WORST_CASE(?,O(1))
* Step 1: RestrictVarsProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f11(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q) -> f14(A,0,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q)             [9 >= A]               (?,1)
          1. f33(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q) -> f36(A,B,C,0,E,F,G,H,I,J,K,L,M,N,O,P,Q)             [9 >= C]               (?,1)
          2. f36(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q) -> f36(A,B,C,1 + D,E + S,1 + F,G,H,I,J,K,L,M,N,O,P,Q) [9 >= D && 0 >= 1 + R] (?,1)
          3. f36(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q) -> f36(A,B,C,1 + D,E,F,G + S,1 + H,I,J,K,L,M,N,O,P,Q) [9 >= D]               (?,1)
          4. f36(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q) -> f33(A,B,1 + C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q)         [D >= 10]              (?,1)
          5. f33(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q) -> f58(A,B,C,D,E,F,G,H,E,F,G,H,1500,S,O,P,Q)          [C >= 10]              (?,1)
          6. f14(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q) -> f14(A,1 + B,C,D,E,F,G,H,I,J,K,L,M,N,S,S,Q)         [9 >= B]               (?,1)
          7. f14(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q) -> f11(1 + A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q)         [B >= 10]              (?,1)
          8. f11(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q) -> f33(A,B,0,D,0,0,0,0,I,J,K,L,M,N,O,P,1000)          [A >= 10]              (?,1)
          9. f0(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q)  -> f11(0,B,C,D,E,F,G,H,I,J,K,L,M,N,0,P,Q)             True                   (1,1)
        Signature:
          {(f0,17);(f11,17);(f14,17);(f33,17);(f36,17);(f58,17)}
        Flow Graph:
          [0->{6,7},1->{2,3,4},2->{2,3,4},3->{2,3,4},4->{1,5},5->{},6->{6,7},7->{0,8},8->{1,5},9->{0,8}]
        
