WORST_CASE(?,O(n^2))
* Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0.  evalnestedLoopstart(A,B,C,D,E,F,G,H)    -> evalnestedLoopentryin(A,B,C,D,E,F,G,H)   True                         (1,1)
          1.  evalnestedLoopentryin(A,B,C,D,E,F,G,H)  -> evalnestedLoopbb9in(A,B,C,0,E,F,G,H)     [A >= 0 && B >= 0 && C >= 0] (?,1)
          2.  evalnestedLoopentryin(A,B,C,D,E,F,G,H)  -> evalnestedLoopreturnin(A,B,C,D,E,F,G,H)  [0 >= 1 + A]                 (?,1)
          3.  evalnestedLoopentryin(A,B,C,D,E,F,G,H)  -> evalnestedLoopreturnin(A,B,C,D,E,F,G,H)  [0 >= 1 + B]                 (?,1)
          4.  evalnestedLoopentryin(A,B,C,D,E,F,G,H)  -> evalnestedLoopreturnin(A,B,C,D,E,F,G,H)  [0 >= 1 + C]                 (?,1)
          5.  evalnestedLoopbb9in(A,B,C,D,E,F,G,H)    -> evalnestedLoopbb7in(A,B,C,D,0,D,G,H)     [A >= 1 + D]                 (?,1)
          6.  evalnestedLoopbb9in(A,B,C,D,E,F,G,H)    -> evalnestedLoopreturnin(A,B,C,D,E,F,G,H)  [D >= A]                     (?,1)
          7.  evalnestedLoopbb7in(A,B,C,D,E,F,G,H)    -> evalnestedLoopbb4in(A,B,C,D,E,F,G,H)     [B >= 1 + E]                 (?,1)
          8.  evalnestedLoopbb7in(A,B,C,D,E,F,G,H)    -> evalnestedLoopbb8in(A,B,C,D,E,F,G,H)     [E >= B]                     (?,1)
          9.  evalnestedLoopbb4in(A,B,C,D,E,F,G,H)    -> evalnestedLoopbb6in(A,B,C,D,E,F,1 + E,F) True                         (?,1)
          10. evalnestedLoopbb6in(A,B,C,D,E,F,G,H)    -> evalnestedLoopbb5in(A,B,C,D,E,F,G,H)     [C >= 1 + H]                 (?,1)
          11. evalnestedLoopbb6in(A,B,C,D,E,F,G,H)    -> evalnestedLoopbb7in(A,B,C,D,G,H,G,H)     [H >= C]                     (?,1)
          12. evalnestedLoopbb5in(A,B,C,D,E,F,G,H)    -> evalnestedLoopbb6in(A,B,C,D,E,F,G,1 + H) True                         (?,1)
          13. evalnestedLoopbb8in(A,B,C,D,E,F,G,H)    -> evalnestedLoopbb9in(A,B,C,1 + F,E,F,G,H) True                         (?,1)
          14. evalnestedLoopreturnin(A,B,C,D,E,F,G,H) -> evalnestedLoopstop(A,B,C,D,E,F,G,H)      True                         (?,1)
        Signature:
          {(evalnestedLoopbb4in,8)
          ;(evalnestedLoopbb5in,8)
          ;(evalnestedLoopbb6in,8)
          ;(evalnestedLoopbb7in,8)
          ;(evalnestedLoopbb8in,8)
          ;(evalnestedLoopbb9in,8)
          ;(evalnestedLoopentryin,8)
          ;(evalnestedLoopreturnin,8)
          ;(evalnestedLoopstart,8)
          ;(evalnestedLoopstop,8)}
        Flow Graph:
          [0->{1,2,3,4},1->{5,6},2->{14},3->{14},4->{14},5->{7,8},6->{14},7->{9},8->{13},9->{10,11},10->{12},11->{7
          ,8},12->{10,11},13->{5,6},14->{}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (< 0,0,A>, A, .= 0) (< 0,0,B>, B, .= 0) (< 0,0,C>, C, .= 0) (< 0,0,D>,     D, .= 0) (< 0,0,E>, E, .= 0) (< 0,0,F>, F, .= 0) (< 0,0,G>,     G, .= 0) (< 0,0,H>,     H, .= 0) 
          (< 1,0,A>, A, .= 0) (< 1,0,B>, B, .= 0) (< 1,0,C>, C, .= 0) (< 1,0,D>,     0, .= 0) (< 1,0,E>, E, .= 0) (< 1,0,F>, F, .= 0) (< 1,0,G>,     G, .= 0) (< 1,0,H>,     H, .= 0) 
          (< 2,0,A>, A, .= 0) (< 2,0,B>, B, .= 0) (< 2,0,C>, C, .= 0) (< 2,0,D>,     D, .= 0) (< 2,0,E>, E, .= 0) (< 2,0,F>, F, .= 0) (< 2,0,G>,     G, .= 0) (< 2,0,H>,     H, .= 0) 
          (< 3,0,A>, A, .= 0) (< 3,0,B>, B, .= 0) (< 3,0,C>, C, .= 0) (< 3,0,D>,     D, .= 0) (< 3,0,E>, E, .= 0) (< 3,0,F>, F, .= 0) (< 3,0,G>,     G, .= 0) (< 3,0,H>,     H, .= 0) 
          (< 4,0,A>, A, .= 0) (< 4,0,B>, B, .= 0) (< 4,0,C>, C, .= 0) (< 4,0,D>,     D, .= 0) (< 4,0,E>, E, .= 0) (< 4,0,F>, F, .= 0) (< 4,0,G>,     G, .= 0) (< 4,0,H>,     H, .= 0) 
          (< 5,0,A>, A, .= 0) (< 5,0,B>, B, .= 0) (< 5,0,C>, C, .= 0) (< 5,0,D>,     D, .= 0) (< 5,0,E>, 0, .= 0) (< 5,0,F>, D, .= 0) (< 5,0,G>,     G, .= 0) (< 5,0,H>,     H, .= 0) 
          (< 6,0,A>, A, .= 0) (< 6,0,B>, B, .= 0) (< 6,0,C>, C, .= 0) (< 6,0,D>,     D, .= 0) (< 6,0,E>, E, .= 0) (< 6,0,F>, F, .= 0) (< 6,0,G>,     G, .= 0) (< 6,0,H>,     H, .= 0) 
          (< 7,0,A>, A, .= 0) (< 7,0,B>, B, .= 0) (< 7,0,C>, C, .= 0) (< 7,0,D>,     D, .= 0) (< 7,0,E>, E, .= 0) (< 7,0,F>, F, .= 0) (< 7,0,G>,     G, .= 0) (< 7,0,H>,     H, .= 0) 
          (< 8,0,A>, A, .= 0) (< 8,0,B>, B, .= 0) (< 8,0,C>, C, .= 0) (< 8,0,D>,     D, .= 0) (< 8,0,E>, E, .= 0) (< 8,0,F>, F, .= 0) (< 8,0,G>,     G, .= 0) (< 8,0,H>,     H, .= 0) 
          (< 9,0,A>, A, .= 0) (< 9,0,B>, B, .= 0) (< 9,0,C>, C, .= 0) (< 9,0,D>,     D, .= 0) (< 9,0,E>, E, .= 0) (< 9,0,F>, F, .= 0) (< 9,0,G>, 1 + E, .+ 1) (< 9,0,H>,     F, .= 0) 
          (<10,0,A>, A, .= 0) (<10,0,B>, B, .= 0) (<10,0,C>, C, .= 0) (<10,0,D>,     D, .= 0) (<10,0,E>, E, .= 0) (<10,0,F>, F, .= 0) (<10,0,G>,     G, .= 0) (<10,0,H>,     H, .= 0) 
          (<11,0,A>, A, .= 0) (<11,0,B>, B, .= 0) (<11,0,C>, C, .= 0) (<11,0,D>,     D, .= 0) (<11,0,E>, G, .= 0) (<11,0,F>, H, .= 0) (<11,0,G>,     G, .= 0) (<11,0,H>,     H, .= 0) 
          (<12,0,A>, A, .= 0) (<12,0,B>, B, .= 0) (<12,0,C>, C, .= 0) (<12,0,D>,     D, .= 0) (<12,0,E>, E, .= 0) (<12,0,F>, F, .= 0) (<12,0,G>,     G, .= 0) (<12,0,H>, 1 + H, .+ 1) 
          (<13,0,A>, A, .= 0) (<13,0,B>, B, .= 0) (<13,0,C>, C, .= 0) (<13,0,D>, 1 + F, .+ 1) (<13,0,E>, E, .= 0) (<13,0,F>, F, .= 0) (<13,0,G>,     G, .= 0) (<13,0,H>,     H, .= 0) 
          (<14,0,A>, A, .= 0) (<14,0,B>, B, .= 0) (<14,0,C>, C, .= 0) (<14,0,D>,     D, .= 0) (<14,0,E>, E, .= 0) (<14,0,F>, F, .= 0) (<14,0,G>,     G, .= 0) (<14,0,H>,     H, .= 0) 
* Step 2: SizeboundsProc WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0.  evalnestedLoopstart(A,B,C,D,E,F,G,H)    -> evalnestedLoopentryin(A,B,C,D,E,F,G,H)   True                         (1,1)
          1.  evalnestedLoopentryin(A,B,C,D,E,F,G,H)  -> evalnestedLoopbb9in(A,B,C,0,E,F,G,H)     [A >= 0 && B >= 0 && C >= 0] (?,1)
          2.  evalnestedLoopentryin(A,B,C,D,E,F,G,H)  -> evalnestedLoopreturnin(A,B,C,D,E,F,G,H)  [0 >= 1 + A]                 (?,1)
          3.  evalnestedLoopentryin(A,B,C,D,E,F,G,H)  -> evalnestedLoopreturnin(A,B,C,D,E,F,G,H)  [0 >= 1 + B]                 (?,1)
          4.  evalnestedLoopentryin(A,B,C,D,E,F,G,H)  -> evalnestedLoopreturnin(A,B,C,D,E,F,G,H)  [0 >= 1 + C]                 (?,1)
          5.  evalnestedLoopbb9in(A,B,C,D,E,F,G,H)    -> evalnestedLoopbb7in(A,B,C,D,0,D,G,H)     [A >= 1 + D]                 (?,1)
          6.  evalnestedLoopbb9in(A,B,C,D,E,F,G,H)    -> evalnestedLoopreturnin(A,B,C,D,E,F,G,H)  [D >= A]                     (?,1)
          7.  evalnestedLoopbb7in(A,B,C,D,E,F,G,H)    -> evalnestedLoopbb4in(A,B,C,D,E,F,G,H)     [B >= 1 + E]                 (?,1)
