WORST_CASE(?,O(1))
* Step 1: RestrictVarsProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f62(A,B,C,D,E,F,G,H,I,J,K,L) -> f63(A,B,C,D,E,F,G,H,I,J,K,L)     [0 >= 1 + A]               (?,1)
          1.  f62(A,B,C,D,E,F,G,H,I,J,K,L) -> f63(A,B,C,D,E,F,G,H,I,J,K,L)     [A >= 1]                   (?,1)
          2.  f0(A,B,C,D,E,F,G,H,I,J,K,L)  -> f13(1,12,1,1,M,0,G,H,I,J,K,L)    True                       (1,1)
          3.  f13(A,B,C,D,E,F,G,H,I,J,K,L) -> f13(A,B,C,D,E,1 + F,G,H,I,J,K,L) [B >= 1 + F]               (?,1)
          4.  f19(A,B,C,D,E,F,G,H,I,J,K,L) -> f22(A,B,C,D,E,F,G,H,I,J,K,L)     [0 >= 1 + C && B >= 1 + F] (?,1)
          5.  f19(A,B,C,D,E,F,G,H,I,J,K,L) -> f22(A,B,C,D,E,F,G,H,I,J,K,L)     [C >= 1 && B >= 1 + F]     (?,1)
          6.  f22(A,B,C,D,E,F,G,H,I,J,K,L) -> f19(A,B,1,D,E,1 + F,1,H,I,J,K,L) [M >= 0 && B >= 1 + N]     (?,1)
          7.  f22(A,B,C,D,E,F,G,H,I,J,K,L) -> f19(A,B,0,D,E,1 + F,0,H,I,J,K,L) [M >= 0]                   (?,1)
          8.  f22(A,B,C,D,E,F,G,H,I,J,K,L) -> f19(A,B,0,D,E,1 + F,0,H,I,J,K,L) [0 >= 1 + M]               (?,1)
          9.  f19(A,B,C,D,E,F,G,H,I,J,K,L) -> f19(A,B,0,D,E,1 + F,0,H,I,J,K,L) [B >= 1 + F && C = 0]      (?,1)
          10. f32(A,B,C,D,E,F,G,H,I,J,K,L) -> f35(A,B,C,D,E,F,G,1 + F,I,J,K,L) [B >= 2 + F]               (?,1)
          11. f35(A,B,C,D,E,F,G,H,I,J,K,L) -> f38(A,B,C,D,E,F,G,H,I,J,K,L)     [0 >= 1 + A && B >= 1 + H] (?,1)
          12. f35(A,B,C,D,E,F,G,H,I,J,K,L) -> f38(A,B,C,D,E,F,G,H,I,J,K,L)     [A >= 1 && B >= 1 + H]     (?,1)
          13. f38(A,B,C,D,E,F,G,H,I,J,K,L) -> f35(1,B,C,D,E,F,G,1 + H,1,J,K,L) [M >= 1 + N]               (?,1)
          14. f38(A,B,C,D,E,F,G,H,I,J,K,L) -> f35(1,B,C,D,E,F,G,1 + H,1,J,K,L) True                       (?,1)
          15. f38(A,B,C,D,E,F,G,H,I,J,K,L) -> f35(0,B,C,D,E,F,G,1 + H,0,J,K,L) True                       (?,1)
          16. f35(A,B,C,D,E,F,G,H,I,J,K,L) -> f35(0,B,C,D,E,F,G,1 + H,0,J,K,L) [B >= 1 + H && A = 0]      (?,1)
          17. f48(A,B,C,D,E,F,G,H,I,J,K,L) -> f52(A,B,C,D,E,F,G,H,I,M,K,L)     [0 >= 1 + D && B >= 2 + F] (?,1)
          18. f48(A,B,C,D,E,F,G,H,I,J,K,L) -> f52(A,B,C,D,E,F,G,H,I,M,K,L)     [D >= 1 && B >= 2 + F]     (?,1)
          19. f52(A,B,C,D,E,F,G,H,I,J,K,L) -> f48(A,B,C,1,E,1 + F,G,H,I,J,1,L) [0 >= 1 + J]               (?,1)
          20. f52(A,B,C,D,E,F,G,H,I,J,K,L) -> f48(A,B,C,1,E,1 + F,G,H,I,J,1,L) [J >= 1]                   (?,1)
          21. f52(A,B,C,D,E,F,G,H,I,J,K,L) -> f48(A,B,C,0,E,1 + F,G,H,I,0,0,L) [J = 0]                    (?,1)
          22. f52(A,B,C,D,E,F,G,H,I,J,K,L) -> f48(A,B,C,0,E,1 + F,G,H,I,J,0,L) True                       (?,1)
          23. f48(A,B,C,D,E,F,G,H,I,J,K,L) -> f48(A,B,C,0,E,1 + F,G,H,I,M,0,L) [B >= 2 + F && D = 0]      (?,1)
          24. f63(A,B,C,D,E,F,G,H,I,J,K,L) -> f71(A,B,C,D,E,F,G,H,I,J,K,0)     [0 >= 1 + D]               (?,1)
          25. f63(A,B,C,D,E,F,G,H,I,J,K,L) -> f71(A,B,C,D,E,F,G,H,I,J,K,0)     [D >= 1]                   (?,1)
          26. f63(A,B,C,D,E,F,G,H,I,J,K,L) -> f71(A,B,C,0,E,F,G,H,I,J,K,1)     [D = 0]                    (?,1)
          27. f62(A,B,C,D,E,F,G,H,I,J,K,L) -> f71(0,B,C,D,E,F,G,H,I,J,K,1)     [A = 0]                    (?,1)
          28. f48(A,B,C,D,E,F,G,H,I,J,K,L) -> f62(A,B,C,D,E,F,G,H,I,J,K,L)     [0 >= 1 + C && 1 + F >= B] (?,1)
          29. f48(A,B,C,D,E,F,G,H,I,J,K,L) -> f62(A,B,C,D,E,F,G,H,I,J,K,L)     [C >= 1 && 1 + F >= B]     (?,1)
          30. f48(A,B,C,D,E,F,G,H,I,J,K,L) -> f71(A,B,0,D,E,F,G,H,I,J,K,1)     [1 + F >= B && C = 0]      (?,1)
          31. f35(A,B,C,D,E,F,G,H,I,J,K,L) -> f32(A,B,C,D,E,1 + F,G,H,I,J,K,L) [H >= B]                   (?,1)
          32. f32(A,B,C,D,E,F,G,H,I,J,K,L) -> f48(A,B,C,D,E,0,G,H,I,J,K,L)     [1 + F >= B]               (?,1)
          33. f19(A,B,C,D,E,F,G,H,I,J,K,L) -> f32(A,B,C,D,E,0,G,H,I,J,K,L)     [F >= B]                   (?,1)
          34. f13(A,B,C,D,E,F,G,H,I,J,K,L) -> f19(A,B,C,D,E,0,G,H,I,J,K,L)     [F >= B]                   (?,1)
        Signature:
          {(f0,12)
          ;(f13,12)
          ;(f19,12)
          ;(f22,12)
          ;(f32,12)
          ;(f35,12)
          ;(f38,12)
          ;(f48,12)
          ;(f52,12)
          ;(f62,12)
          ;(f63,12)
          ;(f71,12)}
        Flow Graph:
          [0->{24,25,26},1->{24,25,26},2->{3,34},3->{3,34},4->{6,7,8},5->{6,7,8},6->{4,5,9,33},7->{4,5,9,33},8->{4,5
          ,9,33},9->{4,5,9,33},10->{11,12,16,31},11->{13,14,15},12->{13,14,15},13->{11,12,16,31},14->{11,12,16,31}
          ,15->{11,12,16,31},16->{11,12,16,31},17->{19,20,21,22},18->{19,20,21,22},19->{17,18,23,28,29,30},20->{17,18
          ,23,28,29,30},21->{17,18,23,28,29,30},22->{17,18,23,28,29,30},23->{17,18,23,28,29,30},24->{},25->{},26->{}
          ,27->{},28->{0,1,27},29->{0,1,27},30->{},31->{10,32},32->{17,18,23,28,29,30},33->{10,32},34->{4,5,9,33}]
        
