WORST_CASE(?,O(1))
* Step 1: RestrictVarsProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C)  -> f8(0,B,C)      True                   (1,1)
          1.  f8(A,B,C)  -> f14(A,A,C)     [9 >= A && 9 >= D]     (?,1)
          2.  f8(A,B,C)  -> f14(A,A,C)     [9 >= A]               (?,1)
          3.  f23(A,B,C) -> f28(A,B,D)     [9 >= A && 0 >= 1 + E] (?,1)
          4.  f23(A,B,C) -> f28(A,B,D)     [9 >= A]               (?,1)
          5.  f23(A,B,C) -> f23(1 + A,B,C) [9 >= A]               (?,1)
          6.  f28(A,B,C) -> f23(1 + A,B,C) True                   (?,1)
          7.  f28(A,B,C) -> f23(1 + A,B,C) [8 >= D]               (?,1)
          8.  f23(A,B,C) -> f38(A,B,C)     [A >= 10]              (?,1)
          9.  f8(A,B,C)  -> f8(1 + A,A,C)  [9 >= A]               (?,1)
          10. f14(A,B,C) -> f8(1 + A,B,C)  True                   (?,1)
          11. f14(A,B,C) -> f8(1 + A,B,C)  [8 >= D]               (?,1)
          12. f8(A,B,C)  -> f23(0,B,C)     [A >= 10]              (?,1)
        Signature:
          {(f0,3);(f14,3);(f23,3);(f28,3);(f38,3);(f8,3)}
        Flow Graph:
          [0->{1,2,9,12},1->{10,11},2->{10,11},3->{6,7},4->{6,7},5->{3,4,5,8},6->{3,4,5,8},7->{3,4,5,8},8->{},9->{1
          ,2,9,12},10->{1,2,9,12},11->{1,2,9,12},12->{3,4,5,8}]
        
