WORST_CASE(?,O(n^2))
* Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0.  evalsipmabubblestart(A,B)    -> evalsipmabubbleentryin(A,B)    True         (1,1)
          1.  evalsipmabubbleentryin(A,B)  -> evalsipmabubblebb6in(A,B)      True         (?,1)
          2.  evalsipmabubblebb6in(A,B)    -> evalsipmabubblebb4in(A,0)      [A >= 0]     (?,1)
          3.  evalsipmabubblebb6in(A,B)    -> evalsipmabubblereturnin(A,B)   [0 >= 1 + A] (?,1)
          4.  evalsipmabubblebb4in(A,B)    -> evalsipmabubblebb1in(A,B)      [A >= 1 + B] (?,1)
          5.  evalsipmabubblebb4in(A,B)    -> evalsipmabubblebb5in(A,B)      [B >= A]     (?,1)
          6.  evalsipmabubblebb1in(A,B)    -> evalsipmabubblebb2in(A,B)      [C >= 1 + D] (?,1)
          7.  evalsipmabubblebb1in(A,B)    -> evalsipmabubblebb3in(A,B)      [D >= C]     (?,1)
          8.  evalsipmabubblebb2in(A,B)    -> evalsipmabubblebb3in(A,B)      True         (?,1)
          9.  evalsipmabubblebb3in(A,B)    -> evalsipmabubblebb4in(A,1 + B)  True         (?,1)
          10. evalsipmabubblebb5in(A,B)    -> evalsipmabubblebb6in(-1 + A,B) True         (?,1)
          11. evalsipmabubblereturnin(A,B) -> evalsipmabubblestop(A,B)       True         (?,1)
        Signature:
          {(evalsipmabubblebb1in,2)
          ;(evalsipmabubblebb2in,2)
          ;(evalsipmabubblebb3in,2)
          ;(evalsipmabubblebb4in,2)
          ;(evalsipmabubblebb5in,2)
          ;(evalsipmabubblebb6in,2)
          ;(evalsipmabubbleentryin,2)
          ;(evalsipmabubblereturnin,2)
          ;(evalsipmabubblestart,2)
          ;(evalsipmabubblestop,2)}
        Flow Graph:
          [0->{1},1->{2,3},2->{4,5},3->{11},4->{6,7},5->{10},6->{8},7->{9},8->{9},9->{4,5},10->{2,3},11->{}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (< 0,0,A>,     A, .= 0) (< 0,0,B>,     B, .= 0) 
          (< 1,0,A>,     A, .= 0) (< 1,0,B>,     B, .= 0) 
          (< 2,0,A>,     A, .= 0) (< 2,0,B>,     0, .= 0) 
          (< 3,0,A>,     A, .= 0) (< 3,0,B>,     B, .= 0) 
          (< 4,0,A>,     A, .= 0) (< 4,0,B>,     B, .= 0) 
          (< 5,0,A>,     A, .= 0) (< 5,0,B>,     B, .= 0) 
          (< 6,0,A>,     A, .= 0) (< 6,0,B>,     B, .= 0) 
          (< 7,0,A>,     A, .= 0) (< 7,0,B>,     B, .= 0) 
          (< 8,0,A>,     A, .= 0) (< 8,0,B>,     B, .= 0) 
          (< 9,0,A>,     A, .= 0) (< 9,0,B>, 1 + B, .+ 1) 
          (<10,0,A>, 1 + A, .+ 1) (<10,0,B>,     B, .= 0) 
          (<11,0,A>,     A, .= 0) (<11,0,B>,     B, .= 0) 
* Step 2: SizeboundsProc WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0.  evalsipmabubblestart(A,B)    -> evalsipmabubbleentryin(A,B)    True         (1,1)
          1.  evalsipmabubbleentryin(A,B)  -> evalsipmabubblebb6in(A,B)      True         (?,1)
          2.  evalsipmabubblebb6in(A,B)    -> evalsipmabubblebb4in(A,0)      [A >= 0]     (?,1)
          3.  evalsipmabubblebb6in(A,B)    -> evalsipmabubblereturnin(A,B)   [0 >= 1 + A] (?,1)
          4.  evalsipmabubblebb4in(A,B)    -> evalsipmabubblebb1in(A,B)      [A >= 1 + B] (?,1)
          5.  evalsipmabubblebb4in(A,B)    -> evalsipmabubblebb5in(A,B)      [B >= A]     (?,1)
          6.  evalsipmabubblebb1in(A,B)    -> evalsipmabubblebb2in(A,B)      [C >= 1 + D] (?,1)
          7.  evalsipmabubblebb1in(A,B)    -> evalsipmabubblebb3in(A,B)      [D >= C]     (?,1)
          8.  evalsipmabubblebb2in(A,B)    -> evalsipmabubblebb3in(A,B)      True         (?,1)
          9.  evalsipmabubblebb3in(A,B)    -> evalsipmabubblebb4in(A,1 + B)  True         (?,1)
          10. evalsipmabubblebb5in(A,B)    -> evalsipmabubblebb6in(-1 + A,B) True         (?,1)
          11. evalsipmabubblereturnin(A,B) -> evalsipmabubblestop(A,B)       True         (?,1)
        Signature:
          {(evalsipmabubblebb1in,2)
          ;(evalsipmabubblebb2in,2)
          ;(evalsipmabubblebb3in,2)
          ;(evalsipmabubblebb4in,2)
          ;(evalsipmabubblebb5in,2)
          ;(evalsipmabubblebb6in,2)
          ;(evalsipmabubbleentryin,2)
          ;(evalsipmabubblereturnin,2)
          ;(evalsipmabubblestart,2)
          ;(evalsipmabubblestop,2)}
        Flow Graph:
          [0->{1},1->{2,3},2->{4,5},3->{11},4->{6,7},5->{10},6->{8},7->{9},8->{9},9->{4,5},10->{2,3},11->{}]
        Sizebounds:
          (< 0,0,A>, ?) (< 0,0,B>, ?) 
          (< 1,0,A>, ?) (< 1,0,B>, ?) 
          (< 2,0,A>, ?) (< 2,0,B>, ?) 
          (< 3,0,A>, ?) (< 3,0,B>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, ?) 
          (<10,0,A>, ?) (<10,0,B>, ?) 
          (<11,0,A>, ?) (<11,0,B>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (< 0,0,A>, A) (< 0,0,B>, B) 
          (< 1,0,A>, A) (< 1,0,B>, B) 
          (< 2,0,A>, ?) (< 2,0,B>, 0) 
          (< 3,0,A>, ?) (< 3,0,B>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, ?) 
          (<10,0,A>, ?) (<10,0,B>, ?) 
          (<11,0,A>, ?) (<11,0,B>, ?) 
* Step 3: LeafRules WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0.  evalsipmabubblestart(A,B)    -> evalsipmabubbleentryin(A,B)    True         (1,1)
          1.  evalsipmabubbleentryin(A,B)  -> evalsipmabubblebb6in(A,B)      True         (?,1)
          2.  evalsipmabubblebb6in(A,B)    -> evalsipmabubblebb4in(A,0)      [A >= 0]     (?,1)
          3.  evalsipmabubblebb6in(A,B)    -> evalsipmabubblereturnin(A,B)   [0 >= 1 + A] (?,1)
          4.  evalsipmabubblebb4in(A,B)    -> evalsipmabubblebb1in(A,B)      [A >= 1 + B] (?,1)
          5.  evalsipmabubblebb4in(A,B)    -> evalsipmabubblebb5in(A,B)      [B >= A]     (?,1)
          6.  evalsipmabubblebb1in(A,B)    -> evalsipmabubblebb2in(A,B)      [C >= 1 + D] (?,1)
          7.  evalsipmabubblebb1in(A,B)    -> evalsipmabubblebb3in(A,B)      [D >= C]     (?,1)
          8.  evalsipmabubblebb2in(A,B)    -> evalsipmabubblebb3in(A,B)      True         (?,1)
          9.  evalsipmabubblebb3in(A,B)    -> evalsipmabubblebb4in(A,1 + B)  True         (?,1)
          10. evalsipmabubblebb5in(A,B)    -> evalsipmabubblebb6in(-1 + A,B) True         (?,1)
          11. evalsipmabubblereturnin(A,B) -> evalsipmabubblestop(A,B)       True         (?,1)
        Signature:
          {(evalsipmabubblebb1in,2)
          ;(evalsipmabubblebb2in,2)
          ;(evalsipmabubblebb3in,2)
          ;(evalsipmabubblebb4in,2)
          ;(evalsipmabubblebb5in,2)
          ;(evalsipmabubblebb6in,2)
          ;(evalsipmabubbleentryin,2)
          ;(evalsipmabubblereturnin,2)
          ;(evalsipmabubblestart,2)
          ;(evalsipmabubblestop,2)}
        Flow Graph:
          [0->{1},1->{2,3},2->{4,5},3->{11},4->{6,7},5->{10},6->{8},7->{9},8->{9},9->{4,5},10->{2,3},11->{}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) 
          (< 1,0,A>, A) (< 1,0,B>, B) 
          (< 2,0,A>, ?) (< 2,0,B>, 0) 
          (< 3,0,A>, ?) (< 3,0,B>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, ?) 
          (<10,0,A>, ?) (<10,0,B>, ?) 
          (<11,0,A>, ?) (<11,0,B>, ?) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [3,11]
* Step 4: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0.  evalsipmabubblestart(A,B)   -> evalsipmabubbleentryin(A,B)    True         (1,1)
          1.  evalsipmabubbleentryin(A,B) -> evalsipmabubblebb6in(A,B)      True         (?,1)
          2.  evalsipmabubblebb6in(A,B)   -> evalsipmabubblebb4in(A,0)      [A >= 0]     (?,1)
          4.  evalsipmabubblebb4in(A,B)   -> evalsipmabubblebb1in(A,B)      [A >= 1 + B] (?,1)
          5.  evalsipmabubblebb4in(A,B)   -> evalsipmabubblebb5in(A,B)      [B >= A]     (?,1)
          6.  evalsipmabubblebb1in(A,B)   -> evalsipmabubblebb2in(A,B)      [C >= 1 + D] (?,1)
          7.  evalsipmabubblebb1in(A,B)   -> evalsipmabubblebb3in(A,B)      [D >= C]     (?,1)
          8.  evalsipmabubblebb2in(A,B)   -> evalsipmabubblebb3in(A,B)      True         (?,1)
          9.  evalsipmabubblebb3in(A,B)   -> evalsipmabubblebb4in(A,1 + B)  True         (?,1)
          10. evalsipmabubblebb5in(A,B)   -> evalsipmabubblebb6in(-1 + A,B) True         (?,1)
        Signature:
          {(evalsipmabubblebb1in,2)
          ;(evalsipmabubblebb2in,2)
          ;(evalsipmabubblebb3in,2)
          ;(evalsipmabubblebb4in,2)
          ;(evalsipmabubblebb5in,2)
          ;(evalsipmabubblebb6in,2)
          ;(evalsipmabubbleentryin,2)
          ;(evalsipmabubblereturnin,2)
          ;(evalsipmabubblestart,2)
          ;(evalsipmabubblestop,2)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5},4->{6,7},5->{10},6->{8},7->{9},8->{9},9->{4,5},10->{2}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) 
          (< 1,0,A>, A) (< 1,0,B>, B) 
          (< 2,0,A>, ?) (< 2,0,B>, 0) 
          (< 4,0,A>, ?) (< 4,0,B>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, ?) 
          (<10,0,A>, ?) (<10,0,B>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
            p(evalsipmabubblebb1in) = 1 + x1
            p(evalsipmabubblebb2in) = 1 + x1
            p(evalsipmabubblebb3in) = 1 + x1
            p(evalsipmabubblebb4in) = 1 + x1
            p(evalsipmabubblebb5in) = 1 + x1
            p(evalsipmabubblebb6in) = 2 + x1
          p(evalsipmabubbleentryin) = 2 + x1
            p(evalsipmabubblestart) = 2 + x1
        
        The following rules are strictly oriented:
                           [A >= 0] ==>                          
          evalsipmabubblebb6in(A,B)   = 2 + A                    
                                      > 1 + A                    
                                      = evalsipmabubblebb4in(A,0)
        
        
        The following rules are weakly oriented:
                                 True ==>                               
            evalsipmabubblestart(A,B)   = 2 + A                         
                                       >= 2 + A                         
                                        = evalsipmabubbleentryin(A,B)   
        
                                 True ==>                               
          evalsipmabubbleentryin(A,B)   = 2 + A                         
                                       >= 2 + A                         
                                        = evalsipmabubblebb6in(A,B)     
        
                         [A >= 1 + B] ==>                               
            evalsipmabubblebb4in(A,B)   = 1 + A                         
                                       >= 1 + A                         
                                        = evalsipmabubblebb1in(A,B)     
        
                             [B >= A] ==>                               
            evalsipmabubblebb4in(A,B)   = 1 + A                         
                                       >= 1 + A                         
                                        = evalsipmabubblebb5in(A,B)     
        
                         [C >= 1 + D] ==>                               
            evalsipmabubblebb1in(A,B)   = 1 + A                         
                                       >= 1 + A                         
                                        = evalsipmabubblebb2in(A,B)     
        
                             [D >= C] ==>                               
            evalsipmabubblebb1in(A,B)   = 1 + A                         
                                       >= 1 + A                         
                                        = evalsipmabubblebb3in(A,B)     
        
                                 True ==>                               
            evalsipmabubblebb2in(A,B)   = 1 + A                         
                                       >= 1 + A                         
                                        = evalsipmabubblebb3in(A,B)     
        
                                 True ==>                               
            evalsipmabubblebb3in(A,B)   = 1 + A                         
                                       >= 1 + A                         
                                        = evalsipmabubblebb4in(A,1 + B) 
        
                                 True ==>                               
            evalsipmabubblebb5in(A,B)   = 1 + A                         
                                       >= 1 + A                         
                                        = evalsipmabubblebb6in(-1 + A,B)
        
