WORST_CASE(?,O(1)) * Step 1: RestrictVarsProcessor WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,D,E,F,G) -> f9(0,0,H,D,E,F,G) True (1,1) 1. f9(A,B,C,D,E,F,G) -> f10(A,B,C,C,E,F,G) [0 >= 1 + C] (?,1) 2. f9(A,B,C,D,E,F,G) -> f10(A,B,C,C,E,F,G) [C >= 1] (?,1) 3. f10(A,B,C,D,E,F,G) -> f9(1 + A,1 + A,H,D,E,F,G) [9 >= A] (?,1) 4. f16(A,B,C,D,E,F,G) -> f28(A,B,C,D,E,F,G) [A >= 10] (?,1) 5. f16(A,B,C,D,E,F,G) -> f16(1 + A,B,C,D,A,H,H) [9 >= A && 0 >= 1 + H] (?,1) 6. f16(A,B,C,D,E,F,G) -> f16(1 + A,B,C,D,A,H,H) [9 >= A && H >= 1] (?,1) 7. f16(A,B,C,D,E,F,G) -> f28(A,B,C,D,A,0,0) [9 >= A] (?,1) 8. f10(A,B,C,D,E,F,G) -> f16(0,B,C,D,E,F,G) [A >= 10] (?,1) 9. f9(A,B,C,D,E,F,G) -> f16(0,B,0,0,E,F,G) [C = 0] (?,1) Signature: {(f0,7);(f10,7);(f16,7);(f28,7);(f9,7)} Flow Graph: [0->{1,2,9},1->{3,8},2->{3,8},3->{1,2,9},4->{},5->{4,5,6,7},6->{4,5,6,7},7->{},8->{4,5,6,7},9->{4,5,6,7}] + Applied Processor: RestrictVarsProcessor + Details: We removed the arguments [B,D,E,F,G] . * Step 2: LocalSizeboundsProc WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,C) -> f9(0,H) True (1,1) 1. f9(A,C) -> f10(A,C) [0 >= 1 + C] (?,1) 2. f9(A,C) -> f10(A,C) [C >= 1] (?,1) 3. f10(A,C) -> f9(1 + A,H) [9 >= A] (?,1) 4. f16(A,C) -> f28(A,C) [A >= 10] (?,1) 5. f16(A,C) -> f16(1 + A,C) [9 >= A && 0 >= 1 + H] (?,1) 6. f16(A,C) -> f16(1 + A,C) [9 >= A && H >= 1] (?,1) 7. f16(A,C) -> f28(A,C) [9 >= A] (?,1) 8. f10(A,C) -> f16(0,C) [A >= 10] (?,1) 9. f9(A,C) -> f16(0,0) [C = 0] (?,1) Signature: {(f0,2);(f10,2);(f16,2);(f28,2);(f9,2)} Flow Graph: [0->{1,2,9},1->{3,8},2->{3,8},3->{1,2,9},4->{},5->{4,5,6,7},6->{4,5,6,7},7->{},8->{4,5,6,7},9->{4,5,6,7}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<0,0,A>, 0, .= 0) (<0,0,C>, ?, .?) (<1,0,A>, A, .= 0) (<1,0,C>, C, .= 0) (<2,0,A>, A, .= 0) (<2,0,C>, C, .= 0) (<3,0,A>, 1 + A, .+ 1) (<3,0,C>, ?, .?) (<4,0,A>, A, .= 0) (<4,0,C>, C, .= 0) (<5,0,A>, 1 + A, .+ 1) (<5,0,C>, C, .= 0) (<6,0,A>, 1 + A, .+ 1) (<6,0,C>, C, .= 0) (<7,0,A>, A, .= 0) (<7,0,C>, C, .= 0) (<8,0,A>, 0, .= 0) (<8,0,C>, C, .= 0) (<9,0,A>, 0, .= 0) (<9,0,C>, 0, .