WORST_CASE(?,O(1))
* Step 1: RestrictVarsProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(A,B,C,D,E,F,G)  -> f9(0,0,H,D,E,F,G)         True                   (1,1)
          1. f9(A,B,C,D,E,F,G)  -> f10(A,B,C,C,E,F,G)        [0 >= 1 + C]           (?,1)
          2. f9(A,B,C,D,E,F,G)  -> f10(A,B,C,C,E,F,G)        [C >= 1]               (?,1)
          3. f10(A,B,C,D,E,F,G) -> f9(1 + A,1 + A,H,D,E,F,G) [9 >= A]               (?,1)
          4. f16(A,B,C,D,E,F,G) -> f28(A,B,C,D,E,F,G)        [A >= 10]              (?,1)
          5. f16(A,B,C,D,E,F,G) -> f16(1 + A,B,C,D,A,H,H)    [9 >= A && 0 >= 1 + H] (?,1)
          6. f16(A,B,C,D,E,F,G) -> f16(1 + A,B,C,D,A,H,H)    [9 >= A && H >= 1]     (?,1)
          7. f16(A,B,C,D,E,F,G) -> f28(A,B,C,D,A,0,0)        [9 >= A]               (?,1)
          8. f10(A,B,C,D,E,F,G) -> f16(0,B,C,D,E,F,G)        [A >= 10]              (?,1)
          9. f9(A,B,C,D,E,F,G)  -> f16(0,B,0,0,E,F,G)        [C = 0]                (?,1)
        Signature:
          {(f0,7);(f10,7);(f16,7);(f28,7);(f9,7)}
        Flow Graph:
          [0->{1,2,9},1->{3,8},2->{3,8},3->{1,2,9},4->{},5->{4,5,6,7},6->{4,5,6,7},7->{},8->{4,5,6,7},9->{4,5,6,7}]
        