          8.  evalnestedLoopbb7in(A,B,C,D,E,F,G,H)    -> evalnestedLoopbb8in(A,B,C,D,E,F,G,H)     [E >= B]                     (?,1)
          9.  evalnestedLoopbb4in(A,B,C,D,E,F,G,H)    -> evalnestedLoopbb6in(A,B,C,D,E,F,1 + E,F) True                         (?,1)
          10. evalnestedLoopbb6in(A,B,C,D,E,F,G,H)    -> evalnestedLoopbb5in(A,B,C,D,E,F,G,H)     [C >= 1 + H]                 (?,1)
          11. evalnestedLoopbb6in(A,B,C,D,E,F,G,H)    -> evalnestedLoopbb7in(A,B,C,D,G,H,G,H)     [H >= C]                     (?,1)
          12. evalnestedLoopbb5in(A,B,C,D,E,F,G,H)    -> evalnestedLoopbb6in(A,B,C,D,E,F,G,1 + H) True                         (?,1)
          13. evalnestedLoopbb8in(A,B,C,D,E,F,G,H)    -> evalnestedLoopbb9in(A,B,C,1 + F,E,F,G,H) True                         (?,1)
          14. evalnestedLoopreturnin(A,B,C,D,E,F,G,H) -> evalnestedLoopstop(A,B,C,D,E,F,G,H)      True                         (?,1)
        Signature:
          {(evalnestedLoopbb4in,8)
          ;(evalnestedLoopbb5in,8)
          ;(evalnestedLoopbb6in,8)
          ;(evalnestedLoopbb7in,8)
          ;(evalnestedLoopbb8in,8)
          ;(evalnestedLoopbb9in,8)
          ;(evalnestedLoopentryin,8)
          ;(evalnestedLoopreturnin,8)
          ;(evalnestedLoopstart,8)
          ;(evalnestedLoopstop,8)}
        Flow Graph:
          [0->{1,2,3,4},1->{5,6},2->{14},3->{14},4->{14},5->{7,8},6->{14},7->{9},8->{13},9->{10,11},10->{12},11->{7
          ,8},12->{10,11},13->{5,6},14->{}]
        Sizebounds:
          (< 0,0,A>, ?) (< 0,0,B>, ?) (< 0,0,C>, ?) (< 0,0,D>, ?) (< 0,0,E>, ?) (< 0,0,F>, ?) (< 0,0,G>, ?) (< 0,0,H>, ?) 
          (< 1,0,A>, ?) (< 1,0,B>, ?) (< 1,0,C>, ?) (< 1,0,D>, ?) (< 1,0,E>, ?) (< 1,0,F>, ?) (< 1,0,G>, ?) (< 1,0,H>, ?) 
          (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 2,0,F>, ?) (< 2,0,G>, ?) (< 2,0,H>, ?) 
          (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, ?) (< 3,0,E>, ?) (< 3,0,F>, ?) (< 3,0,G>, ?) (< 3,0,H>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 4,0,F>, ?) (< 4,0,G>, ?) (< 4,0,H>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 5,0,F>, ?) (< 5,0,G>, ?) (< 5,0,H>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, ?) (< 6,0,F>, ?) (< 6,0,G>, ?) (< 6,0,H>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 7,0,F>, ?) (< 7,0,G>, ?) (< 7,0,H>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,G>, ?) (< 8,0,H>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) (< 9,0,G>, ?) (< 9,0,H>, ?) 
          (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,G>, ?) (<10,0,H>, ?) 
          (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,G>, ?) (<11,0,H>, ?) 
          (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,G>, ?) (<12,0,H>, ?) 
          (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,G>, ?) (<13,0,H>, ?) 
          (<14,0,A>, ?) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, ?) (<14,0,F>, ?) (<14,0,G>, ?) (<14,0,H>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) 
          (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, 0) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) 
          (< 2,0,A>, A) (< 2,0,B>, B) (< 2,0,C>, C) (< 2,0,D>, D) (< 2,0,E>, E) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) 
          (< 3,0,A>, A) (< 3,0,B>, B) (< 3,0,C>, C) (< 3,0,D>, D) (< 3,0,E>, E) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) 
          (< 4,0,A>, A) (< 4,0,B>, B) (< 4,0,C>, C) (< 4,0,D>, D) (< 4,0,E>, E) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) 
          (< 5,0,A>, A) (< 5,0,B>, B) (< 5,0,C>, C) (< 5,0,D>, ?) (< 5,0,E>, 0) (< 5,0,F>, ?) (< 5,0,G>, ?) (< 5,0,H>, ?) 
          (< 6,0,A>, A) (< 6,0,B>, B) (< 6,0,C>, C) (< 6,0,D>, ?) (< 6,0,E>, ?) (< 6,0,F>, ?) (< 6,0,G>, ?) (< 6,0,H>, ?) 
          (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, C) (< 7,0,D>, ?) (< 7,0,E>, B) (< 7,0,F>, ?) (< 7,0,G>, ?) (< 7,0,H>, ?) 
          (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, C) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,G>, ?) (< 8,0,H>, ?) 
          (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, C) (< 9,0,D>, ?) (< 9,0,E>, B) (< 9,0,F>, ?) (< 9,0,G>, B) (< 9,0,H>, ?) 
          (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, C) (<10,0,D>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,G>, ?) (<10,0,H>, C) 
          (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, C) (<11,0,D>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,G>, ?) (<11,0,H>, ?) 
          (<12,0,A>, A) (<12,0,B>, B) (<12,0,C>, C) (<12,0,D>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,G>, ?) (<12,0,H>, C) 
          (<13,0,A>, A) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,G>, ?) (<13,0,H>, ?) 
          (<14,0,A>, A) (<14,0,B>, B) (<14,0,C>, C) (<14,0,D>, ?) (<14,0,E>, ?) (<14,0,F>, ?) (<14,0,G>, ?) (<14,0,H>, ?) 
* Step 3: LeafRules WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0.  evalnestedLoopstart(A,B,C,D,E,F,G,H)    -> evalnestedLoopentryin(A,B,C,D,E,F,G,H)   True                         (1,1)
          1.  evalnestedLoopentryin(A,B,C,D,E,F,G,H)  -> evalnestedLoopbb9in(A,B,C,0,E,F,G,H)     [A >= 0 && B >= 0 && C >= 0] (?,1)
          2.  evalnestedLoopentryin(A,B,C,D,E,F,G,H)  -> evalnestedLoopreturnin(A,B,C,D,E,F,G,H)  [0 >= 1 + A]                 (?,1)
          3.  evalnestedLoopentryin(A,B,C,D,E,F,G,H)  -> evalnestedLoopreturnin(A,B,C,D,E,F,G,H)  [0 >= 1 + B]                 (?,1)
          4.  evalnestedLoopentryin(A,B,C,D,E,F,G,H)  -> evalnestedLoopreturnin(A,B,C,D,E,F,G,H)  [0 >= 1 + C]                 (?,1)
          5.  evalnestedLoopbb9in(A,B,C,D,E,F,G,H)    -> evalnestedLoopbb7in(A,B,C,D,0,D,G,H)     [A >= 1 + D]                 (?,1)
          6.  evalnestedLoopbb9in(A,B,C,D,E,F,G,H)    -> evalnestedLoopreturnin(A,B,C,D,E,F,G,H)  [D >= A]                     (?,1)
          7.  evalnestedLoopbb7in(A,B,C,D,E,F,G,H)    -> evalnestedLoopbb4in(A,B,C,D,E,F,G,H)     [B >= 1 + E]                 (?,1)
          8.  evalnestedLoopbb7in(A,B,C,D,E,F,G,H)    -> evalnestedLoopbb8in(A,B,C,D,E,F,G,H)     [E >= B]                     (?,1)
          9.  evalnestedLoopbb4in(A,B,C,D,E,F,G,H)    -> evalnestedLoopbb6in(A,B,C,D,E,F,1 + E,F) True                         (?,1)
          10. evalnestedLoopbb6in(A,B,C,D,E,F,G,H)    -> evalnestedLoopbb5in(A,B,C,D,E,F,G,H)     [C >= 1 + H]                 (?,1)
          11. evalnestedLoopbb6in(A,B,C,D,E,F,G,H)    -> evalnestedLoopbb7in(A,B,C,D,G,H,G,H)     [H >= C]                     (?,1)