= 0) * Step 3: SizeboundsProc WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,C) -> f9(0,H) True (1,1) 1. f9(A,C) -> f10(A,C) [0 >= 1 + C] (?,1) 2. f9(A,C) -> f10(A,C) [C >= 1] (?,1) 3. f10(A,C) -> f9(1 + A,H) [9 >= A] (?,1) 4. f16(A,C) -> f28(A,C) [A >= 10] (?,1) 5. f16(A,C) -> f16(1 + A,C) [9 >= A && 0 >= 1 + H] (?,1) 6. f16(A,C) -> f16(1 + A,C) [9 >= A && H >= 1] (?,1) 7. f16(A,C) -> f28(A,C) [9 >= A] (?,1) 8. f10(A,C) -> f16(0,C) [A >= 10] (?,1) 9. f9(A,C) -> f16(0,0) [C = 0] (?,1) Signature: {(f0,2);(f10,2);(f16,2);(f28,2);(f9,2)} Flow Graph: [0->{1,2,9},1->{3,8},2->{3,8},3->{1,2,9},4->{},5->{4,5,6,7},6->{4,5,6,7},7->{},8->{4,5,6,7},9->{4,5,6,7}] Sizebounds: (<0,0,A>, ?) (<0,0,C>, ?) (<1,0,A>, ?) (<1,0,C>, ?) (<2,0,A>, ?) (<2,0,C>, ?) (<3,0,A>, ?) (<3,0,C>, ?) (<4,0,A>, ?) (<4,0,C>, ?) (<5,0,A>, ?) (<5,0,C>, ?) (<6,0,A>, ?) (<6,0,C>, ?) (<7,0,A>, ?) (<7,0,C>, ?) (<8,0,A>, ?) (<8,0,C>, ?) (<9,0,A>, ?) (<9,0,C>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<0,0,A>, 0) (<0,0,C>, ?) (<1,0,A>, 10) (<1,0,C>, ?) (<2,0,A>, 10) (<2,0,C>, ?) (<3,0,A>, 10) (<3,0,C>, ?) (<4,0,A>, 10) (<4,0,C>, ?) (<5,0,A>, 10) (<5,0,C>, ?) (<6,0,A>, 10) (<6,0,C>, ?) (<7,0,A>, 10) (<7,0,C>, ?) (<8,0,A>, 0) (<8,0,C>, ?) (<9,0,A>, 0) (<9,0,C>, 0) * Step 4: UnsatPaths WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,C) -> f9(0,H) True (1,1) 1. f9(A,C) -> f10(A,C) [0 >= 1 + C] (?,1) 2. f9(A,C) -> f10(A,C) [C >= 1] (?,1) 3. f10(A,C) -> f9(1 + A,H) [9 >= A] (?,1) 4. f16(A,C) -> f28(A,C) [A >= 10] (?,1) 5. f16(A,C) -> f16(1 + A,C) [9 >= A && 0 >= 1 + H] (?,1) 6. f16(A,C) -> f16(1 + A,C) [9 >= A && H >= 1] (?,1) 7. f16(A,C) -> f28(A,C) [9 >= A] (?,1) 8. f10(A,C) -> f16(0,C) [A >= 10] (?,1) 9. f9(A,C) -> f16(0,0) [C = 0] (?,1) Signature: {(f0,2);(f10,2);(f16,2);(f28,2);(f9,2)} Flow Graph: [0->{1,2,9},1->{3,8},2->{3,8},3->{1,2,9},4->{},5->{4,5,6,7},6->{4,5,6,7},7->{},8->{4,5,6,7},9->{4,5,6,7}] Sizebounds: (<0,0,A>, 0) (<0,0,C>, ?) (<1,0,A>, 10) (<1,0,C>, ?) (<2,0,A>, 10) (<2,0,C>, ?) (<3,0,A>, 10) (<3,0,C>, ?) (<4,0,A>, 10) (<4,0,C>, ?) (<5,0,A>, 10) (<5,0,C>, ?) (<6,0,A>, 10) (<6,0,C>, ?) (<7,0,A>, 10) (<7,0,C>, ?) (<8,0,A>, 0) (<8,0,C>, ?) (<9,0,A>, 0) (<9,0,C>, 0) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(8,4),(9,4)] * Step 5: LeafRules WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,C) -> f9(0,H) True (1,1) 1. f9(A,C) -> f10(A,C) [0 >= 1 + C] (?,1) 2. f9(A,C) -> f10(A,C) [C >= 1] (?,1) 3. f10(A,C) -> f9(1 + A,H) [9 >= A] (?,1) 4. f16(A,C) -> f28(A,C) [A >= 10] (?,1) 