    + Applied Processor:
        RestrictVarsProcessor
    + Details:
        We removed the arguments [B,C] .
* Step 2: LocalSizeboundsProc WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A)  -> f8(0)      True                   (1,1)
          1.  f8(A)  -> f14(A)     [9 >= A && 9 >= D]     (?,1)
          2.  f8(A)  -> f14(A)     [9 >= A]               (?,1)
          3.  f23(A) -> f28(A)     [9 >= A && 0 >= 1 + E] (?,1)
          4.  f23(A) -> f28(A)     [9 >= A]               (?,1)
          5.  f23(A) -> f23(1 + A) [9 >= A]               (?,1)
          6.  f28(A) -> f23(1 + A) True                   (?,1)
          7.  f28(A) -> f23(1 + A) [8 >= D]               (?,1)
          8.  f23(A) -> f38(A)     [A >= 10]              (?,1)
          9.  f8(A)  -> f8(1 + A)  [9 >= A]               (?,1)
          10. f14(A) -> f8(1 + A)  True                   (?,1)
          11. f14(A) -> f8(1 + A)  [8 >= D]               (?,1)
          12. f8(A)  -> f23(0)     [A >= 10]              (?,1)
        Signature:
          {(f0,1);(f14,1);(f23,1);(f28,1);(f38,1);(f8,1)}
        Flow Graph:
          [0->{1,2,9,12},1->{10,11},2->{10,11},3->{6,7},4->{6,7},5->{3,4,5,8},6->{3,4,5,8},7->{3,4,5,8},8->{},9->{1
          ,2,9,12},10->{1,2,9,12},11->{1,2,9,12},12->{3,4,5,8}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (< 0,0,A>,     0, .= 0) 
          (< 1,0,A>,     A, .= 0) 
          (< 2,0,A>,     A, .= 0) 
          (< 3,0,A>,     A, .= 0) 
          (< 4,0,A>,     A, .= 0) 
          (< 5,0,A>, 1 + A, .+ 1) 
          (< 6,0,A>, 1 + A, .+ 1) 
          (< 7,0,A>, 1 + A, .+ 1) 
          (< 8,0,A>,     A, .= 0) 
          (< 9,0,A>, 1 + A, .+ 1) 
          (<10,0,A>, 1 + A, .+ 1) 
          (<11,0,A>, 1 + A, .+ 1) 
          (<12,0,A>,     0, .= 0) 
* Step 3: SizeboundsProc WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A)  -> f8(0)      True                   (1,1)
          1.  f8(A)  -> f14(A)     [9 >= A && 9 >= D]     (?,1)
          2.  f8(A)  -> f14(A)     [9 >= A]               (?,1)
          3.  f23(A) -> f28(A)     [9 >= A && 0 >= 1 + E] (?,1)
          4.  f23(A) -> f28(A)     [9 >= A]               (?,1)
          5.  f23(A) -> f23(1 + A) [9 >= A]               (?,1)
          6.  f28(A) -> f23(1 + A) True                   (?,1)
          7.  f28(A) -> f23(1 + A) [8 >= D]               (?,1)
          8.  f23(A) -> f38(A)     [A >= 10]              (?,1)
          9.  f8(A)  -> f8(1 + A)  [9 >= A]               (?,1)
          10. f14(A) -> f8(1 + A)  True                   (?,1)
          11. f14(A) -> f8(1 + A)  [8 >= D]               (?,1)
          12. f8(A)  -> f23(0)     [A >= 10]              (?,1)
        Signature:
          {(f0,1);(f14,1);(f23,1);(f28,1);(f38,1);(f8,1)}
        Flow Graph:
          [0->{1,2,9,12},1->{10,11},2->{10,11},3->{6,7},4->{6,7},5->{3,4,5,8},6->{3,4,5,8},7->{3,4,5,8},8->{},9->{1
          ,2,9,12},10->{1,2,9,12},11->{1,2,9,12},12->{3,4,5,8}]
        Sizebounds:
          (< 0,0,A>, ?) 
          (< 1,0,A>, ?) 
          (< 2,0,A>, ?) 
          (< 3,0,A>, ?) 
          (< 4,0,A>, ?) 
          (< 5,0,A>, ?) 
          (< 6,0,A>, ?) 
          (< 7,0,A>, ?) 
          (< 8,0,A>, ?) 
          (< 9,0,A>, ?) 
          (<10,0,A>, ?) 
          (<11,0,A>, ?) 
          (<12,0,A>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (< 0,0,A>,  0) 
          (< 1,0,A>,  9) 
          (< 2,0,A>,  9) 
          (< 3,0,A>,  9) 
          (< 4,0,A>,  9) 
          (< 5,0,A>, 10) 
          (< 6,0,A>,  9) 
          (< 7,0,A>,  9) 
          (< 8,0,A>, 10) 
          (< 9,0,A>, 10) 
          (<10,0,A>,  9) 
          (<11,0,A>,  9) 
          (<12,0,A>,  0) 
* Step 4: UnsatPaths WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A)  -> f8(0)      True                   (1,1)
          1.  f8(A)  -> f14(A)     [9 >= A && 9 >= D]     (?,1)
          2.  f8(A)  -> f14(A)     [9 >= A]               (?,1)
          3.  f23(A) -> f28(A)     [9 >= A && 0 >= 1 + E] (?,1)
          4.  f23(A) -> f28(A)     [9 >= A]               (?,1)
          5.  f23(A) -> f23(1 + A) [9 >= A]               (?,1)
          6.  f28(A) -> f23(1 + A) True                   (?,1)
          7.  f28(A) -> f23(1 + A) [8 >= D]               (?,1)