    + Applied Processor:
        RestrictVarsProcessor
    + Details:
        We removed the arguments [E,G,I,K,L] .
* Step 2: LocalSizeboundsProc WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f62(A,B,C,D,F,H,J) -> f63(A,B,C,D,F,H,J)     [0 >= 1 + A]               (?,1)
          1.  f62(A,B,C,D,F,H,J) -> f63(A,B,C,D,F,H,J)     [A >= 1]                   (?,1)
          2.  f0(A,B,C,D,F,H,J)  -> f13(1,12,1,1,0,H,J)    True                       (1,1)
          3.  f13(A,B,C,D,F,H,J) -> f13(A,B,C,D,1 + F,H,J) [B >= 1 + F]               (?,1)
          4.  f19(A,B,C,D,F,H,J) -> f22(A,B,C,D,F,H,J)     [0 >= 1 + C && B >= 1 + F] (?,1)
          5.  f19(A,B,C,D,F,H,J) -> f22(A,B,C,D,F,H,J)     [C >= 1 && B >= 1 + F]     (?,1)
          6.  f22(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J) [M >= 0 && B >= 1 + N]     (?,1)
          7.  f22(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [M >= 0]                   (?,1)
          8.  f22(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [0 >= 1 + M]               (?,1)
          9.  f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [B >= 1 + F && C = 0]      (?,1)
          10. f32(A,B,C,D,F,H,J) -> f35(A,B,C,D,F,1 + F,J) [B >= 2 + F]               (?,1)
          11. f35(A,B,C,D,F,H,J) -> f38(A,B,C,D,F,H,J)     [0 >= 1 + A && B >= 1 + H] (?,1)
          12. f35(A,B,C,D,F,H,J) -> f38(A,B,C,D,F,H,J)     [A >= 1 && B >= 1 + H]     (?,1)
          13. f38(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) [M >= 1 + N]               (?,1)
          14. f38(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) True                       (?,1)
          15. f38(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) True                       (?,1)
          16. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) [B >= 1 + H && A = 0]      (?,1)
          17. f48(A,B,C,D,F,H,J) -> f52(A,B,C,D,F,H,M)     [0 >= 1 + D && B >= 2 + F] (?,1)
          18. f48(A,B,C,D,F,H,J) -> f52(A,B,C,D,F,H,M)     [D >= 1 && B >= 2 + F]     (?,1)
          19. f52(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,J) [0 >= 1 + J]               (?,1)
          20. f52(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,J) [J >= 1]                   (?,1)
          21. f52(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0) [J = 0]                    (?,1)
          22. f52(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,J) True                       (?,1)
          23. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M) [B >= 2 + F && D = 0]      (?,1)
          24. f63(A,B,C,D,F,H,J) -> f71(A,B,C,D,F,H,J)     [0 >= 1 + D]               (?,1)
          25. f63(A,B,C,D,F,H,J) -> f71(A,B,C,D,F,H,J)     [D >= 1]                   (?,1)
          26. f63(A,B,C,D,F,H,J) -> f71(A,B,C,0,F,H,J)     [D = 0]                    (?,1)
          27. f62(A,B,C,D,F,H,J) -> f71(0,B,C,D,F,H,J)     [A = 0]                    (?,1)
          28. f48(A,B,C,D,F,H,J) -> f62(A,B,C,D,F,H,J)     [0 >= 1 + C && 1 + F >= B] (?,1)
          29. f48(A,B,C,D,F,H,J) -> f62(A,B,C,D,F,H,J)     [C >= 1 && 1 + F >= B]     (?,1)
          30. f48(A,B,C,D,F,H,J) -> f71(A,B,0,D,F,H,J)     [1 + F >= B && C = 0]      (?,1)
          31. f35(A,B,C,D,F,H,J) -> f32(A,B,C,D,1 + F,H,J) [H >= B]                   (?,1)
          32. f32(A,B,C,D,F,H,J) -> f48(A,B,C,D,0,H,J)     [1 + F >= B]               (?,1)
          33. f19(A,B,C,D,F,H,J) -> f32(A,B,C,D,0,H,J)     [F >= B]                   (?,1)
          34. f13(A,B,C,D,F,H,J) -> f19(A,B,C,D,0,H,J)     [F >= B]                   (?,1)
        Signature:
          {(f0,7);(f13,7);(f19,7);(f22,7);(f32,7);(f35,7);(f38,7);(f48,7);(f52,7);(f62,7);(f63,7);(f71,7)}
        Flow Graph:
          [0->{24,25,26},1->{24,25,26},2->{3,34},3->{3,34},4->{6,7,8},5->{6,7,8},6->{4,5,9,33},7->{4,5,9,33},8->{4,5
          ,9,33},9->{4,5,9,33},10->{11,12,16,31},11->{13,14,15},12->{13,14,15},13->{11,12,16,31},14->{11,12,16,31}
          ,15->{11,12,16,31},16->{11,12,16,31},17->{19,20,21,22},18->{19,20,21,22},19->{17,18,23,28,29,30},20->{17,18
          ,23,28,29,30},21->{17,18,23,28,29,30},22->{17,18,23,28,29,30},23->{17,18,23,28,29,30},24->{},25->{},26->{}
          ,27->{},28->{0,1,27},29->{0,1,27},30->{},31->{10,32},32->{17,18,23,28,29,30},33->{10,32},34->{4,5,9,33}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (< 0,0,A>, A, .= 0) (< 0,0,B>,  B,  .= 0) (< 0,0,C>, C, .= 0) (< 0,0,D>, D, .= 0) (< 0,0,F>,     F, .= 0) (< 0,0,H>,     H, .= 0) (< 0,0,J>, J, .= 0) 
          (< 1,0,A>, A, .= 0) (< 1,0,B>,  B,  .= 0) (< 1,0,C>, C, .= 0) (< 1,0,D>, D, .= 0) (< 1,0,F>,     F, .= 0) (< 1,0,H>,     H, .= 0) (< 1,0,J>, J, .= 0) 
          (< 2,0,A>, 1, .= 1) (< 2,0,B>, 12, .= 12) (< 2,0,C>, 1, .= 1) (< 2,0,D>, 1, .= 1) (< 2,0,F>,     0, .= 0) (< 2,0,H>,     H, .= 0) (< 2,0,J>, J, .= 0) 
          (< 3,0,A>, A, .= 0) (< 3,0,B>,  B,  .= 0) (< 3,0,C>, C, .= 0) (< 3,0,D>, D, .= 0) (< 3,0,F>, 1 + F, .+ 1) (< 3,0,H>,     H, .= 0) (< 3,0,J>, J, .= 0) 
          (< 4,0,A>, A, .= 0) (< 4,0,B>,  B,  .= 0) (< 4,0,C>, C, .= 0) (< 4,0,D>, D, .= 0) (< 4,0,F>,     F, .= 0) (< 4,0,H>,     H, .= 0) (< 4,0,J>, J, .= 0) 
          (< 5,0,A>, A, .= 0) (< 5,0,B>,  B,  .= 0) (< 5,0,C>, C, .= 0) (< 5,0,D>, D, .= 0) (< 5,0,F>,     F, .= 0) (< 5,0,H>,     H, .= 0) (< 5,0,J>, J, .= 0) 
          (< 6,0,A>, A, .= 0) (< 6,0,B>,  B,  .= 0) (< 6,0,C>, 1, .= 1) (< 6,0,D>, D, .= 0) (< 6,0,F>, 1 + F, .+ 1) (< 6,0,H>,     H, .= 0) (< 6,0,J>, J, .= 0) 
          (< 7,0,A>, A, .= 0) (< 7,0,B>,  B,  .= 0) (< 7,0,C>, 0, .= 0) (< 7,0,D>, D, .= 0) (< 7,0,F>, 1 + F, .+ 1) (< 7,0,H>,     H, .= 0) (< 7,0,J>, J, .= 0) 
          (< 8,0,A>, A, .= 0) (< 8,0,B>,  B,  .= 0) (< 8,0,C>, 0, .= 0) (< 8,0,D>, D, .= 0) (< 8,0,F>, 1 + F, .+ 1) (< 8,0,H>,     H, .= 0) (< 8,0,J>, J, .= 0) 
          (< 9,0,A>, A, .= 0) (< 9,0,B>,  B,  .= 0) (< 9,0,C>, 0, .= 0) (< 9,0,D>, D, .= 0) (< 9,0,F>, 1 + F, .+ 1) (< 9,0,H>,     H, .= 0) (< 9,0,J>, J, .= 0) 
          (<10,0,A>, A, .= 0) (<10,0,B>,  B,  .= 0) (<10,0,C>, C, .= 0) (<10,0,D>, D, .= 0) (<10,0,F>,     F, .= 0) (<10,0,H>, 1 + F, .+ 1) (<10,0,J>, J, .= 0) 
          (<11,0,A>, A, .= 0) (<11,0,B>,  B,  .= 0) (<11,0,C>, C, .= 0) (<11,0,D>, D, .= 0) (<11,0,F>,     F, .= 0) (<11,0,H>,     H, .= 0) (<11,0,J>, J, .= 0) 
          (<12,0,A>, A, .= 0) (<12,0,B>,  B,  .= 0) (<12,0,C>, C, .= 0) (<12,0,D>, D, .= 0) (<12,0,F>,     F, .= 0) (<12,0,H>,     H, .= 0) (<12,0,J>, J, .= 0) 
          (<13,0,A>, 1, .= 1) (<13,0,B>,  B,  .= 0) (<13,0,C>, C, .= 0) (<13,0,D>, D, .= 0) (<13,0,F>,     F, .= 0) (<13,0,H>, 1 + H, .+ 1) (<13,0,J>, J, .= 0) 
          (<14,0,A>, 1, .= 1) (<14,0,B>,  B,  .= 0) (<14,0,C>, C, .= 0) (<14,0,D>, D, .= 0) (<14,0,F>,     F, .= 0) (<14,0,H>, 1 + H, .+ 1) (<14,0,J>, J, .= 0) 
          (<15,0,A>, 0, .= 0) (<15,0,B>,  B,  .= 0) (<15,0,C>, C, .= 0) (<15,0,D>, D, .= 0) (<15,0,F>,     F, .= 0) (<15,0,H>, 1 + H, .+ 1) (<15,0,J>, J, .= 0) 
          (<16,0,A>, 0, .= 0) (<16,0,B>,  B,  .= 0) (<16,0,C>, C, .= 0) (<16,0,D>, D, .= 0) (<16,0,F>,     F, .= 0) (<16,0,H>, 1 + H, .+ 1) (<16,0,J>, J, .= 0) 
          (<17,0,A>, A, .= 0) (<17,0,B>,  B,  .= 0) (<17,0,C>, C, .= 0) (<17,0,D>, D, .= 0) (<17,0,F>,     F, .= 0) (<17,0,H>,     H, .= 0) (<17,0,J>, ?,   .?) 
          (<18,0,A>, A, .= 0) (<18,0,B>,  B,  .= 0) (<18,0,C>, C, .= 0) (<18,0,D>, D, .= 0) (<18,0,F>,     F, .= 0) (<18,0,H>,     H, .= 0) (<18,0,J>, ?,   .?) 
          (<19,0,A>, A, .= 0) (<19,0,B>,  B,  .= 0) (<19,0,C>, C, .= 0) (<19,0,D>, 1, .= 1) (<19,0,F>, 1 + F, .+ 1) (<19,0,H>,     H, .= 0) (<19,0,J>, J, .= 0) 
          (<20,0,A>, A, .= 0) (<20,0,B>,  B,  .= 0) (<20,0,C>, C, .= 0) (<20,0,D>, 1, .= 1) (<20,0,F>, 1 + F, .+ 1) (<20,0,H>,     H, .= 0) (<20,0,J>, J, .= 0) 
          (<21,0,A>, A, .= 0) (<21,0,B>,  B,  .= 0) (<21,0,C>, C, .= 0) (<21,0,D>, 0, .= 0) (<21,0,F>, 1 + F, .+ 1) (<21,0,H>,     H, .= 0) (<21,0,J>, 0, .= 0) 
          (<22,0,A>, A, .= 0) (<22,0,B>,  B,  .= 0) (<22,0,C>, C, .= 0) (<22,0,D>, 0, .= 0) (<22,0,F>, 1 + F, .+ 1) (<22,0,H>,     H, .= 0) (<22,0,J>, J, .= 0) 
          (<23,0,A>, A, .= 0) (<23,0,B>,  B,  .= 0) (<23,0,C>, C, .= 0) (<23,0,D>, 0, .= 0) (<23,0,F>, 1 + F, .+ 1) (<23,0,H>,     H, .= 0) (<23,0,J>, ?,   .?) 
          (<24,0,A>, A, .= 0) (<24,0,B>,  B,  .= 0) (<24,0,C>, C, .= 0) (<24,0,D>, D, .= 0) (<24,0,F>,     F, .= 0) (<24,0,H>,     H, .= 0) (<24,0,J>, J, .= 0) 
          (<25,0,A>, A, .= 0) (<25,0,B>,  B,  .= 0) (<25,0,C>, C, .= 0) (<25,0,D>, D, .= 0) (<25,0,F>,     F, .= 0) (<25,0,H>,     H, .= 0) (<25,0,J>, J, .= 0) 
          (<26,0,A>, A, .= 0) (<26,0,B>,  B,  .= 0) (<26,0,C>, C, .= 0) (<26,0,D>, 0, .= 0) (<26,0,F>,     F, .= 0) (<26,0,H>,     H, .= 0) (<26,0,J>, J, .= 0) 
          (<27,0,A>, 0, .= 0) (<27,0,B>,  B,  .= 0) (<27,0,C>, C, .= 0) (<27,0,D>, D, .= 0) (<27,0,F>,     F, .= 0) (<27,0,H>,     H, .= 0) (<27,0,J>, J, .= 0) 
          (<28,0,A>, A, .= 0) (<28,0,B>,  B,  .= 0) (<28,0,C>, C, .= 0) (<28,0,D>, D, .= 0) (<28,0,F>,     F, .= 0) (<28,0,H>,     H, .= 0) (<28,0,J>, J, .= 0) 
          (<29,0,A>, A, .= 0) (<29,0,B>,  B,  .= 0) (<29,0,C>, C, .= 0) (<29,0,D>, D, .= 0) (<29,0,F>,     F, .= 0) (<29,0,H>,     H, .= 0) (<29,0,J>, J, .= 0) 
          (<30,0,A>, A, .= 0) (<30,0,B>,  B,  .= 0) (<30,0,C>, 0, .= 0) (<30,0,D>, D, .= 0) (<30,0,F>,     F, .= 0) (<30,0,H>,     H, .= 0) (<30,0,J>, J, .= 0) 
          (<31,0,A>, A, .= 0) (<31,0,B>,  B,  .= 0) (<31,0,C>, C, .= 0) (<31,0,D>, D, .= 0) (<31,0,F>, 1 + F, .+ 1) (<31,0,H>,     H, .= 0) (<31,0,J>, J, .= 0) 
          (<32,0,A>, A, .= 0) (<32,0,B>,  B,  .= 0) (<32,0,C>, C, .= 0) (<32,0,D>, D, .= 0) (<32,0,F>,     0, .= 0) (<32,0,H>,     H, .= 0) (<32,0,J>, J, .= 0) 
          (<33,0,A>, A, .= 0) (<33,0,B>,  B,  .= 0) (<33,0,C>, C, .= 0) (<33,0,D>, D, .= 0) (<33,0,F>,     0, .= 0) (<33,0,H>,     H, .= 0) (<33,0,J>, J, .= 0) 
          (<34,0,A>, A, .= 0) (<34,0,B>,  B,  .= 0) (<34,0,C>, C, .= 0) (<34,0,D>, D, .= 0) (<34,0,F>,     0, .= 0) (<34,0,H>,     H, .= 0) (<34,0,J>, J, .= 0) 
* Step 3: SizeboundsProc WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f62(A,B,C,D,F,H,J) -> f63(A,B,C,D,F,H,J)     [0 >= 1 + A]               (?,1)
          1.  f62(A,B,C,D,F,H,J) -> f63(A,B,C,D,F,H,J)     [A >= 1]                   (?,1)
          2.  f0(A,B,C,D,F,H,J)  -> f13(1,12,1,1,0,H,J)    True                       (1,1)
          3.  f13(A,B,C,D,F,H,J) -> f13(A,B,C,D,1 + F,H,J) [B >= 1 + F]               (?,1)
          4.  f19(A,B,C,D,F,H,J) -> f22(A,B,C,D,F,H,J)     [0 >= 1 + C && B >= 1 + F] (?,1)
          5.  f19(A,B,C,D,F,H,J) -> f22(A,B,C,D,F,H,J)     [C >= 1 && B >= 1 + F]     (?,1)
          6.  f22(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J) [M >= 0 && B >= 1 + N]     (?,1)
          7.  f22(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [M >= 0]                   (?,1)
          8.  f22(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [0 >= 1 + M]               (?,1)
          9.  f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [B >= 1 + F && C = 0]      (?,1)
          10. f32(A,B,C,D,F,H,J) -> f35(A,B,C,D,F,1 + F,J) [B >= 2 + F]               (?,1)
          11. f35(A,B,C,D,F,H,J) -> f38(A,B,C,D,F,H,J)     [0 >= 1 + A && B >= 1 + H] (?,1)
          12. f35(A,B,C,D,F,H,J) -> f38(A,B,C,D,F,H,J)     [A >= 1 && B >= 1 + H]     (?,1)
          13. f38(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) [M >= 1 + N]               (?,1)
          14. f38(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) True                       (?,1)
          15. f38(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) True                       (?,1)
          16. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) [B >= 1 + H && A = 0]      (?,1)
          17. f48(A,B,C,D,F,H,J) -> f52(A,B,C,D,F,H,M)     [0 >= 1 + D && B >= 2 + F] (?,1)
          18. f48(A,B,C,D,F,H,J) -> f52(A,B,C,D,F,H,M)     [D >= 1 && B >= 2 + F]     (?,1)
          19. f52(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,J) [0 >= 1 + J]               (?,1)
          20. f52(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,J) [J >= 1]                   (?,1)
          21. f52(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0) [J = 0]                    (?,1)
          22. f52(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,J) True                       (?,1)
          23. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M) [B >= 2 + F && D = 0]      (?,1)
          24. f63(A,B,C,D,F,H,J) -> f71(A,B,C,D,F,H,J)     [0 >= 1 + D]               (?,1)
          25. f63(A,B,C,D,F,H,J) -> f71(A,B,C,D,F,H,J)     [D >= 1]                   (?,1)
          26. f63(A,B,C,D,F,H,J) -> f71(A,B,C,0,F,H,J)     [D = 0]                    (?,1)
          27. f62(A,B,C,D,F,H,J) -> f71(0,B,C,D,F,H,J)     [A = 0]                    (?,1)
          28. f48(A,B,C,D,F,H,J) -> f62(A,B,C,D,F,H,J)     [0 >= 1 + C && 1 + F >= B] (?,1)
          29. f48(A,B,C,D,F,H,J) -> f62(A,B,C,D,F,H,J)     [C >= 1 && 1 + F >= B]     (?,1)
          30. f48(A,B,C,D,F,H,J) -> f71(A,B,0,D,F,H,J)     [1 + F >= B && C = 0]      (?,1)
          31. f35(A,B,C,D,F,H,J) -> f32(A,B,C,D,1 + F,H,J) [H >= B]                   (?,1)
          32. f32(A,B,C,D,F,H,J) -> f48(A,B,C,D,0,H,J)     [1 + F >= B]               (?,1)
          33. f19(A,B,C,D,F,H,J) -> f32(A,B,C,D,0,H,J)     [F >= B]                   (?,1)
          34. f13(A,B,C,D,F,H,J) -> f19(A,B,C,D,0,H,J)     [F >= B]                   (?,1)
        Signature:
          {(f0,7);(f13,7);(f19,7);(f22,7);(f32,7);(f35,7);(f38,7);(f48,7);(f52,7);(f62,7);(f63,7);(f71,7)}
        Flow Graph:
          [0->{24,25,26},1->{24,25,26},2->{3,34},3->{3,34},4->{6,7,8},5->{6,7,8},6->{4,5,9,33},7->{4,5,9,33},8->{4,5
          ,9,33},9->{4,5,9,33},10->{11,12,16,31},11->{13,14,15},12->{13,14,15},13->{11,12,16,31},14->{11,12,16,31}
          ,15->{11,12,16,31},16->{11,12,16,31},17->{19,20,21,22},18->{19,20,21,22},19->{17,18,23,28,29,30},20->{17,18
          ,23,28,29,30},21->{17,18,23,28,29,30},22->{17,18,23,28,29,30},23->{17,18,23,28,29,30},24->{},25->{},26->{}
          ,27->{},28->{0,1,27},29->{0,1,27},30->{},31->{10,32},32->{17,18,23,28,29,30},33->{10,32},34->{4,5,9,33}]
        Sizebounds:
          (< 0,0,A>, ?) (< 0,0,B>, ?) (< 0,0,C>, ?) (< 0,0,D>, ?) (< 0,0,F>, ?) (< 0,0,H>, ?) (< 0,0,J>, ?) 
          (< 1,0,A>, ?) (< 1,0,B>, ?) (< 1,0,C>, ?) (< 1,0,D>, ?) (< 1,0,F>, ?) (< 1,0,H>, ?) (< 1,0,J>, ?) 
          (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, ?) (< 2,0,F>, ?) (< 2,0,H>, ?) (< 2,0,J>, ?) 
          (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, ?) (< 3,0,F>, ?) (< 3,0,H>, ?) (< 3,0,J>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,F>, ?) (< 4,0,H>, ?) (< 4,0,J>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,F>, ?) (< 5,0,H>, ?) (< 5,0,J>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,F>, ?) (< 6,0,H>, ?) (< 6,0,J>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,F>, ?) (< 7,0,H>, ?) (< 7,0,J>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,F>, ?) (< 8,0,H>, ?) (< 8,0,J>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,F>, ?) (< 9,0,H>, ?) (< 9,0,J>, ?) 
          (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,F>, ?) (<10,0,H>, ?) (<10,0,J>, ?) 
          (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,F>, ?) (<11,0,H>, ?) (<11,0,J>, ?) 
          (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,F>, ?) (<12,0,H>, ?) (<12,0,J>, ?) 
          (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,F>, ?) (<13,0,H>, ?) (<13,0,J>, ?) 
          (<14,0,A>, ?) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,F>, ?) (<14,0,H>, ?) (<14,0,J>, ?) 
          (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,F>, ?) (<15,0,H>, ?) (<15,0,J>, ?) 
          (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,F>, ?) (<16,0,H>, ?) (<16,0,J>, ?) 
          (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,F>, ?) (<17,0,H>, ?) (<17,0,J>, ?) 
          (<18,0,A>, ?) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,F>, ?) (<18,0,H>, ?) (<18,0,J>, ?) 
          (<19,0,A>, ?) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,F>, ?) (<19,0,H>, ?) (<19,0,J>, ?) 
          (<20,0,A>, ?) (<20,0,B>, ?) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,F>, ?) (<20,0,H>, ?) (<20,0,J>, ?) 
          (<21,0,A>, ?) (<21,0,B>, ?) (<21,0,C>, ?) (<21,0,D>, ?) (<21,0,F>, ?) (<21,0,H>, ?) (<21,0,J>, ?) 
          (<22,0,A>, ?) (<22,0,B>, ?) (<22,0,C>, ?) (<22,0,D>, ?) (<22,0,F>, ?) (<22,0,H>, ?) (<22,0,J>, ?) 
          (<23,0,A>, ?) (<23,0,B>, ?) (<23,0,C>, ?) (<23,0,D>, ?) (<23,0,F>, ?) (<23,0,H>, ?) (<23,0,J>, ?) 
          (<24,0,A>, ?) (<24,0,B>, ?) (<24,0,C>, ?) (<24,0,D>, ?) (<24,0,F>, ?) (<24,0,H>, ?) (<24,0,J>, ?) 
          (<25,0,A>, ?) (<25,0,B>, ?) (<25,0,C>, ?) (<25,0,D>, ?) (<25,0,F>, ?) (<25,0,H>, ?) (<25,0,J>, ?) 
          (<26,0,A>, ?) (<26,0,B>, ?) (<26,0,C>, ?) (<26,0,D>, ?) (<26,0,F>, ?) (<26,0,H>, ?) (<26,0,J>, ?) 
          (<27,0,A>, ?) (<27,0,B>, ?) (<27,0,C>, ?) (<27,0,D>, ?) (<27,0,F>, ?) (<27,0,H>, ?) (<27,0,J>, ?) 
          (<28,0,A>, ?) (<28,0,B>, ?) (<28,0,C>, ?) (<28,0,D>, ?) (<28,0,F>, ?) (<28,0,H>, ?) (<28,0,J>, ?) 
          (<29,0,A>, ?) (<29,0,B>, ?) (<29,0,C>, ?) (<29,0,D>, ?) (<29,0,F>, ?) (<29,0,H>, ?) (<29,0,J>, ?) 
          (<30,0,A>, ?) (<30,0,B>, ?) (<30,0,C>, ?) (<30,0,D>, ?) (<30,0,F>, ?) (<30,0,H>, ?) (<30,0,J>, ?) 
          (<31,0,A>, ?) (<31,0,B>, ?) (<31,0,C>, ?) (<31,0,D>, ?) (<31,0,F>, ?) (<31,0,H>, ?) (<31,0,J>, ?) 
          (<32,0,A>, ?) (<32,0,B>, ?) (<32,0,C>, ?) (<32,0,D>, ?) (<32,0,F>, ?) (<32,0,H>, ?) (<32,0,J>, ?) 
          (<33,0,A>, ?) (<33,0,B>, ?) (<33,0,C>, ?) (<33,0,D>, ?) (<33,0,F>, ?) (<33,0,H>, ?) (<33,0,J>, ?) 
          (<34,0,A>, ?) (<34,0,B>, ?) (<34,0,C>, ?) (<34,0,D>, ?) (<34,0,F>, ?) (<34,0,H>, ?) (<34,0,J>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (< 0,0,A>, 1) (< 0,0,B>, 12) (< 0,0,C>, 1) (< 0,0,D>, 1) (< 0,0,F>, 12) (< 0,0,H>,  ?) (< 0,0,J>, ?) 
          (< 1,0,A>, 1) (< 1,0,B>, 12) (< 1,0,C>, 1) (< 1,0,D>, 1) (< 1,0,F>, 12) (< 1,0,H>,  ?) (< 1,0,J>, ?) 
          (< 2,0,A>, 1) (< 2,0,B>, 12) (< 2,0,C>, 1) (< 2,0,D>, 1) (< 2,0,F>,  0) (< 2,0,H>,  H) (< 2,0,J>, J) 
          (< 3,0,A>, 1) (< 3,0,B>, 12) (< 3,0,C>, 1) (< 3,0,D>, 1) (< 3,0,F>, 12) (< 3,0,H>,  H) (< 3,0,J>, J) 
          (< 4,0,A>, 1) (< 4,0,B>, 12) (< 4,0,C>, 1) (< 4,0,D>, 1) (< 4,0,F>, 12) (< 4,0,H>,  H) (< 4,0,J>, J) 
          (< 5,0,A>, 1) (< 5,0,B>, 12) (< 5,0,C>, 1) (< 5,0,D>, 1) (< 5,0,F>, 12) (< 5,0,H>,  H) (< 5,0,J>, J) 
          (< 6,0,A>, 1) (< 6,0,B>, 12) (< 6,0,C>, 1) (< 6,0,D>, 1) (< 6,0,F>, 12) (< 6,0,H>,  H) (< 6,0,J>, J) 
          (< 7,0,A>, 1) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 1) (< 7,0,F>, 12) (< 7,0,H>,  H) (< 7,0,J>, J) 
          (< 8,0,A>, 1) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>, 1) (< 8,0,F>, 12) (< 8,0,H>,  H) (< 8,0,J>, J) 
          (< 9,0,A>, 1) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 1) (< 9,0,F>, 12) (< 9,0,H>,  H) (< 9,0,J>, J) 
          (<10,0,A>, 1) (<10,0,B>, 12) (<10,0,C>, 1) (<10,0,D>, 1) (<10,0,F>, 12) (<10,0,H>,  ?) (<10,0,J>, J) 
          (<11,0,A>, 1) (<11,0,B>, 12) (<11,0,C>, 1) (<11,0,D>, 1) (<11,0,F>,  ?) (<11,0,H>, 12) (<11,0,J>, J) 
          (<12,0,A>, 1) (<12,0,B>, 12) (<12,0,C>, 1) (<12,0,D>, 1) (<12,0,F>,  ?) (<12,0,H>, 12) (<12,0,J>, J) 
          (<13,0,A>, 1) (<13,0,B>, 12) (<13,0,C>, 1) (<13,0,D>, 1) (<13,0,F>,  ?) (<13,0,H>, 12) (<13,0,J>, J) 
          (<14,0,A>, 1) (<14,0,B>, 12) (<14,0,C>, 1) (<14,0,D>, 1) (<14,0,F>,  ?) (<14,0,H>, 12) (<14,0,J>, J) 
          (<15,0,A>, 0) (<15,0,B>, 12) (<15,0,C>, 1) (<15,0,D>, 1) (<15,0,F>,  ?) (<15,0,H>, 12) (<15,0,J>, J) 
          (<16,0,A>, 0) (<16,0,B>, 12) (<16,0,C>, 1) (<16,0,D>, 1) (<16,0,F>,  ?) (<16,0,H>, 12) (<16,0,J>, J) 
          (<17,0,A>, 1) (<17,0,B>, 12) (<17,0,C>, 1) (<17,0,D>, 1) (<17,0,F>, 12) (<17,0,H>,  ?) (<17,0,J>, ?) 
          (<18,0,A>, 1) (<18,0,B>, 12) (<18,0,C>, 1) (<18,0,D>, 1) (<18,0,F>, 12) (<18,0,H>,  ?) (<18,0,J>, ?) 
          (<19,0,A>, 1) (<19,0,B>, 12) (<19,0,C>, 1) (<19,0,D>, 1) (<19,0,F>, 12) (<19,0,H>,  ?) (<19,0,J>, ?) 
          (<20,0,A>, 1) (<20,0,B>, 12) (<20,0,C>, 1) (<20,0,D>, 1) (<20,0,F>, 12) (<20,0,H>,  ?) (<20,0,J>, ?) 
          (<21,0,A>, 1) (<21,0,B>, 12) (<21,0,C>, 1) (<21,0,D>, 0) (<21,0,F>, 12) (<21,0,H>,  ?) (<21,0,J>, 0) 
          (<22,0,A>, 1) (<22,0,B>, 12) (<22,0,C>, 1) (<22,0,D>, 0) (<22,0,F>, 12) (<22,0,H>,  ?) (<22,0,J>, ?) 
          (<23,0,A>, 1) (<23,0,B>, 12) (<23,0,C>, 1) (<23,0,D>, 0) (<23,0,F>, 12) (<23,0,H>,  ?) (<23,0,J>, ?) 
          (<24,0,A>, 1) (<24,0,B>, 12) (<24,0,C>, 1) (<24,0,D>, 1) (<24,0,F>, 12) (<24,0,H>,  ?) (<24,0,J>, ?) 
          (<25,0,A>, 1) (<25,0,B>, 12) (<25,0,C>, 1) (<25,0,D>, 1) (<25,0,F>, 12) (<25,0,H>,  ?) (<25,0,J>, ?) 
          (<26,0,A>, 1) (<26,0,B>, 12) (<26,0,C>, 1) (<26,0,D>, 0) (<26,0,F>, 12) (<26,0,H>,  ?) (<26,0,J>, ?) 
          (<27,0,A>, 0) (<27,0,B>, 12) (<27,0,C>, 1) (<27,0,D>, 1) (<27,0,F>, 12) (<27,0,H>,  ?) (<27,0,J>, ?) 
          (<28,0,A>, 1) (<28,0,B>, 12) (<28,0,C>, 1) (<28,0,D>, 1) (<28,0,F>, 12) (<28,0,H>,  ?) (<28,0,J>, ?) 
          (<29,0,A>, 1) (<29,0,B>, 12) (<29,0,C>, 1) (<29,0,D>, 1) (<29,0,F>, 12) (<29,0,H>,  ?) (<29,0,J>, ?) 
          (<30,0,A>, 1) (<30,0,B>, 12) (<30,0,C>, 0) (<30,0,D>, 1) (<30,0,F>, 12) (<30,0,H>,  ?) (<30,0,J>, ?) 
          (<31,0,A>, 1) (<31,0,B>, 12) (<31,0,C>, 1) (<31,0,D>, 1) (<31,0,F>,  ?) (<31,0,H>,  ?) (<31,0,J>, J) 
          (<32,0,A>, 1) (<32,0,B>, 12) (<32,0,C>, 1) (<32,0,D>, 1) (<32,0,F>,  0) (<32,0,H>,  ?) (<32,0,J>, J) 
          (<33,0,A>, 1) (<33,0,B>, 12) (<33,0,C>, 1) (<33,0,D>, 1) (<33,0,F>,  0) (<33,0,H>,  H) (<33,0,J>, J) 
          (<34,0,A>, 1) (<34,0,B>, 12) (<34,0,C>, 1) (<34,0,D>, 1) (<34,0,F>,  0) (<34,0,H>,  H) (<34,0,J>, J) 
* Step 4: UnsatPaths WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f62(A,B,C,D,F,H,J) -> f63(A,B,C,D,F,H,J)     [0 >= 1 + A]               (?,1)
          1.  f62(A,B,C,D,F,H,J) -> f63(A,B,C,D,F,H,J)     [A >= 1]                   (?,1)
          2.  f0(A,B,C,D,F,H,J)  -> f13(1,12,1,1,0,H,J)    True                       (1,1)
          3.  f13(A,B,C,D,F,H,J) -> f13(A,B,C,D,1 + F,H,J) [B >= 1 + F]               (?,1)
          4.  f19(A,B,C,D,F,H,J) -> f22(A,B,C,D,F,H,J)     [0 >= 1 + C && B >= 1 + F] (?,1)
          5.  f19(A,B,C,D,F,H,J) -> f22(A,B,C,D,F,H,J)     [C >= 1 && B >= 1 + F]     (?,1)
          6.  f22(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J) [M >= 0 && B >= 1 + N]     (?,1)
          7.  f22(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [M >= 0]                   (?,1)
          8.  f22(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [0 >= 1 + M]               (?,1)
          9.  f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [B >= 1 + F && C = 0]      (?,1)
          10. f32(A,B,C,D,F,H,J) -> f35(A,B,C,D,F,1 + F,J) [B >= 2 + F]               (?,1)
          11. f35(A,B,C,D,F,H,J) -> f38(A,B,C,D,F,H,J)     [0 >= 1 + A && B >= 1 + H] (?,1)
          12. f35(A,B,C,D,F,H,J) -> f38(A,B,C,D,F,H,J)     [A >= 1 && B >= 1 + H]     (?,1)
          13. f38(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) [M >= 1 + N]               (?,1)
