WORST_CASE(?,O(1)) * Step 1: RestrictVarsProcessor WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f18(A,B,C,D,E,F) -> f18(A,1 + B,C,D,E,F) [A >= 1 + B] (?,1) 1. f24(A,B,C,D,E,F) -> f24(A,1 + B,C,D,E,F) [A >= 1 + B] (?,1) 2. f31(A,B,C,D,E,F) -> f31(A,1 + B,C,D,E,F) [A >= 1 + B] (?,1) 3. f31(A,B,C,D,E,F) -> f39(A,B,C,D,E,F) [B >= A] (?,1) 4. f24(A,B,C,D,E,F) -> f31(A,0,C,D,E,F) [B >= A] (?,1) 5. f18(A,B,C,D,E,F) -> f24(A,0,C,D,E,F) [B >= A] (?,1) 6. f0(A,B,C,D,E,F) -> f18(10,0,10,G,10,H) True (1,1) Signature: {(f0,6);(f18,6);(f24,6);(f31,6);(f39,6)} Flow Graph: [0->{0,5},1->{1,4},2->{2,3},3->{},4->{2,3},5->{1,4},6->{0,5}] + Applied Processor: RestrictVarsProcessor + Details: We removed the arguments [C,D,E,F] . * Step 2: LocalSizeboundsProc WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f18(A,B) -> f18(A,1 + B) [A >= 1 + B] (?,1) 1. f24(A,B) -> f24(A,1 + B) [A >= 1 + B] (?,1) 2. f31(A,B) -> f31(A,1 + B) [A >= 1 + B] (?,1) 3. f31(A,B) -> f39(A,B) [B >= A] (?,1) 4. f24(A,B) -> f31(A,0) [B >= A] (?,1) 5. f18(A,B) -> f24(A,0) [B >= A] (?,1) 6. f0(A,B) -> f18(10,0) True (1,1) Signature: {(f0,2);(f18,2);(f24,2);(f31,2);(f39,2)} Flow Graph: [0->{0,5},1->{1,4},2->{2,3},3->{},4->{2,3},5->{1,4},6->{0,5}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<0,0,A>, A, .= 0) (<0,0,B>, 1 + B, .+ 1) (<1,0,A>, A, .= 0) (<1,0,B>, 1 + B, .+ 1) (<2,0,A>, A, .= 0) (<2,0,B>, 1 + B, .+ 1) (<3,0,A>, A, .= 0) (<3,0,B>, B, .= 0) (<4,0,A>, A, .= 0) (<4,0,B>, 0, .= 0) (<5,0,A>, A, .= 0) (<5,0,B>, 0, .= 0) (<6,0,A>, 10, .= 10) (<6,0,B>, 0, .= 0) * Step 3: SizeboundsProc WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f18(A,B) -> f18(A,1 + B) [A >= 1 + B] (?,1) 1. f24(A,B) -> f24(A,1 + B) [A >= 1 + B] (?,1) 2. f31(A,B) -> f31(A,1 + B) [A >= 1 + B] (?,1) 3. f31(A,B) -> f39(A,B) [B >= A] (?,1) 4. f24(A,B) -> f31(A,0) [B >= A] (?,1) 5. f18(A,B) -> f24(A,0) [B >= A] (?,1) 6. f0(A,B) -> f18(10,0) True (1,1) Signature: {(f0,2);(f18,2);(f24,2);(f31,2);(f39,2)} Flow Graph: [0->{0,5},1->{1,4},2->{2,3},3->{},4->{2,3},5->{1,4},6->{0,5}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<1,0,A>, ?) (<1,0,B>, ?) (<2,0,A>, ?) (<2,0,B>, ?) (<3,0,A>, ?) (<3,0,B>, ?) (<4,0,A>, ?) (<4,0,B>, ?) (<5,0,A>, ?) (<5,0,B>, ?) (<6,0,A>, ?) (<6,0,B>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<0,0,A>, 10) (<0,0,B>, 10) (<1,0,A>, 10) (<1,0,B>, 10) (<2,0,A>, 10) (<2,0,B>, 10) (<3,0,A>, 10) (<3,0,B>, 10) (<4,0,A>, 10) (<4,0,B>, 0) (<5,0,A>, 10) (<5,0,B>, 0) (<6,0,A>, 10) (<6,0,B>, 0) * Step 4: UnsatPaths WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f18(A,B) -> f18(A,1 + B) [A >= 1 + B] (?,1) 1. f24(A,B) -> f24(A,1 + B) [A >= 1 + B] (?,1) 2. f31(A,B) -> f31(A,1 + B) [A >= 1 + B] (?,1) 3. f31(A,B) -> f39(A,B) [B >= A] (?,1) 4. f24(A,B) -> f31(A,0) [B >= A] (?,1) 5. f18(A,B) -> f24(A,0) [B >= A] (?,1) 6. f0(A,B) -> f18(10,0) True (1,1) Signature: {(f0,2);(f18,2);(f24,2);(f31,2);(f39,2)} Flow Graph: [0->{0,5},1->{1,4},2->{2,3},3->{},4->{2,3},5->{1,4},6->{0,5}] Sizebounds: (<0,0,A>, 10) (<0,0,B>, 10) (<1,0,A>, 10) (<1,0,B>, 10) (<2,0,A>, 10) (<2,0,B>, 10) (<3,0,A>, 10) (<3,0,B>, 10) (<4,0,A>, 10) (<4,0,B>, 0) (<5,0,A>, 10) (<5,0,B>, 0) (<6,0,A>, 10) (<6,0,B>, 0) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(6,5)] * Step 5: LeafRules WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f18(A,B) -> f18(A,1 + B) [A >= 1 + B] (?,1) 1. f24(A,B) -> f24(A,1 + B) [A >= 1 + B] (?,1) 2. f31(A,B) -> f31(A,1 + B) [A >= 1 + B] (?,1) 3. f31(A,B) -> f39(A,B) [B >= A] (?,1) 4. f24(A,B) -> f31(A,0) [B >= A] (?,1) 5. f18(A,B) -> f24(A,0) [B >= A] (?,1) 6. f0(A,B) -> f18(10,0) True (1,1) Signature: {(f0,2);(f18,2);(f24,2);(f31,2);(f39,2)} Flow Graph: [0->{0,5},1->{1,4},2->{2,3},3->{},4->{2,3},5->{1,4},6->{0}] Sizebounds: (<0,0,A>, 10) (<0,0,B>, 10) (<1,0,A>, 10) (<1,0,B>, 10) (<2,0,A>, 10) (<2,0,B>, 10) (<3,0,A>, 10) (<3,0,B>, 10) (<4,0,A>, 10) (<4,0,B>, 0) (<5,0,A>, 10) (<5,0,B>, 0) (<6,0,A>, 10) (<6,0,B>, 0) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [3] * Step 6: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f18(A,B) -> f18(A,1 + B) [A >= 1 + B] (?,1) 1. f24(A,B) -> f24(A,1 + B) [A >= 1 + B] (?,1) 2. f31(A,B) -> f31(A,1 + B) [A >= 1 + B] (?,1) 4. f24(A,B) -> f31(A,0) [B >= A] (?,1) 5. f18(A,B) -> f24(A,0) [B >= A] (?,1) 6. f0(A,B) -> f18(10,0) True (1,1) Signature: {(f0,2);(f18,2);(f24,2);(f31,2);(f39,2)} Flow Graph: [0->{0,5},1->{1,4},2->{2},4->{2},5->{1,4},6->{0}] Sizebounds: (<0,0,A>, 10) (<0,0,B>, 10) (<1,0,A>, 10) (<1,0,B>, 10) (<2,0,A>, 10) (<2,0,B>, 10) (<4,0,A>, 10) (<4,0,B>, 0) (<5,0,A>, 10) (<5,0,B>, 0) (<6,0,A>, 10) (<6,0,B>, 0) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 1 p(f18) = 1 p(f24) = 0 p(f31) = 0 The following rules are strictly oriented: [B >= A] ==> f18(A,B) = 1 > 0 = f24(A,0) The following rules are weakly oriented: [A >= 1 + B] ==> f18(A,B) = 1 >= 1 = f18(A,1 + B) [A >= 1 + B] ==> f24(A,B) = 0 >= 0 = f24(A,1 + B) [A >= 1 + B] ==> f31(A,B) = 0 >= 0 = f31(A,1 + B) [B >= A] ==> f24(A,B) = 0 >= 0 = f31(A,0) True ==> f0(A,B) = 1 >= 1 = f18(10,0) * Step 7: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f18(A,B) -> f18(A,1 + B) [A >= 1 + B] (?,1) 1. f24(A,B) -> f24(A,1 + B) [A >= 1 + B] (?,1) 2. f31(A,B) -> f31(A,1 + B) [A >= 1 + B] (?,1) 4. f24(A,B) -> f31(A,0) [B >= A] (?,1) 5. f18(A,B) -> f24(A,0) [B >= A] (1,1) 6. f0(A,B) -> f18(10,0) True (1,1) Signature: {(f0,2);(f18,2);(f24,2);(f31,2);(f39,2)} Flow Graph: [0->{0,5},1->{1,4},2->{2},4->{2},5->{1,4},6->{0}] Sizebounds: (<0,0,A>, 10) (<0,0,B>, 10) (<1,0,A>, 10) (<1,0,B>, 10) (<2,0,A>, 10) (<2,0,B>, 10) (<4,0,A>, 10) (<4,0,B>, 0) (<5,0,A>, 10) (<5,0,B>, 0) (<6,0,A>, 10) (<6,0,B>, 0) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 1 p(f18) = 1 p(f24) = 1 p(f31) = 0 The following rules are strictly oriented: [B >= A] ==> f24(A,B) = 1 > 0 = f31(A,0) The following rules are weakly oriented: [A >= 1 + B] ==> f18(A,B) = 1 >= 1 = f18(A,1 + B) [A >= 1 + B] ==> f24(A,B) = 1 >= 1 = f24(A,1 + B) [A >= 1 + B] ==> f31(A,B) = 0 >= 0 = f31(A,1 + B) [B >= A] ==> f18(A,B) = 1 >= 1 = f24(A,0) True ==> f0(A,B) = 1 >= 1 = f18(10,0) * Step 8: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f18(A,B) -> f18(A,1 + B) [A >= 1 + B] (?,1) 1. f24(A,B) -> f24(A,1 + B) [A >= 1 + B] (?,1) 2. f31(A,B) -> f31(A,1 + B) [A >= 1 + B] (?,1) 4. f24(A,B) -> f31(A,0) [B >= A] (1,1) 5. f18(A,B) -> f24(A,0) [B >= A] (1,1) 6. f0(A,B) -> f18(10,0) True (1,1) Signature: {(f0,2);(f18,2);(f24,2);(f31,2);(f39,2)} Flow Graph: [0->{0,5},1->{1,4},2->{2},4->{2},5->{1,4},6->{0}] Sizebounds: (<0,0,A>, 10) (<0,0,B>, 10) (<1,0,A>, 10) (<1,0,B>, 10) (<2,0,A>, 10) (<2,0,B>, 10) (<4,0,A>, 10) (<4,0,B>, 0) (<5,0,A>, 10) (<5,0,B>, 0) (<6,0,A>, 10) (<6,0,B>, 0) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 10 p(f18) = x1 p(f24) = x1 p(f31) = x1 + -1*x2 The following rules are strictly oriented: [A >= 1 + B] ==> f31(A,B) = A + -1*B > -1 + A + -1*B = f31(A,1 + B) The following rules are weakly oriented: [A >= 1 + B] ==> f18(A,B) = A >= A = f18(A,1 + B) [A >= 1 + B] ==> f24(A,B) = A >= A = f24(A,1 + B) [B >= A] ==> f24(A,B) = A >= A = f31(A,0) [B >= A] ==> f18(A,B) = A >= A = f24(A,0) True ==> f0(A,B) = 10 >= 10 = f18(10,0) * Step 9: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f18(A,B) -> f18(A,1 + B) [A >= 1 + B] (?,1) 1. f24(A,B) -> f24(A,1 + B) [A >= 1 + B] (?,1) 2. f31(A,B) -> f31(A,1 + B) [A >= 1 + B] (10,1) 4. f24(A,B) -> f31(A,0) [B >= A] (1,1) 5. f18(A,B) -> f24(A,0) [B >= A] (1,1) 6. f0(A,B) -> f18(10,0) True (1,1) Signature: {(f0,2);(f18,2);(f24,2);(f31,2);(f39,2)} Flow Graph: [0->{0,5},1->{1,4},2->{2},4->{2},5->{1,4},6->{0}] Sizebounds: (<0,0,A>, 10) (<0,0,B>, 10) (<1,0,A>, 10) (<1,0,B>, 10) (<2,0,A>, 10) (<2,0,B>, 10) (<4,0,A>, 10) (<4,0,B>, 0) (<5,0,A>, 10) (<5,0,B>, 0) (<6,0,A>, 10) (<6,0,B>, 0) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [0], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f18) = x1 + -1*x2 The following rules are strictly oriented: [A >= 1 + B] ==> f18(A,B) = A + -1*B > -1 + A + -1*B = f18(A,1 + B) The following rules are weakly oriented: We use the following global sizebounds: (<0,0,A>, 10) (<0,0,B>, 10) (<1,0,A>, 10) (<1,0,B>, 10) (<2,0,A>, 10) (<2,0,B>, 10) (<4,0,A>, 10) (<4,0,B>, 0) (<5,0,A>, 10) (<5,0,B>, 0) (<6,0,A>, 10) (<6,0,B>, 0) * Step 10: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f18(A,B) -> f18(A,1 + B) [A >= 1 + B] (10,1) 1. f24(A,B) -> f24(A,1 + B) [A >= 1 + B] (?,1) 2. f31(A,B) -> f31(A,1 + B) [A >= 1 + B] (10,1) 4. f24(A,B) -> f31(A,0) [B >= A] (1,1) 5. f18(A,B) -> f24(A,0) [B >= A] (1,1) 6. f0(A,B) -> f18(10,0) True (1,1) Signature: {(f0,2);(f18,2);(f24,2);(f31,2);(f39,2)} Flow Graph: [0->{0,5},1->{1,4},2->{2},4->{2},5->{1,4},6->{0}] Sizebounds: (<0,0,A>, 10) (<0,0,B>, 10) (<1,0,A>, 10) (<1,0,B>, 10) (<2,0,A>, 10) (<2,0,B>, 10) (<4,0,A>, 10) (<4,0,B>, 0) (<5,0,A>, 10) (<5,0,B>, 0) (<6,0,A>, 10) (<6,0,B>, 0) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [1], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f24) = x1 + -1*x2 The following rules are strictly oriented: [A >= 1 + B] ==> f24(A,B) = A + -1*B > -1 + A + -1*B = f24(A,1 + B) The following rules are weakly oriented: We use the following global sizebounds: (<0,0,A>, 10) (<0,0,B>, 10) (<1,0,A>, 10) (<1,0,B>, 10) (<2,0,A>, 10) (<2,0,B>, 10) (<4,0,A>, 10) (<4,0,B>, 0) (<5,0,A>, 10) (<5,0,B>, 0) (<6,0,A>, 10) (<6,0,B>, 0) * Step 11: KnowledgePropagation WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f18(A,B) -> f18(A,1 + B) [A >= 1 + B] (10,1) 1. f24(A,B) -> f24(A,1 + B) [A >= 1 + B] (10,1) 2. f31(A,B) -> f31(A,1 + B) [A >= 1 + B] (10,1) 4. f24(A,B) -> f31(A,0) [B >= A] (1,1) 5. f18(A,B) -> f24(A,0) [B >= A] (1,1) 6. f0(A,B) -> f18(10,0) True (1,1) Signature: {(f0,2);(f18,2);(f24,2);(f31,2);(f39,2)} Flow Graph: [0->{0,5},1->{1,4},2->{2},4->{2},5->{1,4},6->{0}] Sizebounds: (<0,0,A>, 10) (<0,0,B>, 10) (<1,0,A>, 10) (<1,0,B>, 10) (<2,0,A>, 10) (<2,0,B>, 10) (<4,0,A>, 10) (<4,0,B>, 0) (<5,0,A>, 10) (<5,0,B>, 0) (<6,0,A>, 10) (<6,0,B>, 0) + Applied Processor: KnowledgePropagation + Details: The problem is already solved. WORST_CASE(?,O(1))