5. f16(A,C) -> f16(1 + A,C) [9 >= A && 0 >= 1 + H] (?,1) 6. f16(A,C) -> f16(1 + A,C) [9 >= A && H >= 1] (?,1) 7. f16(A,C) -> f28(A,C) [9 >= A] (?,1) 8. f10(A,C) -> f16(0,C) [A >= 10] (?,1) 9. f9(A,C) -> f16(0,0) [C = 0] (?,1) Signature: {(f0,2);(f10,2);(f16,2);(f28,2);(f9,2)} Flow Graph: [0->{1,2,9},1->{3,8},2->{3,8},3->{1,2,9},4->{},5->{4,5,6,7},6->{4,5,6,7},7->{},8->{5,6,7},9->{5,6,7}] Sizebounds: (<0,0,A>, 0) (<0,0,C>, ?) (<1,0,A>, 10) (<1,0,C>, ?) (<2,0,A>, 10) (<2,0,C>, ?) (<3,0,A>, 10) (<3,0,C>, ?) (<4,0,A>, 10) (<4,0,C>, ?) (<5,0,A>, 10) (<5,0,C>, ?) (<6,0,A>, 10) (<6,0,C>, ?) (<7,0,A>, 10) (<7,0,C>, ?) (<8,0,A>, 0) (<8,0,C>, ?) (<9,0,A>, 0) (<9,0,C>, 0) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [4,7] * Step 6: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,C) -> f9(0,H) True (1,1) 1. f9(A,C) -> f10(A,C) [0 >= 1 + C] (?,1) 2. f9(A,C) -> f10(A,C) [C >= 1] (?,1) 3. f10(A,C) -> f9(1 + A,H) [9 >= A] (?,1) 5. f16(A,C) -> f16(1 + A,C) [9 >= A && 0 >= 1 + H] (?,1) 6. f16(A,C) -> f16(1 + A,C) [9 >= A && H >= 1] (?,1) 8. f10(A,C) -> f16(0,C) [A >= 10] (?,1) 9. f9(A,C) -> f16(0,0) [C = 0] (?,1) Signature: {(f0,2);(f10,2);(f16,2);(f28,2);(f9,2)} Flow Graph: [0->{1,2,9},1->{3,8},2->{3,8},3->{1,2,9},5->{5,6},6->{5,6},8->{5,6},9->{5,6}] Sizebounds: (<0,0,A>, 0) (<0,0,C>, ?) (<1,0,A>, 10) (<1,0,C>, ?) (<2,0,A>, 10) (<2,0,C>, ?) (<3,0,A>, 10) (<3,0,C>, ?) (<5,0,A>, 10) (<5,0,C>, ?) (<6,0,A>, 10) (<6,0,C>, ?) (<8,0,A>, 0) (<8,0,C>, ?) (<9,0,A>, 0) (<9,0,C>, 0) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 1 p(f10) = 1 p(f16) = 0 p(f9) = 1 The following rules are strictly oriented: [C = 0] ==> f9(A,C) = 1 > 0 = f16(0,0) The following rules are weakly oriented: True ==> f0(A,C) = 1 >= 1 = f9(0,H) [0 >= 1 + C] ==> f9(A,C) = 1 >= 1 = f10(A,C) [C >= 1] ==> f9(A,C) = 1 >= 1 = f10(A,C) [9 >= A] ==> f10(A,C) = 1 >= 1 = f9(1 + A,H) [9 >= A && 0 >= 1 + H] ==> f16(A,C) = 0 >= 0 = f16(1 + A,C) [9 >= A && H >= 1] ==> f16(A,C) = 0 >= 0 = f16(1 + A,C) [A >= 10] ==> f10(A,C) = 1 >= 0 = f16(0,C) * Step 7: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,C) -> f9(0,H) True (1,1) 1. f9(A,C) -> f10(A,C) [0 >= 1 + C] (?,1) 2. f9(A,C) -> f10(A,C) [C >= 1] (?,1) 3. f10(A,C) -> f9(1 + A,H) [9 >= A] (?,1) 5. f16(A,C) -> f16(1 + A,C) [9 >= A && 0 >= 1 + H] (?,1) 