          14. f38(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) True                       (?,1)
          15. f38(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) True                       (?,1)
          16. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) [B >= 1 + H && A = 0]      (?,1)
          17. f48(A,B,C,D,F,H,J) -> f52(A,B,C,D,F,H,M)     [0 >= 1 + D && B >= 2 + F] (?,1)
          18. f48(A,B,C,D,F,H,J) -> f52(A,B,C,D,F,H,M)     [D >= 1 && B >= 2 + F]     (?,1)
          19. f52(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,J) [0 >= 1 + J]               (?,1)
          20. f52(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,J) [J >= 1]                   (?,1)
          21. f52(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0) [J = 0]                    (?,1)
          22. f52(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,J) True                       (?,1)
          23. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M) [B >= 2 + F && D = 0]      (?,1)
          24. f63(A,B,C,D,F,H,J) -> f71(A,B,C,D,F,H,J)     [0 >= 1 + D]               (?,1)
          25. f63(A,B,C,D,F,H,J) -> f71(A,B,C,D,F,H,J)     [D >= 1]                   (?,1)
          26. f63(A,B,C,D,F,H,J) -> f71(A,B,C,0,F,H,J)     [D = 0]                    (?,1)
          27. f62(A,B,C,D,F,H,J) -> f71(0,B,C,D,F,H,J)     [A = 0]                    (?,1)
          28. f48(A,B,C,D,F,H,J) -> f62(A,B,C,D,F,H,J)     [0 >= 1 + C && 1 + F >= B] (?,1)
          29. f48(A,B,C,D,F,H,J) -> f62(A,B,C,D,F,H,J)     [C >= 1 && 1 + F >= B]     (?,1)
          30. f48(A,B,C,D,F,H,J) -> f71(A,B,0,D,F,H,J)     [1 + F >= B && C = 0]      (?,1)
          31. f35(A,B,C,D,F,H,J) -> f32(A,B,C,D,1 + F,H,J) [H >= B]                   (?,1)
          32. f32(A,B,C,D,F,H,J) -> f48(A,B,C,D,0,H,J)     [1 + F >= B]               (?,1)
          33. f19(A,B,C,D,F,H,J) -> f32(A,B,C,D,0,H,J)     [F >= B]                   (?,1)
          34. f13(A,B,C,D,F,H,J) -> f19(A,B,C,D,0,H,J)     [F >= B]                   (?,1)
        Signature:
          {(f0,7);(f13,7);(f19,7);(f22,7);(f32,7);(f35,7);(f38,7);(f48,7);(f52,7);(f62,7);(f63,7);(f71,7)}
        Flow Graph:
          [0->{24,25,26},1->{24,25,26},2->{3,34},3->{3,34},4->{6,7,8},5->{6,7,8},6->{4,5,9,33},7->{4,5,9,33},8->{4,5
          ,9,33},9->{4,5,9,33},10->{11,12,16,31},11->{13,14,15},12->{13,14,15},13->{11,12,16,31},14->{11,12,16,31}
          ,15->{11,12,16,31},16->{11,12,16,31},17->{19,20,21,22},18->{19,20,21,22},19->{17,18,23,28,29,30},20->{17,18
          ,23,28,29,30},21->{17,18,23,28,29,30},22->{17,18,23,28,29,30},23->{17,18,23,28,29,30},24->{},25->{},26->{}
          ,27->{},28->{0,1,27},29->{0,1,27},30->{},31->{10,32},32->{17,18,23,28,29,30},33->{10,32},34->{4,5,9,33}]
        Sizebounds:
          (< 0,0,A>, 1) (< 0,0,B>, 12) (< 0,0,C>, 1) (< 0,0,D>, 1) (< 0,0,F>, 12) (< 0,0,H>,  ?) (< 0,0,J>, ?) 
          (< 1,0,A>, 1) (< 1,0,B>, 12) (< 1,0,C>, 1) (< 1,0,D>, 1) (< 1,0,F>, 12) (< 1,0,H>,  ?) (< 1,0,J>, ?) 
          (< 2,0,A>, 1) (< 2,0,B>, 12) (< 2,0,C>, 1) (< 2,0,D>, 1) (< 2,0,F>,  0) (< 2,0,H>,  H) (< 2,0,J>, J) 
          (< 3,0,A>, 1) (< 3,0,B>, 12) (< 3,0,C>, 1) (< 3,0,D>, 1) (< 3,0,F>, 12) (< 3,0,H>,  H) (< 3,0,J>, J) 
          (< 4,0,A>, 1) (< 4,0,B>, 12) (< 4,0,C>, 1) (< 4,0,D>, 1) (< 4,0,F>, 12) (< 4,0,H>,  H) (< 4,0,J>, J) 
          (< 5,0,A>, 1) (< 5,0,B>, 12) (< 5,0,C>, 1) (< 5,0,D>, 1) (< 5,0,F>, 12) (< 5,0,H>,  H) (< 5,0,J>, J) 
          (< 6,0,A>, 1) (< 6,0,B>, 12) (< 6,0,C>, 1) (< 6,0,D>, 1) (< 6,0,F>, 12) (< 6,0,H>,  H) (< 6,0,J>, J) 
          (< 7,0,A>, 1) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 1) (< 7,0,F>, 12) (< 7,0,H>,  H) (< 7,0,J>, J) 
          (< 8,0,A>, 1) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>, 1) (< 8,0,F>, 12) (< 8,0,H>,  H) (< 8,0,J>, J) 
          (< 9,0,A>, 1) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 1) (< 9,0,F>, 12) (< 9,0,H>,  H) (< 9,0,J>, J) 
          (<10,0,A>, 1) (<10,0,B>, 12) (<10,0,C>, 1) (<10,0,D>, 1) (<10,0,F>, 12) (<10,0,H>,  ?) (<10,0,J>, J) 
          (<11,0,A>, 1) (<11,0,B>, 12) (<11,0,C>, 1) (<11,0,D>, 1) (<11,0,F>,  ?) (<11,0,H>, 12) (<11,0,J>, J) 
          (<12,0,A>, 1) (<12,0,B>, 12) (<12,0,C>, 1) (<12,0,D>, 1) (<12,0,F>,  ?) (<12,0,H>, 12) (<12,0,J>, J) 
          (<13,0,A>, 1) (<13,0,B>, 12) (<13,0,C>, 1) (<13,0,D>, 1) (<13,0,F>,  ?) (<13,0,H>, 12) (<13,0,J>, J) 
          (<14,0,A>, 1) (<14,0,B>, 12) (<14,0,C>, 1) (<14,0,D>, 1) (<14,0,F>,  ?) (<14,0,H>, 12) (<14,0,J>, J) 
          (<15,0,A>, 0) (<15,0,B>, 12) (<15,0,C>, 1) (<15,0,D>, 1) (<15,0,F>,  ?) (<15,0,H>, 12) (<15,0,J>, J) 
          (<16,0,A>, 0) (<16,0,B>, 12) (<16,0,C>, 1) (<16,0,D>, 1) (<16,0,F>,  ?) (<16,0,H>, 12) (<16,0,J>, J) 
          (<17,0,A>, 1) (<17,0,B>, 12) (<17,0,C>, 1) (<17,0,D>, 1) (<17,0,F>, 12) (<17,0,H>,  ?) (<17,0,J>, ?) 
          (<18,0,A>, 1) (<18,0,B>, 12) (<18,0,C>, 1) (<18,0,D>, 1) (<18,0,F>, 12) (<18,0,H>,  ?) (<18,0,J>, ?) 
          (<19,0,A>, 1) (<19,0,B>, 12) (<19,0,C>, 1) (<19,0,D>, 1) (<19,0,F>, 12) (<19,0,H>,  ?) (<19,0,J>, ?) 
          (<20,0,A>, 1) (<20,0,B>, 12) (<20,0,C>, 1) (<20,0,D>, 1) (<20,0,F>, 12) (<20,0,H>,  ?) (<20,0,J>, ?) 
          (<21,0,A>, 1) (<21,0,B>, 12) (<21,0,C>, 1) (<21,0,D>, 0) (<21,0,F>, 12) (<21,0,H>,  ?) (<21,0,J>, 0) 
          (<22,0,A>, 1) (<22,0,B>, 12) (<22,0,C>, 1) (<22,0,D>, 0) (<22,0,F>, 12) (<22,0,H>,  ?) (<22,0,J>, ?) 
          (<23,0,A>, 1) (<23,0,B>, 12) (<23,0,C>, 1) (<23,0,D>, 0) (<23,0,F>, 12) (<23,0,H>,  ?) (<23,0,J>, ?) 
          (<24,0,A>, 1) (<24,0,B>, 12) (<24,0,C>, 1) (<24,0,D>, 1) (<24,0,F>, 12) (<24,0,H>,  ?) (<24,0,J>, ?) 
          (<25,0,A>, 1) (<25,0,B>, 12) (<25,0,C>, 1) (<25,0,D>, 1) (<25,0,F>, 12) (<25,0,H>,  ?) (<25,0,J>, ?) 
          (<26,0,A>, 1) (<26,0,B>, 12) (<26,0,C>, 1) (<26,0,D>, 0) (<26,0,F>, 12) (<26,0,H>,  ?) (<26,0,J>, ?) 
          (<27,0,A>, 0) (<27,0,B>, 12) (<27,0,C>, 1) (<27,0,D>, 1) (<27,0,F>, 12) (<27,0,H>,  ?) (<27,0,J>, ?) 
          (<28,0,A>, 1) (<28,0,B>, 12) (<28,0,C>, 1) (<28,0,D>, 1) (<28,0,F>, 12) (<28,0,H>,  ?) (<28,0,J>, ?) 
          (<29,0,A>, 1) (<29,0,B>, 12) (<29,0,C>, 1) (<29,0,D>, 1) (<29,0,F>, 12) (<29,0,H>,  ?) (<29,0,J>, ?) 
          (<30,0,A>, 1) (<30,0,B>, 12) (<30,0,C>, 0) (<30,0,D>, 1) (<30,0,F>, 12) (<30,0,H>,  ?) (<30,0,J>, ?) 
          (<31,0,A>, 1) (<31,0,B>, 12) (<31,0,C>, 1) (<31,0,D>, 1) (<31,0,F>,  ?) (<31,0,H>,  ?) (<31,0,J>, J) 
          (<32,0,A>, 1) (<32,0,B>, 12) (<32,0,C>, 1) (<32,0,D>, 1) (<32,0,F>,  0) (<32,0,H>,  ?) (<32,0,J>, J) 
          (<33,0,A>, 1) (<33,0,B>, 12) (<33,0,C>, 1) (<33,0,D>, 1) (<33,0,F>,  0) (<33,0,H>,  H) (<33,0,J>, J) 
          (<34,0,A>, 1) (<34,0,B>, 12) (<34,0,C>, 1) (<34,0,D>, 1) (<34,0,F>,  0) (<34,0,H>,  H) (<34,0,J>, J) 
    + Applied Processor:
        UnsatPaths
    + Details:
        We remove following edges from the transition graph: [(2,34)
                                                             ,(6,4)
                                                             ,(6,9)
                                                             ,(7,4)
                                                             ,(7,5)
                                                             ,(8,4)
                                                             ,(8,5)
                                                             ,(9,4)
                                                             ,(9,5)
                                                             ,(10,31)
                                                             ,(13,11)
                                                             ,(13,16)
                                                             ,(14,11)
                                                             ,(14,16)
                                                             ,(15,11)
                                                             ,(15,12)
                                                             ,(16,11)
                                                             ,(16,12)
                                                             ,(19,17)
                                                             ,(19,23)
                                                             ,(20,17)
                                                             ,(20,23)
                                                             ,(21,17)
                                                             ,(21,18)
                                                             ,(22,17)
                                                             ,(22,18)
                                                             ,(23,17)
                                                             ,(23,18)]
* Step 5: LeafRules WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f62(A,B,C,D,F,H,J) -> f63(A,B,C,D,F,H,J)     [0 >= 1 + A]               (?,1)
          1.  f62(A,B,C,D,F,H,J) -> f63(A,B,C,D,F,H,J)     [A >= 1]                   (?,1)
          2.  f0(A,B,C,D,F,H,J)  -> f13(1,12,1,1,0,H,J)    True                       (1,1)
          3.  f13(A,B,C,D,F,H,J) -> f13(A,B,C,D,1 + F,H,J) [B >= 1 + F]               (?,1)
          4.  f19(A,B,C,D,F,H,J) -> f22(A,B,C,D,F,H,J)     [0 >= 1 + C && B >= 1 + F] (?,1)
          5.  f19(A,B,C,D,F,H,J) -> f22(A,B,C,D,F,H,J)     [C >= 1 && B >= 1 + F]     (?,1)
          6.  f22(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J) [M >= 0 && B >= 1 + N]     (?,1)
          7.  f22(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [M >= 0]                   (?,1)
          8.  f22(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [0 >= 1 + M]               (?,1)
          9.  f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [B >= 1 + F && C = 0]      (?,1)
          10. f32(A,B,C,D,F,H,J) -> f35(A,B,C,D,F,1 + F,J) [B >= 2 + F]               (?,1)
          11. f35(A,B,C,D,F,H,J) -> f38(A,B,C,D,F,H,J)     [0 >= 1 + A && B >= 1 + H] (?,1)
          12. f35(A,B,C,D,F,H,J) -> f38(A,B,C,D,F,H,J)     [A >= 1 && B >= 1 + H]     (?,1)
          13. f38(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) [M >= 1 + N]               (?,1)
          14. f38(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) True                       (?,1)
          15. f38(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) True                       (?,1)
          16. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) [B >= 1 + H && A = 0]      (?,1)
          17. f48(A,B,C,D,F,H,J) -> f52(A,B,C,D,F,H,M)     [0 >= 1 + D && B >= 2 + F] (?,1)
          18. f48(A,B,C,D,F,H,J) -> f52(A,B,C,D,F,H,M)     [D >= 1 && B >= 2 + F]     (?,1)
          19. f52(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,J) [0 >= 1 + J]               (?,1)
          20. f52(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,J) [J >= 1]                   (?,1)
          21. f52(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0) [J = 0]                    (?,1)
          22. f52(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,J) True                       (?,1)
          23. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M) [B >= 2 + F && D = 0]      (?,1)
          24. f63(A,B,C,D,F,H,J) -> f71(A,B,C,D,F,H,J)     [0 >= 1 + D]               (?,1)
          25. f63(A,B,C,D,F,H,J) -> f71(A,B,C,D,F,H,J)     [D >= 1]                   (?,1)
          26. f63(A,B,C,D,F,H,J) -> f71(A,B,C,0,F,H,J)     [D = 0]                    (?,1)
          27. f62(A,B,C,D,F,H,J) -> f71(0,B,C,D,F,H,J)     [A = 0]                    (?,1)
          28. f48(A,B,C,D,F,H,J) -> f62(A,B,C,D,F,H,J)     [0 >= 1 + C && 1 + F >= B] (?,1)
          29. f48(A,B,C,D,F,H,J) -> f62(A,B,C,D,F,H,J)     [C >= 1 && 1 + F >= B]     (?,1)
          30. f48(A,B,C,D,F,H,J) -> f71(A,B,0,D,F,H,J)     [1 + F >= B && C = 0]      (?,1)
          31. f35(A,B,C,D,F,H,J) -> f32(A,B,C,D,1 + F,H,J) [H >= B]                   (?,1)
          32. f32(A,B,C,D,F,H,J) -> f48(A,B,C,D,0,H,J)     [1 + F >= B]               (?,1)
          33. f19(A,B,C,D,F,H,J) -> f32(A,B,C,D,0,H,J)     [F >= B]                   (?,1)
          34. f13(A,B,C,D,F,H,J) -> f19(A,B,C,D,0,H,J)     [F >= B]                   (?,1)
        Signature:
          {(f0,7);(f13,7);(f19,7);(f22,7);(f32,7);(f35,7);(f38,7);(f48,7);(f52,7);(f62,7);(f63,7);(f71,7)}
        Flow Graph:
          [0->{24,25,26},1->{24,25,26},2->{3},3->{3,34},4->{6,7,8},5->{6,7,8},6->{5,33},7->{9,33},8->{9,33},9->{9
          ,33},10->{11,12,16},11->{13,14,15},12->{13,14,15},13->{12,31},14->{12,31},15->{16,31},16->{16,31},17->{19,20
          ,21,22},18->{19,20,21,22},19->{18,28,29,30},20->{18,28,29,30},21->{23,28,29,30},22->{23,28,29,30},23->{23,28
          ,29,30},24->{},25->{},26->{},27->{},28->{0,1,27},29->{0,1,27},30->{},31->{10,32},32->{17,18,23,28,29,30}
          ,33->{10,32},34->{4,5,9,33}]
        Sizebounds:
          (< 0,0,A>, 1) (< 0,0,B>, 12) (< 0,0,C>, 1) (< 0,0,D>, 1) (< 0,0,F>, 12) (< 0,0,H>,  ?) (< 0,0,J>, ?) 
          (< 1,0,A>, 1) (< 1,0,B>, 12) (< 1,0,C>, 1) (< 1,0,D>, 1) (< 1,0,F>, 12) (< 1,0,H>,  ?) (< 1,0,J>, ?) 
          (< 2,0,A>, 1) (< 2,0,B>, 12) (< 2,0,C>, 1) (< 2,0,D>, 1) (< 2,0,F>,  0) (< 2,0,H>,  H) (< 2,0,J>, J) 
          (< 3,0,A>, 1) (< 3,0,B>, 12) (< 3,0,C>, 1) (< 3,0,D>, 1) (< 3,0,F>, 12) (< 3,0,H>,  H) (< 3,0,J>, J) 
          (< 4,0,A>, 1) (< 4,0,B>, 12) (< 4,0,C>, 1) (< 4,0,D>, 1) (< 4,0,F>, 12) (< 4,0,H>,  H) (< 4,0,J>, J) 
          (< 5,0,A>, 1) (< 5,0,B>, 12) (< 5,0,C>, 1) (< 5,0,D>, 1) (< 5,0,F>, 12) (< 5,0,H>,  H) (< 5,0,J>, J) 
          (< 6,0,A>, 1) (< 6,0,B>, 12) (< 6,0,C>, 1) (< 6,0,D>, 1) (< 6,0,F>, 12) (< 6,0,H>,  H) (< 6,0,J>, J) 
          (< 7,0,A>, 1) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 1) (< 7,0,F>, 12) (< 7,0,H>,  H) (< 7,0,J>, J) 
          (< 8,0,A>, 1) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>, 1) (< 8,0,F>, 12) (< 8,0,H>,  H) (< 8,0,J>, J) 
          (< 9,0,A>, 1) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 1) (< 9,0,F>, 12) (< 9,0,H>,  H) (< 9,0,J>, J) 
          (<10,0,A>, 1) (<10,0,B>, 12) (<10,0,C>, 1) (<10,0,D>, 1) (<10,0,F>, 12) (<10,0,H>,  ?) (<10,0,J>, J) 
          (<11,0,A>, 1) (<11,0,B>, 12) (<11,0,C>, 1) (<11,0,D>, 1) (<11,0,F>,  ?) (<11,0,H>, 12) (<11,0,J>, J) 
          (<12,0,A>, 1) (<12,0,B>, 12) (<12,0,C>, 1) (<12,0,D>, 1) (<12,0,F>,  ?) (<12,0,H>, 12) (<12,0,J>, J) 
          (<13,0,A>, 1) (<13,0,B>, 12) (<13,0,C>, 1) (<13,0,D>, 1) (<13,0,F>,  ?) (<13,0,H>, 12) (<13,0,J>, J) 
          (<14,0,A>, 1) (<14,0,B>, 12) (<14,0,C>, 1) (<14,0,D>, 1) (<14,0,F>,  ?) (<14,0,H>, 12) (<14,0,J>, J) 
          (<15,0,A>, 0) (<15,0,B>, 12) (<15,0,C>, 1) (<15,0,D>, 1) (<15,0,F>,  ?) (<15,0,H>, 12) (<15,0,J>, J) 
          (<16,0,A>, 0) (<16,0,B>, 12) (<16,0,C>, 1) (<16,0,D>, 1) (<16,0,F>,  ?) (<16,0,H>, 12) (<16,0,J>, J) 
          (<17,0,A>, 1) (<17,0,B>, 12) (<17,0,C>, 1) (<17,0,D>, 1) (<17,0,F>, 12) (<17,0,H>,  ?) (<17,0,J>, ?) 
          (<18,0,A>, 1) (<18,0,B>, 12) (<18,0,C>, 1) (<18,0,D>, 1) (<18,0,F>, 12) (<18,0,H>,  ?) (<18,0,J>, ?) 
          (<19,0,A>, 1) (<19,0,B>, 12) (<19,0,C>, 1) (<19,0,D>, 1) (<19,0,F>, 12) (<19,0,H>,  ?) (<19,0,J>, ?) 
          (<20,0,A>, 1) (<20,0,B>, 12) (<20,0,C>, 1) (<20,0,D>, 1) (<20,0,F>, 12) (<20,0,H>,  ?) (<20,0,J>, ?) 
          (<21,0,A>, 1) (<21,0,B>, 12) (<21,0,C>, 1) (<21,0,D>, 0) (<21,0,F>, 12) (<21,0,H>,  ?) (<21,0,J>, 0) 
          (<22,0,A>, 1) (<22,0,B>, 12) (<22,0,C>, 1) (<22,0,D>, 0) (<22,0,F>, 12) (<22,0,H>,  ?) (<22,0,J>, ?) 
          (<23,0,A>, 1) (<23,0,B>, 12) (<23,0,C>, 1) (<23,0,D>, 0) (<23,0,F>, 12) (<23,0,H>,  ?) (<23,0,J>, ?) 
          (<24,0,A>, 1) (<24,0,B>, 12) (<24,0,C>, 1) (<24,0,D>, 1) (<24,0,F>, 12) (<24,0,H>,  ?) (<24,0,J>, ?) 
          (<25,0,A>, 1) (<25,0,B>, 12) (<25,0,C>, 1) (<25,0,D>, 1) (<25,0,F>, 12) (<25,0,H>,  ?) (<25,0,J>, ?) 
          (<26,0,A>, 1) (<26,0,B>, 12) (<26,0,C>, 1) (<26,0,D>, 0) (<26,0,F>, 12) (<26,0,H>,  ?) (<26,0,J>, ?) 
          (<27,0,A>, 0) (<27,0,B>, 12) (<27,0,C>, 1) (<27,0,D>, 1) (<27,0,F>, 12) (<27,0,H>,  ?) (<27,0,J>, ?) 
          (<28,0,A>, 1) (<28,0,B>, 12) (<28,0,C>, 1) (<28,0,D>, 1) (<28,0,F>, 12) (<28,0,H>,  ?) (<28,0,J>, ?) 
          (<29,0,A>, 1) (<29,0,B>, 12) (<29,0,C>, 1) (<29,0,D>, 1) (<29,0,F>, 12) (<29,0,H>,  ?) (<29,0,J>, ?) 
          (<30,0,A>, 1) (<30,0,B>, 12) (<30,0,C>, 0) (<30,0,D>, 1) (<30,0,F>, 12) (<30,0,H>,  ?) (<30,0,J>, ?) 
          (<31,0,A>, 1) (<31,0,B>, 12) (<31,0,C>, 1) (<31,0,D>, 1) (<31,0,F>,  ?) (<31,0,H>,  ?) (<31,0,J>, J) 
          (<32,0,A>, 1) (<32,0,B>, 12) (<32,0,C>, 1) (<32,0,D>, 1) (<32,0,F>,  0) (<32,0,H>,  ?) (<32,0,J>, J) 
          (<33,0,A>, 1) (<33,0,B>, 12) (<33,0,C>, 1) (<33,0,D>, 1) (<33,0,F>,  0) (<33,0,H>,  H) (<33,0,J>, J) 
          (<34,0,A>, 1) (<34,0,B>, 12) (<34,0,C>, 1) (<34,0,D>, 1) (<34,0,F>,  0) (<34,0,H>,  H) (<34,0,J>, J) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [28,29,0,1,24,25,26,27,30]
* Step 6: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f0(A,B,C,D,F,H,J)  -> f13(1,12,1,1,0,H,J)    True                       (1,1)
          3.  f13(A,B,C,D,F,H,J) -> f13(A,B,C,D,1 + F,H,J) [B >= 1 + F]               (?,1)
          4.  f19(A,B,C,D,F,H,J) -> f22(A,B,C,D,F,H,J)     [0 >= 1 + C && B >= 1 + F] (?,1)
          5.  f19(A,B,C,D,F,H,J) -> f22(A,B,C,D,F,H,J)     [C >= 1 && B >= 1 + F]     (?,1)
          6.  f22(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J) [M >= 0 && B >= 1 + N]     (?,1)
          7.  f22(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [M >= 0]                   (?,1)
          8.  f22(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [0 >= 1 + M]               (?,1)
          9.  f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [B >= 1 + F && C = 0]      (?,1)
          10. f32(A,B,C,D,F,H,J) -> f35(A,B,C,D,F,1 + F,J) [B >= 2 + F]               (?,1)
          11. f35(A,B,C,D,F,H,J) -> f38(A,B,C,D,F,H,J)     [0 >= 1 + A && B >= 1 + H] (?,1)
          12. f35(A,B,C,D,F,H,J) -> f38(A,B,C,D,F,H,J)     [A >= 1 && B >= 1 + H]     (?,1)
          13. f38(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) [M >= 1 + N]               (?,1)
          14. f38(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) True                       (?,1)
          15. f38(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) True                       (?,1)
          16. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) [B >= 1 + H && A = 0]      (?,1)
          17. f48(A,B,C,D,F,H,J) -> f52(A,B,C,D,F,H,M)     [0 >= 1 + D && B >= 2 + F] (?,1)
          18. f48(A,B,C,D,F,H,J) -> f52(A,B,C,D,F,H,M)     [D >= 1 && B >= 2 + F]     (?,1)
          19. f52(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,J) [0 >= 1 + J]               (?,1)
          20. f52(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,J) [J >= 1]                   (?,1)
          21. f52(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0) [J = 0]                    (?,1)
          22. f52(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,J) True                       (?,1)
          23. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M) [B >= 2 + F && D = 0]      (?,1)
          31. f35(A,B,C,D,F,H,J) -> f32(A,B,C,D,1 + F,H,J) [H >= B]                   (?,1)
          32. f32(A,B,C,D,F,H,J) -> f48(A,B,C,D,0,H,J)     [1 + F >= B]               (?,1)
          33. f19(A,B,C,D,F,H,J) -> f32(A,B,C,D,0,H,J)     [F >= B]                   (?,1)
          34. f13(A,B,C,D,F,H,J) -> f19(A,B,C,D,0,H,J)     [F >= B]                   (?,1)
        Signature:
          {(f0,7);(f13,7);(f19,7);(f22,7);(f32,7);(f35,7);(f38,7);(f48,7);(f52,7);(f62,7);(f63,7);(f71,7)}
        Flow Graph:
          [2->{3},3->{3,34},4->{6,7,8},5->{6,7,8},6->{5,33},7->{9,33},8->{9,33},9->{9,33},10->{11,12,16},11->{13,14
          ,15},12->{13,14,15},13->{12,31},14->{12,31},15->{16,31},16->{16,31},17->{19,20,21,22},18->{19,20,21,22}
          ,19->{18},20->{18},21->{23},22->{23},23->{23},31->{10,32},32->{17,18,23},33->{10,32},34->{4,5,9,33}]
        Sizebounds:
          (< 2,0,A>, 1) (< 2,0,B>, 12) (< 2,0,C>, 1) (< 2,0,D>, 1) (< 2,0,F>,  0) (< 2,0,H>,  H) (< 2,0,J>, J) 
          (< 3,0,A>, 1) (< 3,0,B>, 12) (< 3,0,C>, 1) (< 3,0,D>, 1) (< 3,0,F>, 12) (< 3,0,H>,  H) (< 3,0,J>, J) 
          (< 4,0,A>, 1) (< 4,0,B>, 12) (< 4,0,C>, 1) (< 4,0,D>, 1) (< 4,0,F>, 12) (< 4,0,H>,  H) (< 4,0,J>, J) 
          (< 5,0,A>, 1) (< 5,0,B>, 12) (< 5,0,C>, 1) (< 5,0,D>, 1) (< 5,0,F>, 12) (< 5,0,H>,  H) (< 5,0,J>, J) 
          (< 6,0,A>, 1) (< 6,0,B>, 12) (< 6,0,C>, 1) (< 6,0,D>, 1) (< 6,0,F>, 12) (< 6,0,H>,  H) (< 6,0,J>, J) 
          (< 7,0,A>, 1) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 1) (< 7,0,F>, 12) (< 7,0,H>,  H) (< 7,0,J>, J) 
          (< 8,0,A>, 1) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>, 1) (< 8,0,F>, 12) (< 8,0,H>,  H) (< 8,0,J>, J) 
          (< 9,0,A>, 1) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 1) (< 9,0,F>, 12) (< 9,0,H>,  H) (< 9,0,J>, J) 
          (<10,0,A>, 1) (<10,0,B>, 12) (<10,0,C>, 1) (<10,0,D>, 1) (<10,0,F>, 12) (<10,0,H>,  ?) (<10,0,J>, J) 
          (<11,0,A>, 1) (<11,0,B>, 12) (<11,0,C>, 1) (<11,0,D>, 1) (<11,0,F>,  ?) (<11,0,H>, 12) (<11,0,J>, J) 
          (<12,0,A>, 1) (<12,0,B>, 12) (<12,0,C>, 1) (<12,0,D>, 1) (<12,0,F>,  ?) (<12,0,H>, 12) (<12,0,J>, J) 
          (<13,0,A>, 1) (<13,0,B>, 12) (<13,0,C>, 1) (<13,0,D>, 1) (<13,0,F>,  ?) (<13,0,H>, 12) (<13,0,J>, J) 
          (<14,0,A>, 1) (<14,0,B>, 12) (<14,0,C>, 1) (<14,0,D>, 1) (<14,0,F>,  ?) (<14,0,H>, 12) (<14,0,J>, J) 
          (<15,0,A>, 0) (<15,0,B>, 12) (<15,0,C>, 1) (<15,0,D>, 1) (<15,0,F>,  ?) (<15,0,H>, 12) (<15,0,J>, J) 
          (<16,0,A>, 0) (<16,0,B>, 12) (<16,0,C>, 1) (<16,0,D>, 1) (<16,0,F>,  ?) (<16,0,H>, 12) (<16,0,J>, J) 
          (<17,0,A>, 1) (<17,0,B>, 12) (<17,0,C>, 1) (<17,0,D>, 1) (<17,0,F>, 12) (<17,0,H>,  ?) (<17,0,J>, ?) 
          (<18,0,A>, 1) (<18,0,B>, 12) (<18,0,C>, 1) (<18,0,D>, 1) (<18,0,F>, 12) (<18,0,H>,  ?) (<18,0,J>, ?) 
          (<19,0,A>, 1) (<19,0,B>, 12) (<19,0,C>, 1) (<19,0,D>, 1) (<19,0,F>, 12) (<19,0,H>,  ?) (<19,0,J>, ?) 
          (<20,0,A>, 1) (<20,0,B>, 12) (<20,0,C>, 1) (<20,0,D>, 1) (<20,0,F>, 12) (<20,0,H>,  ?) (<20,0,J>, ?) 
          (<21,0,A>, 1) (<21,0,B>, 12) (<21,0,C>, 1) (<21,0,D>, 0) (<21,0,F>, 12) (<21,0,H>,  ?) (<21,0,J>, 0) 
          (<22,0,A>, 1) (<22,0,B>, 12) (<22,0,C>, 1) (<22,0,D>, 0) (<22,0,F>, 12) (<22,0,H>,  ?) (<22,0,J>, ?) 
          (<23,0,A>, 1) (<23,0,B>, 12) (<23,0,C>, 1) (<23,0,D>, 0) (<23,0,F>, 12) (<23,0,H>,  ?) (<23,0,J>, ?) 
          (<31,0,A>, 1) (<31,0,B>, 12) (<31,0,C>, 1) (<31,0,D>, 1) (<31,0,F>,  ?) (<31,0,H>,  ?) (<31,0,J>, J) 
          (<32,0,A>, 1) (<32,0,B>, 12) (<32,0,C>, 1) (<32,0,D>, 1) (<32,0,F>,  0) (<32,0,H>,  ?) (<32,0,J>, J) 
          (<33,0,A>, 1) (<33,0,B>, 12) (<33,0,C>, 1) (<33,0,D>, 1) (<33,0,F>,  0) (<33,0,H>,  H) (<33,0,J>, J) 
          (<34,0,A>, 1) (<34,0,B>, 12) (<34,0,C>, 1) (<34,0,D>, 1) (<34,0,F>,  0) (<34,0,H>,  H) (<34,0,J>, J) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 1
          p(f13) = 1
          p(f19) = 0
          p(f22) = 0
          p(f32) = 0
          p(f35) = 0
          p(f38) = 0
          p(f48) = 0
          p(f52) = 0
        
