WORST_CASE(?,O(1))
* Step 1: RestrictVarsProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f18(A,B,C,D,E,F) -> f18(A,1 + B,C,D,E,F) [A >= 1 + B] (?,1)
          1. f24(A,B,C,D,E,F) -> f24(A,1 + B,C,D,E,F) [A >= 1 + B] (?,1)
          2. f31(A,B,C,D,E,F) -> f31(A,1 + B,C,D,E,F) [A >= 1 + B] (?,1)
          3. f31(A,B,C,D,E,F) -> f39(A,B,C,D,E,F)     [B >= A]     (?,1)
          4. f24(A,B,C,D,E,F) -> f31(A,0,C,D,E,F)     [B >= A]     (?,1)
          5. f18(A,B,C,D,E,F) -> f24(A,0,C,D,E,F)     [B >= A]     (?,1)
          6. f0(A,B,C,D,E,F)  -> f18(10,0,10,G,10,H)  True         (1,1)
        Signature:
          {(f0,6);(f18,6);(f24,6);(f31,6);(f39,6)}
        Flow Graph:
          [0->{0,5},1->{1,4},2->{2,3},3->{},4->{2,3},5->{1,4},6->{0,5}]
        
    + Applied Processor:
        RestrictVarsProcessor
    + Details:
        We removed the arguments [C,D,E,F] .
* Step 2: LocalSizeboundsProc WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f18(A,B) -> f18(A,1 + B) [A >= 1 + B] (?,1)
          1. f24(A,B) -> f24(A,1 + B) [A >= 1 + B] (?,1)
          2. f31(A,B) -> f31(A,1 + B) [A >= 1 + B] (?,1)
          3. f31(A,B) -> f39(A,B)     [B >= A]     (?,1)
          4. f24(A,B) -> f31(A,0)     [B >= A]     (?,1)
          5. f18(A,B) -> f24(A,0)     [B >= A]     (?,1)
          6. f0(A,B)  -> f18(10,0)    True         (1,1)
        Signature:
          {(f0,2);(f18,2);(f24,2);(f31,2);(f39,2)}
        Flow Graph:
          [0->{0,5},1->{1,4},2->{2,3},3->{},4->{2,3},5->{1,4},6->{0,5}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (<0,0,A>,  A,  .= 0) (<0,0,B>, 1 + B, .+ 1) 
          (<1,0,A>,  A,  .= 0) (<1,0,B>, 1 + B, .+ 1) 
          (<2,0,A>,  A,  .= 0) (<2,0,B>, 1 + B, .+ 1) 
          (<3,0,A>,  A,  .= 0) (<3,0,B>,     B, .= 0) 
          (<4,0,A>,  A,  .= 0) (<4,0,B>,     0, .= 0) 
          (<5,0,A>,  A,  .= 0) (<5,0,B>,     0, .= 0) 
          (<6,0,A>, 10, .= 10) (<6,0,B>,     0, .= 0) 
* Step 3: SizeboundsProc WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f18(A,B) -> f18(A,1 + B) [A >= 1 + B] (?,1)
          1. f24(A,B) -> f24(A,1 + B) [A >= 1 + B] (?,1)
          2. f31(A,B) -> f31(A,1 + B) [A >= 1 + B] (?,1)
          3. f31(A,B) -> f39(A,B)     [B >= A]     (?,1)
          4. f24(A,B) -> f31(A,0)     [B >= A]     (?,1)
          5. f18(A,B) -> f24(A,0)     [B >= A]     (?,1)
          6. f0(A,B)  -> f18(10,0)    True         (1,1)
        Signature:
          {(f0,2);(f18,2);(f24,2);(f31,2);(f39,2)}
        Flow Graph:
          [0->{0,5},1->{1,4},2->{2,3},3->{},4->{2,3},5->{1,4},6->{0,5}]
        Sizebounds:
          (<0,0,A>, ?) (<0,0,B>, ?) 
          (<1,0,A>, ?) (<1,0,B>, ?) 
          (<2,0,A>, ?) (<2,0,B>, ?) 
          (<3,0,A>, ?) (<3,0,B>, ?) 
          (<4,0,A>, ?) (<4,0,B>, ?) 
          (<5,0,A>, ?) (<5,0,B>, ?) 
          (<6,0,A>, ?) (<6,0,B>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (<0,0,A>, 10) (<0,0,B>, 10) 
          (<1,0,A>, 10) (<1,0,B>, 10) 
          (<2,0,A>, 10) (<2,0,B>, 10) 
          (<3,0,A>, 10) (<3,0,B>, 10) 
          (<4,0,A>, 10) (<4,0,B>,  0) 
          (<5,0,A>, 10) (<5,0,B>,  0) 
          (<6,0,A>, 10) (<6,0,B>,  0) 
* Step 4: UnsatPaths WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f18(A,B) -> f18(A,1 + B) [A >= 1 + B] (?,1)
          1. f24(A,B) -> f24(A,1 + B) [A >= 1 + B] (?,1)
          2. f31(A,B) -> f31(A,1 + B) [A >= 1 + B] (?,1)