          12. evalnestedLoopbb5in(A,B,C,D,E,F,G,H)    -> evalnestedLoopbb6in(A,B,C,D,E,F,G,1 + H) True                         (?,1)
          13. evalnestedLoopbb8in(A,B,C,D,E,F,G,H)    -> evalnestedLoopbb9in(A,B,C,1 + F,E,F,G,H) True                         (?,1)
          14. evalnestedLoopreturnin(A,B,C,D,E,F,G,H) -> evalnestedLoopstop(A,B,C,D,E,F,G,H)      True                         (?,1)
        Signature:
          {(evalnestedLoopbb4in,8)
          ;(evalnestedLoopbb5in,8)
          ;(evalnestedLoopbb6in,8)
          ;(evalnestedLoopbb7in,8)
          ;(evalnestedLoopbb8in,8)
          ;(evalnestedLoopbb9in,8)
          ;(evalnestedLoopentryin,8)
          ;(evalnestedLoopreturnin,8)
          ;(evalnestedLoopstart,8)
          ;(evalnestedLoopstop,8)}
        Flow Graph:
          [0->{1,2,3,4},1->{5,6},2->{14},3->{14},4->{14},5->{7,8},6->{14},7->{9},8->{13},9->{10,11},10->{12},11->{7
          ,8},12->{10,11},13->{5,6},14->{}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) 
          (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, 0) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) 
          (< 2,0,A>, A) (< 2,0,B>, B) (< 2,0,C>, C) (< 2,0,D>, D) (< 2,0,E>, E) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) 
          (< 3,0,A>, A) (< 3,0,B>, B) (< 3,0,C>, C) (< 3,0,D>, D) (< 3,0,E>, E) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) 
          (< 4,0,A>, A) (< 4,0,B>, B) (< 4,0,C>, C) (< 4,0,D>, D) (< 4,0,E>, E) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) 
          (< 5,0,A>, A) (< 5,0,B>, B) (< 5,0,C>, C) (< 5,0,D>, ?) (< 5,0,E>, 0) (< 5,0,F>, ?) (< 5,0,G>, ?) (< 5,0,H>, ?) 
          (< 6,0,A>, A) (< 6,0,B>, B) (< 6,0,C>, C) (< 6,0,D>, ?) (< 6,0,E>, ?) (< 6,0,F>, ?) (< 6,0,G>, ?) (< 6,0,H>, ?) 
          (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, C) (< 7,0,D>, ?) (< 7,0,E>, B) (< 7,0,F>, ?) (< 7,0,G>, ?) (< 7,0,H>, ?) 
          (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, C) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,G>, ?) (< 8,0,H>, ?) 
          (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, C) (< 9,0,D>, ?) (< 9,0,E>, B) (< 9,0,F>, ?) (< 9,0,G>, B) (< 9,0,H>, ?) 
          (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, C) (<10,0,D>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,G>, ?) (<10,0,H>, C) 
          (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, C) (<11,0,D>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,G>, ?) (<11,0,H>, ?) 
          (<12,0,A>, A) (<12,0,B>, B) (<12,0,C>, C) (<12,0,D>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,G>, ?) (<12,0,H>, C) 
          (<13,0,A>, A) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,G>, ?) (<13,0,H>, ?) 
          (<14,0,A>, A) (<14,0,B>, B) (<14,0,C>, C) (<14,0,D>, ?) (<14,0,E>, ?) (<14,0,F>, ?) (<14,0,G>, ?) (<14,0,H>, ?) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [2,3,4,6,14]
* Step 4: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0.  evalnestedLoopstart(A,B,C,D,E,F,G,H)   -> evalnestedLoopentryin(A,B,C,D,E,F,G,H)   True                         (1,1)
          1.  evalnestedLoopentryin(A,B,C,D,E,F,G,H) -> evalnestedLoopbb9in(A,B,C,0,E,F,G,H)     [A >= 0 && B >= 0 && C >= 0] (?,1)
          5.  evalnestedLoopbb9in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb7in(A,B,C,D,0,D,G,H)     [A >= 1 + D]                 (?,1)
          7.  evalnestedLoopbb7in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb4in(A,B,C,D,E,F,G,H)     [B >= 1 + E]                 (?,1)
          8.  evalnestedLoopbb7in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb8in(A,B,C,D,E,F,G,H)     [E >= B]                     (?,1)
          9.  evalnestedLoopbb4in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb6in(A,B,C,D,E,F,1 + E,F) True                         (?,1)
          10. evalnestedLoopbb6in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb5in(A,B,C,D,E,F,G,H)     [C >= 1 + H]                 (?,1)
          11. evalnestedLoopbb6in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb7in(A,B,C,D,G,H,G,H)     [H >= C]                     (?,1)
          12. evalnestedLoopbb5in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb6in(A,B,C,D,E,F,G,1 + H) True                         (?,1)
          13. evalnestedLoopbb8in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb9in(A,B,C,1 + F,E,F,G,H) True                         (?,1)
        Signature:
          {(evalnestedLoopbb4in,8)
          ;(evalnestedLoopbb5in,8)
          ;(evalnestedLoopbb6in,8)
          ;(evalnestedLoopbb7in,8)
          ;(evalnestedLoopbb8in,8)
          ;(evalnestedLoopbb9in,8)
          ;(evalnestedLoopentryin,8)
          ;(evalnestedLoopreturnin,8)
          ;(evalnestedLoopstart,8)
          ;(evalnestedLoopstop,8)}
        Flow Graph:
          [0->{1},1->{5},5->{7,8},7->{9},8->{13},9->{10,11},10->{12},11->{7,8},12->{10,11},13->{5}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) 
          (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, 0) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) 
          (< 5,0,A>, A) (< 5,0,B>, B) (< 5,0,C>, C) (< 5,0,D>, ?) (< 5,0,E>, 0) (< 5,0,F>, ?) (< 5,0,G>, ?) (< 5,0,H>, ?) 
          (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, C) (< 7,0,D>, ?) (< 7,0,E>, B) (< 7,0,F>, ?) (< 7,0,G>, ?) (< 7,0,H>, ?) 
          (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, C) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,G>, ?) (< 8,0,H>, ?) 
          (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, C) (< 9,0,D>, ?) (< 9,0,E>, B) (< 9,0,F>, ?) (< 9,0,G>, B) (< 9,0,H>, ?) 
          (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, C) (<10,0,D>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,G>, ?) (<10,0,H>, C) 
          (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, C) (<11,0,D>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,G>, ?) (<11,0,H>, ?) 
          (<12,0,A>, A) (<12,0,B>, B) (<12,0,C>, C) (<12,0,D>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,G>, ?) (<12,0,H>, C) 
          (<13,0,A>, A) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,G>, ?) (<13,0,H>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
            p(evalnestedLoopbb4in) = 1
            p(evalnestedLoopbb5in) = 1
            p(evalnestedLoopbb6in) = 1
            p(evalnestedLoopbb7in) = 1
            p(evalnestedLoopbb8in) = 1
            p(evalnestedLoopbb9in) = 1
          p(evalnestedLoopentryin) = 2
            p(evalnestedLoopstart) = 2
        