        The following rules are strictly oriented:
                    [F >= B] ==>                   
          f13(A,B,C,D,F,H,J)   = 1                 
                               > 0                 
                               = f19(A,B,C,D,0,H,J)
        
        
        The following rules are weakly oriented:
                              True ==>                       
                 f0(A,B,C,D,F,H,J)   = 1                     
                                    >= 1                     
                                     = f13(1,12,1,1,0,H,J)   
        
                      [B >= 1 + F] ==>                       
                f13(A,B,C,D,F,H,J)   = 1                     
                                    >= 1                     
                                     = f13(A,B,C,D,1 + F,H,J)
        
        [0 >= 1 + C && B >= 1 + F] ==>                       
                f19(A,B,C,D,F,H,J)   = 0                     
                                    >= 0                     
                                     = f22(A,B,C,D,F,H,J)    
        
            [C >= 1 && B >= 1 + F] ==>                       
                f19(A,B,C,D,F,H,J)   = 0                     
                                    >= 0                     
                                     = f22(A,B,C,D,F,H,J)    
        
            [M >= 0 && B >= 1 + N] ==>                       
                f22(A,B,C,D,F,H,J)   = 0                     
                                    >= 0                     
                                     = f19(A,B,1,D,1 + F,H,J)
        
                          [M >= 0] ==>                       
                f22(A,B,C,D,F,H,J)   = 0                     
                                    >= 0                     
                                     = f19(A,B,0,D,1 + F,H,J)
        
                      [0 >= 1 + M] ==>                       
                f22(A,B,C,D,F,H,J)   = 0                     
                                    >= 0                     
                                     = f19(A,B,0,D,1 + F,H,J)
        
             [B >= 1 + F && C = 0] ==>                       
                f19(A,B,C,D,F,H,J)   = 0                     
                                    >= 0                     
                                     = f19(A,B,0,D,1 + F,H,J)
        
                      [B >= 2 + F] ==>                       
                f32(A,B,C,D,F,H,J)   = 0                     
                                    >= 0                     
                                     = f35(A,B,C,D,F,1 + F,J)
        
        [0 >= 1 + A && B >= 1 + H] ==>                       
                f35(A,B,C,D,F,H,J)   = 0                     
                                    >= 0                     
                                     = f38(A,B,C,D,F,H,J)    
        
            [A >= 1 && B >= 1 + H] ==>                       
                f35(A,B,C,D,F,H,J)   = 0                     
                                    >= 0                     
                                     = f38(A,B,C,D,F,H,J)    
        
                      [M >= 1 + N] ==>                       
                f38(A,B,C,D,F,H,J)   = 0                     
                                    >= 0                     
                                     = f35(1,B,C,D,F,1 + H,J)
        
                              True ==>                       
                f38(A,B,C,D,F,H,J)   = 0                     
                                    >= 0                     
                                     = f35(1,B,C,D,F,1 + H,J)
        
                              True ==>                       
                f38(A,B,C,D,F,H,J)   = 0                     
                                    >= 0                     
                                     = f35(0,B,C,D,F,1 + H,J)
        
             [B >= 1 + H && A = 0] ==>                       
                f35(A,B,C,D,F,H,J)   = 0                     
                                    >= 0                     
                                     = f35(0,B,C,D,F,1 + H,J)
        
        [0 >= 1 + D && B >= 2 + F] ==>                       
                f48(A,B,C,D,F,H,J)   = 0                     
                                    >= 0                     
                                     = f52(A,B,C,D,F,H,M)    
        
            [D >= 1 && B >= 2 + F] ==>                       
                f48(A,B,C,D,F,H,J)   = 0                     
                                    >= 0                     
                                     = f52(A,B,C,D,F,H,M)    
        
                      [0 >= 1 + J] ==>                       
                f52(A,B,C,D,F,H,J)   = 0                     
                                    >= 0                     
                                     = f48(A,B,C,1,1 + F,H,J)
        
                          [J >= 1] ==>                       
                f52(A,B,C,D,F,H,J)   = 0                     
                                    >= 0                     
                                     = f48(A,B,C,1,1 + F,H,J)
        
                           [J = 0] ==>                       
                f52(A,B,C,D,F,H,J)   = 0                     
                                    >= 0                     
                                     = f48(A,B,C,0,1 + F,H,0)
        
                              True ==>                       
                f52(A,B,C,D,F,H,J)   = 0                     
                                    >= 0                     
                                     = f48(A,B,C,0,1 + F,H,J)
        
             [B >= 2 + F && D = 0] ==>                       
                f48(A,B,C,D,F,H,J)   = 0                     
                                    >= 0                     
                                     = f48(A,B,C,0,1 + F,H,M)
        
                          [H >= B] ==>                       
                f35(A,B,C,D,F,H,J)   = 0                     
                                    >= 0                     
                                     = f32(A,B,C,D,1 + F,H,J)
        
                      [1 + F >= B] ==>                       
                f32(A,B,C,D,F,H,J)   = 0                     
                                    >= 0                     
                                     = f48(A,B,C,D,0,H,J)    
        
                          [F >= B] ==>                       
                f19(A,B,C,D,F,H,J)   = 0                     
                                    >= 0                     
                                     = f32(A,B,C,D,0,H,J)    
        
