WORST_CASE(?,O(n^1))
* Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  evalaaron2start(A,B,C)    -> evalaaron2entryin(A,B,C)           True               (1,1)
          1.  evalaaron2entryin(A,B,C)  -> evalaaron2bb6in(A,C,B)             [A >= 0]           (?,1)
          2.  evalaaron2entryin(A,B,C)  -> evalaaron2returnin(A,B,C)          [0 >= 1 + A]       (?,1)
          3.  evalaaron2bb6in(A,B,C)    -> evalaaron2returnin(A,B,C)          [B >= 1 + C]       (?,1)
          4.  evalaaron2bb6in(A,B,C)    -> evalaaron2returnin(A,B,C)          [0 >= 1 + A]       (?,1)
          5.  evalaaron2bb6in(A,B,C)    -> evalaaron2bb3in(A,B,C)             [C >= B && A >= 0] (?,1)
          6.  evalaaron2bb3in(A,B,C)    -> evalaaron2bb4in(A,B,C)             [0 >= 1 + D]       (?,1)
          7.  evalaaron2bb3in(A,B,C)    -> evalaaron2bb4in(A,B,C)             [D >= 1]           (?,1)
          8.  evalaaron2bb3in(A,B,C)    -> evalaaron2bb5in(A,B,C)             True               (?,1)
          9.  evalaaron2bb4in(A,B,C)    -> evalaaron2bb6in(A,B,-1 + -1*A + C) True               (?,1)
          10. evalaaron2bb5in(A,B,C)    -> evalaaron2bb6in(A,1 + A + B,C)     True               (?,1)
          11. evalaaron2returnin(A,B,C) -> evalaaron2stop(A,B,C)              True               (?,1)
        Signature:
          {(evalaaron2bb3in,3)
          ;(evalaaron2bb4in,3)
          ;(evalaaron2bb5in,3)
          ;(evalaaron2bb6in,3)
          ;(evalaaron2entryin,3)
          ;(evalaaron2returnin,3)
          ;(evalaaron2start,3)
          ;(evalaaron2stop,3)}
        Flow Graph:
          [0->{1,2},1->{3,4,5},2->{11},3->{11},4->{11},5->{6,7,8},6->{9},7->{9},8->{10},9->{3,4,5},10->{3,4,5}
          ,11->{}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (< 0,0,A>, A, .= 0) (< 0,0,B>,         B, .= 0) (< 0,0,C>,         C, .= 0) 
          (< 1,0,A>, A, .= 0) (< 1,0,B>,         C, .= 0) (< 1,0,C>,         B, .= 0) 
          (< 2,0,A>, A, .= 0) (< 2,0,B>,         B, .= 0) (< 2,0,C>,         C, .= 0) 
          (< 3,0,A>, A, .= 0) (< 3,0,B>,         B, .= 0) (< 3,0,C>,         C, .= 0) 
          (< 4,0,A>, A, .= 0) (< 4,0,B>,         B, .= 0) (< 4,0,C>,         C, .= 0) 
          (< 5,0,A>, A, .= 0) (< 5,0,B>,         B, .= 0) (< 5,0,C>,         C, .= 0) 
          (< 6,0,A>, A, .= 0) (< 6,0,B>,         B, .= 0) (< 6,0,C>,         C, .= 0) 
          (< 7,0,A>, A, .= 0) (< 7,0,B>,         B, .= 0) (< 7,0,C>,         C, .= 0) 
          (< 8,0,A>, A, .= 0) (< 8,0,B>,         B, .= 0) (< 8,0,C>,         C, .= 0) 
          (< 9,0,A>, A, .= 0) (< 9,0,B>,         B, .= 0) (< 9,0,C>, 1 + A + C, .* 1) 
          (<10,0,A>, A, .= 0) (<10,0,B>, 1 + A + B, .* 1) (<10,0,C>,         C, .= 0) 
          (<11,0,A>, A, .= 0) (<11,0,B>,         B, .= 0) (<11,0,C>,         C, .= 0) 
* Step 2: SizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  evalaaron2start(A,B,C)    -> evalaaron2entryin(A,B,C)           True               (1,1)
          1.  evalaaron2entryin(A,B,C)  -> evalaaron2bb6in(A,C,B)             [A >= 0]           (?,1)
          2.  evalaaron2entryin(A,B,C)  -> evalaaron2returnin(A,B,C)          [0 >= 1 + A]       (?,1)
          3.  evalaaron2bb6in(A,B,C)    -> evalaaron2returnin(A,B,C)          [B >= 1 + C]       (?,1)
          4.  evalaaron2bb6in(A,B,C)    -> evalaaron2returnin(A,B,C)          [0 >= 1 + A]       (?,1)
          5.  evalaaron2bb6in(A,B,C)    -> evalaaron2bb3in(A,B,C)             [C >= B && A >= 0] (?,1)
          6.  evalaaron2bb3in(A,B,C)    -> evalaaron2bb4in(A,B,C)             [0 >= 1 + D]       (?,1)
          7.  evalaaron2bb3in(A,B,C)    -> evalaaron2bb4in(A,B,C)             [D >= 1]           (?,1)
          8.  evalaaron2bb3in(A,B,C)    -> evalaaron2bb5in(A,B,C)             True               (?,1)
          9.  evalaaron2bb4in(A,B,C)    -> evalaaron2bb6in(A,B,-1 + -1*A + C) True               (?,1)
          10. evalaaron2bb5in(A,B,C)    -> evalaaron2bb6in(A,1 + A + B,C)     True               (?,1)
          11. evalaaron2returnin(A,B,C) -> evalaaron2stop(A,B,C)              True               (?,1)
        Signature:
          {(evalaaron2bb3in,3)
          ;(evalaaron2bb4in,3)
          ;(evalaaron2bb5in,3)
          ;(evalaaron2bb6in,3)
          ;(evalaaron2entryin,3)
