WORST_CASE(?,O(1))
* Step 1: RestrictVarsProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(A,B,C,D,E) -> f7(F,0,0,D,E)         [0 >= 1 + F]                        (1,1)
          1. f0(A,B,C,D,E) -> f7(F,0,0,D,E)         [F >= 1]                            (1,1)
          2. f0(A,B,C,D,E) -> f7(0,1023,0,D,E)      True                                (1,1)
          3. f7(A,B,C,D,E) -> f7(A,B,1 + C,2 + D,E) [B >= C]                            (?,1)
          4. f7(A,B,C,D,E) -> f21(A,B,C,D,E)        [E >= 0 && C >= 1 + B && 1022 >= E] (?,1)
          5. f7(A,B,C,D,E) -> f21(A,B,C,D,E)        [C >= 1 + B && E >= 1023]           (?,1)
          6. f7(A,B,C,D,E) -> f21(A,B,C,D,E)        [C >= 1 + B && 0 >= 1 + E]          (?,1)
        Signature:
          {(f0,5);(f21,5);(f7,5)}
        Flow Graph:
          [0->{3,4,5,6},1->{3,4,5,6},2->{3,4,5,6},3->{3,4,5,6},4->{},5->{},6->{}]
        
    + Applied Processor:
        RestrictVarsProcessor
    + Details:
        We removed the arguments [A,D] .
* Step 2: LocalSizeboundsProc WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(B,C,E) -> f7(0,0,E)     [0 >= 1 + F]                        (1,1)
          1. f0(B,C,E) -> f7(0,0,E)     [F >= 1]                            (1,1)
          2. f0(B,C,E) -> f7(1023,0,E)  True                                (1,1)
          3. f7(B,C,E) -> f7(B,1 + C,E) [B >= C]                            (?,1)
          4. f7(B,C,E) -> f21(B,C,E)    [E >= 0 && C >= 1 + B && 1022 >= E] (?,1)
          5. f7(B,C,E) -> f21(B,C,E)    [C >= 1 + B && E >= 1023]           (?,1)
          6. f7(B,C,E) -> f21(B,C,E)    [C >= 1 + B && 0 >= 1 + E]          (?,1)
        Signature:
          {(f0,3);(f21,3);(f7,3)}
        Flow Graph:
          [0->{3,4,5,6},1->{3,4,5,6},2->{3,4,5,6},3->{3,4,5,6},4->{},5->{},6->{}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (<0,0,B>,    0,    .= 0) (<0,0,C>,     0, .= 0) (<0,0,E>, E, .= 0) 
          (<1,0,B>,    0,    .= 0) (<1,0,C>,     0, .= 0) (<1,0,E>, E, .= 0) 
          (<2,0,B>, 1023, .= 1023) (<2,0,C>,     0, .= 0) (<2,0,E>, E, .= 0) 
          (<3,0,B>,    B,    .= 0) (<3,0,C>, 1 + C, .+ 1) (<3,0,E>, E, .= 0) 
          (<4,0,B>,    B,    .= 0) (<4,0,C>,     C, .= 0) (<4,0,E>, E, .= 0) 
          (<5,0,B>,    B,    .= 0) (<5,0,C>,     C, .= 0) (<5,0,E>, E, .= 0) 
          (<6,0,B>,    B,    .= 0) (<6,0,C>,     C, .= 0) (<6,0,E>, E, .= 0) 
* Step 3: SizeboundsProc WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(B,C,E) -> f7(0,0,E)     [0 >= 1 + F]                        (1,1)
          1. f0(B,C,E) -> f7(0,0,E)     [F >= 1]                            (1,1)
          2. f0(B,C,E) -> f7(1023,0,E)  True                                (1,1)
          3. f7(B,C,E) -> f7(B,1 + C,E) [B >= C]                            (?,1)
          4. f7(B,C,E) -> f21(B,C,E)    [E >= 0 && C >= 1 + B && 1022 >= E] (?,1)
          5. f7(B,C,E) -> f21(B,C,E)    [C >= 1 + B && E >= 1023]           (?,1)
          6. f7(B,C,E) -> f21(B,C,E)    [C >= 1 + B && 0 >= 1 + E]          (?,1)
        Signature:
          {(f0,3);(f21,3);(f7,3)}
        Flow Graph:
          [0->{3,4,5,6},1->{3,4,5,6},2->{3,4,5,6},3->{3,4,5,6},4->{},5->{},6->{}]
        Sizebounds:
          (<0,0,B>, ?) (<0,0,C>, ?) (<0,0,E>, ?) 
          (<1,0,B>, ?) (<1,0,C>, ?) (<1,0,E>, ?) 
          (<2,0,B>, ?) (<2,0,C>, ?) (<2,0,E>, ?) 
          (<3,0,B>, ?) (<3,0,C>, ?) (<3,0,E>, ?) 
          (<4,0,B>, ?) (<4,0,C>, ?) (<4,0,E>, ?) 
          (<5,0,B>, ?) (<5,0,C>, ?) (<5,0,E>, ?) 
          (<6,0,B>, ?) (<6,0,C>, ?) (<6,0,E>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (<0,0,B>,    0) (<0,0,C>,    0) (<0,0,E>, E) 