          8.  f23(A) -> f38(A)     [A >= 10]              (?,1)
          9.  f8(A)  -> f8(1 + A)  [9 >= A]               (?,1)
          10. f14(A) -> f8(1 + A)  True                   (?,1)
          11. f14(A) -> f8(1 + A)  [8 >= D]               (?,1)
          12. f8(A)  -> f23(0)     [A >= 10]              (?,1)
        Signature:
          {(f0,1);(f14,1);(f23,1);(f28,1);(f38,1);(f8,1)}
        Flow Graph:
          [0->{1,2,9,12},1->{10,11},2->{10,11},3->{6,7},4->{6,7},5->{3,4,5,8},6->{3,4,5,8},7->{3,4,5,8},8->{},9->{1
          ,2,9,12},10->{1,2,9,12},11->{1,2,9,12},12->{3,4,5,8}]
        Sizebounds:
          (< 0,0,A>,  0) 
          (< 1,0,A>,  9) 
          (< 2,0,A>,  9) 
          (< 3,0,A>,  9) 
          (< 4,0,A>,  9) 
          (< 5,0,A>, 10) 
          (< 6,0,A>,  9) 
          (< 7,0,A>,  9) 
          (< 8,0,A>, 10) 
          (< 9,0,A>, 10) 
          (<10,0,A>,  9) 
          (<11,0,A>,  9) 
          (<12,0,A>,  0) 
    + Applied Processor:
        UnsatPaths
    + Details:
        We remove following edges from the transition graph: [(0,12),(12,8)]
* Step 5: LeafRules WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A)  -> f8(0)      True                   (1,1)
          1.  f8(A)  -> f14(A)     [9 >= A && 9 >= D]     (?,1)
          2.  f8(A)  -> f14(A)     [9 >= A]               (?,1)
          3.  f23(A) -> f28(A)     [9 >= A && 0 >= 1 + E] (?,1)
          4.  f23(A) -> f28(A)     [9 >= A]               (?,1)
          5.  f23(A) -> f23(1 + A) [9 >= A]               (?,1)
          6.  f28(A) -> f23(1 + A) True                   (?,1)
          7.  f28(A) -> f23(1 + A) [8 >= D]               (?,1)
          8.  f23(A) -> f38(A)     [A >= 10]              (?,1)
          9.  f8(A)  -> f8(1 + A)  [9 >= A]               (?,1)
          10. f14(A) -> f8(1 + A)  True                   (?,1)
          11. f14(A) -> f8(1 + A)  [8 >= D]               (?,1)
          12. f8(A)  -> f23(0)     [A >= 10]              (?,1)
        Signature:
          {(f0,1);(f14,1);(f23,1);(f28,1);(f38,1);(f8,1)}
        Flow Graph:
          [0->{1,2,9},1->{10,11},2->{10,11},3->{6,7},4->{6,7},5->{3,4,5,8},6->{3,4,5,8},7->{3,4,5,8},8->{},9->{1,2,9
          ,12},10->{1,2,9,12},11->{1,2,9,12},12->{3,4,5}]
        Sizebounds:
          (< 0,0,A>,  0) 
          (< 1,0,A>,  9) 
          (< 2,0,A>,  9) 
          (< 3,0,A>,  9) 
          (< 4,0,A>,  9) 
          (< 5,0,A>, 10) 
          (< 6,0,A>,  9) 
          (< 7,0,A>,  9) 
          (< 8,0,A>, 10) 
          (< 9,0,A>, 10) 
          (<10,0,A>,  9) 
          (<11,0,A>,  9) 
          (<12,0,A>,  0) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [8]
* Step 6: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A)  -> f8(0)      True                   (1,1)
          1.  f8(A)  -> f14(A)     [9 >= A && 9 >= D]     (?,1)
          2.  f8(A)  -> f14(A)     [9 >= A]               (?,1)
          3.  f23(A) -> f28(A)     [9 >= A && 0 >= 1 + E] (?,1)
          4.  f23(A) -> f28(A)     [9 >= A]               (?,1)
          5.  f23(A) -> f23(1 + A) [9 >= A]               (?,1)
          6.  f28(A) -> f23(1 + A) True                   (?,1)
          7.  f28(A) -> f23(1 + A) [8 >= D]               (?,1)
          9.  f8(A)  -> f8(1 + A)  [9 >= A]               (?,1)
          10. f14(A) -> f8(1 + A)  True                   (?,1)
          11. f14(A) -> f8(1 + A)  [8 >= D]               (?,1)
          12. f8(A)  -> f23(0)     [A >= 10]              (?,1)
        Signature:
          {(f0,1);(f14,1);(f23,1);(f28,1);(f38,1);(f8,1)}
        Flow Graph:
          [0->{1,2,9},1->{10,11},2->{10,11},3->{6,7},4->{6,7},5->{3,4,5},6->{3,4,5},7->{3,4,5},9->{1,2,9,12},10->{1
          ,2,9,12},11->{1,2,9,12},12->{3,4,5}]
        Sizebounds:
          (< 0,0,A>,  0) 
          (< 1,0,A>,  9) 
          (< 2,0,A>,  9) 
          (< 3,0,A>,  9) 
          (< 4,0,A>,  9) 
          (< 5,0,A>, 10) 
          (< 6,0,A>,  9) 
          (< 7,0,A>,  9) 
          (< 9,0,A>, 10) 
          (<10,0,A>,  9) 
          (<11,0,A>,  9) 
          (<12,0,A>,  0) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 1
          p(f14) = 1
          p(f23) = 0
          p(f28) = 0
           p(f8) = 1
        