          ;(evalaaron2returnin,3)
          ;(evalaaron2start,3)
          ;(evalaaron2stop,3)}
        Flow Graph:
          [0->{1,2},1->{3,4,5},2->{11},3->{11},4->{11},5->{6,7,8},6->{9},7->{9},8->{10},9->{3,4,5},10->{3,4,5}
          ,11->{}]
        Sizebounds:
          (< 0,0,A>, ?) (< 0,0,B>, ?) (< 0,0,C>, ?) 
          (< 1,0,A>, ?) (< 1,0,B>, ?) (< 1,0,C>, ?) 
          (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,C>, ?) 
          (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,C>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,C>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,0,C>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) 
          (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) 
          (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) 
          (< 1,0,A>, A) (< 1,0,B>, C) (< 1,0,C>, B) 
          (< 2,0,A>, A) (< 2,0,B>, B) (< 2,0,C>, C) 
          (< 3,0,A>, A) (< 3,0,B>, ?) (< 3,0,C>, ?) 
          (< 4,0,A>, A) (< 4,0,B>, ?) (< 4,0,C>, ?) 
          (< 5,0,A>, A) (< 5,0,B>, ?) (< 5,0,C>, ?) 
          (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, ?) 
          (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, ?) 
          (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) 
          (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, ?) 
          (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, ?) 
          (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, ?) 
* Step 3: UnsatPaths WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  evalaaron2start(A,B,C)    -> evalaaron2entryin(A,B,C)           True               (1,1)
          1.  evalaaron2entryin(A,B,C)  -> evalaaron2bb6in(A,C,B)             [A >= 0]           (?,1)
          2.  evalaaron2entryin(A,B,C)  -> evalaaron2returnin(A,B,C)          [0 >= 1 + A]       (?,1)
          3.  evalaaron2bb6in(A,B,C)    -> evalaaron2returnin(A,B,C)          [B >= 1 + C]       (?,1)
          4.  evalaaron2bb6in(A,B,C)    -> evalaaron2returnin(A,B,C)          [0 >= 1 + A]       (?,1)
          5.  evalaaron2bb6in(A,B,C)    -> evalaaron2bb3in(A,B,C)             [C >= B && A >= 0] (?,1)
          6.  evalaaron2bb3in(A,B,C)    -> evalaaron2bb4in(A,B,C)             [0 >= 1 + D]       (?,1)
          7.  evalaaron2bb3in(A,B,C)    -> evalaaron2bb4in(A,B,C)             [D >= 1]           (?,1)
          8.  evalaaron2bb3in(A,B,C)    -> evalaaron2bb5in(A,B,C)             True               (?,1)
          9.  evalaaron2bb4in(A,B,C)    -> evalaaron2bb6in(A,B,-1 + -1*A + C) True               (?,1)
          10. evalaaron2bb5in(A,B,C)    -> evalaaron2bb6in(A,1 + A + B,C)     True               (?,1)
          11. evalaaron2returnin(A,B,C) -> evalaaron2stop(A,B,C)              True               (?,1)
        Signature:
          {(evalaaron2bb3in,3)
          ;(evalaaron2bb4in,3)
          ;(evalaaron2bb5in,3)
          ;(evalaaron2bb6in,3)
          ;(evalaaron2entryin,3)
          ;(evalaaron2returnin,3)
          ;(evalaaron2start,3)
          ;(evalaaron2stop,3)}
        Flow Graph:
          [0->{1,2},1->{3,4,5},2->{11},3->{11},4->{11},5->{6,7,8},6->{9},7->{9},8->{10},9->{3,4,5},10->{3,4,5}
          ,11->{}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) 
          (< 1,0,A>, A) (< 1,0,B>, C) (< 1,0,C>, B) 
          (< 2,0,A>, A) (< 2,0,B>, B) (< 2,0,C>, C) 
          (< 3,0,A>, A) (< 3,0,B>, ?) (< 3,0,C>, ?) 
          (< 4,0,A>, A) (< 4,0,B>, ?) (< 4,0,C>, ?) 
          (< 5,0,A>, A) (< 5,0,B>, ?) (< 5,0,C>, ?) 
          (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, ?) 
          (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, ?) 
          (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) 
          (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, ?) 
          (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, ?) 
          (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, ?) 
    + Applied Processor:
        UnsatPaths
    + Details:
        We remove following edges from the transition graph: [(1,4)]
* Step 4: LeafRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  evalaaron2start(A,B,C)    -> evalaaron2entryin(A,B,C)           True               (1,1)
