WORST_CASE(?,O(n^1))
* Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. f0(A,B) -> f1(A,B)        [A >= 1]           (1,1)
          1. f1(A,B) -> f1(A,-1*A + B) [A >= 1 && B >= 0] (?,1)
        Signature:
          {(f0,2);(f1,2)}
        Flow Graph:
          [0->{1},1->{1}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (<0,0,A>, A, .= 0) (<0,0,B>,     B, .= 0) 
          (<1,0,A>, A, .= 0) (<1,0,B>, A + B, .* 0) 
* Step 2: SizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. f0(A,B) -> f1(A,B)        [A >= 1]           (1,1)
          1. f1(A,B) -> f1(A,-1*A + B) [A >= 1 && B >= 0] (?,1)
        Signature:
          {(f0,2);(f1,2)}
        Flow Graph:
          [0->{1},1->{1}]
        Sizebounds:
          (<0,0,A>, ?) (<0,0,B>, ?) 
          (<1,0,A>, ?) (<1,0,B>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (<0,0,A>, A) (<0,0,B>, B) 
          (<1,0,A>, A) (<1,0,B>, ?) 
* Step 3: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. f0(A,B) -> f1(A,B)        [A >= 1]           (1,1)
          1. f1(A,B) -> f1(A,-1*A + B) [A >= 1 && B >= 0] (?,1)
        Signature:
          {(f0,2);(f1,2)}
        Flow Graph:
          [0->{1},1->{1}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>, B) 
          (<1,0,A>, A) (<1,0,B>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f0) = 1 + x2
          p(f1) = 1 + x2
        
        The following rules are strictly oriented:
        [A >= 1 && B >= 0] ==>               
                   f1(A,B)   = 1 + B         
                             > 1 + -1*A + B  
                             = f1(A,-1*A + B)
        
        
        The following rules are weakly oriented:
         [A >= 1] ==>        
          f0(A,B)   = 1 + B  
                   >= 1 + B  
                    = f1(A,B)
        
        
* Step 4: KnowledgePropagation WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. f0(A,B) -> f1(A,B)        [A >= 1]           (1,1)    
          1. f1(A,B) -> f1(A,-1*A + B) [A >= 1 && B >= 0] (1 + B,1)
        Signature:
          {(f0,2);(f1,2)}
        Flow Graph:
          [0->{1},1->{1}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>, B) 
          (<1,0,A>, A) (<1,0,B>, ?) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        The problem is already solved.

WORST_CASE(?,O(n^1))