    + Applied Processor:
        RestrictVarsProcessor
    + Details:
        We removed the arguments [I,J,K,L,M,N,O,P,Q] .
* Step 2: LocalSizeboundsProc WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f11(A,B,C,D,E,F,G,H) -> f14(A,0,C,D,E,F,G,H)             [9 >= A]               (?,1)
          1. f33(A,B,C,D,E,F,G,H) -> f36(A,B,C,0,E,F,G,H)             [9 >= C]               (?,1)
          2. f36(A,B,C,D,E,F,G,H) -> f36(A,B,C,1 + D,E + S,1 + F,G,H) [9 >= D && 0 >= 1 + R] (?,1)
          3. f36(A,B,C,D,E,F,G,H) -> f36(A,B,C,1 + D,E,F,G + S,1 + H) [9 >= D]               (?,1)
          4. f36(A,B,C,D,E,F,G,H) -> f33(A,B,1 + C,D,E,F,G,H)         [D >= 10]              (?,1)
          5. f33(A,B,C,D,E,F,G,H) -> f58(A,B,C,D,E,F,G,H)             [C >= 10]              (?,1)
          6. f14(A,B,C,D,E,F,G,H) -> f14(A,1 + B,C,D,E,F,G,H)         [9 >= B]               (?,1)
          7. f14(A,B,C,D,E,F,G,H) -> f11(1 + A,B,C,D,E,F,G,H)         [B >= 10]              (?,1)
          8. f11(A,B,C,D,E,F,G,H) -> f33(A,B,0,D,0,0,0,0)             [A >= 10]              (?,1)
          9. f0(A,B,C,D,E,F,G,H)  -> f11(0,B,C,D,E,F,G,H)             True                   (1,1)
        Signature:
          {(f0,8);(f11,8);(f14,8);(f33,8);(f36,8);(f58,8)}
        Flow Graph:
          [0->{6,7},1->{2,3,4},2->{2,3,4},3->{2,3,4},4->{1,5},5->{},6->{6,7},7->{0,8},8->{1,5},9->{0,8}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (<0,0,A>,     A, .= 0) (<0,0,B>,     0, .= 0) (<0,0,C>,     C, .= 0) (<0,0,D>,     D, .= 0) (<0,0,E>, E, .= 0) (<0,0,F>,     F, .= 0) (<0,0,G>, G, .= 0) (<0,0,H>,     H, .= 0) 
          (<1,0,A>,     A, .= 0) (<1,0,B>,     B, .= 0) (<1,0,C>,     C, .= 0) (<1,0,D>,     0, .= 0) (<1,0,E>, E, .= 0) (<1,0,F>,     F, .= 0) (<1,0,G>, G, .= 0) (<1,0,H>,     H, .= 0) 
          (<2,0,A>,     A, .= 0) (<2,0,B>,     B, .= 0) (<2,0,C>,     C, .= 0) (<2,0,D>, 1 + D, .+ 1) (<2,0,E>, ?,   .?) (<2,0,F>, 1 + F, .+ 1) (<2,0,G>, G, .= 0) (<2,0,H>,     H, .= 0) 
          (<3,0,A>,     A, .= 0) (<3,0,B>,     B, .= 0) (<3,0,C>,     C, .= 0) (<3,0,D>, 1 + D, .+ 1) (<3,0,E>, E, .= 0) (<3,0,F>,     F, .= 0) (<3,0,G>, ?,   .?) (<3,0,H>, 1 + H, .+ 1) 
          (<4,0,A>,     A, .= 0) (<4,0,B>,     B, .= 0) (<4,0,C>, 1 + C, .+ 1) (<4,0,D>,     D, .= 0) (<4,0,E>, E, .= 0) (<4,0,F>,     F, .= 0) (<4,0,G>, G, .= 0) (<4,0,H>,     H, .= 0) 
          (<5,0,A>,     A, .= 0) (<5,0,B>,     B, .= 0) (<5,0,C>,     C, .= 0) (<5,0,D>,     D, .= 0) (<5,0,E>, E, .= 0) (<5,0,F>,     F, .= 0) (<5,0,G>, G, .= 0) (<5,0,H>,     H, .= 0) 
          (<6,0,A>,     A, .= 0) (<6,0,B>, 1 + B, .+ 1) (<6,0,C>,     C, .= 0) (<6,0,D>,     D, .= 0) (<6,0,E>, E, .= 0) (<6,0,F>,     F, .= 0) (<6,0,G>, G, .= 0) (<6,0,H>,     H, .= 0) 
          (<7,0,A>, 1 + A, .+ 1) (<7,0,B>,     B, .= 0) (<7,0,C>,     C, .= 0) (<7,0,D>,     D, .= 0) (<7,0,E>, E, .= 0) (<7,0,F>,     F, .= 0) (<7,0,G>, G, .= 0) (<7,0,H>,     H, .= 0) 
          (<8,0,A>,     A, .= 0) (<8,0,B>,     B, .= 0) (<8,0,C>,     0, .= 0) (<8,0,D>,     D, .= 0) (<8,0,E>, 0, .= 0) (<8,0,F>,     0, .= 0) (<8,0,G>, 0, .= 0) (<8,0,H>,     0, .= 0) 
          (<9,0,A>,     0, .= 0) (<9,0,B>,     B, .= 0) (<9,0,C>,     C, .= 0) (<9,0,D>,     D, .= 0) (<9,0,E>, E, .= 0) (<9,0,F>,     F, .= 0) (<9,0,G>, G, .= 0) (<9,0,H>,     H, .= 0) 
* Step 3: SizeboundsProc WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f11(A,B,C,D,E,F,G,H) -> f14(A,0,C,D,E,F,G,H)             [9 >= A]               (?,1)
          1. f33(A,B,C,D,E,F,G,H) -> f36(A,B,C,0,E,F,G,H)             [9 >= C]               (?,1)
          2. f36(A,B,C,D,E,F,G,H) -> f36(A,B,C,1 + D,E + S,1 + F,G,H) [9 >= D && 0 >= 1 + R] (?,1)
          3. f36(A,B,C,D,E,F,G,H) -> f36(A,B,C,1 + D,E,F,G + S,1 + H) [9 >= D]               (?,1)
          4. f36(A,B,C,D,E,F,G,H) -> f33(A,B,1 + C,D,E,F,G,H)         [D >= 10]              (?,1)
          5. f33(A,B,C,D,E,F,G,H) -> f58(A,B,C,D,E,F,G,H)             [C >= 10]              (?,1)
          6. f14(A,B,C,D,E,F,G,H) -> f14(A,1 + B,C,D,E,F,G,H)         [9 >= B]               (?,1)
          7. f14(A,B,C,D,E,F,G,H) -> f11(1 + A,B,C,D,E,F,G,H)         [B >= 10]              (?,1)
          8. f11(A,B,C,D,E,F,G,H) -> f33(A,B,0,D,0,0,0,0)             [A >= 10]              (?,1)
          9. f0(A,B,C,D,E,F,G,H)  -> f11(0,B,C,D,E,F,G,H)             True                   (1,1)
        Signature:
          {(f0,8);(f11,8);(f14,8);(f33,8);(f36,8);(f58,8)}
        Flow Graph:
          [0->{6,7},1->{2,3,4},2->{2,3,4},3->{2,3,4},4->{1,5},5->{},6->{6,7},7->{0,8},8->{1,5},9->{0,8}]
        Sizebounds:
          (<0,0,A>, ?) (<0,0,B>, ?) (<0,0,C>, ?) (<0,0,D>, ?) (<0,0,E>, ?) (<0,0,F>, ?) (<0,0,G>, ?) (<0,0,H>, ?) 
          (<1,0,A>, ?) (<1,0,B>, ?) (<1,0,C>, ?) (<1,0,D>, ?) (<1,0,E>, ?) (<1,0,F>, ?) (<1,0,G>, ?) (<1,0,H>, ?) 
          (<2,0,A>, ?) (<2,0,B>, ?) (<2,0,C>, ?) (<2,0,D>, ?) (<2,0,E>, ?) (<2,0,F>, ?) (<2,0,G>, ?) (<2,0,H>, ?) 
          (<3,0,A>, ?) (<3,0,B>, ?) (<3,0,C>, ?) (<3,0,D>, ?) (<3,0,E>, ?) (<3,0,F>, ?) (<3,0,G>, ?) (<3,0,H>, ?) 
          (<4,0,A>, ?) (<4,0,B>, ?) (<4,0,C>, ?) (<4,0,D>, ?) (<4,0,E>, ?) (<4,0,F>, ?) (<4,0,G>, ?) (<4,0,H>, ?) 
          (<5,0,A>, ?) (<5,0,B>, ?) (<5,0,C>, ?) (<5,0,D>, ?) (<5,0,E>, ?) (<5,0,F>, ?) (<5,0,G>, ?) (<5,0,H>, ?) 
          (<6,0,A>, ?) (<6,0,B>, ?) (<6,0,C>, ?) (<6,0,D>, ?) (<6,0,E>, ?) (<6,0,F>, ?) (<6,0,G>, ?) (<6,0,H>, ?) 
          (<7,0,A>, ?) (<7,0,B>, ?) (<7,0,C>, ?) (<7,0,D>, ?) (<7,0,E>, ?) (<7,0,F>, ?) (<7,0,G>, ?) (<7,0,H>, ?) 
          (<8,0,A>, ?) (<8,0,B>, ?) (<8,0,C>, ?) (<8,0,D>, ?) (<8,0,E>, ?) (<8,0,F>, ?) (<8,0,G>, ?) (<8,0,H>, ?) 
          (<9,0,A>, ?) (<9,0,B>, ?) (<9,0,C>, ?) (<9,0,D>, ?) (<9,0,E>, ?) (<9,0,F>, ?) (<9,0,G>, ?) (<9,0,H>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (<0,0,A>, 9) (<0,0,B>,      0) (<0,0,C>, C) (<0,0,D>,      D) (<0,0,E>, E) (<0,0,F>, F) (<0,0,G>, G) (<0,0,H>, H) 
          (<1,0,A>, ?) (<1,0,B>,      ?) (<1,0,C>, 9) (<1,0,D>,      0) (<1,0,E>, ?) (<1,0,F>, ?) (<1,0,G>, ?) (<1,0,H>, ?) 
          (<2,0,A>, ?) (<2,0,B>,      ?) (<2,0,C>, ?) (<2,0,D>,     10) (<2,0,E>, ?) (<2,0,F>, ?) (<2,0,G>, ?) (<2,0,H>, ?) 
          (<3,0,A>, ?) (<3,0,B>,      ?) (<3,0,C>, ?) (<3,0,D>,     10) (<3,0,E>, ?) (<3,0,F>, ?) (<3,0,G>, ?) (<3,0,H>, ?) 
          (<4,0,A>, ?) (<4,0,B>,      ?) (<4,0,C>, ?) (<4,0,D>,     10) (<4,0,E>, ?) (<4,0,F>, ?) (<4,0,G>, ?) (<4,0,H>, ?) 
          (<5,0,A>, ?) (<5,0,B>,      ?) (<5,0,C>, ?) (<5,0,D>, 10 + D) (<5,0,E>, ?) (<5,0,F>, ?) (<5,0,G>, ?) (<5,0,H>, ?) 
          (<6,0,A>, 9) (<6,0,B>,     10) (<6,0,C>, C) (<6,0,D>,      D) (<6,0,E>, E) (<6,0,F>, F) (<6,0,G>, G) (<6,0,H>, H) 
          (<7,0,A>, 9) (<7,0,B>,     10) (<7,0,C>, C) (<7,0,D>,      D) (<7,0,E>, E) (<7,0,F>, F) (<7,0,G>, G) (<7,0,H>, H) 
          (<8,0,A>, 9) (<8,0,B>, 10 + B) (<8,0,C>, 0) (<8,0,D>,      D) (<8,0,E>, 0) (<8,0,F>, 0) (<8,0,G>, 0) (<8,0,H>, 0) 
          (<9,0,A>, 0) (<9,0,B>,      B) (<9,0,C>, C) (<9,0,D>,      D) (<9,0,E>, E) (<9,0,F>, F) (<9,0,G>, G) (<9,0,H>, H) 
* Step 4: UnsatPaths WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f11(A,B,C,D,E,F,G,H) -> f14(A,0,C,D,E,F,G,H)             [9 >= A]               (?,1)
          1. f33(A,B,C,D,E,F,G,H) -> f36(A,B,C,0,E,F,G,H)             [9 >= C]               (?,1)
          2. f36(A,B,C,D,E,F,G,H) -> f36(A,B,C,1 + D,E + S,1 + F,G,H) [9 >= D && 0 >= 1 + R] (?,1)
          3. f36(A,B,C,D,E,F,G,H) -> f36(A,B,C,1 + D,E,F,G + S,1 + H) [9 >= D]               (?,1)
          4. f36(A,B,C,D,E,F,G,H) -> f33(A,B,1 + C,D,E,F,G,H)         [D >= 10]              (?,1)
          5. f33(A,B,C,D,E,F,G,H) -> f58(A,B,C,D,E,F,G,H)             [C >= 10]              (?,1)
          6. f14(A,B,C,D,E,F,G,H) -> f14(A,1 + B,C,D,E,F,G,H)         [9 >= B]               (?,1)
          7. f14(A,B,C,D,E,F,G,H) -> f11(1 + A,B,C,D,E,F,G,H)         [B >= 10]              (?,1)
          8. f11(A,B,C,D,E,F,G,H) -> f33(A,B,0,D,0,0,0,0)             [A >= 10]              (?,1)
          9. f0(A,B,C,D,E,F,G,H)  -> f11(0,B,C,D,E,F,G,H)             True                   (1,1)
        Signature:
          {(f0,8);(f11,8);(f14,8);(f33,8);(f36,8);(f58,8)}
        Flow Graph:
          [0->{6,7},1->{2,3,4},2->{2,3,4},3->{2,3,4},4->{1,5},5->{},6->{6,7},7->{0,8},8->{1,5},9->{0,8}]
        Sizebounds:
          (<0,0,A>, 9) (<0,0,B>,      0) (<0,0,C>, C) (<0,0,D>,      D) (<0,0,E>, E) (<0,0,F>, F) (<0,0,G>, G) (<0,0,H>, H) 
          (<1,0,A>, ?) (<1,0,B>,      ?) (<1,0,C>, 9) (<1,0,D>,      0) (<1,0,E>, ?) (<1,0,F>, ?) (<1,0,G>, ?) (<1,0,H>, ?) 
          (<2,0,A>, ?) (<2,0,B>,      ?) (<2,0,C>, ?) (<2,0,D>,     10) (<2,0,E>, ?) (<2,0,F>, ?) (<2,0,G>, ?) (<2,0,H>, ?) 
          (<3,0,A>, ?) (<3,0,B>,      ?) (<3,0,C>, ?) (<3,0,D>,     10) (<3,0,E>, ?) (<3,0,F>, ?) (<3,0,G>, ?) (<3,0,H>, ?) 
          (<4,0,A>, ?) (<4,0,B>,      ?) (<4,0,C>, ?) (<4,0,D>,     10) (<4,0,E>, ?) (<4,0,F>, ?) (<4,0,G>, ?) (<4,0,H>, ?) 
          (<5,0,A>, ?) (<5,0,B>,      ?) (<5,0,C>, ?) (<5,0,D>, 10 + D) (<5,0,E>, ?) (<5,0,F>, ?) (<5,0,G>, ?) (<5,0,H>, ?) 
          (<6,0,A>, 9) (<6,0,B>,     10) (<6,0,C>, C) (<6,0,D>,      D) (<6,0,E>, E) (<6,0,F>, F) (<6,0,G>, G) (<6,0,H>, H) 
          (<7,0,A>, 9) (<7,0,B>,     10) (<7,0,C>, C) (<7,0,D>,      D) (<7,0,E>, E) (<7,0,F>, F) (<7,0,G>, G) (<7,0,H>, H) 
          (<8,0,A>, 9) (<8,0,B>, 10 + B) (<8,0,C>, 0) (<8,0,D>,      D) (<8,0,E>, 0) (<8,0,F>, 0) (<8,0,G>, 0) (<8,0,H>, 0) 
          (<9,0,A>, 0) (<9,0,B>,      B) (<9,0,C>, C) (<9,0,D>,      D) (<9,0,E>, E) (<9,0,F>, F) (<9,0,G>, G) (<9,0,H>, H) 
    + Applied Processor:
        UnsatPaths
    + Details:
        We remove following edges from the transition graph: [(0,7),(1,4),(8,5),(9,8)]
* Step 5: LeafRules WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f11(A,B,C,D,E,F,G,H) -> f14(A,0,C,D,E,F,G,H)             [9 >= A]               (?,1)
          1. f33(A,B,C,D,E,F,G,H) -> f36(A,B,C,0,E,F,G,H)             [9 >= C]               (?,1)
          2. f36(A,B,C,D,E,F,G,H) -> f36(A,B,C,1 + D,E + S,1 + F,G,H) [9 >= D && 0 >= 1 + R] (?,1)
          3. f36(A,B,C,D,E,F,G,H) -> f36(A,B,C,1 + D,E,F,G + S,1 + H) [9 >= D]               (?,1)
          4. f36(A,B,C,D,E,F,G,H) -> f33(A,B,1 + C,D,E,F,G,H)         [D >= 10]              (?,1)
          5. f33(A,B,C,D,E,F,G,H) -> f58(A,B,C,D,E,F,G,H)             [C >= 10]              (?,1)
          6. f14(A,B,C,D,E,F,G,H) -> f14(A,1 + B,C,D,E,F,G,H)         [9 >= B]               (?,1)
          7. f14(A,B,C,D,E,F,G,H) -> f11(1 + A,B,C,D,E,F,G,H)         [B >= 10]              (?,1)
          8. f11(A,B,C,D,E,F,G,H) -> f33(A,B,0,D,0,0,0,0)             [A >= 10]              (?,1)
          9. f0(A,B,C,D,E,F,G,H)  -> f11(0,B,C,D,E,F,G,H)             True                   (1,1)
        Signature:
          {(f0,8);(f11,8);(f14,8);(f33,8);(f36,8);(f58,8)}
        Flow Graph:
          [0->{6},1->{2,3},2->{2,3,4},3->{2,3,4},4->{1,5},5->{},6->{6,7},7->{0,8},8->{1},9->{0}]
        Sizebounds:
          (<0,0,A>, 9) (<0,0,B>,      0) (<0,0,C>, C) (<0,0,D>,      D) (<0,0,E>, E) (<0,0,F>, F) (<0,0,G>, G) (<0,0,H>, H) 
          (<1,0,A>, ?) (<1,0,B>,      ?) (<1,0,C>, 9) (<1,0,D>,      0) (<1,0,E>, ?) (<1,0,F>, ?) (<1,0,G>, ?) (<1,0,H>, ?) 
          (<2,0,A>, ?) (<2,0,B>,      ?) (<2,0,C>, ?) (<2,0,D>,     10) (<2,0,E>, ?) (<2,0,F>, ?) (<2,0,G>, ?) (<2,0,H>, ?) 
          (<3,0,A>, ?) (<3,0,B>,      ?) (<3,0,C>, ?) (<3,0,D>,     10) (<3,0,E>, ?) (<3,0,F>, ?) (<3,0,G>, ?) (<3,0,H>, ?) 
          (<4,0,A>, ?) (<4,0,B>,      ?) (<4,0,C>, ?) (<4,0,D>,     10) (<4,0,E>, ?) (<4,0,F>, ?) (<4,0,G>, ?) (<4,0,H>, ?) 
          (<5,0,A>, ?) (<5,0,B>,      ?) (<5,0,C>, ?) (<5,0,D>, 10 + D) (<5,0,E>, ?) (<5,0,F>, ?) (<5,0,G>, ?) (<5,0,H>, ?) 
          (<6,0,A>, 9) (<6,0,B>,     10) (<6,0,C>, C) (<6,0,D>,      D) (<6,0,E>, E) (<6,0,F>, F) (<6,0,G>, G) (<6,0,H>, H) 
          (<7,0,A>, 9) (<7,0,B>,     10) (<7,0,C>, C) (<7,0,D>,      D) (<7,0,E>, E) (<7,0,F>, F) (<7,0,G>, G) (<7,0,H>, H) 
          (<8,0,A>, 9) (<8,0,B>, 10 + B) (<8,0,C>, 0) (<8,0,D>,      D) (<8,0,E>, 0) (<8,0,F>, 0) (<8,0,G>, 0) (<8,0,H>, 0) 
          (<9,0,A>, 0) (<9,0,B>,      B) (<9,0,C>, C) (<9,0,D>,      D) (<9,0,E>, E) (<9,0,F>, F) (<9,0,G>, G) (<9,0,H>, H) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [5]
* Step 6: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f11(A,B,C,D,E,F,G,H) -> f14(A,0,C,D,E,F,G,H)             [9 >= A]               (?,1)
          1. f33(A,B,C,D,E,F,G,H) -> f36(A,B,C,0,E,F,G,H)             [9 >= C]               (?,1)
          2. f36(A,B,C,D,E,F,G,H) -> f36(A,B,C,1 + D,E + S,1 + F,G,H) [9 >= D && 0 >= 1 + R] (?,1)
          3. f36(A,B,C,D,E,F,G,H) -> f36(A,B,C,1 + D,E,F,G + S,1 + H) [9 >= D]               (?,1)
          4. f36(A,B,C,D,E,F,G,H) -> f33(A,B,1 + C,D,E,F,G,H)         [D >= 10]              (?,1)
          6. f14(A,B,C,D,E,F,G,H) -> f14(A,1 + B,C,D,E,F,G,H)         [9 >= B]               (?,1)
          7. f14(A,B,C,D,E,F,G,H) -> f11(1 + A,B,C,D,E,F,G,H)         [B >= 10]              (?,1)
          8. f11(A,B,C,D,E,F,G,H) -> f33(A,B,0,D,0,0,0,0)             [A >= 10]              (?,1)
          9. f0(A,B,C,D,E,F,G,H)  -> f11(0,B,C,D,E,F,G,H)             True                   (1,1)
        Signature:
          {(f0,8);(f11,8);(f14,8);(f33,8);(f36,8);(f58,8)}
        Flow Graph:
          [0->{6},1->{2,3},2->{2,3,4},3->{2,3,4},4->{1},6->{6,7},7->{0,8},8->{1},9->{0}]
        Sizebounds:
          (<0,0,A>, 9) (<0,0,B>,      0) (<0,0,C>, C) (<0,0,D>,  D) (<0,0,E>, E) (<0,0,F>, F) (<0,0,G>, G) (<0,0,H>, H) 
          (<1,0,A>, ?) (<1,0,B>,      ?) (<1,0,C>, 9) (<1,0,D>,  0) (<1,0,E>, ?) (<1,0,F>, ?) (<1,0,G>, ?) (<1,0,H>, ?) 
          (<2,0,A>, ?) (<2,0,B>,      ?) (<2,0,C>, ?) (<2,0,D>, 10) (<2,0,E>, ?) (<2,0,F>, ?) (<2,0,G>, ?) (<2,0,H>, ?) 
          (<3,0,A>, ?) (<3,0,B>,      ?) (<3,0,C>, ?) (<3,0,D>, 10) (<3,0,E>, ?) (<3,0,F>, ?) (<3,0,G>, ?) (<3,0,H>, ?) 
          (<4,0,A>, ?) (<4,0,B>,      ?) (<4,0,C>, ?) (<4,0,D>, 10) (<4,0,E>, ?) (<4,0,F>, ?) (<4,0,G>, ?) (<4,0,H>, ?) 
          (<6,0,A>, 9) (<6,0,B>,     10) (<6,0,C>, C) (<6,0,D>,  D) (<6,0,E>, E) (<6,0,F>, F) (<6,0,G>, G) (<6,0,H>, H) 
          (<7,0,A>, 9) (<7,0,B>,     10) (<7,0,C>, C) (<7,0,D>,  D) (<7,0,E>, E) (<7,0,F>, F) (<7,0,G>, G) (<7,0,H>, H) 
          (<8,0,A>, 9) (<8,0,B>, 10 + B) (<8,0,C>, 0) (<8,0,D>,  D) (<8,0,E>, 0) (<8,0,F>, 0) (<8,0,G>, 0) (<8,0,H>, 0) 
          (<9,0,A>, 0) (<9,0,B>,      B) (<9,0,C>, C) (<9,0,D>,  D) (<9,0,E>, E) (<9,0,F>, F) (<9,0,G>, G) (<9,0,H>, H) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 1
          p(f11) = 1
          p(f14) = 1
          p(f33) = 0
          p(f36) = 0
        