        
* Step 5: KnowledgePropagation WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0.  evalsipmabubblestart(A,B)   -> evalsipmabubbleentryin(A,B)    True         (1,1)    
          1.  evalsipmabubbleentryin(A,B) -> evalsipmabubblebb6in(A,B)      True         (?,1)    
          2.  evalsipmabubblebb6in(A,B)   -> evalsipmabubblebb4in(A,0)      [A >= 0]     (2 + A,1)
          4.  evalsipmabubblebb4in(A,B)   -> evalsipmabubblebb1in(A,B)      [A >= 1 + B] (?,1)    
          5.  evalsipmabubblebb4in(A,B)   -> evalsipmabubblebb5in(A,B)      [B >= A]     (?,1)    
          6.  evalsipmabubblebb1in(A,B)   -> evalsipmabubblebb2in(A,B)      [C >= 1 + D] (?,1)    
          7.  evalsipmabubblebb1in(A,B)   -> evalsipmabubblebb3in(A,B)      [D >= C]     (?,1)    
          8.  evalsipmabubblebb2in(A,B)   -> evalsipmabubblebb3in(A,B)      True         (?,1)    
          9.  evalsipmabubblebb3in(A,B)   -> evalsipmabubblebb4in(A,1 + B)  True         (?,1)    
          10. evalsipmabubblebb5in(A,B)   -> evalsipmabubblebb6in(-1 + A,B) True         (?,1)    
        Signature:
          {(evalsipmabubblebb1in,2)
          ;(evalsipmabubblebb2in,2)
          ;(evalsipmabubblebb3in,2)
          ;(evalsipmabubblebb4in,2)
          ;(evalsipmabubblebb5in,2)
          ;(evalsipmabubblebb6in,2)
          ;(evalsipmabubbleentryin,2)
          ;(evalsipmabubblereturnin,2)
          ;(evalsipmabubblestart,2)
          ;(evalsipmabubblestop,2)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5},4->{6,7},5->{10},6->{8},7->{9},8->{9},9->{4,5},10->{2}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) 
          (< 1,0,A>, A) (< 1,0,B>, B) 
          (< 2,0,A>, ?) (< 2,0,B>, 0) 
          (< 4,0,A>, ?) (< 4,0,B>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, ?) 
          (<10,0,A>, ?) (<10,0,B>, ?) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 6: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0.  evalsipmabubblestart(A,B)   -> evalsipmabubbleentryin(A,B)    True         (1,1)    
          1.  evalsipmabubbleentryin(A,B) -> evalsipmabubblebb6in(A,B)      True         (1,1)    
          2.  evalsipmabubblebb6in(A,B)   -> evalsipmabubblebb4in(A,0)      [A >= 0]     (2 + A,1)
          4.  evalsipmabubblebb4in(A,B)   -> evalsipmabubblebb1in(A,B)      [A >= 1 + B] (?,1)    
          5.  evalsipmabubblebb4in(A,B)   -> evalsipmabubblebb5in(A,B)      [B >= A]     (?,1)    
          6.  evalsipmabubblebb1in(A,B)   -> evalsipmabubblebb2in(A,B)      [C >= 1 + D] (?,1)    
          7.  evalsipmabubblebb1in(A,B)   -> evalsipmabubblebb3in(A,B)      [D >= C]     (?,1)    
          8.  evalsipmabubblebb2in(A,B)   -> evalsipmabubblebb3in(A,B)      True         (?,1)    
          9.  evalsipmabubblebb3in(A,B)   -> evalsipmabubblebb4in(A,1 + B)  True         (?,1)    
          10. evalsipmabubblebb5in(A,B)   -> evalsipmabubblebb6in(-1 + A,B) True         (?,1)    
        Signature:
          {(evalsipmabubblebb1in,2)
          ;(evalsipmabubblebb2in,2)
          ;(evalsipmabubblebb3in,2)
          ;(evalsipmabubblebb4in,2)
          ;(evalsipmabubblebb5in,2)
          ;(evalsipmabubblebb6in,2)
          ;(evalsipmabubbleentryin,2)
          ;(evalsipmabubblereturnin,2)
          ;(evalsipmabubblestart,2)
          ;(evalsipmabubblestop,2)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5},4->{6,7},5->{10},6->{8},7->{9},8->{9},9->{4,5},10->{2}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) 
          (< 1,0,A>, A) (< 1,0,B>, B) 
          (< 2,0,A>, ?) (< 2,0,B>, 0) 
          (< 4,0,A>, ?) (< 4,0,B>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, ?) 
          (<10,0,A>, ?) (<10,0,B>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [10,5,9,7,4,8,6], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalsipmabubblebb1in) = 1
          p(evalsipmabubblebb2in) = 1
          p(evalsipmabubblebb3in) = 1
          p(evalsipmabubblebb4in) = 1
          p(evalsipmabubblebb5in) = 1
          p(evalsipmabubblebb6in) = 0
        
        The following rules are strictly oriented:
                               True ==>                               
          evalsipmabubblebb5in(A,B)   = 1                             
                                      > 0                             
                                      = evalsipmabubblebb6in(-1 + A,B)
        
        
        The following rules are weakly oriented:
                       [A >= 1 + B] ==>                              
          evalsipmabubblebb4in(A,B)   = 1                            
                                     >= 1                            
                                      = evalsipmabubblebb1in(A,B)    
        
                           [B >= A] ==>                              
          evalsipmabubblebb4in(A,B)   = 1                            
                                     >= 1                            
                                      = evalsipmabubblebb5in(A,B)    
        
                       [C >= 1 + D] ==>                              
          evalsipmabubblebb1in(A,B)   = 1                            
                                     >= 1                            
                                      = evalsipmabubblebb2in(A,B)    
        
                           [D >= C] ==>                              
          evalsipmabubblebb1in(A,B)   = 1                            
                                     >= 1                            
                                      = evalsipmabubblebb3in(A,B)    
        
                               True ==>                              
          evalsipmabubblebb2in(A,B)   = 1                            
                                     >= 1                            
                                      = evalsipmabubblebb3in(A,B)    
        
                               True ==>                              
          evalsipmabubblebb3in(A,B)   = 1                            
                                     >= 1                            
                                      = evalsipmabubblebb4in(A,1 + B)
        
        We use the following global sizebounds:
        (< 0,0,A>, A) (< 0,0,B>, B) 
        (< 1,0,A>, A) (< 1,0,B>, B) 
        (< 2,0,A>, ?) (< 2,0,B>, 0) 
        (< 4,0,A>, ?) (< 4,0,B>, ?) 
        (< 5,0,A>, ?) (< 5,0,B>, ?) 
        (< 6,0,A>, ?) (< 6,0,B>, ?) 
        (< 7,0,A>, ?) (< 7,0,B>, ?) 
        (< 8,0,A>, ?) (< 8,0,B>, ?) 
        (< 9,0,A>, ?) (< 9,0,B>, ?) 
        (<10,0,A>, ?) (<10,0,B>, ?) 
* Step 7: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0.  evalsipmabubblestart(A,B)   -> evalsipmabubbleentryin(A,B)    True         (1,1)    
          1.  evalsipmabubbleentryin(A,B) -> evalsipmabubblebb6in(A,B)      True         (1,1)    
          2.  evalsipmabubblebb6in(A,B)   -> evalsipmabubblebb4in(A,0)      [A >= 0]     (2 + A,1)
          4.  evalsipmabubblebb4in(A,B)   -> evalsipmabubblebb1in(A,B)      [A >= 1 + B] (?,1)    
          5.  evalsipmabubblebb4in(A,B)   -> evalsipmabubblebb5in(A,B)      [B >= A]     (?,1)    
          6.  evalsipmabubblebb1in(A,B)   -> evalsipmabubblebb2in(A,B)      [C >= 1 + D] (?,1)    
          7.  evalsipmabubblebb1in(A,B)   -> evalsipmabubblebb3in(A,B)      [D >= C]     (?,1)    
          8.  evalsipmabubblebb2in(A,B)   -> evalsipmabubblebb3in(A,B)      True         (?,1)    
          9.  evalsipmabubblebb3in(A,B)   -> evalsipmabubblebb4in(A,1 + B)  True         (?,1)    
          10. evalsipmabubblebb5in(A,B)   -> evalsipmabubblebb6in(-1 + A,B) True         (2 + A,1)
        Signature:
          {(evalsipmabubblebb1in,2)
          ;(evalsipmabubblebb2in,2)
          ;(evalsipmabubblebb3in,2)
          ;(evalsipmabubblebb4in,2)
          ;(evalsipmabubblebb5in,2)
          ;(evalsipmabubblebb6in,2)
          ;(evalsipmabubbleentryin,2)
          ;(evalsipmabubblereturnin,2)
          ;(evalsipmabubblestart,2)
          ;(evalsipmabubblestop,2)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5},4->{6,7},5->{10},6->{8},7->{9},8->{9},9->{4,5},10->{2}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) 
          (< 1,0,A>, A) (< 1,0,B>, B) 
          (< 2,0,A>, ?) (< 2,0,B>, 0) 
          (< 4,0,A>, ?) (< 4,0,B>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, ?) 
          (<10,0,A>, ?) (<10,0,B>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [2,5,9,7,4,8,6], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalsipmabubblebb1in) = 1
          p(evalsipmabubblebb2in) = 1
          p(evalsipmabubblebb3in) = 1
          p(evalsipmabubblebb4in) = 1
          p(evalsipmabubblebb5in) = 0
          p(evalsipmabubblebb6in) = 1
        
        The following rules are strictly oriented:
                           [B >= A] ==>                          
          evalsipmabubblebb4in(A,B)   = 1                        
                                      > 0                        
                                      = evalsipmabubblebb5in(A,B)
        
        
        The following rules are weakly oriented:
                           [A >= 0] ==>                              
          evalsipmabubblebb6in(A,B)   = 1                            
                                     >= 1                            
                                      = evalsipmabubblebb4in(A,0)    
        
                       [A >= 1 + B] ==>                              
          evalsipmabubblebb4in(A,B)   = 1                            
                                     >= 1                            
                                      = evalsipmabubblebb1in(A,B)    
        
                       [C >= 1 + D] ==>                              
          evalsipmabubblebb1in(A,B)   = 1                            
                                     >= 1                            
                                      = evalsipmabubblebb2in(A,B)    
        
                           [D >= C] ==>                              
          evalsipmabubblebb1in(A,B)   = 1                            
                                     >= 1                            
                                      = evalsipmabubblebb3in(A,B)    
        
                               True ==>                              
          evalsipmabubblebb2in(A,B)   = 1                            
                                     >= 1                            
                                      = evalsipmabubblebb3in(A,B)    
        
                               True ==>                              
          evalsipmabubblebb3in(A,B)   = 1                            
                                     >= 1                            
                                      = evalsipmabubblebb4in(A,1 + B)
        
