WORST_CASE(?,O(n^1)) * Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalwisestart(A,B) -> evalwiseentryin(A,B) True (1,1) 1. evalwiseentryin(A,B) -> evalwisereturnin(A,B) [0 >= 1 + A] (?,1) 2. evalwiseentryin(A,B) -> evalwisereturnin(A,B) [0 >= 1 + B] (?,1) 3. evalwiseentryin(A,B) -> evalwisebb6in(B,A) [A >= 0 && B >= 0] (?,1) 4. evalwisebb6in(A,B) -> evalwisebb3in(A,B) [B >= 3 + A] (?,1) 5. evalwisebb6in(A,B) -> evalwisebb3in(A,B) [A >= 3 + B] (?,1) 6. evalwisebb6in(A,B) -> evalwisereturnin(A,B) [2 + A >= B && 2 + B >= A] (?,1) 7. evalwisebb3in(A,B) -> evalwisebb4in(A,B) [A >= 1 + B] (?,1) 8. evalwisebb3in(A,B) -> evalwisebb5in(A,B) [B >= A] (?,1) 9. evalwisebb4in(A,B) -> evalwisebb6in(A,1 + B) True (?,1) 10. evalwisebb5in(A,B) -> evalwisebb6in(1 + A,B) True (?,1) 11. evalwisereturnin(A,B) -> evalwisestop(A,B) True (?,1) Signature: {(evalwisebb3in,2) ;(evalwisebb4in,2) ;(evalwisebb5in,2) ;(evalwisebb6in,2) ;(evalwiseentryin,2) ;(evalwisereturnin,2) ;(evalwisestart,2) ;(evalwisestop,2)} Flow Graph: [0->{1,2,3},1->{11},2->{11},3->{4,5,6},4->{7,8},5->{7,8},6->{11},7->{9},8->{10},9->{4,5,6},10->{4,5,6} ,11->{}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (< 0,0,A>, A, .= 0) (< 0,0,B>, B, .= 0) (< 1,0,A>, A, .= 0) (< 1,0,B>, B, .= 0) (< 2,0,A>, A, .= 0) (< 2,0,B>, B, .= 0) (< 3,0,A>, B, .= 0) (< 3,0,B>, A, .= 0) (< 4,0,A>, A, .= 0) (< 4,0,B>, B, .= 0) (< 5,0,A>, A, .= 0) (< 5,0,B>, B, .= 0) (< 6,0,A>, A, .= 0) (< 6,0,B>, B, .= 0) (< 7,0,A>, A, .= 0) (< 7,0,B>, B, .= 0) (< 8,0,A>, A, .= 0) (< 8,0,B>, B, .= 0) (< 9,0,A>, A, .= 0) (< 9,0,B>, 1 + B, .+ 1) (<10,0,A>, 1 + A, .+ 1) (<10,0,B>, B, .= 0) (<11,0,A>, A, .= 0) (<11,0,B>, B, .= 0) * Step 2: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalwisestart(A,B) -> evalwiseentryin(A,B) True (1,1) 1. evalwiseentryin(A,B) -> evalwisereturnin(A,B) [0 >= 1 + A] (?,1) 2. evalwiseentryin(A,B) -> evalwisereturnin(A,B) [0 >= 1 + B] (?,1) 3. evalwiseentryin(A,B) -> evalwisebb6in(B,A) [A >= 0 && B >= 0] (?,1) 4. evalwisebb6in(A,B) -> evalwisebb3in(A,B) [B >= 3 + A] (?,1) 5. evalwisebb6in(A,B) -> evalwisebb3in(A,B) [A >= 3 + B] (?,1) 6. evalwisebb6in(A,B) -> evalwisereturnin(A,B) [2 + A >= B && 2 + B >= A] (?,1) 7. evalwisebb3in(A,B) -> evalwisebb4in(A,B) [A >= 1 + B] (?,1) 8. evalwisebb3in(A,B) -> evalwisebb5in(A,B) [B >= A] (?,1) 9. evalwisebb4in(A,B) -> evalwisebb6in(A,1 + B) True (?,1) 10. evalwisebb5in(A,B) -> evalwisebb6in(1 + A,B) True (?,1) 11. evalwisereturnin(A,B) -> evalwisestop(A,B) True (?,1) Signature: {(evalwisebb3in,2) ;(evalwisebb4in,2) ;(evalwisebb5in,2) ;(evalwisebb6in,2) ;(evalwiseentryin,2) ;(evalwisereturnin,2) ;(evalwisestart,2) ;(evalwisestop,2)} Flow Graph: [0->{1,2,3},1->{11},2->{11},3->{4,5,6},4->{7,8},5->{7,8},6->{11},7->{9},8->{10},9->{4,5,6},10->{4,5,6} ,11->{}] Sizebounds: (< 0,0,A>, ?) (< 0,0,B>, ?) (< 1,0,A>, ?) (< 1,0,B>, ?) (< 2,0,A>, ?) (< 2,0,B>, ?) (< 3,0,A>, ?) (< 3,0,B>, ?) (< 4,0,A>, ?) (< 4,0,B>, ?) (< 5,0,A>, ?) (< 5,0,B>, ?) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<11,0,A>, ?) (<11,0,B>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (< 0,0,A>, A) (< 0,0,B>, B) (< 1,0,A>, A) (< 1,0,B>, B) (< 2,0,A>, A) (< 2,0,B>, B) (< 3,0,A>, B) (< 3,0,B>, A) (< 4,0,A>, ?) (< 4,0,B>, ?) (< 5,0,A>, ?) (< 5,0,B>, ?) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<11,0,A>, ?) (<11,0,B>, ?) * Step 3: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalwisestart(A,B) -> evalwiseentryin(A,B) True (1,1) 1. evalwiseentryin(A,B) -> evalwisereturnin(A,B) [0 >= 1 + A] (?,1) 2. evalwiseentryin(A,B) -> evalwisereturnin(A,B) [0 >= 1 + B] (?,1) 3. evalwiseentryin(A,B) -> evalwisebb6in(B,A) [A >= 0 && B >= 0] (?,1) 4. evalwisebb6in(A,B) -> evalwisebb3in(A,B) [B >= 3 + A] (?,1) 5. evalwisebb6in(A,B) -> evalwisebb3in(A,B) [A >= 3 + B] (?,1) 6. evalwisebb6in(A,B) -> evalwisereturnin(A,B) [2 + A >= B && 2 + B >= A] (?,1) 7. evalwisebb3in(A,B) -> evalwisebb4in(A,B) [A >= 1 + B] (?,1) 8. evalwisebb3in(A,B) -> evalwisebb5in(A,B) [B >= A] (?,1) 9. evalwisebb4in(A,B) -> evalwisebb6in(A,1 + B) True (?,1) 10. evalwisebb5in(A,B) -> evalwisebb6in(1 + A,B) True (?,1) 11. evalwisereturnin(A,B) -> evalwisestop(A,B) True (?,1) Signature: {(evalwisebb3in,2) ;(evalwisebb4in,2) ;(evalwisebb5in,2) ;(evalwisebb6in,2) ;(evalwiseentryin,2) ;(evalwisereturnin,2) ;(evalwisestart,2) ;(evalwisestop,2)} Flow Graph: [0->{1,2,3},1->{11},2->{11},3->{4,5,6},4->{7,8},5->{7,8},6->{11},7->{9},8->{10},9->{4,5,6},10->{4,5,6} ,11->{}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 1,0,A>, A) (< 1,0,B>, B) (< 2,0,A>, A) (< 2,0,B>, B) (< 3,0,A>, B) (< 3,0,B>, A) (< 4,0,A>, ?) (< 4,0,B>, ?) (< 5,0,A>, ?) (< 5,0,B>, ?) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<11,0,A>, ?) (<11,0,B>, ?) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(4,7),(5,8)] * Step 4: LeafRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalwisestart(A,B) -> evalwiseentryin(A,B) True (1,1) 1. evalwiseentryin(A,B) -> evalwisereturnin(A,B) [0 >= 1 + A] (?,1) 2. evalwiseentryin(A,B) -> evalwisereturnin(A,B) [0 >= 1 + B] (?,1) 3. evalwiseentryin(A,B) -> evalwisebb6in(B,A) [A >= 0 && B >= 0] (?,1) 4. evalwisebb6in(A,B) -> evalwisebb3in(A,B) [B >= 3 + A] (?,1) 5. evalwisebb6in(A,B) -> evalwisebb3in(A,B) [A >= 3 + B] (?,1) 6. evalwisebb6in(A,B) -> evalwisereturnin(A,B) [2 + A >= B && 2 + B >= A] (?,1) 7. evalwisebb3in(A,B) -> evalwisebb4in(A,B) [A >= 1 + B] (?,1) 8. evalwisebb3in(A,B) -> evalwisebb5in(A,B) [B >= A] (?,1) 9. evalwisebb4in(A,B) -> evalwisebb6in(A,1 + B) True (?,1) 10. evalwisebb5in(A,B) -> evalwisebb6in(1 + A,B) True (?,1) 11. evalwisereturnin(A,B) -> evalwisestop(A,B) True (?,1) Signature: {(evalwisebb3in,2) ;(evalwisebb4in,2) ;(evalwisebb5in,2) ;(evalwisebb6in,2) ;(evalwiseentryin,2) ;(evalwisereturnin,2) ;(evalwisestart,2) ;(evalwisestop,2)} Flow Graph: [0->{1,2,3},1->{11},2->{11},3->{4,5,6},4->{8},5->{7},6->{11},7->{9},8->{10},9->{4,5,6},10->{4,5,6},11->{}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 1,0,A>, A) (< 1,0,B>, B) (< 2,0,A>, A) (< 2,0,B>, B) (< 3,0,A>, B) (< 3,0,B>, A) (< 4,0,A>, ?) (< 4,0,B>, ?) (< 5,0,A>, ?) (< 5,0,B>, ?) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<11,0,A>, ?) (<11,0,B>, ?) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [1,2,6,11] * Step 5: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalwisestart(A,B) -> evalwiseentryin(A,B) True (1,1) 3. evalwiseentryin(A,B) -> evalwisebb6in(B,A) [A >= 0 && B >= 0] (?,1) 4. evalwisebb6in(A,B) -> evalwisebb3in(A,B) [B >= 3 + A] (?,1) 5. evalwisebb6in(A,B) -> evalwisebb3in(A,B) [A >= 3 + B] (?,1) 7. evalwisebb3in(A,B) -> evalwisebb4in(A,B) [A >= 1 + B] (?,1) 8. evalwisebb3in(A,B) -> evalwisebb5in(A,B) [B >= A] (?,1) 9. evalwisebb4in(A,B) -> evalwisebb6in(A,1 + B) True (?,1) 10. evalwisebb5in(A,B) -> evalwisebb6in(1 + A,B) True (?,1) Signature: {(evalwisebb3in,2) ;(evalwisebb4in,2) ;(evalwisebb5in,2) ;(evalwisebb6in,2) ;(evalwiseentryin,2) ;(evalwisereturnin,2) ;(evalwisestart,2) ;(evalwisestop,2)} Flow Graph: [0->{3},3->{4,5},4->{8},5->{7},7->{9},8->{10},9->{4,5},10->{4,5}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 3,0,A>, B) (< 3,0,B>, A) (< 4,0,A>, ?) (< 4,0,B>, ?) (< 5,0,A>, ?) (< 5,0,B>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (<10,0,A>, ?) (<10,0,B>, ?) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalwisebb3in) = 0 p(evalwisebb4in) = 0 p(evalwisebb5in) = 0 p(evalwisebb6in) = 0 p(evalwiseentryin) = 1 + x1 p(evalwisestart) = 1 + x1 The following rules are strictly oriented: [A >= 0 && B >= 0] ==> evalwiseentryin(A,B) = 1 + A > 0 = evalwisebb6in(B,A) The following rules are weakly oriented: True ==> evalwisestart(A,B) = 1 + A >= 1 + A = evalwiseentryin(A,B) [B >= 3 + A] ==> evalwisebb6in(A,B) = 0 >= 0 = evalwisebb3in(A,B) [A >= 3 + B] ==> evalwisebb6in(A,B) = 0 >= 0 = evalwisebb3in(A,B) [A >= 1 + B] ==> evalwisebb3in(A,B) = 0 >= 0 = evalwisebb4in(A,B) [B >= A] ==> evalwisebb3in(A,B) = 0 >= 0 = evalwisebb5in(A,B) True ==> evalwisebb4in(A,B) = 0 >= 0 = evalwisebb6in(A,1 + B) True ==> evalwisebb5in(A,B) = 0 >= 0 = evalwisebb6in(1 + A,B) * Step 6: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalwisestart(A,B) -> evalwiseentryin(A,B) True (1,1) 3. evalwiseentryin(A,B) -> evalwisebb6in(B,A) [A >= 0 && B >= 0] (1 + A,1) 4. evalwisebb6in(A,B) -> evalwisebb3in(A,B) [B >= 3 + A] (?,1) 5. evalwisebb6in(A,B) -> evalwisebb3in(A,B) [A >= 3 + B] (?,1) 7. evalwisebb3in(A,B) -> evalwisebb4in(A,B) [A >= 1 + B] (?,1) 8. evalwisebb3in(A,B) -> evalwisebb5in(A,B) [B >= A] (?,1) 9. evalwisebb4in(A,B) -> evalwisebb6in(A,1 + B) True (?,1) 10. evalwisebb5in(A,B) -> evalwisebb6in(1 + A,B) True (?,1) Signature: {(evalwisebb3in,2) ;(evalwisebb4in,2) ;(evalwisebb5in,2) ;(evalwisebb6in,2) ;(evalwiseentryin,2) ;(evalwisereturnin,2) ;(evalwisestart,2) ;(evalwisestop,2)} Flow Graph: [0->{3},3->{4,5},4->{8},5->{7},7->{9},8->{10},9->{4,5},10->{4,5}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 3,0,A>, B) (< 3,0,B>, A) (< 4,0,A>, ?) (< 4,0,B>, ?) (< 5,0,A>, ?) (< 5,0,B>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (<10,0,A>, ?) (<10,0,B>, ?) + Applied