        
* Step 7: KnowledgePropagation WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f0(A,B,C,D,F,H,J)  -> f13(1,12,1,1,0,H,J)    True                       (1,1)
          3.  f13(A,B,C,D,F,H,J) -> f13(A,B,C,D,1 + F,H,J) [B >= 1 + F]               (?,1)
          4.  f19(A,B,C,D,F,H,J) -> f22(A,B,C,D,F,H,J)     [0 >= 1 + C && B >= 1 + F] (?,1)
          5.  f19(A,B,C,D,F,H,J) -> f22(A,B,C,D,F,H,J)     [C >= 1 && B >= 1 + F]     (?,1)
          6.  f22(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J) [M >= 0 && B >= 1 + N]     (?,1)
          7.  f22(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [M >= 0]                   (?,1)
          8.  f22(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [0 >= 1 + M]               (?,1)
          9.  f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [B >= 1 + F && C = 0]      (?,1)
          10. f32(A,B,C,D,F,H,J) -> f35(A,B,C,D,F,1 + F,J) [B >= 2 + F]               (?,1)
          11. f35(A,B,C,D,F,H,J) -> f38(A,B,C,D,F,H,J)     [0 >= 1 + A && B >= 1 + H] (?,1)
          12. f35(A,B,C,D,F,H,J) -> f38(A,B,C,D,F,H,J)     [A >= 1 && B >= 1 + H]     (?,1)
          13. f38(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) [M >= 1 + N]               (?,1)
          14. f38(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) True                       (?,1)
          15. f38(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) True                       (?,1)
          16. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) [B >= 1 + H && A = 0]      (?,1)
          17. f48(A,B,C,D,F,H,J) -> f52(A,B,C,D,F,H,M)     [0 >= 1 + D && B >= 2 + F] (?,1)
          18. f48(A,B,C,D,F,H,J) -> f52(A,B,C,D,F,H,M)     [D >= 1 && B >= 2 + F]     (?,1)
          19. f52(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,J) [0 >= 1 + J]               (?,1)
          20. f52(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,J) [J >= 1]                   (?,1)
          21. f52(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0) [J = 0]                    (?,1)
          22. f52(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,J) True                       (?,1)
          23. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M) [B >= 2 + F && D = 0]      (?,1)
          31. f35(A,B,C,D,F,H,J) -> f32(A,B,C,D,1 + F,H,J) [H >= B]                   (?,1)
          32. f32(A,B,C,D,F,H,J) -> f48(A,B,C,D,0,H,J)     [1 + F >= B]               (?,1)
          33. f19(A,B,C,D,F,H,J) -> f32(A,B,C,D,0,H,J)     [F >= B]                   (?,1)
          34. f13(A,B,C,D,F,H,J) -> f19(A,B,C,D,0,H,J)     [F >= B]                   (1,1)
        Signature:
          {(f0,7);(f13,7);(f19,7);(f22,7);(f32,7);(f35,7);(f38,7);(f48,7);(f52,7);(f62,7);(f63,7);(f71,7)}
        Flow Graph:
          [2->{3},3->{3,34},4->{6,7,8},5->{6,7,8},6->{5,33},7->{9,33},8->{9,33},9->{9,33},10->{11,12,16},11->{13,14
          ,15},12->{13,14,15},13->{12,31},14->{12,31},15->{16,31},16->{16,31},17->{19,20,21,22},18->{19,20,21,22}
          ,19->{18},20->{18},21->{23},22->{23},23->{23},31->{10,32},32->{17,18,23},33->{10,32},34->{4,5,9,33}]
        Sizebounds:
          (< 2,0,A>, 1) (< 2,0,B>, 12) (< 2,0,C>, 1) (< 2,0,D>, 1) (< 2,0,F>,  0) (< 2,0,H>,  H) (< 2,0,J>, J) 
          (< 3,0,A>, 1) (< 3,0,B>, 12) (< 3,0,C>, 1) (< 3,0,D>, 1) (< 3,0,F>, 12) (< 3,0,H>,  H) (< 3,0,J>, J) 
          (< 4,0,A>, 1) (< 4,0,B>, 12) (< 4,0,C>, 1) (< 4,0,D>, 1) (< 4,0,F>, 12) (< 4,0,H>,  H) (< 4,0,J>, J) 
          (< 5,0,A>, 1) (< 5,0,B>, 12) (< 5,0,C>, 1) (< 5,0,D>, 1) (< 5,0,F>, 12) (< 5,0,H>,  H) (< 5,0,J>, J) 
          (< 6,0,A>, 1) (< 6,0,B>, 12) (< 6,0,C>, 1) (< 6,0,D>, 1) (< 6,0,F>, 12) (< 6,0,H>,  H) (< 6,0,J>, J) 
          (< 7,0,A>, 1) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 1) (< 7,0,F>, 12) (< 7,0,H>,  H) (< 7,0,J>, J) 
          (< 8,0,A>, 1) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>, 1) (< 8,0,F>, 12) (< 8,0,H>,  H) (< 8,0,J>, J) 
          (< 9,0,A>, 1) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 1) (< 9,0,F>, 12) (< 9,0,H>,  H) (< 9,0,J>, J) 
          (<10,0,A>, 1) (<10,0,B>, 12) (<10,0,C>, 1) (<10,0,D>, 1) (<10,0,F>, 12) (<10,0,H>,  ?) (<10,0,J>, J) 
          (<11,0,A>, 1) (<11,0,B>, 12) (<11,0,C>, 1) (<11,0,D>, 1) (<11,0,F>,  ?) (<11,0,H>, 12) (<11,0,J>, J) 
          (<12,0,A>, 1) (<12,0,B>, 12) (<12,0,C>, 1) (<12,0,D>, 1) (<12,0,F>,  ?) (<12,0,H>, 12) (<12,0,J>, J) 
          (<13,0,A>, 1) (<13,0,B>, 12) (<13,0,C>, 1) (<13,0,D>, 1) (<13,0,F>,  ?) (<13,0,H>, 12) (<13,0,J>, J) 
          (<14,0,A>, 1) (<14,0,B>, 12) (<14,0,C>, 1) (<14,0,D>, 1) (<14,0,F>,  ?) (<14,0,H>, 12) (<14,0,J>, J) 
          (<15,0,A>, 0) (<15,0,B>, 12) (<15,0,C>, 1) (<15,0,D>, 1) (<15,0,F>,  ?) (<15,0,H>, 12) (<15,0,J>, J) 
          (<16,0,A>, 0) (<16,0,B>, 12) (<16,0,C>, 1) (<16,0,D>, 1) (<16,0,F>,  ?) (<16,0,H>, 12) (<16,0,J>, J) 
          (<17,0,A>, 1) (<17,0,B>, 12) (<17,0,C>, 1) (<17,0,D>, 1) (<17,0,F>, 12) (<17,0,H>,  ?) (<17,0,J>, ?) 
          (<18,0,A>, 1) (<18,0,B>, 12) (<18,0,C>, 1) (<18,0,D>, 1) (<18,0,F>, 12) (<18,0,H>,  ?) (<18,0,J>, ?) 
          (<19,0,A>, 1) (<19,0,B>, 12) (<19,0,C>, 1) (<19,0,D>, 1) (<19,0,F>, 12) (<19,0,H>,  ?) (<19,0,J>, ?) 
          (<20,0,A>, 1) (<20,0,B>, 12) (<20,0,C>, 1) (<20,0,D>, 1) (<20,0,F>, 12) (<20,0,H>,  ?) (<20,0,J>, ?) 
          (<21,0,A>, 1) (<21,0,B>, 12) (<21,0,C>, 1) (<21,0,D>, 0) (<21,0,F>, 12) (<21,0,H>,  ?) (<21,0,J>, 0) 
          (<22,0,A>, 1) (<22,0,B>, 12) (<22,0,C>, 1) (<22,0,D>, 0) (<22,0,F>, 12) (<22,0,H>,  ?) (<22,0,J>, ?) 
          (<23,0,A>, 1) (<23,0,B>, 12) (<23,0,C>, 1) (<23,0,D>, 0) (<23,0,F>, 12) (<23,0,H>,  ?) (<23,0,J>, ?) 
          (<31,0,A>, 1) (<31,0,B>, 12) (<31,0,C>, 1) (<31,0,D>, 1) (<31,0,F>,  ?) (<31,0,H>,  ?) (<31,0,J>, J) 
          (<32,0,A>, 1) (<32,0,B>, 12) (<32,0,C>, 1) (<32,0,D>, 1) (<32,0,F>,  0) (<32,0,H>,  ?) (<32,0,J>, J) 
          (<33,0,A>, 1) (<33,0,B>, 12) (<33,0,C>, 1) (<33,0,D>, 1) (<33,0,F>,  0) (<33,0,H>,  H) (<33,0,J>, J) 
          (<34,0,A>, 1) (<34,0,B>, 12) (<34,0,C>, 1) (<34,0,D>, 1) (<34,0,F>,  0) (<34,0,H>,  H) (<34,0,J>, J) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 8: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f0(A,B,C,D,F,H,J)  -> f13(1,12,1,1,0,H,J)    True                       (1,1)
          3.  f13(A,B,C,D,F,H,J) -> f13(A,B,C,D,1 + F,H,J) [B >= 1 + F]               (?,1)
          4.  f19(A,B,C,D,F,H,J) -> f22(A,B,C,D,F,H,J)     [0 >= 1 + C && B >= 1 + F] (1,1)
          5.  f19(A,B,C,D,F,H,J) -> f22(A,B,C,D,F,H,J)     [C >= 1 && B >= 1 + F]     (?,1)
          6.  f22(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J) [M >= 0 && B >= 1 + N]     (?,1)
          7.  f22(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [M >= 0]                   (?,1)
          8.  f22(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [0 >= 1 + M]               (?,1)
          9.  f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [B >= 1 + F && C = 0]      (?,1)
          10. f32(A,B,C,D,F,H,J) -> f35(A,B,C,D,F,1 + F,J) [B >= 2 + F]               (?,1)
          11. f35(A,B,C,D,F,H,J) -> f38(A,B,C,D,F,H,J)     [0 >= 1 + A && B >= 1 + H] (?,1)
          12. f35(A,B,C,D,F,H,J) -> f38(A,B,C,D,F,H,J)     [A >= 1 && B >= 1 + H]     (?,1)
          13. f38(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) [M >= 1 + N]               (?,1)
          14. f38(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) True                       (?,1)
          15. f38(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) True                       (?,1)
          16. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) [B >= 1 + H && A = 0]      (?,1)
          17. f48(A,B,C,D,F,H,J) -> f52(A,B,C,D,F,H,M)     [0 >= 1 + D && B >= 2 + F] (?,1)
          18. f48(A,B,C,D,F,H,J) -> f52(A,B,C,D,F,H,M)     [D >= 1 && B >= 2 + F]     (?,1)
          19. f52(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,J) [0 >= 1 + J]               (?,1)
          20. f52(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,J) [J >= 1]                   (?,1)
          21. f52(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0) [J = 0]                    (?,1)
          22. f52(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,J) True                       (?,1)
          23. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M) [B >= 2 + F && D = 0]      (?,1)
          31. f35(A,B,C,D,F,H,J) -> f32(A,B,C,D,1 + F,H,J) [H >= B]                   (?,1)
          32. f32(A,B,C,D,F,H,J) -> f48(A,B,C,D,0,H,J)     [1 + F >= B]               (?,1)
          33. f19(A,B,C,D,F,H,J) -> f32(A,B,C,D,0,H,J)     [F >= B]                   (?,1)
          34. f13(A,B,C,D,F,H,J) -> f19(A,B,C,D,0,H,J)     [F >= B]                   (1,1)
        Signature:
          {(f0,7);(f13,7);(f19,7);(f22,7);(f32,7);(f35,7);(f38,7);(f48,7);(f52,7);(f62,7);(f63,7);(f71,7)}
        Flow Graph:
          [2->{3},3->{3,34},4->{6,7,8},5->{6,7,8},6->{5,33},7->{9,33},8->{9,33},9->{9,33},10->{11,12,16},11->{13,14
          ,15},12->{13,14,15},13->{12,31},14->{12,31},15->{16,31},16->{16,31},17->{19,20,21,22},18->{19,20,21,22}
          ,19->{18},20->{18},21->{23},22->{23},23->{23},31->{10,32},32->{17,18,23},33->{10,32},34->{4,5,9,33}]
        Sizebounds:
          (< 2,0,A>, 1) (< 2,0,B>, 12) (< 2,0,C>, 1) (< 2,0,D>, 1) (< 2,0,F>,  0) (< 2,0,H>,  H) (< 2,0,J>, J) 
          (< 3,0,A>, 1) (< 3,0,B>, 12) (< 3,0,C>, 1) (< 3,0,D>, 1) (< 3,0,F>, 12) (< 3,0,H>,  H) (< 3,0,J>, J) 
          (< 4,0,A>, 1) (< 4,0,B>, 12) (< 4,0,C>, 1) (< 4,0,D>, 1) (< 4,0,F>, 12) (< 4,0,H>,  H) (< 4,0,J>, J) 
          (< 5,0,A>, 1) (< 5,0,B>, 12) (< 5,0,C>, 1) (< 5,0,D>, 1) (< 5,0,F>, 12) (< 5,0,H>,  H) (< 5,0,J>, J) 
          (< 6,0,A>, 1) (< 6,0,B>, 12) (< 6,0,C>, 1) (< 6,0,D>, 1) (< 6,0,F>, 12) (< 6,0,H>,  H) (< 6,0,J>, J) 
          (< 7,0,A>, 1) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 1) (< 7,0,F>, 12) (< 7,0,H>,  H) (< 7,0,J>, J) 
          (< 8,0,A>, 1) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>, 1) (< 8,0,F>, 12) (< 8,0,H>,  H) (< 8,0,J>, J) 
          (< 9,0,A>, 1) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 1) (< 9,0,F>, 12) (< 9,0,H>,  H) (< 9,0,J>, J) 
          (<10,0,A>, 1) (<10,0,B>, 12) (<10,0,C>, 1) (<10,0,D>, 1) (<10,0,F>, 12) (<10,0,H>,  ?) (<10,0,J>, J) 
          (<11,0,A>, 1) (<11,0,B>, 12) (<11,0,C>, 1) (<11,0,D>, 1) (<11,0,F>,  ?) (<11,0,H>, 12) (<11,0,J>, J) 
          (<12,0,A>, 1) (<12,0,B>, 12) (<12,0,C>, 1) (<12,0,D>, 1) (<12,0,F>,  ?) (<12,0,H>, 12) (<12,0,J>, J) 
          (<13,0,A>, 1) (<13,0,B>, 12) (<13,0,C>, 1) (<13,0,D>, 1) (<13,0,F>,  ?) (<13,0,H>, 12) (<13,0,J>, J) 
          (<14,0,A>, 1) (<14,0,B>, 12) (<14,0,C>, 1) (<14,0,D>, 1) (<14,0,F>,  ?) (<14,0,H>, 12) (<14,0,J>, J) 
          (<15,0,A>, 0) (<15,0,B>, 12) (<15,0,C>, 1) (<15,0,D>, 1) (<15,0,F>,  ?) (<15,0,H>, 12) (<15,0,J>, J) 
          (<16,0,A>, 0) (<16,0,B>, 12) (<16,0,C>, 1) (<16,0,D>, 1) (<16,0,F>,  ?) (<16,0,H>, 12) (<16,0,J>, J) 
          (<17,0,A>, 1) (<17,0,B>, 12) (<17,0,C>, 1) (<17,0,D>, 1) (<17,0,F>, 12) (<17,0,H>,  ?) (<17,0,J>, ?) 
          (<18,0,A>, 1) (<18,0,B>, 12) (<18,0,C>, 1) (<18,0,D>, 1) (<18,0,F>, 12) (<18,0,H>,  ?) (<18,0,J>, ?) 
          (<19,0,A>, 1) (<19,0,B>, 12) (<19,0,C>, 1) (<19,0,D>, 1) (<19,0,F>, 12) (<19,0,H>,  ?) (<19,0,J>, ?) 
          (<20,0,A>, 1) (<20,0,B>, 12) (<20,0,C>, 1) (<20,0,D>, 1) (<20,0,F>, 12) (<20,0,H>,  ?) (<20,0,J>, ?) 
          (<21,0,A>, 1) (<21,0,B>, 12) (<21,0,C>, 1) (<21,0,D>, 0) (<21,0,F>, 12) (<21,0,H>,  ?) (<21,0,J>, 0) 
          (<22,0,A>, 1) (<22,0,B>, 12) (<22,0,C>, 1) (<22,0,D>, 0) (<22,0,F>, 12) (<22,0,H>,  ?) (<22,0,J>, ?) 
          (<23,0,A>, 1) (<23,0,B>, 12) (<23,0,C>, 1) (<23,0,D>, 0) (<23,0,F>, 12) (<23,0,H>,  ?) (<23,0,J>, ?) 
          (<31,0,A>, 1) (<31,0,B>, 12) (<31,0,C>, 1) (<31,0,D>, 1) (<31,0,F>,  ?) (<31,0,H>,  ?) (<31,0,J>, J) 
          (<32,0,A>, 1) (<32,0,B>, 12) (<32,0,C>, 1) (<32,0,D>, 1) (<32,0,F>,  0) (<32,0,H>,  ?) (<32,0,J>, J) 
          (<33,0,A>, 1) (<33,0,B>, 12) (<33,0,C>, 1) (<33,0,D>, 1) (<33,0,F>,  0) (<33,0,H>,  H) (<33,0,J>, J) 
          (<34,0,A>, 1) (<34,0,B>, 12) (<34,0,C>, 1) (<34,0,D>, 1) (<34,0,F>,  0) (<34,0,H>,  H) (<34,0,J>, J) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 1
          p(f13) = 1
          p(f19) = 1
          p(f22) = 1
          p(f32) = 1
          p(f35) = 1
          p(f38) = 1
          p(f48) = 0
          p(f52) = 0
        
        The following rules are strictly oriented:
                [1 + F >= B] ==>                   
          f32(A,B,C,D,F,H,J)   = 1                 
                               > 0                 
                               = f48(A,B,C,D,0,H,J)
        
        
        The following rules are weakly oriented:
                              True ==>                       
                 f0(A,B,C,D,F,H,J)   = 1                     
                                    >= 1                     
                                     = f13(1,12,1,1,0,H,J)   
        
                      [B >= 1 + F] ==>                       
                f13(A,B,C,D,F,H,J)   = 1                     
                                    >= 1                     
                                     = f13(A,B,C,D,1 + F,H,J)
        
        [0 >= 1 + C && B >= 1 + F] ==>                       
                f19(A,B,C,D,F,H,J)   = 1                     
                                    >= 1                     
                                     = f22(A,B,C,D,F,H,J)    
        
            [C >= 1 && B >= 1 + F] ==>                       
                f19(A,B,C,D,F,H,J)   = 1                     
                                    >= 1                     
                                     = f22(A,B,C,D,F,H,J)    
        
            [M >= 0 && B >= 1 + N] ==>                       
                f22(A,B,C,D,F,H,J)   = 1                     
                                    >= 1                     
                                     = f19(A,B,1,D,1 + F,H,J)
        
                          [M >= 0] ==>                       
                f22(A,B,C,D,F,H,J)   = 1                     
                                    >= 1                     
                                     = f19(A,B,0,D,1 + F,H,J)
        
                      [0 >= 1 + M] ==>                       
                f22(A,B,C,D,F,H,J)   = 1                     
                                    >= 1                     
                                     = f19(A,B,0,D,1 + F,H,J)
        
             [B >= 1 + F && C = 0] ==>                       
                f19(A,B,C,D,F,H,J)   = 1                     
                                    >= 1                     
                                     = f19(A,B,0,D,1 + F,H,J)
        
                      [B >= 2 + F] ==>                       
                f32(A,B,C,D,F,H,J)   = 1                     
                                    >= 1                     
                                     = f35(A,B,C,D,F,1 + F,J)
        
        [0 >= 1 + A && B >= 1 + H] ==>                       
                f35(A,B,C,D,F,H,J)   = 1                     
                                    >= 1                     
                                     = f38(A,B,C,D,F,H,J)    
        
            [A >= 1 && B >= 1 + H] ==>                       
                f35(A,B,C,D,F,H,J)   = 1                     
                                    >= 1                     
                                     = f38(A,B,C,D,F,H,J)    
        
                      [M >= 1 + N] ==>                       
                f38(A,B,C,D,F,H,J)   = 1                     
                                    >= 1                     
                                     = f35(1,B,C,D,F,1 + H,J)
        
                              True ==>                       
                f38(A,B,C,D,F,H,J)   = 1                     
                                    >= 1                     
                                     = f35(1,B,C,D,F,1 + H,J)
        
                              True ==>                       
                f38(A,B,C,D,F,H,J)   = 1                     
                                    >= 1                     
                                     = f35(0,B,C,D,F,1 + H,J)
        
             [B >= 1 + H && A = 0] ==>                       
                f35(A,B,C,D,F,H,J)   = 1                     
                                    >= 1                     
                                     = f35(0,B,C,D,F,1 + H,J)
        
        [0 >= 1 + D && B >= 2 + F] ==>                       
                f48(A,B,C,D,F,H,J)   = 0                     
                                    >= 0                     
                                     = f52(A,B,C,D,F,H,M)    
        
            [D >= 1 && B >= 2 + F] ==>                       
                f48(A,B,C,D,F,H,J)   = 0                     
                                    >= 0                     
                                     = f52(A,B,C,D,F,H,M)    
        
                      [0 >= 1 + J] ==>                       
                f52(A,B,C,D,F,H,J)   = 0                     
                                    >= 0                     
                                     = f48(A,B,C,1,1 + F,H,J)
        
                          [J >= 1] ==>                       
                f52(A,B,C,D,F,H,J)   = 0                     
                                    >= 0                     
                                     = f48(A,B,C,1,1 + F,H,J)
        
                           [J = 0] ==>                       
                f52(A,B,C,D,F,H,J)   = 0                     
                                    >= 0                     
                                     = f48(A,B,C,0,1 + F,H,0)
        
                              True ==>                       
                f52(A,B,C,D,F,H,J)   = 0                     
                                    >= 0                     
                                     = f48(A,B,C,0,1 + F,H,J)
        
             [B >= 2 + F && D = 0] ==>                       
                f48(A,B,C,D,F,H,J)   = 0                     
                                    >= 0                     
                                     = f48(A,B,C,0,1 + F,H,M)
        
                          [H >= B] ==>                       
                f35(A,B,C,D,F,H,J)   = 1                     
                                    >= 1                     
                                     = f32(A,B,C,D,1 + F,H,J)
        
                          [F >= B] ==>                       
                f19(A,B,C,D,F,H,J)   = 1                     
                                    >= 1                     
                                     = f32(A,B,C,D,0,H,J)    
        
                          [F >= B] ==>                       
                f13(A,B,C,D,F,H,J)   = 1                     
                                    >= 1                     
                                     = f19(A,B,C,D,0,H,J)    
        