        The following rules are strictly oriented:
                     [A >= 10] ==>                     
          f11(A,B,C,D,E,F,G,H)   = 1                   
                                 > 0                   
                                 = f33(A,B,0,D,0,0,0,0)
        
        
        The following rules are weakly oriented:
                      [9 >= A] ==>                                 
          f11(A,B,C,D,E,F,G,H)   = 1                               
                                >= 1                               
                                 = f14(A,0,C,D,E,F,G,H)            
        
                      [9 >= C] ==>                                 
          f33(A,B,C,D,E,F,G,H)   = 0                               
                                >= 0                               
                                 = f36(A,B,C,0,E,F,G,H)            
        
        [9 >= D && 0 >= 1 + R] ==>                                 
          f36(A,B,C,D,E,F,G,H)   = 0                               
                                >= 0                               
                                 = f36(A,B,C,1 + D,E + S,1 + F,G,H)
        
                      [9 >= D] ==>                                 
          f36(A,B,C,D,E,F,G,H)   = 0                               
                                >= 0                               
                                 = f36(A,B,C,1 + D,E,F,G + S,1 + H)
        
                     [D >= 10] ==>                                 
          f36(A,B,C,D,E,F,G,H)   = 0                               
                                >= 0                               
                                 = f33(A,B,1 + C,D,E,F,G,H)        
        
                      [9 >= B] ==>                                 
          f14(A,B,C,D,E,F,G,H)   = 1                               
                                >= 1                               
                                 = f14(A,1 + B,C,D,E,F,G,H)        
        
                     [B >= 10] ==>                                 
          f14(A,B,C,D,E,F,G,H)   = 1                               
                                >= 1                               
                                 = f11(1 + A,B,C,D,E,F,G,H)        
        
                          True ==>                                 
           f0(A,B,C,D,E,F,G,H)   = 1                               
                                >= 1                               
                                 = f11(0,B,C,D,E,F,G,H)            
        