    + Applied Processor:
        RestrictVarsProcessor
    + Details:
        We removed the arguments [B,D,E,F,G] .
* Step 2: LocalSizeboundsProc WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(A,C)  -> f9(0,H)      True                   (1,1)
          1. f9(A,C)  -> f10(A,C)     [0 >= 1 + C]           (?,1)
          2. f9(A,C)  -> f10(A,C)     [C >= 1]               (?,1)
          3. f10(A,C) -> f9(1 + A,H)  [9 >= A]               (?,1)
          4. f16(A,C) -> f28(A,C)     [A >= 10]              (?,1)
          5. f16(A,C) -> f16(1 + A,C) [9 >= A && 0 >= 1 + H] (?,1)
          6. f16(A,C) -> f16(1 + A,C) [9 >= A && H >= 1]     (?,1)
          7. f16(A,C) -> f28(A,C)     [9 >= A]               (?,1)
          8. f10(A,C) -> f16(0,C)     [A >= 10]              (?,1)
          9. f9(A,C)  -> f16(0,0)     [C = 0]                (?,1)
        Signature:
          {(f0,2);(f10,2);(f16,2);(f28,2);(f9,2)}
        Flow Graph:
          [0->{1,2,9},1->{3,8},2->{3,8},3->{1,2,9},4->{},5->{4,5,6,7},6->{4,5,6,7},7->{},8->{4,5,6,7},9->{4,5,6,7}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (<0,0,A>,     0, .= 0) (<0,0,C>, ?,   .?) 
          (<1,0,A>,     A, .= 0) (<1,0,C>, C, .= 0) 
          (<2,0,A>,     A, .= 0) (<2,0,C>, C, .= 0) 
          (<3,0,A>, 1 + A, .+ 1) (<3,0,C>, ?,   .?) 
          (<4,0,A>,     A, .= 0) (<4,0,C>, C, .= 0) 
          (<5,0,A>, 1 + A, .+ 1) (<5,0,C>, C, .= 0) 
          (<6,0,A>, 1 + A, .+ 1) (<6,0,C>, C, .= 0) 
          (<7,0,A>,     A, .= 0) (<7,0,C>, C, .= 0) 
          (<8,0,A>,     0, .= 0) (<8,0,C>, C, .= 0) 
          (<9,0,A>,     0, .= 0) (<9,0,C>, 0, .= 0) 
* Step 3: SizeboundsProc WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(A,C)  -> f9(0,H)      True                   (1,1)
          1. f9(A,C)  -> f10(A,C)     [0 >= 1 + C]           (?,1)
          2. f9(A,C)  -> f10(A,C)     [C >= 1]               (?,1)
          3. f10(A,C) -> f9(1 + A,H)  [9 >= A]               (?,1)
          4. f16(A,C) -> f28(A,C)     [A >= 10]              (?,1)
          5. f16(A,C) -> f16(1 + A,C) [9 >= A && 0 >= 1 + H] (?,1)
          6. f16(A,C) -> f16(1 + A,C) [9 >= A && H >= 1]     (?,1)
          7. f16(A,C) -> f28(A,C)     [9 >= A]               (?,1)
          8. f10(A,C) -> f16(0,C)     [A >= 10]              (?,1)
          9. f9(A,C)  -> f16(0,0)     [C = 0]                (?,1)
        Signature:
          {(f0,2);(f10,2);(f16,2);(f28,2);(f9,2)}
        Flow Graph:
          [0->{1,2,9},1->{3,8},2->{3,8},3->{1,2,9},4->{},5->{4,5,6,7},6->{4,5,6,7},7->{},8->{4,5,6,7},9->{4,5,6,7}]
        Sizebounds:
          (<0,0,A>, ?) (<0,0,C>, ?) 
          (<1,0,A>, ?) (<1,0,C>, ?) 
          (<2,0,A>, ?) (<2,0,C>, ?) 
          (<3,0,A>, ?) (<3,0,C>, ?) 
          (<4,0,A>, ?) (<4,0,C>, ?) 
          (<5,0,A>, ?) (<5,0,C>, ?) 
          (<6,0,A>, ?) (<6,0,C>, ?) 
          (<7,0,A>, ?) (<7,0,C>, ?) 
          (<8,0,A>, ?) (<8,0,C>, ?) 
          (<9,0,A>, ?) (<9,0,C>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (<0,0,A>,  0) (<0,0,C>, ?) 
          (<1,0,A>, 10) (<1,0,C>, ?) 
          (<2,0,A>, 10) (<2,0,C>, ?) 
          (<3,0,A>, 10) (<3,0,C>, ?) 
          (<4,0,A>, 10) (<4,0,C>, ?) 
          (<5,0,A>, 10) (<5,0,C>, ?) 
          (<6,0,A>, 10) (<6,0,C>, ?) 
          (<7,0,A>, 10) (<7,0,C>, ?) 
          (<8,0,A>,  0) (<8,0,C>, ?) 
          (<9,0,A>,  0) (<9,0,C>, 0) 
* Step 4: UnsatPaths WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(A,C)  -> f9(0,H)      True                   (1,1)
          1. f9(A,C)  -> f10(A,C)     [0 >= 1 + C]           (?,1)
          2. f9(A,C)  -> f10(A,C)     [C >= 1]               (?,1)
          3. f10(A,C) -> f9(1 + A,H)  [9 >= A]               (?,1)
