WORST_CASE(?,O(n^2)) * Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalnestedLoopstart(A,B,C,D,E,F,G,H) -> evalnestedLoopentryin(A,B,C,D,E,F,G,H) True (1,1) 1. evalnestedLoopentryin(A,B,C,D,E,F,G,H) -> evalnestedLoopbb9in(A,B,C,0,E,F,G,H) [A >= 0 && B >= 0 && C >= 0] (?,1) 2. evalnestedLoopentryin(A,B,C,D,E,F,G,H) -> evalnestedLoopreturnin(A,B,C,D,E,F,G,H) [0 >= 1 + A] (?,1) 3. evalnestedLoopentryin(A,B,C,D,E,F,G,H) -> evalnestedLoopreturnin(A,B,C,D,E,F,G,H) [0 >= 1 + B] (?,1) 4. evalnestedLoopentryin(A,B,C,D,E,F,G,H) -> evalnestedLoopreturnin(A,B,C,D,E,F,G,H) [0 >= 1 + C] (?,1) 5. evalnestedLoopbb9in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb7in(A,B,C,D,0,D,G,H) [A >= 1 + D] (?,1) 6. evalnestedLoopbb9in(A,B,C,D,E,F,G,H) -> evalnestedLoopreturnin(A,B,C,D,E,F,G,H) [D >= A] (?,1) 7. evalnestedLoopbb7in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb4in(A,B,C,D,E,F,G,H) [B >= 1 + E] (?,1) 8. evalnestedLoopbb7in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb8in(A,B,C,D,E,F,G,H) [E >= B] (?,1) 9. evalnestedLoopbb4in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb6in(A,B,C,D,E,F,1 + E,F) True (?,1) 10. evalnestedLoopbb6in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb5in(A,B,C,D,E,F,G,H) [C >= 1 + H] (?,1) 11. evalnestedLoopbb6in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb7in(A,B,C,D,G,H,G,H) [H >= C] (?,1) 12. evalnestedLoopbb5in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb6in(A,B,C,D,E,F,G,1 + H) True (?,1) 13. evalnestedLoopbb8in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb9in(A,B,C,1 + F,E,F,G,H) True (?,1) 14. evalnestedLoopreturnin(A,B,C,D,E,F,G,H) -> evalnestedLoopstop(A,B,C,D,E,F,G,H) True (?,1) Signature: {(evalnestedLoopbb4in,8) ;(evalnestedLoopbb5in,8) ;(evalnestedLoopbb6in,8) ;(evalnestedLoopbb7in,8) ;(evalnestedLoopbb8in,8) ;(evalnestedLoopbb9in,8) ;(evalnestedLoopentryin,8) ;(evalnestedLoopreturnin,8) ;(evalnestedLoopstart,8) ;(evalnestedLoopstop,8)} Flow Graph: [0->{1,2,3,4},1->{5,6},2->{14},3->{14},4->{14},5->{7,8},6->{14},7->{9},8->{13},9->{10,11},10->{12},11->{7 ,8},12->{10,11},13->{5,6},14->{}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (< 0,0,A>, A, .= 0) (< 0,0,B>, B, .= 0) (< 0,0,C>, C, .= 0) (< 0,0,D>, D, .= 0) (< 0,0,E>, E, .= 0) (< 0,0,F>, F, .= 0) (< 0,0,G>, G, .= 0) (< 0,0,H>, H, .= 0) (< 1,0,A>, A, .= 0) (< 1,0,B>, B, .= 0) (< 1,0,C>, C, .= 0) (< 1,0,D>, 0, .= 0) (< 1,0,E>, E, .= 0) (< 1,0,F>, F, .= 0) (< 1,0,G>, G, .= 0) (< 1,0,H>, H, .= 0) (< 2,0,A>, A, .= 0) (< 2,0,B>, B, .= 0) (< 2,0,C>, C, .= 0) (< 2,0,D>, D, .= 0) (< 2,0,E>, E, .= 0) (< 2,0,F>, F, .= 0) (< 2,0,G>, G, .= 0) (< 2,0,H>, H, .= 0) (< 3,0,A>, A, .= 0) (< 3,0,B>, B, .= 0) (< 3,0,C>, C, .= 0) (< 3,0,D>, D, .= 0) (< 3,0,E>, E, .= 0) (< 3,0,F>, F, .= 0) (< 3,0,G>, G, .= 0) (< 3,0,H>, H, .= 0) (< 4,0,A>, A, .= 0) (< 4,0,B>, B, .= 0) (< 4,0,C>, C, .= 0) (< 4,0,D>, D, .= 0) (< 4,0,E>, E, .= 0) (< 4,0,F>, F, .= 0) (< 4,0,G>, G, .= 0) (< 4,0,H>, H, .= 0) (< 5,0,A>, A, .= 0) (< 5,0,B>, B, .= 0) (< 5,0,C>, C, .= 0) (< 5,0,D>, D, .= 0) (< 5,0,E>, 0, .= 0) (< 5,0,F>, D, .= 0) (< 5,0,G>, G, .= 0) (< 5,0,H>, H, .= 0) (< 6,0,A>, A, .= 0) (< 6,0,B>, B, .= 0) (< 6,0,C>, C, .= 0) (< 6,0,D>, D, .= 0) (< 6,0,E>, E, .= 0) (< 6,0,F>, F, .= 0) (< 6,0,G>, G, .= 0) (< 6,0,H>, H, .= 0) (< 7,0,A>, A, .= 0) (< 7,0,B>, B, .= 0) (< 7,0,C>, C, .= 0) (< 7,0,D>, D, .= 0) (< 7,0,E>, E, .= 0) (< 7,0,F>, F, .= 0) (< 7,0,G>, G, .= 0) (< 7,0,H>, H, .= 0) (< 8,0,A>, A, .= 0) (< 8,0,B>, B, .= 0) (< 8,0,C>, C, .= 0) (< 8,0,D>, D, .= 0) (< 8,0,E>, E, .= 0) (< 8,0,F>, F, .= 0) (< 8,0,G>, G, .= 0) (< 8,0,H>, H, .= 0) (< 9,0,A>, A, .= 0) (< 9,0,B>, B, .= 0) (< 9,0,C>, C, .= 0) (< 9,0,D>, D, .= 0) (< 9,0,E>, E, .= 0) (< 9,0,F>, F, .= 0) (< 9,0,G>, 1 + E, .+ 1) (< 9,0,H>, F, .= 0) (<10,0,A>, A, .= 0) (<10,0,B>, B, .= 0) (<10,0,C>, C, .= 0) (<10,0,D>, D, .= 0) (<10,0,E>, E, .= 0) (<10,0,F>, F, .= 0) (<10,0,G>, G, .= 0) (<10,0,H>, H, .= 0) (<11,0,A>, A, .= 0) (<11,0,B>, B, .= 0) (<11,0,C>, C, .= 0) (<11,0,D>, D, .= 0) (<11,0,E>, G, .= 0) (<11,0,F>, H, .= 0) (<11,0,G>, G, .= 0) (<11,0,H>, H, .= 0) (<12,0,A>, A, .= 0) (<12,0,B>, B, .= 0) (<12,0,C>, C, .= 0) (<12,0,D>, D, .= 0) (<12,0,E>, E, .= 0) (<12,0,F>, F, .= 0) (<12,0,G>, G, .= 0) (<12,0,H>, 1 + H, .+ 1) (<13,0,A>, A, .= 0) (<13,0,B>, B, .= 0) (<13,0,C>, C, .= 0) (<13,0,D>, 1 + F, .+ 1) (<13,0,E>, E, .= 0) (<13,0,F>, F, .= 0) (<13,0,G>, G, .= 0) (<13,0,H>, H, .= 0) (<14,0,A>, A, .= 0) (<14,0,B>, B, .= 0) (<14,0,C>, C, .= 0) (<14,0,D>, D, .= 0) (<14,0,E>, E, .= 0) (<14,0,F>, F, .= 0) (<14,0,G>, G, .= 0) (<14,0,H>, H, .= 0) * Step 2: SizeboundsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalnestedLoopstart(A,B,C,D,E,F,G,H) -> evalnestedLoopentryin(A,B,C,D,E,F,G,H) True (1,1) 1. evalnestedLoopentryin(A,B,C,D,E,F,G,H) -> evalnestedLoopbb9in(A,B,C,0,E,F,G,H) [A >= 0 && B >= 0 && C >= 0] (?,1) 2. evalnestedLoopentryin(A,B,C,D,E,F,G,H) -> evalnestedLoopreturnin(A,B,C,D,E,F,G,H) [0 >= 1 + A] (?,1) 3. evalnestedLoopentryin(A,B,C,D,E,F,G,H) -> evalnestedLoopreturnin(A,B,C,D,E,F,G,H) [0 >= 1 + B] (?,1) 4. evalnestedLoopentryin(A,B,C,D,E,F,G,H) -> evalnestedLoopreturnin(A,B,C,D,E,F,G,H) [0 >= 1 + C] (?,1) 5. evalnestedLoopbb9in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb7in(A,B,C,D,0,D,G,H) [A >= 1 + D] (?,1) 6. evalnestedLoopbb9in(A,B,C,D,E,F,G,H) -> evalnestedLoopreturnin(A,B,C,D,E,F,G,H) [D >= A] (?,1) 7. evalnestedLoopbb7in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb4in(A,B,C,D,E,F,G,H) [B >= 1 + E] (?,1) 8. evalnestedLoopbb7in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb8in(A,B,C,D,E,F,G,H) [E >= B] (?,1) 9. evalnestedLoopbb4in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb6in(A,B,C,D,E,F,1 + E,F) True (?,1) 10. evalnestedLoopbb6in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb5in(A,B,C,D,E,F,G,H) [C >= 1 + H] (?,1) 11. evalnestedLoopbb6in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb7in(A,B,C,D,G,H,G,H) [H >= C] (?,1) 12. evalnestedLoopbb5in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb6in(A,B,C,D,E,F,G,1 + H) True (?,1) 13. evalnestedLoopbb8in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb9in(A,B,C,1 + F,E,F,G,H) True (?,1) 14. evalnestedLoopreturnin(A,B,C,D,E,F,G,H) -> evalnestedLoopstop(A,B,C,D,E,F,G,H) True (?,1) Signature: {(evalnestedLoopbb4in,8) ;(evalnestedLoopbb5in,8) ;(evalnestedLoopbb6in,8) ;(evalnestedLoopbb7in,8) ;(evalnestedLoopbb8in,8) ;(evalnestedLoopbb9in,8) ;(evalnestedLoopentryin,8) ;(evalnestedLoopreturnin,8) ;(evalnestedLoopstart,8) ;(evalnestedLoopstop,8)} Flow Graph: [0->{1,2,3,4},1->{5,6},2->{14},3->{14},4->{14},5->{7,8},6->{14},7->{9},8->{13},9->{10,11},10->{12},11->{7 ,8},12->{10,11},13->{5,6},14->{}] Sizebounds: (< 0,0,A>, ?) (< 0,0,B>, ?) (< 0,0,C>, ?) (< 0,0,D>, ?) (< 0,0,E>, ?) (< 0,0,F>, ?) (< 0,0,G>, ?) (< 0,0,H>, ?) (< 1,0,A>, ?) (< 1,0,B>, ?) (< 1,0,C>, ?) (< 1,0,D>, ?) (< 1,0,E>, ?) (< 1,0,F>, ?) (< 1,0,G>, ?) (< 1,0,H>, ?) (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 2,0,F>, ?) (< 2,0,G>, ?) (< 2,0,H>, ?) (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, ?) (< 3,0,E>, ?) (< 3,0,F>, ?) (< 3,0,G>, ?) (< 3,0,H>, ?) (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 4,0,F>, ?) (< 4,0,G>, ?) (< 4,0,H>, ?) (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 5,0,F>, ?) (< 5,0,G>, ?) (< 5,0,H>, ?) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, ?) (< 6,0,F>, ?) (< 6,0,G>, ?) (< 6,0,H>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 7,0,F>, ?) (< 7,0,G>, ?) (< 7,0,H>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,G>, ?) (< 8,0,H>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) (< 9,0,G>, ?) (< 9,0,H>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,G>, ?) (<10,0,H>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,G>, ?) (<11,0,H>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,G>, ?) (<12,0,H>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,G>, ?) (<13,0,H>, ?) (<14,0,A>, ?) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, ?) (<14,0,F>, ?) (<14,0,G>, ?) (<14,0,H>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, 0) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 2,0,A>, A) (< 2,0,B>, B) (< 2,0,C>, C) (< 2,0,D>, D) (< 2,0,E>, E) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 3,0,A>, A) (< 3,0,B>, B) (< 3,0,C>, C) (< 3,0,D>, D) (< 3,0,E>, E) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 4,0,A>, A) (< 4,0,B>, B) (< 4,0,C>, C) (< 4,0,D>, D) (< 4,0,E>, E) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 5,0,A>, A) (< 5,0,B>, B) (< 5,0,C>, C) (< 5,0,D>, ?) (< 5,0,E>, 0) (< 5,0,F>, ?) (< 5,0,G>, ?) (< 5,0,H>, ?) (< 6,0,A>, A) (< 6,0,B>, B) (< 6,0,C>, C) (< 6,0,D>, ?) (< 6,0,E>, ?) (< 6,0,F>, ?) (< 6,0,G>, ?) (< 6,0,H>, ?) (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, C) (< 7,0,D>, ?) (< 7,0,E>, B) (< 7,0,F>, ?) (< 7,0,G>, ?) (< 7,0,H>, ?) (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, C) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,G>, ?) (< 8,0,H>, ?) (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, C) (< 9,0,D>, ?) (< 9,0,E>, B) (< 9,0,F>, ?) (< 9,0,G>, B) (< 9,0,H>, ?) (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, C) (<10,0,D>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,G>, ?) (<10,0,H>, C) (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, C) (<11,0,D>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,G>, ?) (<11,0,H>, ?) (<12,0,A>, A) (<12,0,B>, B) (<12,0,C>, C) (<12,0,D>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,G>, ?) (<12,0,H>, C) (<13,0,A>, A) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,G>, ?) (<13,0,H>, ?) (<14,0,A>, A) (<14,0,B>, B) (<14,0,C>, C) (<14,0,D>, ?) (<14,0,E>, ?) (<14,0,F>, ?) (<14,0,G>, ?) (<14,0,H>, ?) * Step 3: LeafRules WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalnestedLoopstart(A,B,C,D,E,F,G,H) -> evalnestedLoopentryin(A,B,C,D,E,F,G,H) True (1,1) 1. evalnestedLoopentryin(A,B,C,D,E,F,G,H) -> evalnestedLoopbb9in(A,B,C,0,E,F,G,H) [A >= 0 && B >= 0 && C >= 0] (?,1) 2. evalnestedLoopentryin(A,B,C,D,E,F,G,H) -> evalnestedLoopreturnin(A,B,C,D,E,F,G,H) [0 >= 1 + A] (?,1) 3. evalnestedLoopentryin(A,B,C,D,E,F,G,H) -> evalnestedLoopreturnin(A,B,C,D,E,F,G,H) [0 >= 1 + B] (?,1) 4. evalnestedLoopentryin(A,B,C,D,E,F,G,H) -> evalnestedLoopreturnin(A,B,C,D,E,F,G,H) [0 >= 1 + C] (?,1) 5. evalnestedLoopbb9in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb7in(A,B,C,D,0,D,G,H) [A >= 1 + D] (?,1) 6. evalnestedLoopbb9in(A,B,C,D,E,F,G,H) -> evalnestedLoopreturnin(A,B,C,D,E,F,G,H) [D >= A] (?,1) 7. evalnestedLoopbb7in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb4in(A,B,C,D,E,F,G,H) [B >= 1 + E] (?,1) 8. evalnestedLoopbb7in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb8in(A,B,C,D,E,F,G,H) [E >= B] (?,1) 9. evalnestedLoopbb4in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb6in(A,B,C,D,E,F,1 + E,F) True (?,1) 10. evalnestedLoopbb6in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb5in(A,B,C,D,E,F,G,H) [C >= 1 + H] (?,1) 11. evalnestedLoopbb6in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb7in(A,B,C,D,G,H,G,H) [H >= C] (?,1) 12. evalnestedLoopbb5in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb6in(A,B,C,D,E,F,G,1 + H) True (?,1) 13. evalnestedLoopbb8in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb9in(A,B,C,1 + F,E,F,G,H) True (?,1) 14. evalnestedLoopreturnin(A,B,C,D,E,F,G,H) -> evalnestedLoopstop(A,B,C,D,E,F,G,H) True (?,1) Signature: {(evalnestedLoopbb4in,8) ;(evalnestedLoopbb5in,8) ;(evalnestedLoopbb6in,8) ;(evalnestedLoopbb7in,8) ;(evalnestedLoopbb8in,8) ;(evalnestedLoopbb9in,8) ;(evalnestedLoopentryin,8) ;(evalnestedLoopreturnin,8) ;(evalnestedLoopstart,8) ;(evalnestedLoopstop,8)} Flow Graph: [0->{1,2,3,4},1->{5,6},2->{14},3->{14},4->{14},5->{7,8},6->{14},7->{9},8->{13},9->{10,11},10->{12},11->{7 ,8},12->{10,11},13->{5,6},14->{}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, 0) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 2,0,A>, A) (< 2,0,B>, B) (< 2,0,C>, C) (< 2,0,D>, D) (< 2,0,E>, E) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 3,0,A>, A) (< 3,0,B>, B) (< 3,0,C>, C) (< 3,0,D>, D) (< 3,0,E>, E) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 4,0,A>, A) (< 4,0,B>, B) (< 4,0,C>, C) (< 4,0,D>, D) (< 4,0,E>, E) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 