        The following rules are strictly oriented:
        [A >= 10] ==>       
            f8(A)   = 1     
                    > 0     
                    = f23(0)
        
        
        The following rules are weakly oriented:
                          True ==>           
                         f0(A)   = 1         
                                >= 1         
                                 = f8(0)     
        
            [9 >= A && 9 >= D] ==>           
                         f8(A)   = 1         
                                >= 1         
                                 = f14(A)    
        
                      [9 >= A] ==>           
                         f8(A)   = 1         
                                >= 1         
                                 = f14(A)    
        
        [9 >= A && 0 >= 1 + E] ==>           
                        f23(A)   = 0         
                                >= 0         
                                 = f28(A)    
        
                      [9 >= A] ==>           
                        f23(A)   = 0         
                                >= 0         
                                 = f28(A)    
        
                      [9 >= A] ==>           
                        f23(A)   = 0         
                                >= 0         
                                 = f23(1 + A)
        
                          True ==>           
                        f28(A)   = 0         
                                >= 0         
                                 = f23(1 + A)
        
                      [8 >= D] ==>           
                        f28(A)   = 0         
                                >= 0         
                                 = f23(1 + A)
        
                      [9 >= A] ==>           
                         f8(A)   = 1         
                                >= 1         
                                 = f8(1 + A) 
        
                          True ==>           
                        f14(A)   = 1         
                                >= 1         
                                 = f8(1 + A) 
        
                      [8 >= D] ==>           
                        f14(A)   = 1         
                                >= 1         
                                 = f8(1 + A) 
        
        
* Step 7: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A)  -> f8(0)      True                   (1,1)
          1.  f8(A)  -> f14(A)     [9 >= A && 9 >= D]     (?,1)
          2.  f8(A)  -> f14(A)     [9 >= A]               (?,1)
          3.  f23(A) -> f28(A)     [9 >= A && 0 >= 1 + E] (?,1)
          4.  f23(A) -> f28(A)     [9 >= A]               (?,1)
          5.  f23(A) -> f23(1 + A) [9 >= A]               (?,1)
          6.  f28(A) -> f23(1 + A) True                   (?,1)
          7.  f28(A) -> f23(1 + A) [8 >= D]               (?,1)
          9.  f8(A)  -> f8(1 + A)  [9 >= A]               (?,1)
          10. f14(A) -> f8(1 + A)  True                   (?,1)
          11. f14(A) -> f8(1 + A)  [8 >= D]               (?,1)
          12. f8(A)  -> f23(0)     [A >= 10]              (1,1)
        Signature:
          {(f0,1);(f14,1);(f23,1);(f28,1);(f38,1);(f8,1)}
        Flow Graph:
          [0->{1,2,9},1->{10,11},2->{10,11},3->{6,7},4->{6,7},5->{3,4,5},6->{3,4,5},7->{3,4,5},9->{1,2,9,12},10->{1
          ,2,9,12},11->{1,2,9,12},12->{3,4,5}]
        Sizebounds:
          (< 0,0,A>,  0) 
          (< 1,0,A>,  9) 
          (< 2,0,A>,  9) 
          (< 3,0,A>,  9) 
          (< 4,0,A>,  9) 
          (< 5,0,A>, 10) 
          (< 6,0,A>,  9) 
          (< 7,0,A>,  9) 
          (< 9,0,A>, 10) 
          (<10,0,A>,  9) 
          (<11,0,A>,  9) 
          (<12,0,A>,  0) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 10        
          p(f14) = 10        
          p(f23) = 10 + -1*x1
          p(f28) = 9 + -1*x1 
           p(f8) = 10        
        
        The following rules are strictly oriented:
        [9 >= A] ==>           
          f23(A)   = 10 + -1*A 
                   > 9 + -1*A  
                   = f28(A)    
        
        [9 >= A] ==>           
          f23(A)   = 10 + -1*A 
                   > 9 + -1*A  
                   = f23(1 + A)
        
        
        The following rules are weakly oriented:
                          True ==>           
                         f0(A)   = 10        
                                >= 10        
                                 = f8(0)     
        
            [9 >= A && 9 >= D] ==>           
                         f8(A)   = 10        
                                >= 10        
                                 = f14(A)    
        