        The following rules are strictly oriented:
                    [A >= 0 && B >= 0 && C >= 0] ==>                                     
          evalnestedLoopentryin(A,B,C,D,E,F,G,H)   = 2                                   
                                                   > 1                                   
                                                   = evalnestedLoopbb9in(A,B,C,0,E,F,G,H)
        
        
        The following rules are weakly oriented:
                                          True ==>                                         
          evalnestedLoopstart(A,B,C,D,E,F,G,H)   = 2                                       
                                                >= 2                                       
                                                 = evalnestedLoopentryin(A,B,C,D,E,F,G,H)  
        
                                  [A >= 1 + D] ==>                                         
          evalnestedLoopbb9in(A,B,C,D,E,F,G,H)   = 1                                       
                                                >= 1                                       
                                                 = evalnestedLoopbb7in(A,B,C,D,0,D,G,H)    
        
                                  [B >= 1 + E] ==>                                         
          evalnestedLoopbb7in(A,B,C,D,E,F,G,H)   = 1                                       
                                                >= 1                                       
                                                 = evalnestedLoopbb4in(A,B,C,D,E,F,G,H)    
        
                                      [E >= B] ==>                                         
          evalnestedLoopbb7in(A,B,C,D,E,F,G,H)   = 1                                       
                                                >= 1                                       
                                                 = evalnestedLoopbb8in(A,B,C,D,E,F,G,H)    
        
                                          True ==>                                         
          evalnestedLoopbb4in(A,B,C,D,E,F,G,H)   = 1                                       
                                                >= 1                                       
                                                 = evalnestedLoopbb6in(A,B,C,D,E,F,1 + E,F)
        
                                  [C >= 1 + H] ==>                                         
          evalnestedLoopbb6in(A,B,C,D,E,F,G,H)   = 1                                       
                                                >= 1                                       
                                                 = evalnestedLoopbb5in(A,B,C,D,E,F,G,H)    
        
                                      [H >= C] ==>                                         
          evalnestedLoopbb6in(A,B,C,D,E,F,G,H)   = 1                                       
                                                >= 1                                       
                                                 = evalnestedLoopbb7in(A,B,C,D,G,H,G,H)    
        
                                          True ==>                                         
          evalnestedLoopbb5in(A,B,C,D,E,F,G,H)   = 1                                       
                                                >= 1                                       
                                                 = evalnestedLoopbb6in(A,B,C,D,E,F,G,1 + H)
        
                                          True ==>                                         
          evalnestedLoopbb8in(A,B,C,D,E,F,G,H)   = 1                                       
                                                >= 1                                       
                                                 = evalnestedLoopbb9in(A,B,C,1 + F,E,F,G,H)
        
        
* Step 5: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0.  evalnestedLoopstart(A,B,C,D,E,F,G,H)   -> evalnestedLoopentryin(A,B,C,D,E,F,G,H)   True                         (1,1)
          1.  evalnestedLoopentryin(A,B,C,D,E,F,G,H) -> evalnestedLoopbb9in(A,B,C,0,E,F,G,H)     [A >= 0 && B >= 0 && C >= 0] (2,1)
          5.  evalnestedLoopbb9in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb7in(A,B,C,D,0,D,G,H)     [A >= 1 + D]                 (?,1)
          7.  evalnestedLoopbb7in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb4in(A,B,C,D,E,F,G,H)     [B >= 1 + E]                 (?,1)
          8.  evalnestedLoopbb7in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb8in(A,B,C,D,E,F,G,H)     [E >= B]                     (?,1)
          9.  evalnestedLoopbb4in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb6in(A,B,C,D,E,F,1 + E,F) True                         (?,1)
          10. evalnestedLoopbb6in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb5in(A,B,C,D,E,F,G,H)     [C >= 1 + H]                 (?,1)
          11. evalnestedLoopbb6in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb7in(A,B,C,D,G,H,G,H)     [H >= C]                     (?,1)
          12. evalnestedLoopbb5in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb6in(A,B,C,D,E,F,G,1 + H) True                         (?,1)
          13. evalnestedLoopbb8in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb9in(A,B,C,1 + F,E,F,G,H) True                         (?,1)
        Signature:
          {(evalnestedLoopbb4in,8)
          ;(evalnestedLoopbb5in,8)
          ;(evalnestedLoopbb6in,8)
          ;(evalnestedLoopbb7in,8)
          ;(evalnestedLoopbb8in,8)
          ;(evalnestedLoopbb9in,8)
          ;(evalnestedLoopentryin,8)
          ;(evalnestedLoopreturnin,8)
          ;(evalnestedLoopstart,8)
          ;(evalnestedLoopstop,8)}
        Flow Graph:
          [0->{1},1->{5},5->{7,8},7->{9},8->{13},9->{10,11},10->{12},11->{7,8},12->{10,11},13->{5}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) 
          (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, 0) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) 
          (< 5,0,A>, A) (< 5,0,B>, B) (< 5,0,C>, C) (< 5,0,D>, ?) (< 5,0,E>, 0) (< 5,0,F>, ?) (< 5,0,G>, ?) (< 5,0,H>, ?) 
          (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, C) (< 7,0,D>, ?) (< 7,0,E>, B) (< 7,0,F>, ?) (< 7,0,G>, ?) (< 7,0,H>, ?) 
          (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, C) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,G>, ?) (< 8,0,H>, ?) 
          (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, C) (< 9,0,D>, ?) (< 9,0,E>, B) (< 9,0,F>, ?) (< 9,0,G>, B) (< 9,0,H>, ?) 
          (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, C) (<10,0,D>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,G>, ?) (<10,0,H>, C) 
          (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, C) (<11,0,D>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,G>, ?) (<11,0,H>, ?) 
          (<12,0,A>, A) (<12,0,B>, B) (<12,0,C>, C) (<12,0,D>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,G>, ?) (<12,0,H>, C) 
          (<13,0,A>, A) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,G>, ?) (<13,0,H>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
            p(evalnestedLoopbb4in) = -1 + x1 + -1*x6
            p(evalnestedLoopbb5in) = -1 + x1 + -1*x8
            p(evalnestedLoopbb6in) = -1 + x1 + -1*x8
            p(evalnestedLoopbb7in) = -1 + x1 + -1*x6
            p(evalnestedLoopbb8in) = -1 + x1 + -1*x6
            p(evalnestedLoopbb9in) = x1 + -1*x4     
          p(evalnestedLoopentryin) = x1             
            p(evalnestedLoopstart) = x1             
        
        The following rules are strictly oriented:
                                  [A >= 1 + D] ==>                                     
          evalnestedLoopbb9in(A,B,C,D,E,F,G,H)   = A + -1*D                            
                                                 > -1 + A + -1*D                       
                                                 = evalnestedLoopbb7in(A,B,C,D,0,D,G,H)
        
        
        The following rules are weakly oriented:
                                            True ==>                                         
            evalnestedLoopstart(A,B,C,D,E,F,G,H)   = A                                       
                                                  >= A                                       
                                                   = evalnestedLoopentryin(A,B,C,D,E,F,G,H)  
        
                    [A >= 0 && B >= 0 && C >= 0] ==>                                         
          evalnestedLoopentryin(A,B,C,D,E,F,G,H)   = A                                       
                                                  >= A                                       
                                                   = evalnestedLoopbb9in(A,B,C,0,E,F,G,H)    
        
                                    [B >= 1 + E] ==>                                         
            evalnestedLoopbb7in(A,B,C,D,E,F,G,H)   = -1 + A + -1*F                           
                                                  >= -1 + A + -1*F                           
                                                   = evalnestedLoopbb4in(A,B,C,D,E,F,G,H)    
        
                                        [E >= B] ==>                                         
            evalnestedLoopbb7in(A,B,C,D,E,F,G,H)   = -1 + A + -1*F                           
                                                  >= -1 + A + -1*F                           
                                                   = evalnestedLoopbb8in(A,B,C,D,E,F,G,H)    
        
                                            True ==>                                         
            evalnestedLoopbb4in(A,B,C,D,E,F,G,H)   = -1 + A + -1*F                           
                                                  >= -1 + A + -1*F                           
                                                   = evalnestedLoopbb6in(A,B,C,D,E,F,1 + E,F)
        
                                    [C >= 1 + H] ==>                                         
            evalnestedLoopbb6in(A,B,C,D,E,F,G,H)   = -1 + A + -1*H                           
                                                  >= -1 + A + -1*H                           
                                                   = evalnestedLoopbb5in(A,B,C,D,E,F,G,H)    
        
                                        [H >= C] ==>                                         
            evalnestedLoopbb6in(A,B,C,D,E,F,G,H)   = -1 + A + -1*H                           
                                                  >= -1 + A + -1*H                           
                                                   = evalnestedLoopbb7in(A,B,C,D,G,H,G,H)    
        
                                            True ==>                                         
            evalnestedLoopbb5in(A,B,C,D,E,F,G,H)   = -1 + A + -1*H                           
                                                  >= -2 + A + -1*H                           
                                                   = evalnestedLoopbb6in(A,B,C,D,E,F,G,1 + H)
        
                                            True ==>                                         
            evalnestedLoopbb8in(A,B,C,D,E,F,G,H)   = -1 + A + -1*F                           
                                                  >= -1 + A + -1*F                           
                                                   = evalnestedLoopbb9in(A,B,C,1 + F,E,F,G,H)
        