          4. f16(A,C) -> f28(A,C)     [A >= 10]              (?,1)
          5. f16(A,C) -> f16(1 + A,C) [9 >= A && 0 >= 1 + H] (?,1)
          6. f16(A,C) -> f16(1 + A,C) [9 >= A && H >= 1]     (?,1)
          7. f16(A,C) -> f28(A,C)     [9 >= A]               (?,1)
          8. f10(A,C) -> f16(0,C)     [A >= 10]              (?,1)
          9. f9(A,C)  -> f16(0,0)     [C = 0]                (?,1)
        Signature:
          {(f0,2);(f10,2);(f16,2);(f28,2);(f9,2)}
        Flow Graph:
          [0->{1,2,9},1->{3,8},2->{3,8},3->{1,2,9},4->{},5->{4,5,6,7},6->{4,5,6,7},7->{},8->{4,5,6,7},9->{4,5,6,7}]
        Sizebounds:
          (<0,0,A>,  0) (<0,0,C>, ?) 
          (<1,0,A>, 10) (<1,0,C>, ?) 
          (<2,0,A>, 10) (<2,0,C>, ?) 
          (<3,0,A>, 10) (<3,0,C>, ?) 
          (<4,0,A>, 10) (<4,0,C>, ?) 
          (<5,0,A>, 10) (<5,0,C>, ?) 
          (<6,0,A>, 10) (<6,0,C>, ?) 
          (<7,0,A>, 10) (<7,0,C>, ?) 
          (<8,0,A>,  0) (<8,0,C>, ?) 
          (<9,0,A>,  0) (<9,0,C>, 0) 
    + Applied Processor:
        UnsatPaths
    + Details:
        We remove following edges from the transition graph: [(8,4),(9,4)]
* Step 5: LeafRules WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(A,C)  -> f9(0,H)      True                   (1,1)
          1. f9(A,C)  -> f10(A,C)     [0 >= 1 + C]           (?,1)
          2. f9(A,C)  -> f10(A,C)     [C >= 1]               (?,1)
          3. f10(A,C) -> f9(1 + A,H)  [9 >= A]               (?,1)
          4. f16(A,C) -> f28(A,C)     [A >= 10]              (?,1)
          5. f16(A,C) -> f16(1 + A,C) [9 >= A && 0 >= 1 + H] (?,1)
          6. f16(A,C) -> f16(1 + A,C) [9 >= A && H >= 1]     (?,1)
          7. f16(A,C) -> f28(A,C)     [9 >= A]               (?,1)
          8. f10(A,C) -> f16(0,C)     [A >= 10]              (?,1)
          9. f9(A,C)  -> f16(0,0)     [C = 0]                (?,1)
        Signature:
          {(f0,2);(f10,2);(f16,2);(f28,2);(f9,2)}
        Flow Graph:
          [0->{1,2,9},1->{3,8},2->{3,8},3->{1,2,9},4->{},5->{4,5,6,7},6->{4,5,6,7},7->{},8->{5,6,7},9->{5,6,7}]
        Sizebounds:
          (<0,0,A>,  0) (<0,0,C>, ?) 
          (<1,0,A>, 10) (<1,0,C>, ?) 
          (<2,0,A>, 10) (<2,0,C>, ?) 
          (<3,0,A>, 10) (<3,0,C>, ?) 
          (<4,0,A>, 10) (<4,0,C>, ?) 
          (<5,0,A>, 10) (<5,0,C>, ?) 
          (<6,0,A>, 10) (<6,0,C>, ?) 
          (<7,0,A>, 10) (<7,0,C>, ?) 
          (<8,0,A>,  0) (<8,0,C>, ?) 
          (<9,0,A>,  0) (<9,0,C>, 0) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [4,7]
* Step 6: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(A,C)  -> f9(0,H)      True                   (1,1)
          1. f9(A,C)  -> f10(A,C)     [0 >= 1 + C]           (?,1)
          2. f9(A,C)  -> f10(A,C)     [C >= 1]               (?,1)
          3. f10(A,C) -> f9(1 + A,H)  [9 >= A]               (?,1)
          5. f16(A,C) -> f16(1 + A,C) [9 >= A && 0 >= 1 + H] (?,1)
          6. f16(A,C) -> f16(1 + A,C) [9 >= A && H >= 1]     (?,1)
          8. f10(A,C) -> f16(0,C)     [A >= 10]              (?,1)
          9. f9(A,C)  -> f16(0,0)     [C = 0]                (?,1)
        Signature:
          {(f0,2);(f10,2);(f16,2);(f28,2);(f9,2)}
        Flow Graph:
          [0->{1,2,9},1->{3,8},2->{3,8},3->{1,2,9},5->{5,6},6->{5,6},8->{5,6},9->{5,6}]
        Sizebounds:
          (<0,0,A>,  0) (<0,0,C>, ?) 
          (<1,0,A>, 10) (<1,0,C>, ?) 
          (<2,0,A>, 10) (<2,0,C>, ?) 
          (<3,0,A>, 10) (<3,0,C>, ?) 
          (<5,0,A>, 10) (<5,0,C>, ?) 
          (<6,0,A>, 10) (<6,0,C>, ?) 
          (<8,0,A>,  0) (<8,0,C>, ?) 
          (<9,0,A>,  0) (<9,0,C>, 0) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 1
          p(f10) = 1
          p(f16) = 0
           p(f9) = 1
        