          1.  evalaaron2entryin(A,B,C)  -> evalaaron2bb6in(A,C,B)             [A >= 0]           (?,1)
          2.  evalaaron2entryin(A,B,C)  -> evalaaron2returnin(A,B,C)          [0 >= 1 + A]       (?,1)
          3.  evalaaron2bb6in(A,B,C)    -> evalaaron2returnin(A,B,C)          [B >= 1 + C]       (?,1)
          4.  evalaaron2bb6in(A,B,C)    -> evalaaron2returnin(A,B,C)          [0 >= 1 + A]       (?,1)
          5.  evalaaron2bb6in(A,B,C)    -> evalaaron2bb3in(A,B,C)             [C >= B && A >= 0] (?,1)
          6.  evalaaron2bb3in(A,B,C)    -> evalaaron2bb4in(A,B,C)             [0 >= 1 + D]       (?,1)
          7.  evalaaron2bb3in(A,B,C)    -> evalaaron2bb4in(A,B,C)             [D >= 1]           (?,1)
          8.  evalaaron2bb3in(A,B,C)    -> evalaaron2bb5in(A,B,C)             True               (?,1)
          9.  evalaaron2bb4in(A,B,C)    -> evalaaron2bb6in(A,B,-1 + -1*A + C) True               (?,1)
          10. evalaaron2bb5in(A,B,C)    -> evalaaron2bb6in(A,1 + A + B,C)     True               (?,1)
          11. evalaaron2returnin(A,B,C) -> evalaaron2stop(A,B,C)              True               (?,1)
        Signature:
          {(evalaaron2bb3in,3)
          ;(evalaaron2bb4in,3)
          ;(evalaaron2bb5in,3)
          ;(evalaaron2bb6in,3)
          ;(evalaaron2entryin,3)
          ;(evalaaron2returnin,3)
          ;(evalaaron2start,3)
          ;(evalaaron2stop,3)}
        Flow Graph:
          [0->{1,2},1->{3,5},2->{11},3->{11},4->{11},5->{6,7,8},6->{9},7->{9},8->{10},9->{3,4,5},10->{3,4,5},11->{}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) 
          (< 1,0,A>, A) (< 1,0,B>, C) (< 1,0,C>, B) 
          (< 2,0,A>, A) (< 2,0,B>, B) (< 2,0,C>, C) 
          (< 3,0,A>, A) (< 3,0,B>, ?) (< 3,0,C>, ?) 
          (< 4,0,A>, A) (< 4,0,B>, ?) (< 4,0,C>, ?) 
          (< 5,0,A>, A) (< 5,0,B>, ?) (< 5,0,C>, ?) 
          (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, ?) 
          (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, ?) 
          (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) 
          (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, ?) 
          (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, ?) 
          (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, ?) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [2,3,4,11]
* Step 5: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  evalaaron2start(A,B,C)   -> evalaaron2entryin(A,B,C)           True               (1,1)
          1.  evalaaron2entryin(A,B,C) -> evalaaron2bb6in(A,C,B)             [A >= 0]           (?,1)
          5.  evalaaron2bb6in(A,B,C)   -> evalaaron2bb3in(A,B,C)             [C >= B && A >= 0] (?,1)
          6.  evalaaron2bb3in(A,B,C)   -> evalaaron2bb4in(A,B,C)             [0 >= 1 + D]       (?,1)
          7.  evalaaron2bb3in(A,B,C)   -> evalaaron2bb4in(A,B,C)             [D >= 1]           (?,1)
          8.  evalaaron2bb3in(A,B,C)   -> evalaaron2bb5in(A,B,C)             True               (?,1)
          9.  evalaaron2bb4in(A,B,C)   -> evalaaron2bb6in(A,B,-1 + -1*A + C) True               (?,1)
          10. evalaaron2bb5in(A,B,C)   -> evalaaron2bb6in(A,1 + A + B,C)     True               (?,1)
        Signature:
          {(evalaaron2bb3in,3)
          ;(evalaaron2bb4in,3)
          ;(evalaaron2bb5in,3)
          ;(evalaaron2bb6in,3)
          ;(evalaaron2entryin,3)
          ;(evalaaron2returnin,3)
          ;(evalaaron2start,3)
          ;(evalaaron2stop,3)}
        Flow Graph:
          [0->{1},1->{5},5->{6,7,8},6->{9},7->{9},8->{10},9->{5},10->{5}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) 
          (< 1,0,A>, A) (< 1,0,B>, C) (< 1,0,C>, B) 
          (< 5,0,A>, A) (< 5,0,B>, ?) (< 5,0,C>, ?) 
          (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, ?) 
          (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, ?) 
          (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) 
          (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, ?) 
          (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
            p(evalaaron2bb3in) = 0
            p(evalaaron2bb4in) = 0
            p(evalaaron2bb5in) = 0
            p(evalaaron2bb6in) = 0
          p(evalaaron2entryin) = 1
            p(evalaaron2start) = 1
        