        
* Step 7: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f11(A,B,C,D,E,F,G,H) -> f14(A,0,C,D,E,F,G,H)             [9 >= A]               (?,1)
          1. f33(A,B,C,D,E,F,G,H) -> f36(A,B,C,0,E,F,G,H)             [9 >= C]               (?,1)
          2. f36(A,B,C,D,E,F,G,H) -> f36(A,B,C,1 + D,E + S,1 + F,G,H) [9 >= D && 0 >= 1 + R] (?,1)
          3. f36(A,B,C,D,E,F,G,H) -> f36(A,B,C,1 + D,E,F,G + S,1 + H) [9 >= D]               (?,1)
          4. f36(A,B,C,D,E,F,G,H) -> f33(A,B,1 + C,D,E,F,G,H)         [D >= 10]              (?,1)
          6. f14(A,B,C,D,E,F,G,H) -> f14(A,1 + B,C,D,E,F,G,H)         [9 >= B]               (?,1)
          7. f14(A,B,C,D,E,F,G,H) -> f11(1 + A,B,C,D,E,F,G,H)         [B >= 10]              (?,1)
          8. f11(A,B,C,D,E,F,G,H) -> f33(A,B,0,D,0,0,0,0)             [A >= 10]              (1,1)
          9. f0(A,B,C,D,E,F,G,H)  -> f11(0,B,C,D,E,F,G,H)             True                   (1,1)
        Signature:
          {(f0,8);(f11,8);(f14,8);(f33,8);(f36,8);(f58,8)}
        Flow Graph:
          [0->{6},1->{2,3},2->{2,3,4},3->{2,3,4},4->{1},6->{6,7},7->{0,8},8->{1},9->{0}]
        Sizebounds:
          (<0,0,A>, 9) (<0,0,B>,      0) (<0,0,C>, C) (<0,0,D>,  D) (<0,0,E>, E) (<0,0,F>, F) (<0,0,G>, G) (<0,0,H>, H) 
          (<1,0,A>, ?) (<1,0,B>,      ?) (<1,0,C>, 9) (<1,0,D>,  0) (<1,0,E>, ?) (<1,0,F>, ?) (<1,0,G>, ?) (<1,0,H>, ?) 
          (<2,0,A>, ?) (<2,0,B>,      ?) (<2,0,C>, ?) (<2,0,D>, 10) (<2,0,E>, ?) (<2,0,F>, ?) (<2,0,G>, ?) (<2,0,H>, ?) 
          (<3,0,A>, ?) (<3,0,B>,      ?) (<3,0,C>, ?) (<3,0,D>, 10) (<3,0,E>, ?) (<3,0,F>, ?) (<3,0,G>, ?) (<3,0,H>, ?) 
          (<4,0,A>, ?) (<4,0,B>,      ?) (<4,0,C>, ?) (<4,0,D>, 10) (<4,0,E>, ?) (<4,0,F>, ?) (<4,0,G>, ?) (<4,0,H>, ?) 
          (<6,0,A>, 9) (<6,0,B>,     10) (<6,0,C>, C) (<6,0,D>,  D) (<6,0,E>, E) (<6,0,F>, F) (<6,0,G>, G) (<6,0,H>, H) 
          (<7,0,A>, 9) (<7,0,B>,     10) (<7,0,C>, C) (<7,0,D>,  D) (<7,0,E>, E) (<7,0,F>, F) (<7,0,G>, G) (<7,0,H>, H) 
          (<8,0,A>, 9) (<8,0,B>, 10 + B) (<8,0,C>, 0) (<8,0,D>,  D) (<8,0,E>, 0) (<8,0,F>, 0) (<8,0,G>, 0) (<8,0,H>, 0) 
          (<9,0,A>, 0) (<9,0,B>,      B) (<9,0,C>, C) (<9,0,D>,  D) (<9,0,E>, E) (<9,0,F>, F) (<9,0,G>, G) (<9,0,H>, H) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 10        
          p(f11) = 10        
          p(f14) = 10        
          p(f33) = 10 + -1*x3
          p(f36) = 9 + -1*x3 
        
        The following rules are strictly oriented:
                      [9 >= C] ==>                     
          f33(A,B,C,D,E,F,G,H)   = 10 + -1*C           
                                 > 9 + -1*C            
                                 = f36(A,B,C,0,E,F,G,H)
        
        
        The following rules are weakly oriented:
                      [9 >= A] ==>                                 
          f11(A,B,C,D,E,F,G,H)   = 10                              
                                >= 10                              
                                 = f14(A,0,C,D,E,F,G,H)            
        
        [9 >= D && 0 >= 1 + R] ==>                                 
          f36(A,B,C,D,E,F,G,H)   = 9 + -1*C                        
                                >= 9 + -1*C                        
                                 = f36(A,B,C,1 + D,E + S,1 + F,G,H)
        
                      [9 >= D] ==>                                 
          f36(A,B,C,D,E,F,G,H)   = 9 + -1*C                        
                                >= 9 + -1*C                        
                                 = f36(A,B,C,1 + D,E,F,G + S,1 + H)
        
                     [D >= 10] ==>                                 
          f36(A,B,C,D,E,F,G,H)   = 9 + -1*C                        
                                >= 9 + -1*C                        
                                 = f33(A,B,1 + C,D,E,F,G,H)        
        
                      [9 >= B] ==>                                 
          f14(A,B,C,D,E,F,G,H)   = 10                              
                                >= 10                              
                                 = f14(A,1 + B,C,D,E,F,G,H)        
        
                     [B >= 10] ==>                                 
          f14(A,B,C,D,E,F,G,H)   = 10                              
                                >= 10                              
                                 = f11(1 + A,B,C,D,E,F,G,H)        
        
                     [A >= 10] ==>                                 
          f11(A,B,C,D,E,F,G,H)   = 10                              
                                >= 10                              
                                 = f33(A,B,0,D,0,0,0,0)            
        
                          True ==>                                 
           f0(A,B,C,D,E,F,G,H)   = 10                              
                                >= 10                              
                                 = f11(0,B,C,D,E,F,G,H)            
        
        
* Step 8: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f11(A,B,C,D,E,F,G,H) -> f14(A,0,C,D,E,F,G,H)             [9 >= A]               (?,1) 
          1. f33(A,B,C,D,E,F,G,H) -> f36(A,B,C,0,E,F,G,H)             [9 >= C]               (10,1)
          2. f36(A,B,C,D,E,F,G,H) -> f36(A,B,C,1 + D,E + S,1 + F,G,H) [9 >= D && 0 >= 1 + R] (?,1) 
          3. f36(A,B,C,D,E,F,G,H) -> f36(A,B,C,1 + D,E,F,G + S,1 + H) [9 >= D]               (?,1) 
          4. f36(A,B,C,D,E,F,G,H) -> f33(A,B,1 + C,D,E,F,G,H)         [D >= 10]              (?,1) 
          6. f14(A,B,C,D,E,F,G,H) -> f14(A,1 + B,C,D,E,F,G,H)         [9 >= B]               (?,1) 
          7. f14(A,B,C,D,E,F,G,H) -> f11(1 + A,B,C,D,E,F,G,H)         [B >= 10]              (?,1) 
          8. f11(A,B,C,D,E,F,G,H) -> f33(A,B,0,D,0,0,0,0)             [A >= 10]              (1,1) 
          9. f0(A,B,C,D,E,F,G,H)  -> f11(0,B,C,D,E,F,G,H)             True                   (1,1) 
        Signature:
          {(f0,8);(f11,8);(f14,8);(f33,8);(f36,8);(f58,8)}
        Flow Graph:
          [0->{6},1->{2,3},2->{2,3,4},3->{2,3,4},4->{1},6->{6,7},7->{0,8},8->{1},9->{0}]
        Sizebounds:
          (<0,0,A>, 9) (<0,0,B>,      0) (<0,0,C>, C) (<0,0,D>,  D) (<0,0,E>, E) (<0,0,F>, F) (<0,0,G>, G) (<0,0,H>, H) 
          (<1,0,A>, ?) (<1,0,B>,      ?) (<1,0,C>, 9) (<1,0,D>,  0) (<1,0,E>, ?) (<1,0,F>, ?) (<1,0,G>, ?) (<1,0,H>, ?) 
          (<2,0,A>, ?) (<2,0,B>,      ?) (<2,0,C>, ?) (<2,0,D>, 10) (<2,0,E>, ?) (<2,0,F>, ?) (<2,0,G>, ?) (<2,0,H>, ?) 
          (<3,0,A>, ?) (<3,0,B>,      ?) (<3,0,C>, ?) (<3,0,D>, 10) (<3,0,E>, ?) (<3,0,F>, ?) (<3,0,G>, ?) (<3,0,H>, ?) 
          (<4,0,A>, ?) (<4,0,B>,      ?) (<4,0,C>, ?) (<4,0,D>, 10) (<4,0,E>, ?) (<4,0,F>, ?) (<4,0,G>, ?) (<4,0,H>, ?) 
          (<6,0,A>, 9) (<6,0,B>,     10) (<6,0,C>, C) (<6,0,D>,  D) (<6,0,E>, E) (<6,0,F>, F) (<6,0,G>, G) (<6,0,H>, H) 
          (<7,0,A>, 9) (<7,0,B>,     10) (<7,0,C>, C) (<7,0,D>,  D) (<7,0,E>, E) (<7,0,F>, F) (<7,0,G>, G) (<7,0,H>, H) 
          (<8,0,A>, 9) (<8,0,B>, 10 + B) (<8,0,C>, 0) (<8,0,D>,  D) (<8,0,E>, 0) (<8,0,F>, 0) (<8,0,G>, 0) (<8,0,H>, 0) 
          (<9,0,A>, 0) (<9,0,B>,      B) (<9,0,C>, C) (<9,0,D>,  D) (<9,0,E>, E) (<9,0,F>, F) (<9,0,G>, G) (<9,0,H>, H) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 10        
          p(f11) = 10 + -1*x1
          p(f14) = 9 + -1*x1 
          p(f33) = 10 + -1*x1
          p(f36) = 10 + -1*x1
        
        The following rules are strictly oriented:
                      [9 >= A] ==>                     
          f11(A,B,C,D,E,F,G,H)   = 10 + -1*A           
                                 > 9 + -1*A            
                                 = f14(A,0,C,D,E,F,G,H)
        