          3. f31(A,B) -> f39(A,B)     [B >= A]     (?,1)
          4. f24(A,B) -> f31(A,0)     [B >= A]     (?,1)
          5. f18(A,B) -> f24(A,0)     [B >= A]     (?,1)
          6. f0(A,B)  -> f18(10,0)    True         (1,1)
        Signature:
          {(f0,2);(f18,2);(f24,2);(f31,2);(f39,2)}
        Flow Graph:
          [0->{0,5},1->{1,4},2->{2,3},3->{},4->{2,3},5->{1,4},6->{0,5}]
        Sizebounds:
          (<0,0,A>, 10) (<0,0,B>, 10) 
          (<1,0,A>, 10) (<1,0,B>, 10) 
          (<2,0,A>, 10) (<2,0,B>, 10) 
          (<3,0,A>, 10) (<3,0,B>, 10) 
          (<4,0,A>, 10) (<4,0,B>,  0) 
          (<5,0,A>, 10) (<5,0,B>,  0) 
          (<6,0,A>, 10) (<6,0,B>,  0) 
    + Applied Processor:
        UnsatPaths
    + Details:
        We remove following edges from the transition graph: [(6,5)]
* Step 5: LeafRules WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f18(A,B) -> f18(A,1 + B) [A >= 1 + B] (?,1)
          1. f24(A,B) -> f24(A,1 + B) [A >= 1 + B] (?,1)
          2. f31(A,B) -> f31(A,1 + B) [A >= 1 + B] (?,1)
          3. f31(A,B) -> f39(A,B)     [B >= A]     (?,1)
          4. f24(A,B) -> f31(A,0)     [B >= A]     (?,1)
          5. f18(A,B) -> f24(A,0)     [B >= A]     (?,1)
          6. f0(A,B)  -> f18(10,0)    True         (1,1)
        Signature:
          {(f0,2);(f18,2);(f24,2);(f31,2);(f39,2)}
        Flow Graph:
          [0->{0,5},1->{1,4},2->{2,3},3->{},4->{2,3},5->{1,4},6->{0}]
        Sizebounds:
          (<0,0,A>, 10) (<0,0,B>, 10) 
          (<1,0,A>, 10) (<1,0,B>, 10) 
          (<2,0,A>, 10) (<2,0,B>, 10) 
          (<3,0,A>, 10) (<3,0,B>, 10) 
          (<4,0,A>, 10) (<4,0,B>,  0) 
          (<5,0,A>, 10) (<5,0,B>,  0) 
          (<6,0,A>, 10) (<6,0,B>,  0) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [3]
* Step 6: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f18(A,B) -> f18(A,1 + B) [A >= 1 + B] (?,1)
          1. f24(A,B) -> f24(A,1 + B) [A >= 1 + B] (?,1)
          2. f31(A,B) -> f31(A,1 + B) [A >= 1 + B] (?,1)
          4. f24(A,B) -> f31(A,0)     [B >= A]     (?,1)
          5. f18(A,B) -> f24(A,0)     [B >= A]     (?,1)
          6. f0(A,B)  -> f18(10,0)    True         (1,1)
        Signature:
          {(f0,2);(f18,2);(f24,2);(f31,2);(f39,2)}
        Flow Graph:
          [0->{0,5},1->{1,4},2->{2},4->{2},5->{1,4},6->{0}]
        Sizebounds:
          (<0,0,A>, 10) (<0,0,B>, 10) 
          (<1,0,A>, 10) (<1,0,B>, 10) 
          (<2,0,A>, 10) (<2,0,B>, 10) 
          (<4,0,A>, 10) (<4,0,B>,  0) 
          (<5,0,A>, 10) (<5,0,B>,  0) 
          (<6,0,A>, 10) (<6,0,B>,  0) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 1
          p(f18) = 1
          p(f24) = 0
          p(f31) = 0
        
        The following rules are strictly oriented:
          [B >= A] ==>         
          f18(A,B)   = 1       
                     > 0       
                     = f24(A,0)
        
        
        The following rules are weakly oriented:
        [A >= 1 + B] ==>             
            f18(A,B)   = 1           
                      >= 1           
                       = f18(A,1 + B)
        
        [A >= 1 + B] ==>             
            f24(A,B)   = 0           
                      >= 0           
                       = f24(A,1 + B)
        
        [A >= 1 + B] ==>             
            f31(A,B)   = 0           
                      >= 0           
                       = f31(A,1 + B)
        