        
* Step 9: KnowledgePropagation WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f0(A,B,C,D,F,H,J)  -> f13(1,12,1,1,0,H,J)    True                       (1,1)
          3.  f13(A,B,C,D,F,H,J) -> f13(A,B,C,D,1 + F,H,J) [B >= 1 + F]               (?,1)
          4.  f19(A,B,C,D,F,H,J) -> f22(A,B,C,D,F,H,J)     [0 >= 1 + C && B >= 1 + F] (1,1)
          5.  f19(A,B,C,D,F,H,J) -> f22(A,B,C,D,F,H,J)     [C >= 1 && B >= 1 + F]     (?,1)
          6.  f22(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J) [M >= 0 && B >= 1 + N]     (?,1)
          7.  f22(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [M >= 0]                   (?,1)
          8.  f22(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [0 >= 1 + M]               (?,1)
          9.  f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [B >= 1 + F && C = 0]      (?,1)
          10. f32(A,B,C,D,F,H,J) -> f35(A,B,C,D,F,1 + F,J) [B >= 2 + F]               (?,1)
          11. f35(A,B,C,D,F,H,J) -> f38(A,B,C,D,F,H,J)     [0 >= 1 + A && B >= 1 + H] (?,1)
          12. f35(A,B,C,D,F,H,J) -> f38(A,B,C,D,F,H,J)     [A >= 1 && B >= 1 + H]     (?,1)
          13. f38(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) [M >= 1 + N]               (?,1)
          14. f38(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) True                       (?,1)
          15. f38(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) True                       (?,1)
          16. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) [B >= 1 + H && A = 0]      (?,1)
          17. f48(A,B,C,D,F,H,J) -> f52(A,B,C,D,F,H,M)     [0 >= 1 + D && B >= 2 + F] (?,1)
          18. f48(A,B,C,D,F,H,J) -> f52(A,B,C,D,F,H,M)     [D >= 1 && B >= 2 + F]     (?,1)
          19. f52(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,J) [0 >= 1 + J]               (?,1)
          20. f52(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,J) [J >= 1]                   (?,1)
          21. f52(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0) [J = 0]                    (?,1)
          22. f52(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,J) True                       (?,1)
          23. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M) [B >= 2 + F && D = 0]      (?,1)
          31. f35(A,B,C,D,F,H,J) -> f32(A,B,C,D,1 + F,H,J) [H >= B]                   (?,1)
          32. f32(A,B,C,D,F,H,J) -> f48(A,B,C,D,0,H,J)     [1 + F >= B]               (1,1)
          33. f19(A,B,C,D,F,H,J) -> f32(A,B,C,D,0,H,J)     [F >= B]                   (?,1)
          34. f13(A,B,C,D,F,H,J) -> f19(A,B,C,D,0,H,J)     [F >= B]                   (1,1)
        Signature:
          {(f0,7);(f13,7);(f19,7);(f22,7);(f32,7);(f35,7);(f38,7);(f48,7);(f52,7);(f62,7);(f63,7);(f71,7)}
        Flow Graph:
          [2->{3},3->{3,34},4->{6,7,8},5->{6,7,8},6->{5,33},7->{9,33},8->{9,33},9->{9,33},10->{11,12,16},11->{13,14
          ,15},12->{13,14,15},13->{12,31},14->{12,31},15->{16,31},16->{16,31},17->{19,20,21,22},18->{19,20,21,22}
          ,19->{18},20->{18},21->{23},22->{23},23->{23},31->{10,32},32->{17,18,23},33->{10,32},34->{4,5,9,33}]
        Sizebounds:
          (< 2,0,A>, 1) (< 2,0,B>, 12) (< 2,0,C>, 1) (< 2,0,D>, 1) (< 2,0,F>,  0) (< 2,0,H>,  H) (< 2,0,J>, J) 
          (< 3,0,A>, 1) (< 3,0,B>, 12) (< 3,0,C>, 1) (< 3,0,D>, 1) (< 3,0,F>, 12) (< 3,0,H>,  H) (< 3,0,J>, J) 
          (< 4,0,A>, 1) (< 4,0,B>, 12) (< 4,0,C>, 1) (< 4,0,D>, 1) (< 4,0,F>, 12) (< 4,0,H>,  H) (< 4,0,J>, J) 
          (< 5,0,A>, 1) (< 5,0,B>, 12) (< 5,0,C>, 1) (< 5,0,D>, 1) (< 5,0,F>, 12) (< 5,0,H>,  H) (< 5,0,J>, J) 
          (< 6,0,A>, 1) (< 6,0,B>, 12) (< 6,0,C>, 1) (< 6,0,D>, 1) (< 6,0,F>, 12) (< 6,0,H>,  H) (< 6,0,J>, J) 
          (< 7,0,A>, 1) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 1) (< 7,0,F>, 12) (< 7,0,H>,  H) (< 7,0,J>, J) 
          (< 8,0,A>, 1) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>, 1) (< 8,0,F>, 12) (< 8,0,H>,  H) (< 8,0,J>, J) 
          (< 9,0,A>, 1) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 1) (< 9,0,F>, 12) (< 9,0,H>,  H) (< 9,0,J>, J) 
          (<10,0,A>, 1) (<10,0,B>, 12) (<10,0,C>, 1) (<10,0,D>, 1) (<10,0,F>, 12) (<10,0,H>,  ?) (<10,0,J>, J) 
          (<11,0,A>, 1) (<11,0,B>, 12) (<11,0,C>, 1) (<11,0,D>, 1) (<11,0,F>,  ?) (<11,0,H>, 12) (<11,0,J>, J) 
          (<12,0,A>, 1) (<12,0,B>, 12) (<12,0,C>, 1) (<12,0,D>, 1) (<12,0,F>,  ?) (<12,0,H>, 12) (<12,0,J>, J) 
          (<13,0,A>, 1) (<13,0,B>, 12) (<13,0,C>, 1) (<13,0,D>, 1) (<13,0,F>,  ?) (<13,0,H>, 12) (<13,0,J>, J) 
          (<14,0,A>, 1) (<14,0,B>, 12) (<14,0,C>, 1) (<14,0,D>, 1) (<14,0,F>,  ?) (<14,0,H>, 12) (<14,0,J>, J) 
          (<15,0,A>, 0) (<15,0,B>, 12) (<15,0,C>, 1) (<15,0,D>, 1) (<15,0,F>,  ?) (<15,0,H>, 12) (<15,0,J>, J) 
          (<16,0,A>, 0) (<16,0,B>, 12) (<16,0,C>, 1) (<16,0,D>, 1) (<16,0,F>,  ?) (<16,0,H>, 12) (<16,0,J>, J) 
          (<17,0,A>, 1) (<17,0,B>, 12) (<17,0,C>, 1) (<17,0,D>, 1) (<17,0,F>, 12) (<17,0,H>,  ?) (<17,0,J>, ?) 
          (<18,0,A>, 1) (<18,0,B>, 12) (<18,0,C>, 1) (<18,0,D>, 1) (<18,0,F>, 12) (<18,0,H>,  ?) (<18,0,J>, ?) 
          (<19,0,A>, 1) (<19,0,B>, 12) (<19,0,C>, 1) (<19,0,D>, 1) (<19,0,F>, 12) (<19,0,H>,  ?) (<19,0,J>, ?) 
          (<20,0,A>, 1) (<20,0,B>, 12) (<20,0,C>, 1) (<20,0,D>, 1) (<20,0,F>, 12) (<20,0,H>,  ?) (<20,0,J>, ?) 
          (<21,0,A>, 1) (<21,0,B>, 12) (<21,0,C>, 1) (<21,0,D>, 0) (<21,0,F>, 12) (<21,0,H>,  ?) (<21,0,J>, 0) 
          (<22,0,A>, 1) (<22,0,B>, 12) (<22,0,C>, 1) (<22,0,D>, 0) (<22,0,F>, 12) (<22,0,H>,  ?) (<22,0,J>, ?) 
          (<23,0,A>, 1) (<23,0,B>, 12) (<23,0,C>, 1) (<23,0,D>, 0) (<23,0,F>, 12) (<23,0,H>,  ?) (<23,0,J>, ?) 
          (<31,0,A>, 1) (<31,0,B>, 12) (<31,0,C>, 1) (<31,0,D>, 1) (<31,0,F>,  ?) (<31,0,H>,  ?) (<31,0,J>, J) 
          (<32,0,A>, 1) (<32,0,B>, 12) (<32,0,C>, 1) (<32,0,D>, 1) (<32,0,F>,  0) (<32,0,H>,  ?) (<32,0,J>, J) 
          (<33,0,A>, 1) (<33,0,B>, 12) (<33,0,C>, 1) (<33,0,D>, 1) (<33,0,F>,  0) (<33,0,H>,  H) (<33,0,J>, J) 
          (<34,0,A>, 1) (<34,0,B>, 12) (<34,0,C>, 1) (<34,0,D>, 1) (<34,0,F>,  0) (<34,0,H>,  H) (<34,0,J>, J) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 10: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f0(A,B,C,D,F,H,J)  -> f13(1,12,1,1,0,H,J)    True                       (1,1)
          3.  f13(A,B,C,D,F,H,J) -> f13(A,B,C,D,1 + F,H,J) [B >= 1 + F]               (?,1)
          4.  f19(A,B,C,D,F,H,J) -> f22(A,B,C,D,F,H,J)     [0 >= 1 + C && B >= 1 + F] (1,1)
          5.  f19(A,B,C,D,F,H,J) -> f22(A,B,C,D,F,H,J)     [C >= 1 && B >= 1 + F]     (?,1)
          6.  f22(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J) [M >= 0 && B >= 1 + N]     (?,1)
          7.  f22(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [M >= 0]                   (?,1)
          8.  f22(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [0 >= 1 + M]               (?,1)
          9.  f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [B >= 1 + F && C = 0]      (?,1)
          10. f32(A,B,C,D,F,H,J) -> f35(A,B,C,D,F,1 + F,J) [B >= 2 + F]               (?,1)
          11. f35(A,B,C,D,F,H,J) -> f38(A,B,C,D,F,H,J)     [0 >= 1 + A && B >= 1 + H] (?,1)
          12. f35(A,B,C,D,F,H,J) -> f38(A,B,C,D,F,H,J)     [A >= 1 && B >= 1 + H]     (?,1)
          13. f38(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) [M >= 1 + N]               (?,1)
          14. f38(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) True                       (?,1)
          15. f38(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) True                       (?,1)
          16. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) [B >= 1 + H && A = 0]      (?,1)
          17. f48(A,B,C,D,F,H,J) -> f52(A,B,C,D,F,H,M)     [0 >= 1 + D && B >= 2 + F] (1,1)
          18. f48(A,B,C,D,F,H,J) -> f52(A,B,C,D,F,H,M)     [D >= 1 && B >= 2 + F]     (?,1)
          19. f52(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,J) [0 >= 1 + J]               (?,1)
          20. f52(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,J) [J >= 1]                   (?,1)
          21. f52(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0) [J = 0]                    (?,1)
          22. f52(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,J) True                       (?,1)
          23. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M) [B >= 2 + F && D = 0]      (?,1)
          31. f35(A,B,C,D,F,H,J) -> f32(A,B,C,D,1 + F,H,J) [H >= B]                   (?,1)
          32. f32(A,B,C,D,F,H,J) -> f48(A,B,C,D,0,H,J)     [1 + F >= B]               (1,1)
          33. f19(A,B,C,D,F,H,J) -> f32(A,B,C,D,0,H,J)     [F >= B]                   (?,1)
          34. f13(A,B,C,D,F,H,J) -> f19(A,B,C,D,0,H,J)     [F >= B]                   (1,1)
        Signature:
          {(f0,7);(f13,7);(f19,7);(f22,7);(f32,7);(f35,7);(f38,7);(f48,7);(f52,7);(f62,7);(f63,7);(f71,7)}
        Flow Graph:
          [2->{3},3->{3,34},4->{6,7,8},5->{6,7,8},6->{5,33},7->{9,33},8->{9,33},9->{9,33},10->{11,12,16},11->{13,14
          ,15},12->{13,14,15},13->{12,31},14->{12,31},15->{16,31},16->{16,31},17->{19,20,21,22},18->{19,20,21,22}
          ,19->{18},20->{18},21->{23},22->{23},23->{23},31->{10,32},32->{17,18,23},33->{10,32},34->{4,5,9,33}]
        Sizebounds:
          (< 2,0,A>, 1) (< 2,0,B>, 12) (< 2,0,C>, 1) (< 2,0,D>, 1) (< 2,0,F>,  0) (< 2,0,H>,  H) (< 2,0,J>, J) 
          (< 3,0,A>, 1) (< 3,0,B>, 12) (< 3,0,C>, 1) (< 3,0,D>, 1) (< 3,0,F>, 12) (< 3,0,H>,  H) (< 3,0,J>, J) 
          (< 4,0,A>, 1) (< 4,0,B>, 12) (< 4,0,C>, 1) (< 4,0,D>, 1) (< 4,0,F>, 12) (< 4,0,H>,  H) (< 4,0,J>, J) 
          (< 5,0,A>, 1) (< 5,0,B>, 12) (< 5,0,C>, 1) (< 5,0,D>, 1) (< 5,0,F>, 12) (< 5,0,H>,  H) (< 5,0,J>, J) 
          (< 6,0,A>, 1) (< 6,0,B>, 12) (< 6,0,C>, 1) (< 6,0,D>, 1) (< 6,0,F>, 12) (< 6,0,H>,  H) (< 6,0,J>, J) 
          (< 7,0,A>, 1) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 1) (< 7,0,F>, 12) (< 7,0,H>,  H) (< 7,0,J>, J) 
          (< 8,0,A>, 1) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>, 1) (< 8,0,F>, 12) (< 8,0,H>,  H) (< 8,0,J>, J) 
          (< 9,0,A>, 1) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 1) (< 9,0,F>, 12) (< 9,0,H>,  H) (< 9,0,J>, J) 
          (<10,0,A>, 1) (<10,0,B>, 12) (<10,0,C>, 1) (<10,0,D>, 1) (<10,0,F>, 12) (<10,0,H>,  ?) (<10,0,J>, J) 
          (<11,0,A>, 1) (<11,0,B>, 12) (<11,0,C>, 1) (<11,0,D>, 1) (<11,0,F>,  ?) (<11,0,H>, 12) (<11,0,J>, J) 
          (<12,0,A>, 1) (<12,0,B>, 12) (<12,0,C>, 1) (<12,0,D>, 1) (<12,0,F>,  ?) (<12,0,H>, 12) (<12,0,J>, J) 
          (<13,0,A>, 1) (<13,0,B>, 12) (<13,0,C>, 1) (<13,0,D>, 1) (<13,0,F>,  ?) (<13,0,H>, 12) (<13,0,J>, J) 
          (<14,0,A>, 1) (<14,0,B>, 12) (<14,0,C>, 1) (<14,0,D>, 1) (<14,0,F>,  ?) (<14,0,H>, 12) (<14,0,J>, J) 
          (<15,0,A>, 0) (<15,0,B>, 12) (<15,0,C>, 1) (<15,0,D>, 1) (<15,0,F>,  ?) (<15,0,H>, 12) (<15,0,J>, J) 
          (<16,0,A>, 0) (<16,0,B>, 12) (<16,0,C>, 1) (<16,0,D>, 1) (<16,0,F>,  ?) (<16,0,H>, 12) (<16,0,J>, J) 
          (<17,0,A>, 1) (<17,0,B>, 12) (<17,0,C>, 1) (<17,0,D>, 1) (<17,0,F>, 12) (<17,0,H>,  ?) (<17,0,J>, ?) 
          (<18,0,A>, 1) (<18,0,B>, 12) (<18,0,C>, 1) (<18,0,D>, 1) (<18,0,F>, 12) (<18,0,H>,  ?) (<18,0,J>, ?) 
          (<19,0,A>, 1) (<19,0,B>, 12) (<19,0,C>, 1) (<19,0,D>, 1) (<19,0,F>, 12) (<19,0,H>,  ?) (<19,0,J>, ?) 
          (<20,0,A>, 1) (<20,0,B>, 12) (<20,0,C>, 1) (<20,0,D>, 1) (<20,0,F>, 12) (<20,0,H>,  ?) (<20,0,J>, ?) 
          (<21,0,A>, 1) (<21,0,B>, 12) (<21,0,C>, 1) (<21,0,D>, 0) (<21,0,F>, 12) (<21,0,H>,  ?) (<21,0,J>, 0) 
          (<22,0,A>, 1) (<22,0,B>, 12) (<22,0,C>, 1) (<22,0,D>, 0) (<22,0,F>, 12) (<22,0,H>,  ?) (<22,0,J>, ?) 
          (<23,0,A>, 1) (<23,0,B>, 12) (<23,0,C>, 1) (<23,0,D>, 0) (<23,0,F>, 12) (<23,0,H>,  ?) (<23,0,J>, ?) 
          (<31,0,A>, 1) (<31,0,B>, 12) (<31,0,C>, 1) (<31,0,D>, 1) (<31,0,F>,  ?) (<31,0,H>,  ?) (<31,0,J>, J) 
          (<32,0,A>, 1) (<32,0,B>, 12) (<32,0,C>, 1) (<32,0,D>, 1) (<32,0,F>,  0) (<32,0,H>,  ?) (<32,0,J>, J) 
          (<33,0,A>, 1) (<33,0,B>, 12) (<33,0,C>, 1) (<33,0,D>, 1) (<33,0,F>,  0) (<33,0,H>,  H) (<33,0,J>, J) 
          (<34,0,A>, 1) (<34,0,B>, 12) (<34,0,C>, 1) (<34,0,D>, 1) (<34,0,F>,  0) (<34,0,H>,  H) (<34,0,J>, J) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 2
          p(f13) = 2
          p(f19) = 2
          p(f22) = 2
          p(f32) = 1
          p(f35) = 1
          p(f38) = 1
          p(f48) = 1
          p(f52) = 1
        
        The following rules are strictly oriented:
                    [F >= B] ==>                   
          f19(A,B,C,D,F,H,J)   = 2                 
                               > 1                 
                               = f32(A,B,C,D,0,H,J)
        
        
        The following rules are weakly oriented:
                              True ==>                       
                 f0(A,B,C,D,F,H,J)   = 2                     
                                    >= 2                     
                                     = f13(1,12,1,1,0,H,J)   
        
                      [B >= 1 + F] ==>                       
                f13(A,B,C,D,F,H,J)   = 2                     
                                    >= 2                     
                                     = f13(A,B,C,D,1 + F,H,J)
        
        [0 >= 1 + C && B >= 1 + F] ==>                       
                f19(A,B,C,D,F,H,J)   = 2                     
                                    >= 2                     
                                     = f22(A,B,C,D,F,H,J)    
        
            [C >= 1 && B >= 1 + F] ==>                       
                f19(A,B,C,D,F,H,J)   = 2                     
                                    >= 2                     
                                     = f22(A,B,C,D,F,H,J)    
        
            [M >= 0 && B >= 1 + N] ==>                       
                f22(A,B,C,D,F,H,J)   = 2                     
                                    >= 2                     
                                     = f19(A,B,1,D,1 + F,H,J)
        
                          [M >= 0] ==>                       
                f22(A,B,C,D,F,H,J)   = 2                     
                                    >= 2                     
                                     = f19(A,B,0,D,1 + F,H,J)
        
                      [0 >= 1 + M] ==>                       
                f22(A,B,C,D,F,H,J)   = 2                     
                                    >= 2                     
                                     = f19(A,B,0,D,1 + F,H,J)
        
             [B >= 1 + F && C = 0] ==>                       
                f19(A,B,C,D,F,H,J)   = 2                     
                                    >= 2                     
                                     = f19(A,B,0,D,1 + F,H,J)
        
                      [B >= 2 + F] ==>                       
                f32(A,B,C,D,F,H,J)   = 1                     
                                    >= 1                     
                                     = f35(A,B,C,D,F,1 + F,J)
        
        [0 >= 1 + A && B >= 1 + H] ==>                       
                f35(A,B,C,D,F,H,J)   = 1                     
                                    >= 1                     
                                     = f38(A,B,C,D,F,H,J)    
        
            [A >= 1 && B >= 1 + H] ==>                       
                f35(A,B,C,D,F,H,J)   = 1                     
                                    >= 1                     
                                     = f38(A,B,C,D,F,H,J)    
        
                      [M >= 1 + N] ==>                       
                f38(A,B,C,D,F,H,J)   = 1                     
                                    >= 1                     
                                     = f35(1,B,C,D,F,1 + H,J)
        
                              True ==>                       
                f38(A,B,C,D,F,H,J)   = 1                     
                                    >= 1                     
                                     = f35(1,B,C,D,F,1 + H,J)
        
                              True ==>                       
                f38(A,B,C,D,F,H,J)   = 1                     
                                    >= 1                     
                                     = f35(0,B,C,D,F,1 + H,J)
        
             [B >= 1 + H && A = 0] ==>                       
                f35(A,B,C,D,F,H,J)   = 1                     
                                    >= 1                     
                                     = f35(0,B,C,D,F,1 + H,J)
        
        [0 >= 1 + D && B >= 2 + F] ==>                       
                f48(A,B,C,D,F,H,J)   = 1                     
                                    >= 1                     
                                     = f52(A,B,C,D,F,H,M)    
        
            [D >= 1 && B >= 2 + F] ==>                       
                f48(A,B,C,D,F,H,J)   = 1                     
                                    >= 1                     
                                     = f52(A,B,C,D,F,H,M)    
        