Processor: ChainProcessor False [0,3,4,5,7,8,9,10] + Details: We chained rule 0 to obtain the rules [11] . * Step 7: UnreachableRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 3. evalwiseentryin(A,B) -> evalwisebb6in(B,A) [A >= 0 && B >= 0] (1 + A,1) 4. evalwisebb6in(A,B) -> evalwisebb3in(A,B) [B >= 3 + A] (?,1) 5. evalwisebb6in(A,B) -> evalwisebb3in(A,B) [A >= 3 + B] (?,1) 7. evalwisebb3in(A,B) -> evalwisebb4in(A,B) [A >= 1 + B] (?,1) 8. evalwisebb3in(A,B) -> evalwisebb5in(A,B) [B >= A] (?,1) 9. evalwisebb4in(A,B) -> evalwisebb6in(A,1 + B) True (?,1) 10. evalwisebb5in(A,B) -> evalwisebb6in(1 + A,B) True (?,1) 11. evalwisestart(A,B) -> evalwisebb6in(B,A) [A >= 0 && B >= 0] (1,2) Signature: {(evalwisebb3in,2) ;(evalwisebb4in,2) ;(evalwisebb5in,2) ;(evalwisebb6in,2) ;(evalwiseentryin,2) ;(evalwisereturnin,2) ;(evalwisestart,2) ;(evalwisestop,2)} Flow Graph: [3->{4,5},4->{7,8},5->{7,8},7->{9},8->{10},9->{4,5},10->{4,5},11->{4,5}] Sizebounds: (< 3,0,A>, B) (< 3,0,B>, A) (< 4,0,A>, ?) (< 4,0,B>, ?) (< 5,0,A>, ?) (< 5,0,B>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<11,0,A>, B) (<11,0,B>, A) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [3] * Step 8: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 4. evalwisebb6in(A,B) -> evalwisebb3in(A,B) [B >= 3 + A] (?,1) 5. evalwisebb6in(A,B) -> evalwisebb3in(A,B) [A >= 3 + B] (?,1) 7. evalwisebb3in(A,B) -> evalwisebb4in(A,B) [A >= 1 + B] (?,1) 8. evalwisebb3in(A,B) -> evalwisebb5in(A,B) [B >= A] (?,1) 9. evalwisebb4in(A,B) -> evalwisebb6in(A,1 + B) True (?,1) 10. evalwisebb5in(A,B) -> evalwisebb6in(1 + A,B) True (?,1) 11. evalwisestart(A,B) -> evalwisebb6in(B,A) [A >= 0 && B >= 0] (1,2) Signature: {(evalwisebb3in,2) ;(evalwisebb4in,2) ;(evalwisebb5in,2) ;(evalwisebb6in,2) ;(evalwiseentryin,2) ;(evalwisereturnin,2) ;(evalwisestart,2) ;(evalwisestop,2)} Flow Graph: [4->{7,8},5->{7,8},7->{9},8->{10},9->{4,5},10->{4,5},11->{4,5}] Sizebounds: (< 4,0,A>, ?) (< 4,0,B>, ?) (< 5,0,A>, ?) (< 5,0,B>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<11,0,A>, B) (<11,0,B>, A) + Applied Processor: ChainProcessor False [4,5,7,8,9,10,11] + Details: We chained rule 4 to obtain the rules [12,13] . * Step 9: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 5. evalwisebb6in(A,B) -> evalwisebb3in(A,B) [A >= 3 + B] (?,1) 7. evalwisebb3in(A,B) -> evalwisebb4in(A,B) [A >= 1 + B] (?,1) 8. evalwisebb3in(A,B) -> evalwisebb5in(A,B) [B >= A] (?,1) 9. evalwisebb4in(A,B) -> evalwisebb6in(A,1 + B) True (?,1) 10. evalwisebb5in(A,B) -> evalwisebb6in(1 + A,B) True (?,1) 11. evalwisestart(A,B) -> evalwisebb6in(B,A) [A >= 0 && B >= 0] (1,2) 12. evalwisebb6in(A,B) -> evalwisebb4in(A,B) [B >= 3 + A && A >= 1 + B] (?,2) 13. evalwisebb6in(A,B) -> evalwisebb5in(A,B) [B >= 3 + A && B >= A] (?,2) Signature: {(evalwisebb3in,2) ;(evalwisebb4in,2) ;(evalwisebb5in,2) ;(evalwisebb6in,2) ;(evalwiseentryin,2) ;(evalwisereturnin,2) ;(evalwisestart,2) ;(evalwisestop,2)} Flow Graph: [5->{7,8},7->{9},8->{10},9->{5,12,13},10->{5,12,13},11->{5,12,13},12->{9},13->{10}] Sizebounds: (< 5,0,A>, ?) (< 5,0,B>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<11,0,A>, B) (<11,0,B>, A) (<12,0,A>, ?) (<12,0,B>, ?) (<13,0,A>, ?) (<13,0,B>, ?) + Applied Processor: ChainProcessor False [5,7,8,9,10,11,12,13] + Details: We chained rule 5 to obtain the rules [14,15] . * Step 10: UnreachableRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 7. evalwisebb3in(A,B) -> evalwisebb4in(A,B) [A >= 1 + B] (?,1) 8. evalwisebb3in(A,B) -> evalwisebb5in(A,B) [B >= A] (?,1) 9. evalwisebb4in(A,B) -> evalwisebb6in(A,1 + B) True (?,1) 10. evalwisebb5in(A,B) -> evalwisebb6in(1 + A,B) True (?,1) 11. evalwisestart(A,B) -> evalwisebb6in(B,A) [A >= 0 && B >= 0] (1,2) 12. evalwisebb6in(A,B) -> evalwisebb4in(A,B) [B >= 3 + A && A >= 1 + B] (?,2) 13. evalwisebb6in(A,B) -> evalwisebb5in(A,B) [B >= 3 + A && B >= A] (?,2) 14. evalwisebb6in(A,B) -> evalwisebb4in(A,B) [A >= 3 + B && A >= 1 + B] (?,2) 15. evalwisebb6in(A,B) -> evalwisebb5in(A,B) [A >= 3 + B && B >= A] (?,2) Signature: {(evalwisebb3in,2) ;(evalwisebb4in,2) ;(evalwisebb5in,2) ;(evalwisebb6in,2) ;(evalwiseentryin,2) ;(evalwisereturnin,2) ;(evalwisestart,2) ;(evalwisestop,2)} Flow Graph: [7->{9},8->{10},9->{12,13,14,15},10->{12,13,14,15},11->{12,13,14,15},12->{9},13->{10},14->{9},15->{10}] Sizebounds: (< 7,0,A>, ?) (< 7,0,B>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<11,0,A>, B) (<11,0,B>, A) (<12,0,A>, ?) (<12,0,B>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<14,0,A>, ?) (<14,0,B>, ?) (<15,0,A>, ?) (<15,0,B>, ?) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [7,8] * Step 11: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 9. evalwisebb4in(A,B) -> evalwisebb6in(A,1 + B) True (?,1) 10. evalwisebb5in(A,B) -> evalwisebb6in(1 + A,B) True (?,1) 11. evalwisestart(A,B) -> evalwisebb6in(B,A) [A >= 0 && B >= 0] (1,2) 12. evalwisebb6in(A,B) -> evalwisebb4in(A,B) [B >= 3 + A && A >= 1 + B] (?,2) 13. evalwisebb6in(A,B) -> evalwisebb5in(A,B) [B >= 3 + A && B >= A] (?,2) 14. evalwisebb6in(A,B) -> evalwisebb4in(A,B) [A >= 3 + B && A >= 1 + B] (?,2) 15. evalwisebb6in(A,B) -> evalwisebb5in(A,B) [A >= 3 + B && B >= A] (?,2) Signature: {(evalwisebb3in,2) ;(evalwisebb4in,2) ;(evalwisebb5in,2) ;(evalwisebb6in,2) ;(evalwiseentryin,2) ;(evalwisereturnin,2) ;(evalwisestart,2) ;(evalwisestop,2)} Flow Graph: [9->{12,13,14,15},10->{12,13,14,15},11->{12,13,14,15},12->{9},13->{10},14->{9},15->{10}] Sizebounds: (< 9,0,A>, ?) (< 9,0,B>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<11,0,A>, B) (<11,0,B>, A) (<12,0,A>, ?) (<12,0,B>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<14,0,A>, ?) (<14,0,B>, ?) (<15,0,A>, ?) (<15,0,B>, ?) + Applied Processor: ChainProcessor False [9,10,11,12,13,14,15] + Details: We chained rule 9 to obtain the rules [16,17,18,19] . * Step 12: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 10. evalwisebb5in(A,B) -> evalwisebb6in(1 + A,B) True (?,1) 11. evalwisestart(A,B) -> evalwisebb6in(B,A) [A >= 0 && B >= 0] (1,2) 12. evalwisebb6in(A,B) -> evalwisebb4in(A,B) [B >= 3 + A && A >= 1 + B] (?,2) 13. evalwisebb6in(A,B) -> evalwisebb5in(A,B) [B >= 3 + A && B >= A] (?,2) 14. evalwisebb6in(A,B) -> evalwisebb4in(A,B) [A >= 3 + B && A >= 1 + B] (?,2) 15. evalwisebb6in(A,B) -> evalwisebb5in(A,B) [A >= 3 + B && B >= A] (?,2) 16. evalwisebb4in(A,B) -> evalwisebb4in(A,1 + B) [1 + B >= 3 + A && A >= 2 + B] (?,3) 17. evalwisebb4in(A,B) -> evalwisebb5in(A,1 + B) [1 + B >= 3 + A && 1 + B >= A] (?,3) 18. evalwisebb4in(A,B) -> evalwisebb4in(A,1 + B) [A >= 4 + B && A >= 2 + B] (?,3) 19. evalwisebb4in(A,B) -> evalwisebb5in(A,1 + B) [A >= 4 + B && 1 + B >= A] (?,3) Signature: {(evalwisebb3in,2) ;(evalwisebb4in,2) ;(evalwisebb5in,2) ;(evalwisebb6in,2) ;(evalwiseentryin,2) ;(evalwisereturnin,2) ;(evalwisestart,2) ;(evalwisestop,2)} Flow Graph: [10->{12,13,14,15},11->{12,13,14,15},12->{16,17,18,19},13->{10},14->{16,17,18,19},15->{10},16->{16,17,18 ,19},17->{10},18->{16,17,18,19},19->{10}] Sizebounds: (<10,0,A>, ?) (<10,0,B>, ?) (<11,0,A>, B) (<11,0,B>, A) (<12,0,A>, ?) (<12,0,B>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<14,0,A>, ?) (<14,0,B>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<17,0,A>, ?) (<17,0,B>, ?) (<18,0,A>, ?) (<18,0,B>, ?) (<19,0,A>, ?) (<19,0,B>, ?) + Applied Processor: ChainProcessor False [10,11,12,13,14,15,16,17,18,19] + Details: We chained rule 10 to obtain the rules [20,21,22,23] . * Step 13: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 11. evalwisestart(A,B) -> evalwisebb6in(B,A) [A >= 0 && B >= 0] (1,2) 12. evalwisebb6in(A,B) -> evalwisebb4in(A,B) [B >= 3 + A && A >= 1 + B] (?,2) 13. evalwisebb6in(A,B) -> evalwisebb5in(A,B) [B >= 3 + A && B >= A] (?,2) 14. evalwisebb6in(A,B) -> evalwisebb4in(A,B) [A >= 3 + B && A >= 1 + B] (?,2) 15. evalwisebb6in(A,B) -> evalwisebb5in(A,B) [A >= 3 + B && B >= A] (?,2) 16. evalwisebb4in(A,B) -> evalwisebb4in(A,1 + B) [1 + B >= 3 + A && A >= 2 + B] (?,3) 17. evalwisebb4in(A,B) -> evalwisebb5in(A,1 + B) [1 + B >= 3 + A && 1 + B >= A] (?,3) 18. evalwisebb4in(A,B) -> evalwisebb4in(A,1 + B) [A >= 4 + B && A >= 2 + B] (?,3) 19. evalwisebb4in(A,B) -> evalwisebb5in(A,1 + B) [A >= 4 + B && 1 + B >= A] (?,3) 20. evalwisebb5in(A,B) -> evalwisebb4in(1 + A,B) [B >= 4 + A && 1 + A >= 1 + B] (?,3) 21. evalwisebb5in(A,B) -> evalwisebb5in(1 + A,B) [B >= 4 + A && B >= 1 + A] (?,3) 22. evalwisebb5in(A,B) -> evalwisebb4in(1 + A,B) [1 + A >= 3 + B && 1 + A >= 1 + B] (?,3) 23. evalwisebb5in(A,B) -> evalwisebb5in(1 + A,B) [1 + A >= 3 + B && B >= 1 + A] (?,3) Signature: {(evalwisebb3in,2) ;(evalwisebb4in,2) ;(evalwisebb5in,2) ;(evalwisebb6in,2) ;(evalwiseentryin,2) ;(evalwisereturnin,2) ;(evalwisestart,2) ;(evalwisestop,2)} Flow Graph: [11->{12,13,14,15},12->{16,17,18,19},13->{20,21,22,23},14->{16,17,18,19},15->{20,21,22,23},16->{16,17,18 ,19},17->{20,21,22,23},18->{16,17,18,19},19->{20,21,22,23},20->{16,17,18,19},21->{20,21,22,23},22->{16,17,18 ,19},23->{20,21,22,23}] Sizebounds: (<11,0,A>, B) (<11,0,B>, A) (<12,0,A>, ?) (<12,0,B>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<14,0,A>, ?) (<14,0,B>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<17,0,A>, ?) (<17,0,B>, ?) (<18,0,A>, ?) (<18,0,B>, ?) (<19,0,A>, ?) (<19,0,B>, ?) (<20,0,A>, ?) (<20,0,B>, ?) (<21,0,A>, ?) (<21,0,B>, ?) (<22,0,A>, ?) (<22,0,B>, ?) (<23,0,A>, ?) (<23,0,B>, ?) + Applied Processor: ChainProcessor False [11,12,13,14,15,16,17,18,19,20,21,22,23] + Details: We chained rule 11 to obtain the rules [24,25,26,27] . * Step 14: UnreachableRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 12. evalwisebb6in(A,B) -> evalwisebb4in(A,B) [B >= 3 + A && A >= 1 + B] (?,2) 13. evalwisebb6in(A,B) -> evalwisebb5in(A,B) [B >= 3 + A && B >= A] (?,2) 14. evalwisebb6in(A,B) -> evalwisebb4in(A,B) [A >= 3 + B && A >= 1 + B] (?,2) 15. evalwisebb6in(A,B) -> evalwisebb5in(A,B) [A >= 3 + B && B >= A] (?,2) 16. evalwisebb4in(A,B) -> evalwisebb4in(A,1 + B) [1 + B >= 3 + A && A >= 2 + B] (?,3) 17. evalwisebb4in(A,B) -> evalwisebb5in(A,1 + B) [1 + B >= 3 + A && 1 + B >= A] (?,3) 18. evalwisebb4in(A,B) -> evalwisebb4in(A,1 + B) [A >= 4 + B && A >= 2 + B] (?,3) 19. evalwisebb4in(A,B) -> evalwisebb5in(A,1 + B) [A >= 4 + B && 1 + B >= A] (?,3) 20. evalwisebb5in(A,B) -> evalwisebb4in(1 + A,B) [B >= 4 + A && 1 + A >= 1 + B] (?,3) 21. evalwisebb5in(A,B) -> evalwisebb5in(1 + A,B) [B >= 4 + A && B >= 1 + A] (?,3) 22. evalwisebb5in(A,B) -> evalwisebb4in(1 + A,B) [1 + A >= 3 + B && 1 + A >= 1 + B] (?,3) 23. evalwisebb5in(A,B) -> evalwisebb5in(1 + A,B) [1 + A >= 3 + B && B >= 1 + A] (?,3) 24. evalwisestart(A,B) -> evalwisebb4in(B,A) [A >= 0 && B >= 0 && A >= 3 + B && B >= 1 + A] (1,4) 25. evalwisestart(A,B) -> evalwisebb5in(B,A) [A >= 0 && B >= 0 && A >= 3 + B && A >= B] (1,4) 26. evalwisestart(A,B) -> evalwisebb4in(B,A) [A >= 0 && B >= 0 && B >= 3 + A && B >= 1 + A] (1,4) 27. evalwisestart(A,B) -> evalwisebb5in(B,A) [A >= 0 && B >= 0 && B >= 3 + A && A >= B] (1,4) Signature: {(evalwisebb3in,2) ;(evalwisebb4in,2) ;(evalwisebb5in,2) ;(evalwisebb6in,2) ;(evalwiseentryin,2) ;(evalwisereturnin,2) ;(evalwisestart,2) ;(evalwisestop,2)} Flow Graph: [12->{16,17,18,19},13->{20,21,22,23},14->{16,17,18,19},15->{20,21,22,23},16->{16,17,18,19},17->{20,21,22 ,23},18->{16,17,18,19},19->{20,21,22,23},20->{16,17,18,19},21->{20,21,22,23},22->{16,17,18,19},23->{20,21,22 ,23},24->{16,17,18,19},25->{20,21,22,23},26->{16,17,18,19},27->{20,21,22,23}] Sizebounds: (<12,0,A>, ?) (<12,0,B>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<14,0,A>, ?) (<14,0,B>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<17,0,A>, ?) (<17,0,B>, ?) (<18,0,A>, ?) (<18,0,B>, ?) (<19,0,A>, ?) (<19,0,B>, ?) (<20,0,A>, ?) (<20,0,B>, ?) (<21,0,A>, ?) (<21,0,B>, ?) (<22,0,A>, ?) (<22,0,B>, ?) (<23,0,A>, ?) (<23,0,B>, ?) (<24,0,A>, ?) (<24,0,B>, ?) (<25,0,A>, ?) (<25,0,B>, ?) (<26,0,A>, ?) (<26,0,B>, ?) (<27,0,A>, ?) (<27,0,B>, ?) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [12,13,14,15] * Step 15: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 16. evalwisebb4in(A,B) -> evalwisebb4in(A,1 + B) [1 + B >= 3 + A && A >= 2 + B] (?,3) 17. evalwisebb4in(A,B) -> evalwisebb5in(A,1 + B) [1 + B >= 3 + A && 1 + B >= A] (?,3) 18. evalwisebb4in(A,B) -> evalwisebb4in(A,1 + B) [A >= 4 + B && A >= 2 + B] (?,3) 19. evalwisebb4in(A,B) -> evalwisebb5in(A,1 + B) [A >= 4 + B && 1 + B >= A] (?,3) 20. evalwisebb5in(A,B) -> evalwisebb4in(1 + A,B) [B >= 4 + A && 1 + A >= 1 + B] (?,3) 21. evalwisebb5in(A,B) -> evalwisebb5in(1 + A,B) [B >= 4 + A && B >= 1 + A] (?,3) 22. evalwisebb5in(A,B) -> evalwisebb4in(1 + A,B) [1 + A >= 3 + B && 1 + A >= 1 + B] (?,3) 23. evalwisebb5in(A,B) -> evalwisebb5in(1 + A,B) [1 + A >= 3 + B && B >= 1 + A] (?,3) 24. evalwisestart(A,B) -> evalwisebb4in(B,A) [A >= 0 && B >= 0 && A >= 3 + B && B >= 1 + A] (1,4) 25. evalwisestart(A,B) -> evalwisebb5in(B,A) [A >= 0 && B >= 0 && A >= 3 + B && A >= B] (1,4) 26. evalwisestart(A,B) -> evalwisebb4in(B,A) [A >= 0 && B >= 0 && B >= 3 + A && B >= 1 + A] (1,4) 27. evalwisestart(A,B) -> evalwisebb5in(B,A) [A >= 0 && B >= 0 && B >= 3 + A && A >= B] (1,4) Signature: {(evalwisebb3in,2) ;(evalwisebb4in,2) ;(evalwisebb5in,2) ;(evalwisebb6in,2) ;(evalwiseentryin,2) ;(evalwisereturnin,2) ;(evalwisestart,2) ;(evalwisestop,2)} Flow Graph: [16->{16,17,18,19},17->{20,21,22,23},18->{16,17,18,19},19->{20,21,22,23},20->{16,17,18,19},21->{20,21,22 ,23},22->{16,17,18,19},23->{20,21,22,23},24->{16,17,18,19},25->{20,21,22,23},26->{16,17,18,19},27->{20,21,22 ,23}] Sizebounds: (<16,0,A>, ?) (<16,0,B>, ?) (<17,0,A>, ?) (<17,0,B>, ?) (<18,0,A>, ?) (<18,0,B>, ?) (<19,0,A>, ?) (<19,0,B>, ?) (<20,0,A>, ?) (<20,0,B>, ?) (<21,0,A>, ?) (<21,0,B>, ?) (<22,0,A>, ?) (<22,0,B>, ?) (<23,0,A>, ?) (<23,0,B>, ?) (<24,0,A>, ?) (<24,0,B>, ?) (<25,0,A>, ?) (<25,0,B>, ?) (<26,0,A>, ?) (<26,0,B>, ?) (<27,0,A>, ?) (<27,0,B>, ?) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(16,16) ,(16,17) ,(16,18) ,(16,19) ,(17,20) ,(17,22) ,(17,23) ,(18,16) ,(18,17) ,(18,19) ,(19,20) ,(19,21) ,(19,22) ,(19,23) ,(20,16) ,(20,17) ,(20,18) ,(20,19) ,(21,20) ,(21,22) ,(21,23) ,(22,16) ,(22,17) ,(22,19) ,(23,20) ,(23,21) ,(23,22) ,(23,23) ,(24,16) ,(24,17) ,(24,18) ,(24,19) ,(25,20) ,(25,22) ,(25,23) ,(26,16) ,(26,17) ,(26,19) ,(27,20) ,(27,21) ,(27,22) ,(27,23)] * Step 16: UnreachableRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 16. evalwisebb4in(A,B) -> evalwisebb4in(A,1 + B) [1 + B >= 3 + A && A >= 2 + B] (?,3) 17. evalwisebb4in(A,B) -> evalwisebb5in(A,1 + B) [1 + B >= 3 + A && 1 + B >= A] (?,3) 18. evalwisebb4in(A,B) -> evalwisebb4in(A,1 + B) [A >= 4 + B && A >= 2 + B] (?,3) 19. evalwisebb4in(A,B) -> evalwisebb5in(A,1 + B) [A >= 4 + B && 1 + B >= A] (?,3) 20. evalwisebb5in(A,B) -> evalwisebb4in(1 + A,B) [B >= 4 + A && 1 + A >= 1 + B] (?,3) 21. evalwisebb5in(A,B) -> evalwisebb5in(1 + A,B) [B >= 4 + A && B >= 1 + A] (?,3) 22. evalwisebb5in(A,B) -> evalwisebb4in(1 + A,B) [1 + A >= 3 + B && 1 + A >= 1 + B] (?,3) 23. evalwisebb5in(A,B) -> evalwisebb5in(1 + A,B) [1 + A >= 3 + B && B >= 1 + A] (?,3) 24. evalwisestart(A,B) -> evalwisebb4in(B,A) [A >= 0 && B >= 0 && A >= 3 + B && B >= 1 + A] (1,4) 25. evalwisestart(A,B) -> evalwisebb5in(B,A) [A >= 0 && B >= 0 && A >= 3 + B && A >= B] (1,4) 26. evalwisestart(A,B) -> evalwisebb4in(B,A) [A >= 0 && B >= 0 && B >= 3 + A && B >= 1 + A] (1,4) 27. evalwisestart(A,B) -> evalwisebb5in(B,A) [A >= 0 && B >= 0 && B >= 3 + A && A >= B] (1,4) Signature: {(evalwisebb3in,2) ;(evalwisebb4in,2) ;(evalwisebb5in,2) ;(evalwisebb6in,2) ;(evalwiseentryin,2) ;(evalwisereturnin,2) ;(evalwisestart,2) ;(evalwisestop,2)} Flow Graph: [16->{},17->{21},18->{18},19->{},20->{},21->{21},22->{18},23->{},24->{},25->{21},26->{18},27->{}] Sizebounds: (<16,0,A>, ?) (<16,0,B>, ?) (<17,0,A>, ?) (<17,0,B>, ?) (<18,0,A>, ?) (<18,0,B>, ?) (<19,0,A>, ?) (<19,0,B>, ?) (<20,0,A>, ?) (<20,0,B>, ?) (<21,0,A>, ?) (<21,0,B>, ?) (<22,0,A>, ?) (<22,0,B>, ?) (<23,0,A>, ?) (<23,0,B>, ?) (<24,0,A>, ?) (<24,0,B>, ?) (<25,0,A>, ?) (<25,0,B>, ?) (<26,0,A>, ?) (<26,0,B>, ?) (<27,0,A>, ?) (<27,0,B>, ?) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [16,17,19,20,22,23] * Step 17: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 18. evalwisebb4in(A,B) -> evalwisebb4in(A,1 + B) [A >= 4 + B && A >= 2 + B] (?,3) 21. evalwisebb5in(A,B) -> evalwisebb5in(1 + A,B) [B >= 4 + A && B >= 1 + A] (?,3) 24. evalwisestart(A,B) -> evalwisebb4in(B,A) [A >= 0 && B >= 0 && A >= 3 + B && B >= 1 + A] (1,4) 25. evalwisestart(A,B) -> evalwisebb5in(B,A) [A >= 0 && B >= 0 && A >= 3 + B && A >= B] (1,4) 26. evalwisestart(A,B) -> evalwisebb4in(B,A) [A >= 0 && B >= 0 && B >= 3 + A && B >= 1 + A] (1,4) 27. evalwisestart(A,B) -> evalwisebb5in(B,A) [A >= 0 && B >= 0 && B >= 3 + A && A >= B] (1,4) Signature: {(evalwisebb3in,2) ;(evalwisebb4in,2) ;(evalwisebb5in,2) ;(evalwisebb6in,2) ;(evalwiseentryin,2) ;(evalwisereturnin,2) ;(evalwisestart,2) ;(evalwisestop,2)} Flow Graph: [18->{18},21->{21},24->{},25->{21},26->{18},27->{}] Sizebounds: (<18,0,A>, ?) (<18,0,B>, ?) (<21,0,A>, ?) (<21,0,B>, ?) (<24,0,A>, ?) (<24,0,B>, ?) (<25,0,A>, ?) (<25,0,B>, ?) (<26,0,A>, ?) (<26,0,B>, ?) (<27,0,A>, ?) (<27,0,B>, ?) + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<18,0,A>, A, .= 0) (<18,0,B>, 1 + B, .+ 1) (<21,0,A>, 1 + A, .+ 1) (<21,0,B>, B, .= 0) (<24,0,A>, B, .= 0) (<24,0,B>, A, .= 0) (<25,0,A>, B, .= 0) (<25,0,B>, A, .= 0) (<26,0,A>, B, .= 0) (<26,0,B>, A, .= 0) (<27,0,A>, B, .= 0) (<27,0,B>, A, .