},4->{1}] Sizebounds: (<0,0,A>, 0) (<0,0,B>, B) (<1,0,A>, 100) (<1,0,B>, 200) (<3,0,A>, 100) (<3,0,B>, B) (<4,0,A>, 100) (<4,0,B>, 100) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 100 p(f20) = 200 + -1*x2 p(f4) = 100 The following rules are strictly oriented: [199 >= B] ==> f20(A,B) = 200 + -1*B > 199 + -1*B = f20(A,1 + B) The following rules are weakly oriented: True ==> f0(A,B) = 100 >= 100 = f4(0,B) [99 >= A] ==> f4(A,B) = 100 >= 100 = f4(1 + A,B) [A >= 100] ==> f4(A,B) = 100 >= 100 = f20(A,100) * Step 9: KnowledgePropagation WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B) -> f4(0,B) True (1,1) 1. f20(A,B) -> f20(A,1 + B) [199 >= B] (100,1) 3. f4(A,B) -> f4(1 + A,B) [99 >= A] (100,1) 4. f4(A,B) -> f20(A,100) [A >= 100] (1,1) Signature: {(f0,2);(f20,2);(f31,2);(f4,2)} Flow Graph: [0->{3},1->{1},3->{3,4},4->{1}] Sizebounds: (<0,0,A>, 0) (<0,0,B>, B) (<1,0,A>, 100) (<1,0,B>, 200) (<3,0,A>, 100) (<3,0,B>, B) (<4,0,A>, 100) (<4,0,B>, 100) + Applied Processor: KnowledgePropagation + Details: The problem is already solved. WORST_CASE(?,O(1))