        We use the following global sizebounds:
        (< 0,0,A>, A) (< 0,0,B>, B) 
        (< 1,0,A>, A) (< 1,0,B>, B) 
        (< 2,0,A>, ?) (< 2,0,B>, 0) 
        (< 4,0,A>, ?) (< 4,0,B>, ?) 
        (< 5,0,A>, ?) (< 5,0,B>, ?) 
        (< 6,0,A>, ?) (< 6,0,B>, ?) 
        (< 7,0,A>, ?) (< 7,0,B>, ?) 
        (< 8,0,A>, ?) (< 8,0,B>, ?) 
        (< 9,0,A>, ?) (< 9,0,B>, ?) 
        (<10,0,A>, ?) (<10,0,B>, ?) 
* Step 8: ChainProcessor WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0.  evalsipmabubblestart(A,B)   -> evalsipmabubbleentryin(A,B)    True         (1,1)    
          1.  evalsipmabubbleentryin(A,B) -> evalsipmabubblebb6in(A,B)      True         (1,1)    
          2.  evalsipmabubblebb6in(A,B)   -> evalsipmabubblebb4in(A,0)      [A >= 0]     (2 + A,1)
          4.  evalsipmabubblebb4in(A,B)   -> evalsipmabubblebb1in(A,B)      [A >= 1 + B] (?,1)    
          5.  evalsipmabubblebb4in(A,B)   -> evalsipmabubblebb5in(A,B)      [B >= A]     (3 + A,1)
          6.  evalsipmabubblebb1in(A,B)   -> evalsipmabubblebb2in(A,B)      [C >= 1 + D] (?,1)    
          7.  evalsipmabubblebb1in(A,B)   -> evalsipmabubblebb3in(A,B)      [D >= C]     (?,1)    
          8.  evalsipmabubblebb2in(A,B)   -> evalsipmabubblebb3in(A,B)      True         (?,1)    
          9.  evalsipmabubblebb3in(A,B)   -> evalsipmabubblebb4in(A,1 + B)  True         (?,1)    
          10. evalsipmabubblebb5in(A,B)   -> evalsipmabubblebb6in(-1 + A,B) True         (2 + A,1)
        Signature:
          {(evalsipmabubblebb1in,2)
          ;(evalsipmabubblebb2in,2)
          ;(evalsipmabubblebb3in,2)
          ;(evalsipmabubblebb4in,2)
          ;(evalsipmabubblebb5in,2)
          ;(evalsipmabubblebb6in,2)
          ;(evalsipmabubbleentryin,2)
          ;(evalsipmabubblereturnin,2)
          ;(evalsipmabubblestart,2)
          ;(evalsipmabubblestop,2)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5},4->{6,7},5->{10},6->{8},7->{9},8->{9},9->{4,5},10->{2}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) 
          (< 1,0,A>, A) (< 1,0,B>, B) 
          (< 2,0,A>, ?) (< 2,0,B>, 0) 
          (< 4,0,A>, ?) (< 4,0,B>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, ?) 
          (<10,0,A>, ?) (<10,0,B>, ?) 
    + Applied Processor:
        ChainProcessor False [0,1,2,4,5,6,7,8,9,10]
    + Details:
        We chained rule 0 to obtain the rules [11] .
* Step 9: UnreachableRules WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          1.  evalsipmabubbleentryin(A,B) -> evalsipmabubblebb6in(A,B)      True         (1,1)    
          2.  evalsipmabubblebb6in(A,B)   -> evalsipmabubblebb4in(A,0)      [A >= 0]     (2 + A,1)
          4.  evalsipmabubblebb4in(A,B)   -> evalsipmabubblebb1in(A,B)      [A >= 1 + B] (?,1)    
          5.  evalsipmabubblebb4in(A,B)   -> evalsipmabubblebb5in(A,B)      [B >= A]     (3 + A,1)
          6.  evalsipmabubblebb1in(A,B)   -> evalsipmabubblebb2in(A,B)      [C >= 1 + D] (?,1)    
          7.  evalsipmabubblebb1in(A,B)   -> evalsipmabubblebb3in(A,B)      [D >= C]     (?,1)    
          8.  evalsipmabubblebb2in(A,B)   -> evalsipmabubblebb3in(A,B)      True         (?,1)    
          9.  evalsipmabubblebb3in(A,B)   -> evalsipmabubblebb4in(A,1 + B)  True         (?,1)    
          10. evalsipmabubblebb5in(A,B)   -> evalsipmabubblebb6in(-1 + A,B) True         (2 + A,1)
          11. evalsipmabubblestart(A,B)   -> evalsipmabubblebb6in(A,B)      True         (1,2)    
        Signature:
          {(evalsipmabubblebb1in,2)
          ;(evalsipmabubblebb2in,2)
          ;(evalsipmabubblebb3in,2)
          ;(evalsipmabubblebb4in,2)
          ;(evalsipmabubblebb5in,2)
          ;(evalsipmabubblebb6in,2)
          ;(evalsipmabubbleentryin,2)
          ;(evalsipmabubblereturnin,2)
          ;(evalsipmabubblestart,2)
          ;(evalsipmabubblestop,2)}
        Flow Graph:
          [1->{2},2->{4,5},4->{6,7},5->{10},6->{8},7->{9},8->{9},9->{4,5},10->{2},11->{2}]
        Sizebounds:
          (< 1,0,A>, A) (< 1,0,B>, B) 
          (< 2,0,A>, ?) (< 2,0,B>, 0) 
          (< 4,0,A>, ?) (< 4,0,B>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, ?) 
          (<10,0,A>, ?) (<10,0,B>, ?) 
          (<11,0,A>, A) (<11,0,B>, B) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [1]
* Step 10: ChainProcessor WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          2.  evalsipmabubblebb6in(A,B) -> evalsipmabubblebb4in(A,0)      [A >= 0]     (2 + A,1)
          4.  evalsipmabubblebb4in(A,B) -> evalsipmabubblebb1in(A,B)      [A >= 1 + B] (?,1)    
          5.  evalsipmabubblebb4in(A,B) -> evalsipmabubblebb5in(A,B)      [B >= A]     (3 + A,1)
          6.  evalsipmabubblebb1in(A,B) -> evalsipmabubblebb2in(A,B)      [C >= 1 + D] (?,1)    
          7.  evalsipmabubblebb1in(A,B) -> evalsipmabubblebb3in(A,B)      [D >= C]     (?,1)    
          8.  evalsipmabubblebb2in(A,B) -> evalsipmabubblebb3in(A,B)      True         (?,1)    
          9.  evalsipmabubblebb3in(A,B) -> evalsipmabubblebb4in(A,1 + B)  True         (?,1)    
          10. evalsipmabubblebb5in(A,B) -> evalsipmabubblebb6in(-1 + A,B) True         (2 + A,1)
          11. evalsipmabubblestart(A,B) -> evalsipmabubblebb6in(A,B)      True         (1,2)    
        Signature:
          {(evalsipmabubblebb1in,2)
          ;(evalsipmabubblebb2in,2)
          ;(evalsipmabubblebb3in,2)
          ;(evalsipmabubblebb4in,2)
          ;(evalsipmabubblebb5in,2)
          ;(evalsipmabubblebb6in,2)
          ;(evalsipmabubbleentryin,2)
          ;(evalsipmabubblereturnin,2)
          ;(evalsipmabubblestart,2)
          ;(evalsipmabubblestop,2)}
        Flow Graph:
          [2->{4,5},4->{6,7},5->{10},6->{8},7->{9},8->{9},9->{4,5},10->{2},11->{2}]
        Sizebounds:
          (< 2,0,A>, ?) (< 2,0,B>, 0) 
          (< 4,0,A>, ?) (< 4,0,B>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, ?) 
          (<10,0,A>, ?) (<10,0,B>, ?) 
          (<11,0,A>, A) (<11,0,B>, B) 
    + Applied Processor:
        ChainProcessor False [2,4,5,6,7,8,9,10,11]
    + Details:
        We chained rule 2 to obtain the rules [12,13] .
* Step 11: ChainProcessor WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          4.  evalsipmabubblebb4in(A,B) -> evalsipmabubblebb1in(A,B)      [A >= 1 + B]       (?,1)    
          5.  evalsipmabubblebb4in(A,B) -> evalsipmabubblebb5in(A,B)      [B >= A]           (3 + A,1)
          6.  evalsipmabubblebb1in(A,B) -> evalsipmabubblebb2in(A,B)      [C >= 1 + D]       (?,1)    
          7.  evalsipmabubblebb1in(A,B) -> evalsipmabubblebb3in(A,B)      [D >= C]           (?,1)    
          8.  evalsipmabubblebb2in(A,B) -> evalsipmabubblebb3in(A,B)      True               (?,1)    
          9.  evalsipmabubblebb3in(A,B) -> evalsipmabubblebb4in(A,1 + B)  True               (?,1)    
          10. evalsipmabubblebb5in(A,B) -> evalsipmabubblebb6in(-1 + A,B) True               (2 + A,1)
          11. evalsipmabubblestart(A,B) -> evalsipmabubblebb6in(A,B)      True               (1,2)    
          12. evalsipmabubblebb6in(A,B) -> evalsipmabubblebb1in(A,0)      [A >= 0 && A >= 1] (2 + A,2)
          13. evalsipmabubblebb6in(A,B) -> evalsipmabubblebb5in(A,0)      [A >= 0 && 0 >= A] (2 + A,2)
        Signature:
          {(evalsipmabubblebb1in,2)
          ;(evalsipmabubblebb2in,2)
          ;(evalsipmabubblebb3in,2)
          ;(evalsipmabubblebb4in,2)
          ;(evalsipmabubblebb5in,2)
          ;(evalsipmabubblebb6in,2)
          ;(evalsipmabubbleentryin,2)
          ;(evalsipmabubblereturnin,2)
          ;(evalsipmabubblestart,2)
          ;(evalsipmabubblestop,2)}
        Flow Graph:
          [4->{6,7},5->{10},6->{8},7->{9},8->{9},9->{4,5},10->{12,13},11->{12,13},12->{6,7},13->{10}]
        Sizebounds:
          (< 4,0,A>, ?) (< 4,0,B>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, ?) 
          (<10,0,A>, ?) (<10,0,B>, ?) 
          (<11,0,A>, A) (<11,0,B>, B) 
          (<12,0,A>, ?) (<12,0,B>, ?) 
          (<13,0,A>, ?) (<13,0,B>, ?) 
    + Applied Processor:
        ChainProcessor False [4,5,6,7,8,9,10,11,12,13]
    + Details:
        We chained rule 4 to obtain the rules [14,15] .
* Step 12: ChainProcessor WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          5.  evalsipmabubblebb4in(A,B) -> evalsipmabubblebb5in(A,B)      [B >= A]                     (3 + A,1)
          6.  evalsipmabubblebb1in(A,B) -> evalsipmabubblebb2in(A,B)      [C >= 1 + D]                 (?,1)    
          7.  evalsipmabubblebb1in(A,B) -> evalsipmabubblebb3in(A,B)      [D >= C]                     (?,1)    
          8.  evalsipmabubblebb2in(A,B) -> evalsipmabubblebb3in(A,B)      True                         (?,1)    
          9.  evalsipmabubblebb3in(A,B) -> evalsipmabubblebb4in(A,1 + B)  True                         (?,1)    
          10. evalsipmabubblebb5in(A,B) -> evalsipmabubblebb6in(-1 + A,B) True                         (2 + A,1)
          11. evalsipmabubblestart(A,B) -> evalsipmabubblebb6in(A,B)      True                         (1,2)    
          12. evalsipmabubblebb6in(A,B) -> evalsipmabubblebb1in(A,0)      [A >= 0 && A >= 1]           (2 + A,2)
          13. evalsipmabubblebb6in(A,B) -> evalsipmabubblebb5in(A,0)      [A >= 0 && 0 >= A]           (2 + A,2)
          14. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb2in(A,B)      [A >= 1 + B && C$ >= 1 + D$] (?,2)    
          15. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb3in(A,B)      [A >= 1 + B && D$ >= C$]     (?,2)    
        Signature:
          {(evalsipmabubblebb1in,2)
          ;(evalsipmabubblebb2in,2)
          ;(evalsipmabubblebb3in,2)
          ;(evalsipmabubblebb4in,2)
          ;(evalsipmabubblebb5in,2)
          ;(evalsipmabubblebb6in,2)
          ;(evalsipmabubbleentryin,2)
          ;(evalsipmabubblereturnin,2)
          ;(evalsipmabubblestart,2)
          ;(evalsipmabubblestop,2)}
        Flow Graph:
          [5->{10},6->{8},7->{9},8->{9},9->{5,14,15},10->{12,13},11->{12,13},12->{6,7},13->{10},14->{8},15->{9}]
        Sizebounds:
          (< 5,0,A>, ?) (< 5,0,B>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, ?) 
          (<10,0,A>, ?) (<10,0,B>, ?) 
          (<11,0,A>, A) (<11,0,B>, B) 
          (<12,0,A>, ?) (<12,0,B>, ?) 
          (<13,0,A>, ?) (<13,0,B>, ?) 
          (<14,0,A>, ?) (<14,0,B>, ?) 
          (<15,0,A>, ?) (<15,0,B>, ?) 
    + Applied Processor:
        ChainProcessor False [5,6,7,8,9,10,11,12,13,14,15]
    + Details:
        We chained rule 5 to obtain the rules [16] .
* Step 13: ChainProcessor WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          6.  evalsipmabubblebb1in(A,B) -> evalsipmabubblebb2in(A,B)      [C >= 1 + D]                 (?,1)    
          7.  evalsipmabubblebb1in(A,B) -> evalsipmabubblebb3in(A,B)      [D >= C]                     (?,1)    
          8.  evalsipmabubblebb2in(A,B) -> evalsipmabubblebb3in(A,B)      True                         (?,1)    
          9.  evalsipmabubblebb3in(A,B) -> evalsipmabubblebb4in(A,1 + B)  True                         (?,1)    
          10. evalsipmabubblebb5in(A,B) -> evalsipmabubblebb6in(-1 + A,B) True                         (2 + A,1)
          11. evalsipmabubblestart(A,B) -> evalsipmabubblebb6in(A,B)      True                         (1,2)    
          12. evalsipmabubblebb6in(A,B) -> evalsipmabubblebb1in(A,0)      [A >= 0 && A >= 1]           (2 + A,2)
          13. evalsipmabubblebb6in(A,B) -> evalsipmabubblebb5in(A,0)      [A >= 0 && 0 >= A]           (2 + A,2)
          14. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb2in(A,B)      [A >= 1 + B && C$ >= 1 + D$] (?,2)    
          15. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb3in(A,B)      [A >= 1 + B && D$ >= C$]     (?,2)    
          16. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb6in(-1 + A,B) [B >= A]                     (3 + A,2)
        Signature:
          {(evalsipmabubblebb1in,2)
          ;(evalsipmabubblebb2in,2)
          ;(evalsipmabubblebb3in,2)
          ;(evalsipmabubblebb4in,2)
          ;(evalsipmabubblebb5in,2)
          ;(evalsipmabubblebb6in,2)
          ;(evalsipmabubbleentryin,2)
          ;(evalsipmabubblereturnin,2)
          ;(evalsipmabubblestart,2)
          ;(evalsipmabubblestop,2)}
        Flow Graph:
          [6->{8},7->{9},8->{9},9->{14,15,16},10->{12,13},11->{12,13},12->{6,7},13->{10},14->{8},15->{9},16->{12
          ,13}]
        Sizebounds:
          (< 6,0,A>, ?) (< 6,0,B>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, ?) 
          (<10,0,A>, ?) (<10,0,B>, ?) 
          (<11,0,A>, A) (<11,0,B>, B) 
          (<12,0,A>, ?) (<12,0,B>, ?) 
          (<13,0,A>, ?) (<13,0,B>, ?) 
          (<14,0,A>, ?) (<14,0,B>, ?) 
          (<15,0,A>, ?) (<15,0,B>, ?) 
          (<16,0,A>, ?) (<16,0,B>, ?) 
    + Applied Processor:
        ChainProcessor False [6,7,8,9,10,11,12,13,14,15,16]
    + Details:
        We chained rule 6 to obtain the rules [17] .
* Step 14: ChainProcessor WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          7.  evalsipmabubblebb1in(A,B) -> evalsipmabubblebb3in(A,B)      [D >= C]                     (?,1)    
          8.  evalsipmabubblebb2in(A,B) -> evalsipmabubblebb3in(A,B)      True                         (?,1)    
          9.  evalsipmabubblebb3in(A,B) -> evalsipmabubblebb4in(A,1 + B)  True                         (?,1)    
          10. evalsipmabubblebb5in(A,B) -> evalsipmabubblebb6in(-1 + A,B) True                         (2 + A,1)
          11. evalsipmabubblestart(A,B) -> evalsipmabubblebb6in(A,B)      True                         (1,2)    
          12. evalsipmabubblebb6in(A,B) -> evalsipmabubblebb1in(A,0)      [A >= 0 && A >= 1]           (2 + A,2)
          13. evalsipmabubblebb6in(A,B) -> evalsipmabubblebb5in(A,0)      [A >= 0 && 0 >= A]           (2 + A,2)
          14. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb2in(A,B)      [A >= 1 + B && C$ >= 1 + D$] (?,2)    
          15. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb3in(A,B)      [A >= 1 + B && D$ >= C$]     (?,2)    
          16. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb6in(-1 + A,B) [B >= A]                     (3 + A,2)
          17. evalsipmabubblebb1in(A,B) -> evalsipmabubblebb3in(A,B)      [C >= 1 + D]                 (?,2)    
        Signature:
          {(evalsipmabubblebb1in,2)
          ;(evalsipmabubblebb2in,2)
          ;(evalsipmabubblebb3in,2)
          ;(evalsipmabubblebb4in,2)
          ;(evalsipmabubblebb5in,2)
          ;(evalsipmabubblebb6in,2)
          ;(evalsipmabubbleentryin,2)
          ;(evalsipmabubblereturnin,2)
          ;(evalsipmabubblestart,2)
          ;(evalsipmabubblestop,2)}
        Flow Graph:
          [7->{9},8->{9},9->{14,15,16},10->{12,13},11->{12,13},12->{7,17},13->{10},14->{8},15->{9},16->{12,13}
          ,17->{9}]
        Sizebounds:
          (< 7,0,A>, ?) (< 7,0,B>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, ?) 
          (<10,0,A>, ?) (<10,0,B>, ?) 
          (<11,0,A>, A) (<11,0,B>, B) 
          (<12,0,A>, ?) (<12,0,B>, ?) 
          (<13,0,A>, ?) (<13,0,B>, ?) 
          (<14,0,A>, ?) (<14,0,B>, ?) 
          (<15,0,A>, ?) (<15,0,B>, ?) 
          (<16,0,A>, ?) (<16,0,B>, ?) 
          (<17,0,A>, ?) (<17,0,B>, ?) 
    + Applied Processor:
        ChainProcessor False [7,8,9,10,11,12,13,14,15,16,17]
    + Details:
        We chained rule 7 to obtain the rules [18] .
* Step 15: ChainProcessor WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          8.  evalsipmabubblebb2in(A,B) -> evalsipmabubblebb3in(A,B)      True                         (?,1)    
          9.  evalsipmabubblebb3in(A,B) -> evalsipmabubblebb4in(A,1 + B)  True                         (?,1)    
          10. evalsipmabubblebb5in(A,B) -> evalsipmabubblebb6in(-1 + A,B) True                         (2 + A,1)
          11. evalsipmabubblestart(A,B) -> evalsipmabubblebb6in(A,B)      True                         (1,2)    
          12. evalsipmabubblebb6in(A,B) -> evalsipmabubblebb1in(A,0)      [A >= 0 && A >= 1]           (2 + A,2)