                      [0 >= 1 + J] ==>                       
                f52(A,B,C,D,F,H,J)   = 1                     
                                    >= 1                     
                                     = f48(A,B,C,1,1 + F,H,J)
        
                          [J >= 1] ==>                       
                f52(A,B,C,D,F,H,J)   = 1                     
                                    >= 1                     
                                     = f48(A,B,C,1,1 + F,H,J)
        
                           [J = 0] ==>                       
                f52(A,B,C,D,F,H,J)   = 1                     
                                    >= 1                     
                                     = f48(A,B,C,0,1 + F,H,0)
        
                              True ==>                       
                f52(A,B,C,D,F,H,J)   = 1                     
                                    >= 1                     
                                     = f48(A,B,C,0,1 + F,H,J)
        
             [B >= 2 + F && D = 0] ==>                       
                f48(A,B,C,D,F,H,J)   = 1                     
                                    >= 1                     
                                     = f48(A,B,C,0,1 + F,H,M)
        
                          [H >= B] ==>                       
                f35(A,B,C,D,F,H,J)   = 1                     
                                    >= 1                     
                                     = f32(A,B,C,D,1 + F,H,J)
        
                      [1 + F >= B] ==>                       
                f32(A,B,C,D,F,H,J)   = 1                     
                                    >= 1                     
                                     = f48(A,B,C,D,0,H,J)    
        
                          [F >= B] ==>                       
                f13(A,B,C,D,F,H,J)   = 2                     
                                    >= 2                     
                                     = f19(A,B,C,D,0,H,J)    
        
        
* Step 11: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f0(A,B,C,D,F,H,J)  -> f13(1,12,1,1,0,H,J)    True                       (1,1)
          3.  f13(A,B,C,D,F,H,J) -> f13(A,B,C,D,1 + F,H,J) [B >= 1 + F]               (?,1)
          4.  f19(A,B,C,D,F,H,J) -> f22(A,B,C,D,F,H,J)     [0 >= 1 + C && B >= 1 + F] (1,1)
          5.  f19(A,B,C,D,F,H,J) -> f22(A,B,C,D,F,H,J)     [C >= 1 && B >= 1 + F]     (?,1)
          6.  f22(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J) [M >= 0 && B >= 1 + N]     (?,1)
          7.  f22(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [M >= 0]                   (?,1)
          8.  f22(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [0 >= 1 + M]               (?,1)
          9.  f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [B >= 1 + F && C = 0]      (?,1)
          10. f32(A,B,C,D,F,H,J) -> f35(A,B,C,D,F,1 + F,J) [B >= 2 + F]               (?,1)
          11. f35(A,B,C,D,F,H,J) -> f38(A,B,C,D,F,H,J)     [0 >= 1 + A && B >= 1 + H] (?,1)
          12. f35(A,B,C,D,F,H,J) -> f38(A,B,C,D,F,H,J)     [A >= 1 && B >= 1 + H]     (?,1)
          13. f38(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) [M >= 1 + N]               (?,1)
          14. f38(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) True                       (?,1)
          15. f38(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) True                       (?,1)
          16. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) [B >= 1 + H && A = 0]      (?,1)
          17. f48(A,B,C,D,F,H,J) -> f52(A,B,C,D,F,H,M)     [0 >= 1 + D && B >= 2 + F] (1,1)
          18. f48(A,B,C,D,F,H,J) -> f52(A,B,C,D,F,H,M)     [D >= 1 && B >= 2 + F]     (?,1)
          19. f52(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,J) [0 >= 1 + J]               (?,1)
          20. f52(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,J) [J >= 1]                   (?,1)
          21. f52(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0) [J = 0]                    (?,1)
          22. f52(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,J) True                       (?,1)
          23. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M) [B >= 2 + F && D = 0]      (?,1)
          31. f35(A,B,C,D,F,H,J) -> f32(A,B,C,D,1 + F,H,J) [H >= B]                   (?,1)
          32. f32(A,B,C,D,F,H,J) -> f48(A,B,C,D,0,H,J)     [1 + F >= B]               (1,1)
          33. f19(A,B,C,D,F,H,J) -> f32(A,B,C,D,0,H,J)     [F >= B]                   (2,1)
          34. f13(A,B,C,D,F,H,J) -> f19(A,B,C,D,0,H,J)     [F >= B]                   (1,1)
        Signature:
          {(f0,7);(f13,7);(f19,7);(f22,7);(f32,7);(f35,7);(f38,7);(f48,7);(f52,7);(f62,7);(f63,7);(f71,7)}
        Flow Graph:
          [2->{3},3->{3,34},4->{6,7,8},5->{6,7,8},6->{5,33},7->{9,33},8->{9,33},9->{9,33},10->{11,12,16},11->{13,14
          ,15},12->{13,14,15},13->{12,31},14->{12,31},15->{16,31},16->{16,31},17->{19,20,21,22},18->{19,20,21,22}
          ,19->{18},20->{18},21->{23},22->{23},23->{23},31->{10,32},32->{17,18,23},33->{10,32},34->{4,5,9,33}]
        Sizebounds:
          (< 2,0,A>, 1) (< 2,0,B>, 12) (< 2,0,C>, 1) (< 2,0,D>, 1) (< 2,0,F>,  0) (< 2,0,H>,  H) (< 2,0,J>, J) 
          (< 3,0,A>, 1) (< 3,0,B>, 12) (< 3,0,C>, 1) (< 3,0,D>, 1) (< 3,0,F>, 12) (< 3,0,H>,  H) (< 3,0,J>, J) 
          (< 4,0,A>, 1) (< 4,0,B>, 12) (< 4,0,C>, 1) (< 4,0,D>, 1) (< 4,0,F>, 12) (< 4,0,H>,  H) (< 4,0,J>, J) 
          (< 5,0,A>, 1) (< 5,0,B>, 12) (< 5,0,C>, 1) (< 5,0,D>, 1) (< 5,0,F>, 12) (< 5,0,H>,  H) (< 5,0,J>, J) 
          (< 6,0,A>, 1) (< 6,0,B>, 12) (< 6,0,C>, 1) (< 6,0,D>, 1) (< 6,0,F>, 12) (< 6,0,H>,  H) (< 6,0,J>, J) 
          (< 7,0,A>, 1) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 1) (< 7,0,F>, 12) (< 7,0,H>,  H) (< 7,0,J>, J) 
          (< 8,0,A>, 1) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>, 1) (< 8,0,F>, 12) (< 8,0,H>,  H) (< 8,0,J>, J) 
          (< 9,0,A>, 1) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 1) (< 9,0,F>, 12) (< 9,0,H>,  H) (< 9,0,J>, J) 
          (<10,0,A>, 1) (<10,0,B>, 12) (<10,0,C>, 1) (<10,0,D>, 1) (<10,0,F>, 12) (<10,0,H>,  ?) (<10,0,J>, J) 
          (<11,0,A>, 1) (<11,0,B>, 12) (<11,0,C>, 1) (<11,0,D>, 1) (<11,0,F>,  ?) (<11,0,H>, 12) (<11,0,J>, J) 
          (<12,0,A>, 1) (<12,0,B>, 12) (<12,0,C>, 1) (<12,0,D>, 1) (<12,0,F>,  ?) (<12,0,H>, 12) (<12,0,J>, J) 
          (<13,0,A>, 1) (<13,0,B>, 12) (<13,0,C>, 1) (<13,0,D>, 1) (<13,0,F>,  ?) (<13,0,H>, 12) (<13,0,J>, J) 
          (<14,0,A>, 1) (<14,0,B>, 12) (<14,0,C>, 1) (<14,0,D>, 1) (<14,0,F>,  ?) (<14,0,H>, 12) (<14,0,J>, J) 
          (<15,0,A>, 0) (<15,0,B>, 12) (<15,0,C>, 1) (<15,0,D>, 1) (<15,0,F>,  ?) (<15,0,H>, 12) (<15,0,J>, J) 
          (<16,0,A>, 0) (<16,0,B>, 12) (<16,0,C>, 1) (<16,0,D>, 1) (<16,0,F>,  ?) (<16,0,H>, 12) (<16,0,J>, J) 
          (<17,0,A>, 1) (<17,0,B>, 12) (<17,0,C>, 1) (<17,0,D>, 1) (<17,0,F>, 12) (<17,0,H>,  ?) (<17,0,J>, ?) 
          (<18,0,A>, 1) (<18,0,B>, 12) (<18,0,C>, 1) (<18,0,D>, 1) (<18,0,F>, 12) (<18,0,H>,  ?) (<18,0,J>, ?) 
          (<19,0,A>, 1) (<19,0,B>, 12) (<19,0,C>, 1) (<19,0,D>, 1) (<19,0,F>, 12) (<19,0,H>,  ?) (<19,0,J>, ?) 
          (<20,0,A>, 1) (<20,0,B>, 12) (<20,0,C>, 1) (<20,0,D>, 1) (<20,0,F>, 12) (<20,0,H>,  ?) (<20,0,J>, ?) 
          (<21,0,A>, 1) (<21,0,B>, 12) (<21,0,C>, 1) (<21,0,D>, 0) (<21,0,F>, 12) (<21,0,H>,  ?) (<21,0,J>, 0) 
          (<22,0,A>, 1) (<22,0,B>, 12) (<22,0,C>, 1) (<22,0,D>, 0) (<22,0,F>, 12) (<22,0,H>,  ?) (<22,0,J>, ?) 
          (<23,0,A>, 1) (<23,0,B>, 12) (<23,0,C>, 1) (<23,0,D>, 0) (<23,0,F>, 12) (<23,0,H>,  ?) (<23,0,J>, ?) 
          (<31,0,A>, 1) (<31,0,B>, 12) (<31,0,C>, 1) (<31,0,D>, 1) (<31,0,F>,  ?) (<31,0,H>,  ?) (<31,0,J>, J) 
          (<32,0,A>, 1) (<32,0,B>, 12) (<32,0,C>, 1) (<32,0,D>, 1) (<32,0,F>,  0) (<32,0,H>,  ?) (<32,0,J>, J) 
          (<33,0,A>, 1) (<33,0,B>, 12) (<33,0,C>, 1) (<33,0,D>, 1) (<33,0,F>,  0) (<33,0,H>,  H) (<33,0,J>, J) 
          (<34,0,A>, 1) (<34,0,B>, 12) (<34,0,C>, 1) (<34,0,D>, 1) (<34,0,F>,  0) (<34,0,H>,  H) (<34,0,J>, J) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 12             
          p(f13) = x2             
          p(f19) = x2             
          p(f22) = x2             
          p(f32) = x2             
          p(f35) = x2             
          p(f38) = x2             
          p(f48) = x2 + -1*x5     
          p(f52) = -1 + x2 + -1*x5
        
        The following rules are strictly oriented:
        [0 >= 1 + D && B >= 2 + F] ==>                       
                f48(A,B,C,D,F,H,J)   = B + -1*F              
                                     > -1 + B + -1*F         
                                     = f52(A,B,C,D,F,H,M)    
        
             [B >= 2 + F && D = 0] ==>                       
                f48(A,B,C,D,F,H,J)   = B + -1*F              
                                     > -1 + B + -1*F         
                                     = f48(A,B,C,0,1 + F,H,M)
        
        
        The following rules are weakly oriented:
                              True ==>                       
                 f0(A,B,C,D,F,H,J)   = 12                    
                                    >= 12                    
                                     = f13(1,12,1,1,0,H,J)   
        
                      [B >= 1 + F] ==>                       
                f13(A,B,C,D,F,H,J)   = B                     
                                    >= B                     
                                     = f13(A,B,C,D,1 + F,H,J)
        
        [0 >= 1 + C && B >= 1 + F] ==>                       
                f19(A,B,C,D,F,H,J)   = B                     
                                    >= B                     
                                     = f22(A,B,C,D,F,H,J)    
        
            [C >= 1 && B >= 1 + F] ==>                       
                f19(A,B,C,D,F,H,J)   = B                     
                                    >= B                     
                                     = f22(A,B,C,D,F,H,J)    
        
            [M >= 0 && B >= 1 + N] ==>                       
                f22(A,B,C,D,F,H,J)   = B                     
                                    >= B                     
                                     = f19(A,B,1,D,1 + F,H,J)
        
                          [M >= 0] ==>                       
                f22(A,B,C,D,F,H,J)   = B                     
                                    >= B                     
                                     = f19(A,B,0,D,1 + F,H,J)
        
                      [0 >= 1 + M] ==>                       
                f22(A,B,C,D,F,H,J)   = B                     
                                    >= B                     
                                     = f19(A,B,0,D,1 + F,H,J)
        
             [B >= 1 + F && C = 0] ==>                       
                f19(A,B,C,D,F,H,J)   = B                     
                                    >= B                     
                                     = f19(A,B,0,D,1 + F,H,J)
        
                      [B >= 2 + F] ==>                       
                f32(A,B,C,D,F,H,J)   = B                     
                                    >= B                     
                                     = f35(A,B,C,D,F,1 + F,J)
        
        [0 >= 1 + A && B >= 1 + H] ==>                       
                f35(A,B,C,D,F,H,J)   = B                     
                                    >= B                     
                                     = f38(A,B,C,D,F,H,J)    
        
            [A >= 1 && B >= 1 + H] ==>                       
                f35(A,B,C,D,F,H,J)   = B                     
                                    >= B                     
                                     = f38(A,B,C,D,F,H,J)    
        
                      [M >= 1 + N] ==>                       
                f38(A,B,C,D,F,H,J)   = B                     
                                    >= B                     
                                     = f35(1,B,C,D,F,1 + H,J)
        
                              True ==>                       
                f38(A,B,C,D,F,H,J)   = B                     
                                    >= B                     
                                     = f35(1,B,C,D,F,1 + H,J)
        
                              True ==>                       
                f38(A,B,C,D,F,H,J)   = B                     
                                    >= B                     
                                     = f35(0,B,C,D,F,1 + H,J)
        
             [B >= 1 + H && A = 0] ==>                       
                f35(A,B,C,D,F,H,J)   = B                     
                                    >= B                     
                                     = f35(0,B,C,D,F,1 + H,J)
        
            [D >= 1 && B >= 2 + F] ==>                       
                f48(A,B,C,D,F,H,J)   = B + -1*F              
                                    >= -1 + B + -1*F         
                                     = f52(A,B,C,D,F,H,M)    
        
                      [0 >= 1 + J] ==>                       
                f52(A,B,C,D,F,H,J)   = -1 + B + -1*F         
                                    >= -1 + B + -1*F         
                                     = f48(A,B,C,1,1 + F,H,J)
        
                          [J >= 1] ==>                       
                f52(A,B,C,D,F,H,J)   = -1 + B + -1*F         
                                    >= -1 + B + -1*F         
                                     = f48(A,B,C,1,1 + F,H,J)
        
                           [J = 0] ==>                       
                f52(A,B,C,D,F,H,J)   = -1 + B + -1*F         
                                    >= -1 + B + -1*F         
                                     = f48(A,B,C,0,1 + F,H,0)
        
                              True ==>                       
                f52(A,B,C,D,F,H,J)   = -1 + B + -1*F         
                                    >= -1 + B + -1*F         
                                     = f48(A,B,C,0,1 + F,H,J)
        
                          [H >= B] ==>                       
                f35(A,B,C,D,F,H,J)   = B                     
                                    >= B                     
                                     = f32(A,B,C,D,1 + F,H,J)
        
                      [1 + F >= B] ==>                       
                f32(A,B,C,D,F,H,J)   = B                     
                                    >= B                     
                                     = f48(A,B,C,D,0,H,J)    
        
                          [F >= B] ==>                       
                f19(A,B,C,D,F,H,J)   = B                     
                                    >= B                     
                                     = f32(A,B,C,D,0,H,J)    
        
                          [F >= B] ==>                       
                f13(A,B,C,D,F,H,J)   = B                     
                                    >= B                     
                                     = f19(A,B,C,D,0,H,J)    
        
        
* Step 12: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f0(A,B,C,D,F,H,J)  -> f13(1,12,1,1,0,H,J)    True                       (1,1) 
          3.  f13(A,B,C,D,F,H,J) -> f13(A,B,C,D,1 + F,H,J) [B >= 1 + F]               (?,1) 
          4.  f19(A,B,C,D,F,H,J) -> f22(A,B,C,D,F,H,J)     [0 >= 1 + C && B >= 1 + F] (1,1) 
          5.  f19(A,B,C,D,F,H,J) -> f22(A,B,C,D,F,H,J)     [C >= 1 && B >= 1 + F]     (?,1) 
          6.  f22(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J) [M >= 0 && B >= 1 + N]     (?,1) 
          7.  f22(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [M >= 0]                   (?,1) 
          8.  f22(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [0 >= 1 + M]               (?,1) 
          9.  f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [B >= 1 + F && C = 0]      (?,1) 
          10. f32(A,B,C,D,F,H,J) -> f35(A,B,C,D,F,1 + F,J) [B >= 2 + F]               (?,1) 
          11. f35(A,B,C,D,F,H,J) -> f38(A,B,C,D,F,H,J)     [0 >= 1 + A && B >= 1 + H] (?,1) 
          12. f35(A,B,C,D,F,H,J) -> f38(A,B,C,D,F,H,J)     [A >= 1 && B >= 1 + H]     (?,1) 
          13. f38(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) [M >= 1 + N]               (?,1) 
          14. f38(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) True                       (?,1) 
          15. f38(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) True                       (?,1) 
          16. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) [B >= 1 + H && A = 0]      (?,1) 
          17. f48(A,B,C,D,F,H,J) -> f52(A,B,C,D,F,H,M)     [0 >= 1 + D && B >= 2 + F] (1,1) 
          18. f48(A,B,C,D,F,H,J) -> f52(A,B,C,D,F,H,M)     [D >= 1 && B >= 2 + F]     (?,1) 
          19. f52(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,J) [0 >= 1 + J]               (?,1) 
          20. f52(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,J) [J >= 1]                   (?,1) 
          21. f52(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0) [J = 0]                    (?,1) 
          22. f52(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,J) True                       (?,1) 
          23. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M) [B >= 2 + F && D = 0]      (12,1)
          31. f35(A,B,C,D,F,H,J) -> f32(A,B,C,D,1 + F,H,J) [H >= B]                   (?,1) 
          32. f32(A,B,C,D,F,H,J) -> f48(A,B,C,D,0,H,J)     [1 + F >= B]               (1,1) 
          33. f19(A,B,C,D,F,H,J) -> f32(A,B,C,D,0,H,J)     [F >= B]                   (2,1) 
          34. f13(A,B,C,D,F,H,J) -> f19(A,B,C,D,0,H,J)     [F >= B]                   (1,1) 
        Signature:
          {(f0,7);(f13,7);(f19,7);(f22,7);(f32,7);(f35,7);(f38,7);(f48,7);(f52,7);(f62,7);(f63,7);(f71,7)}
        Flow Graph:
          [2->{3},3->{3,34},4->{6,7,8},5->{6,7,8},6->{5,33},7->{9,33},8->{9,33},9->{9,33},10->{11,12,16},11->{13,14
          ,15},12->{13,14,15},13->{12,31},14->{12,31},15->{16,31},16->{16,31},17->{19,20,21,22},18->{19,20,21,22}
          ,19->{18},20->{18},21->{23},22->{23},23->{23},31->{10,32},32->{17,18,23},33->{10,32},34->{4,5,9,33}]
        Sizebounds:
          (< 2,0,A>, 1) (< 2,0,B>, 12) (< 2,0,C>, 1) (< 2,0,D>, 1) (< 2,0,F>,  0) (< 2,0,H>,  H) (< 2,0,J>, J) 
          (< 3,0,A>, 1) (< 3,0,B>, 12) (< 3,0,C>, 1) (< 3,0,D>, 1) (< 3,0,F>, 12) (< 3,0,H>,  H) (< 3,0,J>, J) 
          (< 4,0,A>, 1) (< 4,0,B>, 12) (< 4,0,C>, 1) (< 4,0,D>, 1) (< 4,0,F>, 12) (< 4,0,H>,  H) (< 4,0,J>, J) 
          (< 5,0,A>, 1) (< 5,0,B>, 12) (< 5,0,C>, 1) (< 5,0,D>, 1) (< 5,0,F>, 12) (< 5,0,H>,  H) (< 5,0,J>, J) 
          (< 6,0,A>, 1) (< 6,0,B>, 12) (< 6,0,C>, 1) (< 6,0,D>, 1) (< 6,0,F>, 12) (< 6,0,H>,  H) (< 6,0,J>, J) 
          (< 7,0,A>, 1) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 1) (< 7,0,F>, 12) (< 7,0,H>,  H) (< 7,0,J>, J) 
          (< 8,0,A>, 1) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>, 1) (< 8,0,F>, 12) (< 8,0,H>,  H) (< 8,0,J>, J) 
          (< 9,0,A>, 1) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 1) (< 9,0,F>, 12) (< 9,0,H>,  H) (< 9,0,J>, J) 
          (<10,0,A>, 1) (<10,0,B>, 12) (<10,0,C>, 1) (<10,0,D>, 1) (<10,0,F>, 12) (<10,0,H>,  ?) (<10,0,J>, J) 
          (<11,0,A>, 1) (<11,0,B>, 12) (<11,0,C>, 1) (<11,0,D>, 1) (<11,0,F>,  ?) (<11,0,H>, 12) (<11,0,J>, J) 
          (<12,0,A>, 1) (<12,0,B>, 12) (<12,0,C>, 1) (<12,0,D>, 1) (<12,0,F>,  ?) (<12,0,H>, 12) (<12,0,J>, J) 
          (<13,0,A>, 1) (<13,0,B>, 12) (<13,0,C>, 1) (<13,0,D>, 1) (<13,0,F>,  ?) (<13,0,H>, 12) (<13,0,J>, J) 
          (<14,0,A>, 1) (<14,0,B>, 12) (<14,0,C>, 1) (<14,0,D>, 1) (<14,0,F>,  ?) (<14,0,H>, 12) (<14,0,J>, J) 
          (<15,0,A>, 0) (<15,0,B>, 12) (<15,0,C>, 1) (<15,0,D>, 1) (<15,0,F>,  ?) (<15,0,H>, 12) (<15,0,J>, J) 
          (<16,0,A>, 0) (<16,0,B>, 12) (<16,0,C>, 1) (<16,0,D>, 1) (<16,0,F>,  ?) (<16,0,H>, 12) (<16,0,J>, J) 
          (<17,0,A>, 1) (<17,0,B>, 12) (<17,0,C>, 1) (<17,0,D>, 1) (<17,0,F>, 12) (<17,0,H>,  ?) (<17,0,J>, ?) 
          (<18,0,A>, 1) (<18,0,B>, 12) (<18,0,C>, 1) (<18,0,D>, 1) (<18,0,F>, 12) (<18,0,H>,  ?) (<18,0,J>, ?) 
          (<19,0,A>, 1) (<19,0,B>, 12) (<19,0,C>, 1) (<19,0,D>, 1) (<19,0,F>, 12) (<19,0,H>,  ?) (<19,0,J>, ?) 
          (<20,0,A>, 1) (<20,0,B>, 12) (<20,0,C>, 1) (<20,0,D>, 1) (<20,0,F>, 12) (<20,0,H>,  ?) (<20,0,J>, ?) 
          (<21,0,A>, 1) (<21,0,B>, 12) (<21,0,C>, 1) (<21,0,D>, 0) (<21,0,F>, 12) (<21,0,H>,  ?) (<21,0,J>, 0) 
          (<22,0,A>, 1) (<22,0,B>, 12) (<22,0,C>, 1) (<22,0,D>, 0) (<22,0,F>, 12) (<22,0,H>,  ?) (<22,0,J>, ?) 
          (<23,0,A>, 1) (<23,0,B>, 12) (<23,0,C>, 1) (<23,0,D>, 0) (<23,0,F>, 12) (<23,0,H>,  ?) (<23,0,J>, ?) 
          (<31,0,A>, 1) (<31,0,B>, 12) (<31,0,C>, 1) (<31,0,D>, 1) (<31,0,F>,  ?) (<31,0,H>,  ?) (<31,0,J>, J) 
          (<32,0,A>, 1) (<32,0,B>, 12) (<32,0,C>, 1) (<32,0,D>, 1) (<32,0,F>,  0) (<32,0,H>,  ?) (<32,0,J>, J) 
          (<33,0,A>, 1) (<33,0,B>, 12) (<33,0,C>, 1) (<33,0,D>, 1) (<33,0,F>,  0) (<33,0,H>,  H) (<33,0,J>, J) 
          (<34,0,A>, 1) (<34,0,B>, 12) (<34,0,C>, 1) (<34,0,D>, 1) (<34,0,F>,  0) (<34,0,H>,  H) (<34,0,J>, J) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 12             
          p(f13) = x2             
          p(f19) = x2             
          p(f22) = x2             
          p(f32) = x2             
          p(f35) = x2             
          p(f38) = x2             
          p(f48) = x2 + -1*x5     
          p(f52) = -1 + x2 + -1*x5
        