        The following rules are strictly oriented:
          [C = 0] ==>         
          f9(A,C)   = 1       
                    > 0       
                    = f16(0,0)
        
        
        The following rules are weakly oriented:
                          True ==>             
                       f0(A,C)   = 1           
                                >= 1           
                                 = f9(0,H)     
        
                  [0 >= 1 + C] ==>             
                       f9(A,C)   = 1           
                                >= 1           
                                 = f10(A,C)    
        
                      [C >= 1] ==>             
                       f9(A,C)   = 1           
                                >= 1           
                                 = f10(A,C)    
        
                      [9 >= A] ==>             
                      f10(A,C)   = 1           
                                >= 1           
                                 = f9(1 + A,H) 
        
        [9 >= A && 0 >= 1 + H] ==>             
                      f16(A,C)   = 0           
                                >= 0           
                                 = f16(1 + A,C)
        
            [9 >= A && H >= 1] ==>             
                      f16(A,C)   = 0           
                                >= 0           
                                 = f16(1 + A,C)
        
                     [A >= 10] ==>             
                      f10(A,C)   = 1           
                                >= 0           
                                 = f16(0,C)    
        
        
* Step 7: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(A,C)  -> f9(0,H)      True                   (1,1)
          1. f9(A,C)  -> f10(A,C)     [0 >= 1 + C]           (?,1)
          2. f9(A,C)  -> f10(A,C)     [C >= 1]               (?,1)
          3. f10(A,C) -> f9(1 + A,H)  [9 >= A]               (?,1)
          5. f16(A,C) -> f16(1 + A,C) [9 >= A && 0 >= 1 + H] (?,1)
          6. f16(A,C) -> f16(1 + A,C) [9 >= A && H >= 1]     (?,1)
          8. f10(A,C) -> f16(0,C)     [A >= 10]              (?,1)
          9. f9(A,C)  -> f16(0,0)     [C = 0]                (1,1)
        Signature:
          {(f0,2);(f10,2);(f16,2);(f28,2);(f9,2)}
        Flow Graph:
          [0->{1,2,9},1->{3,8},2->{3,8},3->{1,2,9},5->{5,6},6->{5,6},8->{5,6},9->{5,6}]
        Sizebounds:
          (<0,0,A>,  0) (<0,0,C>, ?) 
          (<1,0,A>, 10) (<1,0,C>, ?) 
          (<2,0,A>, 10) (<2,0,C>, ?) 
          (<3,0,A>, 10) (<3,0,C>, ?) 
          (<5,0,A>, 10) (<5,0,C>, ?) 
          (<6,0,A>, 10) (<6,0,C>, ?) 
          (<8,0,A>,  0) (<8,0,C>, ?) 
          (<9,0,A>,  0) (<9,0,C>, 0) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 1
          p(f10) = 1
          p(f16) = 0
           p(f9) = 1
        
        The following rules are strictly oriented:
         [A >= 10] ==>         
          f10(A,C)   = 1       
                     > 0       
                     = f16(0,C)
        
           [C = 0] ==>         
           f9(A,C)   = 1       
                     > 0       
                     = f16(0,0)
        
        
        The following rules are weakly oriented:
                          True ==>             
                       f0(A,C)   = 1           
                                >= 1           
                                 = f9(0,H)     
        
                  [0 >= 1 + C] ==>             
                       f9(A,C)   = 1           
                                >= 1           
                                 = f10(A,C)    
        
                      [C >= 1] ==>             
                       f9(A,C)   = 1           
                                >= 1           
                                 = f10(A,C)    
        
                      [9 >= A] ==>             
                      f10(A,C)   = 1           
                                >= 1           
                                 = f9(1 + A,H) 
        
