WORST_CASE(?,O(1)) * Step 1: LocalSizeboundsProc WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B) -> f4(0,B) True (1,1) 1. f4(A,B) -> f4(1 + A,B) [1 >= A] (?,1) 2. f10(A,B) -> f10(A,1 + B) [1 >= B] (?,1) 3. f10(A,B) -> f18(A,B) [B >= 2 && 0 >= 1 + C] (?,1) 4. f10(A,B) -> f18(A,B) [B >= 2] (?,1) 5. f4(A,B) -> f10(A,0) [A >= 2] (?,1) Signature: {(f0,2);(f10,2);(f18,2);(f4,2)} Flow Graph: [0->{1,5},1->{1,5},2->{2,3,4},3->{},4->{},5->{2,3,4}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<0,0,A>, 0, .= 0) (<0,0,B>, B, .= 0) (<1,0,A>, 1 + A, .+ 1) (<1,0,B>, B, .= 0) (<2,0,A>, A, .= 0) (<2,0,B>, 1 + B, .+ 1) (<3,0,A>, A, .= 0) (<3,0,B>, B, .= 0) (<4,0,A>, A, .= 0) (<4,0,B>, B, .= 0) (<5,0,A>, A, .= 0) (<5,0,B>, 0, .= 0) * Step 2: SizeboundsProc WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B) -> f4(0,B) True (1,1) 1. f4(A,B) -> f4(1 + A,B) [1 >= A] (?,1) 2. f10(A,B) -> f10(A,1 + B) [1 >= B] (?,1) 3. f10(A,B) -> f18(A,B) [B >= 2 && 0 >= 1 + C] (?,1) 4. f10(A,B) -> f18(A,B) [B >= 2] (?,1) 5. f4(A,B) -> f10(A,0) [A >= 2] (?,1) Signature: {(f0,2);(f10,2);(f18,2);(f4,2)} Flow Graph: [0->{1,5},1->{1,5},2->{2,3,4},3->{},4->{},5->{2,3,4}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<1,0,A>, ?) (<1,0,B>, ?) (<2,0,A>, ?) (<2,0,B>, ?) (<3,0,A>, ?) (<3,0,B>, ?) (<4,0,A>, ?) (<4,0,B>, ?) (<5,0,A>, ?) (<5,0,B>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<0,0,A>, 0) (<0,0,B>, B) (<1,0,A>, 2) (<1,0,B>, B) (<2,0,A>, 2) (<2,0,B>, 2) (<3,0,A>, 2) (<3,0,B>, 2) (<4,0,A>, 2) (<4,0,B>, 2) (<5,0,A>, 2) (<5,0,B>, 0) * Step 3: UnsatPaths WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B) -> f4(0,B) True (1,1) 1. f4(A,B) -> f4(1 + A,B) [1 >= A] (?,1) 2. f10(A,B) -> f10(A,1 + B) [1 >= B] (?,1) 3. f10(A,B) -> f18(A,B) [B >= 2 && 0 >= 1 + C] (?,1) 4. f10(A,B) -> f18(A,B) [B >= 2] (?,1) 5. f4(A,B) -> f10(A,0) [A >= 2] (?,1) Signature: {(f0,2);(f10,2);(f18,2);(f4,2)} Flow Graph: [0->{1,5},1->{1,5},2->{2,3,4},3->{},4->{},5->{2,3,4}] Sizebounds: (<0,0,A>, 0) (<0,0,B>, B) (<1,0,A>, 2) (<1,0,B>, B) (<2,0,A>, 2) (<2,0,B>, 2) (<3,0,A>, 2) (<3,0,B>, 2) (<4,0,A>, 2) (<4,0,B>, 2) (<5,0,A>, 2) (<5,0,B>, 0) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(0,5),(5,3),(5,4)] * Step 4: LeafRules WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B) -> f4(0,B) True (1,1) 1. f4(A,B) -> f4(1 + A,B) [1 >= A] (?,1) 2. f10(A,B) -> f10(A,1 + B) [1 >= B] (?,1) 3. f10(A,B) -> f18(A,B) [B >= 2 && 0 >= 1 + C] (?,1) 4. f10(A,B) -> f18(A,B) [B >= 2] (?,1) 5. f4(A,B) -> f10(A,0) [A >= 2] (?,1) Signature: {(f0,2);(f10,2);(f18,2);(f4,2)} Flow Graph: [0->{1},1->{1,5},2->{2,3,4},3->{},4->{},5->{2}] Sizebounds: (<0,0,A>, 0) (<0,0,B>, B) (<1,0,A>, 2) (<1,0,B>, B) (<2,0,A>, 2) (<2,0,B>, 2) (<3,0,A>, 2) (<3,0,B>, 2) (<4,0,A>, 2) (<4,0,B>, 2) (<5,0,A>, 2) (<5,0,B>, 0) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [3,4] * Step 