                      [9 >= A] ==>           
                         f8(A)   = 10        
                                >= 10        
                                 = f14(A)    
        
        [9 >= A && 0 >= 1 + E] ==>           
                        f23(A)   = 10 + -1*A 
                                >= 9 + -1*A  
                                 = f28(A)    
        
                          True ==>           
                        f28(A)   = 9 + -1*A  
                                >= 9 + -1*A  
                                 = f23(1 + A)
        
                      [8 >= D] ==>           
                        f28(A)   = 9 + -1*A  
                                >= 9 + -1*A  
                                 = f23(1 + A)
        
                      [9 >= A] ==>           
                         f8(A)   = 10        
                                >= 10        
                                 = f8(1 + A) 
        
                          True ==>           
                        f14(A)   = 10        
                                >= 10        
                                 = f8(1 + A) 
        
                      [8 >= D] ==>           
                        f14(A)   = 10        
                                >= 10        
                                 = f8(1 + A) 
        
                     [A >= 10] ==>           
                         f8(A)   = 10        
                                >= 10        
                                 = f23(0)    
        
        
* Step 8: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A)  -> f8(0)      True                   (1,1) 
          1.  f8(A)  -> f14(A)     [9 >= A && 9 >= D]     (?,1) 
          2.  f8(A)  -> f14(A)     [9 >= A]               (?,1) 
          3.  f23(A) -> f28(A)     [9 >= A && 0 >= 1 + E] (?,1) 
          4.  f23(A) -> f28(A)     [9 >= A]               (10,1)
          5.  f23(A) -> f23(1 + A) [9 >= A]               (10,1)
          6.  f28(A) -> f23(1 + A) True                   (?,1) 
          7.  f28(A) -> f23(1 + A) [8 >= D]               (?,1) 
          9.  f8(A)  -> f8(1 + A)  [9 >= A]               (?,1) 
          10. f14(A) -> f8(1 + A)  True                   (?,1) 
          11. f14(A) -> f8(1 + A)  [8 >= D]               (?,1) 
          12. f8(A)  -> f23(0)     [A >= 10]              (1,1) 
        Signature:
          {(f0,1);(f14,1);(f23,1);(f28,1);(f38,1);(f8,1)}
        Flow Graph:
          [0->{1,2,9},1->{10,11},2->{10,11},3->{6,7},4->{6,7},5->{3,4,5},6->{3,4,5},7->{3,4,5},9->{1,2,9,12},10->{1
          ,2,9,12},11->{1,2,9,12},12->{3,4,5}]
        Sizebounds:
          (< 0,0,A>,  0) 
          (< 1,0,A>,  9) 
          (< 2,0,A>,  9) 
          (< 3,0,A>,  9) 
          (< 4,0,A>,  9) 
          (< 5,0,A>, 10) 
          (< 6,0,A>,  9) 
          (< 7,0,A>,  9) 
          (< 9,0,A>, 10) 
          (<10,0,A>,  9) 
          (<11,0,A>,  9) 
          (<12,0,A>,  0) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 10        
          p(f14) = 10        
          p(f23) = 10 + -1*x1
          p(f28) = 9 + -1*x1 
           p(f8) = 10        
        
        The following rules are strictly oriented:
        [9 >= A && 0 >= 1 + E] ==>           
                        f23(A)   = 10 + -1*A 
                                 > 9 + -1*A  
                                 = f28(A)    
        
                      [9 >= A] ==>           
                        f23(A)   = 10 + -1*A 
                                 > 9 + -1*A  
                                 = f28(A)    
        
                      [9 >= A] ==>           
                        f23(A)   = 10 + -1*A 
                                 > 9 + -1*A  
                                 = f23(1 + A)
        
        
        The following rules are weakly oriented:
                      True ==>           
                     f0(A)   = 10        
                            >= 10        
                             = f8(0)     
        
        [9 >= A && 9 >= D] ==>           
                     f8(A)   = 10        
                            >= 10        
                             = f14(A)    
        
                  [9 >= A] ==>           
                     f8(A)   = 10        
                            >= 10        
                             = f14(A)    
        
                      True ==>           
                    f28(A)   = 9 + -1*A  
                            >= 9 + -1*A  
                             = f23(1 + A)
        
                  [8 >= D] ==>           
                    f28(A)   = 9 + -1*A  
                            >= 9 + -1*A  
                             = f23(1 + A)
        