        The following rules are strictly oriented:
                          [A >= 0] ==>                       
          evalaaron2entryin(A,B,C)   = 1                     
                                     > 0                     
                                     = evalaaron2bb6in(A,C,B)
        
        
        The following rules are weakly oriented:
                            True ==>                                   
          evalaaron2start(A,B,C)   = 1                                 
                                  >= 1                                 
                                   = evalaaron2entryin(A,B,C)          
        
              [C >= B && A >= 0] ==>                                   
          evalaaron2bb6in(A,B,C)   = 0                                 
                                  >= 0                                 
                                   = evalaaron2bb3in(A,B,C)            
        
                    [0 >= 1 + D] ==>                                   
          evalaaron2bb3in(A,B,C)   = 0                                 
                                  >= 0                                 
                                   = evalaaron2bb4in(A,B,C)            
        
                        [D >= 1] ==>                                   
          evalaaron2bb3in(A,B,C)   = 0                                 
                                  >= 0                                 
                                   = evalaaron2bb4in(A,B,C)            
        
                            True ==>                                   
          evalaaron2bb3in(A,B,C)   = 0                                 
                                  >= 0                                 
                                   = evalaaron2bb5in(A,B,C)            
        
                            True ==>                                   
          evalaaron2bb4in(A,B,C)   = 0                                 
                                  >= 0                                 
                                   = evalaaron2bb6in(A,B,-1 + -1*A + C)
        
                            True ==>                                   
          evalaaron2bb5in(A,B,C)   = 0                                 
                                  >= 0                                 
                                   = evalaaron2bb6in(A,1 + A + B,C)    
        