            [B >= A] ==>             
            f24(A,B)   = 0           
                      >= 0           
                       = f31(A,0)    
        
                True ==>             
             f0(A,B)   = 1           
                      >= 1           
                       = f18(10,0)   
        
        
* Step 7: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f18(A,B) -> f18(A,1 + B) [A >= 1 + B] (?,1)
          1. f24(A,B) -> f24(A,1 + B) [A >= 1 + B] (?,1)
          2. f31(A,B) -> f31(A,1 + B) [A >= 1 + B] (?,1)
          4. f24(A,B) -> f31(A,0)     [B >= A]     (?,1)
          5. f18(A,B) -> f24(A,0)     [B >= A]     (1,1)
          6. f0(A,B)  -> f18(10,0)    True         (1,1)
        Signature:
          {(f0,2);(f18,2);(f24,2);(f31,2);(f39,2)}
        Flow Graph:
          [0->{0,5},1->{1,4},2->{2},4->{2},5->{1,4},6->{0}]
        Sizebounds:
          (<0,0,A>, 10) (<0,0,B>, 10) 
          (<1,0,A>, 10) (<1,0,B>, 10) 
          (<2,0,A>, 10) (<2,0,B>, 10) 
          (<4,0,A>, 10) (<4,0,B>,  0) 
          (<5,0,A>, 10) (<5,0,B>,  0) 
          (<6,0,A>, 10) (<6,0,B>,  0) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 1
          p(f18) = 1
          p(f24) = 1
          p(f31) = 0
        
        The following rules are strictly oriented:
          [B >= A] ==>         
          f24(A,B)   = 1       
                     > 0       
                     = f31(A,0)
        
        
        The following rules are weakly oriented:
        [A >= 1 + B] ==>             
            f18(A,B)   = 1           
                      >= 1           
                       = f18(A,1 + B)
        
        [A >= 1 + B] ==>             
            f24(A,B)   = 1           
                      >= 1           
                       = f24(A,1 + B)
        
        [A >= 1 + B] ==>             
            f31(A,B)   = 0           
                      >= 0           
                       = f31(A,1 + B)
        
            [B >= A] ==>             
            f18(A,B)   = 1           
                      >= 1           
                       = f24(A,0)    
        
                True ==>             
             f0(A,B)   = 1           
                      >= 1           
                       = f18(10,0)   
        
        
* Step 8: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f18(A,B) -> f18(A,1 + B) [A >= 1 + B] (?,1)
          1. f24(A,B) -> f24(A,1 + B) [A >= 1 + B] (?,1)
          2. f31(A,B) -> f31(A,1 + B) [A >= 1 + B] (?,1)
          4. f24(A,B) -> f31(A,0)     [B >= A]     (1,1)
          5. f18(A,B) -> f24(A,0)     [B >= A]     (1,1)
          6. f0(A,B)  -> f18(10,0)    True         (1,1)
        Signature:
          {(f0,2);(f18,2);(f24,2);(f31,2);(f39,2)}
        Flow Graph:
          [0->{0,5},1->{1,4},2->{2},4->{2},5->{1,4},6->{0}]
        Sizebounds:
          (<0,0,A>, 10) (<0,0,B>, 10) 
          (<1,0,A>, 10) (<1,0,B>, 10) 
          (<2,0,A>, 10) (<2,0,B>, 10) 
          (<4,0,A>, 10) (<4,0,B>,  0) 
          (<5,0,A>, 10) (<5,0,B>,  0) 
          (<6,0,A>, 10) (<6,0,B>,  0) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 10        
          p(f18) = x1        
          p(f24) = x1        
          p(f31) = x1 + -1*x2
        
        The following rules are strictly oriented:
        [A >= 1 + B] ==>              
            f31(A,B)   = A + -1*B     
                       > -1 + A + -1*B
                       = f31(A,1 + B) 
        
        
        The following rules are weakly oriented:
        [A >= 1 + B] ==>             
            f18(A,B)   = A           
                      >= A           
                       = f18(A,1 + B)
        
        [A >= 1 + B] ==>             
            f24(A,B)   = A           
                      >= A           
                       = f24(A,1 + B)
        
            [B >= A] ==>             
            f24(A,B)   = A           
                      >= A           
                       = f31(A,0)    
        
            [B >= A] ==>             
            f18(A,B)   = A           
                      >= A           
                       = f24(A,0)    
        
                True ==>             
             f0(A,B)   = 10          
                      >= 10          
                       = f18(10,0)   
        