          (<1,0,B>,    0) (<1,0,C>,    0) (<1,0,E>, E) 
          (<2,0,B>, 1023) (<2,0,C>,    0) (<2,0,E>, E) 
          (<3,0,B>, 1023) (<3,0,C>, 1024) (<3,0,E>, E) 
          (<4,0,B>, 1023) (<4,0,C>, 1024) (<4,0,E>, E) 
          (<5,0,B>, 1023) (<5,0,C>, 1024) (<5,0,E>, E) 
          (<6,0,B>, 1023) (<6,0,C>, 1024) (<6,0,E>, E) 
* Step 4: UnsatPaths WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(B,C,E) -> f7(0,0,E)     [0 >= 1 + F]                        (1,1)
          1. f0(B,C,E) -> f7(0,0,E)     [F >= 1]                            (1,1)
          2. f0(B,C,E) -> f7(1023,0,E)  True                                (1,1)
          3. f7(B,C,E) -> f7(B,1 + C,E) [B >= C]                            (?,1)
          4. f7(B,C,E) -> f21(B,C,E)    [E >= 0 && C >= 1 + B && 1022 >= E] (?,1)
          5. f7(B,C,E) -> f21(B,C,E)    [C >= 1 + B && E >= 1023]           (?,1)
          6. f7(B,C,E) -> f21(B,C,E)    [C >= 1 + B && 0 >= 1 + E]          (?,1)
        Signature:
          {(f0,3);(f21,3);(f7,3)}
        Flow Graph:
          [0->{3,4,5,6},1->{3,4,5,6},2->{3,4,5,6},3->{3,4,5,6},4->{},5->{},6->{}]
        Sizebounds:
          (<0,0,B>,    0) (<0,0,C>,    0) (<0,0,E>, E) 
          (<1,0,B>,    0) (<1,0,C>,    0) (<1,0,E>, E) 
          (<2,0,B>, 1023) (<2,0,C>,    0) (<2,0,E>, E) 
          (<3,0,B>, 1023) (<3,0,C>, 1024) (<3,0,E>, E) 
          (<4,0,B>, 1023) (<4,0,C>, 1024) (<4,0,E>, E) 
          (<5,0,B>, 1023) (<5,0,C>, 1024) (<5,0,E>, E) 
          (<6,0,B>, 1023) (<6,0,C>, 1024) (<6,0,E>, E) 
    + Applied Processor:
        UnsatPaths
    + Details:
        We remove following edges from the transition graph: [(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6)]
* Step 5: LeafRules WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(B,C,E) -> f7(0,0,E)     [0 >= 1 + F]                        (1,1)
          1. f0(B,C,E) -> f7(0,0,E)     [F >= 1]                            (1,1)
          2. f0(B,C,E) -> f7(1023,0,E)  True                                (1,1)
          3. f7(B,C,E) -> f7(B,1 + C,E) [B >= C]                            (?,1)
          4. f7(B,C,E) -> f21(B,C,E)    [E >= 0 && C >= 1 + B && 1022 >= E] (?,1)
          5. f7(B,C,E) -> f21(B,C,E)    [C >= 1 + B && E >= 1023]           (?,1)
          6. f7(B,C,E) -> f21(B,C,E)    [C >= 1 + B && 0 >= 1 + E]          (?,1)
        Signature:
          {(f0,3);(f21,3);(f7,3)}
        Flow Graph:
          [0->{3},1->{3},2->{3},3->{3,4,5,6},4->{},5->{},6->{}]
        Sizebounds:
          (<0,0,B>,    0) (<0,0,C>,    0) (<0,0,E>, E) 
          (<1,0,B>,    0) (<1,0,C>,    0) (<1,0,E>, E) 
          (<2,0,B>, 1023) (<2,0,C>,    0) (<2,0,E>, E) 
          (<3,0,B>, 1023) (<3,0,C>, 1024) (<3,0,E>, E) 
          (<4,0,B>, 1023) (<4,0,C>, 1024) (<4,0,E>, E) 
          (<5,0,B>, 1023) (<5,0,C>, 1024) (<5,0,E>, E) 
          (<6,0,B>, 1023) (<6,0,C>, 1024) (<6,0,E>, E) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [4,5,6]
* Step 6: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(B,C,E) -> f7(0,0,E)     [0 >= 1 + F] (1,1)
          1. f0(B,C,E) -> f7(0,0,E)     [F >= 1]     (1,1)
          2. f0(B,C,E) -> f7(1023,0,E)  True         (1,1)
          3. f7(B,C,E) -> f7(B,1 + C,E) [B >= C]     (?,1)
        Signature:
          {(f0,3);(f21,3);(f7,3)}
        Flow Graph:
          [0->{3},1->{3},2->{3},3->{3}]
        Sizebounds:
          (<0,0,B>,    0) (<0,0,C>,    0) (<0,0,E>, E) 
          (<1,0,B>,    0) (<1,0,C>,    0) (<1,0,E>, E) 
          (<2,0,B>, 1023) (<2,0,C>,    0) (<2,0,E>, E) 
          (<3,0,B>, 1023) (<3,0,C>, 1024) (<3,0,E>, E) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f0) = 1024          
          p(f7) = 1 + x1 + -1*x2
        