        [9 >= A && 0 >= 1 + H] ==>             
                      f16(A,C)   = 0           
                                >= 0           
                                 = f16(1 + A,C)
        
            [9 >= A && H >= 1] ==>             
                      f16(A,C)   = 0           
                                >= 0           
                                 = f16(1 + A,C)
        
        
* Step 8: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(A,C)  -> f9(0,H)      True                   (1,1)
          1. f9(A,C)  -> f10(A,C)     [0 >= 1 + C]           (?,1)
          2. f9(A,C)  -> f10(A,C)     [C >= 1]               (?,1)
          3. f10(A,C) -> f9(1 + A,H)  [9 >= A]               (?,1)
          5. f16(A,C) -> f16(1 + A,C) [9 >= A && 0 >= 1 + H] (?,1)
          6. f16(A,C) -> f16(1 + A,C) [9 >= A && H >= 1]     (?,1)
          8. f10(A,C) -> f16(0,C)     [A >= 10]              (1,1)
          9. f9(A,C)  -> f16(0,0)     [C = 0]                (1,1)
        Signature:
          {(f0,2);(f10,2);(f16,2);(f28,2);(f9,2)}
        Flow Graph:
          [0->{1,2,9},1->{3,8},2->{3,8},3->{1,2,9},5->{5,6},6->{5,6},8->{5,6},9->{5,6}]
        Sizebounds:
          (<0,0,A>,  0) (<0,0,C>, ?) 
          (<1,0,A>, 10) (<1,0,C>, ?) 
          (<2,0,A>, 10) (<2,0,C>, ?) 
          (<3,0,A>, 10) (<3,0,C>, ?) 
          (<5,0,A>, 10) (<5,0,C>, ?) 
          (<6,0,A>, 10) (<6,0,C>, ?) 
          (<8,0,A>,  0) (<8,0,C>, ?) 
          (<9,0,A>,  0) (<9,0,C>, 0) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 10        
          p(f10) = 10        
          p(f16) = 10 + -1*x1
           p(f9) = 10        
        
        The following rules are strictly oriented:
        [9 >= A && H >= 1] ==>             
                  f16(A,C)   = 10 + -1*A   
                             > 9 + -1*A    
                             = f16(1 + A,C)
        
        
        The following rules are weakly oriented:
                          True ==>             
                       f0(A,C)   = 10          
                                >= 10          
                                 = f9(0,H)     
        
                  [0 >= 1 + C] ==>             
                       f9(A,C)   = 10          
                                >= 10          
                                 = f10(A,C)    
        
                      [C >= 1] ==>             
                       f9(A,C)   = 10          
                                >= 10          
                                 = f10(A,C)    
        
                      [9 >= A] ==>             
                      f10(A,C)   = 10          
                                >= 10          
                                 = f9(1 + A,H) 
        
        [9 >= A && 0 >= 1 + H] ==>             
                      f16(A,C)   = 10 + -1*A   
                                >= 9 + -1*A    
                                 = f16(1 + A,C)
        
                     [A >= 10] ==>             
                      f10(A,C)   = 10          
                                >= 10          
                                 = f16(0,C)    
        
                       [C = 0] ==>             
                       f9(A,C)   = 10          
                                >= 10          
                                 = f16(0,0)    
        
        
* Step 9: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(A,C)  -> f9(0,H)      True                   (1,1) 
          1. f9(A,C)  -> f10(A,C)     [0 >= 1 + C]           (?,1) 
          2. f9(A,C)  -> f10(A,C)     [C >= 1]               (?,1) 
          3. f10(A,C) -> f9(1 + A,H)  [9 >= A]               (?,1) 
          5. f16(A,C) -> f16(1 + A,C) [9 >= A && 0 >= 1 + H] (?,1) 
          6. f16(A,C) -> f16(1 + A,C) [9 >= A && H >= 1]     (10,1)
          8. f10(A,C) -> f16(0,C)     [A >= 10]              (1,1) 
          9. f9(A,C)  -> f16(0,0)     [C = 0]                (1,1) 
        Signature:
          {(f0,2);(f10,2);(f16,2);(f28,2);(f9,2)}
        Flow Graph:
          [0->{1,2,9},1->{3,8},2->{3,8},3->{1,2,9},5->{5,6},6->{5,6},8->{5,6},9->{5,6}]
        Sizebounds:
          (<0,0,A>,  0) (<0,0,C>, ?) 
          (<1,0,A>, 10) (<1,0,C>, ?) 
          (<2,0,A>, 10) (<2,0,C>, ?) 
          (<3,0,A>, 10) (<3,0,C>, ?) 
          (<5,0,A>, 10) (<5,0,C>, ?) 
          (<6,0,A>, 10) (<6,0,C>, ?) 
          (<8,0,A>,  0) (<8,0,C>, ?) 
          (<9,0,A>,  0) (<9,0,C>, 0) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 10        
          p(f10) = 10        
          p(f16) = 10 + -1*x1
           p(f9) = 10        
        