        
* Step 6: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0.  evalnestedLoopstart(A,B,C,D,E,F,G,H)   -> evalnestedLoopentryin(A,B,C,D,E,F,G,H)   True                         (1,1)
          1.  evalnestedLoopentryin(A,B,C,D,E,F,G,H) -> evalnestedLoopbb9in(A,B,C,0,E,F,G,H)     [A >= 0 && B >= 0 && C >= 0] (2,1)
          5.  evalnestedLoopbb9in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb7in(A,B,C,D,0,D,G,H)     [A >= 1 + D]                 (A,1)
          7.  evalnestedLoopbb7in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb4in(A,B,C,D,E,F,G,H)     [B >= 1 + E]                 (?,1)
          8.  evalnestedLoopbb7in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb8in(A,B,C,D,E,F,G,H)     [E >= B]                     (?,1)
          9.  evalnestedLoopbb4in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb6in(A,B,C,D,E,F,1 + E,F) True                         (?,1)
          10. evalnestedLoopbb6in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb5in(A,B,C,D,E,F,G,H)     [C >= 1 + H]                 (?,1)
          11. evalnestedLoopbb6in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb7in(A,B,C,D,G,H,G,H)     [H >= C]                     (?,1)
          12. evalnestedLoopbb5in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb6in(A,B,C,D,E,F,G,1 + H) True                         (?,1)
          13. evalnestedLoopbb8in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb9in(A,B,C,1 + F,E,F,G,H) True                         (?,1)
        Signature:
          {(evalnestedLoopbb4in,8)
          ;(evalnestedLoopbb5in,8)
          ;(evalnestedLoopbb6in,8)
          ;(evalnestedLoopbb7in,8)
          ;(evalnestedLoopbb8in,8)
          ;(evalnestedLoopbb9in,8)
          ;(evalnestedLoopentryin,8)
          ;(evalnestedLoopreturnin,8)
          ;(evalnestedLoopstart,8)
          ;(evalnestedLoopstop,8)}
        Flow Graph:
          [0->{1},1->{5},5->{7,8},7->{9},8->{13},9->{10,11},10->{12},11->{7,8},12->{10,11},13->{5}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) 
          (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, 0) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) 
          (< 5,0,A>, A) (< 5,0,B>, B) (< 5,0,C>, C) (< 5,0,D>, ?) (< 5,0,E>, 0) (< 5,0,F>, ?) (< 5,0,G>, ?) (< 5,0,H>, ?) 
          (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, C) (< 7,0,D>, ?) (< 7,0,E>, B) (< 7,0,F>, ?) (< 7,0,G>, ?) (< 7,0,H>, ?) 
          (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, C) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,G>, ?) (< 8,0,H>, ?) 
          (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, C) (< 9,0,D>, ?) (< 9,0,E>, B) (< 9,0,F>, ?) (< 9,0,G>, B) (< 9,0,H>, ?) 
          (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, C) (<10,0,D>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,G>, ?) (<10,0,H>, C) 
          (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, C) (<11,0,D>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,G>, ?) (<11,0,H>, ?) 
          (<12,0,A>, A) (<12,0,B>, B) (<12,0,C>, C) (<12,0,D>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,G>, ?) (<12,0,H>, C) 
          (<13,0,A>, A) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,G>, ?) (<13,0,H>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
            p(evalnestedLoopbb4in) = x3 + -1*x6     
            p(evalnestedLoopbb5in) = -1 + x3 + -1*x8
            p(evalnestedLoopbb6in) = x3 + -1*x8     
            p(evalnestedLoopbb7in) = x3 + -1*x6     
            p(evalnestedLoopbb8in) = x3 + -1*x6     
            p(evalnestedLoopbb9in) = x3 + -1*x4     
          p(evalnestedLoopentryin) = x3             
            p(evalnestedLoopstart) = x3             
        
        The following rules are strictly oriented:
                                  [C >= 1 + H] ==>                                     
          evalnestedLoopbb6in(A,B,C,D,E,F,G,H)   = C + -1*H                            
                                                 > -1 + C + -1*H                       
                                                 = evalnestedLoopbb5in(A,B,C,D,E,F,G,H)
        
        
        The following rules are weakly oriented:
                                            True ==>                                         
            evalnestedLoopstart(A,B,C,D,E,F,G,H)   = C                                       
                                                  >= C                                       
                                                   = evalnestedLoopentryin(A,B,C,D,E,F,G,H)  
        
                    [A >= 0 && B >= 0 && C >= 0] ==>                                         
          evalnestedLoopentryin(A,B,C,D,E,F,G,H)   = C                                       
                                                  >= C                                       
                                                   = evalnestedLoopbb9in(A,B,C,0,E,F,G,H)    
        
                                    [A >= 1 + D] ==>                                         
            evalnestedLoopbb9in(A,B,C,D,E,F,G,H)   = C + -1*D                                
                                                  >= C + -1*D                                
                                                   = evalnestedLoopbb7in(A,B,C,D,0,D,G,H)    
        
                                    [B >= 1 + E] ==>                                         
            evalnestedLoopbb7in(A,B,C,D,E,F,G,H)   = C + -1*F                                
                                                  >= C + -1*F                                
                                                   = evalnestedLoopbb4in(A,B,C,D,E,F,G,H)    
        
                                        [E >= B] ==>                                         
            evalnestedLoopbb7in(A,B,C,D,E,F,G,H)   = C + -1*F                                
                                                  >= C + -1*F                                
                                                   = evalnestedLoopbb8in(A,B,C,D,E,F,G,H)    
        
                                            True ==>                                         
            evalnestedLoopbb4in(A,B,C,D,E,F,G,H)   = C + -1*F                                
                                                  >= C + -1*F                                
                                                   = evalnestedLoopbb6in(A,B,C,D,E,F,1 + E,F)
        
                                        [H >= C] ==>                                         
            evalnestedLoopbb6in(A,B,C,D,E,F,G,H)   = C + -1*H                                
                                                  >= C + -1*H                                
                                                   = evalnestedLoopbb7in(A,B,C,D,G,H,G,H)    
        
                                            True ==>                                         
            evalnestedLoopbb5in(A,B,C,D,E,F,G,H)   = -1 + C + -1*H                           
                                                  >= -1 + C + -1*H                           
                                                   = evalnestedLoopbb6in(A,B,C,D,E,F,G,1 + H)
        
                                            True ==>                                         
            evalnestedLoopbb8in(A,B,C,D,E,F,G,H)   = C + -1*F                                
                                                  >= -1 + C + -1*F                           
                                                   = evalnestedLoopbb9in(A,B,C,1 + F,E,F,G,H)
        