          13. evalsipmabubblebb6in(A,B) -> evalsipmabubblebb5in(A,0)      [A >= 0 && 0 >= A]           (2 + A,2)
          14. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb2in(A,B)      [A >= 1 + B && C$ >= 1 + D$] (?,2)    
          15. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb3in(A,B)      [A >= 1 + B && D$ >= C$]     (?,2)    
          16. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb6in(-1 + A,B) [B >= A]                     (3 + A,2)
          17. evalsipmabubblebb1in(A,B) -> evalsipmabubblebb3in(A,B)      [C >= 1 + D]                 (?,2)    
          18. evalsipmabubblebb1in(A,B) -> evalsipmabubblebb4in(A,1 + B)  [D >= C]                     (?,2)    
        Signature:
          {(evalsipmabubblebb1in,2)
          ;(evalsipmabubblebb2in,2)
          ;(evalsipmabubblebb3in,2)
          ;(evalsipmabubblebb4in,2)
          ;(evalsipmabubblebb5in,2)
          ;(evalsipmabubblebb6in,2)
          ;(evalsipmabubbleentryin,2)
          ;(evalsipmabubblereturnin,2)
          ;(evalsipmabubblestart,2)
          ;(evalsipmabubblestop,2)}
        Flow Graph:
          [8->{9},9->{14,15,16},10->{12,13},11->{12,13},12->{17,18},13->{10},14->{8},15->{9},16->{12,13},17->{9}
          ,18->{14,15,16}]
        Sizebounds:
          (< 8,0,A>, ?) (< 8,0,B>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, ?) 
          (<10,0,A>, ?) (<10,0,B>, ?) 
          (<11,0,A>, A) (<11,0,B>, B) 
          (<12,0,A>, ?) (<12,0,B>, ?) 
          (<13,0,A>, ?) (<13,0,B>, ?) 
          (<14,0,A>, ?) (<14,0,B>, ?) 
          (<15,0,A>, ?) (<15,0,B>, ?) 
          (<16,0,A>, ?) (<16,0,B>, ?) 
          (<17,0,A>, ?) (<17,0,B>, ?) 
          (<18,0,A>, ?) (<18,0,B>, ?) 
    + Applied Processor:
        ChainProcessor False [8,9,10,11,12,13,14,15,16,17,18]
    + Details:
        We chained rule 8 to obtain the rules [19] .
* Step 16: ChainProcessor WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          9.  evalsipmabubblebb3in(A,B) -> evalsipmabubblebb4in(A,1 + B)  True                         (?,1)    
          10. evalsipmabubblebb5in(A,B) -> evalsipmabubblebb6in(-1 + A,B) True                         (2 + A,1)
          11. evalsipmabubblestart(A,B) -> evalsipmabubblebb6in(A,B)      True                         (1,2)    
          12. evalsipmabubblebb6in(A,B) -> evalsipmabubblebb1in(A,0)      [A >= 0 && A >= 1]           (2 + A,2)
          13. evalsipmabubblebb6in(A,B) -> evalsipmabubblebb5in(A,0)      [A >= 0 && 0 >= A]           (2 + A,2)
          14. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb2in(A,B)      [A >= 1 + B && C$ >= 1 + D$] (?,2)    
          15. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb3in(A,B)      [A >= 1 + B && D$ >= C$]     (?,2)    
          16. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb6in(-1 + A,B) [B >= A]                     (3 + A,2)
          17. evalsipmabubblebb1in(A,B) -> evalsipmabubblebb3in(A,B)      [C >= 1 + D]                 (?,2)    
          18. evalsipmabubblebb1in(A,B) -> evalsipmabubblebb4in(A,1 + B)  [D >= C]                     (?,2)    
          19. evalsipmabubblebb2in(A,B) -> evalsipmabubblebb4in(A,1 + B)  True                         (?,2)    
        Signature:
          {(evalsipmabubblebb1in,2)
          ;(evalsipmabubblebb2in,2)
          ;(evalsipmabubblebb3in,2)
          ;(evalsipmabubblebb4in,2)
          ;(evalsipmabubblebb5in,2)
          ;(evalsipmabubblebb6in,2)
          ;(evalsipmabubbleentryin,2)
          ;(evalsipmabubblereturnin,2)
          ;(evalsipmabubblestart,2)
          ;(evalsipmabubblestop,2)}
        Flow Graph:
          [9->{14,15,16},10->{12,13},11->{12,13},12->{17,18},13->{10},14->{19},15->{9},16->{12,13},17->{9},18->{14
          ,15,16},19->{14,15,16}]
        Sizebounds:
          (< 9,0,A>, ?) (< 9,0,B>, ?) 
          (<10,0,A>, ?) (<10,0,B>, ?) 
          (<11,0,A>, A) (<11,0,B>, B) 
          (<12,0,A>, ?) (<12,0,B>, ?) 
          (<13,0,A>, ?) (<13,0,B>, ?) 
          (<14,0,A>, ?) (<14,0,B>, ?) 
          (<15,0,A>, ?) (<15,0,B>, ?) 
          (<16,0,A>, ?) (<16,0,B>, ?) 
          (<17,0,A>, ?) (<17,0,B>, ?) 
          (<18,0,A>, ?) (<18,0,B>, ?) 
          (<19,0,A>, ?) (<19,0,B>, ?) 
    + Applied Processor:
        ChainProcessor False [9,10,11,12,13,14,15,16,17,18,19]
    + Details:
        We chained rule 9 to obtain the rules [20,21,22] .
* Step 17: ChainProcessor WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          10. evalsipmabubblebb5in(A,B) -> evalsipmabubblebb6in(-1 + A,B)     True                           (2 + A,1)
          11. evalsipmabubblestart(A,B) -> evalsipmabubblebb6in(A,B)          True                           (1,2)    
          12. evalsipmabubblebb6in(A,B) -> evalsipmabubblebb1in(A,0)          [A >= 0 && A >= 1]             (2 + A,2)
          13. evalsipmabubblebb6in(A,B) -> evalsipmabubblebb5in(A,0)          [A >= 0 && 0 >= A]             (2 + A,2)
          14. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb2in(A,B)          [A >= 1 + B && C$ >= 1 + D$]   (?,2)    
          15. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb3in(A,B)          [A >= 1 + B && D$ >= C$]       (?,2)    
          16. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb6in(-1 + A,B)     [B >= A]                       (3 + A,2)
          17. evalsipmabubblebb1in(A,B) -> evalsipmabubblebb3in(A,B)          [C >= 1 + D]                   (?,2)    
          18. evalsipmabubblebb1in(A,B) -> evalsipmabubblebb4in(A,1 + B)      [D >= C]                       (?,2)    
          19. evalsipmabubblebb2in(A,B) -> evalsipmabubblebb4in(A,1 + B)      True                           (?,2)    
          20. evalsipmabubblebb3in(A,B) -> evalsipmabubblebb2in(A,1 + B)      [A >= 2 + B && C$$ >= 1 + D$$] (?,3)    
          21. evalsipmabubblebb3in(A,B) -> evalsipmabubblebb3in(A,1 + B)      [A >= 2 + B && D$$ >= C$$]     (?,3)    
          22. evalsipmabubblebb3in(A,B) -> evalsipmabubblebb6in(-1 + A,1 + B) [1 + B >= A]                   (?,3)    
        Signature:
          {(evalsipmabubblebb1in,2)
          ;(evalsipmabubblebb2in,2)
          ;(evalsipmabubblebb3in,2)
          ;(evalsipmabubblebb4in,2)
          ;(evalsipmabubblebb5in,2)
          ;(evalsipmabubblebb6in,2)
          ;(evalsipmabubbleentryin,2)
          ;(evalsipmabubblereturnin,2)
          ;(evalsipmabubblestart,2)
          ;(evalsipmabubblestop,2)}
        Flow Graph:
          [10->{12,13},11->{12,13},12->{17,18},13->{10},14->{19},15->{20,21,22},16->{12,13},17->{20,21,22},18->{14
          ,15,16},19->{14,15,16},20->{19},21->{20,21,22},22->{12,13}]
        Sizebounds:
          (<10,0,A>, ?) (<10,0,B>, ?) 
          (<11,0,A>, A) (<11,0,B>, B) 
          (<12,0,A>, ?) (<12,0,B>, ?) 
          (<13,0,A>, ?) (<13,0,B>, ?) 
          (<14,0,A>, ?) (<14,0,B>, ?) 
          (<15,0,A>, ?) (<15,0,B>, ?) 
          (<16,0,A>, ?) (<16,0,B>, ?) 
          (<17,0,A>, ?) (<17,0,B>, ?) 
          (<18,0,A>, ?) (<18,0,B>, ?) 
          (<19,0,A>, ?) (<19,0,B>, ?) 
          (<20,0,A>, ?) (<20,0,B>, ?) 
          (<21,0,A>, ?) (<21,0,B>, ?) 
          (<22,0,A>, ?) (<22,0,B>, ?) 
    + Applied Processor:
        ChainProcessor False [10,11,12,13,14,15,16,17,18,19,20,21,22]
    + Details:
        We chained rule 10 to obtain the rules [23,24] .
* Step 18: ChainProcessor WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          11. evalsipmabubblestart(A,B) -> evalsipmabubblebb6in(A,B)          True                           (1,2)    
          12. evalsipmabubblebb6in(A,B) -> evalsipmabubblebb1in(A,0)          [A >= 0 && A >= 1]             (2 + A,2)
          13. evalsipmabubblebb6in(A,B) -> evalsipmabubblebb5in(A,0)          [A >= 0 && 0 >= A]             (2 + A,2)
          14. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb2in(A,B)          [A >= 1 + B && C$ >= 1 + D$]   (?,2)    
          15. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb3in(A,B)          [A >= 1 + B && D$ >= C$]       (?,2)    
          16. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb6in(-1 + A,B)     [B >= A]                       (3 + A,2)
          17. evalsipmabubblebb1in(A,B) -> evalsipmabubblebb3in(A,B)          [C >= 1 + D]                   (?,2)    
          18. evalsipmabubblebb1in(A,B) -> evalsipmabubblebb4in(A,1 + B)      [D >= C]                       (?,2)    
          19. evalsipmabubblebb2in(A,B) -> evalsipmabubblebb4in(A,1 + B)      True                           (?,2)    
          20. evalsipmabubblebb3in(A,B) -> evalsipmabubblebb2in(A,1 + B)      [A >= 2 + B && C$$ >= 1 + D$$] (?,3)    
          21. evalsipmabubblebb3in(A,B) -> evalsipmabubblebb3in(A,1 + B)      [A >= 2 + B && D$$ >= C$$]     (?,3)    
          22. evalsipmabubblebb3in(A,B) -> evalsipmabubblebb6in(-1 + A,1 + B) [1 + B >= A]                   (?,3)    
          23. evalsipmabubblebb5in(A,B) -> evalsipmabubblebb1in(-1 + A,0)     [-1 + A >= 0 && -1 + A >= 1]   (2 + A,3)
          24. evalsipmabubblebb5in(A,B) -> evalsipmabubblebb5in(-1 + A,0)     [-1 + A >= 0 && 0 >= -1 + A]   (2 + A,3)
        Signature:
          {(evalsipmabubblebb1in,2)
          ;(evalsipmabubblebb2in,2)
          ;(evalsipmabubblebb3in,2)
          ;(evalsipmabubblebb4in,2)
          ;(evalsipmabubblebb5in,2)
          ;(evalsipmabubblebb6in,2)
          ;(evalsipmabubbleentryin,2)
          ;(evalsipmabubblereturnin,2)
          ;(evalsipmabubblestart,2)
          ;(evalsipmabubblestop,2)}
        Flow Graph:
          [11->{12,13},12->{17,18},13->{23,24},14->{19},15->{20,21,22},16->{12,13},17->{20,21,22},18->{14,15,16}
          ,19->{14,15,16},20->{19},21->{20,21,22},22->{12,13},23->{17,18},24->{23,24}]
        Sizebounds:
          (<11,0,A>, A) (<11,0,B>, B) 
          (<12,0,A>, ?) (<12,0,B>, ?) 
          (<13,0,A>, ?) (<13,0,B>, ?) 
          (<14,0,A>, ?) (<14,0,B>, ?) 
          (<15,0,A>, ?) (<15,0,B>, ?) 
          (<16,0,A>, ?) (<16,0,B>, ?) 
          (<17,0,A>, ?) (<17,0,B>, ?) 
          (<18,0,A>, ?) (<18,0,B>, ?) 
          (<19,0,A>, ?) (<19,0,B>, ?) 
          (<20,0,A>, ?) (<20,0,B>, ?) 
          (<21,0,A>, ?) (<21,0,B>, ?) 
          (<22,0,A>, ?) (<22,0,B>, ?) 
          (<23,0,A>, ?) (<23,0,B>, ?) 
          (<24,0,A>, ?) (<24,0,B>, ?) 
    + Applied Processor:
        ChainProcessor False [11,12,13,14,15,16,17,18,19,20,21,22,23,24]
    + Details:
        We chained rule 11 to obtain the rules [25,26] .
* Step 19: UnsatPaths WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          12. evalsipmabubblebb6in(A,B) -> evalsipmabubblebb1in(A,0)          [A >= 0 && A >= 1]             (2 + A,2)
          13. evalsipmabubblebb6in(A,B) -> evalsipmabubblebb5in(A,0)          [A >= 0 && 0 >= A]             (2 + A,2)
          14. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb2in(A,B)          [A >= 1 + B && C$ >= 1 + D$]   (?,2)    
          15. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb3in(A,B)          [A >= 1 + B && D$ >= C$]       (?,2)    
          16. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb6in(-1 + A,B)     [B >= A]                       (3 + A,2)
          17. evalsipmabubblebb1in(A,B) -> evalsipmabubblebb3in(A,B)          [C >= 1 + D]                   (?,2)    
          18. evalsipmabubblebb1in(A,B) -> evalsipmabubblebb4in(A,1 + B)      [D >= C]                       (?,2)    
          19. evalsipmabubblebb2in(A,B) -> evalsipmabubblebb4in(A,1 + B)      True                           (?,2)    
          20. evalsipmabubblebb3in(A,B) -> evalsipmabubblebb2in(A,1 + B)      [A >= 2 + B && C$$ >= 1 + D$$] (?,3)    
          21. evalsipmabubblebb3in(A,B) -> evalsipmabubblebb3in(A,1 + B)      [A >= 2 + B && D$$ >= C$$]     (?,3)    
          22. evalsipmabubblebb3in(A,B) -> evalsipmabubblebb6in(-1 + A,1 + B) [1 + B >= A]                   (?,3)    
          23. evalsipmabubblebb5in(A,B) -> evalsipmabubblebb1in(-1 + A,0)     [-1 + A >= 0 && -1 + A >= 1]   (2 + A,3)
          24. evalsipmabubblebb5in(A,B) -> evalsipmabubblebb5in(-1 + A,0)     [-1 + A >= 0 && 0 >= -1 + A]   (2 + A,3)
          25. evalsipmabubblestart(A,B) -> evalsipmabubblebb1in(A,0)          [A >= 0 && A >= 1]             (1,4)    
          26. evalsipmabubblestart(A,B) -> evalsipmabubblebb5in(A,0)          [A >= 0 && 0 >= A]             (1,4)    
        Signature:
          {(evalsipmabubblebb1in,2)
          ;(evalsipmabubblebb2in,2)
          ;(evalsipmabubblebb3in,2)
          ;(evalsipmabubblebb4in,2)
          ;(evalsipmabubblebb5in,2)
          ;(evalsipmabubblebb6in,2)
          ;(evalsipmabubbleentryin,2)
          ;(evalsipmabubblereturnin,2)
          ;(evalsipmabubblestart,2)
          ;(evalsipmabubblestop,2)}
        Flow Graph:
          [12->{17,18},13->{23,24},14->{19},15->{20,21,22},16->{12,13},17->{20,21,22},18->{14,15,16},19->{14,15,16}
          ,20->{19},21->{20,21,22},22->{12,13},23->{17,18},24->{23,24},25->{17,18},26->{23,24}]
        Sizebounds:
          (<12,0,A>, ?) (<12,0,B>, ?) 
          (<13,0,A>, ?) (<13,0,B>, ?) 
          (<14,0,A>, ?) (<14,0,B>, ?) 
          (<15,0,A>, ?) (<15,0,B>, ?) 
          (<16,0,A>, ?) (<16,0,B>, ?) 
          (<17,0,A>, ?) (<17,0,B>, ?) 
          (<18,0,A>, ?) (<18,0,B>, ?) 
          (<19,0,A>, ?) (<19,0,B>, ?) 
          (<20,0,A>, ?) (<20,0,B>, ?) 
          (<21,0,A>, ?) (<21,0,B>, ?) 
          (<22,0,A>, ?) (<22,0,B>, ?) 
          (<23,0,A>, ?) (<23,0,B>, ?) 
          (<24,0,A>, ?) (<24,0,B>, ?) 
          (<25,0,A>, ?) (<25,0,B>, ?) 
          (<26,0,A>, ?) (<26,0,B>, ?) 
    + Applied Processor:
        UnsatPaths
    + Details:
        We remove following edges from the transition graph: [(13,23),(13,24),(24,23),(24,24),(26,23),(26,24)]
* Step 20: UnreachableRules WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          12. evalsipmabubblebb6in(A,B) -> evalsipmabubblebb1in(A,0)          [A >= 0 && A >= 1]             (2 + A,2)
          13. evalsipmabubblebb6in(A,B) -> evalsipmabubblebb5in(A,0)          [A >= 0 && 0 >= A]             (2 + A,2)
          14. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb2in(A,B)          [A >= 1 + B && C$ >= 1 + D$]   (?,2)    
          15. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb3in(A,B)          [A >= 1 + B && D$ >= C$]       (?,2)    
          16. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb6in(-1 + A,B)     [B >= A]                       (3 + A,2)
          17. evalsipmabubblebb1in(A,B) -> evalsipmabubblebb3in(A,B)          [C >= 1 + D]                   (?,2)    
          18. evalsipmabubblebb1in(A,B) -> evalsipmabubblebb4in(A,1 + B)      [D >= C]                       (?,2)    
          19. evalsipmabubblebb2in(A,B) -> evalsipmabubblebb4in(A,1 + B)      True                           (?,2)    
          20. evalsipmabubblebb3in(A,B) -> evalsipmabubblebb2in(A,1 + B)      [A >= 2 + B && C$$ >= 1 + D$$] (?,3)    
          21. evalsipmabubblebb3in(A,B) -> evalsipmabubblebb3in(A,1 + B)      [A >= 2 + B && D$$ >= C$$]     (?,3)    
          22. evalsipmabubblebb3in(A,B) -> evalsipmabubblebb6in(-1 + A,1 + B) [1 + B >= A]                   (?,3)    
          23. evalsipmabubblebb5in(A,B) -> evalsipmabubblebb1in(-1 + A,0)     [-1 + A >= 0 && -1 + A >= 1]   (2 + A,3)
          24. evalsipmabubblebb5in(A,B) -> evalsipmabubblebb5in(-1 + A,0)     [-1 + A >= 0 && 0 >= -1 + A]   (2 + A,3)
          25. evalsipmabubblestart(A,B) -> evalsipmabubblebb1in(A,0)          [A >= 0 && A >= 1]             (1,4)    
          26. evalsipmabubblestart(A,B) -> evalsipmabubblebb5in(A,0)          [A >= 0 && 0 >= A]             (1,4)    
        Signature:
          {(evalsipmabubblebb1in,2)
          ;(evalsipmabubblebb2in,2)
          ;(evalsipmabubblebb3in,2)
          ;(evalsipmabubblebb4in,2)
          ;(evalsipmabubblebb5in,2)
          ;(evalsipmabubblebb6in,2)
          ;(evalsipmabubbleentryin,2)
          ;(evalsipmabubblereturnin,2)