        
* Step 9: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f18(A,B) -> f18(A,1 + B) [A >= 1 + B] (?,1) 
          1. f24(A,B) -> f24(A,1 + B) [A >= 1 + B] (?,1) 
          2. f31(A,B) -> f31(A,1 + B) [A >= 1 + B] (10,1)
          4. f24(A,B) -> f31(A,0)     [B >= A]     (1,1) 
          5. f18(A,B) -> f24(A,0)     [B >= A]     (1,1) 
          6. f0(A,B)  -> f18(10,0)    True         (1,1) 
        Signature:
          {(f0,2);(f18,2);(f24,2);(f31,2);(f39,2)}
        Flow Graph:
          [0->{0,5},1->{1,4},2->{2},4->{2},5->{1,4},6->{0}]
        Sizebounds:
          (<0,0,A>, 10) (<0,0,B>, 10) 
          (<1,0,A>, 10) (<1,0,B>, 10) 
          (<2,0,A>, 10) (<2,0,B>, 10) 
          (<4,0,A>, 10) (<4,0,B>,  0) 
          (<5,0,A>, 10) (<5,0,B>,  0) 
          (<6,0,A>, 10) (<6,0,B>,  0) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [0], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f18) = x1 + -1*x2
        
        The following rules are strictly oriented:
        [A >= 1 + B] ==>              
            f18(A,B)   = A + -1*B     
                       > -1 + A + -1*B
                       = f18(A,1 + B) 
        
        
        The following rules are weakly oriented:
        
        We use the following global sizebounds:
        (<0,0,A>, 10) (<0,0,B>, 10) 
        (<1,0,A>, 10) (<1,0,B>, 10) 
        (<2,0,A>, 10) (<2,0,B>, 10) 
        (<4,0,A>, 10) (<4,0,B>,  0) 
        (<5,0,A>, 10) (<5,0,B>,  0) 
        (<6,0,A>, 10) (<6,0,B>,  0) 
* Step 10: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f18(A,B) -> f18(A,1 + B) [A >= 1 + B] (10,1)
          1. f24(A,B) -> f24(A,1 + B) [A >= 1 + B] (?,1) 
          2. f31(A,B) -> f31(A,1 + B) [A >= 1 + B] (10,1)
          4. f24(A,B) -> f31(A,0)     [B >= A]     (1,1) 
          5. f18(A,B) -> f24(A,0)     [B >= A]     (1,1) 
          6. f0(A,B)  -> f18(10,0)    True         (1,1) 
        Signature:
          {(f0,2);(f18,2);(f24,2);(f31,2);(f39,2)}
        Flow Graph:
          [0->{0,5},1->{1,4},2->{2},4->{2},5->{1,4},6->{0}]
        Sizebounds:
          (<0,0,A>, 10) (<0,0,B>, 10) 
          (<1,0,A>, 10) (<1,0,B>, 10) 
          (<2,0,A>, 10) (<2,0,B>, 10) 
          (<4,0,A>, 10) (<4,0,B>,  0) 
          (<5,0,A>, 10) (<5,0,B>,  0) 
          (<6,0,A>, 10) (<6,0,B>,  0) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [1], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f24) = x1 + -1*x2
        
        The following rules are strictly oriented:
        [A >= 1 + B] ==>              
            f24(A,B)   = A + -1*B     
                       > -1 + A + -1*B
                       = f24(A,1 + B) 
        
        
        The following rules are weakly oriented:
        
        We use the following global sizebounds:
        (<0,0,A>, 10) (<0,0,B>, 10) 
        (<1,0,A>, 10) (<1,0,B>, 10) 
        (<2,0,A>, 10) (<2,0,B>, 10) 
        (<4,0,A>, 10) (<4,0,B>,  0) 
        (<5,0,A>, 10) (<5,0,B>,  0) 
        (<6,0,A>, 10) (<6,0,B>,  0) 
* Step 11: KnowledgePropagation WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f18(A,B) -> f18(A,1 + B) [A >= 1 + B] (10,1)
          1. f24(A,B) -> f24(A,1 + B) [A >= 1 + B] (10,1)
          2. f31(A,B) -> f31(A,1 + B) [A >= 1 + B] (10,1)
          4. f24(A,B) -> f31(A,0)     [B >= A]     (1,1) 
          5. f18(A,B) -> f24(A,0)     [B >= A]     (1,1) 
          6. f0(A,B)  -> f18(10,0)    True         (1,1) 
        Signature:
          {(f0,2);(f18,2);(f24,2);(f31,2);(f39,2)}
        Flow Graph:
          [0->{0,5},1->{1,4},2->{2},4->{2},5->{1,4},6->{0}]
        Sizebounds:
          (<0,0,A>, 10) (<0,0,B>, 10) 
          (<1,0,A>, 10) (<1,0,B>, 10) 
          (<2,0,A>, 10) (<2,0,B>, 10) 
          (<4,0,A>, 10) (<4,0,B>,  0) 
          (<5,0,A>, 10) (<5,0,B>,  0) 
          (<6,0,A>, 10) (<6,0,B>,  0) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        The problem is already solved.

WORST_CASE(?,O(1))