WORST_CASE(?,O(1)) * Step 1: RestrictVarsProcessor WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,D,E) -> f7(F,0,0,D,E) [0 >= 1 + F] (1,1) 1. f0(A,B,C,D,E) -> f7(F,0,0,D,E) [F >= 1] (1,1) 2. f0(A,B,C,D,E) -> f7(0,1023,0,D,E) True (1,1) 3. f7(A,B,C,D,E) -> f7(A,B,1 + C,2 + D,E) [B >= C] (?,1) 4. f7(A,B,C,D,E) -> f21(A,B,C,D,E) [E >= 0 && C >= 1 + B && 1022 >= E] (?,1) 5. f7(A,B,C,D,E) -> f21(A,B,C,D,E) [C >= 1 + B && E >= 1023] (?,1) 6. f7(A,B,C,D,E) -> f21(A,B,C,D,E) [C >= 1 + B && 0 >= 1 + E] (?,1) Signature: {(f0,5);(f21,5);(f7,5)} Flow Graph: [0->{3,4,5,6},1->{3,4,5,6},2->{3,4,5,6},3->{3,4,5,6},4->{},5->{},6->{}] + Applied Processor: RestrictVarsProcessor + Details: We removed the arguments [A,D] . * Step 2: LocalSizeboundsProc WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(B,C,E) -> f7(0,0,E) [0 >= 1 + F] (1,1) 1. f0(B,C,E) -> f7(0,0,E) [F >= 1] (1,1) 2. f0(B,C,E) -> f7(1023,0,E) True (1,1) 3. f7(B,C,E) -> f7(B,1 + C,E) [B >= C] (?,1) 4. f7(B,C,E) -> f21(B,C,E) [E >= 0 && C >= 1 + B && 1022 >= E] (?,1) 5. f7(B,C,E) -> f21(B,C,E) [C >= 1 + B && E >= 1023] (?,1) 6. f7(B,C,E) -> f21(B,C,E) [C >= 1 + B && 0 >= 1 + E] (?,1) Signature: {(f0,3);(f21,3);(f7,3)} Flow Graph: [0->{3,4,5,6},1->{3,4,5,6},2->{3,4,5,6},3->{3,4,5,6},4->{},5->{},6->{}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<0,0,B>, 0, .= 0) (<0,0,C>, 0, .= 0) (<0,0,E>, E, .= 0) (<1,0,B>, 0, .= 0) (<1,0,C>, 0, .= 0) (<1,0,E>, E, .= 0) (<2,0,B>, 1023, .= 1023) (<2,0,C>, 0, .= 0) (<2,0,E>, E, .= 0) (<3,0,B>, B, .= 0) (<3,0,C>, 1 + C, .+ 1) (<3,0,E>, E, .= 0) (<4,0,B>, B, .= 0) (<4,0,C>, C, .= 0) (<4,0,E>, E, .= 0) (<5,0,B>, B, .= 0) (<5,0,C>, C, .= 0) (<5,0,E>, E, .= 0) (<6,0,B>, B, .= 0) (<6,0,C>, C, .= 0) (<6,0,E>, E, .= 0) * Step 3: SizeboundsProc WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(B,C,E) -> f7(0,0,E) [0 >= 1 + F] (1,1) 1. f0(B,C,E) -> f7(0,0,E) [F >= 1] (1,1) 2. f0(B,C,E) -> f7(1023,0,E) True (1,1) 3. f7(B,C,E) -> f7(B,1 + C,E) [B >= C] (?,1) 4. f7(B,C,E) -> f21(B,C,E) [E >= 0 && C >= 1 + B && 1022 >= E] (?,1) 5. f7(B,C,E) -> f21(B,C,E) [C >= 1 + B && E >= 1023] (?,1) 6. f7(B,C,E) -> f21(B,C,E) [C >= 1 + B && 0 >= 1 + E] (?,1) Signature: {(f0,3);(f21,3);(f7,3)} Flow Graph: [0->{3,4,5,6},1->{3,4,5,6},2->{3,4,5,6},3->{3,4,5,6},4->{},5->{},6->{}] Sizebounds: (<0,0,B>, ?) (<0,0,C>, ?) (<0,0,E>, ?) (<1,0,B>, ?) (<1,0,C>, ?) (<1,0,E>, ?) (<2,0,B>, ?) (<2,0,C>, ?) (<2,0,E>, ?) (<3,0,B>, ?) (<3,0,C>, ?) (<3,0,E>, ?) (<4,0,B>, ?) (<4,0,C>, ?) (<4,0,E>, ?) (<5,0,B>, ?) (<5,0,C>, ?) (<5,0,E>, ?) (<6,0,B>, ?) (<6,0,C>, ?) (<6,0,E>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<0,0,B>, 0) (<0,0,C>, 0) (<0,0,E>, E) (<1,0,B>, 0) (<1,0,C>, 0) (<1,0,E>, E) (<2,0,B>, 1023) (<2,0,C>, 0) (<2,0,E>, E) (<3,0,B>, 1023) (<3,0,C>, 1024) (<3,0,E>, E) (<4,0,B>, 1023) (<4,0,C>, 1024) (<4,0,E>, E) (<5,0,B>, 1023) (<5,0,C>, 1024) (<5,0,E>, E) (<6,0,B>, 1023) (<6,0,C>, 1024) (<6,0,E>, E) * Step 4: UnsatPaths WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(B,C,E) -> f7(0,0,E) [0 >= 1 + F] (1,1) 1. f0(B,C,E) -> f7(0,0,E) [F >= 1] (1,1) 2. f0(B,C,E) -> f7(1023,0,E) True (1,1) 3. f7(B,C,E) -> f7(B,1 + C,E) [B >= C] (?,1) 4. f7(B,C,E) -> f21(B,C,E) [E >= 0 && C >= 1 + B && 1022 >= E] (?,1) 5. f7(B,C,E) -> f21(B,C,E) [C >= 1 + B && E >= 1023] (?,1) 6. f7(B,C,E) -> f21(B,C,E) [C >= 1 + B && 0 >= 1 + E] (?,1) Signature: {(f0,3);(f21,3);(f7,3)} Flow Graph: [0->{3,4,5,6},1->{3,4,5,6},2->{3,4,5,6},3->{3,4,5,6},4->{},5->{},6->{}] Sizebounds: (<0,0,B>, 0) (<0,0,C>, 0) (<0,0,E>, E) (<1,0,B>, 0) (<1,0,C>, 0) (<1,0,E>, E) (<2,0,B>, 1023) (<2,0,C>, 0) (<2,0,E>, E) (<3,0,B>, 1023) (<3,0,C>, 1024) (<3,0,E>, E) (<4,0,B>, 1023) (<4,0,C>, 1024) (<4,0,E>, E) (<5,0,B>, 1023) (<5,0,C>, 1024) (<5,0,E>, E) (<6,0,B>, 1023) (<6,0,C>, 1024) (<6,0,E>, E) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6)] * Step 5: LeafRules WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(B,C,E) -> f7(0,0,E) [0 >= 1 + F] (1,1) 1. f0(B,C,E) -> f7(0,0,E) [F >= 1] (1,1) 2. f0(B,C,E) -> f7(1023,0,E) True (1,1) 3. f7(B,C,E) -> f7(B,1 + C,E) [B >= C] (?,1) 4. f7(B,C,E) -> f21(B,C,E) [E >= 0 && C >= 1 + B && 1022 >= E] (?,1) 5. f7(B,C,E) -> f21(B,C,E) [C >= 1 + B && E >= 1023] (?,1) 6. f7(B,C,E) -> f21(B,C,E) [C >= 1 + B && 0 >= 1 + E] (?,1) Signature: {(f0,3);(f21,3);(f7,3)} Flow Graph: [0->{3},1->{3},2->{3},3->{3,4,5,6},4->{},5->{},6->{}] Sizebounds: (<0,0,B>, 0) (<0,0,C>, 0) (<0,0,E>, E) (<1,0,B>, 0) (<1,0,C>, 0) (<1,0,E>, E) (<2,0,B>, 1023) (<2,0,C>, 0) (<2,0,E>, E) (<3,0,B>, 1023) (<3,0,C>, 1024) (<3,0,E>, E) (<4,0,B>, 1023) (<4,0,C>, 1024) (<4,0,E>, E) (<5,0,B>, 1023) (<5,0,C>, 1024) (<5,0,E>, E) (<6,0,B>, 1023) (<6,0,C>, 1024) (<6,0,E>, E) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [4,5,6] * Step 6: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(B,C,E) -> f7(0,0,E) [0 >= 1 + F] (1,1) 1. f0(B,C,E) -> f7(0,0,E) [F >= 1] (1,1) 2. f0(B,C,E) -> f7(1023,0,E) True (1,1) 3. f7(B,C,E) -> f7(B,1 + C,E) [B >= C] (?,1) Signature: {(f0,3);(f21,3);(f7,3)} Flow Graph: [0->{3},1->{3},2->{3},3->{3}] Sizebounds: (<0,0,B>, 0) (<0,0,C>, 0) (<0,0,E>, E) (<1,0,B>, 0) (<1,0,C>, 0) (<1,0,E>, E) (<2,0,B>, 1023) (<2,0,C>, 0) (<2,0,E>, E) (<3,0,B>, 1023) (<3,0,C>, 1024) (<3,0,E>, E) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 1024 p(f7) = 1 + x1 + -1*x2 The following rules are strictly oriented: [B >= C] ==> f7(B,C,E) = 1 + B + -1*C > B + -1*C = f7(B,1 + C,E) The following rules are weakly oriented: [0 >= 1 + F] ==> f0(B,C,E) = 1024 >= 1 = f7(0,0,E) [F >= 1] ==> f0(B,C,E) = 1024 >= 1 = f7(0,0,E) True ==> f0(B,C,E) = 1024 >= 1024 = f7(1023,0,E) * Step 7: KnowledgePropagation WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(B,C,E) -> f7(0,0,E) [0 >= 1 + F] (1,1) 1. f0(B,C,E) -> f7(0,0,E) [F >= 1] (1,1) 2. f0(B,C,E) -> f7(1023,0,E) True (1,1) 3. f7(B,C,E) -> f7(B,1 + C,E) [B >= C] (1024,1) Signature: {(f0,3);(f21,3);(f7,3)} Flow Graph: [0->{3},1->{3},2->{3},3->{3}] Sizebounds: (<0,0,B>, 0) (<0,0,C>, 0) (<0,0,E>, E) (<1,0,B>, 0) (<1,0,C>, 0) (<1,0,E>, E) (<2,0,B>, 1023) (<2,0,C>, 0) (<2,0,E>, E) (<3,0,B>, 1023) (<3,0,C>, 1024) (<3,0,E>, E) + Applied Processor: KnowledgePropagation + Details: The problem is already solved. WORST_CASE(?,O(1))