          ;(evalsipmabubblestart,2)
          ;(evalsipmabubblestop,2)}
        Flow Graph:
          [12->{17,18},13->{},14->{19},15->{20,21,22},16->{12,13},17->{20,21,22},18->{14,15,16},19->{14,15,16}
          ,20->{19},21->{20,21,22},22->{12,13},23->{17,18},24->{},25->{17,18},26->{}]
        Sizebounds:
          (<12,0,A>, ?) (<12,0,B>, ?) 
          (<13,0,A>, ?) (<13,0,B>, ?) 
          (<14,0,A>, ?) (<14,0,B>, ?) 
          (<15,0,A>, ?) (<15,0,B>, ?) 
          (<16,0,A>, ?) (<16,0,B>, ?) 
          (<17,0,A>, ?) (<17,0,B>, ?) 
          (<18,0,A>, ?) (<18,0,B>, ?) 
          (<19,0,A>, ?) (<19,0,B>, ?) 
          (<20,0,A>, ?) (<20,0,B>, ?) 
          (<21,0,A>, ?) (<21,0,B>, ?) 
          (<22,0,A>, ?) (<22,0,B>, ?) 
          (<23,0,A>, ?) (<23,0,B>, ?) 
          (<24,0,A>, ?) (<24,0,B>, ?) 
          (<25,0,A>, ?) (<25,0,B>, ?) 
          (<26,0,A>, ?) (<26,0,B>, ?) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [23,24]
* Step 21: LeafRules WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          12. evalsipmabubblebb6in(A,B) -> evalsipmabubblebb1in(A,0)          [A >= 0 && A >= 1]             (2 + A,2)
          13. evalsipmabubblebb6in(A,B) -> evalsipmabubblebb5in(A,0)          [A >= 0 && 0 >= A]             (2 + A,2)
          14. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb2in(A,B)          [A >= 1 + B && C$ >= 1 + D$]   (?,2)    
          15. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb3in(A,B)          [A >= 1 + B && D$ >= C$]       (?,2)    
          16. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb6in(-1 + A,B)     [B >= A]                       (3 + A,2)
          17. evalsipmabubblebb1in(A,B) -> evalsipmabubblebb3in(A,B)          [C >= 1 + D]                   (?,2)    
          18. evalsipmabubblebb1in(A,B) -> evalsipmabubblebb4in(A,1 + B)      [D >= C]                       (?,2)    
          19. evalsipmabubblebb2in(A,B) -> evalsipmabubblebb4in(A,1 + B)      True                           (?,2)    
          20. evalsipmabubblebb3in(A,B) -> evalsipmabubblebb2in(A,1 + B)      [A >= 2 + B && C$$ >= 1 + D$$] (?,3)    
          21. evalsipmabubblebb3in(A,B) -> evalsipmabubblebb3in(A,1 + B)      [A >= 2 + B && D$$ >= C$$]     (?,3)    
          22. evalsipmabubblebb3in(A,B) -> evalsipmabubblebb6in(-1 + A,1 + B) [1 + B >= A]                   (?,3)    
          25. evalsipmabubblestart(A,B) -> evalsipmabubblebb1in(A,0)          [A >= 0 && A >= 1]             (1,4)    
          26. evalsipmabubblestart(A,B) -> evalsipmabubblebb5in(A,0)          [A >= 0 && 0 >= A]             (1,4)    
        Signature:
          {(evalsipmabubblebb1in,2)
          ;(evalsipmabubblebb2in,2)
          ;(evalsipmabubblebb3in,2)
          ;(evalsipmabubblebb4in,2)
          ;(evalsipmabubblebb5in,2)
          ;(evalsipmabubblebb6in,2)
          ;(evalsipmabubbleentryin,2)
          ;(evalsipmabubblereturnin,2)
          ;(evalsipmabubblestart,2)
          ;(evalsipmabubblestop,2)}
        Flow Graph:
          [12->{17,18},13->{},14->{19},15->{20,21,22},16->{12,13},17->{20,21,22},18->{14,15,16},19->{14,15,16}
          ,20->{19},21->{20,21,22},22->{12,13},25->{17,18},26->{}]
        Sizebounds:
          (<12,0,A>, ?) (<12,0,B>, ?) 
          (<13,0,A>, ?) (<13,0,B>, ?) 
          (<14,0,A>, ?) (<14,0,B>, ?) 
          (<15,0,A>, ?) (<15,0,B>, ?) 
          (<16,0,A>, ?) (<16,0,B>, ?) 
          (<17,0,A>, ?) (<17,0,B>, ?) 
          (<18,0,A>, ?) (<18,0,B>, ?) 
          (<19,0,A>, ?) (<19,0,B>, ?) 
          (<20,0,A>, ?) (<20,0,B>, ?) 
          (<21,0,A>, ?) (<21,0,B>, ?) 
          (<22,0,A>, ?) (<22,0,B>, ?) 
          (<25,0,A>, ?) (<25,0,B>, ?) 
          (<26,0,A>, ?) (<26,0,B>, ?) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [13]
* Step 22: LocalSizeboundsProc WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          12. evalsipmabubblebb6in(A,B) -> evalsipmabubblebb1in(A,0)          [A >= 0 && A >= 1]             (2 + A,2)
          14. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb2in(A,B)          [A >= 1 + B && C$ >= 1 + D$]   (?,2)    
          15. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb3in(A,B)          [A >= 1 + B && D$ >= C$]       (?,2)    
          16. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb6in(-1 + A,B)     [B >= A]                       (3 + A,2)
          17. evalsipmabubblebb1in(A,B) -> evalsipmabubblebb3in(A,B)          [C >= 1 + D]                   (?,2)    
          18. evalsipmabubblebb1in(A,B) -> evalsipmabubblebb4in(A,1 + B)      [D >= C]                       (?,2)    
          19. evalsipmabubblebb2in(A,B) -> evalsipmabubblebb4in(A,1 + B)      True                           (?,2)    
          20. evalsipmabubblebb3in(A,B) -> evalsipmabubblebb2in(A,1 + B)      [A >= 2 + B && C$$ >= 1 + D$$] (?,3)    
          21. evalsipmabubblebb3in(A,B) -> evalsipmabubblebb3in(A,1 + B)      [A >= 2 + B && D$$ >= C$$]     (?,3)    
          22. evalsipmabubblebb3in(A,B) -> evalsipmabubblebb6in(-1 + A,1 + B) [1 + B >= A]                   (?,3)    
          25. evalsipmabubblestart(A,B) -> evalsipmabubblebb1in(A,0)          [A >= 0 && A >= 1]             (1,4)    
          26. evalsipmabubblestart(A,B) -> evalsipmabubblebb5in(A,0)          [A >= 0 && 0 >= A]             (1,4)    
        Signature:
          {(evalsipmabubblebb1in,2)
          ;(evalsipmabubblebb2in,2)
          ;(evalsipmabubblebb3in,2)
          ;(evalsipmabubblebb4in,2)
          ;(evalsipmabubblebb5in,2)
          ;(evalsipmabubblebb6in,2)
          ;(evalsipmabubbleentryin,2)
          ;(evalsipmabubblereturnin,2)
          ;(evalsipmabubblestart,2)
          ;(evalsipmabubblestop,2)}
        Flow Graph:
          [12->{17,18},14->{19},15->{20,21,22},16->{12},17->{20,21,22},18->{14,15,16},19->{14,15,16},20->{19}
          ,21->{20,21,22},22->{12},25->{17,18},26->{}]
        Sizebounds:
          (<12,0,A>, ?) (<12,0,B>, ?) 
          (<14,0,A>, ?) (<14,0,B>, ?) 
          (<15,0,A>, ?) (<15,0,B>, ?) 
          (<16,0,A>, ?) (<16,0,B>, ?) 
          (<17,0,A>, ?) (<17,0,B>, ?) 
          (<18,0,A>, ?) (<18,0,B>, ?) 
          (<19,0,A>, ?) (<19,0,B>, ?) 
          (<20,0,A>, ?) (<20,0,B>, ?) 
          (<21,0,A>, ?) (<21,0,B>, ?) 
          (<22,0,A>, ?) (<22,0,B>, ?) 
          (<25,0,A>, ?) (<25,0,B>, ?) 
          (<26,0,A>, ?) (<26,0,B>, ?) 
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (<12,0,A>,     A, .= 0) (<12,0,B>,     0, .= 0) 
          (<14,0,A>,     A, .= 0) (<14,0,B>,     B, .= 0) 
          (<15,0,A>,     A, .= 0) (<15,0,B>,     B, .= 0) 
          (<16,0,A>, 1 + A, .+ 1) (<16,0,B>,     B, .= 0) 
          (<17,0,A>,     A, .= 0) (<17,0,B>,     B, .= 0) 
          (<18,0,A>,     A, .= 0) (<18,0,B>, 1 + B, .+ 1) 
          (<19,0,A>,     A, .= 0) (<19,0,B>, 1 + B, .+ 1) 
          (<20,0,A>,     A, .= 0) (<20,0,B>, 1 + B, .+ 1) 
          (<21,0,A>,     A, .= 0) (<21,0,B>, 1 + B, .+ 1) 
          (<22,0,A>, 1 + A, .+ 1) (<22,0,B>, 1 + B, .+ 1) 
          (<25,0,A>,     A, .= 0) (<25,0,B>,     0, .= 0) 
          (<26,0,A>,     A, .= 0) (<26,0,B>,     0, .= 0) 
* Step 23: SizeboundsProc WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          12. evalsipmabubblebb6in(A,B) -> evalsipmabubblebb1in(A,0)          [A >= 0 && A >= 1]             (2 + A,2)
          14. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb2in(A,B)          [A >= 1 + B && C$ >= 1 + D$]   (?,2)    
          15. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb3in(A,B)          [A >= 1 + B && D$ >= C$]       (?,2)    
          16. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb6in(-1 + A,B)     [B >= A]                       (3 + A,2)
          17. evalsipmabubblebb1in(A,B) -> evalsipmabubblebb3in(A,B)          [C >= 1 + D]                   (?,2)    
          18. evalsipmabubblebb1in(A,B) -> evalsipmabubblebb4in(A,1 + B)      [D >= C]                       (?,2)    
          19. evalsipmabubblebb2in(A,B) -> evalsipmabubblebb4in(A,1 + B)      True                           (?,2)    
          20. evalsipmabubblebb3in(A,B) -> evalsipmabubblebb2in(A,1 + B)      [A >= 2 + B && C$$ >= 1 + D$$] (?,3)    
          21. evalsipmabubblebb3in(A,B) -> evalsipmabubblebb3in(A,1 + B)      [A >= 2 + B && D$$ >= C$$]     (?,3)    
          22. evalsipmabubblebb3in(A,B) -> evalsipmabubblebb6in(-1 + A,1 + B) [1 + B >= A]                   (?,3)    
          25. evalsipmabubblestart(A,B) -> evalsipmabubblebb1in(A,0)          [A >= 0 && A >= 1]             (1,4)    
          26. evalsipmabubblestart(A,B) -> evalsipmabubblebb5in(A,0)          [A >= 0 && 0 >= A]             (1,4)    
        Signature:
          {(evalsipmabubblebb1in,2)
          ;(evalsipmabubblebb2in,2)
          ;(evalsipmabubblebb3in,2)
          ;(evalsipmabubblebb4in,2)
          ;(evalsipmabubblebb5in,2)
          ;(evalsipmabubblebb6in,2)
          ;(evalsipmabubbleentryin,2)
          ;(evalsipmabubblereturnin,2)
          ;(evalsipmabubblestart,2)
          ;(evalsipmabubblestop,2)}
        Flow Graph:
          [12->{17,18},14->{19},15->{20,21,22},16->{12},17->{20,21,22},18->{14,15,16},19->{14,15,16},20->{19}
          ,21->{20,21,22},22->{12},25->{17,18},26->{}]
        Sizebounds:
          (<12,0,A>, ?) (<12,0,B>, ?) 
          (<14,0,A>, ?) (<14,0,B>, ?) 
          (<15,0,A>, ?) (<15,0,B>, ?) 
          (<16,0,A>, ?) (<16,0,B>, ?) 
          (<17,0,A>, ?) (<17,0,B>, ?) 
          (<18,0,A>, ?) (<18,0,B>, ?) 
          (<19,0,A>, ?) (<19,0,B>, ?) 
          (<20,0,A>, ?) (<20,0,B>, ?) 
          (<21,0,A>, ?) (<21,0,B>, ?) 
          (<22,0,A>, ?) (<22,0,B>, ?) 
          (<25,0,A>, ?) (<25,0,B>, ?) 
          (<26,0,A>, ?) (<26,0,B>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (<12,0,A>, ?) (<12,0,B>, 0) 
          (<14,0,A>, ?) (<14,0,B>, ?) 
          (<15,0,A>, ?) (<15,0,B>, ?) 
          (<16,0,A>, ?) (<16,0,B>, ?) 
          (<17,0,A>, ?) (<17,0,B>, 0) 
          (<18,0,A>, ?) (<18,0,B>, 1) 
          (<19,0,A>, ?) (<19,0,B>, ?) 
          (<20,0,A>, ?) (<20,0,B>, ?) 
          (<21,0,A>, ?) (<21,0,B>, ?) 
          (<22,0,A>, ?) (<22,0,B>, ?) 
          (<25,0,A>, A) (<25,0,B>, 0) 
          (<26,0,A>, A) (<26,0,B>, 0) 
* Step 24: LocationConstraintsProc WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          12. evalsipmabubblebb6in(A,B) -> evalsipmabubblebb1in(A,0)          [A >= 0 && A >= 1]             (2 + A,2)
          14. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb2in(A,B)          [A >= 1 + B && C$ >= 1 + D$]   (?,2)    
          15. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb3in(A,B)          [A >= 1 + B && D$ >= C$]       (?,2)    
          16. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb6in(-1 + A,B)     [B >= A]                       (3 + A,2)
          17. evalsipmabubblebb1in(A,B) -> evalsipmabubblebb3in(A,B)          [C >= 1 + D]                   (?,2)    
          18. evalsipmabubblebb1in(A,B) -> evalsipmabubblebb4in(A,1 + B)      [D >= C]                       (?,2)    
          19. evalsipmabubblebb2in(A,B) -> evalsipmabubblebb4in(A,1 + B)      True                           (?,2)    
          20. evalsipmabubblebb3in(A,B) -> evalsipmabubblebb2in(A,1 + B)      [A >= 2 + B && C$$ >= 1 + D$$] (?,3)    
          21. evalsipmabubblebb3in(A,B) -> evalsipmabubblebb3in(A,1 + B)      [A >= 2 + B && D$$ >= C$$]     (?,3)    
          22. evalsipmabubblebb3in(A,B) -> evalsipmabubblebb6in(-1 + A,1 + B) [1 + B >= A]                   (?,3)    
          25. evalsipmabubblestart(A,B) -> evalsipmabubblebb1in(A,0)          [A >= 0 && A >= 1]             (1,4)    
          26. evalsipmabubblestart(A,B) -> evalsipmabubblebb5in(A,0)          [A >= 0 && 0 >= A]             (1,4)    
        Signature:
          {(evalsipmabubblebb1in,2)
          ;(evalsipmabubblebb2in,2)
          ;(evalsipmabubblebb3in,2)
          ;(evalsipmabubblebb4in,2)
          ;(evalsipmabubblebb5in,2)
          ;(evalsipmabubblebb6in,2)
          ;(evalsipmabubbleentryin,2)
          ;(evalsipmabubblereturnin,2)
          ;(evalsipmabubblestart,2)
          ;(evalsipmabubblestop,2)}
        Flow Graph:
          [12->{17,18},14->{19},15->{20,21,22},16->{12},17->{20,21,22},18->{14,15,16},19->{14,15,16},20->{19}
          ,21->{20,21,22},22->{12},25->{17,18},26->{}]
        Sizebounds:
          (<12,0,A>, ?) (<12,0,B>, 0) 
          (<14,0,A>, ?) (<14,0,B>, ?) 
          (<15,0,A>, ?) (<15,0,B>, ?) 
          (<16,0,A>, ?) (<16,0,B>, ?) 
          (<17,0,A>, ?) (<17,0,B>, 0) 
          (<18,0,A>, ?) (<18,0,B>, 1) 
          (<19,0,A>, ?) (<19,0,B>, ?) 
          (<20,0,A>, ?) (<20,0,B>, ?) 
          (<21,0,A>, ?) (<21,0,B>, ?) 
          (<22,0,A>, ?) (<22,0,B>, ?) 
          (<25,0,A>, A) (<25,0,B>, 0) 
          (<26,0,A>, A) (<26,0,B>, 0) 
    + Applied Processor:
        LocationConstraintsProc
    + Details:
        We computed the location constraints  12 :  True 14 :  True 15 :  True 16 :  True 17 :  [A >= 0] 18 :  [A >= 0] 19 :  [A >= 1 + B] 20 :  True 21 :  True 22 :  True 25 :  True 26 :  True .
* Step 25: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          12. evalsipmabubblebb6in(A,B) -> evalsipmabubblebb1in(A,0)          [A >= 0 && A >= 1]             (2 + A,2)
          14. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb2in(A,B)          [A >= 1 + B && C$ >= 1 + D$]   (?,2)    
          15. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb3in(A,B)          [A >= 1 + B && D$ >= C$]       (?,2)    
          16. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb6in(-1 + A,B)     [B >= A]                       (3 + A,2)
          17. evalsipmabubblebb1in(A,B) -> evalsipmabubblebb3in(A,B)          [C >= 1 + D]                   (?,2)    
          18. evalsipmabubblebb1in(A,B) -> evalsipmabubblebb4in(A,1 + B)      [D >= C]                       (?,2)    
          19. evalsipmabubblebb2in(A,B) -> evalsipmabubblebb4in(A,1 + B)      True                           (?,2)    
          20. evalsipmabubblebb3in(A,B) -> evalsipmabubblebb2in(A,1 + B)      [A >= 2 + B && C$$ >= 1 + D$$] (?,3)    
          21. evalsipmabubblebb3in(A,B) -> evalsipmabubblebb3in(A,1 + B)      [A >= 2 + B && D$$ >= C$$]     (?,3)    
          22. evalsipmabubblebb3in(A,B) -> evalsipmabubblebb6in(-1 + A,1 + B) [1 + B >= A]                   (?,3)    
          25. evalsipmabubblestart(A,B) -> evalsipmabubblebb1in(A,0)          [A >= 0 && A >= 1]             (1,4)    
          26. evalsipmabubblestart(A,B) -> evalsipmabubblebb5in(A,0)          [A >= 0 && 0 >= A]             (1,4)    
        Signature:
          {(evalsipmabubblebb1in,2)
          ;(evalsipmabubblebb2in,2)
          ;(evalsipmabubblebb3in,2)
          ;(evalsipmabubblebb4in,2)
          ;(evalsipmabubblebb5in,2)
          ;(evalsipmabubblebb6in,2)
          ;(evalsipmabubbleentryin,2)
          ;(evalsipmabubblereturnin,2)
          ;(evalsipmabubblestart,2)
          ;(evalsipmabubblestop,2)}
        Flow Graph:
          [12->{17,18},14->{19},15->{20,21,22},16->{12},17->{20,21,22},18->{14,15,16},19->{14,15,16},20->{19}
          ,21->{20,21,22},22->{12},25->{17,18},26->{}]
        Sizebounds:
          (<12,0,A>, ?) (<12,0,B>, 0) 
          (<14,0,A>, ?) (<14,0,B>, ?) 
          (<15,0,A>, ?) (<15,0,B>, ?) 
          (<16,0,A>, ?) (<16,0,B>, ?) 
          (<17,0,A>, ?) (<17,0,B>, 0) 
          (<18,0,A>, ?) (<18,0,B>, 1) 
          (<19,0,A>, ?) (<19,0,B>, ?) 
          (<20,0,A>, ?) (<20,0,B>, ?) 
          (<21,0,A>, ?) (<21,0,B>, ?) 
          (<22,0,A>, ?) (<22,0,B>, ?) 
          (<25,0,A>, A) (<25,0,B>, 0) 
          (<26,0,A>, A) (<26,0,B>, 0) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [16,18,19,14,20,15,17,21,22], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalsipmabubblebb1in) = 1
          p(evalsipmabubblebb2in) = 1
          p(evalsipmabubblebb3in) = 1
          p(evalsipmabubblebb4in) = 1
          p(evalsipmabubblebb6in) = 0
        