        The following rules are strictly oriented:
           [B >= C] ==>              
          f7(B,C,E)   = 1 + B + -1*C 
                      > B + -1*C     
                      = f7(B,1 + C,E)
        
        
        The following rules are weakly oriented:
        [0 >= 1 + F] ==>             
           f0(B,C,E)   = 1024        
                      >= 1           
                       = f7(0,0,E)   
        
            [F >= 1] ==>             
           f0(B,C,E)   = 1024        
                      >= 1           
                       = f7(0,0,E)   
        
                True ==>             
           f0(B,C,E)   = 1024        
                      >= 1024        
                       = f7(1023,0,E)
        
        
* Step 7: KnowledgePropagation WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(B,C,E) -> f7(0,0,E)     [0 >= 1 + F] (1,1)   
          1. f0(B,C,E) -> f7(0,0,E)     [F >= 1]     (1,1)   
          2. f0(B,C,E) -> f7(1023,0,E)  True         (1,1)   
          3. f7(B,C,E) -> f7(B,1 + C,E) [B >= C]     (1024,1)
        Signature:
          {(f0,3);(f21,3);(f7,3)}
        Flow Graph:
          [0->{3},1->{3},2->{3},3->{3}]
        Sizebounds:
          (<0,0,B>,    0) (<0,0,C>,    0) (<0,0,E>, E) 
          (<1,0,B>,    0) (<1,0,C>,    0) (<1,0,E>, E) 
          (<2,0,B>, 1023) (<2,0,C>,    0) (<2,0,E>, E) 
          (<3,0,B>, 1023) (<3,0,C>, 1024) (<3,0,E>, E) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        The problem is already solved.

WORST_CASE(?,O(1))