WORST_CASE(?,O(n^1)) * Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalaaron2start(A,B,C) -> evalaaron2entryin(A,B,C) True (1,1) 1. evalaaron2entryin(A,B,C) -> evalaaron2bb6in(A,C,B) [A >= 0] (?,1) 2. evalaaron2entryin(A,B,C) -> evalaaron2returnin(A,B,C) [0 >= 1 + A] (?,1) 3. evalaaron2bb6in(A,B,C) -> evalaaron2returnin(A,B,C) [B >= 1 + C] (?,1) 4. evalaaron2bb6in(A,B,C) -> evalaaron2returnin(A,B,C) [0 >= 1 + A] (?,1) 5. evalaaron2bb6in(A,B,C) -> evalaaron2bb3in(A,B,C) [C >= B && A >= 0] (?,1) 6. evalaaron2bb3in(A,B,C) -> evalaaron2bb4in(A,B,C) [0 >= 1 + D] (?,1) 7. evalaaron2bb3in(A,B,C) -> evalaaron2bb4in(A,B,C) [D >= 1] (?,1) 8. evalaaron2bb3in(A,B,C) -> evalaaron2bb5in(A,B,C) True (?,1) 9. evalaaron2bb4in(A,B,C) -> evalaaron2bb6in(A,B,-1 + -1*A + C) True (?,1) 10. evalaaron2bb5in(A,B,C) -> evalaaron2bb6in(A,1 + A + B,C) True (?,1) 11. evalaaron2returnin(A,B,C) -> evalaaron2stop(A,B,C) True (?,1) Signature: {(evalaaron2bb3in,3) ;(evalaaron2bb4in,3) ;(evalaaron2bb5in,3) ;(evalaaron2bb6in,3) ;(evalaaron2entryin,3) ;(evalaaron2returnin,3) ;(evalaaron2start,3) ;(evalaaron2stop,3)} Flow Graph: [0->{1,2},1->{3,4,5},2->{11},3->{11},4->{11},5->{6,7,8},6->{9},7->{9},8->{10},9->{3,4,5},10->{3,4,5} ,11->{}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (< 0,0,A>, A, .= 0) (< 0,0,B>, B, .= 0) (< 0,0,C>, C, .= 0) (< 1,0,A>, A, .= 0) (< 1,0,B>, C, .= 0) (< 1,0,C>, B, .= 0) (< 2,0,A>, A, .= 0) (< 2,0,B>, B, .= 0) (< 2,0,C>, C, .= 0) (< 3,0,A>, A, .= 0) (< 3,0,B>, B, .= 0) (< 3,0,C>, C, .= 0) (< 4,0,A>, A, .= 0) (< 4,0,B>, B, .= 0) (< 4,0,C>, C, .= 0) (< 5,0,A>, A, .= 0) (< 5,0,B>, B, .= 0) (< 5,0,C>, C, .= 0) (< 6,0,A>, A, .= 0) (< 6,0,B>, B, .= 0) (< 6,0,C>, C, .= 0) (< 7,0,A>, A, .= 0) (< 7,0,B>, B, .= 0) (< 7,0,C>, C, .= 0) (< 8,0,A>, A, .= 0) (< 8,0,B>, B, .= 0) (< 8,0,C>, C, .= 0) (< 9,0,A>, A, .= 0) (< 9,0,B>, B, .= 0) (< 9,0,C>, 1 + A + C, .* 1) (<10,0,A>, A, .= 0) (<10,0,B>, 1 + A + B, .* 1) (<10,0,C>, C, .= 0) (<11,0,A>, A, .= 0) (<11,0,B>, B, .= 0) (<11,0,C>, C, .= 0) * Step 2: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalaaron2start(A,B,C) -> evalaaron2entryin(A,B,C) True (1,1) 1. evalaaron2entryin(A,B,C) -> evalaaron2bb6in(A,C,B) [A >= 0] (?,1) 2. evalaaron2entryin(A,B,C) -> evalaaron2returnin(A,B,C) [0 >= 1 + A] (?,1) 3. evalaaron2bb6in(A,B,C) -> evalaaron2returnin(A,B,C) [B >= 1 + C] (?,1) 4. evalaaron2bb6in(A,B,C) -> evalaaron2returnin(A,B,C) [0 >= 1 + A] (?,1) 5. evalaaron2bb6in(A,B,C) -> evalaaron2bb3in(A,B,C) [C >= B && A >= 0] (?,1) 6. evalaaron2bb3in(A,B,C) -> evalaaron2bb4in(A,B,C) [0 >= 1 + D] (?,1) 7. evalaaron2bb3in(A,B,C) -> evalaaron2bb4in(A,B,C) [D >= 1] (?,1) 8. evalaaron2bb3in(A,B,C) -> evalaaron2bb5in(A,B,C) True (?,1) 9. evalaaron2bb4in(A,B,C) -> evalaaron2bb6in(A,B,-1 + -1*A + C) True (?,1) 10. evalaaron2bb5in(A,B,C) -> evalaaron2bb6in(A,1 + A + B,C) True (?,1) 11. evalaaron2returnin(A,B,C) -> evalaaron2stop(A,B,C) True (?,1) Signature: {(evalaaron2bb3in,3) ;(evalaaron2bb4in,3) ;(evalaaron2bb5in,3) ;(evalaaron2bb6in,3) ;(evalaaron2entryin,3) ;(evalaaron2returnin,3) ;(evalaaron2start,3) ;(evalaaron2stop,3)} Flow Graph: [0->{1,2},1->{3,4,5},2->{11},3->{11},4->{11},5->{6,7,8},6->{9},7->{9},8->{10},9->{3,4,5},10->{3,4,5} ,11->{}] Sizebounds: (< 0,0,A>, ?) (< 0,0,B>, ?) (< 0,0,C>, ?) (< 1,0,A>, ?) (< 1,0,B>, ?) (< 1,0,C>, ?) (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 1,0,A>, A) (< 1,0,B>, C) (< 1,0,C>, B) (< 2,0,A>, A) (< 2,0,B>, B) (< 2,0,C>, C) (< 3,0,A>, A) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 4,0,A>, A) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 5,0,A>, A) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, ?) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, ?) (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, ?) * Step 3: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalaaron2start(A,B,C) -> evalaaron2entryin(A,B,C) True (1,1) 1. evalaaron2entryin(A,B,C) -> evalaaron2bb6in(A,C,B) [A >= 0] (?,1) 2. evalaaron2entryin(A,B,C) -> evalaaron2returnin(A,B,C) [0 >= 1 + A] (?,1) 3. evalaaron2bb6in(A,B,C) -> evalaaron2returnin(A,B,C) [B >= 1 + C] (?,1) 4. evalaaron2bb6in(A,B,C) -> evalaaron2returnin(A,B,C) [0 >= 1 + A] (?,1) 5. evalaaron2bb6in(A,B,C) -> evalaaron2bb3in(A,B,C) [C >= B && A >= 0] (?,1) 6. evalaaron2bb3in(A,B,C) -> evalaaron2bb4in(A,B,C) [0 >= 1 + D] (?,1) 7. evalaaron2bb3in(A,B,C) -> evalaaron2bb4in(A,B,C) [D >= 1] (?,1) 8. evalaaron2bb3in(A,B,C) -> evalaaron2bb5in(A,B,C) True (?,1) 9. evalaaron2bb4in(A,B,C) -> evalaaron2bb6in(A,B,-1 + -1*A + C) True (?,1) 10. evalaaron2bb5in(A,B,C) -> evalaaron2bb6in(A,1 + A + B,C) True (?,1) 11. evalaaron2returnin(A,B,C) -> evalaaron2stop(A,B,C) True (?,1) Signature: {(evalaaron2bb3in,3) ;(evalaaron2bb4in,3) ;(evalaaron2bb5in,3) ;(evalaaron2bb6in,3) ;(evalaaron2entryin,3) ;(evalaaron2returnin,3) ;(evalaaron2start,3) ;(evalaaron2stop,3)} Flow Graph: [0->{1,2},1->{3,4,5},2->{11},3->{11},4->{11},5->{6,7,8},6->{9},7->{9},8->{10},9->{3,4,5},10->{3,4,5} ,11->{}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 1,0,A>, A) (< 1,0,B>, C) (< 1,0,C>, B) (< 2,0,A>, A) (< 2,0,B>, B) (< 2,0,C>, C) (< 3,0,A>, A) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 4,0,A>, A) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 5,0,A>, A) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, ?) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, ?) (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, ?) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(1,4)] * Step 4: LeafRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalaaron2start(A,B,C) -> evalaaron2entryin(A,B,C) True (1,1) 1. evalaaron2entryin(A,B,C) -> evalaaron2bb6in(A,C,B) [A >= 0] (?,1) 2. evalaaron2entryin(A,B,C) -> evalaaron2returnin(A,B,C) [0 >= 1 + A] (?,1) 3. evalaaron2bb6in(A,B,C) -> evalaaron2returnin(A,B,C) [B >= 1 + C] (?,1) 4. evalaaron2bb6in(A,B,C) -> evalaaron2returnin(A,B,C) [0 >= 1 + A] (?,1) 5. evalaaron2bb6in(A,B,C) -> evalaaron2bb3in(A,B,C) [C >= B && A >= 0] (?,1) 6. evalaaron2bb3in(A,B,C) -> evalaaron2bb4in(A,B,C) [0 >= 1 + D] (?,1) 7. evalaaron2bb3in(A,B,C) -> evalaaron2bb4in(A,B,C) [D >= 1] (?,1) 8. evalaaron2bb3in(A,B,C) -> evalaaron2bb5in(A,B,C) True (?,1) 9. evalaaron2bb4in(A,B,C) -> evalaaron2bb6in(A,B,-1 + -1*A + C) True (?,1) 10. evalaaron2bb5in(A,B,C) -> evalaaron2bb6in(A,1 + A + B,C) True (?,1) 11. evalaaron2returnin(A,B,C) -> evalaaron2stop(A,B,C) True (?,1) Signature: {(evalaaron2bb3in,3) ;(evalaaron2bb4in,3) ;(evalaaron2bb5in,3) ;(evalaaron2bb6in,3) ;(evalaaron2entryin,3) ;(evalaaron2returnin,3) ;(evalaaron2start,3) ;(evalaaron2stop,3)} Flow Graph: [0->{1,2},1->{3,5},2->{11},3->{11},4->{11},5->{6,7,8},6->{9},7->{9},8->{10},9->{3,4,5},10->{3,4,5},11->{}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 1,0,A>, A) (< 1,0,B>, C) (< 1,0,C>, B) (< 2,0,A>, A) (< 2,0,B>, B) (< 2,0,C>, C) (< 3,0,A>, A) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 4,0,A>, A) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 5,0,A>, A) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, ?) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, ?) (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, ?) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [2,3,4,11] * Step 5: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalaaron2start(A,B,C) -> evalaaron2entryin(A,B,C) True (1,1) 1. evalaaron2entryin(A,B,C) -> evalaaron2bb6in(A,C,B) [A >= 0] (?,1) 5. evalaaron2bb6in(A,B,C) -> evalaaron2bb3in(A,B,C) [C >= B && A >= 0] (?,1) 6. evalaaron2bb3in(A,B,C) -> evalaaron2bb4in(A,B,C) [0 >= 1 + D] (?,1) 7. evalaaron2bb3in(A,B,C) -> evalaaron2bb4in(A,B,C) [D >= 1] (?,1) 8. evalaaron2bb3in(A,B,C) -> evalaaron2bb5in(A,B,C) True (?,1) 9. evalaaron2bb4in(A,B,C) -> evalaaron2bb6in(A,B,-1 + -1*A + C) True (?,1) 10. evalaaron2bb5in(A,B,C) -> evalaaron2bb6in(A,1 + A + B,C) True (?,1) Signature: {(evalaaron2bb3in,3) ;(evalaaron2bb4in,3) ;(evalaaron2bb5in,3) ;(evalaaron2bb6in,3) ;(evalaaron2entryin,3) ;(evalaaron2returnin,3) ;(evalaaron2start,3) ;(evalaaron2stop,3)} Flow Graph: [0->{1},1->{5},5->{6,7,8},6->{9},7->{9},8->{10},9->{5},10->{5}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 1,0,A>, A) (< 1,0,B>, C) (< 1,0,C>, B) (< 5,0,A>, A) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, ?) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, ?) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalaaron2bb3in) = 0 p(evalaaron2bb4in) = 0 p(evalaaron2bb5in) = 0 p(evalaaron2bb6in) = 0 p(evalaaron2entryin) = 1 p(evalaaron2start) = 1 The following rules are strictly oriented: [A >= 0] ==> evalaaron2entryin(A,B,C) = 1 > 0 = evalaaron2bb6in(A,C,B) The following rules are weakly oriented: True ==> evalaaron2start(A,B,C) = 1 >= 1 = evalaaron2entryin(A,B,C) [C >= B && A >= 0] ==> evalaaron2bb6in(A,B,C) = 0 >= 0 = evalaaron2bb3in(A,B,C) [0 >= 1 + D] ==> evalaaron2bb3in(A,B,C) = 0 >= 0 = evalaaron2bb4in(A,B,C) [D >= 1] ==> evalaaron2bb3in(A,B,C) = 0 >= 0 = evalaaron2bb4in(A,B,C) True ==> evalaaron2bb3in(A,B,C) = 0 >= 0 = evalaaron2bb5in(A,B,C) True ==> evalaaron2bb4in(A,B,C) = 0 >= 0 = evalaaron2bb6in(A,B,-1 + -1*A + C) True ==> evalaaron2bb5in(A,B,C) = 0 >= 0 = evalaaron2bb6in(A,1 + A + B,C) * Step 6: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalaaron2start(A,B,C) -> evalaaron2entryin(A,B,C) True (1,1) 1. evalaaron2entryin(A,B,C) -> evalaaron2bb6in(A,C,B) [A >= 0] (1,1) 5. evalaaron2bb6in(A,B,C) -> evalaaron2bb3in(A,B,C) [C >= B && A >= 0] (?,1) 6. evalaaron2bb3in(A,B,C) -> evalaaron2bb4in(A,B,C) [0 >= 1 + D] (?,1) 7. evalaaron2bb3in(A,B,C) -> evalaaron2bb4in(A,B,C) [D >= 1] (?,1) 8. evalaaron2bb3in(A,B,C) -> evalaaron2bb5in(A,B,C) True (?,1) 9. evalaaron2bb4in(A,B,C) -> evalaaron2bb6in(A,B,-1 + -1*A + C) True (?,1) 10. evalaaron2bb5in(A,B,C) -> evalaaron2bb6in(A,1 + A + B,C) True (?,1) Signature: {(evalaaron2bb3in,3) ;(evalaaron2bb4in,3) ;(evalaaron2bb5in,3) ;(evalaaron2bb6in,3) ;(evalaaron2entryin,3) ;(evalaaron2returnin,3) ;(evalaaron2start,3) ;(evalaaron2stop,3)} Flow Graph: [0->{1},1->{5},5->{6,7,8},6->{9},7->{9},8->{10},9->{5},10->{5}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 1,0,A>, A) (< 1,0,B>, C) (< 1,0,C>, B) (< 5,0,A>, A) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, ?) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, ?) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalaaron2bb3in) = -1*x1 + -1*x2 + x3 p(evalaaron2bb4in) = -1*x1 + -1*x2 + x3 p(evalaaron2bb5in) = -1*x1 + -1*x2 + x3 p(evalaaron2bb6in) = 1 + -1*x2 + x3 p(evalaaron2entryin) = 1 + x2 + -1*x3 p(evalaaron2start) = 1 + x2 + -1*x3 The following rules are strictly oriented: [C >= B && A >= 0] ==> evalaaron2bb6in(A,B,C) = 1 + -1*B + C > -1*A + -1*B + C = evalaaron2bb3in(A,B,C) The following rules are weakly oriented: True ==> evalaaron2start(A,B,C) = 1 + B + -1*C >= 1 + B + -1*C = evalaaron2entryin(A,B,C) [A >= 0] ==> evalaaron2entryin(A,B,C) = 1 + B + -1*C >= 1 + B + -1*C = evalaaron2bb6in(A,C,B) [0 >= 1 + D] ==> evalaaron2bb3in(A,B,C) = -1*A + -1*B + C >= -1*A + -1*B + C = evalaaron2bb4in(A,B,C) [D >= 1] ==> evalaaron2bb3in(A,B,C) = -1*A + -1*B + C >= -1*A + -1*B + C = evalaaron2bb4in(A,B,C) True ==> evalaaron2bb3in(A,B,C) = -1*A + -1*B + C >= -1*A + -1*B + C = evalaaron2bb5in(A,B,C) True ==> evalaaron2bb4in(A,B,C) = -1*A + -1*B + C >= -1*A + -1*B + C = evalaaron2bb6in(A,B,-1 + -1*A + C) True ==> evalaaron2bb5in(A,B,C) = -1*A + -1*B + C >= -1*A + -1*B + C = evalaaron2bb6in(A,1 + A + B,C) * Step 7: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalaaron2start(A,B,C) -> evalaaron2entryin(A,B,C) True (1,1) 1. evalaaron2entryin(A,B,C) -> evalaaron2bb6in(A,C,B) [A >= 0] (1,1) 5. evalaaron2bb6in(A,B,C) -> evalaaron2bb3in(A,B,C) [C >= B && A >= 0] (1 + B + C,1) 6. evalaaron2bb3in(A,B,C) -> evalaaron2bb4in(A,B,C) [0 >= 1 + D] (?,1) 7. evalaaron2bb3in(A,B,C) -> evalaaron2bb4in(A,B,C) [D >= 1] (?,1) 8. evalaaron2bb3in(A,B,C) -> evalaaron2bb5in(A,B,C) True (?,1) 9. evalaaron2bb4in(A,B,C) -> evalaaron2bb6in(A,B,-1 + -1*A + C) True (?,1) 10. evalaaron2bb5in(A,B,C) -> evalaaron2bb6in(A,1 + A + B,C) True (?,1) Signature: {(evalaaron2bb3in,3) ;(evalaaron2bb4in,3) ;(evalaaron2bb5in,3) ;(evalaaron2bb6in,3) ;(evalaaron2entryin,3) ;(evalaaron2returnin,3) ;(evalaaron2start,3) ;(evalaaron2stop,3)} Flow Graph: [0->{1},1->{5},5->{6,7,8},6->{9},7->{9},8->{10},9->{5},10->{5}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 1,0,A>, A) (< 1,0,B>, C) (< 1,0,C>, B) (< 5,0,A>, A) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, ?) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, ?) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 8: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalaaron2start(A,B,C) -> evalaaron2entryin(A,B,C) True (1,1) 1. evalaaron2entryin(A,B,C) -> evalaaron2bb6in(A,C,B) [A >= 0] (1,1) 5. evalaaron2bb6in(A,B,C) -> evalaaron2bb3in(A,B,C) [C >= B && A >= 0] (1 + B + C,1) 6. evalaaron2bb3in(A,B,C) -> evalaaron2bb4in(A,B,C) [0 >= 1 + D] (1 + B + C,1) 7. evalaaron2bb3in(A,B,C) -> evalaaron2bb4in(A,B,C) [D >= 1] (1 + B + C,1) 8. evalaaron2bb3in(A,B,C) -> evalaaron2bb5in(A,B,C) True (1 + B + C,1) 9. evalaaron2bb4in(A,B,C) -> evalaaron2bb6in(A,B,-1 + -1*A + C) True (2 + 2*B + 2*C,1) 10. evalaaron2bb5in(A,B,C) -> evalaaron2bb6in(A,1 + A + B,C) True (1 + B + C,1) Signature: {(evalaaron2bb3in,3) ;(evalaaron2bb4in,3) ;(evalaaron2bb5in,3) ;(evalaaron2bb6in,3) ;(evalaaron2entryin,3) ;(evalaaron2returnin,3) ;(evalaaron2start,3) ;(evalaaron2stop,3)} Flow Graph: [0->{1},1->{5},5->{6,7,8},6->{9},7->{9},8->{10},9->{5},10->{5}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 1,0,A>, A) (< 1,0,B>, C) (< 1,0,C>, B) (< 5,0,A>, A) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, ?) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, ?) + Applied Processor: LocalSizeboundsProc + Details: The problem is already solved. WORST_CASE(?,O(n^1))