        The following rules are strictly oriented:
                           [B >= A] ==>                                   
          evalsipmabubblebb4in(A,B)   = 1                                 
                                      > 0                                 
                                      = evalsipmabubblebb6in(-1 + A,B)    
        
                       [1 + B >= A] ==>                                   
          evalsipmabubblebb3in(A,B)   = 1                                 
                                      > 0                                 
                                      = evalsipmabubblebb6in(-1 + A,1 + B)
        
        
        The following rules are weakly oriented:
          [A >= 1 + B && C$ >= 1 + D$] ==>                              
             evalsipmabubblebb4in(A,B)   = 1                            
                                        >= 1                            
                                         = evalsipmabubblebb2in(A,B)    
        
              [A >= 1 + B && D$ >= C$] ==>                              
             evalsipmabubblebb4in(A,B)   = 1                            
                                        >= 1                            
                                         = evalsipmabubblebb3in(A,B)    
        
                          [C >= 1 + D] ==>                              
             evalsipmabubblebb1in(A,B)   = 1                            
                                        >= 1                            
                                         = evalsipmabubblebb3in(A,B)    
        
                              [D >= C] ==>                              
             evalsipmabubblebb1in(A,B)   = 1                            
                                        >= 1                            
                                         = evalsipmabubblebb4in(A,1 + B)
        
                                  True ==>                              
             evalsipmabubblebb2in(A,B)   = 1                            
                                        >= 1                            
                                         = evalsipmabubblebb4in(A,1 + B)
        
        [A >= 2 + B && C$$ >= 1 + D$$] ==>                              
             evalsipmabubblebb3in(A,B)   = 1                            
                                        >= 1                            
                                         = evalsipmabubblebb2in(A,1 + B)
        
            [A >= 2 + B && D$$ >= C$$] ==>                              
             evalsipmabubblebb3in(A,B)   = 1                            
                                        >= 1                            
                                         = evalsipmabubblebb3in(A,1 + B)
        
        We use the following global sizebounds:
        (<12,0,A>, ?) (<12,0,B>, 0) 
        (<14,0,A>, ?) (<14,0,B>, ?) 
        (<15,0,A>, ?) (<15,0,B>, ?) 
        (<16,0,A>, ?) (<16,0,B>, ?) 
        (<17,0,A>, ?) (<17,0,B>, 0) 
        (<18,0,A>, ?) (<18,0,B>, 1) 
        (<19,0,A>, ?) (<19,0,B>, ?) 
        (<20,0,A>, ?) (<20,0,B>, ?) 
        (<21,0,A>, ?) (<21,0,B>, ?) 
        (<22,0,A>, ?) (<22,0,B>, ?) 
        (<25,0,A>, A) (<25,0,B>, 0) 
        (<26,0,A>, A) (<26,0,B>, 0) 
* Step 26: KnowledgePropagation WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          12. evalsipmabubblebb6in(A,B) -> evalsipmabubblebb1in(A,0)          [A >= 0 && A >= 1]             (2 + A,2)
          14. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb2in(A,B)          [A >= 1 + B && C$ >= 1 + D$]   (?,2)    
          15. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb3in(A,B)          [A >= 1 + B && D$ >= C$]       (?,2)    
          16. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb6in(-1 + A,B)     [B >= A]                       (3 + A,2)
          17. evalsipmabubblebb1in(A,B) -> evalsipmabubblebb3in(A,B)          [C >= 1 + D]                   (?,2)    
          18. evalsipmabubblebb1in(A,B) -> evalsipmabubblebb4in(A,1 + B)      [D >= C]                       (?,2)    
          19. evalsipmabubblebb2in(A,B) -> evalsipmabubblebb4in(A,1 + B)      True                           (?,2)    
          20. evalsipmabubblebb3in(A,B) -> evalsipmabubblebb2in(A,1 + B)      [A >= 2 + B && C$$ >= 1 + D$$] (?,3)    
          21. evalsipmabubblebb3in(A,B) -> evalsipmabubblebb3in(A,1 + B)      [A >= 2 + B && D$$ >= C$$]     (?,3)    
          22. evalsipmabubblebb3in(A,B) -> evalsipmabubblebb6in(-1 + A,1 + B) [1 + B >= A]                   (3 + A,3)
          25. evalsipmabubblestart(A,B) -> evalsipmabubblebb1in(A,0)          [A >= 0 && A >= 1]             (1,4)    
          26. evalsipmabubblestart(A,B) -> evalsipmabubblebb5in(A,0)          [A >= 0 && 0 >= A]             (1,4)    
        Signature:
          {(evalsipmabubblebb1in,2)
          ;(evalsipmabubblebb2in,2)
          ;(evalsipmabubblebb3in,2)
          ;(evalsipmabubblebb4in,2)
          ;(evalsipmabubblebb5in,2)
          ;(evalsipmabubblebb6in,2)
          ;(evalsipmabubbleentryin,2)
          ;(evalsipmabubblereturnin,2)
          ;(evalsipmabubblestart,2)
          ;(evalsipmabubblestop,2)}
        Flow Graph:
          [12->{17,18},14->{19},15->{20,21,22},16->{12},17->{20,21,22},18->{14,15,16},19->{14,15,16},20->{19}
          ,21->{20,21,22},22->{12},25->{17,18},26->{}]
        Sizebounds:
          (<12,0,A>, ?) (<12,0,B>, 0) 
          (<14,0,A>, ?) (<14,0,B>, ?) 
          (<15,0,A>, ?) (<15,0,B>, ?) 
          (<16,0,A>, ?) (<16,0,B>, ?) 
          (<17,0,A>, ?) (<17,0,B>, 0) 
          (<18,0,A>, ?) (<18,0,B>, 1) 
          (<19,0,A>, ?) (<19,0,B>, ?) 
          (<20,0,A>, ?) (<20,0,B>, ?) 
          (<21,0,A>, ?) (<21,0,B>, ?) 
          (<22,0,A>, ?) (<22,0,B>, ?) 
          (<25,0,A>, A) (<25,0,B>, 0) 
          (<26,0,A>, A) (<26,0,B>, 0) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 27: SizeboundsProc WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          12. evalsipmabubblebb6in(A,B) -> evalsipmabubblebb1in(A,0)          [A >= 0 && A >= 1]             (2 + A,2)
          14. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb2in(A,B)          [A >= 1 + B && C$ >= 1 + D$]   (?,2)    
          15. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb3in(A,B)          [A >= 1 + B && D$ >= C$]       (?,2)    
          16. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb6in(-1 + A,B)     [B >= A]                       (3 + A,2)
          17. evalsipmabubblebb1in(A,B) -> evalsipmabubblebb3in(A,B)          [C >= 1 + D]                   (3 + A,2)
          18. evalsipmabubblebb1in(A,B) -> evalsipmabubblebb4in(A,1 + B)      [D >= C]                       (3 + A,2)
          19. evalsipmabubblebb2in(A,B) -> evalsipmabubblebb4in(A,1 + B)      True                           (?,2)    
          20. evalsipmabubblebb3in(A,B) -> evalsipmabubblebb2in(A,1 + B)      [A >= 2 + B && C$$ >= 1 + D$$] (?,3)    
          21. evalsipmabubblebb3in(A,B) -> evalsipmabubblebb3in(A,1 + B)      [A >= 2 + B && D$$ >= C$$]     (?,3)    
          22. evalsipmabubblebb3in(A,B) -> evalsipmabubblebb6in(-1 + A,1 + B) [1 + B >= A]                   (3 + A,3)
          25. evalsipmabubblestart(A,B) -> evalsipmabubblebb1in(A,0)          [A >= 0 && A >= 1]             (1,4)    
          26. evalsipmabubblestart(A,B) -> evalsipmabubblebb5in(A,0)          [A >= 0 && 0 >= A]             (1,4)    
        Signature:
          {(evalsipmabubblebb1in,2)
          ;(evalsipmabubblebb2in,2)
          ;(evalsipmabubblebb3in,2)
          ;(evalsipmabubblebb4in,2)
          ;(evalsipmabubblebb5in,2)
          ;(evalsipmabubblebb6in,2)
          ;(evalsipmabubbleentryin,2)
          ;(evalsipmabubblereturnin,2)
          ;(evalsipmabubblestart,2)
          ;(evalsipmabubblestop,2)}
        Flow Graph:
          [12->{17,18},14->{19},15->{20,21,22},16->{12},17->{20,21,22},18->{14,15,16},19->{14,15,16},20->{19}
          ,21->{20,21,22},22->{12},25->{17,18},26->{}]
        Sizebounds:
          (<12,0,A>, ?) (<12,0,B>, 0) 
          (<14,0,A>, ?) (<14,0,B>, ?) 
          (<15,0,A>, ?) (<15,0,B>, ?) 
          (<16,0,A>, ?) (<16,0,B>, ?) 
          (<17,0,A>, ?) (<17,0,B>, 0) 
          (<18,0,A>, ?) (<18,0,B>, 1) 
          (<19,0,A>, ?) (<19,0,B>, ?) 
          (<20,0,A>, ?) (<20,0,B>, ?) 
          (<21,0,A>, ?) (<21,0,B>, ?) 
          (<22,0,A>, ?) (<22,0,B>, ?) 
          (<25,0,A>, A) (<25,0,B>, 0) 
          (<26,0,A>, A) (<26,0,B>, 0) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (<12,0,A>, 6 + 3*A) (<12,0,B>,       0) 
          (<14,0,A>, 6 + 3*A) (<14,0,B>, 6 + 3*A) 
          (<15,0,A>, 6 + 3*A) (<15,0,B>, 6 + 3*A) 
          (<16,0,A>, 6 + 3*A) (<16,0,B>, 6 + 3*A) 
          (<17,0,A>, 6 + 3*A) (<17,0,B>,       0) 
          (<18,0,A>, 6 + 3*A) (<18,0,B>,       1) 
          (<19,0,A>, 6 + 3*A) (<19,0,B>, 6 + 3*A) 
          (<20,0,A>, 6 + 3*A) (<20,0,B>, 6 + 3*A) 
          (<21,0,A>, 6 + 3*A) (<21,0,B>, 6 + 3*A) 
          (<22,0,A>, 6 + 3*A) (<22,0,B>, 7 + 3*A) 
          (<25,0,A>,       A) (<25,0,B>,       0) 
          (<26,0,A>,       A) (<26,0,B>,       0) 
* Step 28: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          12. evalsipmabubblebb6in(A,B) -> evalsipmabubblebb1in(A,0)          [A >= 0 && A >= 1]             (2 + A,2)
          14. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb2in(A,B)          [A >= 1 + B && C$ >= 1 + D$]   (?,2)    
          15. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb3in(A,B)          [A >= 1 + B && D$ >= C$]       (?,2)    
          16. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb6in(-1 + A,B)     [B >= A]                       (3 + A,2)
          17. evalsipmabubblebb1in(A,B) -> evalsipmabubblebb3in(A,B)          [C >= 1 + D]                   (3 + A,2)
          18. evalsipmabubblebb1in(A,B) -> evalsipmabubblebb4in(A,1 + B)      [D >= C]                       (3 + A,2)
          19. evalsipmabubblebb2in(A,B) -> evalsipmabubblebb4in(A,1 + B)      True                           (?,2)    
          20. evalsipmabubblebb3in(A,B) -> evalsipmabubblebb2in(A,1 + B)      [A >= 2 + B && C$$ >= 1 + D$$] (?,3)    
          21. evalsipmabubblebb3in(A,B) -> evalsipmabubblebb3in(A,1 + B)      [A >= 2 + B && D$$ >= C$$]     (?,3)    
          22. evalsipmabubblebb3in(A,B) -> evalsipmabubblebb6in(-1 + A,1 + B) [1 + B >= A]                   (3 + A,3)
          25. evalsipmabubblestart(A,B) -> evalsipmabubblebb1in(A,0)          [A >= 0 && A >= 1]             (1,4)    
          26. evalsipmabubblestart(A,B) -> evalsipmabubblebb5in(A,0)          [A >= 0 && 0 >= A]             (1,4)    
        Signature:
          {(evalsipmabubblebb1in,2)
          ;(evalsipmabubblebb2in,2)
          ;(evalsipmabubblebb3in,2)
          ;(evalsipmabubblebb4in,2)
          ;(evalsipmabubblebb5in,2)
          ;(evalsipmabubblebb6in,2)
          ;(evalsipmabubbleentryin,2)
          ;(evalsipmabubblereturnin,2)
          ;(evalsipmabubblestart,2)
          ;(evalsipmabubblestop,2)}
        Flow Graph:
          [12->{17,18},14->{19},15->{20,21,22},16->{12},17->{20,21,22},18->{14,15,16},19->{14,15,16},20->{19}
          ,21->{20,21,22},22->{12},25->{17,18},26->{}]
        Sizebounds:
          (<12,0,A>, 6 + 3*A) (<12,0,B>,       0) 
          (<14,0,A>, 6 + 3*A) (<14,0,B>, 6 + 3*A) 
          (<15,0,A>, 6 + 3*A) (<15,0,B>, 6 + 3*A) 
          (<16,0,A>, 6 + 3*A) (<16,0,B>, 6 + 3*A) 
          (<17,0,A>, 6 + 3*A) (<17,0,B>,       0) 
          (<18,0,A>, 6 + 3*A) (<18,0,B>,       1) 
          (<19,0,A>, 6 + 3*A) (<19,0,B>, 6 + 3*A) 
          (<20,0,A>, 6 + 3*A) (<20,0,B>, 6 + 3*A) 
          (<21,0,A>, 6 + 3*A) (<21,0,B>, 6 + 3*A) 
          (<22,0,A>, 6 + 3*A) (<22,0,B>, 7 + 3*A) 
          (<25,0,A>,       A) (<25,0,B>,       0) 
          (<26,0,A>,       A) (<26,0,B>,       0) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [16,18,19,14,20,15,17,21,22], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalsipmabubblebb1in) = x1 + -1*x2     
          p(evalsipmabubblebb2in) = -2 + x1 + -1*x2
          p(evalsipmabubblebb3in) = -1 + x1 + -1*x2
          p(evalsipmabubblebb4in) = -1 + x1 + -1*x2
          p(evalsipmabubblebb6in) = x1 + -1*x2     
        