        
* Step 7: KnowledgePropagation WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0.  evalnestedLoopstart(A,B,C,D,E,F,G,H)   -> evalnestedLoopentryin(A,B,C,D,E,F,G,H)   True                         (1,1)
          1.  evalnestedLoopentryin(A,B,C,D,E,F,G,H) -> evalnestedLoopbb9in(A,B,C,0,E,F,G,H)     [A >= 0 && B >= 0 && C >= 0] (2,1)
          5.  evalnestedLoopbb9in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb7in(A,B,C,D,0,D,G,H)     [A >= 1 + D]                 (A,1)
          7.  evalnestedLoopbb7in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb4in(A,B,C,D,E,F,G,H)     [B >= 1 + E]                 (?,1)
          8.  evalnestedLoopbb7in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb8in(A,B,C,D,E,F,G,H)     [E >= B]                     (?,1)
          9.  evalnestedLoopbb4in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb6in(A,B,C,D,E,F,1 + E,F) True                         (?,1)
          10. evalnestedLoopbb6in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb5in(A,B,C,D,E,F,G,H)     [C >= 1 + H]                 (C,1)
          11. evalnestedLoopbb6in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb7in(A,B,C,D,G,H,G,H)     [H >= C]                     (?,1)
          12. evalnestedLoopbb5in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb6in(A,B,C,D,E,F,G,1 + H) True                         (?,1)
          13. evalnestedLoopbb8in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb9in(A,B,C,1 + F,E,F,G,H) True                         (?,1)
        Signature:
          {(evalnestedLoopbb4in,8)
          ;(evalnestedLoopbb5in,8)
          ;(evalnestedLoopbb6in,8)
          ;(evalnestedLoopbb7in,8)
          ;(evalnestedLoopbb8in,8)
          ;(evalnestedLoopbb9in,8)
          ;(evalnestedLoopentryin,8)
          ;(evalnestedLoopreturnin,8)
          ;(evalnestedLoopstart,8)
          ;(evalnestedLoopstop,8)}
        Flow Graph:
          [0->{1},1->{5},5->{7,8},7->{9},8->{13},9->{10,11},10->{12},11->{7,8},12->{10,11},13->{5}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) 
          (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, 0) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) 
          (< 5,0,A>, A) (< 5,0,B>, B) (< 5,0,C>, C) (< 5,0,D>, ?) (< 5,0,E>, 0) (< 5,0,F>, ?) (< 5,0,G>, ?) (< 5,0,H>, ?) 
          (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, C) (< 7,0,D>, ?) (< 7,0,E>, B) (< 7,0,F>, ?) (< 7,0,G>, ?) (< 7,0,H>, ?) 
          (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, C) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,G>, ?) (< 8,0,H>, ?) 
          (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, C) (< 9,0,D>, ?) (< 9,0,E>, B) (< 9,0,F>, ?) (< 9,0,G>, B) (< 9,0,H>, ?) 
          (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, C) (<10,0,D>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,G>, ?) (<10,0,H>, C) 
          (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, C) (<11,0,D>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,G>, ?) (<11,0,H>, ?) 
          (<12,0,A>, A) (<12,0,B>, B) (<12,0,C>, C) (<12,0,D>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,G>, ?) (<12,0,H>, C) 
          (<13,0,A>, A) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,G>, ?) (<13,0,H>, ?) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 8: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0.  evalnestedLoopstart(A,B,C,D,E,F,G,H)   -> evalnestedLoopentryin(A,B,C,D,E,F,G,H)   True                         (1,1)
          1.  evalnestedLoopentryin(A,B,C,D,E,F,G,H) -> evalnestedLoopbb9in(A,B,C,0,E,F,G,H)     [A >= 0 && B >= 0 && C >= 0] (2,1)
          5.  evalnestedLoopbb9in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb7in(A,B,C,D,0,D,G,H)     [A >= 1 + D]                 (A,1)
          7.  evalnestedLoopbb7in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb4in(A,B,C,D,E,F,G,H)     [B >= 1 + E]                 (?,1)
          8.  evalnestedLoopbb7in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb8in(A,B,C,D,E,F,G,H)     [E >= B]                     (?,1)
          9.  evalnestedLoopbb4in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb6in(A,B,C,D,E,F,1 + E,F) True                         (?,1)
          10. evalnestedLoopbb6in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb5in(A,B,C,D,E,F,G,H)     [C >= 1 + H]                 (C,1)
          11. evalnestedLoopbb6in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb7in(A,B,C,D,G,H,G,H)     [H >= C]                     (?,1)
          12. evalnestedLoopbb5in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb6in(A,B,C,D,E,F,G,1 + H) True                         (C,1)
          13. evalnestedLoopbb8in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb9in(A,B,C,1 + F,E,F,G,H) True                         (?,1)
        Signature:
          {(evalnestedLoopbb4in,8)
          ;(evalnestedLoopbb5in,8)
          ;(evalnestedLoopbb6in,8)
          ;(evalnestedLoopbb7in,8)
          ;(evalnestedLoopbb8in,8)
          ;(evalnestedLoopbb9in,8)
          ;(evalnestedLoopentryin,8)
          ;(evalnestedLoopreturnin,8)
          ;(evalnestedLoopstart,8)
          ;(evalnestedLoopstop,8)}
        Flow Graph:
          [0->{1},1->{5},5->{7,8},7->{9},8->{13},9->{10,11},10->{12},11->{7,8},12->{10,11},13->{5}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) 
          (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, 0) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) 
          (< 5,0,A>, A) (< 5,0,B>, B) (< 5,0,C>, C) (< 5,0,D>, ?) (< 5,0,E>, 0) (< 5,0,F>, ?) (< 5,0,G>, ?) (< 5,0,H>, ?) 
          (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, C) (< 7,0,D>, ?) (< 7,0,E>, B) (< 7,0,F>, ?) (< 7,0,G>, ?) (< 7,0,H>, ?) 
          (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, C) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,G>, ?) (< 8,0,H>, ?) 
          (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, C) (< 9,0,D>, ?) (< 9,0,E>, B) (< 9,0,F>, ?) (< 9,0,G>, B) (< 9,0,H>, ?) 
          (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, C) (<10,0,D>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,G>, ?) (<10,0,H>, C) 
          (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, C) (<11,0,D>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,G>, ?) (<11,0,H>, ?) 
          (<12,0,A>, A) (<12,0,B>, B) (<12,0,C>, C) (<12,0,D>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,G>, ?) (<12,0,H>, C) 
          (<13,0,A>, A) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,G>, ?) (<13,0,H>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [13,8,11,9,7,12,10], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalnestedLoopbb4in) = 1
          p(evalnestedLoopbb5in) = 1
          p(evalnestedLoopbb6in) = 1
          p(evalnestedLoopbb7in) = 1
          p(evalnestedLoopbb8in) = 1
          p(evalnestedLoopbb9in) = 0
        
        The following rules are strictly oriented:
                                          True ==>                                         
          evalnestedLoopbb8in(A,B,C,D,E,F,G,H)   = 1                                       
                                                 > 0                                       
                                                 = evalnestedLoopbb9in(A,B,C,1 + F,E,F,G,H)
        
        
        The following rules are weakly oriented:
                                  [B >= 1 + E] ==>                                         
          evalnestedLoopbb7in(A,B,C,D,E,F,G,H)   = 1                                       
                                                >= 1                                       
                                                 = evalnestedLoopbb4in(A,B,C,D,E,F,G,H)    
        
                                      [E >= B] ==>                                         
          evalnestedLoopbb7in(A,B,C,D,E,F,G,H)   = 1                                       
                                                >= 1                                       
                                                 = evalnestedLoopbb8in(A,B,C,D,E,F,G,H)    
        
                                          True ==>                                         
          evalnestedLoopbb4in(A,B,C,D,E,F,G,H)   = 1                                       
                                                >= 1                                       
                                                 = evalnestedLoopbb6in(A,B,C,D,E,F,1 + E,F)
        
                                  [C >= 1 + H] ==>                                         
          evalnestedLoopbb6in(A,B,C,D,E,F,G,H)   = 1                                       
                                                >= 1                                       
                                                 = evalnestedLoopbb5in(A,B,C,D,E,F,G,H)    
        
                                      [H >= C] ==>                                         
          evalnestedLoopbb6in(A,B,C,D,E,F,G,H)   = 1                                       
                                                >= 1                                       
                                                 = evalnestedLoopbb7in(A,B,C,D,G,H,G,H)    
        
                                          True ==>                                         
          evalnestedLoopbb5in(A,B,C,D,E,F,G,H)   = 1                                       
                                                >= 1                                       
                                                 = evalnestedLoopbb6in(A,B,C,D,E,F,G,1 + H)
        
        We use the following global sizebounds:
        (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) 
        (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, 0) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) 
        (< 5,0,A>, A) (< 5,0,B>, B) (< 5,0,C>, C) (< 5,0,D>, ?) (< 5,0,E>, 0) (< 5,0,F>, ?) (< 5,0,G>, ?) (< 5,0,H>, ?) 
        (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, C) (< 7,0,D>, ?) (< 7,0,E>, B) (< 7,0,F>, ?) (< 7,0,G>, ?) (< 7,0,H>, ?) 
        (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, C) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,G>, ?) (< 8,0,H>, ?) 
        (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, C) (< 9,0,D>, ?) (< 9,0,E>, B) (< 9,0,F>, ?) (< 9,0,G>, B) (< 9,0,H>, ?) 
        (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, C) (<10,0,D>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,G>, ?) (<10,0,H>, C) 
        (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, C) (<11,0,D>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,G>, ?) (<11,0,H>, ?) 
        (<12,0,A>, A) (<12,0,B>, B) (<12,0,C>, C) (<12,0,D>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,G>, ?) (<12,0,H>, C) 
        (<13,0,A>, A) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,G>, ?) (<13,0,H>, ?) 
* Step 9: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0.  evalnestedLoopstart(A,B,C,D,E,F,G,H)   -> evalnestedLoopentryin(A,B,C,D,E,F,G,H)   True                         (1,1)
          1.  evalnestedLoopentryin(A,B,C,D,E,F,G,H) -> evalnestedLoopbb9in(A,B,C,0,E,F,G,H)     [A >= 0 && B >= 0 && C >= 0] (2,1)
          5.  evalnestedLoopbb9in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb7in(A,B,C,D,0,D,G,H)     [A >= 1 + D]                 (A,1)
          7.  evalnestedLoopbb7in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb4in(A,B,C,D,E,F,G,H)     [B >= 1 + E]                 (?,1)
          8.  evalnestedLoopbb7in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb8in(A,B,C,D,E,F,G,H)     [E >= B]                     (?,1)
          9.  evalnestedLoopbb4in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb6in(A,B,C,D,E,F,1 + E,F) True                         (?,1)
          10. evalnestedLoopbb6in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb5in(A,B,C,D,E,F,G,H)     [C >= 1 + H]                 (C,1)
          11. evalnestedLoopbb6in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb7in(A,B,C,D,G,H,G,H)     [H >= C]                     (?,1)
          12. evalnestedLoopbb5in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb6in(A,B,C,D,E,F,G,1 + H) True                         (C,1)
          13. evalnestedLoopbb8in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb9in(A,B,C,1 + F,E,F,G,H) True                         (A,1)
        Signature:
          {(evalnestedLoopbb4in,8)
          ;(evalnestedLoopbb5in,8)
          ;(evalnestedLoopbb6in,8)
          ;(evalnestedLoopbb7in,8)
          ;(evalnestedLoopbb8in,8)
          ;(evalnestedLoopbb9in,8)
          ;(evalnestedLoopentryin,8)
          ;(evalnestedLoopreturnin,8)
          ;(evalnestedLoopstart,8)
          ;(evalnestedLoopstop,8)}
        Flow Graph:
          [0->{1},1->{5},5->{7,8},7->{9},8->{13},9->{10,11},10->{12},11->{7,8},12->{10,11},13->{5}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) 
          (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, 0) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) 
          (< 5,0,A>, A) (< 5,0,B>, B) (< 5,0,C>, C) (< 5,0,D>, ?) (< 5,0,E>, 0) (< 5,0,F>, ?) (< 5,0,G>, ?) (< 5,0,H>, ?) 
          (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, C) (< 7,0,D>, ?) (< 7,0,E>, B) (< 7,0,F>, ?) (< 7,0,G>, ?) (< 7,0,H>, ?) 
          (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, C) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,G>, ?) (< 8,0,H>, ?) 
          (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, C) (< 9,0,D>, ?) (< 9,0,E>, B) (< 9,0,F>, ?) (< 9,0,G>, B) (< 9,0,H>, ?) 
          (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, C) (<10,0,D>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,G>, ?) (<10,0,H>, C) 
          (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, C) (<11,0,D>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,G>, ?) (<11,0,H>, ?) 
          (<12,0,A>, A) (<12,0,B>, B) (<12,0,C>, C) (<12,0,D>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,G>, ?) (<12,0,H>, C) 
          (<13,0,A>, A) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,G>, ?) (<13,0,H>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [13,8,11,9,7,12,10], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalnestedLoopbb4in) = 1
          p(evalnestedLoopbb5in) = 1
          p(evalnestedLoopbb6in) = 1
          p(evalnestedLoopbb7in) = 1
          p(evalnestedLoopbb8in) = 0
          p(evalnestedLoopbb9in) = 0
        