6. f16(A,C) -> f16(1 + A,C) [9 >= A && H >= 1] (?,1) 8. f10(A,C) -> f16(0,C) [A >= 10] (?,1) 9. f9(A,C) -> f16(0,0) [C = 0] (1,1) Signature: {(f0,2);(f10,2);(f16,2);(f28,2);(f9,2)} Flow Graph: [0->{1,2,9},1->{3,8},2->{3,8},3->{1,2,9},5->{5,6},6->{5,6},8->{5,6},9->{5,6}] Sizebounds: (<0,0,A>, 0) (<0,0,C>, ?) (<1,0,A>, 10) (<1,0,C>, ?) (<2,0,A>, 10) (<2,0,C>, ?) (<3,0,A>, 10) (<3,0,C>, ?) (<5,0,A>, 10) (<5,0,C>, ?) (<6,0,A>, 10) (<6,0,C>, ?) (<8,0,A>, 0) (<8,0,C>, ?) (<9,0,A>, 0) (<9,0,C>, 0) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 1 p(f10) = 1 p(f16) = 0 p(f9) = 1 The following rules are strictly oriented: [A >= 10] ==> f10(A,C) = 1 > 0 = f16(0,C) [C = 0] ==> f9(A,C) = 1 > 0 = f16(0,0) The following rules are weakly oriented: True ==> f0(A,C) = 1 >= 1 = f9(0,H) [0 >= 1 + C] ==> f9(A,C) = 1 >= 1 = f10(A,C) [C >= 1] ==> f9(A,C) = 1 >= 1 = f10(A,C) [9 >= A] ==> f10(A,C) = 1 >= 1 = f9(1 + A,H) [9 >= A && 0 >= 1 + H] ==> f16(A,C) = 0 >= 0 = f16(1 + A,C) [9 >= A && H >= 1] ==> f16(A,C) = 0 >= 0 = f16(1 + A,C) * Step 8: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,C) -> f9(0,H) True (1,1) 1. f9(A,C) -> f10(A,C) [0 >= 1 + C] (?,1) 2. f9(A,C) -> f10(A,C) [C >= 1] (?,1) 3. f10(A,C) -> f9(1 + A,H) [9 >= A] (?,1) 5. f16(A,C) -> f16(1 + A,C) [9 >= A && 0 >= 1 + H] (?,1) 6. f16(A,C) -> f16(1 + A,C) [9 >= A && H >= 1] (?,1) 8. f10(A,C) -> f16(0,C) [A >= 10] (1,1) 9. f9(A,C) -> f16(0,0) [C = 0] (1,1) Signature: {(f0,2);(f10,2);(f16,2);(f28,2);(f9,2)} Flow Graph: [0->{1,2,9},1->{3,8},2->{3,8},3->{1,2,9},5->{5,6},6->{5,6},8->{5,6},9->{5,6}] Sizebounds: (<0,0,A>, 0) (<0,0,C>, ?) (<1,0,A>, 10) (<1,0,C>, ?) (<2,0,A>, 10) (<2,0,C>, ?) (<3,0,A>, 10) (<3,0,C>, ?) (<5,0,A>, 10) (<5,0,C>, ?) (<6,0,A>, 10) (<6,0,C>, ?) (<8,0,A>, 0) (<8,0,C>, ?) (<9,0,A>, 0) (<9,0,C>, 0) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 10 p(f10) = 10 p(f16) = 10 + -1*x1 p(f9) = 10 The following rules are strictly oriented: [9 >= A && H >= 1] ==> f16(A,C) = 10 + -1*A > 9 + -1*A = f16(1 + A,C) The following rules are weakly oriented: True ==> f0(A,C) = 10 >= 10 = f9(0,H) [0 >= 1 + C] ==> f9(A,C) = 10 >= 10 = f10(A,C) [C >= 1] ==> f9(A,C) = 10 >= 10 = f10(A,C) [9 >= A] ==> f10(A,C) = 10 >= 10 = f9(1 + A,H) [9 >= A && 0 >= 1 + H] ==> f16(A,C) = 10 + -1*A >= 9 + -1*A = f16(1 + A,C) [A >= 10] ==> f10(A,C) = 10 >= 10 = f16(0,C) [C = 0] ==> f9(A,C) = 10 >= 10 = f16(0,0) * Step 9: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,C) -> f9(0,H) True (1,1) 1. f9(A,C) -> f10(A,C) [0 >= 1 + C] (?,1) 2. f9(A,C) -> f10(A,C) [C >= 1] (?,1) 3. f10(A,C) -> f9(1 + A,H) [9 >= A] (?,1) 5. f16(A,C) -> f16(1 + A,C) [9 >= A && 0 >= 1 + H] (?,1) 6. f16(A,C) -> f16(1 + A,C) [9 >= A && H >= 1] (10,1) 8. f10(A,C) -> f16(0,C) [A >= 10] (1,1) 9. f9(A,C) -> f16(0,0) [C = 0] (1,1) Signature: {(f0,2);(f10,2);(f16,2);(f28,2);(f9,2)} Flow Graph: [0->{1,2,9},1->{3,8},2->{3,8},3->{1,2,9},5->{5,6},6->{5,6},8->{5,6},9->{5,6}] Sizebounds: (<0,0,A>, 0) (<0,0,C>, ?) (<1,0,A>, 10) (<1,0,C>, ?) (<2,0,A>, 10) (<2,0,C>, ?) (<3,0,A>, 10) (<3,0,C>, ?) (<5,0,A>, 10) (<5,0,C>, ?) (<6,0,A>, 10) (<6,0,C>, ?) (<8,0,A>, 0) (<8,0,C>, ?) (<9,0,A>, 0) (<9,0,C>, 0) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 10 p(f10) = 10 p(f16) = 10 + -1*x1 p(f9) = 10 The following rules are strictly oriented: [9 >= A && 0 >= 1 + H] ==> f16(A,C) = 10 + -1*A > 9 + -1*A = f16(1 + A,C) [9 >= A && H >= 1] ==> f16(A,C) = 10 + -1*A > 9 + -1*A = f16(1 + A,C) The following rules are weakly oriented: True ==> f0(A,C) = 10 >= 10 = f9(0,H) [0 >= 1 + C] ==> f9(A,C) = 10 >= 10 = f10(A,C) [C >= 1] ==> f9(A,C) = 10 >= 10 = f10(A,C) [9 >= A] ==> f10(A,C) = 10 >= 10 = f9(1 + A,H) [A >= 10] ==> f10(A,C) = 10 >= 10 = f16(0,C) [C = 0] ==> f9(A,C) = 10 >= 10 = f16(0,0) * Step 10: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,C) -> f9(0,H) True (1,1) 1. f9(A,C) -> f10(A,C) [0 >= 1 + C] (?,1) 2. f9(A,C) -> f10(A,C) [C >= 1] (?,1) 3. f10(A,C) -> f9(1 + A,H) [9 >= A] (?,1) 5. f16(A,C) -> f16(1 + A,C) [9 >= A && 0 >= 1 + H] (10,1) 6. f16(A,C) -> f16(1 + A,C) [9 >= A && H >= 1] (10,1) 8. f10(A,C) -> f16(0,C) [A >= 10] (1,1) 9. f9(A,C) -> f16(0,0) [C = 0] (1,1) Signature: {(f0,2);(f10,2);(f16,2);(f28,2);(f9,2)} Flow Graph: [0->{1,2,9},1->{3,8},2->{3,8},3->{1,2,9},5->{5,6},6->{5,6},8->{5,6},9->{5,6}] Sizebounds: (<0,0,A>, 0) (<0,0,C>, ?) (<1,0,A>, 10) (<1,0,C>, ?) (<2,0,A>, 10) (<2,0,C>, ?) (<3,0,A>, 10) (<3,0,C>, ?) (<5,0,A>, 10) (<5,0,C>, ?) (<6,0,A>, 10) (<6,0,C>, ?) (<8,0,A>, 0) (<8,0,C>, ?) (<9,0,A>, 0) (<9,0,C>, 0) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [1,3,2], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f10) = 