5: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B) -> f4(0,B) True (1,1) 1. f4(A,B) -> f4(1 + A,B) [1 >= A] (?,1) 2. f10(A,B) -> f10(A,1 + B) [1 >= B] (?,1) 5. f4(A,B) -> f10(A,0) [A >= 2] (?,1) Signature: {(f0,2);(f10,2);(f18,2);(f4,2)} Flow Graph: [0->{1},1->{1,5},2->{2},5->{2}] Sizebounds: (<0,0,A>, 0) (<0,0,B>, B) (<1,0,A>, 2) (<1,0,B>, B) (<2,0,A>, 2) (<2,0,B>, 2) (<5,0,A>, 2) (<5,0,B>, 0) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 1 p(f10) = 0 p(f4) = 1 The following rules are strictly oriented: [A >= 2] ==> f4(A,B) = 1 > 0 = f10(A,0) The following rules are weakly oriented: True ==> f0(A,B) = 1 >= 1 = f4(0,B) [1 >= A] ==> f4(A,B) = 1 >= 1 = f4(1 + A,B) [1 >= B] ==> f10(A,B) = 0 >= 0 = f10(A,1 + B) * Step 6: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B) -> f4(0,B) True (1,1) 1. f4(A,B) -> f4(1 + A,B) [1 >= A] (?,1) 2. f10(A,B) -> f10(A,1 + B) [1 >= B] (?,1) 5. f4(A,B) -> f10(A,0) [A >= 2] (1,1) Signature: {(f0,2);(f10,2);(f18,2);(f4,2)} Flow Graph: [0->{1},1->{1,5},2->{2},5->{2}] Sizebounds: (<0,0,A>, 0) (<0,0,B>, B) (<1,0,A>, 2) (<1,0,B>, B) (<2,0,A>, 2) (<2,0,B>, 2) (<5,0,A>, 2) (<5,0,B>, 0) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 2 p(f10) = 2 + -1*x2 p(f4) = 2 The following rules are strictly oriented: [1 >= B] ==> f10(A,B) = 2 + -1*B > 1 + -1*B = f10(A,1 + B) The following rules are weakly oriented: True ==> f0(A,B) = 2 >= 2 = f4(0,B) [1 >= A] ==> f4(A,B) = 2 >= 2 = f4(1 + A,B) [A >= 2] ==> f4(A,B) = 2 >= 2 = f10(A,0) * Step 7: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B) -> f4(0,B) True (1,1) 1. f4(A,B) -> f4(1 + A,B) [1 >= A] (?,1) 2. f10(A,B) -> f10(A,1 + B) [1 >= B] (2,1) 5. f4(A,B) -> f10(A,0) [A >= 2] (1,1) Signature: {(f0,2);(f10,2);(f18,2);(f4,2)} Flow Graph: [0->{1},1->{1,5},2->{2},5->{2}] Sizebounds: (<0,0,A>, 0) (<0,0,B>, B) (<1,0,A>, 2) (<1,0,B>, B) (<2,0,A>, 2) (<2,0,B>, 2) (<5,0,A>, 2) (<5,0,B>, 0) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 2 p(f10) = -1*x1 p(f4) = 2 + -1*x1 The following rules are strictly oriented: [1 >= A] ==> f4(A,B) = 2 + -1*A > 1 + -1*A = f4(1 + A,B) The following rules are weakly oriented: True ==> f0(A,B) = 2 >= 2 = f4(0,B) [1 >= B] ==> f10(A,B) = -1*A >= -1*A = f10(A,1 + B) [A >= 2] ==> f4(A,B) = 2 + -1*A >= -1*A = f10(A,0) * Step 8: KnowledgePropagation WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B) -> f4(0,B) True (1,1) 1. f4(A,B) -> f4(1 + A,B) [1 >= A] (2,1) 2. f10(A,B) -> f10(A,1 + B) [1 >= B] (2,1) 5. f4(A,B) -> f10(A,0) [A >= 2] (1,1) Signature: {(f0,2);(f10,2);(f18,2);(f4,2)} Flow Graph: [0->{1},1->{1,5},2->{2},5->{2}] Sizebounds: (<0,0,A>, 0) (<0,0,B>, B) (<1,0,A>, 2) (<1,0,B>, B) (<2,0,A>, 2) (<2,0,B>, 2) (<5,0,A>, 2) (<5,0,B>, 0) + Applied Processor: KnowledgePropagation + Details: The problem is already solved. WORST_CASE(?,O(1))