= 0) * Step 18: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 18. evalwisebb4in(A,B) -> evalwisebb4in(A,1 + B) [A >= 4 + B && A >= 2 + B] (?,3) 21. evalwisebb5in(A,B) -> evalwisebb5in(1 + A,B) [B >= 4 + A && B >= 1 + A] (?,3) 24. evalwisestart(A,B) -> evalwisebb4in(B,A) [A >= 0 && B >= 0 && A >= 3 + B && B >= 1 + A] (1,4) 25. evalwisestart(A,B) -> evalwisebb5in(B,A) [A >= 0 && B >= 0 && A >= 3 + B && A >= B] (1,4) 26. evalwisestart(A,B) -> evalwisebb4in(B,A) [A >= 0 && B >= 0 && B >= 3 + A && B >= 1 + A] (1,4) 27. evalwisestart(A,B) -> evalwisebb5in(B,A) [A >= 0 && B >= 0 && B >= 3 + A && A >= B] (1,4) Signature: {(evalwisebb3in,2) ;(evalwisebb4in,2) ;(evalwisebb5in,2) ;(evalwisebb6in,2) ;(evalwiseentryin,2) ;(evalwisereturnin,2) ;(evalwisestart,2) ;(evalwisestop,2)} Flow Graph: [18->{18},21->{21},24->{},25->{21},26->{18},27->{}] Sizebounds: (<18,0,A>, ?) (<18,0,B>, ?) (<21,0,A>, ?) (<21,0,B>, ?) (<24,0,A>, ?) (<24,0,B>, ?) (<25,0,A>, ?) (<25,0,B>, ?) (<26,0,A>, ?) (<26,0,B>, ?) (<27,0,A>, ?) (<27,0,B>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<18,0,A>, B) (<18,0,B>, B) (<21,0,A>, A) (<21,0,B>, A) (<24,0,A>, B) (<24,0,B>, A) (<25,0,A>, B) (<25,0,B>, A) (<26,0,A>, B) (<26,0,B>, A) (<27,0,A>, B) (<27,0,B>, A) * Step 19: LocationConstraintsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 18. evalwisebb4in(A,B) -> evalwisebb4in(A,1 + B) [A >= 4 + B && A >= 2 + B] (?,3) 21. evalwisebb5in(A,B) -> evalwisebb5in(1 + A,B) [B >= 4 + A && B >= 1 + A] (?,3) 24. evalwisestart(A,B) -> evalwisebb4in(B,A) [A >= 0 && B >= 0 && A >= 3 + B && B >= 1 + A] (1,4) 25. evalwisestart(A,B) -> evalwisebb5in(B,A) [A >= 0 && B >= 0 && A >= 3 + B && A >= B] (1,4) 26. evalwisestart(A,B) -> evalwisebb4in(B,A) [A >= 0 && B >= 0 && B >= 3 + A && B >= 1 + A] (1,4) 27. evalwisestart(A,B) -> evalwisebb5in(B,A) [A >= 0 && B >= 0 && B >= 3 + A && A >= B] (1,4) Signature: {(evalwisebb3in,2) ;(evalwisebb4in,2) ;(evalwisebb5in,2) ;(evalwisebb6in,2) ;(evalwiseentryin,2) ;(evalwisereturnin,2) ;(evalwisestart,2) ;(evalwisestop,2)} Flow Graph: [18->{18},21->{21},24->{},25->{21},26->{18},27->{}] Sizebounds: (<18,0,A>, B) (<18,0,B>, B) (<21,0,A>, A) (<21,0,B>, A) (<24,0,A>, B) (<24,0,B>, A) (<25,0,A>, B) (<25,0,B>, A) (<26,0,A>, B) (<26,0,B>, A) (<27,0,A>, B) (<27,0,B>, A) + Applied Processor: LocationConstraintsProc + Details: We computed the location constraints 18 : [A >= B && False] 21 : [B >= 3 + A && False] 24 : True 25 : True 26 : True 27 : True . * Step 20: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 18. evalwisebb4in(A,B) -> evalwisebb4in(A,1 + B) [A >= 4 + B && A >= 2 + B] (?,3) 21. evalwisebb5in(A,B) -> evalwisebb5in(1 + A,B) [B >= 4 + A && B >= 1 + A] (?,3) 24. evalwisestart(A,B) -> evalwisebb4in(B,A) [A >= 0 && B >= 0 && A >= 3 + B && B >= 1 + A] (1,4) 25. evalwisestart(A,B) -> evalwisebb5in(B,A) [A >= 0 && B >= 0 && A >= 3 + B && A >= B] (1,4) 26. evalwisestart(A,B) -> evalwisebb4in(B,A) [A >= 0 && B >= 0 && B >= 3 + A && B >= 1 + A] (1,4) 27. evalwisestart(A,B) -> evalwisebb5in(B,A) [A >= 0 && B >= 0 && B >= 3 + A && A >= B] (1,4) Signature: {(evalwisebb3in,2) ;(evalwisebb4in,2) ;(evalwisebb5in,2) ;(evalwisebb6in,2) ;(evalwiseentryin,2) ;(evalwisereturnin,2) ;(evalwisestart,2) ;(evalwisestop,2)} Flow Graph: [18->{18},21->{21},24->{},25->{21},26->{18},27->{}] Sizebounds: (<18,0,A>, B) (<18,0,B>, B) (<21,0,A>, A) (<21,0,B>, A) (<24,0,A>, B) (<24,0,B>, A) (<25,0,A>, B) (<25,0,B>, A) (<26,0,A>, B) (<26,0,B>, A) (<27,0,A>, B) (<27,0,B>, A) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalwisebb4in) = 0 p(evalwisebb5in) = -1*x1 + x2 p(evalwisestart) = x1 The following rules are strictly oriented: [B >= 4 + A && B >= 1 + A] ==> evalwisebb5in(A,B) = -1*A + B > -1 + -1*A + B = evalwisebb5in(1 + A,B) The following rules are weakly oriented: [A >= 4 + B && A >= 2 + B] ==> evalwisebb4in(A,B) = 0 >= 0 = evalwisebb4in(A,1 + B) [A >= 0 && B >= 0 && A >= 3 + B && B >= 1 + A] ==> evalwisestart(A,B) = A >= 0 = evalwisebb4in(B,A) [A >= 0 && B >= 0 && A >= 3 + B && A >= B] ==> evalwisestart(A,B) = A >= A + -1*B = evalwisebb5in(B,A) [A >= 0 && B >= 0 && B >= 3 + A && B >= 1 + A] ==> evalwisestart(A,B) = A >= 0 = evalwisebb4in(B,A) [A >= 0 && B >= 0 && B >= 3 + A && A >= B] ==> evalwisestart(A,B) = A >= A + -1*B = evalwisebb5in(B,A) * Step 21: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 18. evalwisebb4in(A,B) -> evalwisebb4in(A,1 + B) [A >= 4 + B && A >= 2 + B] (?,3) 21. evalwisebb5in(A,B) -> evalwisebb5in(1 + A,B) [B >= 4 + A && B >= 1 + A] (A,3) 24. evalwisestart(A,B) -> evalwisebb4in(B,A) [A >= 0 && B >= 0 && A >= 3 + B && B >= 1 + A] (1,4) 25. evalwisestart(A,B) -> evalwisebb5in(B,A) [A >= 0 && B >= 0 && A >= 3 + B && A >= B] (1,4) 26. evalwisestart(A,B) -> evalwisebb4in(B,A) [A >= 0 && B >= 0 && B >= 3 + A && B >= 1 + A] (1,4) 27. evalwisestart(A,B) -> evalwisebb5in(B,A) [A >= 0 && B >= 0 && B >= 3 + A && A >= B] (1,4) Signature: {(evalwisebb3in,2) ;(evalwisebb4in,2) ;(evalwisebb5in,2) ;(evalwisebb6in,2) ;(evalwiseentryin,2) ;(evalwisereturnin,2) ;(evalwisestart,2) ;(evalwisestop,2)} Flow Graph: [18->{18},21->{21},24->{},25->{21},26->{18},27->{}] Sizebounds: (<18,0,A>, B) (<18,0,B>, B) (<21,0,A>, A) (<21,0,B>, A) (<24,0,A>, B) (<24,0,B>, A) (<25,0,A>, B) (<25,0,B>, A) (<26,0,A>, B) (<26,0,B>, A) (<27,0,A>, B) (<27,0,B>, A) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalwisebb4in) = x1 + -1*x2 p(evalwisebb5in) = 0 p(evalwisestart) = 1 + x2 The following rules are strictly oriented: [A >= 4 + B && A >= 2 + B] ==> evalwisebb4in(A,B) = A + -1*B > -1 + A + -1*B = evalwisebb4in(A,1 + B) [A >= 0 && B >= 0 && A >= 3 + B && B >= 1 + A] ==> evalwisestart(A,B) = 1 + B > -1*A + B = evalwisebb4in(B,A) [A >= 0 && B >= 0 && A >= 3 + B && A >= B] ==> evalwisestart(A,B) = 1 + B > 0 = evalwisebb5in(B,A) [A >= 0 && B >= 0 && B >= 3 + A && B >= 1 + A] ==> evalwisestart(A,B) = 1 + B > -1*A + B = evalwisebb4in(B,A) [A >= 0 && B >= 0 && B >= 3 + A && A >= B] ==> evalwisestart(A,B) = 1 + B > 0 = evalwisebb5in(B,A) The following rules are weakly oriented: [B >= 4 + A && B >= 1 + A] ==> evalwisebb5in(A,B) = 0 >= 0 = evalwisebb5in(1 + A,B) * Step 22: LoopRecurrenceProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 18. evalwisebb4in(A,B) -> evalwisebb4in(A,1 + B) [A >= 4 + B && A >= 2 + B] (1 + B,3) 21. evalwisebb5in(A,B) -> evalwisebb5in(1 + A,B) [B >= 4 + A && B >= 1 + A] (A,3) 24. evalwisestart(A,B) -> evalwisebb4in(B,A) [A >= 0 && B >= 0 && A >= 3 + B && B >= 1 + A] (1,4) 25. evalwisestart(A,B) -> evalwisebb5in(B,A) [A >= 0 && B >= 0 && A >= 3 + B && A >= B] (1,4) 26. evalwisestart(A,B) -> evalwisebb4in(B,A) [A >= 0 && B >= 0 && B >= 3 + A && B >= 1 + A] (1,4) 27. evalwisestart(A,B) -> evalwisebb5in(B,A) [A >= 0 && B >= 0 && B >= 3 + A && A >= B] (1,4) Signature: {(evalwisebb3in,2) ;(evalwisebb4in,2) ;(evalwisebb5in,2) ;(evalwisebb6in,2) ;(evalwiseentryin,2) ;(evalwisereturnin,2) ;(evalwisestart,2) ;(evalwisestop,2)} Flow Graph: [18->{18},21->{21},24->{},25->{21},26->{18},27->{}] Sizebounds: (<18,0,A>, B) (<18,0,B>, B) (<21,0,A>, A) (<21,0,B>, A) (<24,0,A>, B) (<24,0,B>, A) (<25,0,A>, B) (<25,0,B>, A) (<26,0,A>, B) (<26,0,B>, A) (<27,0,A>, B) (<27,0,B>, A) + Applied Processor: LoopRecurrenceProcessor [21] + Details: Applying the recurrence pattern linear * f to the expression B-A yields the solution -1*A + B . * Step 23: LoopRecurrenceProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 18. evalwisebb4in(A,B) -> evalwisebb4in(A,1 + B) [A >= 4 + B && A >= 2 + B] (1 + B,3) 21. evalwisebb5in(A,B) -> evalwisebb5in(1 + A,B) [B >= 4 + A && B >= 1 + A] (A,3) 24. evalwisestart(A,B) -> evalwisebb4in(B,A) [A >= 0 && B >= 0 && A >= 3 + B && B >= 1 + A] (1,4) 25. evalwisestart(A,B) -> evalwisebb5in(B,A) [A >= 0 && B >= 0 && A >= 3 + B && A >= B] (1,4) 26. evalwisestart(A,B) -> evalwisebb4in(B,A) [A >= 0 && B >= 0 && B >= 3 + A && B >= 1 + A] (1,4) 27. evalwisestart(A,B) -> evalwisebb5in(B,A) [A >= 0 && B >= 0 && B >= 3 + A && A >= B] (1,4) Signature: {(evalwisebb3in,2) ;(evalwisebb4in,2) ;(evalwisebb5in,2) ;(evalwisebb6in,2) ;(evalwiseentryin,2) ;(evalwisereturnin,2) ;(evalwisestart,2) ;(evalwisestop,2)} Flow Graph: [18->{18},21->{21},24->{},25->{21},26->{18},27->{}] Sizebounds: (<18,0,A>, B) (<18,0,B>, B) (<21,0,A>, A) (<21,0,B>, A) (<24,0,A>, B) (<24,0,B>, A) (<25,0,A>, B) (<25,0,B>, A) (<26,0,A>, B) (<26,0,B>, A) (<27,0,A>, B) (<27,0,B>, A) + Applied Processor: LoopRecurrenceProcessor [18] + Details: Applying the recurrence pattern linear * f to the expression A-B yields the solution A + -1*B . * Step 24: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 18. evalwisebb4in(A,B) -> evalwisebb4in(A,1 + B) [A >= 4 + B && A >= 2 + B] (1 + B,3) 21. evalwisebb5in(A,B) -> evalwisebb5in(1 + A,B) [B >= 4 + A && B >= 1 + A] (A,3) 24. evalwisestart(A,B) -> evalwisebb4in(B,A) [A >= 0 && B >= 0 && A >= 3 + B && B >= 1 + A] (1,4) 25. evalwisestart(A,B) -> evalwisebb5in(B,A) [A >= 0 && B >= 0 && A >= 3 + B && A >= B] (1,4) 26. evalwisestart(A,B) -> evalwisebb4in(B,A) [A >= 0 && B >= 0 && B >= 3 + A && B >= 1 + A] (1,4) 27. evalwisestart(A,B) -> evalwisebb5in(B,A) [A >= 0 && B >= 0 && B >= 3 + A && A >= B] (1,4) Signature: {(evalwisebb3in,2) ;(evalwisebb4in,2) ;(evalwisebb5in,2) ;(evalwisebb6in,2) ;(evalwiseentryin,2) ;(evalwisereturnin,2) ;(evalwisestart,2) ;(evalwisestop,2)} Flow Graph: [18->{18},21->{21},24->{},25->{21},26->{18},27->{}] Sizebounds: (<18,0,A>, B) (<18,0,B>, B) (<21,0,A>, A) (<21,0,B>, A) (<24,0,A>, B) (<24,0,B>, A) (<25,0,A>, B) (<25,0,B>, A) (<26,0,A>, B) (<26,0,B>, A) (<27,0,A>, B) (<27,0,B>, A) + Applied Processor: UnsatPaths + Details: The problem is already solved. WORST_CASE(?,O(n^1))