        The following rules are strictly oriented:
        [9 >= A && 0 >= 1 + H] ==>             
                      f16(A,C)   = 10 + -1*A   
                                 > 9 + -1*A    
                                 = f16(1 + A,C)
        
            [9 >= A && H >= 1] ==>             
                      f16(A,C)   = 10 + -1*A   
                                 > 9 + -1*A    
                                 = f16(1 + A,C)
        
        
        The following rules are weakly oriented:
                True ==>            
             f0(A,C)   = 10         
                      >= 10         
                       = f9(0,H)    
        
        [0 >= 1 + C] ==>            
             f9(A,C)   = 10         
                      >= 10         
                       = f10(A,C)   
        
            [C >= 1] ==>            
             f9(A,C)   = 10         
                      >= 10         
                       = f10(A,C)   
        
            [9 >= A] ==>            
            f10(A,C)   = 10         
                      >= 10         
                       = f9(1 + A,H)
        
           [A >= 10] ==>            
            f10(A,C)   = 10         
                      >= 10         
                       = f16(0,C)   
        
             [C = 0] ==>            
             f9(A,C)   = 10         
                      >= 10         
                       = f16(0,0)   
        
        
* Step 10: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(A,C)  -> f9(0,H)      True                   (1,1) 
          1. f9(A,C)  -> f10(A,C)     [0 >= 1 + C]           (?,1) 
          2. f9(A,C)  -> f10(A,C)     [C >= 1]               (?,1) 
          3. f10(A,C) -> f9(1 + A,H)  [9 >= A]               (?,1) 
          5. f16(A,C) -> f16(1 + A,C) [9 >= A && 0 >= 1 + H] (10,1)
          6. f16(A,C) -> f16(1 + A,C) [9 >= A && H >= 1]     (10,1)
          8. f10(A,C) -> f16(0,C)     [A >= 10]              (1,1) 
          9. f9(A,C)  -> f16(0,0)     [C = 0]                (1,1) 
        Signature:
          {(f0,2);(f10,2);(f16,2);(f28,2);(f9,2)}
        Flow Graph:
          [0->{1,2,9},1->{3,8},2->{3,8},3->{1,2,9},5->{5,6},6->{5,6},8->{5,6},9->{5,6}]
        Sizebounds:
          (<0,0,A>,  0) (<0,0,C>, ?) 
          (<1,0,A>, 10) (<1,0,C>, ?) 
          (<2,0,A>, 10) (<2,0,C>, ?) 
          (<3,0,A>, 10) (<3,0,C>, ?) 
          (<5,0,A>, 10) (<5,0,C>, ?) 
          (<6,0,A>, 10) (<6,0,C>, ?) 
          (<8,0,A>,  0) (<8,0,C>, ?) 
          (<9,0,A>,  0) (<9,0,C>, 0) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [1,3,2], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f10) = 10 + -1*x1
           p(f9) = 10 + -1*x1
        
        The following rules are strictly oriented:
          [9 >= A] ==>            
          f10(A,C)   = 10 + -1*A  
                     > 9 + -1*A   
                     = f9(1 + A,H)
        
        
        The following rules are weakly oriented:
        [0 >= 1 + C] ==>          
             f9(A,C)   = 10 + -1*A
                      >= 10 + -1*A
                       = f10(A,C) 
        