        The following rules are strictly oriented:
         [A >= 2 + B && D$$ >= C$$] ==>                              
          evalsipmabubblebb3in(A,B)   = -1 + A + -1*B                
                                      > -2 + A + -1*B                
                                      = evalsipmabubblebb3in(A,1 + B)
        
        
        The following rules are weakly oriented:
          [A >= 1 + B && C$ >= 1 + D$] ==>                                   
             evalsipmabubblebb4in(A,B)   = -1 + A + -1*B                     
                                        >= -2 + A + -1*B                     
                                         = evalsipmabubblebb2in(A,B)         
        
              [A >= 1 + B && D$ >= C$] ==>                                   
             evalsipmabubblebb4in(A,B)   = -1 + A + -1*B                     
                                        >= -1 + A + -1*B                     
                                         = evalsipmabubblebb3in(A,B)         
        
                              [B >= A] ==>                                   
             evalsipmabubblebb4in(A,B)   = -1 + A + -1*B                     
                                        >= -1 + A + -1*B                     
                                         = evalsipmabubblebb6in(-1 + A,B)    
        
                          [C >= 1 + D] ==>                                   
             evalsipmabubblebb1in(A,B)   = A + -1*B                          
                                        >= -1 + A + -1*B                     
                                         = evalsipmabubblebb3in(A,B)         
        
                              [D >= C] ==>                                   
             evalsipmabubblebb1in(A,B)   = A + -1*B                          
                                        >= -2 + A + -1*B                     
                                         = evalsipmabubblebb4in(A,1 + B)     
        
                                  True ==>                                   
             evalsipmabubblebb2in(A,B)   = -2 + A + -1*B                     
                                        >= -2 + A + -1*B                     
                                         = evalsipmabubblebb4in(A,1 + B)     
        
        [A >= 2 + B && C$$ >= 1 + D$$] ==>                                   
             evalsipmabubblebb3in(A,B)   = -1 + A + -1*B                     
                                        >= -3 + A + -1*B                     
                                         = evalsipmabubblebb2in(A,1 + B)     
        
                          [1 + B >= A] ==>                                   
             evalsipmabubblebb3in(A,B)   = -1 + A + -1*B                     
                                        >= -2 + A + -1*B                     
                                         = evalsipmabubblebb6in(-1 + A,1 + B)
        
        We use the following global sizebounds:
        (<12,0,A>, 6 + 3*A) (<12,0,B>,       0) 
        (<14,0,A>, 6 + 3*A) (<14,0,B>, 6 + 3*A) 
        (<15,0,A>, 6 + 3*A) (<15,0,B>, 6 + 3*A) 
        (<16,0,A>, 6 + 3*A) (<16,0,B>, 6 + 3*A) 
        (<17,0,A>, 6 + 3*A) (<17,0,B>,       0) 
        (<18,0,A>, 6 + 3*A) (<18,0,B>,       1) 
        (<19,0,A>, 6 + 3*A) (<19,0,B>, 6 + 3*A) 
        (<20,0,A>, 6 + 3*A) (<20,0,B>, 6 + 3*A) 
        (<21,0,A>, 6 + 3*A) (<21,0,B>, 6 + 3*A) 
        (<22,0,A>, 6 + 3*A) (<22,0,B>, 7 + 3*A) 
        (<25,0,A>,       A) (<25,0,B>,       0) 
        (<26,0,A>,       A) (<26,0,B>,       0) 
* Step 29: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          12. evalsipmabubblebb6in(A,B) -> evalsipmabubblebb1in(A,0)          [A >= 0 && A >= 1]             (2 + A,2)            
          14. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb2in(A,B)          [A >= 1 + B && C$ >= 1 + D$]   (?,2)                
          15. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb3in(A,B)          [A >= 1 + B && D$ >= C$]       (?,2)                
          16. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb6in(-1 + A,B)     [B >= A]                       (3 + A,2)            
          17. evalsipmabubblebb1in(A,B) -> evalsipmabubblebb3in(A,B)          [C >= 1 + D]                   (3 + A,2)            
          18. evalsipmabubblebb1in(A,B) -> evalsipmabubblebb4in(A,1 + B)      [D >= C]                       (3 + A,2)            
          19. evalsipmabubblebb2in(A,B) -> evalsipmabubblebb4in(A,1 + B)      True                           (?,2)                
          20. evalsipmabubblebb3in(A,B) -> evalsipmabubblebb2in(A,1 + B)      [A >= 2 + B && C$$ >= 1 + D$$] (?,3)                
          21. evalsipmabubblebb3in(A,B) -> evalsipmabubblebb3in(A,1 + B)      [A >= 2 + B && D$$ >= C$$]     (12 + 13*A + 3*A^2,3)
          22. evalsipmabubblebb3in(A,B) -> evalsipmabubblebb6in(-1 + A,1 + B) [1 + B >= A]                   (3 + A,3)            
          25. evalsipmabubblestart(A,B) -> evalsipmabubblebb1in(A,0)          [A >= 0 && A >= 1]             (1,4)                
          26. evalsipmabubblestart(A,B) -> evalsipmabubblebb5in(A,0)          [A >= 0 && 0 >= A]             (1,4)                
        Signature:
          {(evalsipmabubblebb1in,2)
          ;(evalsipmabubblebb2in,2)
          ;(evalsipmabubblebb3in,2)
          ;(evalsipmabubblebb4in,2)
          ;(evalsipmabubblebb5in,2)
          ;(evalsipmabubblebb6in,2)
          ;(evalsipmabubbleentryin,2)
          ;(evalsipmabubblereturnin,2)
          ;(evalsipmabubblestart,2)
          ;(evalsipmabubblestop,2)}
        Flow Graph:
          [12->{17,18},14->{19},15->{20,21,22},16->{12},17->{20,21,22},18->{14,15,16},19->{14,15,16},20->{19}
          ,21->{20,21,22},22->{12},25->{17,18},26->{}]
        Sizebounds:
          (<12,0,A>, 6 + 3*A) (<12,0,B>,       0) 
          (<14,0,A>, 6 + 3*A) (<14,0,B>, 6 + 3*A) 
          (<15,0,A>, 6 + 3*A) (<15,0,B>, 6 + 3*A) 
          (<16,0,A>, 6 + 3*A) (<16,0,B>, 6 + 3*A) 
          (<17,0,A>, 6 + 3*A) (<17,0,B>,       0) 
          (<18,0,A>, 6 + 3*A) (<18,0,B>,       1) 
          (<19,0,A>, 6 + 3*A) (<19,0,B>, 6 + 3*A) 
          (<20,0,A>, 6 + 3*A) (<20,0,B>, 6 + 3*A) 
          (<21,0,A>, 6 + 3*A) (<21,0,B>, 6 + 3*A) 
          (<22,0,A>, 6 + 3*A) (<22,0,B>, 7 + 3*A) 
          (<25,0,A>,       A) (<25,0,B>,       0) 
          (<26,0,A>,       A) (<26,0,B>,       0) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [16,18,19,14,20,15,17,21,22], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalsipmabubblebb1in) = x1 + -1*x2     
          p(evalsipmabubblebb2in) = -2 + x1 + -1*x2
          p(evalsipmabubblebb3in) = -1 + x1 + -1*x2
          p(evalsipmabubblebb4in) = -1 + x1 + -1*x2
          p(evalsipmabubblebb6in) = x1 + -1*x2     
        
        The following rules are strictly oriented:
        [A >= 2 + B && C$$ >= 1 + D$$] ==>                              
             evalsipmabubblebb3in(A,B)   = -1 + A + -1*B                
                                         > -3 + A + -1*B                
                                         = evalsipmabubblebb2in(A,1 + B)
        
            [A >= 2 + B && D$$ >= C$$] ==>                              
             evalsipmabubblebb3in(A,B)   = -1 + A + -1*B                
                                         > -2 + A + -1*B                
                                         = evalsipmabubblebb3in(A,1 + B)
        
        
        The following rules are weakly oriented:
        [A >= 1 + B && C$ >= 1 + D$] ==>                                   
           evalsipmabubblebb4in(A,B)   = -1 + A + -1*B                     
                                      >= -2 + A + -1*B                     
                                       = evalsipmabubblebb2in(A,B)         
        
            [A >= 1 + B && D$ >= C$] ==>                                   
           evalsipmabubblebb4in(A,B)   = -1 + A + -1*B                     
                                      >= -1 + A + -1*B                     
                                       = evalsipmabubblebb3in(A,B)         
        
                            [B >= A] ==>                                   
           evalsipmabubblebb4in(A,B)   = -1 + A + -1*B                     
                                      >= -1 + A + -1*B                     
                                       = evalsipmabubblebb6in(-1 + A,B)    
        
                        [C >= 1 + D] ==>                                   
           evalsipmabubblebb1in(A,B)   = A + -1*B                          
                                      >= -1 + A + -1*B                     
                                       = evalsipmabubblebb3in(A,B)         
        
                            [D >= C] ==>                                   
           evalsipmabubblebb1in(A,B)   = A + -1*B                          
                                      >= -2 + A + -1*B                     
                                       = evalsipmabubblebb4in(A,1 + B)     
        
                                True ==>                                   
           evalsipmabubblebb2in(A,B)   = -2 + A + -1*B                     
                                      >= -2 + A + -1*B                     
                                       = evalsipmabubblebb4in(A,1 + B)     
        
                        [1 + B >= A] ==>                                   
           evalsipmabubblebb3in(A,B)   = -1 + A + -1*B                     
                                      >= -2 + A + -1*B                     
                                       = evalsipmabubblebb6in(-1 + A,1 + B)
        