5,0,A>, A) (< 5,0,B>, B) (< 5,0,C>, C) (< 5,0,D>, ?) (< 5,0,E>, 0) (< 5,0,F>, ?) (< 5,0,G>, ?) (< 5,0,H>, ?) (< 6,0,A>, A) (< 6,0,B>, B) (< 6,0,C>, C) (< 6,0,D>, ?) (< 6,0,E>, ?) (< 6,0,F>, ?) (< 6,0,G>, ?) (< 6,0,H>, ?) (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, C) (< 7,0,D>, ?) (< 7,0,E>, B) (< 7,0,F>, ?) (< 7,0,G>, ?) (< 7,0,H>, ?) (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, C) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,G>, ?) (< 8,0,H>, ?) (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, C) (< 9,0,D>, ?) (< 9,0,E>, B) (< 9,0,F>, ?) (< 9,0,G>, B) (< 9,0,H>, ?) (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, C) (<10,0,D>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,G>, ?) (<10,0,H>, C) (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, C) (<11,0,D>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,G>, ?) (<11,0,H>, ?) (<12,0,A>, A) (<12,0,B>, B) (<12,0,C>, C) (<12,0,D>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,G>, ?) (<12,0,H>, C) (<13,0,A>, A) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,G>, ?) (<13,0,H>, ?) (<14,0,A>, A) (<14,0,B>, B) (<14,0,C>, C) (<14,0,D>, ?) (<14,0,E>, ?) (<14,0,F>, ?) (<14,0,G>, ?) (<14,0,H>, ?) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [2,3,4,6,14] * Step 4: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalnestedLoopstart(A,B,C,D,E,F,G,H) -> evalnestedLoopentryin(A,B,C,D,E,F,G,H) True (1,1) 1. evalnestedLoopentryin(A,B,C,D,E,F,G,H) -> evalnestedLoopbb9in(A,B,C,0,E,F,G,H) [A >= 0 && B >= 0 && C >= 0] (?,1) 5. evalnestedLoopbb9in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb7in(A,B,C,D,0,D,G,H) [A >= 1 + D] (?,1) 7. evalnestedLoopbb7in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb4in(A,B,C,D,E,F,G,H) [B >= 1 + E] (?,1) 8. evalnestedLoopbb7in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb8in(A,B,C,D,E,F,G,H) [E >= B] (?,1) 9. evalnestedLoopbb4in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb6in(A,B,C,D,E,F,1 + E,F) True (?,1) 10. evalnestedLoopbb6in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb5in(A,B,C,D,E,F,G,H) [C >= 1 + H] (?,1) 11. evalnestedLoopbb6in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb7in(A,B,C,D,G,H,G,H) [H >= C] (?,1) 12. evalnestedLoopbb5in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb6in(A,B,C,D,E,F,G,1 + H) True (?,1) 13. evalnestedLoopbb8in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb9in(A,B,C,1 + F,E,F,G,H) True (?,1) Signature: {(evalnestedLoopbb4in,8) ;(evalnestedLoopbb5in,8) ;(evalnestedLoopbb6in,8) ;(evalnestedLoopbb7in,8) ;(evalnestedLoopbb8in,8) ;(evalnestedLoopbb9in,8) ;(evalnestedLoopentryin,8) ;(evalnestedLoopreturnin,8) ;(evalnestedLoopstart,8) ;(evalnestedLoopstop,8)} Flow Graph: [0->{1},1->{5},5->{7,8},7->{9},8->{13},9->{10,11},10->{12},11->{7,8},12->{10,11},13->{5}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, 0) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 5,0,A>, A) (< 5,0,B>, B) (< 5,0,C>, C) (< 5,0,D>, ?) (< 5,0,E>, 0) (< 5,0,F>, ?) (< 5,0,G>, ?) (< 5,0,H>, ?) (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, C) (< 7,0,D>, ?) (< 7,0,E>, B) (< 7,0,F>, ?) (< 7,0,G>, ?) (< 7,0,H>, ?) (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, C) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,G>, ?) (< 8,0,H>, ?) (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, C) (< 9,0,D>, ?) (< 9,0,E>, B) (< 9,0,F>, ?) (< 9,0,G>, B) (< 9,0,H>, ?) (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, C) (<10,0,D>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,G>, ?) (<10,0,H>, C) (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, C) (<11,0,D>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,G>, ?) (<11,0,H>, ?) (<12,0,A>, A) (<12,0,B>, B) (<12,0,C>, C) (<12,0,D>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,G>, ?) (<12,0,H>, C) (<13,0,A>, A) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,G>, ?) (<13,0,H>, ?) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalnestedLoopbb4in) = 1 p(evalnestedLoopbb5in) = 1 p(evalnestedLoopbb6in) = 1 p(evalnestedLoopbb7in) = 1 p(evalnestedLoopbb8in) = 1 p(evalnestedLoopbb9in) = 1 p(evalnestedLoopentryin) = 2 p(evalnestedLoopstart) = 2 The following rules are strictly oriented: [A >= 0 && B >= 0 && C >= 0] ==> evalnestedLoopentryin(A,B,C,D,E,F,G,H) = 2 > 1 = evalnestedLoopbb9in(A,B,C,0,E,F,G,H) The following rules are weakly oriented: True ==> evalnestedLoopstart(A,B,C,D,E,F,G,H) = 2 >= 2 = evalnestedLoopentryin(A,B,C,D,E,F,G,H) [A >= 1 + D] ==> evalnestedLoopbb9in(A,B,C,D,E,F,G,H) = 1 >= 1 = evalnestedLoopbb7in(A,B,C,D,0,D,G,H) [B >= 1 + E] ==> evalnestedLoopbb7in(A,B,C,D,E,F,G,H) = 1 >= 1 = evalnestedLoopbb4in(A,B,C,D,E,F,G,H) [E >= B] ==> evalnestedLoopbb7in(A,B,C,D,E,F,G,H) = 1 >= 1 = evalnestedLoopbb8in(A,B,C,D,E,F,G,H) True ==> evalnestedLoopbb4in(A,B,C,D,E,F,G,H) = 1 >= 1 = evalnestedLoopbb6in(A,B,C,D,E,F,1 + E,F) [C >= 1 + H] ==> evalnestedLoopbb6in(A,B,C,D,E,F,G,H) = 1 >= 1 = evalnestedLoopbb5in(A,B,C,D,E,F,G,H) [H >= C] ==> evalnestedLoopbb6in(A,B,C,D,E,F,G,H) = 1 >= 1 = evalnestedLoopbb7in(A,B,C,D,G,H,G,H) True ==> evalnestedLoopbb5in(A,B,C,D,E,F,G,H) = 1 >= 1 = evalnestedLoopbb6in(A,B,C,D,E,F,G,1 + H) True ==> evalnestedLoopbb8in(A,B,C,D,E,F,G,H) = 1 >= 1 = evalnestedLoopbb9in(A,B,C,1 + F,E,F,G,H) * Step 5: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalnestedLoopstart(A,B,C,D,E,F,G,H) -> evalnestedLoopentryin(A,B,C,D,E,F,G,H) True (1,1) 1. evalnestedLoopentryin(A,B,C,D,E,F,G,H) -> evalnestedLoopbb9in(A,B,C,0,E,F,G,H) [A >= 0 && B >= 0 && C >= 0] (2,1) 5. evalnestedLoopbb9in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb7in(A,B,C,D,0,D,G,H) [A >= 1 + D] (?,1) 7. evalnestedLoopbb7in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb4in(A,B,C,D,E,F,G,H) [B >= 1 + E] (?,1) 8. evalnestedLoopbb7in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb8in(A,B,C,D,E,F,G,H) [E >= B] (?,1) 9. evalnestedLoopbb4in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb6in(A,B,C,D,E,F,1 + E,F) True (?,1) 10. evalnestedLoopbb6in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb5in(A,B,C,D,E,F,G,H) [C >= 1 + H] (?,1) 11. evalnestedLoopbb6in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb7in(A,B,C,D,G,H,G,H) [H >= C] (?,1) 12. evalnestedLoopbb5in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb6in(A,B,C,D,E,F,G,1 + H) True (?,1) 13. evalnestedLoopbb8in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb9in(A,B,C,1 + F,E,F,G,H) True (?,1) Signature: {(evalnestedLoopbb4in,8) ;(evalnestedLoopbb5in,8) ;(evalnestedLoopbb6in,8) ;(evalnestedLoopbb7in,8) ;(evalnestedLoopbb8in,8) ;(evalnestedLoopbb9in,8) ;(evalnestedLoopentryin,8) ;(evalnestedLoopreturnin,8) ;(evalnestedLoopstart,8) ;(evalnestedLoopstop,8)} Flow Graph: [0->{1},1->{5},5->{7,8},7->{9},8->{13},9->{10,11},10->{12},11->{7,8},12->{10,11},13->{5}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, 0) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 5,0,A>, A) (< 5,0,B>, B) (< 5,0,C>, C) (< 5,0,D>, ?) (< 5,0,E>, 0) (< 5,0,F>, ?) (< 5,0,G>, ?) (< 5,0,H>, ?) (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, C) (< 7,0,D>, ?) (< 7,0,E>, B) (< 7,0,F>, ?) (< 7,0,G>, ?) (< 7,0,H>, ?) (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, C) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,G>, ?) (< 8,0,H>, ?) (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, C) (< 9,0,D>, ?) (< 9,0,E>, B) (< 9,0,F>, ?) (< 9,0,G>, B) (< 9,0,H>, ?) (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, C) (<10,0,D>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,G>, ?) (<10,0,H>, C) (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, C) (<11,0,D>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,G>, ?) (<11,0,H>, ?) (<12,0,A>, A) (<12,0,B>, B) (<12,0,C>, C) (<12,0,D>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,G>, ?) (<12,0,H>, C) (<13,0,A>, A) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,G>, ?) (<13,0,H>, ?) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalnestedLoopbb4in) = -1 + x1 + -1*x6 p(evalnestedLoopbb5in) = -1 + x1 + -1*x8 p(evalnestedLoopbb6in) = -1 + x1 + -1*x8 p(evalnestedLoopbb7in) = -1 + x1 + -1*x6 p(evalnestedLoopbb8in) = -1 + x1 + -1*x6 p(evalnestedLoopbb9in) = x1 + -1*x4 p(evalnestedLoopentryin) = x1 p(evalnestedLoopstart) = x1 The following rules are strictly oriented: [A >= 1 + D] ==> evalnestedLoopbb9in(A,B,C,D,E,F,G,H) = A + -1*D > -1 + A + -1*D = evalnestedLoopbb7in(A,B,C,D,0,D,G,H) The following rules are weakly oriented: True ==> evalnestedLoopstart(A,B,C,D,E,F,G,H) = A >= A = evalnestedLoopentryin(A,B,C,D,E,F,G,H) [A >= 0 && B >= 0 && C >= 0] ==> evalnestedLoopentryin(A,B,C,D,E,F,G,H) = A >= A = evalnestedLoopbb9in(A,B,C,0,E,F,G,H) [B >= 1 + E] ==> evalnestedLoopbb7in(A,B,C,D,E,F,G,H) = -1 + A + -1*F >= -1 + A + -1*F = evalnestedLoopbb4in(A,B,C,D,E,F,G,H) [E >= B] ==> evalnestedLoopbb7in(A,B,C,D,E,F,G,H) = -1 + A + -1*F >= -1 + A + -1*F = evalnestedLoopbb8in(A,B,C,D,E,F,G,H) True ==> evalnestedLoopbb4in(A,B,C,D,E,F,G,H) = -1 + A + -1*F >= -1 + A + -1*F = evalnestedLoopbb6in(A,B,C,D,E,F,1 + E,F) [C >= 1 + H] ==> evalnestedLoopbb6in(A,B,C,D,E,F,G,H) = -1 + A + -1*H >= -1 + A + -1*H = evalnestedLoopbb5in(A,B,C,D,E,F,G,H) [H >= C] ==> evalnestedLoopbb6in(A,B,C,D,E,F,G,H) = -1 + A + -1*H >= -1 + A + -1*H = evalnestedLoopbb7in(A,B,C,D,G,H,G,H) True ==> evalnestedLoopbb5in(A,B,C,D,E,F,G,H) = -1 + A + -1*H >= -2 + A + -1*H = evalnestedLoopbb6in(A,B,C,D,E,F,G,1 + H) True ==> evalnestedLoopbb8in(A,B,C,D,E,F,G,H) = -1 + A + -1*F >= -1 + A + -1*F = evalnestedLoopbb9in(A,B,C,1 + F,E,F,G,H) * Step 6: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalnestedLoopstart(A,B,C,D,E,F,G,H) -> evalnestedLoopentryin(A,B,C,D,E,F,G,H) True (1,1) 1. evalnestedLoopentryin(A,B,C,D,E,F,G,H) -> evalnestedLoopbb9in(A,B,C,0,E,F,G,H) [A >= 0 && B >= 0 && C >= 0] (2,1) 5. evalnestedLoopbb9in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb7in(A,B,C,D,0,D,G,H) [A >= 1 + D] (A,1) 7. evalnestedLoopbb7in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb4in(A,B,C,D,E,F,G,H) [B >= 1 + E] (?,1) 8. evalnestedLoopbb7in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb8in(A,B,C,D,E,F,G,H) [E >= B] (?,1) 9. evalnestedLoopbb4in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb6in(A,B,C,D,E,F,1 + E,F) True (?,1) 10. evalnestedLoopbb6in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb5in(A,B,C,D,E,F,G,H) [C >= 1 + H] (?,1) 11. evalnestedLoopbb6in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb7in(A,B,C,D,G,H,G,H) [H >= C] (?,1) 12. evalnestedLoopbb5in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb6in(A,B,C,D,E,F,G,1 + H) True (?,1) 13. evalnestedLoopbb8in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb9in(A,B,C,1 + F,E,F,G,H) True (?,1) Signature: {(evalnestedLoopbb4in,8) ;(evalnestedLoopbb5in,8) ;(evalnestedLoopbb6in,8) ;(evalnestedLoopbb7in,8) ;(evalnestedLoopbb8in,8) ;(evalnestedLoopbb9in,8) ;(evalnestedLoopentryin,8) ;(evalnestedLoopreturnin,8) ;(evalnestedLoopstart,8) ;(evalnestedLoopstop,8)} Flow Graph: [0->{1},1->{5},5->{7,8},7->{9},8->{13},9->{10,11},10->{12},11->{7,8},12->{10,11},13->{5}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, 0) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 5,0,A>, A) (< 5,0,B>, B) (< 5,0,C>, C) (< 5,0,D>, ?) (< 5,0,E>, 0) (< 5,0,F>, ?) (< 5,0,G>, ?) (< 5,0,H>, ?) (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, C) (< 7,0,D>, ?) (< 7,0,E>, B) (< 7,0,F>, ?) (< 7,0,G>, ?) (< 7,0,H>, ?) (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, C) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,G>, ?) (< 8,0,H>, ?) (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, C) (< 9,0,D>, ?) (< 9,0,E>, B) (< 9,0,F>, ?) (< 9,0,G>, B) (< 9,0,H>, ?) (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, C) (<10,0,D>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,G>, ?) (<10,0,H>, C) (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, C) (<11,0,D>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,G>, ?) (<11,0,H>, ?) (<12,0,A>, A) (<12,0,B>, B) (<12,0,C>, C) (<12,0,D>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,G>, ?) (<12,0,H>, C) (<13,0,A>, A) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,G>, ?) (<13,0,H>, ?) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalnestedLoopbb4in) = x3 + -1*x6 p(evalnestedLoopbb5in) = -1 + x3 + -1*x8 p(evalnestedLoopbb6in) = x3 + -1*x8 p(evalnestedLoopbb7in) = x3 + -1*x6 p(evalnestedLoopbb8in) = x3 + -1*x6 p(evalnestedLoopbb9in) = x3 + -1*x4 p(evalnestedLoopentryin) = x3 p(evalnestedLoopstart) = x3 The following rules are strictly oriented: [C >= 1 + H] ==> evalnestedLoopbb6in(A,B,C,D,E,F,G,H) = C + -1*H > -1 + C + -1*H = evalnestedLoopbb5in(A,B,C,D,E,F,G,H) The following rules are weakly oriented: True ==> evalnestedLoopstart(A,B,C,D,E,F,G,H) = C >= C = evalnestedLoopentryin(A,B,C,D,E,F,G,H) [A >= 0 && B >= 0 && C >= 0] ==> evalnestedLoopentryin(A,B,C,D,E,F,G,H) = C >= C = evalnestedLoopbb9in(A,B,C,0,E,F,G,H) [A >= 1 + D] ==> evalnestedLoopbb9in(A,B,C,D,E,F,G,H) = C + -1*D >= C + -1*D = evalnestedLoopbb7in(A,B,C,D,0,D,G,H) [B >= 1 + E] ==> evalnestedLoopbb7in(A,B,C,D,E,F,G,H) = C + -1*F >= C + -1*F = evalnestedLoopbb4in(A,B,C,D,E,F,G,H) [E >= B] ==> evalnestedLoopbb7in(A,B,C,D,E,F,G,H) = C + -1*F >= C + -1*F = evalnestedLoopbb8in(A,B,C,D,E,F,G,H) True ==> evalnestedLoopbb4in(A,B,C,D,E,F,G,H) = C + -1*F >= C + -1*F = evalnestedLoopbb6in(A,B,C,D,E,F,1 + E,F) [H >= C] ==> evalnestedLoopbb6in(A,B,C,D,E,F,G,H) = C + -1*H >= C + -1*H = evalnestedLoopbb7in(A,B,C,D,G,H,G,H) True ==> evalnestedLoopbb5in(A,B,C,D,E,F,G,H) = -1 + C + -1*H >= -1 + C + -1*H = evalnestedLoopbb6in(A,B,C,D,E,F,G,1 + H) True ==> evalnestedLoopbb8in(A,B,C,D,E,F,G,H) = C + -1*F >= -1 + C + -1*F = evalnestedLoopbb9in(A,B,C,1 + F,E,F,G,H) * Step 7: KnowledgePropagation WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalnestedLoopstart(A,B,C,D,E,F,G,H) -> evalnestedLoopentryin(A,B,C,D,E,F,G,H) True (1,1) 1. evalnestedLoopentryin(A,B,C,D,E,F,G,H) -> evalnestedLoopbb9in(A,B,C,0,E,F,G,H) [A >= 0 && B >= 0 && C >= 0] (2,1) 5. evalnestedLoopbb9in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb7in(A,B,C,D,0,D,G,H) [A >= 1 + D] (A,1) 7. evalnestedLoopbb7in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb4in(A,B,C,D,E,F,G,H) [B >= 1 + E] (?,1) 8. evalnestedLoopbb7in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb8in(A,B,C,D,E,F,G,H) [E >= B] (?,1) 9. evalnestedLoopbb4in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb6in(A,B,C,D,E,F,1 + E,F) True (?,1) 10. evalnestedLoopbb6in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb5in(A,B,C,D,E,F,G,H) [C >= 1 + H] (C,1) 11. evalnestedLoopbb6in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb7in(A,B,C,D,G,H,G,H) [H >= C] (?,1) 12. evalnestedLoopbb5in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb6in(A,B,C,D,E,F,G,1 + H) True (?,1) 13. evalnestedLoopbb8in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb9in(A,B,C,1 + F,E,F,G,H) True (?,1) Signature: {(evalnestedLoopbb4in,8) ;(evalnestedLoopbb5in,8) ;(evalnestedLoopbb6in,8) ;(evalnestedLoopbb7in,8) ;(evalnestedLoopbb8in,8) ;(evalnestedLoopbb9in,8) ;(evalnestedLoopentryin,8) ;(evalnestedLoopreturnin,8) ;(evalnestedLoopstart,8) ;(evalnestedLoopstop,8)} Flow Graph: [0->{1},1->{5},5->{7,8},7->{9},8->{13},9->{10,11},10->{12},11->{7,8},12->{10,11},13->{5}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, 0) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 5,0,A>, A) (< 5,0,B>, B) (< 5,0,C>, C) (< 5,0,D>, ?) (< 5,0,E>, 0) (< 5,0,F>, ?) (< 5,0,G>, ?) (< 5,0,H>, ?) (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, C) (< 7,0,D>, ?) (< 7,0,E>, B) (< 7,0,F>, ?) (< 7,0,G>, ?) (< 7,0,H>, ?) (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, C) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,G>, ?) (< 8,0,H>, ?) (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, C) (< 9,0,D>, ?) (< 9,0,E>, B) (< 9,0,F>, ?) (< 9,0,G>, B) (< 9,0,H>, ?) (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, C) (<10,0,D>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,G>, ?) (<10,0,H>, C) (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, C) (<11,0,D>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,G>, ?) (<11,0,H>, ?) (<12,0,A>, A) (<12,0,B>, B) (<12,0,C>, C) (<12,0,D>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,G>, ?) (<12,0,H>, C) (<13,0,A>, A) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,G>, ?) (<13,0,H>, ?) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 8: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalnestedLoopstart(A,B,C,D,E,F,G,H) -> evalnestedLoopentryin(A,B,C,D,E,F,G,H) True (1,1) 1. evalnestedLoopentryin(A,B,C,D,E,F,G,H) -> evalnestedLoopbb9in(A,B,C,0,E,F,G,H) [A >= 0 && B >= 0 && C >= 0] (2,1) 5. evalnestedLoopbb9in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb7in(A,B,C,D,0,D,G,H) [A >= 1 + D] (A,1) 7. evalnestedLoopbb7in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb4in(A,B,C,D,E,F,G,H) [B >= 1 + E] (?,1) 8. evalnestedLoopbb7in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb8in(A,B,C,D,E,F,G,H) [E >= B] (?,1) 9. evalnestedLoopbb4in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb6in(A,B,C,D,E,F,1 + E,F) True (?,1) 10. evalnestedLoopbb6in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb5in(A,B,C,D,E,F,G,H) [C >= 1 + H] (C,1) 11. evalnestedLoopbb6in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb7in(A,B,C,D,G,H,G,H) [H >= C] (?,1) 12. evalnestedLoopbb5in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb6in(A,B,C,D,E,F,G,1 + H) True (C,1) 13. evalnestedLoopbb8in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb9in(A,B,C,1 + F,E,F,G,H) True (?,1) Signature: {(evalnestedLoopbb4in,8) ;(evalnestedLoopbb5in,8) ;(evalnestedLoopbb6in,8) ;(evalnestedLoopbb7in,8) ;(evalnestedLoopbb8in,8) ;(evalnestedLoopbb9in,8) ;(evalnestedLoopentryin,8) ;(evalnestedLoopreturnin,8) ;(evalnestedLoopstart,8) ;(evalnestedLoopstop,8)} Flow Graph: [0->{1},1->{5},5->{7,8},7->{9},8->{13},9->{10,11},10->{12},11->{7,8},12->{10,11},13->{5}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, 0) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 5,0,A>, A) (< 5,0,B>, B) (< 5,0,C>, C) (< 5,0,D>, ?) (< 5,0,E>, 0) (< 5,0,F>, ?) (< 5,0,G>, ?) (< 5,0,H>, ?) (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, C) (< 7,0,D>, ?) (< 7,0,E>, B) (< 7,0,F>, ?) (< 7,0,G>, ?) (< 7,0,H>, ?) (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, C) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,G>, ?) (< 8,0,H>, ?) (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, C) (< 9,0,D>, ?) (< 9,0,E>, B) (< 9,0,F>, ?) (< 9,0,G>, B) (< 9,0,H>, ?) (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, C) (<10,0,D>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,G>, ?) (<10,0,H>, C) (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, C) (<11,0,D>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,G>, ?) (<11,0,H>, ?) (<12,0,A>, A) (<12,0,B>, B) (<12,0,C>, C) (<12,0,D>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,G>, ?) (<12,0,H>, C) (<13,0,A>, A) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,G>, ?) (<13,0,H>, ?) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [13,8,11,9,7,12,10], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalnestedLoopbb4in) = 1 p(evalnestedLoopbb5in) = 1 p(evalnestedLoopbb6in) = 1 p(evalnestedLoopbb7in) = 1 p(evalnestedLoopbb8in) = 1 p(evalnestedLoopbb9in) = 0 The following rules are strictly oriented: True ==> evalnestedLoopbb8in(A,B,C,D,E,F,G,H) = 1 > 0 = evalnestedLoopbb9in(A,B,C,1 + F,E,F,G,H) The following rules are weakly oriented: [B >= 1 + E] ==> evalnestedLoopbb7in(A,B,C,D,E,F,G,H) = 1 >= 1 = evalnestedLoopbb4in(A,B,C,D,E,F,G,H) [E >= B] ==> evalnestedLoopbb7in(A,B,C,D,E,F,G,H) = 1 >= 1 = evalnestedLoopbb8in(A,B,C,D,E,F,G,H) True ==> evalnestedLoopbb4in(A,B,C,D,E,F,G,H) = 1 >= 1 = evalnestedLoopbb6in(A,B,C,D,E,F,1 + E,F) [C >= 1 + H] ==> evalnestedLoopbb6in(A,B,C,D,E,F,G,H) = 1 >= 1 = evalnestedLoopbb5in(A,B,C,D,E,F,G,H) [H >= C] ==> evalnestedLoopbb6in(A,B,C,D,E,F,G,H) = 1 >= 1 = evalnestedLoopbb7in(A,B,C,D,G,H,G,H) True ==> evalnestedLoopbb5in(A,B,C,D,E,F,G,H) = 1 >= 1 = evalnestedLoopbb6in(A,B,C,D,E,F,G,1 + H) We use the following global sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, 0) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 5,0,A>, A) (< 5,0,B>, B) (< 5,0,C>, C) (< 5,0,D>, ?) (< 5,0,E>, 0) (< 5,0,F>, ?) (< 5,0,G>, ?) (< 5,0,H>, ?) (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, C) (< 7,0,D>, ?) (< 7,0,E>, B) (< 7,0,F>, ?) (< 7,0,G>, ?) (< 7,0,H>, ?) (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, C) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,G>, ?) (< 8,0,H>, ?) (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, C) (< 9,0,D>, ?) (< 9,0,E>, B) (< 9,0,F>, ?) (< 9,0,G>, B) (< 9,0,H>, ?) (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, C) (<10,0,D>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,G>, ?) (<10,0,H>, C) (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, C) (<11,0,D>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,G>, ?) (<11,0,H>, ?) (<12,0,A>, A) (<12,0,B>, B) (<12,0,C>, C) (<12,0,D>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,G>, ?) (<12,0,H>, C) (<13,0,A>, A) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,G>, ?) (<13,0,H>, ?) * Step 9: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalnestedLoopstart(A,B,C,D,E,F,G,H) -> evalnestedLoopentryin(A,B,C,D,E,F,G,H) True (1,1) 1. evalnestedLoopentryin(A,B,C,D,E,F,G,H) -> evalnestedLoopbb9in(A,B,C,0,E,F,G,H) [A >= 0 && B >= 0 && C >= 0] (2,1) 5. evalnestedLoopbb9in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb7in(A,B,C,D,0,D,G,H) [A >= 1 + D] (A,1) 7. evalnestedLoopbb7in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb4in(A,B,C,D,E,F,G,H) [B >= 1 + E] (?,1) 8. evalnestedLoopbb7in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb8in(A,B,C,D,E,F,G,H) [E >= B] (?,1) 9. evalnestedLoopbb4in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb6in(A,B,C,D,E,F,1 + E,F) True (?,1) 10. evalnestedLoopbb6in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb5in(A,B,C,D,E,F,G,H) [C >= 1 + H] (C,1) 11. evalnestedLoopbb6in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb7in(A,B,C,D,G,H,G,H) [H >= C] (?,1) 12. evalnestedLoopbb5in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb6in(A,B,C,D,E,F,G,1 + H) True (C,1) 13. evalnestedLoopbb8in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb9in(A,B,C,1 + F,E,F,G,H) True (A,1) Signature: {(evalnestedLoopbb4in,8) ;(evalnestedLoopbb5in,8) ;(evalnestedLoopbb6in,8) ;(evalnestedLoopbb7in,8) ;(evalnestedLoopbb8in,8) ;(evalnestedLoopbb9in,8) ;(evalnestedLoopentryin,8) ;(evalnestedLoopreturnin,8) ;(evalnestedLoopstart,8) ;(evalnestedLoopstop,8)} Flow Graph: [0->{1},1->{5},5->{7,8},7->{9},8->{13},9->{10,11},10->{12},11->{7,8},12->{10,11},13->{5}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, 0) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 5,0,A>, A) (< 5,0,B>, B) (< 5,0,C>, C) (< 5,0,D>, ?) (< 5,0,E>, 0) (< 5,0,F>, ?) (< 5,0,G>, ?) (< 5,0,H>, ?) (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, C) (< 7,0,D>, ?) (< 7,0,E>, B) (< 7,0,F>, ?) (< 7,0,G>, ?) (< 7,0,H>, ?) (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, C) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,G>, ?) (< 8,0,H>, ?) (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, C) (< 9,0,D>, ?) (< 9,0,E>, B) (< 9,0,F>, ?) (< 9,0,G>, B) (< 9,0,H>, ?) (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, C) (<10,0,D>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,G>, ?) (<10,0,H>, C) (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, C) (<11,0,D>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,G>, ?) (<11,0,H>, ?) (<12,0,A>, A) (<12,0,B>, B) (<12,0,C>, C) (<12,0,D>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,G>, ?) (<12,0,H>, C) (<13,0,A>, A) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,G>, ?) (<13,0,H>, ?) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [13,8,11,9,7,12,10], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalnestedLoopbb4in) = 1 p(evalnestedLoopbb5in) = 1 p(evalnestedLoopbb6in) = 1 p(evalnestedLoopbb7in) = 1 p(evalnestedLoopbb8in) = 0 p(evalnestedLoopbb9in) = 0 The following rules are strictly oriented: [E >= B] ==> evalnestedLoopbb7in(A,B,C,D,E,F,G,H) = 1 > 0 = evalnestedLoopbb8in(A,B,C,D,E,F,G,H) The following rules are weakly oriented: [B >= 1 + E] ==> evalnestedLoopbb7in(A,B,C,D,E,F,G,H) = 1 >= 1 = evalnestedLoopbb4in(A,B,C,D,E,F,G,H) True ==> evalnestedLoopbb4in(A,B,C,D,E,F,G,H) = 1 >= 1 = evalnestedLoopbb6in(A,B,C,D,E,F,1 + E,F) [C >= 1 + H] ==> evalnestedLoopbb6in(A,B,C,D,E,F,G,H) = 1 >= 1 = evalnestedLoopbb5in(A,B,C,D,E,F,G,H) [H >= C] ==> evalnestedLoopbb6in(A,B,C,D,E,F,G,H) = 1 >= 1 = evalnestedLoopbb7in(A,B,C,D,G,H,G,H) True ==> evalnestedLoopbb5in(A,B,C,D,E,F,G,H) = 1 >= 1 = evalnestedLoopbb6in(A,B,C,D,E,F,G,1 + H) True ==> evalnestedLoopbb8in(A,B,C,D,E,F,G,H) = 0 >= 0 = evalnestedLoopbb9in(A,B,C,1 + F,E,F,G,H) We use the following global sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, 0) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 5,0,A>, A) (< 5,0,B>, B) (< 5,0,C>, C) (< 5,0,D>, ?) (< 5,0,E>, 0) (< 5,0,F>, ?) (< 5,0,G>, ?) (< 5,0,H>, ?) (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, C) (< 7,0,D>, ?) (< 7,0,E>, B) (< 7,0,F>, ?) (< 7,0,G>, ?) (< 7,0,H>, ?) (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, C) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,G>, ?) (< 8,0,H>, ?) (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, C) (< 9,0,D>, ?) (< 9,0,E>, B) (< 9,0,F>, ?) (< 9,0,G>, B) (< 9,0,H>, ?) (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, C) (<10,0,D>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,G>, ?) (<10,0,H>, C) (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, C) (<11,0,D>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,G>, ?) (<11,0,H>, ?) (<12,0,A>, A) (<12,0,B>, B) (<12,0,C>, C) (<12,0,D>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,G>, ?) (<12,0,H>, C) (<13,0,A>, A) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,G>, ?) (<13,0,H>, ?) * Step 10: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalnestedLoopstart(A,B,C,D,E,F,G,H) -> evalnestedLoopentryin(A,B,C,D,E,F,G,H) True (1,1) 1. evalnestedLoopentryin(A,B,C,D,E,F,G,H) -> evalnestedLoopbb9in(A,B,C,0,E,F,G,H) [A >= 0 && B >= 0 && C >= 0] (2,1) 5. evalnestedLoopbb9in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb7in(A,B,C,D,0,D,G,H) [A >= 1 + D] (A,1) 7. evalnestedLoopbb7in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb4in(A,B,C,D,E,F,G,H) [B >= 1 + E] (?,1) 8. evalnestedLoopbb7in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb8in(A,B,C,D,E,F,G,H) [E >= B] (A,1) 9. evalnestedLoopbb4in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb6in(A,B,C,D,E,F,1 + E,F) True (?,1) 10. evalnestedLoopbb6in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb5in(A,B,C,D,E,F,G,H) [C >= 1 + H] (C,1) 11. evalnestedLoopbb6in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb7in(A,B,C,D,G,H,G,H) [H >= C] (?,1) 12. evalnestedLoopbb5in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb6in(A,B,C,D,E,F,G,1 + H) True (C,1) 13. evalnestedLoopbb8in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb9in(A,B,C,1 + F,E,F,G,H) True (A,1) Signature: {(evalnestedLoopbb4in,8) ;(evalnestedLoopbb5in,8) ;(evalnestedLoopbb6in,8) ;(evalnestedLoopbb7in,8) ;(evalnestedLoopbb8in,8) ;(evalnestedLoopbb9in,8) ;(evalnestedLoopentryin,8) ;(evalnestedLoopreturnin,8) ;(evalnestedLoopstart,8) ;(evalnestedLoopstop,8)} Flow Graph: [0->{1},1->{5},5->{7,8},7->{9},8->{13},9->{10,11},10->{12},11->{7,8},12->{10,11},13->{5}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, 0) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 5,0,A>, A) (< 5,0,B>, B) (< 5,0,C>, C) (< 5,0,D>, ?) (< 5,0,E>, 0) (< 5,0,F>, ?) (< 5,0,G>, ?) (< 5,0,H>, ?) (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, C) (< 7,0,D>, ?) (< 7,0,E>, B) (< 7,0,F>, ?) (< 7,0,G>, ?) (< 7,0,H>, ?) (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, C) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,G>, ?) (< 8,0,H>, ?) (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, C) (< 9,0,D>, ?) (< 9,0,E>, B) (< 9,0,F>, ?) (< 9,0,G>, B) (< 9,0,H>, ?) (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, C) (<10,0,D>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,G>, ?) (<10,0,H>, C) (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, C) (<11,0,D>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,G>, ?) (<11,0,H>, ?) (<12,0,A>, A) (<12,0,B>, B) (<12,0,C>, C) (<12,0,D>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,G>, ?) (<12,0,H>, C) (<13,0,A>, A) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,G>, ?) (<13,0,H>, ?) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [5,8,11,9,7,12,10], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalnestedLoopbb4in) = x2 + -1*x5 p(evalnestedLoopbb5in) = 1 + x2 + -1*x7 p(evalnestedLoopbb6in) = 1 + x2 + -1*x7 p(evalnestedLoopbb7in) = 1 + x2 + -1*x5 p(evalnestedLoopbb8in) = 1 + x2 + -1*x5 p(evalnestedLoopbb9in) = 1 + x2 The following rules are strictly oriented: [B >= 1 + E] ==> evalnestedLoopbb7in(A,B,C,D,E,F,G,H) = 1 + B + -1*E > B + -1*E = evalnestedLoopbb4in(A,B,C,D,E,F,G,H) The following rules are weakly oriented: [A >= 1 + D] ==> evalnestedLoopbb9in(A,B,C,D,E,F,G,H) = 1 + B >= 1 + B = evalnestedLoopbb7in(A,B,C,D,0,D,G,H) [E >= B] ==> evalnestedLoopbb7in(A,B,C,D,E,F,G,H) = 1 + B + -1*E >= 1 + B + -1*E = evalnestedLoopbb8in(A,B,C,D,E,F,G,H) True ==> evalnestedLoopbb4in(A,B,C,D,E,F,G,H) = B + -1*E >= B + -1*E = evalnestedLoopbb6in(A,B,C,D,E,F,1 + E,F) [C >= 1 + H] ==> evalnestedLoopbb6in(A,B,C,D,E,F,G,H) = 1 + B + -1*G >= 1 + B + -1*G = evalnestedLoopbb5in(A,B,C,D,E,F,G,H) [H >= C] ==> evalnestedLoopbb6in(A,B,C,D,E,F,G,H) = 1 + B + -1*G >= 1 + B + -1*G = evalnestedLoopbb7in(A,B,C,D,G,H,G,H) True ==> evalnestedLoopbb5in(A,B,C,D,E,F,G,H) = 1 + B + -1*G >= 1 + B + -1*G = evalnestedLoopbb6in(A,B,C,D,E,F,G,1 + H) We use the following global sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, 0) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 5,0,A>, A) (< 5,0,B>, B) (< 5,0,C>, C) (< 5,0,D>, ?) (< 5,0,E>, 0) (< 5,0,F>, ?) (< 5,0,G>, ?) (< 5,0,H>, ?) (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, C) (< 7,0,D>, ?) (< 7,0,E>, B) (< 7,0,F>, ?) (< 7,0,G>, ?) (< 7,0,H>, ?) (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, C) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,G>, ?) (< 8,0,H>, ?) (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, C) (< 