10 + -1*x1 p(f9) = 10 + -1*x1 The following rules are strictly oriented: [9 >= A] ==> f10(A,C) = 10 + -1*A > 9 + -1*A = f9(1 + A,H) The following rules are weakly oriented: [0 >= 1 + C] ==> f9(A,C) = 10 + -1*A >= 10 + -1*A = f10(A,C) [C >= 1] ==> f9(A,C) = 10 + -1*A >= 10 + -1*A = f10(A,C) We use the following global sizebounds: (<0,0,A>, 0) (<0,0,C>, ?) (<1,0,A>, 10) (<1,0,C>, ?) (<2,0,A>, 10) (<2,0,C>, ?) (<3,0,A>, 10) (<3,0,C>, ?) (<5,0,A>, 10) (<5,0,C>, ?) (<6,0,A>, 10) (<6,0,C>, ?) (<8,0,A>, 0) (<8,0,C>, ?) (<9,0,A>, 0) (<9,0,C>, 0) * Step 11: KnowledgePropagation WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,C) -> f9(0,H) True (1,1) 1. f9(A,C) -> f10(A,C) [0 >= 1 + C] (?,1) 2. f9(A,C) -> f10(A,C) [C >= 1] (?,1) 3. f10(A,C) -> f9(1 + A,H) [9 >= A] (10,1) 5. f16(A,C) -> f16(1 + A,C) [9 >= A && 0 >= 1 + H] (10,1) 6. f16(A,C) -> f16(1 + A,C) [9 >= A && H >= 1] (10,1) 8. f10(A,C) -> f16(0,C) [A >= 10] (1,1) 9. f9(A,C) -> f16(0,0) [C = 0] (1,1) Signature: {(f0,2);(f10,2);(f16,2);(f28,2);(f9,2)} Flow Graph: [0->{1,2,9},1->{3,8},2->{3,8},3->{1,2,9},5->{5,6},6->{5,6},8->{5,6},9->{5,6}] Sizebounds: (<0,0,A>, 0) (<0,0,C>, ?) (<1,0,A>, 10) (<1,0,C>, ?) (<2,0,A>, 10) (<2,0,C>, ?) (<3,0,A>, 10) (<3,0,C>, ?) (<5,0,A>, 10) (<5,0,C>, ?) (<6,0,A>, 10) (<6,0,C>, ?) (<8,0,A>, 0) (<8,0,C>, ?) (<9,0,A>, 0) (<9,0,C>, 0) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 12: LocalSizeboundsProc WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,C) -> f9(0,H) True (1,1) 1. f9(A,C) -> f10(A,C) [0 >= 1 + C] (11,1) 2. f9(A,C) -> f10(A,C) [C >= 1] (11,1) 3. f10(A,C) -> f9(1 + A,H) [9 >= A] (10,1) 5. f16(A,C) -> f16(1 + A,C) [9 >= A && 0 >= 1 + H] (10,1) 6. f16(A,C) -> f16(1 + A,C) [9 >= A && H >= 1] (10,1) 8. f10(A,C) -> f16(0,C) [A >= 10] (1,1) 9. f9(A,C) -> f16(0,0) [C = 0] (1,1) Signature: {(f0,2);(f10,2);(f16,2);(f28,2);(f9,2)} Flow Graph: [0->{1,2,9},1->{3,8},2->{3,8},3->{1,2,9},5->{5,6},6->{5,6},8->{5,6},9->{5,6}] Sizebounds: (<0,0,A>, 0) (<0,0,C>, ?) (<1,0,A>, 10) (<1,0,C>, ?) (<2,0,A>, 10) (<2,0,C>, ?) (<3,0,A>, 10) (<3,0,C>, ?) (<5,0,A>, 10) (<5,0,C>, ?) (<6,0,A>, 10) (<6,0,C>, ?) (<8,0,A>, 0) (<8,0,C>, ?) (<9,0,A>, 0) (<9,0,C>, 0) + Applied Processor: LocalSizeboundsProc + Details: The problem is already solved. WORST_CASE(?,O(1))