        
        The following rules are weakly oriented:
                      [9 >= C] ==>                                 
          f33(A,B,C,D,E,F,G,H)   = 10 + -1*A                       
                                >= 10 + -1*A                       
                                 = f36(A,B,C,0,E,F,G,H)            
        
        [9 >= D && 0 >= 1 + R] ==>                                 
          f36(A,B,C,D,E,F,G,H)   = 10 + -1*A                       
                                >= 10 + -1*A                       
                                 = f36(A,B,C,1 + D,E + S,1 + F,G,H)
        
                      [9 >= D] ==>                                 
          f36(A,B,C,D,E,F,G,H)   = 10 + -1*A                       
                                >= 10 + -1*A                       
                                 = f36(A,B,C,1 + D,E,F,G + S,1 + H)
        
                     [D >= 10] ==>                                 
          f36(A,B,C,D,E,F,G,H)   = 10 + -1*A                       
                                >= 10 + -1*A                       
                                 = f33(A,B,1 + C,D,E,F,G,H)        
        
                      [9 >= B] ==>                                 
          f14(A,B,C,D,E,F,G,H)   = 9 + -1*A                        
                                >= 9 + -1*A                        
                                 = f14(A,1 + B,C,D,E,F,G,H)        
        
                     [B >= 10] ==>                                 
          f14(A,B,C,D,E,F,G,H)   = 9 + -1*A                        
                                >= 9 + -1*A                        
                                 = f11(1 + A,B,C,D,E,F,G,H)        
        
                     [A >= 10] ==>                                 
          f11(A,B,C,D,E,F,G,H)   = 10 + -1*A                       
                                >= 10 + -1*A                       
                                 = f33(A,B,0,D,0,0,0,0)            
        
                          True ==>                                 
           f0(A,B,C,D,E,F,G,H)   = 10                              
                                >= 10                              
                                 = f11(0,B,C,D,E,F,G,H)            
        
        
* Step 9: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f11(A,B,C,D,E,F,G,H) -> f14(A,0,C,D,E,F,G,H)             [9 >= A]               (10,1)
          1. f33(A,B,C,D,E,F,G,H) -> f36(A,B,C,0,E,F,G,H)             [9 >= C]               (10,1)
          2. f36(A,B,C,D,E,F,G,H) -> f36(A,B,C,1 + D,E + S,1 + F,G,H) [9 >= D && 0 >= 1 + R] (?,1) 
          3. f36(A,B,C,D,E,F,G,H) -> f36(A,B,C,1 + D,E,F,G + S,1 + H) [9 >= D]               (?,1) 
          4. f36(A,B,C,D,E,F,G,H) -> f33(A,B,1 + C,D,E,F,G,H)         [D >= 10]              (?,1) 
          6. f14(A,B,C,D,E,F,G,H) -> f14(A,1 + B,C,D,E,F,G,H)         [9 >= B]               (?,1) 
          7. f14(A,B,C,D,E,F,G,H) -> f11(1 + A,B,C,D,E,F,G,H)         [B >= 10]              (?,1) 
          8. f11(A,B,C,D,E,F,G,H) -> f33(A,B,0,D,0,0,0,0)             [A >= 10]              (1,1) 
          9. f0(A,B,C,D,E,F,G,H)  -> f11(0,B,C,D,E,F,G,H)             True                   (1,1) 
        Signature:
          {(f0,8);(f11,8);(f14,8);(f33,8);(f36,8);(f58,8)}
        Flow Graph:
          [0->{6},1->{2,3},2->{2,3,4},3->{2,3,4},4->{1},6->{6,7},7->{0,8},8->{1},9->{0}]
        Sizebounds:
          (<0,0,A>, 9) (<0,0,B>,      0) (<0,0,C>, C) (<0,0,D>,  D) (<0,0,E>, E) (<0,0,F>, F) (<0,0,G>, G) (<0,0,H>, H) 
          (<1,0,A>, ?) (<1,0,B>,      ?) (<1,0,C>, 9) (<1,0,D>,  0) (<1,0,E>, ?) (<1,0,F>, ?) (<1,0,G>, ?) (<1,0,H>, ?) 
          (<2,0,A>, ?) (<2,0,B>,      ?) (<2,0,C>, ?) (<2,0,D>, 10) (<2,0,E>, ?) (<2,0,F>, ?) (<2,0,G>, ?) (<2,0,H>, ?) 
          (<3,0,A>, ?) (<3,0,B>,      ?) (<3,0,C>, ?) (<3,0,D>, 10) (<3,0,E>, ?) (<3,0,F>, ?) (<3,0,G>, ?) (<3,0,H>, ?) 
          (<4,0,A>, ?) (<4,0,B>,      ?) (<4,0,C>, ?) (<4,0,D>, 10) (<4,0,E>, ?) (<4,0,F>, ?) (<4,0,G>, ?) (<4,0,H>, ?) 
          (<6,0,A>, 9) (<6,0,B>,     10) (<6,0,C>, C) (<6,0,D>,  D) (<6,0,E>, E) (<6,0,F>, F) (<6,0,G>, G) (<6,0,H>, H) 
          (<7,0,A>, 9) (<7,0,B>,     10) (<7,0,C>, C) (<7,0,D>,  D) (<7,0,E>, E) (<7,0,F>, F) (<7,0,G>, G) (<7,0,H>, H) 
          (<8,0,A>, 9) (<8,0,B>, 10 + B) (<8,0,C>, 0) (<8,0,D>,  D) (<8,0,E>, 0) (<8,0,F>, 0) (<8,0,G>, 0) (<8,0,H>, 0) 
          (<9,0,A>, 0) (<9,0,B>,      B) (<9,0,C>, C) (<9,0,D>,  D) (<9,0,E>, E) (<9,0,F>, F) (<9,0,G>, G) (<9,0,H>, H) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [7,6], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f11) = 0
          p(f14) = 1
        
        The following rules are strictly oriented:
                     [B >= 10] ==>                         
          f14(A,B,C,D,E,F,G,H)   = 1                       
                                 > 0                       
                                 = f11(1 + A,B,C,D,E,F,G,H)
        
        
        The following rules are weakly oriented:
                      [9 >= B] ==>                         
          f14(A,B,C,D,E,F,G,H)   = 1                       
                                >= 1                       
                                 = f14(A,1 + B,C,D,E,F,G,H)
        
        We use the following global sizebounds:
        (<0,0,A>, 9) (<0,0,B>,      0) (<0,0,C>, C) (<0,0,D>,  D) (<0,0,E>, E) (<0,0,F>, F) (<0,0,G>, G) (<0,0,H>, H) 
        (<1,0,A>, ?) (<1,0,B>,      ?) (<1,0,C>, 9) (<1,0,D>,  0) (<1,0,E>, ?) (<1,0,F>, ?) (<1,0,G>, ?) (<1,0,H>, ?) 
        (<2,0,A>, ?) (<2,0,B>,      ?) (<2,0,C>, ?) (<2,0,D>, 10) (<2,0,E>, ?) (<2,0,F>, ?) (<2,0,G>, ?) (<2,0,H>, ?) 
        (<3,0,A>, ?) (<3,0,B>,      ?) (<3,0,C>, ?) (<3,0,D>, 10) (<3,0,E>, ?) (<3,0,F>, ?) (<3,0,G>, ?) (<3,0,H>, ?) 
        (<4,0,A>, ?) (<4,0,B>,      ?) (<4,0,C>, ?) (<4,0,D>, 10) (<4,0,E>, ?) (<4,0,F>, ?) (<4,0,G>, ?) (<4,0,H>, ?) 
        (<6,0,A>, 9) (<6,0,B>,     10) (<6,0,C>, C) (<6,0,D>,  D) (<6,0,E>, E) (<6,0,F>, F) (<6,0,G>, G) (<6,0,H>, H) 
        (<7,0,A>, 9) (<7,0,B>,     10) (<7,0,C>, C) (<7,0,D>,  D) (<7,0,E>, E) (<7,0,F>, F) (<7,0,G>, G) (<7,0,H>, H) 
        (<8,0,A>, 9) (<8,0,B>, 10 + B) (<8,0,C>, 0) (<8,0,D>,  D) (<8,0,E>, 0) (<8,0,F>, 0) (<8,0,G>, 0) (<8,0,H>, 0) 
        (<9,0,A>, 0) (<9,0,B>,      B) (<9,0,C>, C) (<9,0,D>,  D) (<9,0,E>, E) (<9,0,F>, F) (<9,0,G>, G) (<9,0,H>, H) 
* Step 10: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f11(A,B,C,D,E,F,G,H) -> f14(A,0,C,D,E,F,G,H)             [9 >= A]               (10,1)
          1. f33(A,B,C,D,E,F,G,H) -> f36(A,B,C,0,E,F,G,H)             [9 >= C]               (10,1)
          2. f36(A,B,C,D,E,F,G,H) -> f36(A,B,C,1 + D,E + S,1 + F,G,H) [9 >= D && 0 >= 1 + R] (?,1) 
          3. f36(A,B,C,D,E,F,G,H) -> f36(A,B,C,1 + D,E,F,G + S,1 + H) [9 >= D]               (?,1) 
          4. f36(A,B,C,D,E,F,G,H) -> f33(A,B,1 + C,D,E,F,G,H)         [D >= 10]              (?,1) 
          6. f14(A,B,C,D,E,F,G,H) -> f14(A,1 + B,C,D,E,F,G,H)         [9 >= B]               (?,1) 
          7. f14(A,B,C,D,E,F,G,H) -> f11(1 + A,B,C,D,E,F,G,H)         [B >= 10]              (10,1)
          8. f11(A,B,C,D,E,F,G,H) -> f33(A,B,0,D,0,0,0,0)             [A >= 10]              (1,1) 
          9. f0(A,B,C,D,E,F,G,H)  -> f11(0,B,C,D,E,F,G,H)             True                   (1,1) 
        Signature:
          {(f0,8);(f11,8);(f14,8);(f33,8);(f36,8);(f58,8)}
        Flow Graph:
          [0->{6},1->{2,3},2->{2,3,4},3->{2,3,4},4->{1},6->{6,7},7->{0,8},8->{1},9->{0}]
        Sizebounds:
          (<0,0,A>, 9) (<0,0,B>,      0) (<0,0,C>, C) (<0,0,D>,  D) (<0,0,E>, E) (<0,0,F>, F) (<0,0,G>, G) (<0,0,H>, H) 
          (<1,0,A>, ?) (<1,0,B>,      ?) (<1,0,C>, 9) (<1,0,D>,  0) (<1,0,E>, ?) (<1,0,F>, ?) (<1,0,G>, ?) (<1,0,H>, ?) 
          (<2,0,A>, ?) (<2,0,B>,      ?) (<2,0,C>, ?) (<2,0,D>, 10) (<2,0,E>, ?) (<2,0,F>, ?) (<2,0,G>, ?) (<2,0,H>, ?) 
          (<3,0,A>, ?) (<3,0,B>,      ?) (<3,0,C>, ?) (<3,0,D>, 10) (<3,0,E>, ?) (<3,0,F>, ?) (<3,0,G>, ?) (<3,0,H>, ?) 
          (<4,0,A>, ?) (<4,0,B>,      ?) (<4,0,C>, ?) (<4,0,D>, 10) (<4,0,E>, ?) (<4,0,F>, ?) (<4,0,G>, ?) (<4,0,H>, ?) 
          (<6,0,A>, 9) (<6,0,B>,     10) (<6,0,C>, C) (<6,0,D>,  D) (<6,0,E>, E) (<6,0,F>, F) (<6,0,G>, G) (<6,0,H>, H) 
          (<7,0,A>, 9) (<7,0,B>,     10) (<7,0,C>, C) (<7,0,D>,  D) (<7,0,E>, E) (<7,0,F>, F) (<7,0,G>, G) (<7,0,H>, H) 
          (<8,0,A>, 9) (<8,0,B>, 10 + B) (<8,0,C>, 0) (<8,0,D>,  D) (<8,0,E>, 0) (<8,0,F>, 0) (<8,0,G>, 0) (<8,0,H>, 0) 
          (<9,0,A>, 0) (<9,0,B>,      B) (<9,0,C>, C) (<9,0,D>,  D) (<9,0,E>, E) (<9,0,F>, F) (<9,0,G>, G) (<9,0,H>, H) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [6], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f14) = 10 + -1*x2
        