        The following rules are strictly oriented:
                                      [E >= B] ==>                                     
          evalnestedLoopbb7in(A,B,C,D,E,F,G,H)   = 1                                   
                                                 > 0                                   
                                                 = evalnestedLoopbb8in(A,B,C,D,E,F,G,H)
        
        
        The following rules are weakly oriented:
                                  [B >= 1 + E] ==>                                         
          evalnestedLoopbb7in(A,B,C,D,E,F,G,H)   = 1                                       
                                                >= 1                                       
                                                 = evalnestedLoopbb4in(A,B,C,D,E,F,G,H)    
        
                                          True ==>                                         
          evalnestedLoopbb4in(A,B,C,D,E,F,G,H)   = 1                                       
                                                >= 1                                       
                                                 = evalnestedLoopbb6in(A,B,C,D,E,F,1 + E,F)
        
                                  [C >= 1 + H] ==>                                         
          evalnestedLoopbb6in(A,B,C,D,E,F,G,H)   = 1                                       
                                                >= 1                                       
                                                 = evalnestedLoopbb5in(A,B,C,D,E,F,G,H)    
        
                                      [H >= C] ==>                                         
          evalnestedLoopbb6in(A,B,C,D,E,F,G,H)   = 1                                       
                                                >= 1                                       
                                                 = evalnestedLoopbb7in(A,B,C,D,G,H,G,H)    
        
                                          True ==>                                         
          evalnestedLoopbb5in(A,B,C,D,E,F,G,H)   = 1                                       
                                                >= 1                                       
                                                 = evalnestedLoopbb6in(A,B,C,D,E,F,G,1 + H)
        
                                          True ==>                                         
          evalnestedLoopbb8in(A,B,C,D,E,F,G,H)   = 0                                       
                                                >= 0                                       
                                                 = evalnestedLoopbb9in(A,B,C,1 + F,E,F,G,H)
        
        We use the following global sizebounds:
        (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) 
        (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, 0) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) 
        (< 5,0,A>, A) (< 5,0,B>, B) (< 5,0,C>, C) (< 5,0,D>, ?) (< 5,0,E>, 0) (< 5,0,F>, ?) (< 5,0,G>, ?) (< 5,0,H>, ?) 
        (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, C) (< 7,0,D>, ?) (< 7,0,E>, B) (< 7,0,F>, ?) (< 7,0,G>, ?) (< 7,0,H>, ?) 
        (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, C) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,G>, ?) (< 8,0,H>, ?) 
        (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, C) (< 9,0,D>, ?) (< 9,0,E>, B) (< 9,0,F>, ?) (< 9,0,G>, B) (< 9,0,H>, ?) 
        (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, C) (<10,0,D>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,G>, ?) (<10,0,H>, C) 
        (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, C) (<11,0,D>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,G>, ?) (<11,0,H>, ?) 
        (<12,0,A>, A) (<12,0,B>, B) (<12,0,C>, C) (<12,0,D>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,G>, ?) (<12,0,H>, C) 
        (<13,0,A>, A) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,G>, ?) (<13,0,H>, ?) 
* Step 10: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0.  evalnestedLoopstart(A,B,C,D,E,F,G,H)   -> evalnestedLoopentryin(A,B,C,D,E,F,G,H)   True                         (1,1)
          1.  evalnestedLoopentryin(A,B,C,D,E,F,G,H) -> evalnestedLoopbb9in(A,B,C,0,E,F,G,H)     [A >= 0 && B >= 0 && C >= 0] (2,1)
          5.  evalnestedLoopbb9in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb7in(A,B,C,D,0,D,G,H)     [A >= 1 + D]                 (A,1)
          7.  evalnestedLoopbb7in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb4in(A,B,C,D,E,F,G,H)     [B >= 1 + E]                 (?,1)
          8.  evalnestedLoopbb7in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb8in(A,B,C,D,E,F,G,H)     [E >= B]                     (A,1)
          9.  evalnestedLoopbb4in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb6in(A,B,C,D,E,F,1 + E,F) True                         (?,1)
          10. evalnestedLoopbb6in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb5in(A,B,C,D,E,F,G,H)     [C >= 1 + H]                 (C,1)
          11. evalnestedLoopbb6in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb7in(A,B,C,D,G,H,G,H)     [H >= C]                     (?,1)
          12. evalnestedLoopbb5in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb6in(A,B,C,D,E,F,G,1 + H) True                         (C,1)
          13. evalnestedLoopbb8in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb9in(A,B,C,1 + F,E,F,G,H) True                         (A,1)
        Signature:
          {(evalnestedLoopbb4in,8)
          ;(evalnestedLoopbb5in,8)
          ;(evalnestedLoopbb6in,8)
          ;(evalnestedLoopbb7in,8)
          ;(evalnestedLoopbb8in,8)
          ;(evalnestedLoopbb9in,8)
          ;(evalnestedLoopentryin,8)
          ;(evalnestedLoopreturnin,8)
          ;(evalnestedLoopstart,8)
          ;(evalnestedLoopstop,8)}
        Flow Graph:
          [0->{1},1->{5},5->{7,8},7->{9},8->{13},9->{10,11},10->{12},11->{7,8},12->{10,11},13->{5}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) 
          (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, 0) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) 
          (< 5,0,A>, A) (< 5,0,B>, B) (< 5,0,C>, C) (< 5,0,D>, ?) (< 5,0,E>, 0) (< 5,0,F>, ?) (< 5,0,G>, ?) (< 5,0,H>, ?) 
          (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, C) (< 7,0,D>, ?) (< 7,0,E>, B) (< 7,0,F>, ?) (< 7,0,G>, ?) (< 7,0,H>, ?) 
          (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, C) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,G>, ?) (< 8,0,H>, ?) 
          (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, C) (< 9,0,D>, ?) (< 9,0,E>, B) (< 9,0,F>, ?) (< 9,0,G>, B) (< 9,0,H>, ?) 
          (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, C) (<10,0,D>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,G>, ?) (<10,0,H>, C) 
          (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, C) (<11,0,D>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,G>, ?) (<11,0,H>, ?) 
          (<12,0,A>, A) (<12,0,B>, B) (<12,0,C>, C) (<12,0,D>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,G>, ?) (<12,0,H>, C) 
          (<13,0,A>, A) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,G>, ?) (<13,0,H>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [5,8,11,9,7,12,10], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalnestedLoopbb4in) = x2 + -1*x5    
          p(evalnestedLoopbb5in) = 1 + x2 + -1*x7
          p(evalnestedLoopbb6in) = 1 + x2 + -1*x7
          p(evalnestedLoopbb7in) = 1 + x2 + -1*x5
          p(evalnestedLoopbb8in) = 1 + x2 + -1*x5
          p(evalnestedLoopbb9in) = 1 + x2        
        
        The following rules are strictly oriented:
                                  [B >= 1 + E] ==>                                     
          evalnestedLoopbb7in(A,B,C,D,E,F,G,H)   = 1 + B + -1*E                        
                                                 > B + -1*E                            
                                                 = evalnestedLoopbb4in(A,B,C,D,E,F,G,H)
        
        
        The following rules are weakly oriented:
                                  [A >= 1 + D] ==>                                         
          evalnestedLoopbb9in(A,B,C,D,E,F,G,H)   = 1 + B                                   
                                                >= 1 + B                                   
                                                 = evalnestedLoopbb7in(A,B,C,D,0,D,G,H)    
        
                                      [E >= B] ==>                                         
          evalnestedLoopbb7in(A,B,C,D,E,F,G,H)   = 1 + B + -1*E                            
                                                >= 1 + B + -1*E                            
                                                 = evalnestedLoopbb8in(A,B,C,D,E,F,G,H)    
        
                                          True ==>                                         
          evalnestedLoopbb4in(A,B,C,D,E,F,G,H)   = B + -1*E                                
                                                >= B + -1*E                                
                                                 = evalnestedLoopbb6in(A,B,C,D,E,F,1 + E,F)
        