        
* Step 6: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  evalaaron2start(A,B,C)   -> evalaaron2entryin(A,B,C)           True               (1,1)
          1.  evalaaron2entryin(A,B,C) -> evalaaron2bb6in(A,C,B)             [A >= 0]           (1,1)
          5.  evalaaron2bb6in(A,B,C)   -> evalaaron2bb3in(A,B,C)             [C >= B && A >= 0] (?,1)
          6.  evalaaron2bb3in(A,B,C)   -> evalaaron2bb4in(A,B,C)             [0 >= 1 + D]       (?,1)
          7.  evalaaron2bb3in(A,B,C)   -> evalaaron2bb4in(A,B,C)             [D >= 1]           (?,1)
          8.  evalaaron2bb3in(A,B,C)   -> evalaaron2bb5in(A,B,C)             True               (?,1)
          9.  evalaaron2bb4in(A,B,C)   -> evalaaron2bb6in(A,B,-1 + -1*A + C) True               (?,1)
          10. evalaaron2bb5in(A,B,C)   -> evalaaron2bb6in(A,1 + A + B,C)     True               (?,1)
        Signature:
          {(evalaaron2bb3in,3)
          ;(evalaaron2bb4in,3)
          ;(evalaaron2bb5in,3)
          ;(evalaaron2bb6in,3)
          ;(evalaaron2entryin,3)
          ;(evalaaron2returnin,3)
          ;(evalaaron2start,3)
          ;(evalaaron2stop,3)}
        Flow Graph:
          [0->{1},1->{5},5->{6,7,8},6->{9},7->{9},8->{10},9->{5},10->{5}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) 
          (< 1,0,A>, A) (< 1,0,B>, C) (< 1,0,C>, B) 
          (< 5,0,A>, A) (< 5,0,B>, ?) (< 5,0,C>, ?) 
          (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, ?) 
          (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, ?) 
          (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) 
          (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, ?) 
          (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
            p(evalaaron2bb3in) = -1*x1 + -1*x2 + x3
            p(evalaaron2bb4in) = -1*x1 + -1*x2 + x3
            p(evalaaron2bb5in) = -1*x1 + -1*x2 + x3
            p(evalaaron2bb6in) = 1 + -1*x2 + x3    
          p(evalaaron2entryin) = 1 + x2 + -1*x3    
            p(evalaaron2start) = 1 + x2 + -1*x3    
        
        The following rules are strictly oriented:
              [C >= B && A >= 0] ==>                       
          evalaaron2bb6in(A,B,C)   = 1 + -1*B + C          
                                   > -1*A + -1*B + C       
                                   = evalaaron2bb3in(A,B,C)
        
        
        The following rules are weakly oriented:
                              True ==>                                   
            evalaaron2start(A,B,C)   = 1 + B + -1*C                      
                                    >= 1 + B + -1*C                      
                                     = evalaaron2entryin(A,B,C)          
        
                          [A >= 0] ==>                                   
          evalaaron2entryin(A,B,C)   = 1 + B + -1*C                      
                                    >= 1 + B + -1*C                      
                                     = evalaaron2bb6in(A,C,B)            
        
                      [0 >= 1 + D] ==>                                   
            evalaaron2bb3in(A,B,C)   = -1*A + -1*B + C                   
                                    >= -1*A + -1*B + C                   
                                     = evalaaron2bb4in(A,B,C)            
        
                          [D >= 1] ==>                                   
            evalaaron2bb3in(A,B,C)   = -1*A + -1*B + C                   
                                    >= -1*A + -1*B + C                   
                                     = evalaaron2bb4in(A,B,C)            
        
                              True ==>                                   
            evalaaron2bb3in(A,B,C)   = -1*A + -1*B + C                   
                                    >= -1*A + -1*B + C                   
                                     = evalaaron2bb5in(A,B,C)            
        
                              True ==>                                   
            evalaaron2bb4in(A,B,C)   = -1*A + -1*B + C                   
                                    >= -1*A + -1*B + C                   
                                     = evalaaron2bb6in(A,B,-1 + -1*A + C)
        