        The following rules are strictly oriented:
                      [9 >= B] ==>                         
          f14(A,B,C,D,E,F,G,H)   = 10 + -1*B               
                                 > 9 + -1*B                
                                 = f14(A,1 + B,C,D,E,F,G,H)
        
        
        The following rules are weakly oriented:
        
        We use the following global sizebounds:
        (<0,0,A>, 9) (<0,0,B>,      0) (<0,0,C>, C) (<0,0,D>,  D) (<0,0,E>, E) (<0,0,F>, F) (<0,0,G>, G) (<0,0,H>, H) 
        (<1,0,A>, ?) (<1,0,B>,      ?) (<1,0,C>, 9) (<1,0,D>,  0) (<1,0,E>, ?) (<1,0,F>, ?) (<1,0,G>, ?) (<1,0,H>, ?) 
        (<2,0,A>, ?) (<2,0,B>,      ?) (<2,0,C>, ?) (<2,0,D>, 10) (<2,0,E>, ?) (<2,0,F>, ?) (<2,0,G>, ?) (<2,0,H>, ?) 
        (<3,0,A>, ?) (<3,0,B>,      ?) (<3,0,C>, ?) (<3,0,D>, 10) (<3,0,E>, ?) (<3,0,F>, ?) (<3,0,G>, ?) (<3,0,H>, ?) 
        (<4,0,A>, ?) (<4,0,B>,      ?) (<4,0,C>, ?) (<4,0,D>, 10) (<4,0,E>, ?) (<4,0,F>, ?) (<4,0,G>, ?) (<4,0,H>, ?) 
        (<6,0,A>, 9) (<6,0,B>,     10) (<6,0,C>, C) (<6,0,D>,  D) (<6,0,E>, E) (<6,0,F>, F) (<6,0,G>, G) (<6,0,H>, H) 
        (<7,0,A>, 9) (<7,0,B>,     10) (<7,0,C>, C) (<7,0,D>,  D) (<7,0,E>, E) (<7,0,F>, F) (<7,0,G>, G) (<7,0,H>, H) 
        (<8,0,A>, 9) (<8,0,B>, 10 + B) (<8,0,C>, 0) (<8,0,D>,  D) (<8,0,E>, 0) (<8,0,F>, 0) (<8,0,G>, 0) (<8,0,H>, 0) 
        (<9,0,A>, 0) (<9,0,B>,      B) (<9,0,C>, C) (<9,0,D>,  D) (<9,0,E>, E) (<9,0,F>, F) (<9,0,G>, G) (<9,0,H>, H) 
* Step 11: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f11(A,B,C,D,E,F,G,H) -> f14(A,0,C,D,E,F,G,H)             [9 >= A]               (10,1) 
          1. f33(A,B,C,D,E,F,G,H) -> f36(A,B,C,0,E,F,G,H)             [9 >= C]               (10,1) 
          2. f36(A,B,C,D,E,F,G,H) -> f36(A,B,C,1 + D,E + S,1 + F,G,H) [9 >= D && 0 >= 1 + R] (?,1)  
          3. f36(A,B,C,D,E,F,G,H) -> f36(A,B,C,1 + D,E,F,G + S,1 + H) [9 >= D]               (?,1)  
          4. f36(A,B,C,D,E,F,G,H) -> f33(A,B,1 + C,D,E,F,G,H)         [D >= 10]              (?,1)  
          6. f14(A,B,C,D,E,F,G,H) -> f14(A,1 + B,C,D,E,F,G,H)         [9 >= B]               (100,1)
          7. f14(A,B,C,D,E,F,G,H) -> f11(1 + A,B,C,D,E,F,G,H)         [B >= 10]              (10,1) 
          8. f11(A,B,C,D,E,F,G,H) -> f33(A,B,0,D,0,0,0,0)             [A >= 10]              (1,1)  
          9. f0(A,B,C,D,E,F,G,H)  -> f11(0,B,C,D,E,F,G,H)             True                   (1,1)  
        Signature:
          {(f0,8);(f11,8);(f14,8);(f33,8);(f36,8);(f58,8)}
        Flow Graph:
          [0->{6},1->{2,3},2->{2,3,4},3->{2,3,4},4->{1},6->{6,7},7->{0,8},8->{1},9->{0}]
        Sizebounds:
          (<0,0,A>, 9) (<0,0,B>,      0) (<0,0,C>, C) (<0,0,D>,  D) (<0,0,E>, E) (<0,0,F>, F) (<0,0,G>, G) (<0,0,H>, H) 
          (<1,0,A>, ?) (<1,0,B>,      ?) (<1,0,C>, 9) (<1,0,D>,  0) (<1,0,E>, ?) (<1,0,F>, ?) (<1,0,G>, ?) (<1,0,H>, ?) 
          (<2,0,A>, ?) (<2,0,B>,      ?) (<2,0,C>, ?) (<2,0,D>, 10) (<2,0,E>, ?) (<2,0,F>, ?) (<2,0,G>, ?) (<2,0,H>, ?) 
          (<3,0,A>, ?) (<3,0,B>,      ?) (<3,0,C>, ?) (<3,0,D>, 10) (<3,0,E>, ?) (<3,0,F>, ?) (<3,0,G>, ?) (<3,0,H>, ?) 
          (<4,0,A>, ?) (<4,0,B>,      ?) (<4,0,C>, ?) (<4,0,D>, 10) (<4,0,E>, ?) (<4,0,F>, ?) (<4,0,G>, ?) (<4,0,H>, ?) 
          (<6,0,A>, 9) (<6,0,B>,     10) (<6,0,C>, C) (<6,0,D>,  D) (<6,0,E>, E) (<6,0,F>, F) (<6,0,G>, G) (<6,0,H>, H) 
          (<7,0,A>, 9) (<7,0,B>,     10) (<7,0,C>, C) (<7,0,D>,  D) (<7,0,E>, E) (<7,0,F>, F) (<7,0,G>, G) (<7,0,H>, H) 
          (<8,0,A>, 9) (<8,0,B>, 10 + B) (<8,0,C>, 0) (<8,0,D>,  D) (<8,0,E>, 0) (<8,0,F>, 0) (<8,0,G>, 0) (<8,0,H>, 0) 
          (<9,0,A>, 0) (<9,0,B>,      B) (<9,0,C>, C) (<9,0,D>,  D) (<9,0,E>, E) (<9,0,F>, F) (<9,0,G>, G) (<9,0,H>, H) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [4,2,3], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f33) = 0
          p(f36) = 1
        
        The following rules are strictly oriented:
                     [D >= 10] ==>                         
          f36(A,B,C,D,E,F,G,H)   = 1                       
                                 > 0                       
                                 = f33(A,B,1 + C,D,E,F,G,H)
        
        
        The following rules are weakly oriented:
        [9 >= D && 0 >= 1 + R] ==>                                 
          f36(A,B,C,D,E,F,G,H)   = 1                               
                                >= 1                               
                                 = f36(A,B,C,1 + D,E + S,1 + F,G,H)
        
                      [9 >= D] ==>                                 
          f36(A,B,C,D,E,F,G,H)   = 1                               
                                >= 1                               
                                 = f36(A,B,C,1 + D,E,F,G + S,1 + H)
        
