WORST_CASE(?,O(n^1)) * Step 1: RestrictVarsProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f4(A,B,C) -> f5(A,B,1) [0 >= A && 0 >= B] (?,1) 1. f0(A,B,C) -> f2(A,B,1) [A >= 1] (1,1) 2. f4(A,B,C) -> f4(A,-1 + B,C) [B >= 1] (?,1) 3. f0(A,B,C) -> f4(A,B,0) [0 >= A] (1,1) Signature: {(f0,3);(f2,3);(f4,3);(f5,3)} Flow Graph: [0->{},1->{},2->{0,2},3->{0,2}] + Applied Processor: RestrictVarsProcessor + Details: We removed the arguments [C] . * Step 2: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f4(A,B) -> f5(A,B) [0 >= A && 0 >= B] (?,1) 1. f0(A,B) -> f2(A,B) [A >= 1] (1,1) 2. f4(A,B) -> f4(A,-1 + B) [B >= 1] (?,1) 3. f0(A,B) -> f4(A,B) [0 >= A] (1,1) Signature: {(f0,2);(f2,2);(f4,2);(f5,2)} Flow Graph: [0->{},1->{},2->{0,2},3->{0,2}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<0,0,A>, A, .= 0) (<0,0,B>, B, .= 0) (<1,0,A>, A, .= 0) (<1,0,B>, B, .= 0) (<2,0,A>, A, .= 0) (<2,0,B>, 1 + B, .+ 1) (<3,0,A>, A, .= 0) (<3,0,B>, B, .= 0) * Step 3: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f4(A,B) -> f5(A,B) [0 >= A && 0 >= B] (?,1) 1. f0(A,B) -> f2(A,B) [A >= 1] (1,1) 2. f4(A,B) -> f4(A,-1 + B) [B >= 1] (?,1) 3. f0(A,B) -> f4(A,B) [0 >= A] (1,1) Signature: {(f0,2);(f2,2);(f4,2);(f5,2)} Flow Graph: [0->{},1->{},2->{0,2},3->{0,2}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<1,0,A>, ?) (<1,0,B>, ?) (<2,0,A>, ?) (<2,0,B>, ?) (<3,0,A>, ?) (<3,0,B>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<0,0,A>, A) (<0,0,B>, ?) (<1,0,A>, A) (<1,0,B>, B) (<2,0,A>, A) (<2,0,B>, ?) (<3,0,A>, A) (<3,0,B>, B) * Step 4: LeafRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f4(A,B) -> f5(A,B) [0 >= A && 0 >= B] (?,1) 1. f0(A,B) -> f2(A,B) [A >= 1] (1,1) 2. f4(A,B) -> f4(A,-1 + B) [B >= 1] (?,1) 3. f0(A,B) -> f4(A,B) [0 >= A] (1,1) Signature: {(f0,2);(f2,2);(f4,2);(f5,2)} Flow Graph: [0->{},1->{},2->{0,2},3->{0,2}] Sizebounds: (<0,0,A>, A) (<0,0,B>, ?) (<1,0,A>, A) (<1,0,B>, B) (<2,0,A>, A) (<2,0,B>, ?) (<3,0,A>, A) (<3,0,B>, B) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [0] * Step 5: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 1. f0(A,B) -> f2(A,B) [A >= 1] (1,1) 2. f4(A,B) -> f4(A,-1 + B) [B >= 1] (?,1) 3. f0(A,B) -> f4(A,B) [0 >= A] (1,1) Signature: {(f0,2);(f2,2);(f4,2);(f5,2)} Flow Graph: [1->{},2->{2},3->{2}] Sizebounds: (<1,0,A>, A) (<1,0,B>, B) (<2,0,A>, A) (<2,0,B>, ?) (<3,0,A>, A) (<3,0,B>, B) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = x2 p(f2) = x2 p(f4) = x2 The following rules are strictly oriented: [B >= 1] ==> f4(A,B) = B > -1 + B = f4(A,-1 + B) The following rules are weakly oriented: [A >= 1] ==> f0(A,B) = B >= B = f2(A,B) [0 >= A] ==> f0(A,B) = B >= B = f4(A,B) * Step 6: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 1. f0(A,B) -> f2(A,B) [A >= 1] (1,1) 2. f4(A,B) -> f4(A,-1 + B) [B >= 1] (B,1) 3. f0(A,B) -> f4(A,B) [0 >= A] (1,1) Signature: {(f0,2);(f2,2);(f4,2);(f5,2)} Flow Graph: [1->{},2->{2},3->{2}] Sizebounds: (<1,0,A>, A) (<1,0,B>, B) (<2,0,A>, A) (<2,0,B>, ?) (<3,0,A>, A) (<3,0,B>, B) + Applied Processor: KnowledgePropagation + Details: The problem is already solved. WORST_CASE(?,O(n^1))