                              True ==>                                   
            evalaaron2bb5in(A,B,C)   = -1*A + -1*B + C                   
                                    >= -1*A + -1*B + C                   
                                     = evalaaron2bb6in(A,1 + A + B,C)    
        
        
* Step 7: KnowledgePropagation WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  evalaaron2start(A,B,C)   -> evalaaron2entryin(A,B,C)           True               (1,1)        
          1.  evalaaron2entryin(A,B,C) -> evalaaron2bb6in(A,C,B)             [A >= 0]           (1,1)        
          5.  evalaaron2bb6in(A,B,C)   -> evalaaron2bb3in(A,B,C)             [C >= B && A >= 0] (1 + B + C,1)
          6.  evalaaron2bb3in(A,B,C)   -> evalaaron2bb4in(A,B,C)             [0 >= 1 + D]       (?,1)        
          7.  evalaaron2bb3in(A,B,C)   -> evalaaron2bb4in(A,B,C)             [D >= 1]           (?,1)        
          8.  evalaaron2bb3in(A,B,C)   -> evalaaron2bb5in(A,B,C)             True               (?,1)        
          9.  evalaaron2bb4in(A,B,C)   -> evalaaron2bb6in(A,B,-1 + -1*A + C) True               (?,1)        
          10. evalaaron2bb5in(A,B,C)   -> evalaaron2bb6in(A,1 + A + B,C)     True               (?,1)        
        Signature:
          {(evalaaron2bb3in,3)
          ;(evalaaron2bb4in,3)
          ;(evalaaron2bb5in,3)
          ;(evalaaron2bb6in,3)
          ;(evalaaron2entryin,3)
          ;(evalaaron2returnin,3)
          ;(evalaaron2start,3)
          ;(evalaaron2stop,3)}
        Flow Graph:
          [0->{1},1->{5},5->{6,7,8},6->{9},7->{9},8->{10},9->{5},10->{5}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) 
          (< 1,0,A>, A) (< 1,0,B>, C) (< 1,0,C>, B) 
          (< 5,0,A>, A) (< 5,0,B>, ?) (< 5,0,C>, ?) 
          (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, ?) 
          (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, ?) 
          (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) 
          (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, ?) 
          (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, ?) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 8: LocalSizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  evalaaron2start(A,B,C)   -> evalaaron2entryin(A,B,C)           True               (1,1)            
          1.  evalaaron2entryin(A,B,C) -> evalaaron2bb6in(A,C,B)             [A >= 0]           (1,1)            
          5.  evalaaron2bb6in(A,B,C)   -> evalaaron2bb3in(A,B,C)             [C >= B && A >= 0] (1 + B + C,1)    
          6.  evalaaron2bb3in(A,B,C)   -> evalaaron2bb4in(A,B,C)             [0 >= 1 + D]       (1 + B + C,1)    
          7.  evalaaron2bb3in(A,B,C)   -> evalaaron2bb4in(A,B,C)             [D >= 1]           (1 + B + C,1)    
          8.  evalaaron2bb3in(A,B,C)   -> evalaaron2bb5in(A,B,C)             True               (1 + B + C,1)    
          9.  evalaaron2bb4in(A,B,C)   -> evalaaron2bb6in(A,B,-1 + -1*A + C) True               (2 + 2*B + 2*C,1)
          10. evalaaron2bb5in(A,B,C)   -> evalaaron2bb6in(A,1 + A + B,C)     True               (1 + B + C,1)    
        Signature:
          {(evalaaron2bb3in,3)
          ;(evalaaron2bb4in,3)
          ;(evalaaron2bb5in,3)
          ;(evalaaron2bb6in,3)
          ;(evalaaron2entryin,3)
          ;(evalaaron2returnin,3)
          ;(evalaaron2start,3)
          ;(evalaaron2stop,3)}
        Flow Graph:
          [0->{1},1->{5},5->{6,7,8},6->{9},7->{9},8->{10},9->{5},10->{5}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) 
          (< 1,0,A>, A) (< 1,0,B>, C) (< 1,0,C>, B) 
          (< 5,0,A>, A) (< 5,0,B>, ?) (< 5,0,C>, ?) 
          (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, ?) 
          (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, ?) 
          (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) 
          (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, ?) 
          (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, ?) 
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        The problem is already solved.

WORST_CASE(?,O(n^1))