9,0,D>, ?) (< 9,0,E>, B) (< 9,0,F>, ?) (< 9,0,G>, B) (< 9,0,H>, ?) (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, C) (<10,0,D>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,G>, ?) (<10,0,H>, C) (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, C) (<11,0,D>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,G>, ?) (<11,0,H>, ?) (<12,0,A>, A) (<12,0,B>, B) (<12,0,C>, C) (<12,0,D>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,G>, ?) (<12,0,H>, C) (<13,0,A>, A) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,G>, ?) (<13,0,H>, ?) * Step 11: KnowledgePropagation WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalnestedLoopstart(A,B,C,D,E,F,G,H) -> evalnestedLoopentryin(A,B,C,D,E,F,G,H) True (1,1) 1. evalnestedLoopentryin(A,B,C,D,E,F,G,H) -> evalnestedLoopbb9in(A,B,C,0,E,F,G,H) [A >= 0 && B >= 0 && C >= 0] (2,1) 5. evalnestedLoopbb9in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb7in(A,B,C,D,0,D,G,H) [A >= 1 + D] (A,1) 7. evalnestedLoopbb7in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb4in(A,B,C,D,E,F,G,H) [B >= 1 + E] (2 + A + A*B + 2*B,1) 8. evalnestedLoopbb7in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb8in(A,B,C,D,E,F,G,H) [E >= B] (A,1) 9. evalnestedLoopbb4in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb6in(A,B,C,D,E,F,1 + E,F) True (?,1) 10. evalnestedLoopbb6in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb5in(A,B,C,D,E,F,G,H) [C >= 1 + H] (C,1) 11. evalnestedLoopbb6in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb7in(A,B,C,D,G,H,G,H) [H >= C] (?,1) 12. evalnestedLoopbb5in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb6in(A,B,C,D,E,F,G,1 + H) True (C,1) 13. evalnestedLoopbb8in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb9in(A,B,C,1 + F,E,F,G,H) True (A,1) Signature: {(evalnestedLoopbb4in,8) ;(evalnestedLoopbb5in,8) ;(evalnestedLoopbb6in,8) ;(evalnestedLoopbb7in,8) ;(evalnestedLoopbb8in,8) ;(evalnestedLoopbb9in,8) ;(evalnestedLoopentryin,8) ;(evalnestedLoopreturnin,8) ;(evalnestedLoopstart,8) ;(evalnestedLoopstop,8)} Flow Graph: [0->{1},1->{5},5->{7,8},7->{9},8->{13},9->{10,11},10->{12},11->{7,8},12->{10,11},13->{5}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, 0) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 5,0,A>, A) (< 5,0,B>, B) (< 5,0,C>, C) (< 5,0,D>, ?) (< 5,0,E>, 0) (< 5,0,F>, ?) (< 5,0,G>, ?) (< 5,0,H>, ?) (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, C) (< 7,0,D>, ?) (< 7,0,E>, B) (< 7,0,F>, ?) (< 7,0,G>, ?) (< 7,0,H>, ?) (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, C) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,G>, ?) (< 8,0,H>, ?) (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, C) (< 9,0,D>, ?) (< 9,0,E>, B) (< 9,0,F>, ?) (< 9,0,G>, B) (< 9,0,H>, ?) (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, C) (<10,0,D>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,G>, ?) (<10,0,H>, C) (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, C) (<11,0,D>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,G>, ?) (<11,0,H>, ?) (<12,0,A>, A) (<12,0,B>, B) (<12,0,C>, C) (<12,0,D>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,G>, ?) (<12,0,H>, C) (<13,0,A>, A) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,G>, ?) (<13,0,H>, ?) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 12: LocalSizeboundsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalnestedLoopstart(A,B,C,D,E,F,G,H) -> evalnestedLoopentryin(A,B,C,D,E,F,G,H) True (1,1) 1. evalnestedLoopentryin(A,B,C,D,E,F,G,H) -> evalnestedLoopbb9in(A,B,C,0,E,F,G,H) [A >= 0 && B >= 0 && C >= 0] (2,1) 5. evalnestedLoopbb9in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb7in(A,B,C,D,0,D,G,H) [A >= 1 + D] (A,1) 7. evalnestedLoopbb7in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb4in(A,B,C,D,E,F,G,H) [B >= 1 + E] (2 + A + A*B + 2*B,1) 8. evalnestedLoopbb7in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb8in(A,B,C,D,E,F,G,H) [E >= B] (A,1) 9. evalnestedLoopbb4in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb6in(A,B,C,D,E,F,1 + E,F) True (2 + A + A*B + 2*B,1) 10. evalnestedLoopbb6in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb5in(A,B,C,D,E,F,G,H) [C >= 1 + H] (C,1) 11. evalnestedLoopbb6in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb7in(A,B,C,D,G,H,G,H) [H >= C] (2 + A + A*B + 2*B + C,1) 12. evalnestedLoopbb5in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb6in(A,B,C,D,E,F,G,1 + H) True (C,1) 13. evalnestedLoopbb8in(A,B,C,D,E,F,G,H) -> evalnestedLoopbb9in(A,B,C,1 + F,E,F,G,H) True (A,1) Signature: {(evalnestedLoopbb4in,8) ;(evalnestedLoopbb5in,8) ;(evalnestedLoopbb6in,8) ;(evalnestedLoopbb7in,8) ;(evalnestedLoopbb8in,8) ;(evalnestedLoopbb9in,8) ;(evalnestedLoopentryin,8) ;(evalnestedLoopreturnin,8) ;(evalnestedLoopstart,8) ;(evalnestedLoopstop,8)} Flow Graph: [0->{1},1->{5},5->{7,8},7->{9},8->{13},9->{10,11},10->{12},11->{7,8},12->{10,11},13->{5}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, 0) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 5,0,A>, A) (< 5,0,B>, B) (< 5,0,C>, C) (< 5,0,D>, ?) (< 5,0,E>, 0) (< 5,0,F>, ?) (< 5,0,G>, ?) (< 5,0,H>, ?) (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, C) (< 7,0,D>, ?) (< 7,0,E>, B) (< 7,0,F>, ?) (< 7,0,G>, ?) (< 7,0,H>, ?) (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, C) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,G>, ?) (< 8,0,H>, ?) (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, C) (< 9,0,D>, ?) (< 9,0,E>, B) (< 9,0,F>, ?) (< 9,0,G>, B) (< 9,0,H>, ?) (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, C) (<10,0,D>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,G>, ?) (<10,0,H>, C) (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, C) (<11,0,D>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,G>, ?) (<11,0,H>, ?) (<12,0,A>, A) (<12,0,B>, B) (<12,0,C>, C) (<12,0,D>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,G>, ?) (<12,0,H>, C) (<13,0,A>, A) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,G>, ?) (<13,0,H>, ?) + Applied Processor: LocalSizeboundsProc + Details: The problem is already solved. WORST_CASE(?,O(n^2))