        We use the following global sizebounds:
        (<0,0,A>, 9) (<0,0,B>,      0) (<0,0,C>, C) (<0,0,D>,  D) (<0,0,E>, E) (<0,0,F>, F) (<0,0,G>, G) (<0,0,H>, H) 
        (<1,0,A>, ?) (<1,0,B>,      ?) (<1,0,C>, 9) (<1,0,D>,  0) (<1,0,E>, ?) (<1,0,F>, ?) (<1,0,G>, ?) (<1,0,H>, ?) 
        (<2,0,A>, ?) (<2,0,B>,      ?) (<2,0,C>, ?) (<2,0,D>, 10) (<2,0,E>, ?) (<2,0,F>, ?) (<2,0,G>, ?) (<2,0,H>, ?) 
        (<3,0,A>, ?) (<3,0,B>,      ?) (<3,0,C>, ?) (<3,0,D>, 10) (<3,0,E>, ?) (<3,0,F>, ?) (<3,0,G>, ?) (<3,0,H>, ?) 
        (<4,0,A>, ?) (<4,0,B>,      ?) (<4,0,C>, ?) (<4,0,D>, 10) (<4,0,E>, ?) (<4,0,F>, ?) (<4,0,G>, ?) (<4,0,H>, ?) 
        (<6,0,A>, 9) (<6,0,B>,     10) (<6,0,C>, C) (<6,0,D>,  D) (<6,0,E>, E) (<6,0,F>, F) (<6,0,G>, G) (<6,0,H>, H) 
        (<7,0,A>, 9) (<7,0,B>,     10) (<7,0,C>, C) (<7,0,D>,  D) (<7,0,E>, E) (<7,0,F>, F) (<7,0,G>, G) (<7,0,H>, H) 
        (<8,0,A>, 9) (<8,0,B>, 10 + B) (<8,0,C>, 0) (<8,0,D>,  D) (<8,0,E>, 0) (<8,0,F>, 0) (<8,0,G>, 0) (<8,0,H>, 0) 
        (<9,0,A>, 0) (<9,0,B>,      B) (<9,0,C>, C) (<9,0,D>,  D) (<9,0,E>, E) (<9,0,F>, F) (<9,0,G>, G) (<9,0,H>, H) 
* Step 12: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f11(A,B,C,D,E,F,G,H) -> f14(A,0,C,D,E,F,G,H)             [9 >= A]               (10,1) 
          1. f33(A,B,C,D,E,F,G,H) -> f36(A,B,C,0,E,F,G,H)             [9 >= C]               (10,1) 
          2. f36(A,B,C,D,E,F,G,H) -> f36(A,B,C,1 + D,E + S,1 + F,G,H) [9 >= D && 0 >= 1 + R] (?,1)  
          3. f36(A,B,C,D,E,F,G,H) -> f36(A,B,C,1 + D,E,F,G + S,1 + H) [9 >= D]               (?,1)  
          4. f36(A,B,C,D,E,F,G,H) -> f33(A,B,1 + C,D,E,F,G,H)         [D >= 10]              (10,1) 
          6. f14(A,B,C,D,E,F,G,H) -> f14(A,1 + B,C,D,E,F,G,H)         [9 >= B]               (100,1)
          7. f14(A,B,C,D,E,F,G,H) -> f11(1 + A,B,C,D,E,F,G,H)         [B >= 10]              (10,1) 
          8. f11(A,B,C,D,E,F,G,H) -> f33(A,B,0,D,0,0,0,0)             [A >= 10]              (1,1)  
          9. f0(A,B,C,D,E,F,G,H)  -> f11(0,B,C,D,E,F,G,H)             True                   (1,1)  
        Signature:
          {(f0,8);(f11,8);(f14,8);(f33,8);(f36,8);(f58,8)}
        Flow Graph:
          [0->{6},1->{2,3},2->{2,3,4},3->{2,3,4},4->{1},6->{6,7},7->{0,8},8->{1},9->{0}]
        Sizebounds:
          (<0,0,A>, 9) (<0,0,B>,      0) (<0,0,C>, C) (<0,0,D>,  D) (<0,0,E>, E) (<0,0,F>, F) (<0,0,G>, G) (<0,0,H>, H) 
          (<1,0,A>, ?) (<1,0,B>,      ?) (<1,0,C>, 9) (<1,0,D>,  0) (<1,0,E>, ?) (<1,0,F>, ?) (<1,0,G>, ?) (<1,0,H>, ?) 
          (<2,0,A>, ?) (<2,0,B>,      ?) (<2,0,C>, ?) (<2,0,D>, 10) (<2,0,E>, ?) (<2,0,F>, ?) (<2,0,G>, ?) (<2,0,H>, ?) 
          (<3,0,A>, ?) (<3,0,B>,      ?) (<3,0,C>, ?) (<3,0,D>, 10) (<3,0,E>, ?) (<3,0,F>, ?) (<3,0,G>, ?) (<3,0,H>, ?) 
          (<4,0,A>, ?) (<4,0,B>,      ?) (<4,0,C>, ?) (<4,0,D>, 10) (<4,0,E>, ?) (<4,0,F>, ?) (<4,0,G>, ?) (<4,0,H>, ?) 
          (<6,0,A>, 9) (<6,0,B>,     10) (<6,0,C>, C) (<6,0,D>,  D) (<6,0,E>, E) (<6,0,F>, F) (<6,0,G>, G) (<6,0,H>, H) 
          (<7,0,A>, 9) (<7,0,B>,     10) (<7,0,C>, C) (<7,0,D>,  D) (<7,0,E>, E) (<7,0,F>, F) (<7,0,G>, G) (<7,0,H>, H) 
          (<8,0,A>, 9) (<8,0,B>, 10 + B) (<8,0,C>, 0) (<8,0,D>,  D) (<8,0,E>, 0) (<8,0,F>, 0) (<8,0,G>, 0) (<8,0,H>, 0) 
          (<9,0,A>, 0) (<9,0,B>,      B) (<9,0,C>, C) (<9,0,D>,  D) (<9,0,E>, E) (<9,0,F>, F) (<9,0,G>, G) (<9,0,H>, H) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [2,3], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f36) = 10 + -1*x4
        
        The following rules are strictly oriented:
                      [9 >= D] ==>                                 
          f36(A,B,C,D,E,F,G,H)   = 10 + -1*D                       
                                 > 9 + -1*D                        
                                 = f36(A,B,C,1 + D,E,F,G + S,1 + H)
        
        
        The following rules are weakly oriented:
        [9 >= D && 0 >= 1 + R] ==>                                 
          f36(A,B,C,D,E,F,G,H)   = 10 + -1*D                       
                                >= 9 + -1*D                        
                                 = f36(A,B,C,1 + D,E + S,1 + F,G,H)
        
        We use the following global sizebounds:
        (<0,0,A>, 9) (<0,0,B>,      0) (<0,0,C>, C) (<0,0,D>,  D) (<0,0,E>, E) (<0,0,F>, F) (<0,0,G>, G) (<0,0,H>, H) 
        (<1,0,A>, ?) (<1,0,B>,      ?) (<1,0,C>, 9) (<1,0,D>,  0) (<1,0,E>, ?) (<1,0,F>, ?) (<1,0,G>, ?) (<1,0,H>, ?) 
        (<2,0,A>, ?) (<2,0,B>,      ?) (<2,0,C>, ?) (<2,0,D>, 10) (<2,0,E>, ?) (<2,0,F>, ?) (<2,0,G>, ?) (<2,0,H>, ?) 
        (<3,0,A>, ?) (<3,0,B>,      ?) (<3,0,C>, ?) (<3,0,D>, 10) (<3,0,E>, ?) (<3,0,F>, ?) (<3,0,G>, ?) (<3,0,H>, ?) 
        (<4,0,A>, ?) (<4,0,B>,      ?) (<4,0,C>, ?) (<4,0,D>, 10) (<4,0,E>, ?) (<4,0,F>, ?) (<4,0,G>, ?) (<4,0,H>, ?) 
        (<6,0,A>, 9) (<6,0,B>,     10) (<6,0,C>, C) (<6,0,D>,  D) (<6,0,E>, E) (<6,0,F>, F) (<6,0,G>, G) (<6,0,H>, H) 
        (<7,0,A>, 9) (<7,0,B>,     10) (<7,0,C>, C) (<7,0,D>,  D) (<7,0,E>, E) (<7,0,F>, F) (<7,0,G>, G) (<7,0,H>, H) 
        (<8,0,A>, 9) (<8,0,B>, 10 + B) (<8,0,C>, 0) (<8,0,D>,  D) (<8,0,E>, 0) (<8,0,F>, 0) (<8,0,G>, 0) (<8,0,H>, 0) 
        (<9,0,A>, 0) (<9,0,B>,      B) (<9,0,C>, C) (<9,0,D>,  D) (<9,0,E>, E) (<9,0,F>, F) (<9,0,G>, G) (<9,0,H>, H) 
* Step 13: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f11(A,B,C,D,E,F,G,H) -> f14(A,0,C,D,E,F,G,H)             [9 >= A]               (10,1) 
          1. f33(A,B,C,D,E,F,G,H) -> f36(A,B,C,0,E,F,G,H)             [9 >= C]               (10,1) 
          2. f36(A,B,C,D,E,F,G,H) -> f36(A,B,C,1 + D,E + S,1 + F,G,H) [9 >= D && 0 >= 1 + R] (?,1)  
          3. f36(A,B,C,D,E,F,G,H) -> f36(A,B,C,1 + D,E,F,G + S,1 + H) [9 >= D]               (100,1)
          4. f36(A,B,C,D,E,F,G,H) -> f33(A,B,1 + C,D,E,F,G,H)         [D >= 10]              (10,1) 
          6. f14(A,B,C,D,E,F,G,H) -> f14(A,1 + B,C,D,E,F,G,H)         [9 >= B]               (100,1)
          7. f14(A,B,C,D,E,F,G,H) -> f11(1 + A,B,C,D,E,F,G,H)         [B >= 10]              (10,1) 
          8. f11(A,B,C,D,E,F,G,H) -> f33(A,B,0,D,0,0,0,0)             [A >= 10]              (1,1)  
          9. f0(A,B,C,D,E,F,G,H)  -> f11(0,B,C,D,E,F,G,H)             True                   (1,1)  
        Signature:
          {(f0,8);(f11,8);(f14,8);(f33,8);(f36,8);(f58,8)}
        Flow Graph:
          [0->{6},1->{2,3},2->{2,3,4},3->{2,3,4},4->{1},6->{6,7},7->{0,8},8->{1},9->{0}]
        Sizebounds:
          (<0,0,A>, 9) (<0,0,B>,      0) (<0,0,C>, C) (<0,0,D>,  D) (<0,0,E>, E) (<0,0,F>, F) (<0,0,G>, G) (<0,0,H>, H) 
          (<1,0,A>, ?) (<1,0,B>,      ?) (<1,0,C>, 9) (<1,0,D>,  0) (<1,0,E>, ?) (<1,0,F>, ?) (<1,0,G>, ?) (<1,0,H>, ?) 
          (<2,0,A>, ?) (<2,0,B>,      ?) (<2,0,C>, ?) (<2,0,D>, 10) (<2,0,E>, ?) (<2,0,F>, ?) (<2,0,G>, ?) (<2,0,H>, ?) 
          (<3,0,A>, ?) (<3,0,B>,      ?) (<3,0,C>, ?) (<3,0,D>, 10) (<3,0,E>, ?) (<3,0,F>, ?) (<3,0,G>, ?) (<3,0,H>, ?) 
          (<4,0,A>, ?) (<4,0,B>,      ?) (<4,0,C>, ?) (<4,0,D>, 10) (<4,0,E>, ?) (<4,0,F>, ?) (<4,0,G>, ?) (<4,0,H>, ?) 
          (<6,0,A>, 9) (<6,0,B>,     10) (<6,0,C>, C) (<6,0,D>,  D) (<6,0,E>, E) (<6,0,F>, F) (<6,0,G>, G) (<6,0,H>, H) 
          (<7,0,A>, 9) (<7,0,B>,     10) (<7,0,C>, C) (<7,0,D>,  D) (<7,0,E>, E) (<7,0,F>, F) (<7,0,G>, G) (<7,0,H>, H) 
          (<8,0,A>, 9) (<8,0,B>, 10 + B) (<8,0,C>, 0) (<8,0,D>,  D) (<8,0,E>, 0) (<8,0,F>, 0) (<8,0,G>, 0) (<8,0,H>, 0) 
          (<9,0,A>, 0) (<9,0,B>,      B) (<9,0,C>, C) (<9,0,D>,  D) (<9,0,E>, E) (<9,0,F>, F) (<9,0,G>, G) (<9,0,H>, H) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [2,3], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f36) = 10 + -1*x4
        