                                  [C >= 1 + H] ==>                                         
          evalnestedLoopbb6in(A,B,C,D,E,F,G,H)   = 1 + B + -1*G                            
                                                >= 1 + B + -1*G                            
                                                 = evalnestedLoopbb5in(A,B,C,D,E,F,G,H)    
        
                                      [H >= C] ==>                                         
          evalnestedLoopbb6in(A,B,C,D,E,F,G,H)   = 1 + B + -1*G                            
                                                >= 1 + B + -1*G                            
                                                 = evalnestedLoopbb7in(A,B,C,D,G,H,G,H)    
        
                                          True ==>                                         
          evalnestedLoopbb5in(A,B,C,D,E,F,G,H)   = 1 + B + -1*G                            
                                                >= 1 + B + -1*G                            
                                                 = evalnestedLoopbb6in(A,B,C,D,E,F,G,1 + H)
        
        We use the following global sizebounds:
        (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) 
        (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, 0) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) 
        (< 5,0,A>, A) (< 5,0,B>, B) (< 5,0,C>, C) (< 5,0,D>, ?) (< 5,0,E>, 0) (< 5,0,F>, ?) (< 5,0,G>, ?) (< 5,0,H>, ?) 
        (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, C) (< 7,0,D>, ?) (< 7,0,E>, B) (< 7,0,F>, ?) (< 7,0,G>, ?) (< 7,0,H>, ?) 
        (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, C) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,G>, ?) (< 8,0,H>, ?) 
        (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, C) (< 9,0,D>, ?) (< 9,0,E>, B) (< 9,0,F>, ?) (< 9,0,G>, B) (< 9,0,H>, ?) 
        (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, C) (<10,0,D>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,G>, ?) (<10,0,H>, C) 
        (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, C) (<11,0,D>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,G>, ?) (<11,0,H>, ?) 
        (<12,0,A>, A) (<12,0,B>, B) (<12,0,C>, C) (<12,0,D>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,G>, ?) (<12,0,H>, C) 
        (<13,0,A>, A) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,G>, ?) (<13,0,H>, ?) 
* Step 11: KnowledgePropagation WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0.  evalnestedLoopstart(A,B,C,D,E,F,G,H)   -> evalnestedLoopentryin(A,B,C,D,E,F,G,H)   True                         (1,1)                
          1.  evalnestedLoopentryin(A,B,C,D,E,F,G,H) -> evalnestedLoopbb9in(A,B,C,0,E,F,G,H)     [A >= 0 && B >= 0 && C >= 0] (2,1)                
          5.  evalnestedLoopbb9in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb7in(A,B,C,D,0,D,G,H)     [A >= 1 + D]                 (A,1)                
          7.  evalnestedLoopbb7in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb4in(A,B,C,D,E,F,G,H)     [B >= 1 + E]                 (2 + A + A*B + 2*B,1)
          8.  evalnestedLoopbb7in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb8in(A,B,C,D,E,F,G,H)     [E >= B]                     (A,1)                
          9.  evalnestedLoopbb4in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb6in(A,B,C,D,E,F,1 + E,F) True                         (?,1)                
          10. evalnestedLoopbb6in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb5in(A,B,C,D,E,F,G,H)     [C >= 1 + H]                 (C,1)                
          11. evalnestedLoopbb6in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb7in(A,B,C,D,G,H,G,H)     [H >= C]                     (?,1)                
          12. evalnestedLoopbb5in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb6in(A,B,C,D,E,F,G,1 + H) True                         (C,1)                
          13. evalnestedLoopbb8in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb9in(A,B,C,1 + F,E,F,G,H) True                         (A,1)                
        Signature:
          {(evalnestedLoopbb4in,8)
          ;(evalnestedLoopbb5in,8)
          ;(evalnestedLoopbb6in,8)
          ;(evalnestedLoopbb7in,8)
          ;(evalnestedLoopbb8in,8)
          ;(evalnestedLoopbb9in,8)
          ;(evalnestedLoopentryin,8)
          ;(evalnestedLoopreturnin,8)
          ;(evalnestedLoopstart,8)
          ;(evalnestedLoopstop,8)}
        Flow Graph:
          [0->{1},1->{5},5->{7,8},7->{9},8->{13},9->{10,11},10->{12},11->{7,8},12->{10,11},13->{5}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) 
          (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, 0) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) 
          (< 5,0,A>, A) (< 5,0,B>, B) (< 5,0,C>, C) (< 5,0,D>, ?) (< 5,0,E>, 0) (< 5,0,F>, ?) (< 5,0,G>, ?) (< 5,0,H>, ?) 
          (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, C) (< 7,0,D>, ?) (< 7,0,E>, B) (< 7,0,F>, ?) (< 7,0,G>, ?) (< 7,0,H>, ?) 
          (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, C) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,G>, ?) (< 8,0,H>, ?) 
          (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, C) (< 9,0,D>, ?) (< 9,0,E>, B) (< 9,0,F>, ?) (< 9,0,G>, B) (< 9,0,H>, ?) 
          (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, C) (<10,0,D>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,G>, ?) (<10,0,H>, C) 
          (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, C) (<11,0,D>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,G>, ?) (<11,0,H>, ?) 
          (<12,0,A>, A) (<12,0,B>, B) (<12,0,C>, C) (<12,0,D>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,G>, ?) (<12,0,H>, C) 
          (<13,0,A>, A) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,G>, ?) (<13,0,H>, ?) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 12: LocalSizeboundsProc WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0.  evalnestedLoopstart(A,B,C,D,E,F,G,H)   -> evalnestedLoopentryin(A,B,C,D,E,F,G,H)   True                         (1,1)                    
          1.  evalnestedLoopentryin(A,B,C,D,E,F,G,H) -> evalnestedLoopbb9in(A,B,C,0,E,F,G,H)     [A >= 0 && B >= 0 && C >= 0] (2,1)                    
          5.  evalnestedLoopbb9in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb7in(A,B,C,D,0,D,G,H)     [A >= 1 + D]                 (A,1)                    
          7.  evalnestedLoopbb7in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb4in(A,B,C,D,E,F,G,H)     [B >= 1 + E]                 (2 + A + A*B + 2*B,1)    
          8.  evalnestedLoopbb7in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb8in(A,B,C,D,E,F,G,H)     [E >= B]                     (A,1)                    
          9.  evalnestedLoopbb4in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb6in(A,B,C,D,E,F,1 + E,F) True                         (2 + A + A*B + 2*B,1)    
          10. evalnestedLoopbb6in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb5in(A,B,C,D,E,F,G,H)     [C >= 1 + H]                 (C,1)                    
          11. evalnestedLoopbb6in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb7in(A,B,C,D,G,H,G,H)     [H >= C]                     (2 + A + A*B + 2*B + C,1)
          12. evalnestedLoopbb5in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb6in(A,B,C,D,E,F,G,1 + H) True                         (C,1)                    
          13. evalnestedLoopbb8in(A,B,C,D,E,F,G,H)   -> evalnestedLoopbb9in(A,B,C,1 + F,E,F,G,H) True                         (A,1)                    
        Signature:
          {(evalnestedLoopbb4in,8)
          ;(evalnestedLoopbb5in,8)
          ;(evalnestedLoopbb6in,8)
          ;(evalnestedLoopbb7in,8)
          ;(evalnestedLoopbb8in,8)
          ;(evalnestedLoopbb9in,8)
          ;(evalnestedLoopentryin,8)
          ;(evalnestedLoopreturnin,8)
          ;(evalnestedLoopstart,8)
          ;(evalnestedLoopstop,8)}
        Flow Graph:
          [0->{1},1->{5},5->{7,8},7->{9},8->{13},9->{10,11},10->{12},11->{7,8},12->{10,11},13->{5}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) 
          (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, 0) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) 
          (< 5,0,A>, A) (< 5,0,B>, B) (< 5,0,C>, C) (< 5,0,D>, ?) (< 5,0,E>, 0) (< 5,0,F>, ?) (< 5,0,G>, ?) (< 5,0,H>, ?) 
          (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, C) (< 7,0,D>, ?) (< 7,0,E>, B) (< 7,0,F>, ?) (< 7,0,G>, ?) (< 7,0,H>, ?) 
          (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, C) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,G>, ?) (< 8,0,H>, ?) 
          (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, C) (< 9,0,D>, ?) (< 9,0,E>, B) (< 9,0,F>, ?) (< 9,0,G>, B) (< 9,0,H>, ?) 
          (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, C) (<10,0,D>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,G>, ?) (<10,0,H>, C) 
          (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, C) (<11,0,D>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,G>, ?) (<11,0,H>, ?) 
          (<12,0,A>, A) (<12,0,B>, B) (<12,0,C>, C) (<12,0,D>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,G>, ?) (<12,0,H>, C) 
          (<13,0,A>, A) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,G>, ?) (<13,0,H>, ?) 
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        The problem is already solved.

WORST_CASE(?,O(n^2))