        We use the following global sizebounds:
        (<12,0,A>, 6 + 3*A) (<12,0,B>,       0) 
        (<14,0,A>, 6 + 3*A) (<14,0,B>, 6 + 3*A) 
        (<15,0,A>, 6 + 3*A) (<15,0,B>, 6 + 3*A) 
        (<16,0,A>, 6 + 3*A) (<16,0,B>, 6 + 3*A) 
        (<17,0,A>, 6 + 3*A) (<17,0,B>,       0) 
        (<18,0,A>, 6 + 3*A) (<18,0,B>,       1) 
        (<19,0,A>, 6 + 3*A) (<19,0,B>, 6 + 3*A) 
        (<20,0,A>, 6 + 3*A) (<20,0,B>, 6 + 3*A) 
        (<21,0,A>, 6 + 3*A) (<21,0,B>, 6 + 3*A) 
        (<22,0,A>, 6 + 3*A) (<22,0,B>, 7 + 3*A) 
        (<25,0,A>,       A) (<25,0,B>,       0) 
        (<26,0,A>,       A) (<26,0,B>,       0) 
* Step 30: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          12. evalsipmabubblebb6in(A,B) -> evalsipmabubblebb1in(A,0)          [A >= 0 && A >= 1]             (2 + A,2)            
          14. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb2in(A,B)          [A >= 1 + B && C$ >= 1 + D$]   (?,2)                
          15. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb3in(A,B)          [A >= 1 + B && D$ >= C$]       (?,2)                
          16. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb6in(-1 + A,B)     [B >= A]                       (3 + A,2)            
          17. evalsipmabubblebb1in(A,B) -> evalsipmabubblebb3in(A,B)          [C >= 1 + D]                   (3 + A,2)            
          18. evalsipmabubblebb1in(A,B) -> evalsipmabubblebb4in(A,1 + B)      [D >= C]                       (3 + A,2)            
          19. evalsipmabubblebb2in(A,B) -> evalsipmabubblebb4in(A,1 + B)      True                           (?,2)                
          20. evalsipmabubblebb3in(A,B) -> evalsipmabubblebb2in(A,1 + B)      [A >= 2 + B && C$$ >= 1 + D$$] (12 + 13*A + 3*A^2,3)
          21. evalsipmabubblebb3in(A,B) -> evalsipmabubblebb3in(A,1 + B)      [A >= 2 + B && D$$ >= C$$]     (12 + 13*A + 3*A^2,3)
          22. evalsipmabubblebb3in(A,B) -> evalsipmabubblebb6in(-1 + A,1 + B) [1 + B >= A]                   (3 + A,3)            
          25. evalsipmabubblestart(A,B) -> evalsipmabubblebb1in(A,0)          [A >= 0 && A >= 1]             (1,4)                
          26. evalsipmabubblestart(A,B) -> evalsipmabubblebb5in(A,0)          [A >= 0 && 0 >= A]             (1,4)                
        Signature:
          {(evalsipmabubblebb1in,2)
          ;(evalsipmabubblebb2in,2)
          ;(evalsipmabubblebb3in,2)
          ;(evalsipmabubblebb4in,2)
          ;(evalsipmabubblebb5in,2)
          ;(evalsipmabubblebb6in,2)
          ;(evalsipmabubbleentryin,2)
          ;(evalsipmabubblereturnin,2)
          ;(evalsipmabubblestart,2)
          ;(evalsipmabubblestop,2)}
        Flow Graph:
          [12->{17,18},14->{19},15->{20,21,22},16->{12},17->{20,21,22},18->{14,15,16},19->{14,15,16},20->{19}
          ,21->{20,21,22},22->{12},25->{17,18},26->{}]
        Sizebounds:
          (<12,0,A>, 6 + 3*A) (<12,0,B>,       0) 
          (<14,0,A>, 6 + 3*A) (<14,0,B>, 6 + 3*A) 
          (<15,0,A>, 6 + 3*A) (<15,0,B>, 6 + 3*A) 
          (<16,0,A>, 6 + 3*A) (<16,0,B>, 6 + 3*A) 
          (<17,0,A>, 6 + 3*A) (<17,0,B>,       0) 
          (<18,0,A>, 6 + 3*A) (<18,0,B>,       1) 
          (<19,0,A>, 6 + 3*A) (<19,0,B>, 6 + 3*A) 
          (<20,0,A>, 6 + 3*A) (<20,0,B>, 6 + 3*A) 
          (<21,0,A>, 6 + 3*A) (<21,0,B>, 6 + 3*A) 
          (<22,0,A>, 6 + 3*A) (<22,0,B>, 7 + 3*A) 
          (<25,0,A>,       A) (<25,0,B>,       0) 
          (<26,0,A>,       A) (<26,0,B>,       0) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [16,18,19,14,20,15,17,21,22], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalsipmabubblebb1in) = 1 + x1 + -1*x2
          p(evalsipmabubblebb2in) = 1 + x1 + -1*x2
          p(evalsipmabubblebb3in) = x1 + -1*x2    
          p(evalsipmabubblebb4in) = 2 + x1 + -1*x2
          p(evalsipmabubblebb6in) = 2 + x1 + -1*x2
        
        The following rules are strictly oriented:
        [A >= 1 + B && C$ >= 1 + D$] ==>                              
           evalsipmabubblebb4in(A,B)   = 2 + A + -1*B                 
                                       > 1 + A + -1*B                 
                                       = evalsipmabubblebb2in(A,B)    
        
            [A >= 1 + B && D$ >= C$] ==>                              
           evalsipmabubblebb4in(A,B)   = 2 + A + -1*B                 
                                       > A + -1*B                     
                                       = evalsipmabubblebb3in(A,B)    
        
          [A >= 2 + B && D$$ >= C$$] ==>                              
           evalsipmabubblebb3in(A,B)   = A + -1*B                     
                                       > -1 + A + -1*B                
                                       = evalsipmabubblebb3in(A,1 + B)
        
        
        The following rules are weakly oriented:
                              [B >= A] ==>                                   
             evalsipmabubblebb4in(A,B)   = 2 + A + -1*B                      
                                        >= 1 + A + -1*B                      
                                         = evalsipmabubblebb6in(-1 + A,B)    
        
                          [C >= 1 + D] ==>                                   
             evalsipmabubblebb1in(A,B)   = 1 + A + -1*B                      
                                        >= A + -1*B                          
                                         = evalsipmabubblebb3in(A,B)         
        
                              [D >= C] ==>                                   
             evalsipmabubblebb1in(A,B)   = 1 + A + -1*B                      
                                        >= 1 + A + -1*B                      
                                         = evalsipmabubblebb4in(A,1 + B)     
        
                                  True ==>                                   
             evalsipmabubblebb2in(A,B)   = 1 + A + -1*B                      
                                        >= 1 + A + -1*B                      
                                         = evalsipmabubblebb4in(A,1 + B)     
        
        [A >= 2 + B && C$$ >= 1 + D$$] ==>                                   
             evalsipmabubblebb3in(A,B)   = A + -1*B                          
                                        >= A + -1*B                          
                                         = evalsipmabubblebb2in(A,1 + B)     
        
                          [1 + B >= A] ==>                                   
             evalsipmabubblebb3in(A,B)   = A + -1*B                          
                                        >= A + -1*B                          
                                         = evalsipmabubblebb6in(-1 + A,1 + B)
        
        We use the following global sizebounds:
        (<12,0,A>, 6 + 3*A) (<12,0,B>,       0) 
        (<14,0,A>, 6 + 3*A) (<14,0,B>, 6 + 3*A) 
        (<15,0,A>, 6 + 3*A) (<15,0,B>, 6 + 3*A) 
        (<16,0,A>, 6 + 3*A) (<16,0,B>, 6 + 3*A) 
        (<17,0,A>, 6 + 3*A) (<17,0,B>,       0) 
        (<18,0,A>, 6 + 3*A) (<18,0,B>,       1) 
        (<19,0,A>, 6 + 3*A) (<19,0,B>, 6 + 3*A) 
        (<20,0,A>, 6 + 3*A) (<20,0,B>, 6 + 3*A) 
        (<21,0,A>, 6 + 3*A) (<21,0,B>, 6 + 3*A) 
        (<22,0,A>, 6 + 3*A) (<22,0,B>, 7 + 3*A) 
        (<25,0,A>,       A) (<25,0,B>,       0) 
        (<26,0,A>,       A) (<26,0,B>,       0) 
* Step 31: KnowledgePropagation WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          12. evalsipmabubblebb6in(A,B) -> evalsipmabubblebb1in(A,0)          [A >= 0 && A >= 1]             (2 + A,2)            
          14. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb2in(A,B)          [A >= 1 + B && C$ >= 1 + D$]   (15 + 14*A + 3*A^2,2)
          15. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb3in(A,B)          [A >= 1 + B && D$ >= C$]       (15 + 14*A + 3*A^2,2)
          16. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb6in(-1 + A,B)     [B >= A]                       (3 + A,2)            
          17. evalsipmabubblebb1in(A,B) -> evalsipmabubblebb3in(A,B)          [C >= 1 + D]                   (3 + A,2)            
          18. evalsipmabubblebb1in(A,B) -> evalsipmabubblebb4in(A,1 + B)      [D >= C]                       (3 + A,2)            
          19. evalsipmabubblebb2in(A,B) -> evalsipmabubblebb4in(A,1 + B)      True                           (?,2)                
          20. evalsipmabubblebb3in(A,B) -> evalsipmabubblebb2in(A,1 + B)      [A >= 2 + B && C$$ >= 1 + D$$] (12 + 13*A + 3*A^2,3)
          21. evalsipmabubblebb3in(A,B) -> evalsipmabubblebb3in(A,1 + B)      [A >= 2 + B && D$$ >= C$$]     (12 + 13*A + 3*A^2,3)
          22. evalsipmabubblebb3in(A,B) -> evalsipmabubblebb6in(-1 + A,1 + B) [1 + B >= A]                   (3 + A,3)            
          25. evalsipmabubblestart(A,B) -> evalsipmabubblebb1in(A,0)          [A >= 0 && A >= 1]             (1,4)                
          26. evalsipmabubblestart(A,B) -> evalsipmabubblebb5in(A,0)          [A >= 0 && 0 >= A]             (1,4)                
        Signature:
          {(evalsipmabubblebb1in,2)
          ;(evalsipmabubblebb2in,2)
          ;(evalsipmabubblebb3in,2)
          ;(evalsipmabubblebb4in,2)
          ;(evalsipmabubblebb5in,2)
          ;(evalsipmabubblebb6in,2)
          ;(evalsipmabubbleentryin,2)
          ;(evalsipmabubblereturnin,2)
          ;(evalsipmabubblestart,2)
          ;(evalsipmabubblestop,2)}
        Flow Graph:
          [12->{17,18},14->{19},15->{20,21,22},16->{12},17->{20,21,22},18->{14,15,16},19->{14,15,16},20->{19}
          ,21->{20,21,22},22->{12},25->{17,18},26->{}]
        Sizebounds:
          (<12,0,A>, 6 + 3*A) (<12,0,B>,       0) 
          (<14,0,A>, 6 + 3*A) (<14,0,B>, 6 + 3*A) 
          (<15,0,A>, 6 + 3*A) (<15,0,B>, 6 + 3*A) 
          (<16,0,A>, 6 + 3*A) (<16,0,B>, 6 + 3*A) 
          (<17,0,A>, 6 + 3*A) (<17,0,B>,       0) 
          (<18,0,A>, 6 + 3*A) (<18,0,B>,       1) 
          (<19,0,A>, 6 + 3*A) (<19,0,B>, 6 + 3*A) 
          (<20,0,A>, 6 + 3*A) (<20,0,B>, 6 + 3*A) 
          (<21,0,A>, 6 + 3*A) (<21,0,B>, 6 + 3*A) 
          (<22,0,A>, 6 + 3*A) (<22,0,B>, 7 + 3*A) 
          (<25,0,A>,       A) (<25,0,B>,       0) 
          (<26,0,A>,       A) (<26,0,B>,       0) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 32: SizeboundsProc WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          12. evalsipmabubblebb6in(A,B) -> evalsipmabubblebb1in(A,0)          [A >= 0 && A >= 1]             (2 + A,2)            
          14. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb2in(A,B)          [A >= 1 + B && C$ >= 1 + D$]   (15 + 14*A + 3*A^2,2)
          15. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb3in(A,B)          [A >= 1 + B && D$ >= C$]       (15 + 14*A + 3*A^2,2)
          16. evalsipmabubblebb4in(A,B) -> evalsipmabubblebb6in(-1 + A,B)     [B >= A]                       (3 + A,2)            
          17. evalsipmabubblebb1in(A,B) -> evalsipmabubblebb3in(A,B)          [C >= 1 + D]                   (3 + A,2)            
          18. evalsipmabubblebb1in(A,B) -> evalsipmabubblebb4in(A,1 + B)      [D >= C]                       (3 + A,2)            
          19. evalsipmabubblebb2in(A,B) -> evalsipmabubblebb4in(A,1 + B)      True                           (27 + 27*A + 6*A^2,2)
          20. evalsipmabubblebb3in(A,B) -> evalsipmabubblebb2in(A,1 + B)      [A >= 2 + B && C$$ >= 1 + D$$] (12 + 13*A + 3*A^2,3)
          21. evalsipmabubblebb3in(A,B) -> evalsipmabubblebb3in(A,1 + B)      [A >= 2 + B && D$$ >= C$$]     (12 + 13*A + 3*A^2,3)
          22. evalsipmabubblebb3in(A,B) -> evalsipmabubblebb6in(-1 + A,1 + B) [1 + B >= A]                   (3 + A,3)            
          25. evalsipmabubblestart(A,B) -> evalsipmabubblebb1in(A,0)          [A >= 0 && A >= 1]             (1,4)                
          26. evalsipmabubblestart(A,B) -> evalsipmabubblebb5in(A,0)          [A >= 0 && 0 >= A]             (1,4)                
        Signature:
          {(evalsipmabubblebb1in,2)
          ;(evalsipmabubblebb2in,2)
          ;(evalsipmabubblebb3in,2)
          ;(evalsipmabubblebb4in,2)
          ;(evalsipmabubblebb5in,2)
          ;(evalsipmabubblebb6in,2)
          ;(evalsipmabubbleentryin,2)
          ;(evalsipmabubblereturnin,2)
          ;(evalsipmabubblestart,2)
          ;(evalsipmabubblestop,2)}
        Flow Graph:
          [12->{17,18},14->{19},15->{20,21,22},16->{12},17->{20,21,22},18->{14,15,16},19->{14,15,16},20->{19}
          ,21->{20,21,22},22->{12},25->{17,18},26->{}]
        Sizebounds:
          (<12,0,A>, 6 + 3*A) (<12,0,B>,       0) 
          (<14,0,A>, 6 + 3*A) (<14,0,B>, 6 + 3*A) 
          (<15,0,A>, 6 + 3*A) (<15,0,B>, 6 + 3*A) 
          (<16,0,A>, 6 + 3*A) (<16,0,B>, 6 + 3*A) 
          (<17,0,A>, 6 + 3*A) (<17,0,B>,       0) 
          (<18,0,A>, 6 + 3*A) (<18,0,B>,       1) 
          (<19,0,A>, 6 + 3*A) (<19,0,B>, 6 + 3*A) 
          (<20,0,A>, 6 + 3*A) (<20,0,B>, 6 + 3*A) 
          (<21,0,A>, 6 + 3*A) (<21,0,B>, 6 + 3*A) 
          (<22,0,A>, 6 + 3*A) (<22,0,B>, 7 + 3*A) 
          (<25,0,A>,       A) (<25,0,B>,       0) 
          (<26,0,A>,       A) (<26,0,B>,       0) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        The problem is already solved.

WORST_CASE(?,O(n^2))