                  [9 >= A] ==>           
                     f8(A)   = 10        
                            >= 10        
                             = f8(1 + A) 
        
                      True ==>           
                    f14(A)   = 10        
                            >= 10        
                             = f8(1 + A) 
        
                  [8 >= D] ==>           
                    f14(A)   = 10        
                            >= 10        
                             = f8(1 + A) 
        
                 [A >= 10] ==>           
                     f8(A)   = 10        
                            >= 10        
                             = f23(0)    
        
        
* Step 9: KnowledgePropagation WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A)  -> f8(0)      True                   (1,1) 
          1.  f8(A)  -> f14(A)     [9 >= A && 9 >= D]     (?,1) 
          2.  f8(A)  -> f14(A)     [9 >= A]               (?,1) 
          3.  f23(A) -> f28(A)     [9 >= A && 0 >= 1 + E] (10,1)
          4.  f23(A) -> f28(A)     [9 >= A]               (10,1)
          5.  f23(A) -> f23(1 + A) [9 >= A]               (10,1)
          6.  f28(A) -> f23(1 + A) True                   (?,1) 
          7.  f28(A) -> f23(1 + A) [8 >= D]               (?,1) 
          9.  f8(A)  -> f8(1 + A)  [9 >= A]               (?,1) 
          10. f14(A) -> f8(1 + A)  True                   (?,1) 
          11. f14(A) -> f8(1 + A)  [8 >= D]               (?,1) 
          12. f8(A)  -> f23(0)     [A >= 10]              (1,1) 
        Signature:
          {(f0,1);(f14,1);(f23,1);(f28,1);(f38,1);(f8,1)}
        Flow Graph:
          [0->{1,2,9},1->{10,11},2->{10,11},3->{6,7},4->{6,7},5->{3,4,5},6->{3,4,5},7->{3,4,5},9->{1,2,9,12},10->{1
          ,2,9,12},11->{1,2,9,12},12->{3,4,5}]
        Sizebounds:
          (< 0,0,A>,  0) 
          (< 1,0,A>,  9) 
          (< 2,0,A>,  9) 
          (< 3,0,A>,  9) 
          (< 4,0,A>,  9) 
          (< 5,0,A>, 10) 
          (< 6,0,A>,  9) 
          (< 7,0,A>,  9) 
          (< 9,0,A>, 10) 
          (<10,0,A>,  9) 
          (<11,0,A>,  9) 
          (<12,0,A>,  0) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 10: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A)  -> f8(0)      True                   (1,1) 
          1.  f8(A)  -> f14(A)     [9 >= A && 9 >= D]     (?,1) 
          2.  f8(A)  -> f14(A)     [9 >= A]               (?,1) 
          3.  f23(A) -> f28(A)     [9 >= A && 0 >= 1 + E] (10,1)
          4.  f23(A) -> f28(A)     [9 >= A]               (10,1)
          5.  f23(A) -> f23(1 + A) [9 >= A]               (10,1)
          6.  f28(A) -> f23(1 + A) True                   (20,1)
          7.  f28(A) -> f23(1 + A) [8 >= D]               (20,1)
          9.  f8(A)  -> f8(1 + A)  [9 >= A]               (?,1) 
          10. f14(A) -> f8(1 + A)  True                   (?,1) 
          11. f14(A) -> f8(1 + A)  [8 >= D]               (?,1) 
          12. f8(A)  -> f23(0)     [A >= 10]              (1,1) 
        Signature:
          {(f0,1);(f14,1);(f23,1);(f28,1);(f38,1);(f8,1)}
        Flow Graph:
          [0->{1,2,9},1->{10,11},2->{10,11},3->{6,7},4->{6,7},5->{3,4,5},6->{3,4,5},7->{3,4,5},9->{1,2,9,12},10->{1
          ,2,9,12},11->{1,2,9,12},12->{3,4,5}]
        Sizebounds:
          (< 0,0,A>,  0) 
          (< 1,0,A>,  9) 
          (< 2,0,A>,  9) 
          (< 3,0,A>,  9) 
          (< 4,0,A>,  9) 
          (< 5,0,A>, 10) 
          (< 6,0,A>,  9) 
          (< 7,0,A>,  9) 
          (< 9,0,A>, 10) 
          (<10,0,A>,  9) 
          (<11,0,A>,  9) 
          (<12,0,A>,  0) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [1,9,10,2,11], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f14) = 9 + -1*x1 
           p(f8) = 10 + -1*x1
        