        The following rules are strictly oriented:
        [9 >= D && 0 >= 1 + R] ==>                                 
          f36(A,B,C,D,E,F,G,H)   = 10 + -1*D                       
                                 > 9 + -1*D                        
                                 = f36(A,B,C,1 + D,E + S,1 + F,G,H)
        
                      [9 >= D] ==>                                 
          f36(A,B,C,D,E,F,G,H)   = 10 + -1*D                       
                                 > 9 + -1*D                        
                                 = f36(A,B,C,1 + D,E,F,G + S,1 + H)
        
        
        The following rules are weakly oriented:
        
        We use the following global sizebounds:
        (<0,0,A>, 9) (<0,0,B>,      0) (<0,0,C>, C) (<0,0,D>,  D) (<0,0,E>, E) (<0,0,F>, F) (<0,0,G>, G) (<0,0,H>, H) 
        (<1,0,A>, ?) (<1,0,B>,      ?) (<1,0,C>, 9) (<1,0,D>,  0) (<1,0,E>, ?) (<1,0,F>, ?) (<1,0,G>, ?) (<1,0,H>, ?) 
        (<2,0,A>, ?) (<2,0,B>,      ?) (<2,0,C>, ?) (<2,0,D>, 10) (<2,0,E>, ?) (<2,0,F>, ?) (<2,0,G>, ?) (<2,0,H>, ?) 
        (<3,0,A>, ?) (<3,0,B>,      ?) (<3,0,C>, ?) (<3,0,D>, 10) (<3,0,E>, ?) (<3,0,F>, ?) (<3,0,G>, ?) (<3,0,H>, ?) 
        (<4,0,A>, ?) (<4,0,B>,      ?) (<4,0,C>, ?) (<4,0,D>, 10) (<4,0,E>, ?) (<4,0,F>, ?) (<4,0,G>, ?) (<4,0,H>, ?) 
        (<6,0,A>, 9) (<6,0,B>,     10) (<6,0,C>, C) (<6,0,D>,  D) (<6,0,E>, E) (<6,0,F>, F) (<6,0,G>, G) (<6,0,H>, H) 
        (<7,0,A>, 9) (<7,0,B>,     10) (<7,0,C>, C) (<7,0,D>,  D) (<7,0,E>, E) (<7,0,F>, F) (<7,0,G>, G) (<7,0,H>, H) 
        (<8,0,A>, 9) (<8,0,B>, 10 + B) (<8,0,C>, 0) (<8,0,D>,  D) (<8,0,E>, 0) (<8,0,F>, 0) (<8,0,G>, 0) (<8,0,H>, 0) 
        (<9,0,A>, 0) (<9,0,B>,      B) (<9,0,C>, C) (<9,0,D>,  D) (<9,0,E>, E) (<9,0,F>, F) (<9,0,G>, G) (<9,0,H>, H) 
* Step 14: KnowledgePropagation WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f11(A,B,C,D,E,F,G,H) -> f14(A,0,C,D,E,F,G,H)             [9 >= A]               (10,1) 
          1. f33(A,B,C,D,E,F,G,H) -> f36(A,B,C,0,E,F,G,H)             [9 >= C]               (10,1) 
          2. f36(A,B,C,D,E,F,G,H) -> f36(A,B,C,1 + D,E + S,1 + F,G,H) [9 >= D && 0 >= 1 + R] (100,1)
          3. f36(A,B,C,D,E,F,G,H) -> f36(A,B,C,1 + D,E,F,G + S,1 + H) [9 >= D]               (100,1)
          4. f36(A,B,C,D,E,F,G,H) -> f33(A,B,1 + C,D,E,F,G,H)         [D >= 10]              (10,1) 
          6. f14(A,B,C,D,E,F,G,H) -> f14(A,1 + B,C,D,E,F,G,H)         [9 >= B]               (100,1)
          7. f14(A,B,C,D,E,F,G,H) -> f11(1 + A,B,C,D,E,F,G,H)         [B >= 10]              (10,1) 
          8. f11(A,B,C,D,E,F,G,H) -> f33(A,B,0,D,0,0,0,0)             [A >= 10]              (1,1)  
          9. f0(A,B,C,D,E,F,G,H)  -> f11(0,B,C,D,E,F,G,H)             True                   (1,1)  
        Signature:
          {(f0,8);(f11,8);(f14,8);(f33,8);(f36,8);(f58,8)}
        Flow Graph:
          [0->{6},1->{2,3},2->{2,3,4},3->{2,3,4},4->{1},6->{6,7},7->{0,8},8->{1},9->{0}]
        Sizebounds:
          (<0,0,A>, 9) (<0,0,B>,      0) (<0,0,C>, C) (<0,0,D>,  D) (<0,0,E>, E) (<0,0,F>, F) (<0,0,G>, G) (<0,0,H>, H) 
          (<1,0,A>, ?) (<1,0,B>,      ?) (<1,0,C>, 9) (<1,0,D>,  0) (<1,0,E>, ?) (<1,0,F>, ?) (<1,0,G>, ?) (<1,0,H>, ?) 
          (<2,0,A>, ?) (<2,0,B>,      ?) (<2,0,C>, ?) (<2,0,D>, 10) (<2,0,E>, ?) (<2,0,F>, ?) (<2,0,G>, ?) (<2,0,H>, ?) 
          (<3,0,A>, ?) (<3,0,B>,      ?) (<3,0,C>, ?) (<3,0,D>, 10) (<3,0,E>, ?) (<3,0,F>, ?) (<3,0,G>, ?) (<3,0,H>, ?) 
          (<4,0,A>, ?) (<4,0,B>,      ?) (<4,0,C>, ?) (<4,0,D>, 10) (<4,0,E>, ?) (<4,0,F>, ?) (<4,0,G>, ?) (<4,0,H>, ?) 
          (<6,0,A>, 9) (<6,0,B>,     10) (<6,0,C>, C) (<6,0,D>,  D) (<6,0,E>, E) (<6,0,F>, F) (<6,0,G>, G) (<6,0,H>, H) 
          (<7,0,A>, 9) (<7,0,B>,     10) (<7,0,C>, C) (<7,0,D>,  D) (<7,0,E>, E) (<7,0,F>, F) (<7,0,G>, G) (<7,0,H>, H) 
          (<8,0,A>, 9) (<8,0,B>, 10 + B) (<8,0,C>, 0) (<8,0,D>,  D) (<8,0,E>, 0) (<8,0,F>, 0) (<8,0,G>, 0) (<8,0,H>, 0) 
          (<9,0,A>, 0) (<9,0,B>,      B) (<9,0,C>, C) (<9,0,D>,  D) (<9,0,E>, E) (<9,0,F>, F) (<9,0,G>, G) (<9,0,H>, H) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        The problem is already solved.

WORST_CASE(?,O(1))