WORST_CASE(?,O(n^2)) * Step 1: UnsatRules WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1entryin(A,B,C) True (1,1) 1. evalrealheapsortstep1entryin(A,B,C) -> evalrealheapsortstep1bb6in(A,1,C) [A >= 3] (?,1) 2. evalrealheapsortstep1entryin(A,B,C) -> evalrealheapsortstep1returnin(A,B,C) [2 >= A] (?,1) 3. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,B) [A >= 1 + B] (?,1) 4. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1returnin(A,B,C) [B >= A] (?,1) 5. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [0 >= C] (?,1) 6. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb4in(A,B,C) [C >= 1] (?,1) 7. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [1 + C = 0] (?,1) 8. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C] (?,1) 9. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [0 >= 2 + C && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D] (?,1) 10. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [1 + C = 0] (?,1) 11. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C] (?,1) 12. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [0 >= 2 + C && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D] (?,1) 13. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1) [1 + C = 0] (?,1) 14. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D) [0 >= 1 && D >= 0 && 0 >= 2*D && 1 + 2*D >= 0 && 1 + C = 0] (?,1) 15. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D) [0 >= 1 && 0 >= D && 1 + C = 0 && 2*D >= 1 + C && 2 + C >= 2*D] (?,1) 16. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1) [0 >= 1 && D >= 0 && 0 >= 2*D && 1 + 2*D >= 0 && 1 + C = 0] (?,1) 17. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D) [0 >= 1 && E >= 0 && 0 >= 2*E && 1 + 2*E >= 0 && D >= 0 && 0 >= 2*D && 1 + 2*D >= 0 && 1 + C = 0] (?,1) 18. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D) [0 >= 1 && E >= 0 && 0 >= 2*E && 1 + 2*E >= 0 && 0 >= D && 1 + C = 0 && 2*D >= 1 + C && 2 + C >= 2*D] (?,1) 19. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1) [0 >= 1 && 0 >= D && 1 + C = 0 && 2*D >= 1 + C && 2 + C >= 2*D] (?,1) 20. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D) [0 >= 1 && 0 >= E && D >= 0 && 0 >= 2*D && 1 + 2*D >= 0 && 1 + C = 0 && 2*E >= 1 + C && 2 + C >= 2*E] (?,1) 21. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D) [0 >= 1 && 0 >= E && 0 >= D && 1 + C = 0 && 2*E >= 1 + C && 2 + C >= 2*E && 2*D >= 1 + C && 2 + C >= 2*D] (?,1) 22. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1) [0 >= 1 && D >= 0 && 0 >= 2*D && 1 + 2*D >= 0 && 1 + C = 0] (?,1) 23. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D) [0 >= 1 && E >= 0 && 0 >= 2*E && 1 + 2*E >= 0 && D >= 0 && 0 >= 2*D && 1 + 2*D >= 0 && 1 + C = 0] (?,1) 24. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D) [0 >= 1 && E >= 0 && 0 >= 2*E && 1 + 2*E >= 0 && 0 >= D && 1 + C = 0 && 2*D >= 1 + C && 2 + C >= 2*D] (?,1) 25. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1) [0 >= 1 && D >= 0 && 0 >= 2*D && 1 + 2*D >= 0 && E >= 0 && 0 >= 2*E && 1 + 2*E >= 0 && 1 + C = 0] (?,1) 26. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D) [C >= 0 (?,1) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C] 27. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D) [C >= 0 (?,1) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && 0 >= 2 + C && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D] 28. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1) [0 >= 1 && D >= 0 && 0 >= 2*D && 1 + 2*D >= 0 && 0 >= E && 1 + C = 0 && 2*E >= 1 + C && 2 + C >= 2*E] (?,1) 29. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D) [C >= 0 (?,1) && E >= 0 && 1 + C >= 2*E && 2*E >= C && 0 >= 2 + C && 0 >= F && D >= 0 && 1 + C >= 2*D && 2*D >= C && 2*F >= 1 + C && 2 + C >= 2*F] 30. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D) [C >= 0 (?,1) && E >= 0 && 1 + C >= 2*E && 2*E >= C && 0 >= 2 + C && 0 >= F && 0 >= D && 2*F >= 1 + C && 2 + C >= 2*F && 2*D >= 1 + C && 2 + C >= 2*D] 31. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1) [0 >= 1 && 0 >= D && 1 + C = 0 && 2*D >= 1 + C && 2 + C >= 2*D] (?,1) 32. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D) [0 >= 1 && 0 >= E && D >= 0 && 0 >= 2*D && 1 + 2*D >= 0 && 1 + C = 0 && 2*E >= 1 + C && 2 + C >= 2*E] (?,1) 33. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D) [0 >= 1 && 0 >= E && 0 >= D && 1 + C = 0 && 2*E >= 1 + C && 2 + C >= 2*E && 2*D >= 1 + C && 2 + C >= 2*D] (?,1) 34. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1) [0 >= 1 && 0 >= D && E >= 0 && 0 >= 2*E && 1 + 2*E >= 0 && 1 + C = 0 && 2*D >= 1 + C && 2 + C >= 2*D] (?,1) 35. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D) [0 >= 2 + C (?,1) && 0 >= E && C >= 0 && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && 2*E >= 1 + C && 2 + C >= 2*E] 36. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D) [0 >= 2 + C (?,1) && 0 >= E && C >= 0 && F >= 0 && 1 + C >= 2*F && 2*F >= C && 0 >= D && 2*E >= 1 + C && 2 + C >= 2*E && 2*D >= 1 + C && 2 + C >= 2*D] 37. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1) [0 >= 1 && 0 >= D && 0 >= E && 1 + C = 0 && 2*D >= 1 + C && 2 + C >= 2*D && 2*E >= 1 + C && 2 + C >= 2*E] (?,1) 38. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D) [0 >= 2 + C (?,1) && 0 >= E && 0 >= F && C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C && 2*E >= 1 + C && 2 + C >= 2*E && 2*F >= 1 + C && 2 + C >= 2*F] 39. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D) [0 >= 2 + C (?,1) && 0 >= E && 0 >= F && 0 >= D && 2*E >= 1 + C && 2 + C >= 2*E && 2*F >= 1 + C && 2 + C >= 2*F && 2*D >= 1 + C && 2 + C >= 2*D] 40. evalrealheapsortstep1bb5in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) True (?,1) 41. evalrealheapsortstep1returnin(A,B,C) -> evalrealheapsortstep1stop(A,B,C) True (?,1) Signature: {(evalrealheapsortstep1bb2in,3) ;(evalrealheapsortstep1bb3in,3) ;(evalrealheapsortstep1bb4in,3) ;(evalrealheapsortstep1bb5in,3) ;(evalrealheapsortstep1bb6in,3) ;(evalrealheapsortstep1entryin,3) ;(evalrealheapsortstep1returnin,3) ;(evalrealheapsortstep1start,3) ;(evalrealheapsortstep1stop,3)} Flow Graph: [0->{1,2},1->{3,4},2->{41},3->{5,6},4->{41},5->{40},6->{7,8,9,10,11,12},7->{13,14,15,16,17,18,19,20,21,22 ,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39},8->{13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 ,30,31,32,33,34,35,36,37,38,39},9->{13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36 ,37,38,39},10->{40},11->{40},12->{40},13->{5,6},14->{5,6},15->{5,6},16->{5,6},17->{5,6},18->{5,6},19->{5,6} ,20->{5,6},21->{5,6},22->{5,6},23->{5,6},24->{5,6},25->{5,6},26->{5,6},27->{5,6},28->{5,6},29->{5,6},30->{5 ,6},31->{5,6},32->{5,6},33->{5,6},34->{5,6},35->{5,6},36->{5,6},37->{5,6},38->{5,6},39->{5,6},40->{3,4} ,41->{}] + Applied Processor: UnsatRules + Details: The following transitions have unsatisfiable constraints and are removed: [14 ,15 ,16 ,17 ,18 ,19 ,20 ,21 ,22 ,23 ,24 ,25 ,27 ,28 ,29 ,30 ,31 ,32 ,33 ,34 ,35 ,36 ,37 ,38] * Step 2: LocalSizeboundsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1entryin(A,B,C) True (1,1) 1. evalrealheapsortstep1entryin(A,B,C) -> evalrealheapsortstep1bb6in(A,1,C) [A >= 3] (?,1) 2. evalrealheapsortstep1entryin(A,B,C) -> evalrealheapsortstep1returnin(A,B,C) [2 >= A] (?,1) 3. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,B) [A >= 1 + B] (?,1) 4. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1returnin(A,B,C) [B >= A] (?,1) 5. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [0 >= C] (?,1) 6. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb4in(A,B,C) [C >= 1] (?,1) 7. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [1 + C = 0] (?,1) 8. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C] (?,1) 9. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [0 >= 2 + C && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D] (?,1) 10. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [1 + C = 0] (?,1) 11. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C] (?,1) 12. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [0 >= 2 + C && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D] (?,1) 13. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1) [1 + C = 0] (?,1) 26. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D) [C >= 0 (?,1) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C] 39. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D) [0 >= 2 + C (?,1) && 0 >= E && 0 >= F && 0 >= D && 2*E >= 1 + C && 2 + C >= 2*E && 2*F >= 1 + C && 2 + C >= 2*F && 2*D >= 1 + C && 2 + C >= 2*D] 40. evalrealheapsortstep1bb5in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) True (?,1) 41. evalrealheapsortstep1returnin(A,B,C) -> evalrealheapsortstep1stop(A,B,C) True (?,1) Signature: {(evalrealheapsortstep1bb2in,3) ;(evalrealheapsortstep1bb3in,3) ;(evalrealheapsortstep1bb4in,3) ;(evalrealheapsortstep1bb5in,3) ;(evalrealheapsortstep1bb6in,3) ;(evalrealheapsortstep1entryin,3) ;(evalrealheapsortstep1returnin,3) ;(evalrealheapsortstep1start,3) ;(evalrealheapsortstep1stop,3)} Flow Graph: [0->{1,2},1->{3,4},2->{41},3->{5,6},4->{41},5->{40},6->{7,8,9,10,11,12},7->{13,26,39},8->{13,26,39},9->{13 ,26,39},10->{40},11->{40},12->{40},13->{5,6},26->{5,6},39->{5,6},40->{3,4},41->{}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (< 0,0,A>, A, .= 0) (< 0,0,B>, B, .= 0) (< 0,0,C>, C, .= 0) (< 1,0,A>, A, .= 0) (< 1,0,B>, 1, .= 1) (< 1,0,C>, C, .= 0) (< 2,0,A>, A, .= 0) (< 2,0,B>, B, .= 0) (< 2,0,C>, C, .= 0) (< 3,0,A>, A, .= 0) (< 3,0,B>, B, .= 0) (< 3,0,C>, B, .= 0) (< 4,0,A>, A, .= 0) (< 4,0,B>, B, .= 0) (< 4,0,C>, C, .= 0) (< 5,0,A>, A, .= 0) (< 5,0,B>, B, .= 0) (< 5,0,C>, C, .= 0) (< 6,0,A>, A, .= 0) (< 6,0,B>, B, .= 0) (< 6,0,C>, C, .= 0) (< 7,0,A>, A, .= 0) (< 7,0,B>, B, .= 0) (< 7,0,C>, C, .= 0) (< 8,0,A>, A, .= 0) (< 8,0,B>, B, .= 0) (< 8,0,C>, C, .= 0) (< 9,0,A>, A, .= 0) (< 9,0,B>, B, .= 0) (< 9,0,C>, C, .= 0) (<10,0,A>, A, .= 0) (<10,0,B>, B, .= 0) (<10,0,C>, C, .= 0) (<11,0,A>, A, .= 0) (<11,0,B>, B, .= 0) (<11,0,C>, C, .= 0) (<12,0,A>, A, .= 0) (<12,0,B>, B, .= 0) (<12,0,C>, C, .= 0) (<13,0,A>, A, .= 0) (<13,0,B>, B, .= 0) (<13,0,C>, 1, .= 1) (<26,0,A>, A, .= 0) (<26,0,B>, B, .= 0) (<26,0,C>, 1 + C, .+ 1) (<39,0,A>, A, .= 0) (<39,0,B>, B, .= 0) (<39,0,C>, 1 + C, .+ 1) (<40,0,A>, A, .= 0) (<40,0,B>, 1 + B, .+ 1) (<40,0,C>, C, .= 0) (<41,0,A>, A, .= 0) (<41,0,B>, B, .= 0) (<41,0,C>, C, .= 0) * Step 3: SizeboundsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1entryin(A,B,C) True (1,1) 1. evalrealheapsortstep1entryin(A,B,C) -> evalrealheapsortstep1bb6in(A,1,C) [A >= 3] (?,1) 2. evalrealheapsortstep1entryin(A,B,C) -> evalrealheapsortstep1returnin(A,B,C) [2 >= A] (?,1) 3. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,B) [A >= 1 + B] (?,1) 4. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1returnin(A,B,C) [B >= A] (?,1) 5. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [0 >= C] (?,1) 6. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb4in(A,B,C) [C >= 1] (?,1) 7. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [1 + C = 0] (?,1) 8. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C] (?,1) 9. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [0 >= 2 + C && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D] (?,1) 10. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [1 + C = 0] (?,1) 11. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C] (?,1) 12. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [0 >= 2 + C && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D] (?,1) 13. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1) [1 + C = 0] (?,1) 26. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D) [C >= 0 (?,1) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C] 39. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D) [0 >= 2 + C (?,1) && 0 >= E && 0 >= F && 0 >= D && 2*E >= 1 + C && 2 + C >= 2*E && 2*F >= 1 + C && 2 + C >= 2*F && 2*D >= 1 + C && 2 + C >= 2*D] 40. evalrealheapsortstep1bb5in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) True (?,1) 41. evalrealheapsortstep1returnin(A,B,C) -> evalrealheapsortstep1stop(A,B,C) True (?,1) Signature: {(evalrealheapsortstep1bb2in,3) ;(evalrealheapsortstep1bb3in,3) ;(evalrealheapsortstep1bb4in,3) ;(evalrealheapsortstep1bb5in,3) ;(evalrealheapsortstep1bb6in,3) ;(evalrealheapsortstep1entryin,3) ;(evalrealheapsortstep1returnin,3) ;(evalrealheapsortstep1start,3) ;(evalrealheapsortstep1stop,3)} Flow Graph: [0->{1,2},1->{3,4},2->{41},3->{5,6},4->{41},5->{40},6->{7,8,9,10,11,12},7->{13,26,39},8->{13,26,39},9->{13 ,26,39},10->{40},11->{40},12->{40},13->{5,6},26->{5,6},39->{5,6},40->{3,4},41->{}] Sizebounds: (< 0,0,A>, ?) (< 0,0,B>, ?) (< 0,0,C>, ?) (< 1,0,A>, ?) (< 1,0,B>, ?) (< 1,0,C>, ?) (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<26,0,A>, ?) (<26,0,B>, ?) (<26,0,C>, ?) (<39,0,A>, ?) (<39,0,B>, ?) (<39,0,C>, ?) (<40,0,A>, ?) (<40,0,B>, ?) (<40,0,C>, ?) (<41,0,A>, ?) (<41,0,B>, ?) (<41,0,C>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 1,0,A>, A) (< 1,0,B>, 1) (< 1,0,C>, C) (< 2,0,A>, A) (< 2,0,B>, B) (< 2,0,C>, C) (< 3,0,A>, A) (< 3,0,B>, A) (< 3,0,C>, ?) (< 4,0,A>, A) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 5,0,A>, A) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, 0) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, 0) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, ?) (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, ?) (<12,0,A>, A) (<12,0,B>, ?) (<12,0,C>, ?) (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, 1) (<26,0,A>, A) (<26,0,B>, ?) (<26,0,C>, 0) (<39,0,A>, A) (<39,0,B>, ?) (<39,0,C>, 0) (<40,0,A>, A) (<40,0,B>, ?) (<40,0,C>, ?) (<41,0,A>, A) (<41,0,B>, ?) (<41,0,C>, ?) * Step 4: ChainProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1entryin(A,B,C) True (1,1) 1. evalrealheapsortstep1entryin(A,B,C) -> evalrealheapsortstep1bb6in(A,1,C) [A >= 3] (?,1) 2. evalrealheapsortstep1entryin(A,B,C) -> evalrealheapsortstep1returnin(A,B,C) [2 >= A] (?,1) 3. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,B) [A >= 1 + B] (?,1) 4. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1returnin(A,B,C) [B >= A] (?,1) 5. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [0 >= C] (?,1) 6. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb4in(A,B,C) [C >= 1] (?,1) 7. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [1 + C = 0] (?,1) 8. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C] (?,1) 9. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [0 >= 2 + C && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D] (?,1) 10. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [1 + C = 0] (?,1) 11. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C] (?,1) 12. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [0 >= 2 + C && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D] (?,1) 13. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1) [1 + C = 0] (?,1) 26. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D) [C >= 0 (?,1) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C] 39. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D) [0 >= 2 + C (?,1) && 0 >= E && 0 >= F && 0 >= D && 2*E >= 1 + C && 2 + C >= 2*E && 2*F >= 1 + C && 2 + C >= 2*F && 2*D >= 1 + C && 2 + C >= 2*D] 40. evalrealheapsortstep1bb5in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) True (?,1) 41. evalrealheapsortstep1returnin(A,B,C) -> evalrealheapsortstep1stop(A,B,C) True (?,1) Signature: {(evalrealheapsortstep1bb2in,3) ;(evalrealheapsortstep1bb3in,3) ;(evalrealheapsortstep1bb4in,3) ;(evalrealheapsortstep1bb5in,3) ;(evalrealheapsortstep1bb6in,3) ;(evalrealheapsortstep1entryin,3) ;(evalrealheapsortstep1returnin,3) ;(evalrealheapsortstep1start,3) ;(evalrealheapsortstep1stop,3)} Flow Graph: [0->{1,2},1->{3,4},2->{41},3->{5,6},4->{41},5->{40},6->{7,8,9,10,11,12},7->{13,26,39},8->{13,26,39},9->{13 ,26,39},10->{40},11->{40},12->{40},13->{5,6},26->{5,6},39->{5,6},40->{3,4},41->{}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 1,0,A>, A) (< 1,0,B>, 1) (< 1,0,C>, C) (< 2,0,A>, A) (< 2,0,B>, B) (< 2,0,C>, C) (< 3,0,A>, A) (< 3,0,B>, A) (< 3,0,C>, ?) (< 4,0,A>, A) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 5,0,A>, A) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, 0) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, 0) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, ?) (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, ?) (<12,0,A>, A) (<12,0,B>, ?) (<12,0,C>, ?) (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, 1) (<26,0,A>, A) (<26,0,B>, ?) (<26,0,C>, 0) (<39,0,A>, A) (<39,0,B>, ?) (<39,0,C>, 0) (<40,0,A>, A) (<40,0,B>, ?) (<40,0,C>, ?) (<41,0,A>, A) (<41,0,B>, ?) (<41,0,C>, ?) + Applied Processor: ChainProcessor False [0,1,2,3,4,5,6,7,8,9,10,11,12,13,26,39,40,41] + Details: We chained rule 0 to obtain the rules [42,43] . * Step 5: UnreachableRules WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 1. evalrealheapsortstep1entryin(A,B,C) -> evalrealheapsortstep1bb6in(A,1,C) [A >= 3] (?,1) 2. evalrealheapsortstep1entryin(A,B,C) -> evalrealheapsortstep1returnin(A,B,C) [2 >= A] (?,1) 3. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,B) [A >= 1 + B] (?,1) 4. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1returnin(A,B,C) [B >= A] (?,1) 5. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [0 >= C] (?,1) 6. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb4in(A,B,C) [C >= 1] (?,1) 7. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [1 + C = 0] (?,1) 8. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C] (?,1) 9. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [0 >= 2 + C && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D] (?,1) 10. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [1 + C = 0] (?,1) 11. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C] (?,1) 12. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [0 >= 2 + C && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D] (?,1) 13. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1) [1 + C = 0] (?,1) 26. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D) [C >= 0 (?,1) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C] 39. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D) [0 >= 2 + C (?,1) && 0 >= E && 0 >= F && 0 >= D && 2*E >= 1 + C && 2 + C >= 2*E && 2*F >= 1 + C && 2 + C >= 2*F && 2*D >= 1 + C && 2 + C >= 2*D] 40. evalrealheapsortstep1bb5in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) True (?,1) 41. evalrealheapsortstep1returnin(A,B,C) -> evalrealheapsortstep1stop(A,B,C) True (?,1) 42. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1bb6in(A,1,C) [A >= 3] (1,2) 43. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1returnin(A,B,C) [2 >= A] (1,2) Signature: {(evalrealheapsortstep1bb2in,3) ;(evalrealheapsortstep1bb3in,3) ;(evalrealheapsortstep1bb4in,3) ;(evalrealheapsortstep1bb5in,3) ;(evalrealheapsortstep1bb6in,3) ;(evalrealheapsortstep1entryin,3) ;(evalrealheapsortstep1returnin,3) ;(evalrealheapsortstep1start,3) ;(evalrealheapsortstep1stop,3)} Flow Graph: [1->{3,4},2->{41},3->{5,6},4->{41},5->{40},6->{7,8,9,10,11,12},7->{13,26,39},8->{13,26,39},9->{13,26,39} ,10->{40},11->{40},12->{40},13->{5,6},26->{5,6},39->{5,6},40->{3,4},41->{},42->{3,4},43->{41}] Sizebounds: (< 1,0,A>, A) (< 1,0,B>, 1) (< 1,0,C>, C) (< 2,0,A>, A) (< 2,0,B>, B) (< 2,0,C>, C) (< 3,0,A>, A) (< 3,0,B>, A) (< 3,0,C>, ?) (< 4,0,A>, A) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 5,0,A>, A) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, 0) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, 0) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, ?) (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, ?) (<12,0,A>, A) (<12,0,B>, ?) (<12,0,C>, ?) (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, 1) (<26,0,A>, A) (<26,0,B>, ?) (<26,0,C>, 0) (<39,0,A>, A) (<39,0,B>, ?) (<39,0,C>, 0) (<40,0,A>, A) (<40,0,B>, ?) (<40,0,C>, ?) (<41,0,A>, A) (<41,0,B>, ?) (<41,0,C>, ?) (<42,0,A>, A) (<42,0,B>, 1) (<42,0,C>, C) (<43,0,A>, A) (<43,0,B>, B) (<43,0,C>, C) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [1,2] * Step 6: ChainProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 3. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,B) [A >= 1 + B] (?,1) 4. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1returnin(A,B,C) [B >= A] (?,1) 5. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [0 >= C] (?,1) 6. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb4in(A,B,C) [C >= 1] (?,1) 7. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [1 + C = 0] (?,1) 8. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C] (?,1) 9. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [0 >= 2 + C && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D] (?,1) 10. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [1 + C = 0] (?,1) 11. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C] (?,1) 12. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [0 >= 2 + C && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D] (?,1) 13. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1) [1 + C = 0] (?,1) 26. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D) [C >= 0 (?,1) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C] 39. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D) [0 >= 2 + C (?,1) && 0 >= E && 0 >= F && 0 >= D && 2*E >= 1 + C && 2 + C >= 2*E && 2*F >= 1 + C && 2 + C >= 2*F && 2*D >= 1 + C && 2 + C >= 2*D] 40. evalrealheapsortstep1bb5in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) True (?,1) 41. evalrealheapsortstep1returnin(A,B,C) -> evalrealheapsortstep1stop(A,B,C) True (?,1) 42. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1bb6in(A,1,C) [A >= 3] (1,2) 43. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1returnin(A,B,C) [2 >= A] (1,2) Signature: {(evalrealheapsortstep1bb2in,3) ;(evalrealheapsortstep1bb3in,3) ;(evalrealheapsortstep1bb4in,3) ;(evalrealheapsortstep1bb5in,3) ;(evalrealheapsortstep1bb6in,3) ;(evalrealheapsortstep1entryin,3) ;(evalrealheapsortstep1returnin,3) ;(evalrealheapsortstep1start,3) ;(evalrealheapsortstep1stop,3)} Flow Graph: [3->{5,6},4->{41},5->{40},6->{7,8,9,10,11,12},7->{13,26,39},8->{13,26,39},9->{13,26,39},10->{40},11->{40} ,12->{40},13->{5,6},26->{5,6},39->{5,6},40->{3,4},41->{},42->{3,4},43->{41}] Sizebounds: (< 3,0,A>, A) (< 3,0,B>, A) (< 3,0,C>, ?) (< 4,0,A>, A) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 5,0,A>, A) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, 0) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, 0) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, ?) (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, ?) (<12,0,A>, A) (<12,0,B>, ?) (<12,0,C>, ?) (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, 1) (<26,0,A>, A) (<26,0,B>, ?) (<26,0,C>, 0) (<39,0,A>, A) (<39,0,B>, ?) (<39,0,C>, 0) (<40,0,A>, A) (<40,0,B>, ?) (<40,0,C>, ?) (<41,0,A>, A) (<41,0,B>, ?) (<41,0,C>, ?) (<42,0,A>, A) (<42,0,B>, 1) (<42,0,C>, C) (<43,0,A>, A) (<43,0,B>, B) (<43,0,C>, C) + Applied Processor: ChainProcessor False [3,4,5,6,7,8,9,10,11,12,13,26,39,40,41,42,43] + Details: We chained rule 3 to obtain the rules [44,45] . * Step 7: ChainProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 4. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1returnin(A,B,C) [B >= A] (?,1) 5. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [0 >= C] (?,1) 6. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb4in(A,B,C) [C >= 1] (?,1) 7. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [1 + C = 0] (?,1) 8. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C] (?,1) 9. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [0 >= 2 + C && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D] (?,1) 10. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [1 + C = 0] (?,1) 11. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C] (?,1) 12. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [0 >= 2 + C && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D] (?,1) 13. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1) [1 + C = 0] (?,1) 26. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D) [C >= 0 (?,1) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C] 39. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D) [0 >= 2 + C (?,1) && 0 >= E && 0 >= F && 0 >= D && 2*E >= 1 + C && 2 + C >= 2*E && 2*F >= 1 + C && 2 + C >= 2*F && 2*D >= 1 + C && 2 + C >= 2*D] 40. evalrealheapsortstep1bb5in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) True (?,1) 41. evalrealheapsortstep1returnin(A,B,C) -> evalrealheapsortstep1stop(A,B,C) True (?,1) 42. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1bb6in(A,1,C) [A >= 3] (1,2) 43. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1returnin(A,B,C) [2 >= A] (1,2) 44. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,B) [A >= 1 + B && 0 >= B] (?,2) 45. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb4in(A,B,B) [A >= 1 + B && B >= 1] (?,2) Signature: {(evalrealheapsortstep1bb2in,3) ;(evalrealheapsortstep1bb3in,3) ;(evalrealheapsortstep1bb4in,3) ;(evalrealheapsortstep1bb5in,3) ;(evalrealheapsortstep1bb6in,3) ;(evalrealheapsortstep1entryin,3) ;(evalrealheapsortstep1returnin,3) ;(evalrealheapsortstep1start,3) ;(evalrealheapsortstep1stop,3)} Flow Graph: [4->{41},5->{40},6->{7,8,9,10,11,12},7->{13,26,39},8->{13,26,39},9->{13,26,39},10->{40},11->{40},12->{40} ,13->{5,6},26->{5,6},39->{5,6},40->{4,44,45},41->{},42->{4,44,45},43->{41},44->{40},45->{7,8,9,10,11,12}] Sizebounds: (< 4,0,A>, A) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 5,0,A>, A) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, 0) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, 0) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, ?) (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, ?) (<12,0,A>, A) (<12,0,B>, ?) (<12,0,C>, ?) (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, 1) (<26,0,A>, A) (<26,0,B>, ?) (<26,0,C>, 0) (<39,0,A>, A) (<39,0,B>, ?) (<39,0,C>, 0) (<40,0,A>, A) (<40,0,B>, ?) (<40,0,C>, ?) (<41,0,A>, A) (<41,0,B>, ?) (<41,0,C>, ?) (<42,0,A>, A) (<42,0,B>, 1) (<42,0,C>, C) (<43,0,A>, A) (<43,0,B>, B) (<43,0,C>, C) (<44,0,A>, A) (<44,0,B>, ?) (<44,0,C>, ?) (<45,0,A>, A) (<45,0,B>, ?) (<45,0,C>, ?) + Applied Processor: ChainProcessor False [4,5,6,7,8,9,10,11,12,13,26,39,40,41,42,43,44,45] + Details: We chained rule 4 to obtain the rules [46] . * Step 8: ChainProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 5. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [0 >= C] (?,1) 6. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb4in(A,B,C) [C >= 1] (?,1) 7. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [1 + C = 0] (?,1) 8. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C] (?,1) 9. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [0 >= 2 + C && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D] (?,1) 10. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [1 + C = 0] (?,1) 11. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C] (?,1) 12. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [0 >= 2 + C && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D] (?,1) 13. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1) [1 + C = 0] (?,1) 26. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D) [C >= 0 (?,1) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C] 39. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D) [0 >= 2 + C (?,1) && 0 >= E && 0 >= F && 0 >= D && 2*E >= 1 + C && 2 + C >= 2*E && 2*F >= 1 + C && 2 + C >= 2*F && 2*D >= 1 + C && 2 + C >= 2*D] 40. evalrealheapsortstep1bb5in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) True (?,1) 41. evalrealheapsortstep1returnin(A,B,C) -> evalrealheapsortstep1stop(A,B,C) True (?,1) 42. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1bb6in(A,1,C) [A >= 3] (1,2) 43. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1returnin(A,B,C) [2 >= A] (1,2) 44. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,B) [A >= 1 + B && 0 >= B] (?,2) 45. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb4in(A,B,B) [A >= 1 + B && B >= 1] (?,2) 46. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1stop(A,B,C) [B >= A] (?,2) Signature: {(evalrealheapsortstep1bb2in,3) ;(evalrealheapsortstep1bb3in,3) ;(evalrealheapsortstep1bb4in,3) ;(evalrealheapsortstep1bb5in,3) ;(evalrealheapsortstep1bb6in,3) ;(evalrealheapsortstep1entryin,3) ;(evalrealheapsortstep1returnin,3) ;(evalrealheapsortstep1start,3) ;(evalrealheapsortstep1stop,3)} Flow Graph: [5->{40},6->{7,8,9,10,11,12},7->{13,26,39},8->{13,26,39},9->{13,26,39},10->{40},11->{40},12->{40},13->{5 ,6},26->{5,6},39->{5,6},40->{44,45,46},41->{},42->{44,45,46},43->{41},44->{40},45->{7,8,9,10,11,12},46->{}] Sizebounds: (< 5,0,A>, A) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, 0) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, 0) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, ?) (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, ?) (<12,0,A>, A) (<12,0,B>, ?) (<12,0,C>, ?) (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, 1) (<26,0,A>, A) (<26,0,B>, ?) (<26,0,C>, 0) (<39,0,A>, A) (<39,0,B>, ?) (<39,0,C>, 0) (<40,0,A>, A) (<40,0,B>, ?) (<40,0,C>, ?) (<41,0,A>, A) (<41,0,B>, ?) (<41,0,C>, ?) (<42,0,A>, A) (<42,0,B>, 1) (<42,0,C>, C) (<43,0,A>, A) (<43,0,B>, B) (<43,0,C>, C) (<44,0,A>, A) (<44,0,B>, ?) (<44,0,C>, ?) (<45,0,A>, A) (<45,0,B>, ?) (<45,0,C>, ?) (<46,0,A>, A) (<46,0,B>, ?) (<46,0,C>, ?) + Applied Processor: ChainProcessor False [5,6,7,8,9,10,11,12,13,26,39,40,41,42,43,44,45,46] + Details: We chained rule 5 to obtain the rules [47] . * Step 9: ChainProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 6. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb4in(A,B,C) [C >= 1] (?,1) 7. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [1 + C = 0] (?,1) 8. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C] (?,1) 9. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [0 >= 2 + C && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D] (?,1) 10. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [1 + C = 0] (?,1) 11. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C] (?,1) 12. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [0 >= 2 + C && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D] (?,1) 13. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1) [1 + C = 0] (?,1) 26. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D) [C >= 0 (?,1) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C] 39. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D) [0 >= 2 + C (?,1) && 0 >= E && 0 >= F && 0 >= D && 2*E >= 1 + C && 2 + C >= 2*E && 2*F >= 1 + C && 2 + C >= 2*F && 2*D >= 1 + C && 2 + C >= 2*D] 40. evalrealheapsortstep1bb5in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) True (?,1) 41. evalrealheapsortstep1returnin(A,B,C) -> evalrealheapsortstep1stop(A,B,C) True (?,1) 42. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1bb6in(A,1,C) [A >= 3] (1,2) 43. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1returnin(A,B,C) [2 >= A] (1,2) 44. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,B) [A >= 1 + B && 0 >= B] (?,2) 45. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb4in(A,B,B) [A >= 1 + B && B >= 1] (?,2) 46. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1stop(A,B,C) [B >= A] (?,2) 47. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [0 >= C] (?,2) Signature: {(evalrealheapsortstep1bb2in,3) ;(evalrealheapsortstep1bb3in,3) ;(evalrealheapsortstep1bb4in,3) ;(evalrealheapsortstep1bb5in,3) ;(evalrealheapsortstep1bb6in,3) ;(evalrealheapsortstep1entryin,3) ;(evalrealheapsortstep1returnin,3) ;(evalrealheapsortstep1start,3) ;(evalrealheapsortstep1stop,3)} Flow Graph: [6->{7,8,9,10,11,12},7->{13,26,39},8->{13,26,39},9->{13,26,39},10->{40},11->{40},12->{40},13->{6,47} ,26->{6,47},39->{6,47},40->{44,45,46},41->{},42->{44,45,46},43->{41},44->{40},45->{7,8,9,10,11,12},46->{} ,47->{44,45,46}] Sizebounds: (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, 0) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, 0) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, ?) (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, ?) (<12,0,A>, A) (<12,0,B>, ?) (<12,0,C>, ?) (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, 1) (<26,0,A>, A) (<26,0,B>, ?) (<26,0,C>, 0) (<39,0,A>, A) (<39,0,B>, ?) (<39,0,C>, 0) (<40,0,A>, A) (<40,0,B>, ?) (<40,0,C>, ?) (<41,0,A>, A) (<41,0,B>, ?) (<41,0,C>, ?) (<42,0,A>, A) (<42,0,B>, 1) (<42,0,C>, C) (<43,0,A>, A) (<43,0,B>, B) (<43,0,C>, C) (<44,0,A>, A) (<44,0,B>, ?) (<44,0,C>, ?) (<45,0,A>, A) (<45,0,B>, ?) (<45,0,C>, ?) (<46,0,A>, A) (<46,0,B>, ?) (<46,0,C>, ?) (<47,0,A>, A) (<47,0,B>, ?) (<47,0,C>, ?) + Applied Processor: ChainProcessor False [6,7,8,9,10,11,12,13,26,39,40,41,42,43,44,45,46,47] + Details: We chained rule 6 to obtain the rules [48,49,50,51,52,53] . * Step 10: ChainProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 7. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [1 + C = 0] (?,1) 8. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C] (?,1) 9. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [0 >= 2 + C && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D] (?,1) 10. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [1 + C = 0] (?,1) 11. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C] (?,1) 12. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [0 >= 2 + C && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D] (?,1) 13. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1) [1 + C = 0] (?,1) 26. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D) [C >= 0 (?,1) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C] 39. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D) [0 >= 2 + C (?,1) && 0 >= E && 0 >= F && 0 >= D && 2*E >= 1 + C && 2 + C >= 2*E && 2*F >= 1 + C && 2 + C >= 2*F && 2*D >= 1 + C && 2 + C >= 2*D] 40. evalrealheapsortstep1bb5in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) True (?,1) 41. evalrealheapsortstep1returnin(A,B,C) -> evalrealheapsortstep1stop(A,B,C) True (?,1) 42. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1bb6in(A,1,C) [A >= 3] (1,2) 43. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1returnin(A,B,C) [2 >= A] (1,2) 44. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,B) [A >= 1 + B && 0 >= B] (?,2) 45. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb4in(A,B,B) [A >= 1 + B && B >= 1] (?,2) 46. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1stop(A,B,C) [B >= A] (?,2) 47. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [0 >= C] (?,2) 48. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 1 && 1 + C = 0] (?,2) 49. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] (?,2) 50. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 1 && 0 >= 2 + C && 0 >= D$ && 2*D$ >= 1 + C && 2 + C >= 2*D$] (?,2) 51. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 1 && 1 + C = 0] (?,2) 52. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] (?,2) 53. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 1 && 0 >= 2 + C && 0 >= D$ && 2*D$ >= 1 + C && 2 + C >= 2*D$] (?,2) Signature: {(evalrealheapsortstep1bb2in,3) ;(evalrealheapsortstep1bb3in,3) ;(evalrealheapsortstep1bb4in,3) ;(evalrealheapsortstep1bb5in,3) ;(evalrealheapsortstep1bb6in,3) ;(evalrealheapsortstep1entryin,3) ;(evalrealheapsortstep1returnin,3) ;(evalrealheapsortstep1start,3) ;(evalrealheapsortstep1stop,3)} Flow Graph: [7->{13,26,39},8->{13,26,39},9->{13,26,39},10->{40},11->{40},12->{40},13->{47,48,49,50,51,52,53},26->{47 ,48,49,50,51,52,53},39->{47,48,49,50,51,52,53},40->{44,45,46},41->{},42->{44,45,46},43->{41},44->{40},45->{7 ,8,9,10,11,12},46->{},47->{44,45,46},48->{13,26,39},49->{13,26,39},50->{13,26,39},51->{40},52->{40} ,53->{40}] Sizebounds: (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, 0) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, 0) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, ?) (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, ?) (<12,0,A>, A) (<12,0,B>, ?) (<12,0,C>, ?) (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, 1) (<26,0,A>, A) (<26,0,B>, ?) (<26,0,C>, 0) (<39,0,A>, A) (<39,0,B>, ?) (<39,0,C>, 0) (<40,0,A>, A) (<40,0,B>, ?) (<40,0,C>, ?) (<41,0,A>, A) (<41,0,B>, ?) (<41,0,C>, ?) (<42,0,A>, A) (<42,0,B>, 1) (<42,0,C>, C) (<43,0,A>, A) (<43,0,B>, B) (<43,0,C>, C) (<44,0,A>, A) (<44,0,B>, ?) (<44,0,C>, ?) (<45,0,A>, A) (<45,0,B>, ?) (<45,0,C>, ?) (<46,0,A>, A) (<46,0,B>, ?) (<46,0,C>, ?) (<47,0,A>, A) (<47,0,B>, ?) (<47,0,C>, ?) (<48,0,A>, A) (<48,0,B>, ?) (<48,0,C>, 0) (<49,0,A>, A) (<49,0,B>, ?) (<49,0,C>, ?) (<50,0,A>, A) (<50,0,B>, ?) (<50,0,C>, 0) (<51,0,A>, A) (<51,0,B>, ?) (<51,0,C>, ?) (<52,0,A>, A) (<52,0,B>, ?) (<52,0,C>, ?) (<53,0,A>, A) (<53,0,B>, ?) (<53,0,C>, ?) + Applied Processor: ChainProcessor False [7,8,9,10,11,12,13,26,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53] + Details: We chained rule 7 to obtain the rules [54,55,56] . * Step 11: ChainProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 8. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C] (?,1) 9. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [0 >= 2 + C && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D] (?,1) 10. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [1 + C = 0] (?,1) 11. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C] (?,1) 12. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [0 >= 2 + C && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D] (?,1) 13. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1) [1 + C = 0] (?,1) 26. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D) [C >= 0 (?,1) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C] 39. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D) [0 >= 2 + C (?,1) && 0 >= E && 0 >= F && 0 >= D && 2*E >= 1 + C && 2 + C >= 2*E && 2*F >= 1 + C && 2 + C >= 2*F && 2*D >= 1 + C && 2 + C >= 2*D] 40. evalrealheapsortstep1bb5in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) True (?,1) 41. evalrealheapsortstep1returnin(A,B,C) -> evalrealheapsortstep1stop(A,B,C) True (?,1) 42. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1bb6in(A,1,C) [A >= 3] (1,2) 43. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1returnin(A,B,C) [2 >= A] (1,2) 44. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,B) [A >= 1 + B && 0 >= B] (?,2) 45. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb4in(A,B,B) [A >= 1 + B && B >= 1] (?,2) 46. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1stop(A,B,C) [B >= A] (?,2) 47. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [0 >= C] (?,2) 48. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 1 && 1 + C = 0] (?,2) 49. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] (?,2) 50. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 1 && 0 >= 2 + C && 0 >= D$ && 2*D$ >= 1 + C && 2 + C >= 2*D$] (?,2) 51. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 1 && 1 + C = 0] (?,2) 52. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] (?,2) 53. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 1 && 0 >= 2 + C && 0 >= D$ && 2*D$ >= 1 + C && 2 + C >= 2*D$] (?,2) 54. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1) [1 + C = 0 && 1 + C = 0] (?,2) 55. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [1 + C = 0 (?,2) && C >= 0 && E$ >= 0 && 1 + C >= 2*E$ && 2*E$ >= C && F$ >= 0 && 1 + C >= 2*F$ && 2*F$ >= C && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] 56. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [1 + C = 0 (?,2) && 0 >= 2 + C && 0 >= E$ && 0 >= F$ && 0 >= D$ && 2*E$ >= 1 + C && 2 + C >= 2*E$ && 2*F$ >= 1 + C && 2 + C >= 2*F$ && 2*D$ >= 1 + C && 2 + C >= 2*D$] Signature: {(evalrealheapsortstep1bb2in,3) ;(evalrealheapsortstep1bb3in,3) ;(evalrealheapsortstep1bb4in,3) ;(evalrealheapsortstep1bb5in,3) ;(evalrealheapsortstep1bb6in,3) ;(evalrealheapsortstep1entryin,3) ;(evalrealheapsortstep1returnin,3) ;(evalrealheapsortstep1start,3) ;(evalrealheapsortstep1stop,3)} Flow Graph: [8->{13,26,39},9->{13,26,39},10->{40},11->{40},12->{40},13->{47,48,49,50,51,52,53},26->{47,48,49,50,51,52 ,53},39->{47,48,49,50,51,52,53},40->{44,45,46},41->{},42->{44,45,46},43->{41},44->{40},45->{8,9,10,11,12,54 ,55,56},46->{},47->{44,45,46},48->{13,26,39},49->{13,26,39},50->{13,26,39},51->{40},52->{40},53->{40} ,54->{47,48,49,50,51,52,53},55->{47,48,49,50,51,52,53},56->{47,48,49,50,51,52,53}] Sizebounds: (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, 0) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, ?) (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, ?) (<12,0,A>, A) (<12,0,B>, ?) (<12,0,C>, ?) (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, 1) (<26,0,A>, A) (<26,0,B>, ?) (<26,0,C>, 0) (<39,0,A>, A) (<39,0,B>, ?) (<39,0,C>, 0) (<40,0,A>, A) (<40,0,B>, ?) (<40,0,C>, ?) (<41,0,A>, A) (<41,0,B>, ?) (<41,0,C>, ?) (<42,0,A>, A) (<42,0,B>, 1) (<42,0,C>, C) (<43,0,A>, A) (<43,0,B>, B) (<43,0,C>, C) (<44,0,A>, A) (<44,0,B>, ?) (<44,0,C>, ?) (<45,0,A>, A) (<45,0,B>, ?) (<45,0,C>, ?) (<46,0,A>, A) (<46,0,B>, ?) (<46,0,C>, ?) (<47,0,A>, A) (<47,0,B>, ?) (<47,0,C>, ?) (<48,0,A>, A) (<48,0,B>, ?) (<48,0,C>, 0) (<49,0,A>, A) (<49,0,B>, ?) (<49,0,C>, ?) (<50,0,A>, A) (<50,0,B>, ?) (<50,0,C>, 0) (<51,0,A>, A) (<51,0,B>, ?) (<51,0,C>, ?) (<52,0,A>, A) (<52,0,B>, ?) (<52,0,C>, ?) (<53,0,A>, A) (<53,0,B>, ?) (<53,0,C>, ?) (<54,0,A>, A) (<54,0,B>, ?) (<54,0,C>, 1) (<55,0,A>, A) (<55,0,B>, ?) (<55,0,C>, 0) (<56,0,A>, A) (<56,0,B>, ?) (<56,0,C>, 0) + Applied Processor: ChainProcessor False [8,9,10,11,12,13,26,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56] + Details: We chained rule 8 to obtain the rules [57,58,59] . * Step 12: ChainProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 9. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [0 >= 2 + C && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D] (?,1) 10. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [1 + C = 0] (?,1) 11. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C] (?,1) 12. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [0 >= 2 + C && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D] (?,1) 13. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1) [1 + C = 0] (?,1) 26. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D) [C >= 0 (?,1) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C] 39. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D) [0 >= 2 + C (?,1) && 0 >= E && 0 >= F && 0 >= D && 2*E >= 1 + C && 2 + C >= 2*E && 2*F >= 1 + C && 2 + C >= 2*F && 2*D >= 1 + C && 2 + C >= 2*D] 40. evalrealheapsortstep1bb5in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) True (?,1) 41. evalrealheapsortstep1returnin(A,B,C) -> evalrealheapsortstep1stop(A,B,C) True (?,1) 42. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1bb6in(A,1,C) [A >= 3] (1,2) 43. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1returnin(A,B,C) [2 >= A] (1,2) 44. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,B) [A >= 1 + B && 0 >= B] (?,2) 45. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb4in(A,B,B) [A >= 1 + B && B >= 1] (?,2) 46. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1stop(A,B,C) [B >= A] (?,2) 47. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [0 >= C] (?,2) 48. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 1 && 1 + C = 0] (?,2) 49. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] (?,2) 50. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 1 && 0 >= 2 + C && 0 >= D$ && 2*D$ >= 1 + C && 2 + C >= 2*D$] (?,2) 51. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 1 && 1 + C = 0] (?,2) 52. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] (?,2) 53. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 1 && 0 >= 2 + C && 0 >= D$ && 2*D$ >= 1 + C && 2 + C >= 2*D$] (?,2) 54. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1) [1 + C = 0 && 1 + C = 0] (?,2) 55. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [1 + C = 0 (?,2) && C >= 0 && E$ >= 0 && 1 + C >= 2*E$ && 2*E$ >= C && F$ >= 0 && 1 + C >= 2*F$ && 2*F$ >= C && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] 56. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [1 + C = 0 (?,2) && 0 >= 2 + C && 0 >= E$ && 0 >= F$ && 0 >= D$ && 2*E$ >= 1 + C && 2 + C >= 2*E$ && 2*F$ >= 1 + C && 2 + C >= 2*F$ && 2*D$ >= 1 + C && 2 + C >= 2*D$] 57. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C && 1 + C = 0] (?,2) 58. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [C >= 0 (?,2) && D >= 0 && 1 + C >= 2*D && 2*D >= C && C >= 0 && E$ >= 0 && 1 + C >= 2*E$ && 2*E$ >= C && F$ >= 0 && 1 + C >= 2*F$ && 2*F$ >= C && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] 59. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [C >= 0 (?,2) && D >= 0 && 1 + C >= 2*D && 2*D >= C && 0 >= 2 + C && 0 >= E$ && 0 >= F$ && 0 >= D$ && 2*E$ >= 1 + C && 2 + C >= 2*E$ && 2*F$ >= 1 + C && 2 + C >= 2*F$ && 2*D$ >= 1 + C && 2 + C >= 2*D$] Signature: {(evalrealheapsortstep1bb2in,3) ;(evalrealheapsortstep1bb3in,3) ;(evalrealheapsortstep1bb4in,3) ;(evalrealheapsortstep1bb5in,3) ;(evalrealheapsortstep1bb6in,3) ;(evalrealheapsortstep1entryin,3) ;(evalrealheapsortstep1returnin,3) ;(evalrealheapsortstep1start,3) ;(evalrealheapsortstep1stop,3)} Flow Graph: [9->{13,26,39},10->{40},11->{40},12->{40},13->{47,48,49,50,51,52,53},26->{47,48,49,50,51,52,53},39->{47,48 ,49,50,51,52,53},40->{44,45,46},41->{},42->{44,45,46},43->{41},44->{40},45->{9,10,11,12,54,55,56,57,58,59} ,46->{},47->{44,45,46},48->{13,26,39},49->{13,26,39},50->{13,26,39},51->{40},52->{40},53->{40},54->{47,48,49 ,50,51,52,53},55->{47,48,49,50,51,52,53},56->{47,48,49,50,51,52,53},57->{47,48,49,50,51,52,53},58->{47,48,49 ,50,51,52,53},59->{47,48,49,50,51,52,53}] Sizebounds: (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, 0) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, ?) (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, ?) (<12,0,A>, A) (<12,0,B>, ?) (<12,0,C>, ?) (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, 1) (<26,0,A>, A) (<26,0,B>, ?) (<26,0,C>, 0) (<39,0,A>, A) (<39,0,B>, ?) (<39,0,C>, 0) (<40,0,A>, A) (<40,0,B>, ?) (<40,0,C>, ?) (<41,0,A>, A) (<41,0,B>, ?) (<41,0,C>, ?) (<42,0,A>, A) (<42,0,B>, 1) (<42,0,C>, C) (<43,0,A>, A) (<43,0,B>, B) (<43,0,C>, C) (<44,0,A>, A) (<44,0,B>, ?) (<44,0,C>, ?) (<45,0,A>, A) (<45,0,B>, ?) (<45,0,C>, ?) (<46,0,A>, A) (<46,0,B>, ?) (<46,0,C>, ?) (<47,0,A>, A) (<47,0,B>, ?) (<47,0,C>, ?) (<48,0,A>, A) (<48,0,B>, ?) (<48,0,C>, 0) (<49,0,A>, A) (<49,0,B>, ?) (<49,0,C>, ?) (<50,0,A>, A) (<50,0,B>, ?) (<50,0,C>, 0) (<51,0,A>, A) (<51,0,B>, ?) (<51,0,C>, ?) (<52,0,A>, A) (<52,0,B>, ?) (<52,0,C>, ?) (<53,0,A>, A) (<53,0,B>, ?) (<53,0,C>, ?) (<54,0,A>, A) (<54,0,B>, ?) (<54,0,C>, 1) (<55,0,A>, A) (<55,0,B>, ?) (<55,0,C>, 0) (<56,0,A>, A) (<56,0,B>, ?) (<56,0,C>, 0) (<57,0,A>, A) (<57,0,B>, ?) (<57,0,C>, 1) (<58,0,A>, A) (<58,0,B>, ?) (<58,0,C>, 0) (<59,0,A>, A) (<59,0,B>, ?) (<59,0,C>, 0) + Applied Processor: ChainProcessor False [9,10,11,12,13,26,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59] + Details: We chained rule 9 to obtain the rules [60,61,62] . * Step 13: ChainProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 10. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [1 + C = 0] (?,1) 11. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C] (?,1) 12. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [0 >= 2 + C && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D] (?,1) 13. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1) [1 + C = 0] (?,1) 26. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D) [C >= 0 (?,1) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C] 39. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D) [0 >= 2 + C (?,1) && 0 >= E && 0 >= F && 0 >= D && 2*E >= 1 + C && 2 + C >= 2*E && 2*F >= 1 + C && 2 + C >= 2*F && 2*D >= 1 + C && 2 + C >= 2*D] 40. evalrealheapsortstep1bb5in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) True (?,1) 41. evalrealheapsortstep1returnin(A,B,C) -> evalrealheapsortstep1stop(A,B,C) True (?,1) 42. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1bb6in(A,1,C) [A >= 3] (1,2) 43. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1returnin(A,B,C) [2 >= A] (1,2) 44. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,B) [A >= 1 + B && 0 >= B] (?,2) 45. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb4in(A,B,B) [A >= 1 + B && B >= 1] (?,2) 46. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1stop(A,B,C) [B >= A] (?,2) 47. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [0 >= C] (?,2) 48. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 1 && 1 + C = 0] (?,2) 49. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] (?,2) 50. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 1 && 0 >= 2 + C && 0 >= D$ && 2*D$ >= 1 + C && 2 + C >= 2*D$] (?,2) 51. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 1 && 1 + C = 0] (?,2) 52. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] (?,2) 53. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 1 && 0 >= 2 + C && 0 >= D$ && 2*D$ >= 1 + C && 2 + C >= 2*D$] (?,2) 54. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1) [1 + C = 0 && 1 + C = 0] (?,2) 55. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [1 + C = 0 (?,2) && C >= 0 && E$ >= 0 && 1 + C >= 2*E$ && 2*E$ >= C && F$ >= 0 && 1 + C >= 2*F$ && 2*F$ >= C && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] 56. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [1 + C = 0 (?,2) && 0 >= 2 + C && 0 >= E$ && 0 >= F$ && 0 >= D$ && 2*E$ >= 1 + C && 2 + C >= 2*E$ && 2*F$ >= 1 + C && 2 + C >= 2*F$ && 2*D$ >= 1 + C && 2 + C >= 2*D$] 57. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C && 1 + C = 0] (?,2) 58. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [C >= 0 (?,2) && D >= 0 && 1 + C >= 2*D && 2*D >= C && C >= 0 && E$ >= 0 && 1 + C >= 2*E$ && 2*E$ >= C && F$ >= 0 && 1 + C >= 2*F$ && 2*F$ >= C && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] 59. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [C >= 0 (?,2) && D >= 0 && 1 + C >= 2*D && 2*D >= C && 0 >= 2 + C && 0 >= E$ && 0 >= F$ && 0 >= D$ && 2*E$ >= 1 + C && 2 + C >= 2*E$ && 2*F$ >= 1 + C && 2 + C >= 2*F$ && 2*D$ >= 1 + C && 2 + C >= 2*D$] 60. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1) [0 >= 2 + C && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D && 1 + C = 0] (?,2) 61. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [0 >= 2 + C (?,2) && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D && C >= 0 && E$ >= 0 && 1 + C >= 2*E$ && 2*E$ >= C && F$ >= 0 && 1 + C >= 2*F$ && 2*F$ >= C && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] 62. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [0 >= 2 + C (?,2) && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D && 0 >= 2 + C && 0 >= E$ && 0 >= F$ && 0 >= D$ && 2*E$ >= 1 + C && 2 + C >= 2*E$ && 2*F$ >= 1 + C && 2 + C >= 2*F$ && 2*D$ >= 1 + C && 2 + C >= 2*D$] Signature: {(evalrealheapsortstep1bb2in,3) ;(evalrealheapsortstep1bb3in,3) ;(evalrealheapsortstep1bb4in,3) ;(evalrealheapsortstep1bb5in,3) ;(evalrealheapsortstep1bb6in,3) ;(evalrealheapsortstep1entryin,3) ;(evalrealheapsortstep1returnin,3) ;(evalrealheapsortstep1start,3) ;(evalrealheapsortstep1stop,3)} Flow Graph: [10->{40},11->{40},12->{40},13->{47,48,49,50,51,52,53},26->{47,48,49,50,51,52,53},39->{47,48,49,50,51,52 ,53},40->{44,45,46},41->{},42->{44,45,46},43->{41},44->{40},45->{10,11,12,54,55,56,57,58,59,60,61,62},46->{} ,47->{44,45,46},48->{13,26,39},49->{13,26,39},50->{13,26,39},51->{40},52->{40},53->{40},54->{47,48,49,50,51 ,52,53},55->{47,48,49,50,51,52,53},56->{47,48,49,50,51,52,53},57->{47,48,49,50,51,52,53},58->{47,48,49,50,51 ,52,53},59->{47,48,49,50,51,52,53},60->{47,48,49,50,51,52,53},61->{47,48,49,50,51,52,53},62->{47,48,49,50,51 ,52,53}] Sizebounds: (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, ?) (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, ?) (<12,0,A>, A) (<12,0,B>, ?) (<12,0,C>, ?) (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, 1) (<26,0,A>, A) (<26,0,B>, ?) (<26,0,C>, 0) (<39,0,A>, A) (<39,0,B>, ?) (<39,0,C>, 0) (<40,0,A>, A) (<40,0,B>, ?) (<40,0,C>, ?) (<41,0,A>, A) (<41,0,B>, ?) (<41,0,C>, ?) (<42,0,A>, A) (<42,0,B>, 1) (<42,0,C>, C) (<43,0,A>, A) (<43,0,B>, B) (<43,0,C>, C) (<44,0,A>, A) (<44,0,B>, ?) (<44,0,C>, ?) (<45,0,A>, A) (<45,0,B>, ?) (<45,0,C>, ?) (<46,0,A>, A) (<46,0,B>, ?) (<46,0,C>, ?) (<47,0,A>, A) (<47,0,B>, ?) (<47,0,C>, ?) (<48,0,A>, A) (<48,0,B>, ?) (<48,0,C>, 0) (<49,0,A>, A) (<49,0,B>, ?) (<49,0,C>, ?) (<50,0,A>, A) (<50,0,B>, ?) (<50,0,C>, 0) (<51,0,A>, A) (<51,0,B>, ?) (<51,0,C>, ?) (<52,0,A>, A) (<52,0,B>, ?) (<52,0,C>, ?) (<53,0,A>, A) (<53,0,B>, ?) (<53,0,C>, ?) (<54,0,A>, A) (<54,0,B>, ?) (<54,0,C>, 1) (<55,0,A>, A) (<55,0,B>, ?) (<55,0,C>, 0) (<56,0,A>, A) (<56,0,B>, ?) (<56,0,C>, 0) (<57,0,A>, A) (<57,0,B>, ?) (<57,0,C>, 1) (<58,0,A>, A) (<58,0,B>, ?) (<58,0,C>, 0) (<59,0,A>, A) (<59,0,B>, ?) (<59,0,C>, 0) (<60,0,A>, A) (<60,0,B>, ?) (<60,0,C>, 1) (<61,0,A>, A) (<61,0,B>, ?) (<61,0,C>, 0) (<62,0,A>, A) (<62,0,B>, ?) (<62,0,C>, 0) + Applied Processor: ChainProcessor False [10,11,12,13,26,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62] + Details: We chained rule 10 to obtain the rules [63] . * Step 14: ChainProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 11. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C] (?,1) 12. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [0 >= 2 + C && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D] (?,1) 13. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1) [1 + C = 0] (?,1) 26. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D) [C >= 0 (?,1) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C] 39. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D) [0 >= 2 + C (?,1) && 0 >= E && 0 >= F && 0 >= D && 2*E >= 1 + C && 2 + C >= 2*E && 2*F >= 1 + C && 2 + C >= 2*F && 2*D >= 1 + C && 2 + C >= 2*D] 40. evalrealheapsortstep1bb5in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) True (?,1) 41. evalrealheapsortstep1returnin(A,B,C) -> evalrealheapsortstep1stop(A,B,C) True (?,1) 42. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1bb6in(A,1,C) [A >= 3] (1,2) 43. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1returnin(A,B,C) [2 >= A] (1,2) 44. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,B) [A >= 1 + B && 0 >= B] (?,2) 45. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb4in(A,B,B) [A >= 1 + B && B >= 1] (?,2) 46. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1stop(A,B,C) [B >= A] (?,2) 47. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [0 >= C] (?,2) 48. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 1 && 1 + C = 0] (?,2) 49. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] (?,2) 50. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 1 && 0 >= 2 + C && 0 >= D$ && 2*D$ >= 1 + C && 2 + C >= 2*D$] (?,2) 51. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 1 && 1 + C = 0] (?,2) 52. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] (?,2) 53. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 1 && 0 >= 2 + C && 0 >= D$ && 2*D$ >= 1 + C && 2 + C >= 2*D$] (?,2) 54. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1) [1 + C = 0 && 1 + C = 0] (?,2) 55. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [1 + C = 0 (?,2) && C >= 0 && E$ >= 0 && 1 + C >= 2*E$ && 2*E$ >= C && F$ >= 0 && 1 + C >= 2*F$ && 2*F$ >= C && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] 56. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [1 + C = 0 (?,2) && 0 >= 2 + C && 0 >= E$ && 0 >= F$ && 0 >= D$ && 2*E$ >= 1 + C && 2 + C >= 2*E$ && 2*F$ >= 1 + C && 2 + C >= 2*F$ && 2*D$ >= 1 + C && 2 + C >= 2*D$] 57. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C && 1 + C = 0] (?,2) 58. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [C >= 0 (?,2) && D >= 0 && 1 + C >= 2*D && 2*D >= C && C >= 0 && E$ >= 0 && 1 + C >= 2*E$ && 2*E$ >= C && F$ >= 0 && 1 + C >= 2*F$ && 2*F$ >= C && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] 59. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [C >= 0 (?,2) && D >= 0 && 1 + C >= 2*D && 2*D >= C && 0 >= 2 + C && 0 >= E$ && 0 >= F$ && 0 >= D$ && 2*E$ >= 1 + C && 2 + C >= 2*E$ && 2*F$ >= 1 + C && 2 + C >= 2*F$ && 2*D$ >= 1 + C && 2 + C >= 2*D$] 60. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1) [0 >= 2 + C && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D && 1 + C = 0] (?,2) 61. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [0 >= 2 + C (?,2) && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D && C >= 0 && E$ >= 0 && 1 + C >= 2*E$ && 2*E$ >= C && F$ >= 0 && 1 + C >= 2*F$ && 2*F$ >= C && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] 62. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [0 >= 2 + C (?,2) && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D && 0 >= 2 + C && 0 >= E$ && 0 >= F$ && 0 >= D$ && 2*E$ >= 1 + C && 2 + C >= 2*E$ && 2*F$ >= 1 + C && 2 + C >= 2*F$ && 2*D$ >= 1 + C && 2 + C >= 2*D$] 63. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [1 + C = 0] (?,2) Signature: {(evalrealheapsortstep1bb2in,3) ;(evalrealheapsortstep1bb3in,3) ;(evalrealheapsortstep1bb4in,3) ;(evalrealheapsortstep1bb5in,3) ;(evalrealheapsortstep1bb6in,3) ;(evalrealheapsortstep1entryin,3) ;(evalrealheapsortstep1returnin,3) ;(evalrealheapsortstep1start,3) ;(evalrealheapsortstep1stop,3)} Flow Graph: [11->{40},12->{40},13->{47,48,49,50,51,52,53},26->{47,48,49,50,51,52,53},39->{47,48,49,50,51,52,53} ,40->{44,45,46},41->{},42->{44,45,46},43->{41},44->{40},45->{11,12,54,55,56,57,58,59,60,61,62,63},46->{} ,47->{44,45,46},48->{13,26,39},49->{13,26,39},50->{13,26,39},51->{40},52->{40},53->{40},54->{47,48,49,50,51 ,52,53},55->{47,48,49,50,51,52,53},56->{47,48,49,50,51,52,53},57->{47,48,49,50,51,52,53},58->{47,48,49,50,51 ,52,53},59->{47,48,49,50,51,52,53},60->{47,48,49,50,51,52,53},61->{47,48,49,50,51,52,53},62->{47,48,49,50,51 ,52,53},63->{44,45,46}] Sizebounds: (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, ?) (<12,0,A>, A) (<12,0,B>, ?) (<12,0,C>, ?) (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, 1) (<26,0,A>, A) (<26,0,B>, ?) (<26,0,C>, 0) (<39,0,A>, A) (<39,0,B>, ?) (<39,0,C>, 0) (<40,0,A>, A) (<40,0,B>, ?) (<40,0,C>, ?) (<41,0,A>, A) (<41,0,B>, ?) (<41,0,C>, ?) (<42,0,A>, A) (<42,0,B>, 1) (<42,0,C>, C) (<43,0,A>, A) (<43,0,B>, B) (<43,0,C>, C) (<44,0,A>, A) (<44,0,B>, ?) (<44,0,C>, ?) (<45,0,A>, A) (<45,0,B>, ?) (<45,0,C>, ?) (<46,0,A>, A) (<46,0,B>, ?) (<46,0,C>, ?) (<47,0,A>, A) (<47,0,B>, ?) (<47,0,C>, ?) (<48,0,A>, A) (<48,0,B>, ?) (<48,0,C>, 0) (<49,0,A>, A) (<49,0,B>, ?) (<49,0,C>, ?) (<50,0,A>, A) (<50,0,B>, ?) (<50,0,C>, 0) (<51,0,A>, A) (<51,0,B>, ?) (<51,0,C>, ?) (<52,0,A>, A) (<52,0,B>, ?) (<52,0,C>, ?) (<53,0,A>, A) (<53,0,B>, ?) (<53,0,C>, ?) (<54,0,A>, A) (<54,0,B>, ?) (<54,0,C>, 1) (<55,0,A>, A) (<55,0,B>, ?) (<55,0,C>, 0) (<56,0,A>, A) (<56,0,B>, ?) (<56,0,C>, 0) (<57,0,A>, A) (<57,0,B>, ?) (<57,0,C>, 1) (<58,0,A>, A) (<58,0,B>, ?) (<58,0,C>, 0) (<59,0,A>, A) (<59,0,B>, ?) (<59,0,C>, 0) (<60,0,A>, A) (<60,0,B>, ?) (<60,0,C>, 1) (<61,0,A>, A) (<61,0,B>, ?) (<61,0,C>, 0) (<62,0,A>, A) (<62,0,B>, ?) (<62,0,C>, 0) (<63,0,A>, A) (<63,0,B>, ?) (<63,0,C>, ?) + Applied Processor: ChainProcessor False [11,12,13,26,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63] + Details: We chained rule 11 to obtain the rules [64] . * Step 15: ChainProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 12. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [0 >= 2 + C && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D] (?,1) 13. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1) [1 + C = 0] (?,1) 26. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D) [C >= 0 (?,1) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C] 39. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D) [0 >= 2 + C (?,1) && 0 >= E && 0 >= F && 0 >= D && 2*E >= 1 + C && 2 + C >= 2*E && 2*F >= 1 + C && 2 + C >= 2*F && 2*D >= 1 + C && 2 + C >= 2*D] 40. evalrealheapsortstep1bb5in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) True (?,1) 41. evalrealheapsortstep1returnin(A,B,C) -> evalrealheapsortstep1stop(A,B,C) True (?,1) 42. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1bb6in(A,1,C) [A >= 3] (1,2) 43. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1returnin(A,B,C) [2 >= A] (1,2) 44. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,B) [A >= 1 + B && 0 >= B] (?,2) 45. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb4in(A,B,B) [A >= 1 + B && B >= 1] (?,2) 46. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1stop(A,B,C) [B >= A] (?,2) 47. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [0 >= C] (?,2) 48. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 1 && 1 + C = 0] (?,2) 49. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] (?,2) 50. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 1 && 0 >= 2 + C && 0 >= D$ && 2*D$ >= 1 + C && 2 + C >= 2*D$] (?,2) 51. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 1 && 1 + C = 0] (?,2) 52. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] (?,2) 53. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 1 && 0 >= 2 + C && 0 >= D$ && 2*D$ >= 1 + C && 2 + C >= 2*D$] (?,2) 54. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1) [1 + C = 0 && 1 + C = 0] (?,2) 55. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [1 + C = 0 (?,2) && C >= 0 && E$ >= 0 && 1 + C >= 2*E$ && 2*E$ >= C && F$ >= 0 && 1 + C >= 2*F$ && 2*F$ >= C && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] 56. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [1 + C = 0 (?,2) && 0 >= 2 + C && 0 >= E$ && 0 >= F$ && 0 >= D$ && 2*E$ >= 1 + C && 2 + C >= 2*E$ && 2*F$ >= 1 + C && 2 + C >= 2*F$ && 2*D$ >= 1 + C && 2 + C >= 2*D$] 57. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C && 1 + C = 0] (?,2) 58. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [C >= 0 (?,2) && D >= 0 && 1 + C >= 2*D && 2*D >= C && C >= 0 && E$ >= 0 && 1 + C >= 2*E$ && 2*E$ >= C && F$ >= 0 && 1 + C >= 2*F$ && 2*F$ >= C && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] 59. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [C >= 0 (?,2) && D >= 0 && 1 + C >= 2*D && 2*D >= C && 0 >= 2 + C && 0 >= E$ && 0 >= F$ && 0 >= D$ && 2*E$ >= 1 + C && 2 + C >= 2*E$ && 2*F$ >= 1 + C && 2 + C >= 2*F$ && 2*D$ >= 1 + C && 2 + C >= 2*D$] 60. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1) [0 >= 2 + C && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D && 1 + C = 0] (?,2) 61. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [0 >= 2 + C (?,2) && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D && C >= 0 && E$ >= 0 && 1 + C >= 2*E$ && 2*E$ >= C && F$ >= 0 && 1 + C >= 2*F$ && 2*F$ >= C && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] 62. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [0 >= 2 + C (?,2) && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D && 0 >= 2 + C && 0 >= E$ && 0 >= F$ && 0 >= D$ && 2*E$ >= 1 + C && 2 + C >= 2*E$ && 2*F$ >= 1 + C && 2 + C >= 2*F$ && 2*D$ >= 1 + C && 2 + C >= 2*D$] 63. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [1 + C = 0] (?,2) 64. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C] (?,2) Signature: {(evalrealheapsortstep1bb2in,3) ;(evalrealheapsortstep1bb3in,3) ;(evalrealheapsortstep1bb4in,3) ;(evalrealheapsortstep1bb5in,3) ;(evalrealheapsortstep1bb6in,3) ;(evalrealheapsortstep1entryin,3) ;(evalrealheapsortstep1returnin,3) ;(evalrealheapsortstep1start,3) ;(evalrealheapsortstep1stop,3)} Flow Graph: [12->{40},13->{47,48,49,50,51,52,53},26->{47,48,49,50,51,52,53},39->{47,48,49,50,51,52,53},40->{44,45,46} ,41->{},42->{44,45,46},43->{41},44->{40},45->{12,54,55,56,57,58,59,60,61,62,63,64},46->{},47->{44,45,46} ,48->{13,26,39},49->{13,26,39},50->{13,26,39},51->{40},52->{40},53->{40},54->{47,48,49,50,51,52,53},55->{47 ,48,49,50,51,52,53},56->{47,48,49,50,51,52,53},57->{47,48,49,50,51,52,53},58->{47,48,49,50,51,52,53},59->{47 ,48,49,50,51,52,53},60->{47,48,49,50,51,52,53},61->{47,48,49,50,51,52,53},62->{47,48,49,50,51,52,53},63->{44 ,45,46},64->{44,45,46}] Sizebounds: (<12,0,A>, A) (<12,0,B>, ?) (<12,0,C>, ?) (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, 1) (<26,0,A>, A) (<26,0,B>, ?) (<26,0,C>, 0) (<39,0,A>, A) (<39,0,B>, ?) (<39,0,C>, 0) (<40,0,A>, A) (<40,0,B>, ?) (<40,0,C>, ?) (<41,0,A>, A) (<41,0,B>, ?) (<41,0,C>, ?) (<42,0,A>, A) (<42,0,B>, 1) (<42,0,C>, C) (<43,0,A>, A) (<43,0,B>, B) (<43,0,C>, C) (<44,0,A>, A) (<44,0,B>, ?) (<44,0,C>, ?) (<45,0,A>, A) (<45,0,B>, ?) (<45,0,C>, ?) (<46,0,A>, A) (<46,0,B>, ?) (<46,0,C>, ?) (<47,0,A>, A) (<47,0,B>, ?) (<47,0,C>, ?) (<48,0,A>, A) (<48,0,B>, ?) (<48,0,C>, 0) (<49,0,A>, A) (<49,0,B>, ?) (<49,0,C>, ?) (<50,0,A>, A) (<50,0,B>, ?) (<50,0,C>, 0) (<51,0,A>, A) (<51,0,B>, ?) (<51,0,C>, ?) (<52,0,A>, A) (<52,0,B>, ?) (<52,0,C>, ?) (<53,0,A>, A) (<53,0,B>, ?) (<53,0,C>, ?) (<54,0,A>, A) (<54,0,B>, ?) (<54,0,C>, 1) (<55,0,A>, A) (<55,0,B>, ?) (<55,0,C>, 0) (<56,0,A>, A) (<56,0,B>, ?) (<56,0,C>, 0) (<57,0,A>, A) (<57,0,B>, ?) (<57,0,C>, 1) (<58,0,A>, A) (<58,0,B>, ?) (<58,0,C>, 0) (<59,0,A>, A) (<59,0,B>, ?) (<59,0,C>, 0) (<60,0,A>, A) (<60,0,B>, ?) (<60,0,C>, 1) (<61,0,A>, A) (<61,0,B>, ?) (<61,0,C>, 0) (<62,0,A>, A) (<62,0,B>, ?) (<62,0,C>, 0) (<63,0,A>, A) (<63,0,B>, ?) (<63,0,C>, ?) (<64,0,A>, A) (<64,0,B>, ?) (<64,0,C>, ?) + Applied Processor: ChainProcessor False [12,13,26,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64] + Details: We chained rule 12 to obtain the rules [65] . * Step 16: ChainProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 13. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1) [1 + C = 0] (?,1) 26. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D) [C >= 0 (?,1) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C] 39. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D) [0 >= 2 + C (?,1) && 0 >= E && 0 >= F && 0 >= D && 2*E >= 1 + C && 2 + C >= 2*E && 2*F >= 1 + C && 2 + C >= 2*F && 2*D >= 1 + C && 2 + C >= 2*D] 40. evalrealheapsortstep1bb5in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) True (?,1) 41. evalrealheapsortstep1returnin(A,B,C) -> evalrealheapsortstep1stop(A,B,C) True (?,1) 42. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1bb6in(A,1,C) [A >= 3] (1,2) 43. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1returnin(A,B,C) [2 >= A] (1,2) 44. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,B) [A >= 1 + B && 0 >= B] (?,2) 45. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb4in(A,B,B) [A >= 1 + B && B >= 1] (?,2) 46. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1stop(A,B,C) [B >= A] (?,2) 47. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [0 >= C] (?,2) 48. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 1 && 1 + C = 0] (?,2) 49. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] (?,2) 50. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 1 && 0 >= 2 + C && 0 >= D$ && 2*D$ >= 1 + C && 2 + C >= 2*D$] (?,2) 51. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 1 && 1 + C = 0] (?,2) 52. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] (?,2) 53. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 1 && 0 >= 2 + C && 0 >= D$ && 2*D$ >= 1 + C && 2 + C >= 2*D$] (?,2) 54. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1) [1 + C = 0 && 1 + C = 0] (?,2) 55. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [1 + C = 0 (?,2) && C >= 0 && E$ >= 0 && 1 + C >= 2*E$ && 2*E$ >= C && F$ >= 0 && 1 + C >= 2*F$ && 2*F$ >= C && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] 56. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [1 + C = 0 (?,2) && 0 >= 2 + C && 0 >= E$ && 0 >= F$ && 0 >= D$ && 2*E$ >= 1 + C && 2 + C >= 2*E$ && 2*F$ >= 1 + C && 2 + C >= 2*F$ && 2*D$ >= 1 + C && 2 + C >= 2*D$] 57. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C && 1 + C = 0] (?,2) 58. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [C >= 0 (?,2) && D >= 0 && 1 + C >= 2*D && 2*D >= C && C >= 0 && E$ >= 0 && 1 + C >= 2*E$ && 2*E$ >= C && F$ >= 0 && 1 + C >= 2*F$ && 2*F$ >= C && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] 59. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [C >= 0 (?,2) && D >= 0 && 1 + C >= 2*D && 2*D >= C && 0 >= 2 + C && 0 >= E$ && 0 >= F$ && 0 >= D$ && 2*E$ >= 1 + C && 2 + C >= 2*E$ && 2*F$ >= 1 + C && 2 + C >= 2*F$ && 2*D$ >= 1 + C && 2 + C >= 2*D$] 60. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1) [0 >= 2 + C && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D && 1 + C = 0] (?,2) 61. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [0 >= 2 + C (?,2) && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D && C >= 0 && E$ >= 0 && 1 + C >= 2*E$ && 2*E$ >= C && F$ >= 0 && 1 + C >= 2*F$ && 2*F$ >= C && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] 62. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [0 >= 2 + C (?,2) && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D && 0 >= 2 + C && 0 >= E$ && 0 >= F$ && 0 >= D$ && 2*E$ >= 1 + C && 2 + C >= 2*E$ && 2*F$ >= 1 + C && 2 + C >= 2*F$ && 2*D$ >= 1 + C && 2 + C >= 2*D$] 63. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [1 + C = 0] (?,2) 64. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C] (?,2) 65. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [0 >= 2 + C && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D] (?,2) Signature: {(evalrealheapsortstep1bb2in,3) ;(evalrealheapsortstep1bb3in,3) ;(evalrealheapsortstep1bb4in,3) ;(evalrealheapsortstep1bb5in,3) ;(evalrealheapsortstep1bb6in,3) ;(evalrealheapsortstep1entryin,3) ;(evalrealheapsortstep1returnin,3) ;(evalrealheapsortstep1start,3) ;(evalrealheapsortstep1stop,3)} Flow Graph: [13->{47,48,49,50,51,52,53},26->{47,48,49,50,51,52,53},39->{47,48,49,50,51,52,53},40->{44,45,46},41->{} ,42->{44,45,46},43->{41},44->{40},45->{54,55,56,57,58,59,60,61,62,63,64,65},46->{},47->{44,45,46},48->{13,26 ,39},49->{13,26,39},50->{13,26,39},51->{40},52->{40},53->{40},54->{47,48,49,50,51,52,53},55->{47,48,49,50,51 ,52,53},56->{47,48,49,50,51,52,53},57->{47,48,49,50,51,52,53},58->{47,48,49,50,51,52,53},59->{47,48,49,50,51 ,52,53},60->{47,48,49,50,51,52,53},61->{47,48,49,50,51,52,53},62->{47,48,49,50,51,52,53},63->{44,45,46} ,64->{44,45,46},65->{44,45,46}] Sizebounds: (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, 1) (<26,0,A>, A) (<26,0,B>, ?) (<26,0,C>, 0) (<39,0,A>, A) (<39,0,B>, ?) (<39,0,C>, 0) (<40,0,A>, A) (<40,0,B>, ?) (<40,0,C>, ?) (<41,0,A>, A) (<41,0,B>, ?) (<41,0,C>, ?) (<42,0,A>, A) (<42,0,B>, 1) (<42,0,C>, C) (<43,0,A>, A) (<43,0,B>, B) (<43,0,C>, C) (<44,0,A>, A) (<44,0,B>, ?) (<44,0,C>, ?) (<45,0,A>, A) (<45,0,B>, ?) (<45,0,C>, ?) (<46,0,A>, A) (<46,0,B>, ?) (<46,0,C>, ?) (<47,0,A>, A) (<47,0,B>, ?) (<47,0,C>, ?) (<48,0,A>, A) (<48,0,B>, ?) (<48,0,C>, 0) (<49,0,A>, A) (<49,0,B>, ?) (<49,0,C>, ?) (<50,0,A>, A) (<50,0,B>, ?) (<50,0,C>, 0) (<51,0,A>, A) (<51,0,B>, ?) (<51,0,C>, ?) (<52,0,A>, A) (<52,0,B>, ?) (<52,0,C>, ?) (<53,0,A>, A) (<53,0,B>, ?) (<53,0,C>, ?) (<54,0,A>, A) (<54,0,B>, ?) (<54,0,C>, 1) (<55,0,A>, A) (<55,0,B>, ?) (<55,0,C>, 0) (<56,0,A>, A) (<56,0,B>, ?) (<56,0,C>, 0) (<57,0,A>, A) (<57,0,B>, ?) (<57,0,C>, 1) (<58,0,A>, A) (<58,0,B>, ?) (<58,0,C>, 0) (<59,0,A>, A) (<59,0,B>, ?) (<59,0,C>, 0) (<60,0,A>, A) (<60,0,B>, ?) (<60,0,C>, 1) (<61,0,A>, A) (<61,0,B>, ?) (<61,0,C>, 0) (<62,0,A>, A) (<62,0,B>, ?) (<62,0,C>, 0) (<63,0,A>, A) (<63,0,B>, ?) (<63,0,C>, ?) (<64,0,A>, A) (<64,0,B>, ?) (<64,0,C>, ?) (<65,0,A>, A) (<65,0,B>, ?) (<65,0,C>, ?) + Applied Processor: ChainProcessor False [13,26,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65] + Details: We chained rule 13 to obtain the rules [66,67,68,69,70,71,72] . * Step 17: ChainProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 26. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D) [C >= 0 (?,1) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C] 39. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D) [0 >= 2 + C (?,1) && 0 >= E && 0 >= F && 0 >= D && 2*E >= 1 + C && 2 + C >= 2*E && 2*F >= 1 + C && 2 + C >= 2*F && 2*D >= 1 + C && 2 + C >= 2*D] 40. evalrealheapsortstep1bb5in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) True (?,1) 41. evalrealheapsortstep1returnin(A,B,C) -> evalrealheapsortstep1stop(A,B,C) True (?,1) 42. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1bb6in(A,1,C) [A >= 3] (1,2) 43. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1returnin(A,B,C) [2 >= A] (1,2) 44. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,B) [A >= 1 + B && 0 >= B] (?,2) 45. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb4in(A,B,B) [A >= 1 + B && B >= 1] (?,2) 46. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1stop(A,B,C) [B >= A] (?,2) 47. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [0 >= C] (?,2) 48. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 1 && 1 + C = 0] (?,2) 49. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] (?,2) 50. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 1 && 0 >= 2 + C && 0 >= D$ && 2*D$ >= 1 + C && 2 + C >= 2*D$] (?,2) 51. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 1 && 1 + C = 0] (?,2) 52. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] (?,2) 53. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 1 && 0 >= 2 + C && 0 >= D$ && 2*D$ >= 1 + C && 2 + C >= 2*D$] (?,2) 54. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1) [1 + C = 0 && 1 + C = 0] (?,2) 55. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [1 + C = 0 (?,2) && C >= 0 && E$ >= 0 && 1 + C >= 2*E$ && 2*E$ >= C && F$ >= 0 && 1 + C >= 2*F$ && 2*F$ >= C && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] 56. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [1 + C = 0 (?,2) && 0 >= 2 + C && 0 >= E$ && 0 >= F$ && 0 >= D$ && 2*E$ >= 1 + C && 2 + C >= 2*E$ && 2*F$ >= 1 + C && 2 + C >= 2*F$ && 2*D$ >= 1 + C && 2 + C >= 2*D$] 57. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C && 1 + C = 0] (?,2) 58. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [C >= 0 (?,2) && D >= 0 && 1 + C >= 2*D && 2*D >= C && C >= 0 && E$ >= 0 && 1 + C >= 2*E$ && 2*E$ >= C && F$ >= 0 && 1 + C >= 2*F$ && 2*F$ >= C && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] 59. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [C >= 0 (?,2) && D >= 0 && 1 + C >= 2*D && 2*D >= C && 0 >= 2 + C && 0 >= E$ && 0 >= F$ && 0 >= D$ && 2*E$ >= 1 + C && 2 + C >= 2*E$ && 2*F$ >= 1 + C && 2 + C >= 2*F$ && 2*D$ >= 1 + C && 2 + C >= 2*D$] 60. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1) [0 >= 2 + C && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D && 1 + C = 0] (?,2) 61. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [0 >= 2 + C (?,2) && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D && C >= 0 && E$ >= 0 && 1 + C >= 2*E$ && 2*E$ >= C && F$ >= 0 && 1 + C >= 2*F$ && 2*F$ >= C && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] 62. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [0 >= 2 + C (?,2) && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D && 0 >= 2 + C && 0 >= E$ && 0 >= F$ && 0 >= D$ && 2*E$ >= 1 + C && 2 + C >= 2*E$ && 2*F$ >= 1 + C && 2 + C >= 2*F$ && 2*D$ >= 1 + C && 2 + C >= 2*D$] 63. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [1 + C = 0] (?,2) 64. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C] (?,2) 65. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [0 >= 2 + C && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D] (?,2) 66. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,-1) [1 + C = 0 && 0 >= -1] (?,3) 67. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,-1) [1 + C = 0 && -1 >= 1 && 0 = 0] (?,3) 68. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,-1) [1 + C = 0 && -1 >= 1 && -1 >= 0 && D$$ >= 0 && 0 >= 2*D$$ && 2*D$$ >= -1] (?,3) 69. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,-1) [1 + C = 0 && -1 >= 1 && 0 >= 1 && 0 >= D$$ && 2*D$$ >= 0 && 1 >= 2*D$$] (?,3) 70. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,-1) [1 + C = 0 && -1 >= 1 && 0 = 0] (?,3) 71. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,-1) [1 + C = 0 && -1 >= 1 && -1 >= 0 && D$$ >= 0 && 0 >= 2*D$$ && 2*D$$ >= -1] (?,3) 72. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,-1) [1 + C = 0 && -1 >= 1 && 0 >= 1 && 0 >= D$$ && 2*D$$ >= 0 && 1 >= 2*D$$] (?,3) Signature: {(evalrealheapsortstep1bb2in,3) ;(evalrealheapsortstep1bb3in,3) ;(evalrealheapsortstep1bb4in,3) ;(evalrealheapsortstep1bb5in,3) ;(evalrealheapsortstep1bb6in,3) ;(evalrealheapsortstep1entryin,3) ;(evalrealheapsortstep1returnin,3) ;(evalrealheapsortstep1start,3) ;(evalrealheapsortstep1stop,3)} Flow Graph: [26->{47,48,49,50,51,52,53},39->{47,48,49,50,51,52,53},40->{44,45,46},41->{},42->{44,45,46},43->{41} ,44->{40},45->{54,55,56,57,58,59,60,61,62,63,64,65},46->{},47->{44,45,46},48->{26,39,66,67,68,69,70,71,72} ,49->{26,39,66,67,68,69,70,71,72},50->{26,39,66,67,68,69,70,71,72},51->{40},52->{40},53->{40},54->{47,48,49 ,50,51,52,53},55->{47,48,49,50,51,52,53},56->{47,48,49,50,51,52,53},57->{47,48,49,50,51,52,53},58->{47,48,49 ,50,51,52,53},59->{47,48,49,50,51,52,53},60->{47,48,49,50,51,52,53},61->{47,48,49,50,51,52,53},62->{47,48,49 ,50,51,52,53},63->{44,45,46},64->{44,45,46},65->{44,45,46},66->{44,45,46},67->{26,39,66,67,68,69,70,71,72} ,68->{26,39,66,67,68,69,70,71,72},69->{26,39,66,67,68,69,70,71,72},70->{40},71->{40},72->{40}] Sizebounds: (<26,0,A>, A) (<26,0,B>, ?) (<26,0,C>, 0) (<39,0,A>, A) (<39,0,B>, ?) (<39,0,C>, 0) (<40,0,A>, A) (<40,0,B>, ?) (<40,0,C>, ?) (<41,0,A>, A) (<41,0,B>, ?) (<41,0,C>, ?) (<42,0,A>, A) (<42,0,B>, 1) (<42,0,C>, C) (<43,0,A>, A) (<43,0,B>, B) (<43,0,C>, C) (<44,0,A>, A) (<44,0,B>, ?) (<44,0,C>, ?) (<45,0,A>, A) (<45,0,B>, ?) (<45,0,C>, ?) (<46,0,A>, A) (<46,0,B>, ?) (<46,0,C>, ?) (<47,0,A>, A) (<47,0,B>, ?) (<47,0,C>, ?) (<48,0,A>, A) (<48,0,B>, ?) (<48,0,C>, 0) (<49,0,A>, A) (<49,0,B>, ?) (<49,0,C>, ?) (<50,0,A>, A) (<50,0,B>, ?) (<50,0,C>, 0) (<51,0,A>, A) (<51,0,B>, ?) (<51,0,C>, ?) (<52,0,A>, A) (<52,0,B>, ?) (<52,0,C>, ?) (<53,0,A>, A) (<53,0,B>, ?) (<53,0,C>, ?) (<54,0,A>, A) (<54,0,B>, ?) (<54,0,C>, 1) (<55,0,A>, A) (<55,0,B>, ?) (<55,0,C>, 0) (<56,0,A>, A) (<56,0,B>, ?) (<56,0,C>, 0) (<57,0,A>, A) (<57,0,B>, ?) (<57,0,C>, 1) (<58,0,A>, A) (<58,0,B>, ?) (<58,0,C>, 0) (<59,0,A>, A) (<59,0,B>, ?) (<59,0,C>, 0) (<60,0,A>, A) (<60,0,B>, ?) (<60,0,C>, 1) (<61,0,A>, A) (<61,0,B>, ?) (<61,0,C>, 0) (<62,0,A>, A) (<62,0,B>, ?) (<62,0,C>, 0) (<63,0,A>, A) (<63,0,B>, ?) (<63,0,C>, ?) (<64,0,A>, A) (<64,0,B>, ?) (<64,0,C>, ?) (<65,0,A>, A) (<65,0,B>, ?) (<65,0,C>, ?) (<66,0,A>, A) (<66,0,B>, ?) (<66,0,C>, ?) (<67,0,A>, A) (<67,0,B>, ?) (<67,0,C>, 0) (<68,0,A>, A) (<68,0,B>, ?) (<68,0,C>, ?) (<69,0,A>, A) (<69,0,B>, ?) (<69,0,C>, 0) (<70,0,A>, A) (<70,0,B>, ?) (<70,0,C>, ?) (<71,0,A>, A) (<71,0,B>, ?) (<71,0,C>, ?) (<72,0,A>, A) (<72,0,B>, ?) (<72,0,C>, ?) + Applied Processor: ChainProcessor False [26,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72] + Details: We chained rule 26 to obtain the rules [73,74,75,76,77,78,79] . * Step 18: ChainProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 39. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D) [0 >= 2 + C (?,1) && 0 >= E && 0 >= F && 0 >= D && 2*E >= 1 + C && 2 + C >= 2*E && 2*F >= 1 + C && 2 + C >= 2*F && 2*D >= 1 + C && 2 + C >= 2*D] 40. evalrealheapsortstep1bb5in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) True (?,1) 41. evalrealheapsortstep1returnin(A,B,C) -> evalrealheapsortstep1stop(A,B,C) True (?,1) 42. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1bb6in(A,1,C) [A >= 3] (1,2) 43. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1returnin(A,B,C) [2 >= A] (1,2) 44. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,B) [A >= 1 + B && 0 >= B] (?,2) 45. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb4in(A,B,B) [A >= 1 + B && B >= 1] (?,2) 46. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1stop(A,B,C) [B >= A] (?,2) 47. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [0 >= C] (?,2) 48. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 1 && 1 + C = 0] (?,2) 49. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] (?,2) 50. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 1 && 0 >= 2 + C && 0 >= D$ && 2*D$ >= 1 + C && 2 + C >= 2*D$] (?,2) 51. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 1 && 1 + C = 0] (?,2) 52. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] (?,2) 53. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 1 && 0 >= 2 + C && 0 >= D$ && 2*D$ >= 1 + C && 2 + C >= 2*D$] (?,2) 54. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1) [1 + C = 0 && 1 + C = 0] (?,2) 55. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [1 + C = 0 (?,2) && C >= 0 && E$ >= 0 && 1 + C >= 2*E$ && 2*E$ >= C && F$ >= 0 && 1 + C >= 2*F$ && 2*F$ >= C && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] 56. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [1 + C = 0 (?,2) && 0 >= 2 + C && 0 >= E$ && 0 >= F$ && 0 >= D$ && 2*E$ >= 1 + C && 2 + C >= 2*E$ && 2*F$ >= 1 + C && 2 + C >= 2*F$ && 2*D$ >= 1 + C && 2 + C >= 2*D$] 57. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C && 1 + C = 0] (?,2) 58. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [C >= 0 (?,2) && D >= 0 && 1 + C >= 2*D && 2*D >= C && C >= 0 && E$ >= 0 && 1 + C >= 2*E$ && 2*E$ >= C && F$ >= 0 && 1 + C >= 2*F$ && 2*F$ >= C && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] 59. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [C >= 0 (?,2) && D >= 0 && 1 + C >= 2*D && 2*D >= C && 0 >= 2 + C && 0 >= E$ && 0 >= F$ && 0 >= D$ && 2*E$ >= 1 + C && 2 + C >= 2*E$ && 2*F$ >= 1 + C && 2 + C >= 2*F$ && 2*D$ >= 1 + C && 2 + C >= 2*D$] 60. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1) [0 >= 2 + C && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D && 1 + C = 0] (?,2) 61. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [0 >= 2 + C (?,2) && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D && C >= 0 && E$ >= 0 && 1 + C >= 2*E$ && 2*E$ >= C && F$ >= 0 && 1 + C >= 2*F$ && 2*F$ >= C && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] 62. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [0 >= 2 + C (?,2) && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D && 0 >= 2 + C && 0 >= E$ && 0 >= F$ && 0 >= D$ && 2*E$ >= 1 + C && 2 + C >= 2*E$ && 2*F$ >= 1 + C && 2 + C >= 2*F$ && 2*D$ >= 1 + C && 2 + C >= 2*D$] 63. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [1 + C = 0] (?,2) 64. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C] (?,2) 65. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [0 >= 2 + C && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D] (?,2) 66. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,-1) [1 + C = 0 && 0 >= -1] (?,3) 67. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,-1) [1 + C = 0 && -1 >= 1 && 0 = 0] (?,3) 68. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,-1) [1 + C = 0 && -1 >= 1 && -1 >= 0 && D$$ >= 0 && 0 >= 2*D$$ && 2*D$$ >= -1] (?,3) 69. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,-1) [1 + C = 0 && -1 >= 1 && 0 >= 1 && 0 >= D$$ && 2*D$$ >= 0 && 1 >= 2*D$$] (?,3) 70. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,-1) [1 + C = 0 && -1 >= 1 && 0 = 0] (?,3) 71. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,-1) [1 + C = 0 && -1 >= 1 && -1 >= 0 && D$$ >= 0 && 0 >= 2*D$$ && 2*D$$ >= -1] (?,3) 72. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,-1) [1 + C = 0 && -1 >= 1 && 0 >= 1 && 0 >= D$$ && 2*D$$ >= 0 && 1 >= 2*D$$] (?,3) 73. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && 0 >= -1 + D] 74. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && D = 0] 75. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && -1 + D >= 0 && D$$ >= 0 && D >= 2*D$$ && 2*D$$ >= -1 + D] 76. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && 0 >= 1 + D && 0 >= D$$ && 2*D$$ >= D && 1 + D >= 2*D$$] 77. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && D = 0] 78. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && -1 + D >= 0 && D$$ >= 0 && D >= 2*D$$ && 2*D$$ >= -1 + D] 79. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && 0 >= 1 + D && 0 >= D$$ && 2*D$$ >= D && 1 + D >= 2*D$$] Signature: {(evalrealheapsortstep1bb2in,3) ;(evalrealheapsortstep1bb3in,3) ;(evalrealheapsortstep1bb4in,3) ;(evalrealheapsortstep1bb5in,3) ;(evalrealheapsortstep1bb6in,3) ;(evalrealheapsortstep1entryin,3) ;(evalrealheapsortstep1returnin,3) ;(evalrealheapsortstep1start,3) ;(evalrealheapsortstep1stop,3)} Flow Graph: [39->{47,48,49,50,51,52,53},40->{44,45,46},41->{},42->{44,45,46},43->{41},44->{40},45->{54,55,56,57,58,59 ,60,61,62,63,64,65},46->{},47->{44,45,46},48->{39,66,67,68,69,70,71,72,73,74,75,76,77,78,79},49->{39,66,67 ,68,69,70,71,72,73,74,75,76,77,78,79},50->{39,66,67,68,69,70,71,72,73,74,75,76,77,78,79},51->{40},52->{40} ,53->{40},54->{47,48,49,50,51,52,53},55->{47,48,49,50,51,52,53},56->{47,48,49,50,51,52,53},57->{47,48,49,50 ,51,52,53},58->{47,48,49,50,51,52,53},59->{47,48,49,50,51,52,53},60->{47,48,49,50,51,52,53},61->{47,48,49,50 ,51,52,53},62->{47,48,49,50,51,52,53},63->{44,45,46},64->{44,45,46},65->{44,45,46},66->{44,45,46},67->{39,66 ,67,68,69,70,71,72,73,74,75,76,77,78,79},68->{39,66,67,68,69,70,71,72,73,74,75,76,77,78,79},69->{39,66,67,68 ,69,70,71,72,73,74,75,76,77,78,79},70->{40},71->{40},72->{40},73->{44,45,46},74->{39,66,67,68,69,70,71,72,73 ,74,75,76,77,78,79},75->{39,66,67,68,69,70,71,72,73,74,75,76,77,78,79},76->{39,66,67,68,69,70,71,72,73,74,75 ,76,77,78,79},77->{40},78->{40},79->{40}] Sizebounds: (<39,0,A>, A) (<39,0,B>, ?) (<39,0,C>, 0) (<40,0,A>, A) (<40,0,B>, ?) (<40,0,C>, ?) (<41,0,A>, A) (<41,0,B>, ?) (<41,0,C>, ?) (<42,0,A>, A) (<42,0,B>, 1) (<42,0,C>, C) (<43,0,A>, A) (<43,0,B>, B) (<43,0,C>, C) (<44,0,A>, A) (<44,0,B>, ?) (<44,0,C>, ?) (<45,0,A>, A) (<45,0,B>, ?) (<45,0,C>, ?) (<46,0,A>, A) (<46,0,B>, ?) (<46,0,C>, ?) (<47,0,A>, A) (<47,0,B>, ?) (<47,0,C>, ?) (<48,0,A>, A) (<48,0,B>, ?) (<48,0,C>, 0) (<49,0,A>, A) (<49,0,B>, ?) (<49,0,C>, ?) (<50,0,A>, A) (<50,0,B>, ?) (<50,0,C>, 0) (<51,0,A>, A) (<51,0,B>, ?) (<51,0,C>, ?) (<52,0,A>, A) (<52,0,B>, ?) (<52,0,C>, ?) (<53,0,A>, A) (<53,0,B>, ?) (<53,0,C>, ?) (<54,0,A>, A) (<54,0,B>, ?) (<54,0,C>, 1) (<55,0,A>, A) (<55,0,B>, ?) (<55,0,C>, 0) (<56,0,A>, A) (<56,0,B>, ?) (<56,0,C>, 0) (<57,0,A>, A) (<57,0,B>, ?) (<57,0,C>, 1) (<58,0,A>, A) (<58,0,B>, ?) (<58,0,C>, 0) (<59,0,A>, A) (<59,0,B>, ?) (<59,0,C>, 0) (<60,0,A>, A) (<60,0,B>, ?) (<60,0,C>, 1) (<61,0,A>, A) (<61,0,B>, ?) (<61,0,C>, 0) (<62,0,A>, A) (<62,0,B>, ?) (<62,0,C>, 0) (<63,0,A>, A) (<63,0,B>, ?) (<63,0,C>, ?) (<64,0,A>, A) (<64,0,B>, ?) (<64,0,C>, ?) (<65,0,A>, A) (<65,0,B>, ?) (<65,0,C>, ?) (<66,0,A>, A) (<66,0,B>, ?) (<66,0,C>, ?) (<67,0,A>, A) (<67,0,B>, ?) (<67,0,C>, 0) (<68,0,A>, A) (<68,0,B>, ?) (<68,0,C>, ?) (<69,0,A>, A) (<69,0,B>, ?) (<69,0,C>, 0) (<70,0,A>, A) (<70,0,B>, ?) (<70,0,C>, ?) (<71,0,A>, A) (<71,0,B>, ?) (<71,0,C>, ?) (<72,0,A>, A) (<72,0,B>, ?) (<72,0,C>, ?) (<73,0,A>, A) (<73,0,B>, ?) (<73,0,C>, ?) (<74,0,A>, A) (<74,0,B>, ?) (<74,0,C>, 0) (<75,0,A>, A) (<75,0,B>, ?) (<75,0,C>, ?) (<76,0,A>, A) (<76,0,B>, ?) (<76,0,C>, 0) (<77,0,A>, A) (<77,0,B>, ?) (<77,0,C>, ?) (<78,0,A>, A) (<78,0,B>, ?) (<78,0,C>, ?) (<79,0,A>, A) (<79,0,B>, ?) (<79,0,C>, ?) + Applied Processor: ChainProcessor False [39,40,41,42,43,44,46,47,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,70,71,72,73,77,78,79] + Details: We chained rule 39 to obtain the rules [80,81,82,83,84,85,86] . * Step 19: ChainProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 40. evalrealheapsortstep1bb5in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) True (?,1) 41. evalrealheapsortstep1returnin(A,B,C) -> evalrealheapsortstep1stop(A,B,C) True (?,1) 42. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1bb6in(A,1,C) [A >= 3] (1,2) 43. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1returnin(A,B,C) [2 >= A] (1,2) 44. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,B) [A >= 1 + B && 0 >= B] (?,2) 45. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb4in(A,B,B) [A >= 1 + B && B >= 1] (?,2) 46. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1stop(A,B,C) [B >= A] (?,2) 47. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [0 >= C] (?,2) 48. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 1 && 1 + C = 0] (?,2) 49. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] (?,2) 50. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 1 && 0 >= 2 + C && 0 >= D$ && 2*D$ >= 1 + C && 2 + C >= 2*D$] (?,2) 51. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 1 && 1 + C = 0] (?,2) 52. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] (?,2) 53. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 1 && 0 >= 2 + C && 0 >= D$ && 2*D$ >= 1 + C && 2 + C >= 2*D$] (?,2) 54. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1) [1 + C = 0 && 1 + C = 0] (?,2) 55. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [1 + C = 0 (?,2) && C >= 0 && E$ >= 0 && 1 + C >= 2*E$ && 2*E$ >= C && F$ >= 0 && 1 + C >= 2*F$ && 2*F$ >= C && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] 56. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [1 + C = 0 (?,2) && 0 >= 2 + C && 0 >= E$ && 0 >= F$ && 0 >= D$ && 2*E$ >= 1 + C && 2 + C >= 2*E$ && 2*F$ >= 1 + C && 2 + C >= 2*F$ && 2*D$ >= 1 + C && 2 + C >= 2*D$] 57. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C && 1 + C = 0] (?,2) 58. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [C >= 0 (?,2) && D >= 0 && 1 + C >= 2*D && 2*D >= C && C >= 0 && E$ >= 0 && 1 + C >= 2*E$ && 2*E$ >= C && F$ >= 0 && 1 + C >= 2*F$ && 2*F$ >= C && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] 59. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [C >= 0 (?,2) && D >= 0 && 1 + C >= 2*D && 2*D >= C && 0 >= 2 + C && 0 >= E$ && 0 >= F$ && 0 >= D$ && 2*E$ >= 1 + C && 2 + C >= 2*E$ && 2*F$ >= 1 + C && 2 + C >= 2*F$ && 2*D$ >= 1 + C && 2 + C >= 2*D$] 60. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1) [0 >= 2 + C && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D && 1 + C = 0] (?,2) 61. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [0 >= 2 + C (?,2) && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D && C >= 0 && E$ >= 0 && 1 + C >= 2*E$ && 2*E$ >= C && F$ >= 0 && 1 + C >= 2*F$ && 2*F$ >= C && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] 62. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [0 >= 2 + C (?,2) && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D && 0 >= 2 + C && 0 >= E$ && 0 >= F$ && 0 >= D$ && 2*E$ >= 1 + C && 2 + C >= 2*E$ && 2*F$ >= 1 + C && 2 + C >= 2*F$ && 2*D$ >= 1 + C && 2 + C >= 2*D$] 63. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [1 + C = 0] (?,2) 64. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C] (?,2) 65. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [0 >= 2 + C && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D] (?,2) 66. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,-1) [1 + C = 0 && 0 >= -1] (?,3) 67. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,-1) [1 + C = 0 && -1 >= 1 && 0 = 0] (?,3) 68. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,-1) [1 + C = 0 && -1 >= 1 && -1 >= 0 && D$$ >= 0 && 0 >= 2*D$$ && 2*D$$ >= -1] (?,3) 69. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,-1) [1 + C = 0 && -1 >= 1 && 0 >= 1 && 0 >= D$$ && 2*D$$ >= 0 && 1 >= 2*D$$] (?,3) 70. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,-1) [1 + C = 0 && -1 >= 1 && 0 = 0] (?,3) 71. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,-1) [1 + C = 0 && -1 >= 1 && -1 >= 0 && D$$ >= 0 && 0 >= 2*D$$ && 2*D$$ >= -1] (?,3) 72. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,-1) [1 + C = 0 && -1 >= 1 && 0 >= 1 && 0 >= D$$ && 2*D$$ >= 0 && 1 >= 2*D$$] (?,3) 73. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && 0 >= -1 + D] 74. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && D = 0] 75. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && -1 + D >= 0 && D$$ >= 0 && D >= 2*D$$ && 2*D$$ >= -1 + D] 76. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && 0 >= 1 + D && 0 >= D$$ && 2*D$$ >= D && 1 + D >= 2*D$$] 77. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && D = 0] 78. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && -1 + D >= 0 && D$$ >= 0 && D >= 2*D$$ && 2*D$$ >= -1 + D] 79. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && 0 >= 1 + D && 0 >= D$$ && 2*D$$ >= D && 1 + D >= 2*D$$] 80. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,-1 + D) [0 >= 2 + C (?,3) && 0 >= E && 0 >= F && 0 >= D && 2*E >= 1 + C && 2 + C >= 2*E && 2*F >= 1 + C && 2 + C >= 2*F && 2*D >= 1 + C && 2 + C >= 2*D && 0 >= -1 + D] 81. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,-1 + D) [0 >= 2 + C (?,3) && 0 >= E && 0 >= F && 0 >= D && 2*E >= 1 + C && 2 + C >= 2*E && 2*F >= 1 + C && 2 + C >= 2*F && 2*D >= 1 + C && 2 + C >= 2*D && -1 + D >= 1 && D = 0] 82. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,-1 + D) [0 >= 2 + C (?,3) && 0 >= E && 0 >= F && 0 >= D && 2*E >= 1 + C && 2 + C >= 2*E && 2*F >= 1 + C && 2 + C >= 2*F && 2*D >= 1 + C && 2 + C >= 2*D && -1 + D >= 1 && -1 + D >= 0 && D$$ >= 0 && D >= 2*D$$ && 2*D$$ >= -1 + D] 83. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,-1 + D) [0 >= 2 + C (?,3) && 0 >= E && 0 >= F && 0 >= D && 2*E >= 1 + C && 2 + C >= 2*E && 2*F >= 1 + C && 2 + C >= 2*F && 2*D >= 1 + C && 2 + C >= 2*D && -1 + D >= 1 && 0 >= 1 + D && 0 >= D$$ && 2*D$$ >= D && 1 + D >= 2*D$$] 84. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,-1 + D) [0 >= 2 + C (?,3) && 0 >= E && 0 >= F && 0 >= D && 2*E >= 1 + C && 2 + C >= 2*E && 2*F >= 1 + C && 2 + C >= 2*F && 2*D >= 1 + C && 2 + C >= 2*D && -1 + D >= 1 && D = 0] 85. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,-1 + D) [0 >= 2 + C (?,3) && 0 >= E && 0 >= F && 0 >= D && 2*E >= 1 + C && 2 + C >= 2*E && 2*F >= 1 + C && 2 + C >= 2*F && 2*D >= 1 + C && 2 + C >= 2*D && -1 + D >= 1 && -1 + D >= 0 && D$$ >= 0 && D >= 2*D$$ && 2*D$$ >= -1 + D] 86. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,-1 + D) [0 >= 2 + C (?,3) && 0 >= E && 0 >= F && 0 >= D && 2*E >= 1 + C && 2 + C >= 2*E && 2*F >= 1 + C && 2 + C >= 2*F && 2*D >= 1 + C && 2 + C >= 2*D && -1 + D >= 1 && 0 >= 1 + D && 0 >= D$$ && 2*D$$ >= D && 1 + D >= 2*D$$] Signature: {(evalrealheapsortstep1bb2in,3) ;(evalrealheapsortstep1bb3in,3) ;(evalrealheapsortstep1bb4in,3) ;(evalrealheapsortstep1bb5in,3) ;(evalrealheapsortstep1bb6in,3) ;(evalrealheapsortstep1entryin,3) ;(evalrealheapsortstep1returnin,3) ;(evalrealheapsortstep1start,3) ;(evalrealheapsortstep1stop,3)} Flow Graph: [40->{44,45,46},41->{},42->{44,45,46},43->{41},44->{40},45->{54,55,56,57,58,59,60,61,62,63,64,65},46->{} ,47->{44,45,46},48->{66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86},49->{66,67,68,69,70,71 ,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86},50->{66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84 ,85,86},51->{40},52->{40},53->{40},54->{47,48,49,50,51,52,53},55->{47,48,49,50,51,52,53},56->{47,48,49,50,51 ,52,53},57->{47,48,49,50,51,52,53},58->{47,48,49,50,51,52,53},59->{47,48,49,50,51,52,53},60->{47,48,49,50,51 ,52,53},61->{47,48,49,50,51,52,53},62->{47,48,49,50,51,52,53},63->{44,45,46},64->{44,45,46},65->{44,45,46} ,66->{44,45,46},67->{66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86},68->{66,67,68,69,70,71 ,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86},69->{66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84 ,85,86},70->{40},71->{40},72->{40},73->{44,45,46},74->{66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83 ,84,85,86},75->{66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86},76->{66,67,68,69,70,71,72,73 ,74,75,76,77,78,79,80,81,82,83,84,85,86},77->{40},78->{40},79->{40},80->{44,45,46},81->{66,67,68,69,70,71,72 ,73,74,75,76,77,78,79,80,81,82,83,84,85,86},82->{66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85 ,86},83->{66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86},84->{40},85->{40},86->{40}] Sizebounds: (<40,0,A>, A) (<40,0,B>, ?) (<40,0,C>, ?) (<41,0,A>, A) (<41,0,B>, ?) (<41,0,C>, ?) (<42,0,A>, A) (<42,0,B>, 1) (<42,0,C>, C) (<43,0,A>, A) (<43,0,B>, B) (<43,0,C>, C) (<44,0,A>, A) (<44,0,B>, ?) (<44,0,C>, ?) (<45,0,A>, A) (<45,0,B>, ?) (<45,0,C>, ?) (<46,0,A>, A) (<46,0,B>, ?) (<46,0,C>, ?) (<47,0,A>, A) (<47,0,B>, ?) (<47,0,C>, ?) (<48,0,A>, A) (<48,0,B>, ?) (<48,0,C>, 0) (<49,0,A>, A) (<49,0,B>, ?) (<49,0,C>, ?) (<50,0,A>, A) (<50,0,B>, ?) (<50,0,C>, 0) (<51,0,A>, A) (<51,0,B>, ?) (<51,0,C>, ?) (<52,0,A>, A) (<52,0,B>, ?) (<52,0,C>, ?) (<53,0,A>, A) (<53,0,B>, ?) (<53,0,C>, ?) (<54,0,A>, A) (<54,0,B>, ?) (<54,0,C>, 1) (<55,0,A>, A) (<55,0,B>, ?) (<55,0,C>, 0) (<56,0,A>, A) (<56,0,B>, ?) (<56,0,C>, 0) (<57,0,A>, A) (<57,0,B>, ?) (<57,0,C>, 1) (<58,0,A>, A) (<58,0,B>, ?) (<58,0,C>, 0) (<59,0,A>, A) (<59,0,B>, ?) (<59,0,C>, 0) (<60,0,A>, A) (<60,0,B>, ?) (<60,0,C>, 1) (<61,0,A>, A) (<61,0,B>, ?) (<61,0,C>, 0) (<62,0,A>, A) (<62,0,B>, ?) (<62,0,C>, 0) (<63,0,A>, A) (<63,0,B>, ?) (<63,0,C>, ?) (<64,0,A>, A) (<64,0,B>, ?) (<64,0,C>, ?) (<65,0,A>, A) (<65,0,B>, ?) (<65,0,C>, ?) (<66,0,A>, A) (<66,0,B>, ?) (<66,0,C>, ?) (<67,0,A>, A) (<67,0,B>, ?) (<67,0,C>, 0) (<68,0,A>, A) (<68,0,B>, ?) (<68,0,C>, ?) (<69,0,A>, A) (<69,0,B>, ?) (<69,0,C>, 0) (<70,0,A>, A) (<70,0,B>, ?) (<70,0,C>, ?) (<71,0,A>, A) (<71,0,B>, ?) (<71,0,C>, ?) (<72,0,A>, A) (<72,0,B>, ?) (<72,0,C>, ?) (<73,0,A>, A) (<73,0,B>, ?) (<73,0,C>, ?) (<74,0,A>, A) (<74,0,B>, ?) (<74,0,C>, 0) (<75,0,A>, A) (<75,0,B>, ?) (<75,0,C>, ?) (<76,0,A>, A) (<76,0,B>, ?) (<76,0,C>, 0) (<77,0,A>, A) (<77,0,B>, ?) (<77,0,C>, ?) (<78,0,A>, A) (<78,0,B>, ?) (<78,0,C>, ?) (<79,0,A>, A) (<79,0,B>, ?) (<79,0,C>, ?) (<80,0,A>, A) (<80,0,B>, ?) (<80,0,C>, ?) (<81,0,A>, A) (<81,0,B>, ?) (<81,0,C>, 0) (<82,0,A>, A) (<82,0,B>, ?) (<82,0,C>, ?) (<83,0,A>, A) (<83,0,B>, ?) (<83,0,C>, 0) (<84,0,A>, A) (<84,0,B>, ?) (<84,0,C>, ?) (<85,0,A>, A) (<85,0,B>, ?) (<85,0,C>, ?) (<86,0,A>, A) (<86,0,B>, ?) (<86,0,C>, ?) + Applied Processor: ChainProcessor False [40,41,42,43,44,46,47,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,70,71,72,73,77,78,79,80,84,85,86] + Details: We chained rule 40 to obtain the rules [87,88,89] . * Step 20: UnsatPaths WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 41. evalrealheapsortstep1returnin(A,B,C) -> evalrealheapsortstep1stop(A,B,C) True (?,1) 42. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1bb6in(A,1,C) [A >= 3] (1,2) 43. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1returnin(A,B,C) [2 >= A] (1,2) 44. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,B) [A >= 1 + B && 0 >= B] (?,2) 45. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb4in(A,B,B) [A >= 1 + B && B >= 1] (?,2) 46. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1stop(A,B,C) [B >= A] (?,2) 47. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [0 >= C] (?,2) 48. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 1 && 1 + C = 0] (?,2) 49. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] (?,2) 50. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 1 && 0 >= 2 + C && 0 >= D$ && 2*D$ >= 1 + C && 2 + C >= 2*D$] (?,2) 51. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 1 && 1 + C = 0] (?,2) 52. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] (?,2) 53. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 1 && 0 >= 2 + C && 0 >= D$ && 2*D$ >= 1 + C && 2 + C >= 2*D$] (?,2) 54. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1) [1 + C = 0 && 1 + C = 0] (?,2) 55. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [1 + C = 0 (?,2) && C >= 0 && E$ >= 0 && 1 + C >= 2*E$ && 2*E$ >= C && F$ >= 0 && 1 + C >= 2*F$ && 2*F$ >= C && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] 56. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [1 + C = 0 (?,2) && 0 >= 2 + C && 0 >= E$ && 0 >= F$ && 0 >= D$ && 2*E$ >= 1 + C && 2 + C >= 2*E$ && 2*F$ >= 1 + C && 2 + C >= 2*F$ && 2*D$ >= 1 + C && 2 + C >= 2*D$] 57. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C && 1 + C = 0] (?,2) 58. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [C >= 0 (?,2) && D >= 0 && 1 + C >= 2*D && 2*D >= C && C >= 0 && E$ >= 0 && 1 + C >= 2*E$ && 2*E$ >= C && F$ >= 0 && 1 + C >= 2*F$ && 2*F$ >= C && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] 59. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [C >= 0 (?,2) && D >= 0 && 1 + C >= 2*D && 2*D >= C && 0 >= 2 + C && 0 >= E$ && 0 >= F$ && 0 >= D$ && 2*E$ >= 1 + C && 2 + C >= 2*E$ && 2*F$ >= 1 + C && 2 + C >= 2*F$ && 2*D$ >= 1 + C && 2 + C >= 2*D$] 60. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1) [0 >= 2 + C && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D && 1 + C = 0] (?,2) 61. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [0 >= 2 + C (?,2) && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D && C >= 0 && E$ >= 0 && 1 + C >= 2*E$ && 2*E$ >= C && F$ >= 0 && 1 + C >= 2*F$ && 2*F$ >= C && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] 62. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [0 >= 2 + C (?,2) && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D && 0 >= 2 + C && 0 >= E$ && 0 >= F$ && 0 >= D$ && 2*E$ >= 1 + C && 2 + C >= 2*E$ && 2*F$ >= 1 + C && 2 + C >= 2*F$ && 2*D$ >= 1 + C && 2 + C >= 2*D$] 63. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [1 + C = 0] (?,2) 64. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C] (?,2) 65. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [0 >= 2 + C && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D] (?,2) 66. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,-1) [1 + C = 0 && 0 >= -1] (?,3) 67. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,-1) [1 + C = 0 && -1 >= 1 && 0 = 0] (?,3) 68. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,-1) [1 + C = 0 && -1 >= 1 && -1 >= 0 && D$$ >= 0 && 0 >= 2*D$$ && 2*D$$ >= -1] (?,3) 69. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,-1) [1 + C = 0 && -1 >= 1 && 0 >= 1 && 0 >= D$$ && 2*D$$ >= 0 && 1 >= 2*D$$] (?,3) 70. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,-1) [1 + C = 0 && -1 >= 1 && 0 = 0] (?,3) 71. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,-1) [1 + C = 0 && -1 >= 1 && -1 >= 0 && D$$ >= 0 && 0 >= 2*D$$ && 2*D$$ >= -1] (?,3) 72. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,-1) [1 + C = 0 && -1 >= 1 && 0 >= 1 && 0 >= D$$ && 2*D$$ >= 0 && 1 >= 2*D$$] (?,3) 73. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && 0 >= -1 + D] 74. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && D = 0] 75. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && -1 + D >= 0 && D$$ >= 0 && D >= 2*D$$ && 2*D$$ >= -1 + D] 76. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && 0 >= 1 + D && 0 >= D$$ && 2*D$$ >= D && 1 + D >= 2*D$$] 77. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && D = 0] 78. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && -1 + D >= 0 && D$$ >= 0 && D >= 2*D$$ && 2*D$$ >= -1 + D] 79. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && 0 >= 1 + D && 0 >= D$$ && 2*D$$ >= D && 1 + D >= 2*D$$] 80. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,-1 + D) [0 >= 2 + C (?,3) && 0 >= E && 0 >= F && 0 >= D && 2*E >= 1 + C && 2 + C >= 2*E && 2*F >= 1 + C && 2 + C >= 2*F && 2*D >= 1 + C && 2 + C >= 2*D && 0 >= -1 + D] 81. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,-1 + D) [0 >= 2 + C (?,3) && 0 >= E && 0 >= F && 0 >= D && 2*E >= 1 + C && 2 + C >= 2*E && 2*F >= 1 + C && 2 + C >= 2*F && 2*D >= 1 + C && 2 + C >= 2*D && -1 + D >= 1 && D = 0] 82. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,-1 + D) [0 >= 2 + C (?,3) && 0 >= E && 0 >= F && 0 >= D && 2*E >= 1 + C && 2 + C >= 2*E && 2*F >= 1 + C && 2 + C >= 2*F && 2*D >= 1 + C && 2 + C >= 2*D && -1 + D >= 1 && -1 + D >= 0 && D$$ >= 0 && D >= 2*D$$ && 2*D$$ >= -1 + D] 83. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,-1 + D) [0 >= 2 + C (?,3) && 0 >= E && 0 >= F && 0 >= D && 2*E >= 1 + C && 2 + C >= 2*E && 2*F >= 1 + C && 2 + C >= 2*F && 2*D >= 1 + C && 2 + C >= 2*D && -1 + D >= 1 && 0 >= 1 + D && 0 >= D$$ && 2*D$$ >= D && 1 + D >= 2*D$$] 84. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,-1 + D) [0 >= 2 + C (?,3) && 0 >= E && 0 >= F && 0 >= D && 2*E >= 1 + C && 2 + C >= 2*E && 2*F >= 1 + C && 2 + C >= 2*F && 2*D >= 1 + C && 2 + C >= 2*D && -1 + D >= 1 && D = 0] 85. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,-1 + D) [0 >= 2 + C (?,3) && 0 >= E && 0 >= F && 0 >= D && 2*E >= 1 + C && 2 + C >= 2*E && 2*F >= 1 + C && 2 + C >= 2*F && 2*D >= 1 + C && 2 + C >= 2*D && -1 + D >= 1 && -1 + D >= 0 && D$$ >= 0 && D >= 2*D$$ && 2*D$$ >= -1 + D] 86. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,-1 + D) [0 >= 2 + C (?,3) && 0 >= E && 0 >= F && 0 >= D && 2*E >= 1 + C && 2 + C >= 2*E && 2*F >= 1 + C && 2 + C >= 2*F && 2*D >= 1 + C && 2 + C >= 2*D && -1 + D >= 1 && 0 >= 1 + D && 0 >= D$$ && 2*D$$ >= D && 1 + D >= 2*D$$] 87. evalrealheapsortstep1bb5in(A,B,C) -> evalrealheapsortstep1bb5in(A,1 + B,1 + B) [A >= 2 + B && 0 >= 1 + B] (?,3) 88. evalrealheapsortstep1bb5in(A,B,C) -> evalrealheapsortstep1bb4in(A,1 + B,1 + B) [A >= 2 + B && 1 + B >= 1] (?,3) 89. evalrealheapsortstep1bb5in(A,B,C) -> evalrealheapsortstep1stop(A,1 + B,C) [1 + B >= A] (?,3) Signature: {(evalrealheapsortstep1bb2in,3) ;(evalrealheapsortstep1bb3in,3) ;(evalrealheapsortstep1bb4in,3) ;(evalrealheapsortstep1bb5in,3) ;(evalrealheapsortstep1bb6in,3) ;(evalrealheapsortstep1entryin,3) ;(evalrealheapsortstep1returnin,3) ;(evalrealheapsortstep1start,3) ;(evalrealheapsortstep1stop,3)} Flow Graph: [41->{},42->{44,45,46},43->{41},44->{87,88,89},45->{54,55,56,57,58,59,60,61,62,63,64,65},46->{},47->{44,45 ,46},48->{66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86},49->{66,67,68,69,70,71,72,73,74,75 ,76,77,78,79,80,81,82,83,84,85,86},50->{66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86} ,51->{87,88,89},52->{87,88,89},53->{87,88,89},54->{47,48,49,50,51,52,53},55->{47,48,49,50,51,52,53},56->{47 ,48,49,50,51,52,53},57->{47,48,49,50,51,52,53},58->{47,48,49,50,51,52,53},59->{47,48,49,50,51,52,53},60->{47 ,48,49,50,51,52,53},61->{47,48,49,50,51,52,53},62->{47,48,49,50,51,52,53},63->{44,45,46},64->{44,45,46} ,65->{44,45,46},66->{44,45,46},67->{66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86},68->{66 ,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86},69->{66,67,68,69,70,71,72,73,74,75,76,77,78,79 ,80,81,82,83,84,85,86},70->{87,88,89},71->{87,88,89},72->{87,88,89},73->{44,45,46},74->{66,67,68,69,70,71,72 ,73,74,75,76,77,78,79,80,81,82,83,84,85,86},75->{66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85 ,86},76->{66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86},77->{87,88,89},78->{87,88,89} ,79->{87,88,89},80->{44,45,46},81->{66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86},82->{66 ,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86},83->{66,67,68,69,70,71,72,73,74,75,76,77,78,79 ,80,81,82,83,84,85,86},84->{87,88,89},85->{87,88,89},86->{87,88,89},87->{87,88,89},88->{54,55,56,57,58,59,60 ,61,62,63,64,65},89->{}] Sizebounds: (<41,0,A>, A) (<41,0,B>, ?) (<41,0,C>, ?) (<42,0,A>, A) (<42,0,B>, 1) (<42,0,C>, C) (<43,0,A>, A) (<43,0,B>, B) (<43,0,C>, C) (<44,0,A>, A) (<44,0,B>, ?) (<44,0,C>, ?) (<45,0,A>, A) (<45,0,B>, ?) (<45,0,C>, ?) (<46,0,A>, A) (<46,0,B>, ?) (<46,0,C>, ?) (<47,0,A>, A) (<47,0,B>, ?) (<47,0,C>, ?) (<48,0,A>, A) (<48,0,B>, ?) (<48,0,C>, 0) (<49,0,A>, A) (<49,0,B>, ?) (<49,0,C>, ?) (<50,0,A>, A) (<50,0,B>, ?) (<50,0,C>, 0) (<51,0,A>, A) (<51,0,B>, ?) (<51,0,C>, ?) (<52,0,A>, A) (<52,0,B>, ?) (<52,0,C>, ?) (<53,0,A>, A) (<53,0,B>, ?) (<53,0,C>, ?) (<54,0,A>, A) (<54,0,B>, ?) (<54,0,C>, 1) (<55,0,A>, A) (<55,0,B>, ?) (<55,0,C>, 0) (<56,0,A>, A) (<56,0,B>, ?) (<56,0,C>, 0) (<57,0,A>, A) (<57,0,B>, ?) (<57,0,C>, 1) (<58,0,A>, A) (<58,0,B>, ?) (<58,0,C>, 0) (<59,0,A>, A) (<59,0,B>, ?) (<59,0,C>, 0) (<60,0,A>, A) (<60,0,B>, ?) (<60,0,C>, 1) (<61,0,A>, A) (<61,0,B>, ?) (<61,0,C>, 0) (<62,0,A>, A) (<62,0,B>, ?) (<62,0,C>, 0) (<63,0,A>, A) (<63,0,B>, ?) (<63,0,C>, ?) (<64,0,A>, A) (<64,0,B>, ?) (<64,0,C>, ?) (<65,0,A>, A) (<65,0,B>, ?) (<65,0,C>, ?) (<66,0,A>, A) (<66,0,B>, ?) (<66,0,C>, ?) (<67,0,A>, A) (<67,0,B>, ?) (<67,0,C>, 0) (<68,0,A>, A) (<68,0,B>, ?) (<68,0,C>, ?) (<69,0,A>, A) (<69,0,B>, ?) (<69,0,C>, 0) (<70,0,A>, A) (<70,0,B>, ?) (<70,0,C>, ?) (<71,0,A>, A) (<71,0,B>, ?) (<71,0,C>, ?) (<72,0,A>, A) (<72,0,B>, ?) (<72,0,C>, ?) (<73,0,A>, A) (<73,0,B>, ?) (<73,0,C>, ?) (<74,0,A>, A) (<74,0,B>, ?) (<74,0,C>, 0) (<75,0,A>, A) (<75,0,B>, ?) (<75,0,C>, ?) (<76,0,A>, A) (<76,0,B>, ?) (<76,0,C>, 0) (<77,0,A>, A) (<77,0,B>, ?) (<77,0,C>, ?) (<78,0,A>, A) (<78,0,B>, ?) (<78,0,C>, ?) (<79,0,A>, A) (<79,0,B>, ?) (<79,0,C>, ?) (<80,0,A>, A) (<80,0,B>, ?) (<80,0,C>, ?) (<81,0,A>, A) (<81,0,B>, ?) (<81,0,C>, 0) (<82,0,A>, A) (<82,0,B>, ?) (<82,0,C>, ?) (<83,0,A>, A) (<83,0,B>, ?) (<83,0,C>, 0) (<84,0,A>, A) (<84,0,B>, ?) (<84,0,C>, ?) (<85,0,A>, A) (<85,0,B>, ?) (<85,0,C>, ?) (<86,0,A>, A) (<86,0,B>, ?) (<86,0,C>, ?) (<87,0,A>, A) (<87,0,B>, ?) (<87,0,C>, ?) (<88,0,A>, A) (<88,0,B>, ?) (<88,0,C>, ?) (<89,0,A>, A) (<89,0,B>, ?) (<89,0,C>, ?) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(42,44) ,(42,46) ,(45,54) ,(45,55) ,(45,56) ,(45,57) ,(45,59) ,(45,60) ,(45,61) ,(45,62) ,(45,63) ,(45,65) ,(48,66) ,(48,67) ,(48,68) ,(48,69) ,(48,70) ,(48,71) ,(48,72) ,(48,73) ,(48,74) ,(48,75) ,(48,76) ,(48,77) ,(48,78) ,(48,79) ,(48,80) ,(48,81) ,(48,82) ,(48,83) ,(48,84) ,(48,85) ,(48,86) ,(49,66) ,(49,67) ,(49,68) ,(49,69) ,(49,70) ,(49,71) ,(49,72) ,(49,74) ,(49,76) ,(49,77) ,(49,79) ,(49,80) ,(49,81) ,(49,82) ,(49,83) ,(49,84) ,(49,85) ,(49,86) ,(50,66) ,(50,67) ,(50,68) ,(50,69) ,(50,70) ,(50,71) ,(50,72) ,(50,73) ,(50,74) ,(50,75) ,(50,76) ,(50,77) ,(50,78) ,(50,79) ,(50,80) ,(50,81) ,(50,82) ,(50,83) ,(50,84) ,(50,85) ,(50,86) ,(51,87) ,(51,88) ,(51,89) ,(53,87) ,(53,88) ,(53,89) ,(54,48) ,(54,49) ,(54,50) ,(54,51) ,(54,52) ,(54,53) ,(55,47) ,(55,48) ,(55,49) ,(55,50) ,(55,51) ,(55,52) ,(55,53) ,(56,47) ,(56,48) ,(56,49) ,(56,50) ,(56,51) ,(56,52) ,(56,53) ,(57,47) ,(57,48) ,(57,49) ,(57,50) ,(57,51) ,(57,52) ,(57,53) ,(58,48) ,(58,50) ,(58,51) ,(58,53) ,(59,47) ,(59,48) ,(59,49) ,(59,50) ,(59,51) ,(59,52) ,(59,53) ,(60,47) ,(60,48) ,(60,49) ,(60,50) ,(60,51) ,(60,52) ,(60,53) ,(61,47) ,(61,48) ,(61,49) ,(61,50) ,(61,51) ,(61,52) ,(61,53) ,(62,48) ,(62,49) ,(62,50) ,(62,51) ,(62,52) ,(62,53) ,(67,66) ,(67,67) ,(67,68) ,(67,69) ,(67,70) ,(67,71) ,(67,72) ,(67,73) ,(67,74) ,(67,75) ,(67,76) ,(67,77) ,(67,78) ,(67,79) ,(67,80) ,(67,81) ,(67,82) ,(67,83) ,(67,84) ,(67,85) ,(67,86) ,(68,66) ,(68,67) ,(68,68) ,(68,69) ,(68,70) ,(68,71) ,(68,72) ,(68,73) ,(68,74) ,(68,75) ,(68,76) ,(68,77) ,(68,78) ,(68,79) ,(68,80) ,(68,81) ,(68,82) ,(68,83) ,(68,84) ,(68,85) ,(68,86) ,(69,66) ,(69,67) ,(69,68) ,(69,69) ,(69,70) ,(69,71) ,(69,72) ,(69,73) ,(69,74) ,(69,75) ,(69,76) ,(69,77) ,(69,78) ,(69,79) ,(69,80) ,(69,81) ,(69,82) ,(69,83) ,(69,84) ,(69,85) ,(69,86) ,(70,87) ,(70,88) ,(70,89) ,(71,87) ,(71,88) ,(71,89) ,(72,87) ,(72,88) ,(72,89) ,(74,66) ,(74,67) ,(74,68) ,(74,69) ,(74,70) ,(74,71) ,(74,72) ,(74,73) ,(74,74) ,(74,75) ,(74,76) ,(74,77) ,(74,78) ,(74,79) ,(74,80) ,(74,81) ,(74,82) ,(74,83) ,(74,84) ,(74,85) ,(74,86) ,(75,66) ,(75,67) ,(75,68) ,(75,69) ,(75,70) ,(75,71) ,(75,72) ,(75,74) ,(75,76) ,(75,77) ,(75,79) ,(75,80) ,(75,81) ,(75,82) ,(75,83) ,(75,84) ,(75,85) ,(75,86) ,(76,66) ,(76,67) ,(76,68) ,(76,69) ,(76,70) ,(76,71) ,(76,72) ,(76,73) ,(76,74) ,(76,75) ,(76,76) ,(76,77) ,(76,78) ,(76,79) ,(76,80) ,(76,81) ,(76,82) ,(76,83) ,(76,84) ,(76,85) ,(76,86) ,(77,87) ,(77,88) ,(77,89) ,(79,87) ,(79,88) ,(79,89) ,(81,66) ,(81,67) ,(81,68) ,(81,69) ,(81,70) ,(81,71) ,(81,72) ,(81,73) ,(81,74) ,(81,75) ,(81,76) ,(81,77) ,(81,78) ,(81,79) ,(81,80) ,(81,81) ,(81,82) ,(81,83) ,(81,84) ,(81,85) ,(81,86) ,(82,66) ,(82,67) ,(82,68) ,(82,69) ,(82,70) ,(82,71) ,(82,72) ,(82,73) ,(82,74) ,(82,75) ,(82,76) ,(82,77) ,(82,78) ,(82,79) ,(82,80) ,(82,81) ,(82,82) ,(82,83) ,(82,84) ,(82,85) ,(82,86) ,(83,66) ,(83,67) ,(83,68) ,(83,69) ,(83,70) ,(83,71) ,(83,72) ,(83,73) ,(83,74) ,(83,75) ,(83,76) ,(83,77) ,(83,78) ,(83,79) ,(83,80) ,(83,81) ,(83,82) ,(83,83) ,(83,84) ,(83,85) ,(83,86) ,(84,87) ,(84,88) ,(84,89) ,(85,87) ,(85,88) ,(85,89) ,(86,87) ,(86,88) ,(86,89) ,(88,54) ,(88,55) ,(88,56) ,(88,57) ,(88,59) ,(88,60) ,(88,61) ,(88,62) ,(88,63) ,(88,65)] * Step 21: UnreachableRules WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 41. evalrealheapsortstep1returnin(A,B,C) -> evalrealheapsortstep1stop(A,B,C) True (?,1) 42. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1bb6in(A,1,C) [A >= 3] (1,2) 43. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1returnin(A,B,C) [2 >= A] (1,2) 44. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,B) [A >= 1 + B && 0 >= B] (?,2) 45. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb4in(A,B,B) [A >= 1 + B && B >= 1] (?,2) 46. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1stop(A,B,C) [B >= A] (?,2) 47. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [0 >= C] (?,2) 48. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 1 && 1 + C = 0] (?,2) 49. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] (?,2) 50. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 1 && 0 >= 2 + C && 0 >= D$ && 2*D$ >= 1 + C && 2 + C >= 2*D$] (?,2) 51. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 1 && 1 + C = 0] (?,2) 52. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] (?,2) 53. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 1 && 0 >= 2 + C && 0 >= D$ && 2*D$ >= 1 + C && 2 + C >= 2*D$] (?,2) 54. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1) [1 + C = 0 && 1 + C = 0] (?,2) 55. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [1 + C = 0 (?,2) && C >= 0 && E$ >= 0 && 1 + C >= 2*E$ && 2*E$ >= C && F$ >= 0 && 1 + C >= 2*F$ && 2*F$ >= C && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] 56. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [1 + C = 0 (?,2) && 0 >= 2 + C && 0 >= E$ && 0 >= F$ && 0 >= D$ && 2*E$ >= 1 + C && 2 + C >= 2*E$ && 2*F$ >= 1 + C && 2 + C >= 2*F$ && 2*D$ >= 1 + C && 2 + C >= 2*D$] 57. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C && 1 + C = 0] (?,2) 58. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [C >= 0 (?,2) && D >= 0 && 1 + C >= 2*D && 2*D >= C && C >= 0 && E$ >= 0 && 1 + C >= 2*E$ && 2*E$ >= C && F$ >= 0 && 1 + C >= 2*F$ && 2*F$ >= C && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] 59. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [C >= 0 (?,2) && D >= 0 && 1 + C >= 2*D && 2*D >= C && 0 >= 2 + C && 0 >= E$ && 0 >= F$ && 0 >= D$ && 2*E$ >= 1 + C && 2 + C >= 2*E$ && 2*F$ >= 1 + C && 2 + C >= 2*F$ && 2*D$ >= 1 + C && 2 + C >= 2*D$] 60. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1) [0 >= 2 + C && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D && 1 + C = 0] (?,2) 61. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [0 >= 2 + C (?,2) && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D && C >= 0 && E$ >= 0 && 1 + C >= 2*E$ && 2*E$ >= C && F$ >= 0 && 1 + C >= 2*F$ && 2*F$ >= C && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] 62. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [0 >= 2 + C (?,2) && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D && 0 >= 2 + C && 0 >= E$ && 0 >= F$ && 0 >= D$ && 2*E$ >= 1 + C && 2 + C >= 2*E$ && 2*F$ >= 1 + C && 2 + C >= 2*F$ && 2*D$ >= 1 + C && 2 + C >= 2*D$] 63. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [1 + C = 0] (?,2) 64. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C] (?,2) 65. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [0 >= 2 + C && 0 >= D && 2*D >= 1 + C && 2 + C >= 2*D] (?,2) 66. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,-1) [1 + C = 0 && 0 >= -1] (?,3) 67. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,-1) [1 + C = 0 && -1 >= 1 && 0 = 0] (?,3) 68. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,-1) [1 + C = 0 && -1 >= 1 && -1 >= 0 && D$$ >= 0 && 0 >= 2*D$$ && 2*D$$ >= -1] (?,3) 69. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,-1) [1 + C = 0 && -1 >= 1 && 0 >= 1 && 0 >= D$$ && 2*D$$ >= 0 && 1 >= 2*D$$] (?,3) 70. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,-1) [1 + C = 0 && -1 >= 1 && 0 = 0] (?,3) 71. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,-1) [1 + C = 0 && -1 >= 1 && -1 >= 0 && D$$ >= 0 && 0 >= 2*D$$ && 2*D$$ >= -1] (?,3) 72. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,-1) [1 + C = 0 && -1 >= 1 && 0 >= 1 && 0 >= D$$ && 2*D$$ >= 0 && 1 >= 2*D$$] (?,3) 73. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && 0 >= -1 + D] 74. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && D = 0] 75. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && -1 + D >= 0 && D$$ >= 0 && D >= 2*D$$ && 2*D$$ >= -1 + D] 76. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && 0 >= 1 + D && 0 >= D$$ && 2*D$$ >= D && 1 + D >= 2*D$$] 77. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && D = 0] 78. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && -1 + D >= 0 && D$$ >= 0 && D >= 2*D$$ && 2*D$$ >= -1 + D] 79. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && 0 >= 1 + D && 0 >= D$$ && 2*D$$ >= D && 1 + D >= 2*D$$] 80. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,-1 + D) [0 >= 2 + C (?,3) && 0 >= E && 0 >= F && 0 >= D && 2*E >= 1 + C && 2 + C >= 2*E && 2*F >= 1 + C && 2 + C >= 2*F && 2*D >= 1 + C && 2 + C >= 2*D && 0 >= -1 + D] 81. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,-1 + D) [0 >= 2 + C (?,3) && 0 >= E && 0 >= F && 0 >= D && 2*E >= 1 + C && 2 + C >= 2*E && 2*F >= 1 + C && 2 + C >= 2*F && 2*D >= 1 + C && 2 + C >= 2*D && -1 + D >= 1 && D = 0] 82. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,-1 + D) [0 >= 2 + C (?,3) && 0 >= E && 0 >= F && 0 >= D && 2*E >= 1 + C && 2 + C >= 2*E && 2*F >= 1 + C && 2 + C >= 2*F && 2*D >= 1 + C && 2 + C >= 2*D && -1 + D >= 1 && -1 + D >= 0 && D$$ >= 0 && D >= 2*D$$ && 2*D$$ >= -1 + D] 83. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,-1 + D) [0 >= 2 + C (?,3) && 0 >= E && 0 >= F && 0 >= D && 2*E >= 1 + C && 2 + C >= 2*E && 2*F >= 1 + C && 2 + C >= 2*F && 2*D >= 1 + C && 2 + C >= 2*D && -1 + D >= 1 && 0 >= 1 + D && 0 >= D$$ && 2*D$$ >= D && 1 + D >= 2*D$$] 84. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,-1 + D) [0 >= 2 + C (?,3) && 0 >= E && 0 >= F && 0 >= D && 2*E >= 1 + C && 2 + C >= 2*E && 2*F >= 1 + C && 2 + C >= 2*F && 2*D >= 1 + C && 2 + C >= 2*D && -1 + D >= 1 && D = 0] 85. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,-1 + D) [0 >= 2 + C (?,3) && 0 >= E && 0 >= F && 0 >= D && 2*E >= 1 + C && 2 + C >= 2*E && 2*F >= 1 + C && 2 + C >= 2*F && 2*D >= 1 + C && 2 + C >= 2*D && -1 + D >= 1 && -1 + D >= 0 && D$$ >= 0 && D >= 2*D$$ && 2*D$$ >= -1 + D] 86. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,-1 + D) [0 >= 2 + C (?,3) && 0 >= E && 0 >= F && 0 >= D && 2*E >= 1 + C && 2 + C >= 2*E && 2*F >= 1 + C && 2 + C >= 2*F && 2*D >= 1 + C && 2 + C >= 2*D && -1 + D >= 1 && 0 >= 1 + D && 0 >= D$$ && 2*D$$ >= D && 1 + D >= 2*D$$] 87. evalrealheapsortstep1bb5in(A,B,C) -> evalrealheapsortstep1bb5in(A,1 + B,1 + B) [A >= 2 + B && 0 >= 1 + B] (?,3) 88. evalrealheapsortstep1bb5in(A,B,C) -> evalrealheapsortstep1bb4in(A,1 + B,1 + B) [A >= 2 + B && 1 + B >= 1] (?,3) 89. evalrealheapsortstep1bb5in(A,B,C) -> evalrealheapsortstep1stop(A,1 + B,C) [1 + B >= A] (?,3) Signature: {(evalrealheapsortstep1bb2in,3) ;(evalrealheapsortstep1bb3in,3) ;(evalrealheapsortstep1bb4in,3) ;(evalrealheapsortstep1bb5in,3) ;(evalrealheapsortstep1bb6in,3) ;(evalrealheapsortstep1entryin,3) ;(evalrealheapsortstep1returnin,3) ;(evalrealheapsortstep1start,3) ;(evalrealheapsortstep1stop,3)} Flow Graph: [41->{},42->{45},43->{41},44->{87,88,89},45->{58,64},46->{},47->{44,45,46},48->{},49->{73,75,78},50->{} ,51->{},52->{87,88,89},53->{},54->{47},55->{},56->{},57->{},58->{47,49,52},59->{},60->{},61->{},62->{47} ,63->{44,45,46},64->{44,45,46},65->{44,45,46},66->{44,45,46},67->{},68->{},69->{},70->{},71->{},72->{} ,73->{44,45,46},74->{},75->{73,75,78},76->{},77->{},78->{87,88,89},79->{},80->{44,45,46},81->{},82->{} ,83->{},84->{},85->{},86->{},87->{87,88,89},88->{58,64},89->{}] Sizebounds: (<41,0,A>, A) (<41,0,B>, ?) (<41,0,C>, ?) (<42,0,A>, A) (<42,0,B>, 1) (<42,0,C>, C) (<43,0,A>, A) (<43,0,B>, B) (<43,0,C>, C) (<44,0,A>, A) (<44,0,B>, ?) (<44,0,C>, ?) (<45,0,A>, A) (<45,0,B>, ?) (<45,0,C>, ?) (<46,0,A>, A) (<46,0,B>, ?) (<46,0,C>, ?) (<47,0,A>, A) (<47,0,B>, ?) (<47,0,C>, ?) (<48,0,A>, A) (<48,0,B>, ?) (<48,0,C>, 0) (<49,0,A>, A) (<49,0,B>, ?) (<49,0,C>, ?) (<50,0,A>, A) (<50,0,B>, ?) (<50,0,C>, 0) (<51,0,A>, A) (<51,0,B>, ?) (<51,0,C>, ?) (<52,0,A>, A) (<52,0,B>, ?) (<52,0,C>, ?) (<53,0,A>, A) (<53,0,B>, ?) (<53,0,C>, ?) (<54,0,A>, A) (<54,0,B>, ?) (<54,0,C>, 1) (<55,0,A>, A) (<55,0,B>, ?) (<55,0,C>, 0) (<56,0,A>, A) (<56,0,B>, ?) (<56,0,C>, 0) (<57,0,A>, A) (<57,0,B>, ?) (<57,0,C>, 1) (<58,0,A>, A) (<58,0,B>, ?) (<58,0,C>, 0) (<59,0,A>, A) (<59,0,B>, ?) (<59,0,C>, 0) (<60,0,A>, A) (<60,0,B>, ?) (<60,0,C>, 1) (<61,0,A>, A) (<61,0,B>, ?) (<61,0,C>, 0) (<62,0,A>, A) (<62,0,B>, ?) (<62,0,C>, 0) (<63,0,A>, A) (<63,0,B>, ?) (<63,0,C>, ?) (<64,0,A>, A) (<64,0,B>, ?) (<64,0,C>, ?) (<65,0,A>, A) (<65,0,B>, ?) (<65,0,C>, ?) (<66,0,A>, A) (<66,0,B>, ?) (<66,0,C>, ?) (<67,0,A>, A) (<67,0,B>, ?) (<67,0,C>, 0) (<68,0,A>, A) (<68,0,B>, ?) (<68,0,C>, ?) (<69,0,A>, A) (<69,0,B>, ?) (<69,0,C>, 0) (<70,0,A>, A) (<70,0,B>, ?) (<70,0,C>, ?) (<71,0,A>, A) (<71,0,B>, ?) (<71,0,C>, ?) (<72,0,A>, A) (<72,0,B>, ?) (<72,0,C>, ?) (<73,0,A>, A) (<73,0,B>, ?) (<73,0,C>, ?) (<74,0,A>, A) (<74,0,B>, ?) (<74,0,C>, 0) (<75,0,A>, A) (<75,0,B>, ?) (<75,0,C>, ?) (<76,0,A>, A) (<76,0,B>, ?) (<76,0,C>, 0) (<77,0,A>, A) (<77,0,B>, ?) (<77,0,C>, ?) (<78,0,A>, A) (<78,0,B>, ?) (<78,0,C>, ?) (<79,0,A>, A) (<79,0,B>, ?) (<79,0,C>, ?) (<80,0,A>, A) (<80,0,B>, ?) (<80,0,C>, ?) (<81,0,A>, A) (<81,0,B>, ?) (<81,0,C>, 0) (<82,0,A>, A) (<82,0,B>, ?) (<82,0,C>, ?) (<83,0,A>, A) (<83,0,B>, ?) (<83,0,C>, 0) (<84,0,A>, A) (<84,0,B>, ?) (<84,0,C>, ?) (<85,0,A>, A) (<85,0,B>, ?) (<85,0,C>, ?) (<86,0,A>, A) (<86,0,B>, ?) (<86,0,C>, ?) (<87,0,A>, A) (<87,0,B>, ?) (<87,0,C>, ?) (<88,0,A>, A) (<88,0,B>, ?) (<88,0,C>, ?) (<89,0,A>, A) (<89,0,B>, ?) (<89,0,C>, ?) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [48 ,50 ,51 ,53 ,54 ,55 ,56 ,57 ,59 ,60 ,61 ,62 ,63 ,65 ,66 ,67 ,68 ,69 ,70 ,71 ,72 ,74 ,76 ,77 ,79 ,80 ,81 ,82 ,83 ,84 ,85 ,86] * Step 22: LeafRules WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 41. evalrealheapsortstep1returnin(A,B,C) -> evalrealheapsortstep1stop(A,B,C) True (?,1) 42. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1bb6in(A,1,C) [A >= 3] (1,2) 43. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1returnin(A,B,C) [2 >= A] (1,2) 44. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,B) [A >= 1 + B && 0 >= B] (?,2) 45. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb4in(A,B,B) [A >= 1 + B && B >= 1] (?,2) 46. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1stop(A,B,C) [B >= A] (?,2) 47. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [0 >= C] (?,2) 49. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] (?,2) 52. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] (?,2) 58. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [C >= 0 (?,2) && D >= 0 && 1 + C >= 2*D && 2*D >= C && C >= 0 && E$ >= 0 && 1 + C >= 2*E$ && 2*E$ >= C && F$ >= 0 && 1 + C >= 2*F$ && 2*F$ >= C && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] 64. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C] (?,2) 73. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && 0 >= -1 + D] 75. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && -1 + D >= 0 && D$$ >= 0 && D >= 2*D$$ && 2*D$$ >= -1 + D] 78. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && -1 + D >= 0 && D$$ >= 0 && D >= 2*D$$ && 2*D$$ >= -1 + D] 87. evalrealheapsortstep1bb5in(A,B,C) -> evalrealheapsortstep1bb5in(A,1 + B,1 + B) [A >= 2 + B && 0 >= 1 + B] (?,3) 88. evalrealheapsortstep1bb5in(A,B,C) -> evalrealheapsortstep1bb4in(A,1 + B,1 + B) [A >= 2 + B && 1 + B >= 1] (?,3) 89. evalrealheapsortstep1bb5in(A,B,C) -> evalrealheapsortstep1stop(A,1 + B,C) [1 + B >= A] (?,3) Signature: {(evalrealheapsortstep1bb2in,3) ;(evalrealheapsortstep1bb3in,3) ;(evalrealheapsortstep1bb4in,3) ;(evalrealheapsortstep1bb5in,3) ;(evalrealheapsortstep1bb6in,3) ;(evalrealheapsortstep1entryin,3) ;(evalrealheapsortstep1returnin,3) ;(evalrealheapsortstep1start,3) ;(evalrealheapsortstep1stop,3)} Flow Graph: [41->{},42->{45},43->{41},44->{87,88,89},45->{58,64},46->{},47->{44,45,46},49->{73,75,78},52->{87,88,89} ,58->{47,49,52},64->{44,45,46},73->{44,45,46},75->{73,75,78},78->{87,88,89},87->{87,88,89},88->{58,64} ,89->{}] Sizebounds: (<41,0,A>, A) (<41,0,B>, ?) (<41,0,C>, ?) (<42,0,A>, A) (<42,0,B>, 1) (<42,0,C>, C) (<43,0,A>, A) (<43,0,B>, B) (<43,0,C>, C) (<44,0,A>, A) (<44,0,B>, ?) (<44,0,C>, ?) (<45,0,A>, A) (<45,0,B>, ?) (<45,0,C>, ?) (<46,0,A>, A) (<46,0,B>, ?) (<46,0,C>, ?) (<47,0,A>, A) (<47,0,B>, ?) (<47,0,C>, ?) (<49,0,A>, A) (<49,0,B>, ?) (<49,0,C>, ?) (<52,0,A>, A) (<52,0,B>, ?) (<52,0,C>, ?) (<58,0,A>, A) (<58,0,B>, ?) (<58,0,C>, 0) (<64,0,A>, A) (<64,0,B>, ?) (<64,0,C>, ?) (<73,0,A>, A) (<73,0,B>, ?) (<73,0,C>, ?) (<75,0,A>, A) (<75,0,B>, ?) (<75,0,C>, ?) (<78,0,A>, A) (<78,0,B>, ?) (<78,0,C>, ?) (<87,0,A>, A) (<87,0,B>, ?) (<87,0,C>, ?) (<88,0,A>, A) (<88,0,B>, ?) (<88,0,C>, ?) (<89,0,A>, A) (<89,0,B>, ?) (<89,0,C>, ?) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [41,46,89] * Step 23: LocalSizeboundsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 42. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1bb6in(A,1,C) [A >= 3] (1,2) 43. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1returnin(A,B,C) [2 >= A] (1,2) 44. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,B) [A >= 1 + B && 0 >= B] (?,2) 45. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb4in(A,B,B) [A >= 1 + B && B >= 1] (?,2) 47. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [0 >= C] (?,2) 49. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] (?,2) 52. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] (?,2) 58. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [C >= 0 (?,2) && D >= 0 && 1 + C >= 2*D && 2*D >= C && C >= 0 && E$ >= 0 && 1 + C >= 2*E$ && 2*E$ >= C && F$ >= 0 && 1 + C >= 2*F$ && 2*F$ >= C && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] 64. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C] (?,2) 73. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && 0 >= -1 + D] 75. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && -1 + D >= 0 && D$$ >= 0 && D >= 2*D$$ && 2*D$$ >= -1 + D] 78. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && -1 + D >= 0 && D$$ >= 0 && D >= 2*D$$ && 2*D$$ >= -1 + D] 87. evalrealheapsortstep1bb5in(A,B,C) -> evalrealheapsortstep1bb5in(A,1 + B,1 + B) [A >= 2 + B && 0 >= 1 + B] (?,3) 88. evalrealheapsortstep1bb5in(A,B,C) -> evalrealheapsortstep1bb4in(A,1 + B,1 + B) [A >= 2 + B && 1 + B >= 1] (?,3) Signature: {(evalrealheapsortstep1bb2in,3) ;(evalrealheapsortstep1bb3in,3) ;(evalrealheapsortstep1bb4in,3) ;(evalrealheapsortstep1bb5in,3) ;(evalrealheapsortstep1bb6in,3) ;(evalrealheapsortstep1entryin,3) ;(evalrealheapsortstep1returnin,3) ;(evalrealheapsortstep1start,3) ;(evalrealheapsortstep1stop,3)} Flow Graph: [42->{45},43->{},44->{87,88},45->{58,64},47->{44,45},49->{73,75,78},52->{87,88},58->{47,49,52},64->{44,45} ,73->{44,45},75->{73,75,78},78->{87,88},87->{87,88},88->{58,64}] Sizebounds: (<42,0,A>, A) (<42,0,B>, 1) (<42,0,C>, C) (<43,0,A>, A) (<43,0,B>, B) (<43,0,C>, C) (<44,0,A>, A) (<44,0,B>, ?) (<44,0,C>, ?) (<45,0,A>, A) (<45,0,B>, ?) (<45,0,C>, ?) (<47,0,A>, A) (<47,0,B>, ?) (<47,0,C>, ?) (<49,0,A>, A) (<49,0,B>, ?) (<49,0,C>, ?) (<52,0,A>, A) (<52,0,B>, ?) (<52,0,C>, ?) (<58,0,A>, A) (<58,0,B>, ?) (<58,0,C>, 0) (<64,0,A>, A) (<64,0,B>, ?) (<64,0,C>, ?) (<73,0,A>, A) (<73,0,B>, ?) (<73,0,C>, ?) (<75,0,A>, A) (<75,0,B>, ?) (<75,0,C>, ?) (<78,0,A>, A) (<78,0,B>, ?) (<78,0,C>, ?) (<87,0,A>, A) (<87,0,B>, ?) (<87,0,C>, ?) (<88,0,A>, A) (<88,0,B>, ?) (<88,0,C>, ?) + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<42,0,A>, A, .= 0) (<42,0,B>, 1, .= 1) (<42,0,C>, C, .= 0) (<43,0,A>, A, .= 0) (<43,0,B>, B, .= 0) (<43,0,C>, C, .= 0) (<44,0,A>, A, .= 0) (<44,0,B>, B, .= 0) (<44,0,C>, B, .= 0) (<45,0,A>, A, .= 0) (<45,0,B>, B, .= 0) (<45,0,C>, B, .= 0) (<47,0,A>, A, .= 0) (<47,0,B>, 1 + B, .+ 1) (<47,0,C>, C, .= 0) (<49,0,A>, A, .= 0) (<49,0,B>, B, .= 0) (<49,0,C>, C, .= 0) (<52,0,A>, A, .= 0) (<52,0,B>, B, .= 0) (<52,0,C>, C, .= 0) (<58,0,A>, A, .= 0) (<58,0,B>, B, .= 0) (<58,0,C>, 1 + C, .+ 1) (<64,0,A>, A, .= 0) (<64,0,B>, 1 + B, .+ 1) (<64,0,C>, C, .= 0) (<73,0,A>, A, .= 0) (<73,0,B>, 1 + B, .+ 1) (<73,0,C>, 1, .= 1) (<75,0,A>, A, .= 0) (<75,0,B>, B, .= 0) (<75,0,C>, C, .= 0) (<78,0,A>, A, .= 0) (<78,0,B>, B, .= 0) (<78,0,C>, C, .= 0) (<87,0,A>, A, .= 0) (<87,0,B>, 1 + A + B, .* 1) (<87,0,C>, 1 + A + B, .* 1) (<88,0,A>, A, .= 0) (<88,0,B>, 1 + A + B, .* 1) (<88,0,C>, 1 + A + B, .* 1) * Step 24: SizeboundsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 42. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1bb6in(A,1,C) [A >= 3] (1,2) 43. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1returnin(A,B,C) [2 >= A] (1,2) 44. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,B) [A >= 1 + B && 0 >= B] (?,2) 45. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb4in(A,B,B) [A >= 1 + B && B >= 1] (?,2) 47. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [0 >= C] (?,2) 49. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] (?,2) 52. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] (?,2) 58. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [C >= 0 (?,2) && D >= 0 && 1 + C >= 2*D && 2*D >= C && C >= 0 && E$ >= 0 && 1 + C >= 2*E$ && 2*E$ >= C && F$ >= 0 && 1 + C >= 2*F$ && 2*F$ >= C && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] 64. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C] (?,2) 73. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && 0 >= -1 + D] 75. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && -1 + D >= 0 && D$$ >= 0 && D >= 2*D$$ && 2*D$$ >= -1 + D] 78. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && -1 + D >= 0 && D$$ >= 0 && D >= 2*D$$ && 2*D$$ >= -1 + D] 87. evalrealheapsortstep1bb5in(A,B,C) -> evalrealheapsortstep1bb5in(A,1 + B,1 + B) [A >= 2 + B && 0 >= 1 + B] (?,3) 88. evalrealheapsortstep1bb5in(A,B,C) -> evalrealheapsortstep1bb4in(A,1 + B,1 + B) [A >= 2 + B && 1 + B >= 1] (?,3) Signature: {(evalrealheapsortstep1bb2in,3) ;(evalrealheapsortstep1bb3in,3) ;(evalrealheapsortstep1bb4in,3) ;(evalrealheapsortstep1bb5in,3) ;(evalrealheapsortstep1bb6in,3) ;(evalrealheapsortstep1entryin,3) ;(evalrealheapsortstep1returnin,3) ;(evalrealheapsortstep1start,3) ;(evalrealheapsortstep1stop,3)} Flow Graph: [42->{45},43->{},44->{87,88},45->{58,64},47->{44,45},49->{73,75,78},52->{87,88},58->{47,49,52},64->{44,45} ,73->{44,45},75->{73,75,78},78->{87,88},87->{87,88},88->{58,64}] Sizebounds: (<42,0,A>, ?) (<42,0,B>, ?) (<42,0,C>, ?) (<43,0,A>, ?) (<43,0,B>, ?) (<43,0,C>, ?) (<44,0,A>, ?) (<44,0,B>, ?) (<44,0,C>, ?) (<45,0,A>, ?) (<45,0,B>, ?) (<45,0,C>, ?) (<47,0,A>, ?) (<47,0,B>, ?) (<47,0,C>, ?) (<49,0,A>, ?) (<49,0,B>, ?) (<49,0,C>, ?) (<52,0,A>, ?) (<52,0,B>, ?) (<52,0,C>, ?) (<58,0,A>, ?) (<58,0,B>, ?) (<58,0,C>, ?) (<64,0,A>, ?) (<64,0,B>, ?) (<64,0,C>, ?) (<73,0,A>, ?) (<73,0,B>, ?) (<73,0,C>, ?) (<75,0,A>, ?) (<75,0,B>, ?) (<75,0,C>, ?) (<78,0,A>, ?) (<78,0,B>, ?) (<78,0,C>, ?) (<87,0,A>, ?) (<87,0,B>, ?) (<87,0,C>, ?) (<88,0,A>, ?) (<88,0,B>, ?) (<88,0,C>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<42,0,A>, A) (<42,0,B>, 1) (<42,0,C>, C) (<43,0,A>, A) (<43,0,B>, B) (<43,0,C>, C) (<44,0,A>, A) (<44,0,B>, A) (<44,0,C>, A) (<45,0,A>, A) (<45,0,B>, A) (<45,0,C>, 1 + A) (<47,0,A>, A) (<47,0,B>, A) (<47,0,C>, 2 + A) (<49,0,A>, A) (<49,0,B>, A) (<49,0,C>, 2 + A) (<52,0,A>, A) (<52,0,B>, A) (<52,0,C>, 2 + A) (<58,0,A>, A) (<58,0,B>, A) (<58,0,C>, 2 + A) (<64,0,A>, A) (<64,0,B>, A) (<64,0,C>, 1 + A) (<73,0,A>, A) (<73,0,B>, A) (<73,0,C>, 1) (<75,0,A>, A) (<75,0,B>, A) (<75,0,C>, 0) (<78,0,A>, A) (<78,0,B>, A) (<78,0,C>, 2 + A) (<87,0,A>, A) (<87,0,B>, A) (<87,0,C>, A) (<88,0,A>, A) (<88,0,B>, A) (<88,0,C>, A) * Step 25: LocationConstraintsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 42. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1bb6in(A,1,C) [A >= 3] (1,2) 43. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1returnin(A,B,C) [2 >= A] (1,2) 44. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,B) [A >= 1 + B && 0 >= B] (?,2) 45. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb4in(A,B,B) [A >= 1 + B && B >= 1] (?,2) 47. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [0 >= C] (?,2) 49. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] (?,2) 52. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] (?,2) 58. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [C >= 0 (?,2) && D >= 0 && 1 + C >= 2*D && 2*D >= C && C >= 0 && E$ >= 0 && 1 + C >= 2*E$ && 2*E$ >= C && F$ >= 0 && 1 + C >= 2*F$ && 2*F$ >= C && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] 64. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C] (?,2) 73. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && 0 >= -1 + D] 75. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && -1 + D >= 0 && D$$ >= 0 && D >= 2*D$$ && 2*D$$ >= -1 + D] 78. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && -1 + D >= 0 && D$$ >= 0 && D >= 2*D$$ && 2*D$$ >= -1 + D] 87. evalrealheapsortstep1bb5in(A,B,C) -> evalrealheapsortstep1bb5in(A,1 + B,1 + B) [A >= 2 + B && 0 >= 1 + B] (?,3) 88. evalrealheapsortstep1bb5in(A,B,C) -> evalrealheapsortstep1bb4in(A,1 + B,1 + B) [A >= 2 + B && 1 + B >= 1] (?,3) Signature: {(evalrealheapsortstep1bb2in,3) ;(evalrealheapsortstep1bb3in,3) ;(evalrealheapsortstep1bb4in,3) ;(evalrealheapsortstep1bb5in,3) ;(evalrealheapsortstep1bb6in,3) ;(evalrealheapsortstep1entryin,3) ;(evalrealheapsortstep1returnin,3) ;(evalrealheapsortstep1start,3) ;(evalrealheapsortstep1stop,3)} Flow Graph: [42->{45},43->{},44->{87,88},45->{58,64},47->{44,45},49->{73,75,78},52->{87,88},58->{47,49,52},64->{44,45} ,73->{44,45},75->{73,75,78},78->{87,88},87->{87,88},88->{58,64}] Sizebounds: (<42,0,A>, A) (<42,0,B>, 1) (<42,0,C>, C) (<43,0,A>, A) (<43,0,B>, B) (<43,0,C>, C) (<44,0,A>, A) (<44,0,B>, A) (<44,0,C>, A) (<45,0,A>, A) (<45,0,B>, A) (<45,0,C>, 1 + A) (<47,0,A>, A) (<47,0,B>, A) (<47,0,C>, 2 + A) (<49,0,A>, A) (<49,0,B>, A) (<49,0,C>, 2 + A) (<52,0,A>, A) (<52,0,B>, A) (<52,0,C>, 2 + A) (<58,0,A>, A) (<58,0,B>, A) (<58,0,C>, 2 + A) (<64,0,A>, A) (<64,0,B>, A) (<64,0,C>, 1 + A) (<73,0,A>, A) (<73,0,B>, A) (<73,0,C>, 1) (<75,0,A>, A) (<75,0,B>, A) (<75,0,C>, 0) (<78,0,A>, A) (<78,0,B>, A) (<78,0,C>, 2 + A) (<87,0,A>, A) (<87,0,B>, A) (<87,0,C>, A) (<88,0,A>, A) (<88,0,B>, A) (<88,0,C>, A) + Applied Processor: LocationConstraintsProc + Details: We computed the location constraints 42 : True 43 : True 44 : True 45 : True 47 : [False] 49 : [False] 52 : [False] 58 : [A >= 1 + B] 64 : [A >= 1 + B] 73 : [C >= 1] 75 : [C >= 1] 78 : [C >= 1] 87 : True 88 : True . * Step 26: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 42. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1bb6in(A,1,C) [A >= 3] (1,2) 43. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1returnin(A,B,C) [2 >= A] (1,2) 44. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,B) [A >= 1 + B && 0 >= B] (?,2) 45. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb4in(A,B,B) [A >= 1 + B && B >= 1] (?,2) 47. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [0 >= C] (?,2) 49. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] (?,2) 52. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] (?,2) 58. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [C >= 0 (?,2) && D >= 0 && 1 + C >= 2*D && 2*D >= C && C >= 0 && E$ >= 0 && 1 + C >= 2*E$ && 2*E$ >= C && F$ >= 0 && 1 + C >= 2*F$ && 2*F$ >= C && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] 64. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C] (?,2) 73. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && 0 >= -1 + D] 75. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && -1 + D >= 0 && D$$ >= 0 && D >= 2*D$$ && 2*D$$ >= -1 + D] 78. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && -1 + D >= 0 && D$$ >= 0 && D >= 2*D$$ && 2*D$$ >= -1 + D] 87. evalrealheapsortstep1bb5in(A,B,C) -> evalrealheapsortstep1bb5in(A,1 + B,1 + B) [A >= 2 + B && 0 >= 1 + B] (?,3) 88. evalrealheapsortstep1bb5in(A,B,C) -> evalrealheapsortstep1bb4in(A,1 + B,1 + B) [A >= 2 + B && 1 + B >= 1] (?,3) Signature: {(evalrealheapsortstep1bb2in,3) ;(evalrealheapsortstep1bb3in,3) ;(evalrealheapsortstep1bb4in,3) ;(evalrealheapsortstep1bb5in,3) ;(evalrealheapsortstep1bb6in,3) ;(evalrealheapsortstep1entryin,3) ;(evalrealheapsortstep1returnin,3) ;(evalrealheapsortstep1start,3) ;(evalrealheapsortstep1stop,3)} Flow Graph: [42->{45},43->{},44->{87,88},45->{58,64},47->{44,45},49->{73,75,78},52->{87,88},58->{47,49,52},64->{44,45} ,73->{44,45},75->{73,75,78},78->{87,88},87->{87,88},88->{58,64}] Sizebounds: (<42,0,A>, A) (<42,0,B>, 1) (<42,0,C>, C) (<43,0,A>, A) (<43,0,B>, B) (<43,0,C>, C) (<44,0,A>, A) (<44,0,B>, A) (<44,0,C>, A) (<45,0,A>, A) (<45,0,B>, A) (<45,0,C>, 1 + A) (<47,0,A>, A) (<47,0,B>, A) (<47,0,C>, 2 + A) (<49,0,A>, A) (<49,0,B>, A) (<49,0,C>, 2 + A) (<52,0,A>, A) (<52,0,B>, A) (<52,0,C>, 2 + A) (<58,0,A>, A) (<58,0,B>, A) (<58,0,C>, 2 + A) (<64,0,A>, A) (<64,0,B>, A) (<64,0,C>, 1 + A) (<73,0,A>, A) (<73,0,B>, A) (<73,0,C>, 1) (<75,0,A>, A) (<75,0,B>, A) (<75,0,C>, 0) (<78,0,A>, A) (<78,0,B>, A) (<78,0,C>, 2 + A) (<87,0,A>, A) (<87,0,B>, A) (<87,0,C>, A) (<88,0,A>, A) (<88,0,B>, A) (<88,0,C>, A) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalrealheapsortstep1bb2in) = -1 + x1 + -1*x2 p(evalrealheapsortstep1bb3in) = -1 + x1 + -1*x2 p(evalrealheapsortstep1bb4in) = -1 + x1 + -1*x2 p(evalrealheapsortstep1bb5in) = -1 + x1 + -1*x2 p(evalrealheapsortstep1bb6in) = x1 + -1*x2 p(evalrealheapsortstep1returnin) = x1 p(evalrealheapsortstep1start) = x1 The following rules are strictly oriented: [A >= 3] ==> evalrealheapsortstep1start(A,B,C) = A > -1 + A = evalrealheapsortstep1bb6in(A,1,C) [A >= 2 + B && 1 + B >= 1] ==> evalrealheapsortstep1bb5in(A,B,C) = -1 + A + -1*B > -2 + A + -1*B = evalrealheapsortstep1bb4in(A,1 + B,1 + B) The following rules are weakly oriented: [2 >= A] ==> evalrealheapsortstep1start(A,B,C) = A >= A = evalrealheapsortstep1returnin(A,B,C) [A >= 1 + B && 0 >= B] ==> evalrealheapsortstep1bb6in(A,B,C) = A + -1*B >= -1 + A + -1*B = evalrealheapsortstep1bb5in(A,B,B) [A >= 1 + B && B >= 1] ==> evalrealheapsortstep1bb6in(A,B,C) = A + -1*B >= -1 + A + -1*B = evalrealheapsortstep1bb4in(A,B,B) [0 >= C] ==> evalrealheapsortstep1bb3in(A,B,C) = -1 + A + -1*B >= -1 + A + -1*B = evalrealheapsortstep1bb6in(A,1 + B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] ==> evalrealheapsortstep1bb3in(A,B,C) = -1 + A + -1*B >= -1 + A + -1*B = evalrealheapsortstep1bb2in(A,B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] ==> evalrealheapsortstep1bb3in(A,B,C) = -1 + A + -1*B >= -1 + A + -1*B = evalrealheapsortstep1bb5in(A,B,C) [C >= 0 ==> && D >= 0 && 1 + C >= 2*D && 2*D >= C && C >= 0 && E$ >= 0 && 1 + C >= 2*E$ && 2*E$ >= C && F$ >= 0 && 1 + C >= 2*F$ && 2*F$ >= C && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] evalrealheapsortstep1bb4in(A,B,C) = -1 + A + -1*B >= -1 + A + -1*B = evalrealheapsortstep1bb3in(A,B,-1 + D$) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C] ==> evalrealheapsortstep1bb4in(A,B,C) = -1 + A + -1*B >= -1 + A + -1*B = evalrealheapsortstep1bb6in(A,1 + B,C) [C >= 0 ==> && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && 0 >= -1 + D] evalrealheapsortstep1bb2in(A,B,C) = -1 + A + -1*B >= -1 + A + -1*B = evalrealheapsortstep1bb6in(A,1 + B,-1 + D) [C >= 0 ==> && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && -1 + D >= 0 && D$$ >= 0 && D >= 2*D$$ && 2*D$$ >= -1 + D] evalrealheapsortstep1bb2in(A,B,C) = -1 + A + -1*B >= -1 + A + -1*B = evalrealheapsortstep1bb2in(A,B,-1 + D) [C >= 0 ==> && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && -1 + D >= 0 && D$$ >= 0 && D >= 2*D$$ && 2*D$$ >= -1 + D] evalrealheapsortstep1bb2in(A,B,C) = -1 + A + -1*B >= -1 + A + -1*B = evalrealheapsortstep1bb5in(A,B,-1 + D) [A >= 2 + B && 0 >= 1 + B] ==> evalrealheapsortstep1bb5in(A,B,C) = -1 + A + -1*B >= -2 + A + -1*B = evalrealheapsortstep1bb5in(A,1 + B,1 + B) * Step 27: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 42. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1bb6in(A,1,C) [A >= 3] (1,2) 43. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1returnin(A,B,C) [2 >= A] (1,2) 44. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,B) [A >= 1 + B && 0 >= B] (?,2) 45. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb4in(A,B,B) [A >= 1 + B && B >= 1] (?,2) 47. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [0 >= C] (?,2) 49. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] (?,2) 52. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] (?,2) 58. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [C >= 0 (?,2) && D >= 0 && 1 + C >= 2*D && 2*D >= C && C >= 0 && E$ >= 0 && 1 + C >= 2*E$ && 2*E$ >= C && F$ >= 0 && 1 + C >= 2*F$ && 2*F$ >= C && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] 64. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C] (?,2) 73. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && 0 >= -1 + D] 75. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && -1 + D >= 0 && D$$ >= 0 && D >= 2*D$$ && 2*D$$ >= -1 + D] 78. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && -1 + D >= 0 && D$$ >= 0 && D >= 2*D$$ && 2*D$$ >= -1 + D] 87. evalrealheapsortstep1bb5in(A,B,C) -> evalrealheapsortstep1bb5in(A,1 + B,1 + B) [A >= 2 + B && 0 >= 1 + B] (?,3) 88. evalrealheapsortstep1bb5in(A,B,C) -> evalrealheapsortstep1bb4in(A,1 + B,1 + B) [A >= 2 + B && 1 + B >= 1] (A,3) Signature: {(evalrealheapsortstep1bb2in,3) ;(evalrealheapsortstep1bb3in,3) ;(evalrealheapsortstep1bb4in,3) ;(evalrealheapsortstep1bb5in,3) ;(evalrealheapsortstep1bb6in,3) ;(evalrealheapsortstep1entryin,3) ;(evalrealheapsortstep1returnin,3) ;(evalrealheapsortstep1start,3) ;(evalrealheapsortstep1stop,3)} Flow Graph: [42->{45},43->{},44->{87,88},45->{58,64},47->{44,45},49->{73,75,78},52->{87,88},58->{47,49,52},64->{44,45} ,73->{44,45},75->{73,75,78},78->{87,88},87->{87,88},88->{58,64}] Sizebounds: (<42,0,A>, A) (<42,0,B>, 1) (<42,0,C>, C) (<43,0,A>, A) (<43,0,B>, B) (<43,0,C>, C) (<44,0,A>, A) (<44,0,B>, A) (<44,0,C>, A) (<45,0,A>, A) (<45,0,B>, A) (<45,0,C>, 1 + A) (<47,0,A>, A) (<47,0,B>, A) (<47,0,C>, 2 + A) (<49,0,A>, A) (<49,0,B>, A) (<49,0,C>, 2 + A) (<52,0,A>, A) (<52,0,B>, A) (<52,0,C>, 2 + A) (<58,0,A>, A) (<58,0,B>, A) (<58,0,C>, 2 + A) (<64,0,A>, A) (<64,0,B>, A) (<64,0,C>, 1 + A) (<73,0,A>, A) (<73,0,B>, A) (<73,0,C>, 1) (<75,0,A>, A) (<75,0,B>, A) (<75,0,C>, 0) (<78,0,A>, A) (<78,0,B>, A) (<78,0,C>, 2 + A) (<87,0,A>, A) (<87,0,B>, A) (<87,0,C>, A) (<88,0,A>, A) (<88,0,B>, A) (<88,0,C>, A) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalrealheapsortstep1bb2in) = -1*x2 p(evalrealheapsortstep1bb3in) = -1*x2 p(evalrealheapsortstep1bb4in) = -1*x2 p(evalrealheapsortstep1bb5in) = -1*x2 p(evalrealheapsortstep1bb6in) = -1*x2 p(evalrealheapsortstep1returnin) = 1 p(evalrealheapsortstep1start) = 1 The following rules are strictly oriented: [A >= 3] ==> evalrealheapsortstep1start(A,B,C) = 1 > -1 = evalrealheapsortstep1bb6in(A,1,C) [A >= 2 + B && 0 >= 1 + B] ==> evalrealheapsortstep1bb5in(A,B,C) = -1*B > -1 + -1*B = evalrealheapsortstep1bb5in(A,1 + B,1 + B) The following rules are weakly oriented: [2 >= A] ==> evalrealheapsortstep1start(A,B,C) = 1 >= 1 = evalrealheapsortstep1returnin(A,B,C) [A >= 1 + B && 0 >= B] ==> evalrealheapsortstep1bb6in(A,B,C) = -1*B >= -1*B = evalrealheapsortstep1bb5in(A,B,B) [A >= 1 + B && B >= 1] ==> evalrealheapsortstep1bb6in(A,B,C) = -1*B >= -1*B = evalrealheapsortstep1bb4in(A,B,B) [0 >= C] ==> evalrealheapsortstep1bb3in(A,B,C) = -1*B >= -1 + -1*B = evalrealheapsortstep1bb6in(A,1 + B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] ==> evalrealheapsortstep1bb3in(A,B,C) = -1*B >= -1*B = evalrealheapsortstep1bb2in(A,B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] ==> evalrealheapsortstep1bb3in(A,B,C) = -1*B >= -1*B = evalrealheapsortstep1bb5in(A,B,C) [C >= 0 ==> && D >= 0 && 1 + C >= 2*D && 2*D >= C && C >= 0 && E$ >= 0 && 1 + C >= 2*E$ && 2*E$ >= C && F$ >= 0 && 1 + C >= 2*F$ && 2*F$ >= C && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] evalrealheapsortstep1bb4in(A,B,C) = -1*B >= -1*B = evalrealheapsortstep1bb3in(A,B,-1 + D$) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C] ==> evalrealheapsortstep1bb4in(A,B,C) = -1*B >= -1 + -1*B = evalrealheapsortstep1bb6in(A,1 + B,C) [C >= 0 ==> && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && 0 >= -1 + D] evalrealheapsortstep1bb2in(A,B,C) = -1*B >= -1 + -1*B = evalrealheapsortstep1bb6in(A,1 + B,-1 + D) [C >= 0 ==> && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && -1 + D >= 0 && D$$ >= 0 && D >= 2*D$$ && 2*D$$ >= -1 + D] evalrealheapsortstep1bb2in(A,B,C) = -1*B >= -1*B = evalrealheapsortstep1bb2in(A,B,-1 + D) [C >= 0 ==> && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && -1 + D >= 0 && D$$ >= 0 && D >= 2*D$$ && 2*D$$ >= -1 + D] evalrealheapsortstep1bb2in(A,B,C) = -1*B >= -1*B = evalrealheapsortstep1bb5in(A,B,-1 + D) [A >= 2 + B && 1 + B >= 1] ==> evalrealheapsortstep1bb5in(A,B,C) = -1*B >= -1 + -1*B = evalrealheapsortstep1bb4in(A,1 + B,1 + B) * Step 28: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 42. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1bb6in(A,1,C) [A >= 3] (1,2) 43. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1returnin(A,B,C) [2 >= A] (1,2) 44. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,B) [A >= 1 + B && 0 >= B] (?,2) 45. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb4in(A,B,B) [A >= 1 + B && B >= 1] (?,2) 47. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [0 >= C] (?,2) 49. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] (?,2) 52. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] (?,2) 58. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [C >= 0 (?,2) && D >= 0 && 1 + C >= 2*D && 2*D >= C && C >= 0 && E$ >= 0 && 1 + C >= 2*E$ && 2*E$ >= C && F$ >= 0 && 1 + C >= 2*F$ && 2*F$ >= C && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] 64. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C] (?,2) 73. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && 0 >= -1 + D] 75. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && -1 + D >= 0 && D$$ >= 0 && D >= 2*D$$ && 2*D$$ >= -1 + D] 78. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && -1 + D >= 0 && D$$ >= 0 && D >= 2*D$$ && 2*D$$ >= -1 + D] 87. evalrealheapsortstep1bb5in(A,B,C) -> evalrealheapsortstep1bb5in(A,1 + B,1 + B) [A >= 2 + B && 0 >= 1 + B] (1,3) 88. evalrealheapsortstep1bb5in(A,B,C) -> evalrealheapsortstep1bb4in(A,1 + B,1 + B) [A >= 2 + B && 1 + B >= 1] (A,3) Signature: {(evalrealheapsortstep1bb2in,3) ;(evalrealheapsortstep1bb3in,3) ;(evalrealheapsortstep1bb4in,3) ;(evalrealheapsortstep1bb5in,3) ;(evalrealheapsortstep1bb6in,3) ;(evalrealheapsortstep1entryin,3) ;(evalrealheapsortstep1returnin,3) ;(evalrealheapsortstep1start,3) ;(evalrealheapsortstep1stop,3)} Flow Graph: [42->{45},43->{},44->{87,88},45->{58,64},47->{44,45},49->{73,75,78},52->{87,88},58->{47,49,52},64->{44,45} ,73->{44,45},75->{73,75,78},78->{87,88},87->{87,88},88->{58,64}] Sizebounds: (<42,0,A>, A) (<42,0,B>, 1) (<42,0,C>, C) (<43,0,A>, A) (<43,0,B>, B) (<43,0,C>, C) (<44,0,A>, A) (<44,0,B>, A) (<44,0,C>, A) (<45,0,A>, A) (<45,0,B>, A) (<45,0,C>, 1 + A) (<47,0,A>, A) (<47,0,B>, A) (<47,0,C>, 2 + A) (<49,0,A>, A) (<49,0,B>, A) (<49,0,C>, 2 + A) (<52,0,A>, A) (<52,0,B>, A) (<52,0,C>, 2 + A) (<58,0,A>, A) (<58,0,B>, A) (<58,0,C>, 2 + A) (<64,0,A>, A) (<64,0,B>, A) (<64,0,C>, 1 + A) (<73,0,A>, A) (<73,0,B>, A) (<73,0,C>, 1) (<75,0,A>, A) (<75,0,B>, A) (<75,0,C>, 0) (<78,0,A>, A) (<78,0,B>, A) (<78,0,C>, 2 + A) (<87,0,A>, A) (<87,0,B>, A) (<87,0,C>, A) (<88,0,A>, A) (<88,0,B>, A) (<88,0,C>, A) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalrealheapsortstep1bb2in) = 1 + -1*x2 p(evalrealheapsortstep1bb3in) = 1 + -1*x2 p(evalrealheapsortstep1bb4in) = 2 + -1*x2 p(evalrealheapsortstep1bb5in) = 1 + -1*x2 p(evalrealheapsortstep1bb6in) = 2 + -1*x2 p(evalrealheapsortstep1returnin) = 1 p(evalrealheapsortstep1start) = 1 The following rules are strictly oriented: [A >= 1 + B && 0 >= B] ==> evalrealheapsortstep1bb6in(A,B,C) = 2 + -1*B > 1 + -1*B = evalrealheapsortstep1bb5in(A,B,B) [A >= 2 + B && 0 >= 1 + B] ==> evalrealheapsortstep1bb5in(A,B,C) = 1 + -1*B > -1*B = evalrealheapsortstep1bb5in(A,1 + B,1 + B) The following rules are weakly oriented: [A >= 3] ==> evalrealheapsortstep1start(A,B,C) = 1 >= 1 = evalrealheapsortstep1bb6in(A,1,C) [2 >= A] ==> evalrealheapsortstep1start(A,B,C) = 1 >= 1 = evalrealheapsortstep1returnin(A,B,C) [A >= 1 + B && B >= 1] ==> evalrealheapsortstep1bb6in(A,B,C) = 2 + -1*B >= 2 + -1*B = evalrealheapsortstep1bb4in(A,B,B) [0 >= C] ==> evalrealheapsortstep1bb3in(A,B,C) = 1 + -1*B >= 1 + -1*B = evalrealheapsortstep1bb6in(A,1 + B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] ==> evalrealheapsortstep1bb3in(A,B,C) = 1 + -1*B >= 1 + -1*B = evalrealheapsortstep1bb2in(A,B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] ==> evalrealheapsortstep1bb3in(A,B,C) = 1 + -1*B >= 1 + -1*B = evalrealheapsortstep1bb5in(A,B,C) [C >= 0 ==> && D >= 0 && 1 + C >= 2*D && 2*D >= C && C >= 0 && E$ >= 0 && 1 + C >= 2*E$ && 2*E$ >= C && F$ >= 0 && 1 + C >= 2*F$ && 2*F$ >= C && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] evalrealheapsortstep1bb4in(A,B,C) = 2 + -1*B >= 1 + -1*B = evalrealheapsortstep1bb3in(A,B,-1 + D$) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C] ==> evalrealheapsortstep1bb4in(A,B,C) = 2 + -1*B >= 1 + -1*B = evalrealheapsortstep1bb6in(A,1 + B,C) [C >= 0 ==> && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && 0 >= -1 + D] evalrealheapsortstep1bb2in(A,B,C) = 1 + -1*B >= 1 + -1*B = evalrealheapsortstep1bb6in(A,1 + B,-1 + D) [C >= 0 ==> && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && -1 + D >= 0 && D$$ >= 0 && D >= 2*D$$ && 2*D$$ >= -1 + D] evalrealheapsortstep1bb2in(A,B,C) = 1 + -1*B >= 1 + -1*B = evalrealheapsortstep1bb2in(A,B,-1 + D) [C >= 0 ==> && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && -1 + D >= 0 && D$$ >= 0 && D >= 2*D$$ && 2*D$$ >= -1 + D] evalrealheapsortstep1bb2in(A,B,C) = 1 + -1*B >= 1 + -1*B = evalrealheapsortstep1bb5in(A,B,-1 + D) [A >= 2 + B && 1 + B >= 1] ==> evalrealheapsortstep1bb5in(A,B,C) = 1 + -1*B >= 1 + -1*B = evalrealheapsortstep1bb4in(A,1 + B,1 + B) * Step 29: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 42. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1bb6in(A,1,C) [A >= 3] (1,2) 43. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1returnin(A,B,C) [2 >= A] (1,2) 44. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,B) [A >= 1 + B && 0 >= B] (1,2) 45. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb4in(A,B,B) [A >= 1 + B && B >= 1] (?,2) 47. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [0 >= C] (?,2) 49. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] (?,2) 52. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] (?,2) 58. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [C >= 0 (?,2) && D >= 0 && 1 + C >= 2*D && 2*D >= C && C >= 0 && E$ >= 0 && 1 + C >= 2*E$ && 2*E$ >= C && F$ >= 0 && 1 + C >= 2*F$ && 2*F$ >= C && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] 64. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C] (?,2) 73. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && 0 >= -1 + D] 75. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && -1 + D >= 0 && D$$ >= 0 && D >= 2*D$$ && 2*D$$ >= -1 + D] 78. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && -1 + D >= 0 && D$$ >= 0 && D >= 2*D$$ && 2*D$$ >= -1 + D] 87. evalrealheapsortstep1bb5in(A,B,C) -> evalrealheapsortstep1bb5in(A,1 + B,1 + B) [A >= 2 + B && 0 >= 1 + B] (1,3) 88. evalrealheapsortstep1bb5in(A,B,C) -> evalrealheapsortstep1bb4in(A,1 + B,1 + B) [A >= 2 + B && 1 + B >= 1] (A,3) Signature: {(evalrealheapsortstep1bb2in,3) ;(evalrealheapsortstep1bb3in,3) ;(evalrealheapsortstep1bb4in,3) ;(evalrealheapsortstep1bb5in,3) ;(evalrealheapsortstep1bb6in,3) ;(evalrealheapsortstep1entryin,3) ;(evalrealheapsortstep1returnin,3) ;(evalrealheapsortstep1start,3) ;(evalrealheapsortstep1stop,3)} Flow Graph: [42->{45},43->{},44->{87,88},45->{58,64},47->{44,45},49->{73,75,78},52->{87,88},58->{47,49,52},64->{44,45} ,73->{44,45},75->{73,75,78},78->{87,88},87->{87,88},88->{58,64}] Sizebounds: (<42,0,A>, A) (<42,0,B>, 1) (<42,0,C>, C) (<43,0,A>, A) (<43,0,B>, B) (<43,0,C>, C) (<44,0,A>, A) (<44,0,B>, A) (<44,0,C>, A) (<45,0,A>, A) (<45,0,B>, A) (<45,0,C>, 1 + A) (<47,0,A>, A) (<47,0,B>, A) (<47,0,C>, 2 + A) (<49,0,A>, A) (<49,0,B>, A) (<49,0,C>, 2 + A) (<52,0,A>, A) (<52,0,B>, A) (<52,0,C>, 2 + A) (<58,0,A>, A) (<58,0,B>, A) (<58,0,C>, 2 + A) (<64,0,A>, A) (<64,0,B>, A) (<64,0,C>, 1 + A) (<73,0,A>, A) (<73,0,B>, A) (<73,0,C>, 1) (<75,0,A>, A) (<75,0,B>, A) (<75,0,C>, 0) (<78,0,A>, A) (<78,0,B>, A) (<78,0,C>, 2 + A) (<87,0,A>, A) (<87,0,B>, A) (<87,0,C>, A) (<88,0,A>, A) (<88,0,B>, A) (<88,0,C>, A) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalrealheapsortstep1bb2in) = 1 + x1 + -1*x2 p(evalrealheapsortstep1bb3in) = 1 + x1 + -1*x2 p(evalrealheapsortstep1bb4in) = 1 + x1 + -1*x2 p(evalrealheapsortstep1bb5in) = x1 + -1*x2 p(evalrealheapsortstep1bb6in) = 2 + x1 + -1*x2 p(evalrealheapsortstep1returnin) = 1 + x1 p(evalrealheapsortstep1start) = 1 + x1 The following rules are strictly oriented: [A >= 1 + B && 0 >= B] ==> evalrealheapsortstep1bb6in(A,B,C) = 2 + A + -1*B > A + -1*B = evalrealheapsortstep1bb5in(A,B,B) [A >= 1 + B && B >= 1] ==> evalrealheapsortstep1bb6in(A,B,C) = 2 + A + -1*B > 1 + A + -1*B = evalrealheapsortstep1bb4in(A,B,B) [A >= 2 + B && 0 >= 1 + B] ==> evalrealheapsortstep1bb5in(A,B,C) = A + -1*B > -1 + A + -1*B = evalrealheapsortstep1bb5in(A,1 + B,1 + B) The following rules are weakly oriented: [A >= 3] ==> evalrealheapsortstep1start(A,B,C) = 1 + A >= 1 + A = evalrealheapsortstep1bb6in(A,1,C) [2 >= A] ==> evalrealheapsortstep1start(A,B,C) = 1 + A >= 1 + A = evalrealheapsortstep1returnin(A,B,C) [0 >= C] ==> evalrealheapsortstep1bb3in(A,B,C) = 1 + A + -1*B >= 1 + A + -1*B = evalrealheapsortstep1bb6in(A,1 + B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] ==> evalrealheapsortstep1bb3in(A,B,C) = 1 + A + -1*B >= 1 + A + -1*B = evalrealheapsortstep1bb2in(A,B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] ==> evalrealheapsortstep1bb3in(A,B,C) = 1 + A + -1*B >= A + -1*B = evalrealheapsortstep1bb5in(A,B,C) [C >= 0 ==> && D >= 0 && 1 + C >= 2*D && 2*D >= C && C >= 0 && E$ >= 0 && 1 + C >= 2*E$ && 2*E$ >= C && F$ >= 0 && 1 + C >= 2*F$ && 2*F$ >= C && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] evalrealheapsortstep1bb4in(A,B,C) = 1 + A + -1*B >= 1 + A + -1*B = evalrealheapsortstep1bb3in(A,B,-1 + D$) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C] ==> evalrealheapsortstep1bb4in(A,B,C) = 1 + A + -1*B >= 1 + A + -1*B = evalrealheapsortstep1bb6in(A,1 + B,C) [C >= 0 ==> && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && 0 >= -1 + D] evalrealheapsortstep1bb2in(A,B,C) = 1 + A + -1*B >= 1 + A + -1*B = evalrealheapsortstep1bb6in(A,1 + B,-1 + D) [C >= 0 ==> && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && -1 + D >= 0 && D$$ >= 0 && D >= 2*D$$ && 2*D$$ >= -1 + D] evalrealheapsortstep1bb2in(A,B,C) = 1 + A + -1*B >= 1 + A + -1*B = evalrealheapsortstep1bb2in(A,B,-1 + D) [C >= 0 ==> && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && -1 + D >= 0 && D$$ >= 0 && D >= 2*D$$ && 2*D$$ >= -1 + D] evalrealheapsortstep1bb2in(A,B,C) = 1 + A + -1*B >= A + -1*B = evalrealheapsortstep1bb5in(A,B,-1 + D) [A >= 2 + B && 1 + B >= 1] ==> evalrealheapsortstep1bb5in(A,B,C) = A + -1*B >= A + -1*B = evalrealheapsortstep1bb4in(A,1 + B,1 + B) * Step 30: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 42. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1bb6in(A,1,C) [A >= 3] (1,2) 43. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1returnin(A,B,C) [2 >= A] (1,2) 44. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,B) [A >= 1 + B && 0 >= B] (1,2) 45. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb4in(A,B,B) [A >= 1 + B && B >= 1] (1 + A,2) 47. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [0 >= C] (?,2) 49. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] (?,2) 52. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] (?,2) 58. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [C >= 0 (?,2) && D >= 0 && 1 + C >= 2*D && 2*D >= C && C >= 0 && E$ >= 0 && 1 + C >= 2*E$ && 2*E$ >= C && F$ >= 0 && 1 + C >= 2*F$ && 2*F$ >= C && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] 64. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C] (?,2) 73. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && 0 >= -1 + D] 75. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && -1 + D >= 0 && D$$ >= 0 && D >= 2*D$$ && 2*D$$ >= -1 + D] 78. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && -1 + D >= 0 && D$$ >= 0 && D >= 2*D$$ && 2*D$$ >= -1 + D] 87. evalrealheapsortstep1bb5in(A,B,C) -> evalrealheapsortstep1bb5in(A,1 + B,1 + B) [A >= 2 + B && 0 >= 1 + B] (1,3) 88. evalrealheapsortstep1bb5in(A,B,C) -> evalrealheapsortstep1bb4in(A,1 + B,1 + B) [A >= 2 + B && 1 + B >= 1] (A,3) Signature: {(evalrealheapsortstep1bb2in,3) ;(evalrealheapsortstep1bb3in,3) ;(evalrealheapsortstep1bb4in,3) ;(evalrealheapsortstep1bb5in,3) ;(evalrealheapsortstep1bb6in,3) ;(evalrealheapsortstep1entryin,3) ;(evalrealheapsortstep1returnin,3) ;(evalrealheapsortstep1start,3) ;(evalrealheapsortstep1stop,3)} Flow Graph: [42->{45},43->{},44->{87,88},45->{58,64},47->{44,45},49->{73,75,78},52->{87,88},58->{47,49,52},64->{44,45} ,73->{44,45},75->{73,75,78},78->{87,88},87->{87,88},88->{58,64}] Sizebounds: (<42,0,A>, A) (<42,0,B>, 1) (<42,0,C>, C) (<43,0,A>, A) (<43,0,B>, B) (<43,0,C>, C) (<44,0,A>, A) (<44,0,B>, A) (<44,0,C>, A) (<45,0,A>, A) (<45,0,B>, A) (<45,0,C>, 1 + A) (<47,0,A>, A) (<47,0,B>, A) (<47,0,C>, 2 + A) (<49,0,A>, A) (<49,0,B>, A) (<49,0,C>, 2 + A) (<52,0,A>, A) (<52,0,B>, A) (<52,0,C>, 2 + A) (<58,0,A>, A) (<58,0,B>, A) (<58,0,C>, 2 + A) (<64,0,A>, A) (<64,0,B>, A) (<64,0,C>, 1 + A) (<73,0,A>, A) (<73,0,B>, A) (<73,0,C>, 1) (<75,0,A>, A) (<75,0,B>, A) (<75,0,C>, 0) (<78,0,A>, A) (<78,0,B>, A) (<78,0,C>, 2 + A) (<87,0,A>, A) (<87,0,B>, A) (<87,0,C>, A) (<88,0,A>, A) (<88,0,B>, A) (<88,0,C>, A) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [45,47,58,44,64,73,49,75,52,78,87], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalrealheapsortstep1bb2in) = 9 p(evalrealheapsortstep1bb3in) = 9 p(evalrealheapsortstep1bb4in) = 9 p(evalrealheapsortstep1bb5in) = 8 p(evalrealheapsortstep1bb6in) = 9 The following rules are strictly oriented: [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] ==> evalrealheapsortstep1bb3in(A,B,C) = 9 > 8 = evalrealheapsortstep1bb5in(A,B,C) The following rules are weakly oriented: [A >= 1 + B && 0 >= B] ==> evalrealheapsortstep1bb6in(A,B,C) = 9 >= 8 = evalrealheapsortstep1bb5in(A,B,B) [A >= 1 + B && B >= 1] ==> evalrealheapsortstep1bb6in(A,B,C) = 9 >= 9 = evalrealheapsortstep1bb4in(A,B,B) [0 >= C] ==> evalrealheapsortstep1bb3in(A,B,C) = 9 >= 9 = evalrealheapsortstep1bb6in(A,1 + B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] ==> evalrealheapsortstep1bb3in(A,B,C) = 9 >= 9 = evalrealheapsortstep1bb2in(A,B,C) [C >= 0 ==> && D >= 0 && 1 + C >= 2*D && 2*D >= C && C >= 0 && E$ >= 0 && 1 + C >= 2*E$ && 2*E$ >= C && F$ >= 0 && 1 + C >= 2*F$ && 2*F$ >= C && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] evalrealheapsortstep1bb4in(A,B,C) = 9 >= 9 = evalrealheapsortstep1bb3in(A,B,-1 + D$) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C] ==> evalrealheapsortstep1bb4in(A,B,C) = 9 >= 9 = evalrealheapsortstep1bb6in(A,1 + B,C) [C >= 0 ==> && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && 0 >= -1 + D] evalrealheapsortstep1bb2in(A,B,C) = 9 >= 9 = evalrealheapsortstep1bb6in(A,1 + B,-1 + D) [C >= 0 ==> && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && -1 + D >= 0 && D$$ >= 0 && D >= 2*D$$ && 2*D$$ >= -1 + D] evalrealheapsortstep1bb2in(A,B,C) = 9 >= 9 = evalrealheapsortstep1bb2in(A,B,-1 + D) [C >= 0 ==> && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && -1 + D >= 0 && D$$ >= 0 && D >= 2*D$$ && 2*D$$ >= -1 + D] evalrealheapsortstep1bb2in(A,B,C) = 9 >= 8 = evalrealheapsortstep1bb5in(A,B,-1 + D) [A >= 2 + B && 0 >= 1 + B] ==> evalrealheapsortstep1bb5in(A,B,C) = 8 >= 8 = evalrealheapsortstep1bb5in(A,1 + B,1 + B) We use the following global sizebounds: (<42,0,A>, A) (<42,0,B>, 1) (<42,0,C>, C) (<43,0,A>, A) (<43,0,B>, B) (<43,0,C>, C) (<44,0,A>, A) (<44,0,B>, A) (<44,0,C>, A) (<45,0,A>, A) (<45,0,B>, A) (<45,0,C>, 1 + A) (<47,0,A>, A) (<47,0,B>, A) (<47,0,C>, 2 + A) (<49,0,A>, A) (<49,0,B>, A) (<49,0,C>, 2 + A) (<52,0,A>, A) (<52,0,B>, A) (<52,0,C>, 2 + A) (<58,0,A>, A) (<58,0,B>, A) (<58,0,C>, 2 + A) (<64,0,A>, A) (<64,0,B>, A) (<64,0,C>, 1 + A) (<73,0,A>, A) (<73,0,B>, A) (<73,0,C>, 1) (<75,0,A>, A) (<75,0,B>, A) (<75,0,C>, 0) (<78,0,A>, A) (<78,0,B>, A) (<78,0,C>, 2 + A) (<87,0,A>, A) (<87,0,B>, A) (<87,0,C>, A) (<88,0,A>, A) (<88,0,B>, A) (<88,0,C>, A) * Step 31: KnowledgePropagation WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 42. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1bb6in(A,1,C) [A >= 3] (1,2) 43. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1returnin(A,B,C) [2 >= A] (1,2) 44. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,B) [A >= 1 + B && 0 >= B] (1,2) 45. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb4in(A,B,B) [A >= 1 + B && B >= 1] (1 + A,2) 47. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [0 >= C] (?,2) 49. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] (?,2) 52. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] (9 + 9*A,2) 58. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [C >= 0 (?,2) && D >= 0 && 1 + C >= 2*D && 2*D >= C && C >= 0 && E$ >= 0 && 1 + C >= 2*E$ && 2*E$ >= C && F$ >= 0 && 1 + C >= 2*F$ && 2*F$ >= C && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] 64. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C] (?,2) 73. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && 0 >= -1 + D] 75. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && -1 + D >= 0 && D$$ >= 0 && D >= 2*D$$ && 2*D$$ >= -1 + D] 78. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && -1 + D >= 0 && D$$ >= 0 && D >= 2*D$$ && 2*D$$ >= -1 + D] 87. evalrealheapsortstep1bb5in(A,B,C) -> evalrealheapsortstep1bb5in(A,1 + B,1 + B) [A >= 2 + B && 0 >= 1 + B] (1,3) 88. evalrealheapsortstep1bb5in(A,B,C) -> evalrealheapsortstep1bb4in(A,1 + B,1 + B) [A >= 2 + B && 1 + B >= 1] (A,3) Signature: {(evalrealheapsortstep1bb2in,3) ;(evalrealheapsortstep1bb3in,3) ;(evalrealheapsortstep1bb4in,3) ;(evalrealheapsortstep1bb5in,3) ;(evalrealheapsortstep1bb6in,3) ;(evalrealheapsortstep1entryin,3) ;(evalrealheapsortstep1returnin,3) ;(evalrealheapsortstep1start,3) ;(evalrealheapsortstep1stop,3)} Flow Graph: [42->{45},43->{},44->{87,88},45->{58,64},47->{44,45},49->{73,75,78},52->{87,88},58->{47,49,52},64->{44,45} ,73->{44,45},75->{73,75,78},78->{87,88},87->{87,88},88->{58,64}] Sizebounds: (<42,0,A>, A) (<42,0,B>, 1) (<42,0,C>, C) (<43,0,A>, A) (<43,0,B>, B) (<43,0,C>, C) (<44,0,A>, A) (<44,0,B>, A) (<44,0,C>, A) (<45,0,A>, A) (<45,0,B>, A) (<45,0,C>, 1 + A) (<47,0,A>, A) (<47,0,B>, A) (<47,0,C>, 2 + A) (<49,0,A>, A) (<49,0,B>, A) (<49,0,C>, 2 + A) (<52,0,A>, A) (<52,0,B>, A) (<52,0,C>, 2 + A) (<58,0,A>, A) (<58,0,B>, A) (<58,0,C>, 2 + A) (<64,0,A>, A) (<64,0,B>, A) (<64,0,C>, 1 + A) (<73,0,A>, A) (<73,0,B>, A) (<73,0,C>, 1) (<75,0,A>, A) (<75,0,B>, A) (<75,0,C>, 0) (<78,0,A>, A) (<78,0,B>, A) (<78,0,C>, 2 + A) (<87,0,A>, A) (<87,0,B>, A) (<87,0,C>, A) (<88,0,A>, A) (<88,0,B>, A) (<88,0,C>, A) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 32: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 42. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1bb6in(A,1,C) [A >= 3] (1,2) 43. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1returnin(A,B,C) [2 >= A] (1,2) 44. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,B) [A >= 1 + B && 0 >= B] (1,2) 45. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb4in(A,B,B) [A >= 1 + B && B >= 1] (1 + A,2) 47. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [0 >= C] (1 + 2*A,2) 49. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] (1 + 2*A,2) 52. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] (9 + 9*A,2) 58. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [C >= 0 (1 + 2*A,2) && D >= 0 && 1 + C >= 2*D && 2*D >= C && C >= 0 && E$ >= 0 && 1 + C >= 2*E$ && 2*E$ >= C && F$ >= 0 && 1 + C >= 2*F$ && 2*F$ >= C && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] 64. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C] (1 + 2*A,2) 73. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && 0 >= -1 + D] 75. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && -1 + D >= 0 && D$$ >= 0 && D >= 2*D$$ && 2*D$$ >= -1 + D] 78. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && -1 + D >= 0 && D$$ >= 0 && D >= 2*D$$ && 2*D$$ >= -1 + D] 87. evalrealheapsortstep1bb5in(A,B,C) -> evalrealheapsortstep1bb5in(A,1 + B,1 + B) [A >= 2 + B && 0 >= 1 + B] (1,3) 88. evalrealheapsortstep1bb5in(A,B,C) -> evalrealheapsortstep1bb4in(A,1 + B,1 + B) [A >= 2 + B && 1 + B >= 1] (A,3) Signature: {(evalrealheapsortstep1bb2in,3) ;(evalrealheapsortstep1bb3in,3) ;(evalrealheapsortstep1bb4in,3) ;(evalrealheapsortstep1bb5in,3) ;(evalrealheapsortstep1bb6in,3) ;(evalrealheapsortstep1entryin,3) ;(evalrealheapsortstep1returnin,3) ;(evalrealheapsortstep1start,3) ;(evalrealheapsortstep1stop,3)} Flow Graph: [42->{45},43->{},44->{87,88},45->{58,64},47->{44,45},49->{73,75,78},52->{87,88},58->{47,49,52},64->{44,45} ,73->{44,45},75->{73,75,78},78->{87,88},87->{87,88},88->{58,64}] Sizebounds: (<42,0,A>, A) (<42,0,B>, 1) (<42,0,C>, C) (<43,0,A>, A) (<43,0,B>, B) (<43,0,C>, C) (<44,0,A>, A) (<44,0,B>, A) (<44,0,C>, A) (<45,0,A>, A) (<45,0,B>, A) (<45,0,C>, 1 + A) (<47,0,A>, A) (<47,0,B>, A) (<47,0,C>, 2 + A) (<49,0,A>, A) (<49,0,B>, A) (<49,0,C>, 2 + A) (<52,0,A>, A) (<52,0,B>, A) (<52,0,C>, 2 + A) (<58,0,A>, A) (<58,0,B>, A) (<58,0,C>, 2 + A) (<64,0,A>, A) (<64,0,B>, A) (<64,0,C>, 1 + A) (<73,0,A>, A) (<73,0,B>, A) (<73,0,C>, 1) (<75,0,A>, A) (<75,0,B>, A) (<75,0,C>, 0) (<78,0,A>, A) (<78,0,B>, A) (<78,0,C>, 2 + A) (<87,0,A>, A) (<87,0,B>, A) (<87,0,C>, A) (<88,0,A>, A) (<88,0,B>, A) (<88,0,C>, A) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [45,47,88,44,64,73,49,75,52,78,87], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalrealheapsortstep1bb2in) = 1 p(evalrealheapsortstep1bb3in) = 1 p(evalrealheapsortstep1bb4in) = 0 p(evalrealheapsortstep1bb5in) = 0 p(evalrealheapsortstep1bb6in) = 0 The following rules are strictly oriented: [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] ==> evalrealheapsortstep1bb3in(A,B,C) = 1 > 0 = evalrealheapsortstep1bb5in(A,B,C) [C >= 0 ==> && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && 0 >= -1 + D] evalrealheapsortstep1bb2in(A,B,C) = 1 > 0 = evalrealheapsortstep1bb6in(A,1 + B,-1 + D) The following rules are weakly oriented: [A >= 1 + B && 0 >= B] ==> evalrealheapsortstep1bb6in(A,B,C) = 0 >= 0 = evalrealheapsortstep1bb5in(A,B,B) [A >= 1 + B && B >= 1] ==> evalrealheapsortstep1bb6in(A,B,C) = 0 >= 0 = evalrealheapsortstep1bb4in(A,B,B) [0 >= C] ==> evalrealheapsortstep1bb3in(A,B,C) = 1 >= 0 = evalrealheapsortstep1bb6in(A,1 + B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] ==> evalrealheapsortstep1bb3in(A,B,C) = 1 >= 1 = evalrealheapsortstep1bb2in(A,B,C) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C] ==> evalrealheapsortstep1bb4in(A,B,C) = 0 >= 0 = evalrealheapsortstep1bb6in(A,1 + B,C) [C >= 0 ==> && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && -1 + D >= 0 && D$$ >= 0 && D >= 2*D$$ && 2*D$$ >= -1 + D] evalrealheapsortstep1bb2in(A,B,C) = 1 >= 1 = evalrealheapsortstep1bb2in(A,B,-1 + D) [C >= 0 ==> && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && -1 + D >= 0 && D$$ >= 0 && D >= 2*D$$ && 2*D$$ >= -1 + D] evalrealheapsortstep1bb2in(A,B,C) = 1 >= 0 = evalrealheapsortstep1bb5in(A,B,-1 + D) [A >= 2 + B && 0 >= 1 + B] ==> evalrealheapsortstep1bb5in(A,B,C) = 0 >= 0 = evalrealheapsortstep1bb5in(A,1 + B,1 + B) [A >= 2 + B && 1 + B >= 1] ==> evalrealheapsortstep1bb5in(A,B,C) = 0 >= 0 = evalrealheapsortstep1bb4in(A,1 + B,1 + B) We use the following global sizebounds: (<42,0,A>, A) (<42,0,B>, 1) (<42,0,C>, C) (<43,0,A>, A) (<43,0,B>, B) (<43,0,C>, C) (<44,0,A>, A) (<44,0,B>, A) (<44,0,C>, A) (<45,0,A>, A) (<45,0,B>, A) (<45,0,C>, 1 + A) (<47,0,A>, A) (<47,0,B>, A) (<47,0,C>, 2 + A) (<49,0,A>, A) (<49,0,B>, A) (<49,0,C>, 2 + A) (<52,0,A>, A) (<52,0,B>, A) (<52,0,C>, 2 + A) (<58,0,A>, A) (<58,0,B>, A) (<58,0,C>, 2 + A) (<64,0,A>, A) (<64,0,B>, A) (<64,0,C>, 1 + A) (<73,0,A>, A) (<73,0,B>, A) (<73,0,C>, 1) (<75,0,A>, A) (<75,0,B>, A) (<75,0,C>, 0) (<78,0,A>, A) (<78,0,B>, A) (<78,0,C>, 2 + A) (<87,0,A>, A) (<87,0,B>, A) (<87,0,C>, A) (<88,0,A>, A) (<88,0,B>, A) (<88,0,C>, A) * Step 33: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 42. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1bb6in(A,1,C) [A >= 3] (1,2) 43. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1returnin(A,B,C) [2 >= A] (1,2) 44. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,B) [A >= 1 + B && 0 >= B] (1,2) 45. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb4in(A,B,B) [A >= 1 + B && B >= 1] (1 + A,2) 47. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [0 >= C] (1 + 2*A,2) 49. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] (1 + 2*A,2) 52. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] (1 + 2*A,2) 58. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [C >= 0 (1 + 2*A,2) && D >= 0 && 1 + C >= 2*D && 2*D >= C && C >= 0 && E$ >= 0 && 1 + C >= 2*E$ && 2*E$ >= C && F$ >= 0 && 1 + C >= 2*F$ && 2*F$ >= C && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] 64. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C] (1 + 2*A,2) 73. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,-1 + D) [C >= 0 (1 + 2*A,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && 0 >= -1 + D] 75. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && -1 + D >= 0 && D$$ >= 0 && D >= 2*D$$ && 2*D$$ >= -1 + D] 78. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && -1 + D >= 0 && D$$ >= 0 && D >= 2*D$$ && 2*D$$ >= -1 + D] 87. evalrealheapsortstep1bb5in(A,B,C) -> evalrealheapsortstep1bb5in(A,1 + B,1 + B) [A >= 2 + B && 0 >= 1 + B] (1,3) 88. evalrealheapsortstep1bb5in(A,B,C) -> evalrealheapsortstep1bb4in(A,1 + B,1 + B) [A >= 2 + B && 1 + B >= 1] (A,3) Signature: {(evalrealheapsortstep1bb2in,3) ;(evalrealheapsortstep1bb3in,3) ;(evalrealheapsortstep1bb4in,3) ;(evalrealheapsortstep1bb5in,3) ;(evalrealheapsortstep1bb6in,3) ;(evalrealheapsortstep1entryin,3) ;(evalrealheapsortstep1returnin,3) ;(evalrealheapsortstep1start,3) ;(evalrealheapsortstep1stop,3)} Flow Graph: [42->{45},43->{},44->{87,88},45->{58,64},47->{44,45},49->{73,75,78},52->{87,88},58->{47,49,52},64->{44,45} ,73->{44,45},75->{73,75,78},78->{87,88},87->{87,88},88->{58,64}] Sizebounds: (<42,0,A>, A) (<42,0,B>, 1) (<42,0,C>, C) (<43,0,A>, A) (<43,0,B>, B) (<43,0,C>, C) (<44,0,A>, A) (<44,0,B>, A) (<44,0,C>, A) (<45,0,A>, A) (<45,0,B>, A) (<45,0,C>, 1 + A) (<47,0,A>, A) (<47,0,B>, A) (<47,0,C>, 2 + A) (<49,0,A>, A) (<49,0,B>, A) (<49,0,C>, 2 + A) (<52,0,A>, A) (<52,0,B>, A) (<52,0,C>, 2 + A) (<58,0,A>, A) (<58,0,B>, A) (<58,0,C>, 2 + A) (<64,0,A>, A) (<64,0,B>, A) (<64,0,C>, 1 + A) (<73,0,A>, A) (<73,0,B>, A) (<73,0,C>, 1) (<75,0,A>, A) (<75,0,B>, A) (<75,0,C>, 0) (<78,0,A>, A) (<78,0,B>, A) (<78,0,C>, 2 + A) (<87,0,A>, A) (<87,0,B>, A) (<87,0,C>, A) (<88,0,A>, A) (<88,0,B>, A) (<88,0,C>, A) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [45,47,88,44,64,73,49,75,52,78,87], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalrealheapsortstep1bb2in) = 1 p(evalrealheapsortstep1bb3in) = 1 p(evalrealheapsortstep1bb4in) = 0 p(evalrealheapsortstep1bb5in) = 0 p(evalrealheapsortstep1bb6in) = 0 The following rules are strictly oriented: [0 >= C] ==> evalrealheapsortstep1bb3in(A,B,C) = 1 > 0 = evalrealheapsortstep1bb6in(A,1 + B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] ==> evalrealheapsortstep1bb3in(A,B,C) = 1 > 0 = evalrealheapsortstep1bb5in(A,B,C) [C >= 0 ==> && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && 0 >= -1 + D] evalrealheapsortstep1bb2in(A,B,C) = 1 > 0 = evalrealheapsortstep1bb6in(A,1 + B,-1 + D) [C >= 0 ==> && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && -1 + D >= 0 && D$$ >= 0 && D >= 2*D$$ && 2*D$$ >= -1 + D] evalrealheapsortstep1bb2in(A,B,C) = 1 > 0 = evalrealheapsortstep1bb5in(A,B,-1 + D) The following rules are weakly oriented: [A >= 1 + B && 0 >= B] ==> evalrealheapsortstep1bb6in(A,B,C) = 0 >= 0 = evalrealheapsortstep1bb5in(A,B,B) [A >= 1 + B && B >= 1] ==> evalrealheapsortstep1bb6in(A,B,C) = 0 >= 0 = evalrealheapsortstep1bb4in(A,B,B) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] ==> evalrealheapsortstep1bb3in(A,B,C) = 1 >= 1 = evalrealheapsortstep1bb2in(A,B,C) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C] ==> evalrealheapsortstep1bb4in(A,B,C) = 0 >= 0 = evalrealheapsortstep1bb6in(A,1 + B,C) [C >= 0 ==> && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && -1 + D >= 0 && D$$ >= 0 && D >= 2*D$$ && 2*D$$ >= -1 + D] evalrealheapsortstep1bb2in(A,B,C) = 1 >= 1 = evalrealheapsortstep1bb2in(A,B,-1 + D) [A >= 2 + B && 0 >= 1 + B] ==> evalrealheapsortstep1bb5in(A,B,C) = 0 >= 0 = evalrealheapsortstep1bb5in(A,1 + B,1 + B) [A >= 2 + B && 1 + B >= 1] ==> evalrealheapsortstep1bb5in(A,B,C) = 0 >= 0 = evalrealheapsortstep1bb4in(A,1 + B,1 + B) We use the following global sizebounds: (<42,0,A>, A) (<42,0,B>, 1) (<42,0,C>, C) (<43,0,A>, A) (<43,0,B>, B) (<43,0,C>, C) (<44,0,A>, A) (<44,0,B>, A) (<44,0,C>, A) (<45,0,A>, A) (<45,0,B>, A) (<45,0,C>, 1 + A) (<47,0,A>, A) (<47,0,B>, A) (<47,0,C>, 2 + A) (<49,0,A>, A) (<49,0,B>, A) (<49,0,C>, 2 + A) (<52,0,A>, A) (<52,0,B>, A) (<52,0,C>, 2 + A) (<58,0,A>, A) (<58,0,B>, A) (<58,0,C>, 2 + A) (<64,0,A>, A) (<64,0,B>, A) (<64,0,C>, 1 + A) (<73,0,A>, A) (<73,0,B>, A) (<73,0,C>, 1) (<75,0,A>, A) (<75,0,B>, A) (<75,0,C>, 0) (<78,0,A>, A) (<78,0,B>, A) (<78,0,C>, 2 + A) (<87,0,A>, A) (<87,0,B>, A) (<87,0,C>, A) (<88,0,A>, A) (<88,0,B>, A) (<88,0,C>, A) * Step 34: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 42. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1bb6in(A,1,C) [A >= 3] (1,2) 43. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1returnin(A,B,C) [2 >= A] (1,2) 44. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,B) [A >= 1 + B && 0 >= B] (1,2) 45. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb4in(A,B,B) [A >= 1 + B && B >= 1] (1 + A,2) 47. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [0 >= C] (1 + 2*A,2) 49. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] (1 + 2*A,2) 52. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] (1 + 2*A,2) 58. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [C >= 0 (1 + 2*A,2) && D >= 0 && 1 + C >= 2*D && 2*D >= C && C >= 0 && E$ >= 0 && 1 + C >= 2*E$ && 2*E$ >= C && F$ >= 0 && 1 + C >= 2*F$ && 2*F$ >= C && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] 64. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C] (1 + 2*A,2) 73. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,-1 + D) [C >= 0 (1 + 2*A,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && 0 >= -1 + D] 75. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,-1 + D) [C >= 0 (?,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && -1 + D >= 0 && D$$ >= 0 && D >= 2*D$$ && 2*D$$ >= -1 + D] 78. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,-1 + D) [C >= 0 (1 + 2*A,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && -1 + D >= 0 && D$$ >= 0 && D >= 2*D$$ && 2*D$$ >= -1 + D] 87. evalrealheapsortstep1bb5in(A,B,C) -> evalrealheapsortstep1bb5in(A,1 + B,1 + B) [A >= 2 + B && 0 >= 1 + B] (1,3) 88. evalrealheapsortstep1bb5in(A,B,C) -> evalrealheapsortstep1bb4in(A,1 + B,1 + B) [A >= 2 + B && 1 + B >= 1] (A,3) Signature: {(evalrealheapsortstep1bb2in,3) ;(evalrealheapsortstep1bb3in,3) ;(evalrealheapsortstep1bb4in,3) ;(evalrealheapsortstep1bb5in,3) ;(evalrealheapsortstep1bb6in,3) ;(evalrealheapsortstep1entryin,3) ;(evalrealheapsortstep1returnin,3) ;(evalrealheapsortstep1start,3) ;(evalrealheapsortstep1stop,3)} Flow Graph: [42->{45},43->{},44->{87,88},45->{58,64},47->{44,45},49->{73,75,78},52->{87,88},58->{47,49,52},64->{44,45} ,73->{44,45},75->{73,75,78},78->{87,88},87->{87,88},88->{58,64}] Sizebounds: (<42,0,A>, A) (<42,0,B>, 1) (<42,0,C>, C) (<43,0,A>, A) (<43,0,B>, B) (<43,0,C>, C) (<44,0,A>, A) (<44,0,B>, A) (<44,0,C>, A) (<45,0,A>, A) (<45,0,B>, A) (<45,0,C>, 1 + A) (<47,0,A>, A) (<47,0,B>, A) (<47,0,C>, 2 + A) (<49,0,A>, A) (<49,0,B>, A) (<49,0,C>, 2 + A) (<52,0,A>, A) (<52,0,B>, A) (<52,0,C>, 2 + A) (<58,0,A>, A) (<58,0,B>, A) (<58,0,C>, 2 + A) (<64,0,A>, A) (<64,0,B>, A) (<64,0,C>, 1 + A) (<73,0,A>, A) (<73,0,B>, A) (<73,0,C>, 1) (<75,0,A>, A) (<75,0,B>, A) (<75,0,C>, 0) (<78,0,A>, A) (<78,0,B>, A) (<78,0,C>, 2 + A) (<87,0,A>, A) (<87,0,B>, A) (<87,0,C>, A) (<88,0,A>, A) (<88,0,B>, A) (<88,0,C>, A) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [45,47,58,88,44,64,73,75,52,78,87], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalrealheapsortstep1bb2in) = 1 + x3 p(evalrealheapsortstep1bb3in) = 0 p(evalrealheapsortstep1bb4in) = 0 p(evalrealheapsortstep1bb5in) = 0 p(evalrealheapsortstep1bb6in) = 0 The following rules are strictly oriented: [C >= 0 ==> && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && 0 >= -1 + D] evalrealheapsortstep1bb2in(A,B,C) = 1 + C > 0 = evalrealheapsortstep1bb6in(A,1 + B,-1 + D) [C >= 0 ==> && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && -1 + D >= 0 && D$$ >= 0 && D >= 2*D$$ && 2*D$$ >= -1 + D] evalrealheapsortstep1bb2in(A,B,C) = 1 + C > D = evalrealheapsortstep1bb2in(A,B,-1 + D) [C >= 0 ==> && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && -1 + D >= 0 && D$$ >= 0 && D >= 2*D$$ && 2*D$$ >= -1 + D] evalrealheapsortstep1bb2in(A,B,C) = 1 + C > 0 = evalrealheapsortstep1bb5in(A,B,-1 + D) The following rules are weakly oriented: [A >= 1 + B && 0 >= B] ==> evalrealheapsortstep1bb6in(A,B,C) = 0 >= 0 = evalrealheapsortstep1bb5in(A,B,B) [A >= 1 + B && B >= 1] ==> evalrealheapsortstep1bb6in(A,B,C) = 0 >= 0 = evalrealheapsortstep1bb4in(A,B,B) [0 >= C] ==> evalrealheapsortstep1bb3in(A,B,C) = 0 >= 0 = evalrealheapsortstep1bb6in(A,1 + B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] ==> evalrealheapsortstep1bb3in(A,B,C) = 0 >= 0 = evalrealheapsortstep1bb5in(A,B,C) [C >= 0 ==> && D >= 0 && 1 + C >= 2*D && 2*D >= C && C >= 0 && E$ >= 0 && 1 + C >= 2*E$ && 2*E$ >= C && F$ >= 0 && 1 + C >= 2*F$ && 2*F$ >= C && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] evalrealheapsortstep1bb4in(A,B,C) = 0 >= 0 = evalrealheapsortstep1bb3in(A,B,-1 + D$) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C] ==> evalrealheapsortstep1bb4in(A,B,C) = 0 >= 0 = evalrealheapsortstep1bb6in(A,1 + B,C) [A >= 2 + B && 0 >= 1 + B] ==> evalrealheapsortstep1bb5in(A,B,C) = 0 >= 0 = evalrealheapsortstep1bb5in(A,1 + B,1 + B) [A >= 2 + B && 1 + B >= 1] ==> evalrealheapsortstep1bb5in(A,B,C) = 0 >= 0 = evalrealheapsortstep1bb4in(A,1 + B,1 + B) We use the following global sizebounds: (<42,0,A>, A) (<42,0,B>, 1) (<42,0,C>, C) (<43,0,A>, A) (<43,0,B>, B) (<43,0,C>, C) (<44,0,A>, A) (<44,0,B>, A) (<44,0,C>, A) (<45,0,A>, A) (<45,0,B>, A) (<45,0,C>, 1 + A) (<47,0,A>, A) (<47,0,B>, A) (<47,0,C>, 2 + A) (<49,0,A>, A) (<49,0,B>, A) (<49,0,C>, 2 + A) (<52,0,A>, A) (<52,0,B>, A) (<52,0,C>, 2 + A) (<58,0,A>, A) (<58,0,B>, A) (<58,0,C>, 2 + A) (<64,0,A>, A) (<64,0,B>, A) (<64,0,C>, 1 + A) (<73,0,A>, A) (<73,0,B>, A) (<73,0,C>, 1) (<75,0,A>, A) (<75,0,B>, A) (<75,0,C>, 0) (<78,0,A>, A) (<78,0,B>, A) (<78,0,C>, 2 + A) (<87,0,A>, A) (<87,0,B>, A) (<87,0,C>, A) (<88,0,A>, A) (<88,0,B>, A) (<88,0,C>, A) * Step 35: KnowledgePropagation WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 42. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1bb6in(A,1,C) [A >= 3] (1,2) 43. evalrealheapsortstep1start(A,B,C) -> evalrealheapsortstep1returnin(A,B,C) [2 >= A] (1,2) 44. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,B) [A >= 1 + B && 0 >= B] (1,2) 45. evalrealheapsortstep1bb6in(A,B,C) -> evalrealheapsortstep1bb4in(A,B,B) [A >= 1 + B && B >= 1] (1 + A,2) 47. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [0 >= C] (1 + 2*A,2) 49. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] (1 + 2*A,2) 52. evalrealheapsortstep1bb3in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,C) [C >= 1 && C >= 0 && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] (1 + 2*A,2) 58. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb3in(A,B,-1 + D$) [C >= 0 (1 + 2*A,2) && D >= 0 && 1 + C >= 2*D && 2*D >= C && C >= 0 && E$ >= 0 && 1 + C >= 2*E$ && 2*E$ >= C && F$ >= 0 && 1 + C >= 2*F$ && 2*F$ >= C && D$ >= 0 && 1 + C >= 2*D$ && 2*D$ >= C] 64. evalrealheapsortstep1bb4in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,C) [C >= 0 && D >= 0 && 1 + C >= 2*D && 2*D >= C] (1 + 2*A,2) 73. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb6in(A,1 + B,-1 + D) [C >= 0 (1 + 2*A,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && 0 >= -1 + D] 75. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb2in(A,B,-1 + D) [C >= 0 (3 + 7*A + 2*A^2,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && -1 + D >= 0 && D$$ >= 0 && D >= 2*D$$ && 2*D$$ >= -1 + D] 78. evalrealheapsortstep1bb2in(A,B,C) -> evalrealheapsortstep1bb5in(A,B,-1 + D) [C >= 0 (1 + 2*A,3) && E >= 0 && 1 + C >= 2*E && 2*E >= C && F >= 0 && 1 + C >= 2*F && 2*F >= C && D >= 0 && 1 + C >= 2*D && 2*D >= C && -1 + D >= 1 && -1 + D >= 0 && D$$ >= 0 && D >= 2*D$$ && 2*D$$ >= -1 + D] 87. evalrealheapsortstep1bb5in(A,B,C) -> evalrealheapsortstep1bb5in(A,1 + B,1 + B) [A >= 2 + B && 0 >= 1 + B] (1,3) 88. evalrealheapsortstep1bb5in(A,B,C) -> evalrealheapsortstep1bb4in(A,1 + B,1 + B) [A >= 2 + B && 1 + B >= 1] (A,3) Signature: {(evalrealheapsortstep1bb2in,3) ;(evalrealheapsortstep1bb3in,3) ;(evalrealheapsortstep1bb4in,3) ;(evalrealheapsortstep1bb5in,3) ;(evalrealheapsortstep1bb6in,3) ;(evalrealheapsortstep1entryin,3) ;(evalrealheapsortstep1returnin,3) ;(evalrealheapsortstep1start,3) ;(evalrealheapsortstep1stop,3)} Flow Graph: [42->{45},43->{},44->{87,88},45->{58,64},47->{44,45},49->{73,75,78},52->{87,88},58->{47,49,52},64->{44,45} ,73->{44,45},75->{73,75,78},78->{87,88},87->{87,88},88->{58,64}] Sizebounds: (<42,0,A>, A) (<42,0,B>, 1) (<42,0,C>, C) (<43,0,A>, A) (<43,0,B>, B) (<43,0,C>, C) (<44,0,A>, A) (<44,0,B>, A) (<44,0,C>, A) (<45,0,A>, A) (<45,0,B>, A) (<45,0,C>, 1 + A) (<47,0,A>, A) (<47,0,B>, A) (<47,0,C>, 2 + A) (<49,0,A>, A) (<49,0,B>, A) (<49,0,C>, 2 + A) (<52,0,A>, A) (<52,0,B>, A) (<52,0,C>, 2 + A) (<58,0,A>, A) (<58,0,B>, A) (<58,0,C>, 2 + A) (<64,0,A>, A) (<64,0,B>, A) (<64,0,C>, 1 + A) (<73,0,A>, A) (<73,0,B>, A) (<73,0,C>, 1) (<75,0,A>, A) (<75,0,B>, A) (<75,0,C>, 0) (<78,0,A>, A) (<78,0,B>, A) (<78,0,C>, 2 + A) (<87,0,A>, A) (<87,0,B>, A) (<87,0,C>, A) (<88,0,A>, A) (<88,0,B>, A) (<88,0,C>, A) + Applied Processor: KnowledgePropagation + Details: The problem is already solved. WORST_CASE(?,O(n^2))