            [C >= 1] ==>          
             f9(A,C)   = 10 + -1*A
                      >= 10 + -1*A
                       = f10(A,C) 
        
        We use the following global sizebounds:
        (<0,0,A>,  0) (<0,0,C>, ?) 
        (<1,0,A>, 10) (<1,0,C>, ?) 
        (<2,0,A>, 10) (<2,0,C>, ?) 
        (<3,0,A>, 10) (<3,0,C>, ?) 
        (<5,0,A>, 10) (<5,0,C>, ?) 
        (<6,0,A>, 10) (<6,0,C>, ?) 
        (<8,0,A>,  0) (<8,0,C>, ?) 
        (<9,0,A>,  0) (<9,0,C>, 0) 
* Step 11: KnowledgePropagation WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(A,C)  -> f9(0,H)      True                   (1,1) 
          1. f9(A,C)  -> f10(A,C)     [0 >= 1 + C]           (?,1) 
          2. f9(A,C)  -> f10(A,C)     [C >= 1]               (?,1) 
          3. f10(A,C) -> f9(1 + A,H)  [9 >= A]               (10,1)
          5. f16(A,C) -> f16(1 + A,C) [9 >= A && 0 >= 1 + H] (10,1)
          6. f16(A,C) -> f16(1 + A,C) [9 >= A && H >= 1]     (10,1)
          8. f10(A,C) -> f16(0,C)     [A >= 10]              (1,1) 
          9. f9(A,C)  -> f16(0,0)     [C = 0]                (1,1) 
        Signature:
          {(f0,2);(f10,2);(f16,2);(f28,2);(f9,2)}
        Flow Graph:
          [0->{1,2,9},1->{3,8},2->{3,8},3->{1,2,9},5->{5,6},6->{5,6},8->{5,6},9->{5,6}]
        Sizebounds:
          (<0,0,A>,  0) (<0,0,C>, ?) 
          (<1,0,A>, 10) (<1,0,C>, ?) 
          (<2,0,A>, 10) (<2,0,C>, ?) 
          (<3,0,A>, 10) (<3,0,C>, ?) 
          (<5,0,A>, 10) (<5,0,C>, ?) 
          (<6,0,A>, 10) (<6,0,C>, ?) 
          (<8,0,A>,  0) (<8,0,C>, ?) 
          (<9,0,A>,  0) (<9,0,C>, 0) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 12: LocalSizeboundsProc WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(A,C)  -> f9(0,H)      True                   (1,1) 
          1. f9(A,C)  -> f10(A,C)     [0 >= 1 + C]           (11,1)
          2. f9(A,C)  -> f10(A,C)     [C >= 1]               (11,1)
          3. f10(A,C) -> f9(1 + A,H)  [9 >= A]               (10,1)
          5. f16(A,C) -> f16(1 + A,C) [9 >= A && 0 >= 1 + H] (10,1)
          6. f16(A,C) -> f16(1 + A,C) [9 >= A && H >= 1]     (10,1)
          8. f10(A,C) -> f16(0,C)     [A >= 10]              (1,1) 
          9. f9(A,C)  -> f16(0,0)     [C = 0]                (1,1) 
        Signature:
          {(f0,2);(f10,2);(f16,2);(f28,2);(f9,2)}
        Flow Graph:
          [0->{1,2,9},1->{3,8},2->{3,8},3->{1,2,9},5->{5,6},6->{5,6},8->{5,6},9->{5,6}]
        Sizebounds:
          (<0,0,A>,  0) (<0,0,C>, ?) 
          (<1,0,A>, 10) (<1,0,C>, ?) 
          (<2,0,A>, 10) (<2,0,C>, ?) 
          (<3,0,A>, 10) (<3,0,C>, ?) 
          (<5,0,A>, 10) (<5,0,C>, ?) 
          (<6,0,A>, 10) (<6,0,C>, ?) 
          (<8,0,A>,  0) (<8,0,C>, ?) 
          (<9,0,A>,  0) (<9,0,C>, 0) 
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        The problem is already solved.

WORST_CASE(?,O(1))