        The following rules are strictly oriented:
        [9 >= A] ==>          
           f8(A)   = 10 + -1*A
                   > 9 + -1*A 
                   = f14(A)   
        
        [9 >= A] ==>          
           f8(A)   = 10 + -1*A
                   > 9 + -1*A 
                   = f8(1 + A)
        
        
        The following rules are weakly oriented:
        [9 >= A && 9 >= D] ==>          
                     f8(A)   = 10 + -1*A
                            >= 9 + -1*A 
                             = f14(A)   
        
                      True ==>          
                    f14(A)   = 9 + -1*A 
                            >= 9 + -1*A 
                             = f8(1 + A)
        
                  [8 >= D] ==>          
                    f14(A)   = 9 + -1*A 
                            >= 9 + -1*A 
                             = f8(1 + A)
        
        We use the following global sizebounds:
        (< 0,0,A>,  0) 
        (< 1,0,A>,  9) 
        (< 2,0,A>,  9) 
        (< 3,0,A>,  9) 
        (< 4,0,A>,  9) 
        (< 5,0,A>, 10) 
        (< 6,0,A>,  9) 
        (< 7,0,A>,  9) 
        (< 9,0,A>, 10) 
        (<10,0,A>,  9) 
        (<11,0,A>,  9) 
        (<12,0,A>,  0) 
* Step 11: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A)  -> f8(0)      True                   (1,1) 
          1.  f8(A)  -> f14(A)     [9 >= A && 9 >= D]     (?,1) 
          2.  f8(A)  -> f14(A)     [9 >= A]               (10,1)
          3.  f23(A) -> f28(A)     [9 >= A && 0 >= 1 + E] (10,1)
          4.  f23(A) -> f28(A)     [9 >= A]               (10,1)
          5.  f23(A) -> f23(1 + A) [9 >= A]               (10,1)
          6.  f28(A) -> f23(1 + A) True                   (20,1)
          7.  f28(A) -> f23(1 + A) [8 >= D]               (20,1)
          9.  f8(A)  -> f8(1 + A)  [9 >= A]               (10,1)
          10. f14(A) -> f8(1 + A)  True                   (?,1) 
          11. f14(A) -> f8(1 + A)  [8 >= D]               (?,1) 
          12. f8(A)  -> f23(0)     [A >= 10]              (1,1) 
        Signature:
          {(f0,1);(f14,1);(f23,1);(f28,1);(f38,1);(f8,1)}
        Flow Graph:
          [0->{1,2,9},1->{10,11},2->{10,11},3->{6,7},4->{6,7},5->{3,4,5},6->{3,4,5},7->{3,4,5},9->{1,2,9,12},10->{1
          ,2,9,12},11->{1,2,9,12},12->{3,4,5}]
        Sizebounds:
          (< 0,0,A>,  0) 
          (< 1,0,A>,  9) 
          (< 2,0,A>,  9) 
          (< 3,0,A>,  9) 
          (< 4,0,A>,  9) 
          (< 5,0,A>, 10) 
          (< 6,0,A>,  9) 
          (< 7,0,A>,  9) 
          (< 9,0,A>, 10) 
          (<10,0,A>,  9) 
          (<11,0,A>,  9) 
          (<12,0,A>,  0) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [1,10,2,11], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f14) = 9 + -1*x1 
           p(f8) = 10 + -1*x1
        
        The following rules are strictly oriented:
        [9 >= A && 9 >= D] ==>          
                     f8(A)   = 10 + -1*A
                             > 9 + -1*A 
                             = f14(A)   
        
                  [9 >= A] ==>          
                     f8(A)   = 10 + -1*A
                             > 9 + -1*A 
                             = f14(A)   
        
        
        The following rules are weakly oriented:
            True ==>          
          f14(A)   = 9 + -1*A 
                  >= 9 + -1*A 
                   = f8(1 + A)
        
        [8 >= D] ==>          
          f14(A)   = 9 + -1*A 
                  >= 9 + -1*A 
                   = f8(1 + A)
        
        We use the following global sizebounds:
        (< 0,0,A>,  0) 
        (< 1,0,A>,  9) 
        (< 2,0,A>,  9) 
        (< 3,0,A>,  9) 
        (< 4,0,A>,  9) 
        (< 5,0,A>, 10) 
        (< 6,0,A>,  9) 
        (< 7,0,A>,  9) 
        (< 9,0,A>, 10) 
        (<10,0,A>,  9) 
        (<11,0,A>,  9) 
        (<12,0,A>,  0) 
* Step 12: KnowledgePropagation WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A)  -> f8(0)      True                   (1,1)  
          1.  f8(A)  -> f14(A)     [9 >= A && 9 >= D]     (210,1)
          2.  f8(A)  -> f14(A)     [9 >= A]               (10,1) 
          3.  f23(A) -> f28(A)     [9 >= A && 0 >= 1 + E] (10,1) 
          4.  f23(A) -> f28(A)     [9 >= A]               (10,1) 
          5.  f23(A) -> f23(1 + A) [9 >= A]               (10,1) 
          6.  f28(A) -> f23(1 + A) True                   (20,1) 
          7.  f28(A) -> f23(1 + A) [8 >= D]               (20,1) 
          9.  f8(A)  -> f8(1 + A)  [9 >= A]               (10,1) 
          10. f14(A) -> f8(1 + A)  True                   (?,1)  
          11. f14(A) -> f8(1 + A)  [8 >= D]               (?,1)  
          12. f8(A)  -> f23(0)     [A >= 10]              (1,1)  
        Signature:
          {(f0,1);(f14,1);(f23,1);(f28,1);(f38,1);(f8,1)}
        Flow Graph:
          [0->{1,2,9},1->{10,11},2->{10,11},3->{6,7},4->{6,7},5->{3,4,5},6->{3,4,5},7->{3,4,5},9->{1,2,9,12},10->{1
          ,2,9,12},11->{1,2,9,12},12->{3,4,5}]
        Sizebounds:
          (< 0,0,A>,  0) 
          (< 1,0,A>,  9) 
          (< 2,0,A>,  9) 
          (< 3,0,A>,  9) 
          (< 4,0,A>,  9) 
          (< 5,0,A>, 10) 
          (< 6,0,A>,  9) 
          (< 7,0,A>,  9) 
          (< 9,0,A>, 10) 
          (<10,0,A>,  9) 
          (<11,0,A>,  9) 
          (<12,0,A>,  0) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 13: LocalSizeboundsProc WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A)  -> f8(0)      True                   (1,1)  
          1.  f8(A)  -> f14(A)     [9 >= A && 9 >= D]     (210,1)
          2.  f8(A)  -> f14(A)     [9 >= A]               (10,1) 
          3.  f23(A) -> f28(A)     [9 >= A && 0 >= 1 + E] (10,1) 
          4.  f23(A) -> f28(A)     [9 >= A]               (10,1) 
          5.  f23(A) -> f23(1 + A) [9 >= A]               (10,1) 
          6.  f28(A) -> f23(1 + A) True                   (20,1) 
          7.  f28(A) -> f23(1 + A) [8 >= D]               (20,1) 
          9.  f8(A)  -> f8(1 + A)  [9 >= A]               (10,1) 
          10. f14(A) -> f8(1 + A)  True                   (220,1)
          11. f14(A) -> f8(1 + A)  [8 >= D]               (220,1)
          12. f8(A)  -> f23(0)     [A >= 10]              (1,1)  
        Signature:
          {(f0,1);(f14,1);(f23,1);(f28,1);(f38,1);(f8,1)}
        Flow Graph:
          [0->{1,2,9},1->{10,11},2->{10,11},3->{6,7},4->{6,7},5->{3,4,5},6->{3,4,5},7->{3,4,5},9->{1,2,9,12},10->{1
          ,2,9,12},11->{1,2,9,12},12->{3,4,5}]
        Sizebounds:
          (< 0,0,A>,  0) 
          (< 1,0,A>,  9) 
          (< 2,0,A>,  9) 
          (< 3,0,A>,  9) 
          (< 4,0,A>,  9) 
          (< 5,0,A>, 10) 
          (< 6,0,A>,  9) 
          (< 7,0,A>,  9) 
          (< 9,0,A>, 10) 
          (<10,0,A>,  9) 
          (<11,0,A>,  9) 
          (<12,0,A>,  0) 
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        The problem is already solved.

WORST_CASE(?,O(1))