        The following rules are strictly oriented:
        [0 >= 1 + D && B >= 2 + F] ==>                       
                f48(A,B,C,D,F,H,J)   = B + -1*F              
                                     > -1 + B + -1*F         
                                     = f52(A,B,C,D,F,H,M)    
        
            [D >= 1 && B >= 2 + F] ==>                       
                f48(A,B,C,D,F,H,J)   = B + -1*F              
                                     > -1 + B + -1*F         
                                     = f52(A,B,C,D,F,H,M)    
        
             [B >= 2 + F && D = 0] ==>                       
                f48(A,B,C,D,F,H,J)   = B + -1*F              
                                     > -1 + B + -1*F         
                                     = f48(A,B,C,0,1 + F,H,M)
        
        
        The following rules are weakly oriented:
                              True ==>                       
                 f0(A,B,C,D,F,H,J)   = 12                    
                                    >= 12                    
                                     = f13(1,12,1,1,0,H,J)   
        
                      [B >= 1 + F] ==>                       
                f13(A,B,C,D,F,H,J)   = B                     
                                    >= B                     
                                     = f13(A,B,C,D,1 + F,H,J)
        
        [0 >= 1 + C && B >= 1 + F] ==>                       
                f19(A,B,C,D,F,H,J)   = B                     
                                    >= B                     
                                     = f22(A,B,C,D,F,H,J)    
        
            [C >= 1 && B >= 1 + F] ==>                       
                f19(A,B,C,D,F,H,J)   = B                     
                                    >= B                     
                                     = f22(A,B,C,D,F,H,J)    
        
            [M >= 0 && B >= 1 + N] ==>                       
                f22(A,B,C,D,F,H,J)   = B                     
                                    >= B                     
                                     = f19(A,B,1,D,1 + F,H,J)
        
                          [M >= 0] ==>                       
                f22(A,B,C,D,F,H,J)   = B                     
                                    >= B                     
                                     = f19(A,B,0,D,1 + F,H,J)
        
                      [0 >= 1 + M] ==>                       
                f22(A,B,C,D,F,H,J)   = B                     
                                    >= B                     
                                     = f19(A,B,0,D,1 + F,H,J)
        
             [B >= 1 + F && C = 0] ==>                       
                f19(A,B,C,D,F,H,J)   = B                     
                                    >= B                     
                                     = f19(A,B,0,D,1 + F,H,J)
        
                      [B >= 2 + F] ==>                       
                f32(A,B,C,D,F,H,J)   = B                     
                                    >= B                     
                                     = f35(A,B,C,D,F,1 + F,J)
        
        [0 >= 1 + A && B >= 1 + H] ==>                       
                f35(A,B,C,D,F,H,J)   = B                     
                                    >= B                     
                                     = f38(A,B,C,D,F,H,J)    
        
            [A >= 1 && B >= 1 + H] ==>                       
                f35(A,B,C,D,F,H,J)   = B                     
                                    >= B                     
                                     = f38(A,B,C,D,F,H,J)    
        
                      [M >= 1 + N] ==>                       
                f38(A,B,C,D,F,H,J)   = B                     
                                    >= B                     
                                     = f35(1,B,C,D,F,1 + H,J)
        
                              True ==>                       
                f38(A,B,C,D,F,H,J)   = B                     
                                    >= B                     
                                     = f35(1,B,C,D,F,1 + H,J)
        
                              True ==>                       
                f38(A,B,C,D,F,H,J)   = B                     
                                    >= B                     
                                     = f35(0,B,C,D,F,1 + H,J)
        
             [B >= 1 + H && A = 0] ==>                       
                f35(A,B,C,D,F,H,J)   = B                     
                                    >= B                     
                                     = f35(0,B,C,D,F,1 + H,J)
        
                      [0 >= 1 + J] ==>                       
                f52(A,B,C,D,F,H,J)   = -1 + B + -1*F         
                                    >= -1 + B + -1*F         
                                     = f48(A,B,C,1,1 + F,H,J)
        
                          [J >= 1] ==>                       
                f52(A,B,C,D,F,H,J)   = -1 + B + -1*F         
                                    >= -1 + B + -1*F         
                                     = f48(A,B,C,1,1 + F,H,J)
        
                           [J = 0] ==>                       
                f52(A,B,C,D,F,H,J)   = -1 + B + -1*F         
                                    >= -1 + B + -1*F         
                                     = f48(A,B,C,0,1 + F,H,0)
        
                              True ==>                       
                f52(A,B,C,D,F,H,J)   = -1 + B + -1*F         
                                    >= -1 + B + -1*F         
                                     = f48(A,B,C,0,1 + F,H,J)
        
                          [H >= B] ==>                       
                f35(A,B,C,D,F,H,J)   = B                     
                                    >= B                     
                                     = f32(A,B,C,D,1 + F,H,J)
        
                      [1 + F >= B] ==>                       
                f32(A,B,C,D,F,H,J)   = B                     
                                    >= B                     
                                     = f48(A,B,C,D,0,H,J)    
        
                          [F >= B] ==>                       
                f19(A,B,C,D,F,H,J)   = B                     
                                    >= B                     
                                     = f32(A,B,C,D,0,H,J)    
        
                          [F >= B] ==>                       
                f13(A,B,C,D,F,H,J)   = B                     
                                    >= B                     
                                     = f19(A,B,C,D,0,H,J)    
        
        
* Step 13: KnowledgePropagation WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f0(A,B,C,D,F,H,J)  -> f13(1,12,1,1,0,H,J)    True                       (1,1) 
          3.  f13(A,B,C,D,F,H,J) -> f13(A,B,C,D,1 + F,H,J) [B >= 1 + F]               (?,1) 
          4.  f19(A,B,C,D,F,H,J) -> f22(A,B,C,D,F,H,J)     [0 >= 1 + C && B >= 1 + F] (1,1) 
          5.  f19(A,B,C,D,F,H,J) -> f22(A,B,C,D,F,H,J)     [C >= 1 && B >= 1 + F]     (?,1) 
          6.  f22(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J) [M >= 0 && B >= 1 + N]     (?,1) 
          7.  f22(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [M >= 0]                   (?,1) 
          8.  f22(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [0 >= 1 + M]               (?,1) 
          9.  f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [B >= 1 + F && C = 0]      (?,1) 
          10. f32(A,B,C,D,F,H,J) -> f35(A,B,C,D,F,1 + F,J) [B >= 2 + F]               (?,1) 
          11. f35(A,B,C,D,F,H,J) -> f38(A,B,C,D,F,H,J)     [0 >= 1 + A && B >= 1 + H] (?,1) 
          12. f35(A,B,C,D,F,H,J) -> f38(A,B,C,D,F,H,J)     [A >= 1 && B >= 1 + H]     (?,1) 
          13. f38(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) [M >= 1 + N]               (?,1) 
          14. f38(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) True                       (?,1) 
          15. f38(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) True                       (?,1) 
          16. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) [B >= 1 + H && A = 0]      (?,1) 
          17. f48(A,B,C,D,F,H,J) -> f52(A,B,C,D,F,H,M)     [0 >= 1 + D && B >= 2 + F] (1,1) 
          18. f48(A,B,C,D,F,H,J) -> f52(A,B,C,D,F,H,M)     [D >= 1 && B >= 2 + F]     (12,1)
          19. f52(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,J) [0 >= 1 + J]               (?,1) 
          20. f52(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,J) [J >= 1]                   (?,1) 
          21. f52(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0) [J = 0]                    (?,1) 
          22. f52(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,J) True                       (?,1) 
          23. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M) [B >= 2 + F && D = 0]      (12,1)
          31. f35(A,B,C,D,F,H,J) -> f32(A,B,C,D,1 + F,H,J) [H >= B]                   (?,1) 
          32. f32(A,B,C,D,F,H,J) -> f48(A,B,C,D,0,H,J)     [1 + F >= B]               (1,1) 
          33. f19(A,B,C,D,F,H,J) -> f32(A,B,C,D,0,H,J)     [F >= B]                   (2,1) 
          34. f13(A,B,C,D,F,H,J) -> f19(A,B,C,D,0,H,J)     [F >= B]                   (1,1) 
        Signature:
          {(f0,7);(f13,7);(f19,7);(f22,7);(f32,7);(f35,7);(f38,7);(f48,7);(f52,7);(f62,7);(f63,7);(f71,7)}
        Flow Graph:
          [2->{3},3->{3,34},4->{6,7,8},5->{6,7,8},6->{5,33},7->{9,33},8->{9,33},9->{9,33},10->{11,12,16},11->{13,14
          ,15},12->{13,14,15},13->{12,31},14->{12,31},15->{16,31},16->{16,31},17->{19,20,21,22},18->{19,20,21,22}
          ,19->{18},20->{18},21->{23},22->{23},23->{23},31->{10,32},32->{17,18,23},33->{10,32},34->{4,5,9,33}]
        Sizebounds:
          (< 2,0,A>, 1) (< 2,0,B>, 12) (< 2,0,C>, 1) (< 2,0,D>, 1) (< 2,0,F>,  0) (< 2,0,H>,  H) (< 2,0,J>, J) 
          (< 3,0,A>, 1) (< 3,0,B>, 12) (< 3,0,C>, 1) (< 3,0,D>, 1) (< 3,0,F>, 12) (< 3,0,H>,  H) (< 3,0,J>, J) 
          (< 4,0,A>, 1) (< 4,0,B>, 12) (< 4,0,C>, 1) (< 4,0,D>, 1) (< 4,0,F>, 12) (< 4,0,H>,  H) (< 4,0,J>, J) 
          (< 5,0,A>, 1) (< 5,0,B>, 12) (< 5,0,C>, 1) (< 5,0,D>, 1) (< 5,0,F>, 12) (< 5,0,H>,  H) (< 5,0,J>, J) 
          (< 6,0,A>, 1) (< 6,0,B>, 12) (< 6,0,C>, 1) (< 6,0,D>, 1) (< 6,0,F>, 12) (< 6,0,H>,  H) (< 6,0,J>, J) 
          (< 7,0,A>, 1) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 1) (< 7,0,F>, 12) (< 7,0,H>,  H) (< 7,0,J>, J) 
          (< 8,0,A>, 1) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>, 1) (< 8,0,F>, 12) (< 8,0,H>,  H) (< 8,0,J>, J) 
          (< 9,0,A>, 1) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 1) (< 9,0,F>, 12) (< 9,0,H>,  H) (< 9,0,J>, J) 
          (<10,0,A>, 1) (<10,0,B>, 12) (<10,0,C>, 1) (<10,0,D>, 1) (<10,0,F>, 12) (<10,0,H>,  ?) (<10,0,J>, J) 
          (<11,0,A>, 1) (<11,0,B>, 12) (<11,0,C>, 1) (<11,0,D>, 1) (<11,0,F>,  ?) (<11,0,H>, 12) (<11,0,J>, J) 
          (<12,0,A>, 1) (<12,0,B>, 12) (<12,0,C>, 1) (<12,0,D>, 1) (<12,0,F>,  ?) (<12,0,H>, 12) (<12,0,J>, J) 
          (<13,0,A>, 1) (<13,0,B>, 12) (<13,0,C>, 1) (<13,0,D>, 1) (<13,0,F>,  ?) (<13,0,H>, 12) (<13,0,J>, J) 
          (<14,0,A>, 1) (<14,0,B>, 12) (<14,0,C>, 1) (<14,0,D>, 1) (<14,0,F>,  ?) (<14,0,H>, 12) (<14,0,J>, J) 
          (<15,0,A>, 0) (<15,0,B>, 12) (<15,0,C>, 1) (<15,0,D>, 1) (<15,0,F>,  ?) (<15,0,H>, 12) (<15,0,J>, J) 
          (<16,0,A>, 0) (<16,0,B>, 12) (<16,0,C>, 1) (<16,0,D>, 1) (<16,0,F>,  ?) (<16,0,H>, 12) (<16,0,J>, J) 
          (<17,0,A>, 1) (<17,0,B>, 12) (<17,0,C>, 1) (<17,0,D>, 1) (<17,0,F>, 12) (<17,0,H>,  ?) (<17,0,J>, ?) 
          (<18,0,A>, 1) (<18,0,B>, 12) (<18,0,C>, 1) (<18,0,D>, 1) (<18,0,F>, 12) (<18,0,H>,  ?) (<18,0,J>, ?) 
          (<19,0,A>, 1) (<19,0,B>, 12) (<19,0,C>, 1) (<19,0,D>, 1) (<19,0,F>, 12) (<19,0,H>,  ?) (<19,0,J>, ?) 
          (<20,0,A>, 1) (<20,0,B>, 12) (<20,0,C>, 1) (<20,0,D>, 1) (<20,0,F>, 12) (<20,0,H>,  ?) (<20,0,J>, ?) 
          (<21,0,A>, 1) (<21,0,B>, 12) (<21,0,C>, 1) (<21,0,D>, 0) (<21,0,F>, 12) (<21,0,H>,  ?) (<21,0,J>, 0) 
          (<22,0,A>, 1) (<22,0,B>, 12) (<22,0,C>, 1) (<22,0,D>, 0) (<22,0,F>, 12) (<22,0,H>,  ?) (<22,0,J>, ?) 
          (<23,0,A>, 1) (<23,0,B>, 12) (<23,0,C>, 1) (<23,0,D>, 0) (<23,0,F>, 12) (<23,0,H>,  ?) (<23,0,J>, ?) 
          (<31,0,A>, 1) (<31,0,B>, 12) (<31,0,C>, 1) (<31,0,D>, 1) (<31,0,F>,  ?) (<31,0,H>,  ?) (<31,0,J>, J) 
          (<32,0,A>, 1) (<32,0,B>, 12) (<32,0,C>, 1) (<32,0,D>, 1) (<32,0,F>,  0) (<32,0,H>,  ?) (<32,0,J>, J) 
          (<33,0,A>, 1) (<33,0,B>, 12) (<33,0,C>, 1) (<33,0,D>, 1) (<33,0,F>,  0) (<33,0,H>,  H) (<33,0,J>, J) 
          (<34,0,A>, 1) (<34,0,B>, 12) (<34,0,C>, 1) (<34,0,D>, 1) (<34,0,F>,  0) (<34,0,H>,  H) (<34,0,J>, J) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 14: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f0(A,B,C,D,F,H,J)  -> f13(1,12,1,1,0,H,J)    True                       (1,1) 
          3.  f13(A,B,C,D,F,H,J) -> f13(A,B,C,D,1 + F,H,J) [B >= 1 + F]               (?,1) 
          4.  f19(A,B,C,D,F,H,J) -> f22(A,B,C,D,F,H,J)     [0 >= 1 + C && B >= 1 + F] (1,1) 
          5.  f19(A,B,C,D,F,H,J) -> f22(A,B,C,D,F,H,J)     [C >= 1 && B >= 1 + F]     (?,1) 
          6.  f22(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J) [M >= 0 && B >= 1 + N]     (?,1) 
          7.  f22(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [M >= 0]                   (?,1) 
          8.  f22(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [0 >= 1 + M]               (?,1) 
          9.  f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [B >= 1 + F && C = 0]      (?,1) 
          10. f32(A,B,C,D,F,H,J) -> f35(A,B,C,D,F,1 + F,J) [B >= 2 + F]               (?,1) 
          11. f35(A,B,C,D,F,H,J) -> f38(A,B,C,D,F,H,J)     [0 >= 1 + A && B >= 1 + H] (?,1) 
          12. f35(A,B,C,D,F,H,J) -> f38(A,B,C,D,F,H,J)     [A >= 1 && B >= 1 + H]     (?,1) 
          13. f38(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) [M >= 1 + N]               (?,1) 
          14. f38(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) True                       (?,1) 
          15. f38(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) True                       (?,1) 
          16. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) [B >= 1 + H && A = 0]      (?,1) 
          17. f48(A,B,C,D,F,H,J) -> f52(A,B,C,D,F,H,M)     [0 >= 1 + D && B >= 2 + F] (1,1) 
          18. f48(A,B,C,D,F,H,J) -> f52(A,B,C,D,F,H,M)     [D >= 1 && B >= 2 + F]     (12,1)
          19. f52(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,J) [0 >= 1 + J]               (13,1)
          20. f52(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,J) [J >= 1]                   (13,1)
          21. f52(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0) [J = 0]                    (13,1)
          22. f52(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,J) True                       (13,1)
          23. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M) [B >= 2 + F && D = 0]      (12,1)
          31. f35(A,B,C,D,F,H,J) -> f32(A,B,C,D,1 + F,H,J) [H >= B]                   (?,1) 
          32. f32(A,B,C,D,F,H,J) -> f48(A,B,C,D,0,H,J)     [1 + F >= B]               (1,1) 
          33. f19(A,B,C,D,F,H,J) -> f32(A,B,C,D,0,H,J)     [F >= B]                   (2,1) 
          34. f13(A,B,C,D,F,H,J) -> f19(A,B,C,D,0,H,J)     [F >= B]                   (1,1) 
        Signature:
          {(f0,7);(f13,7);(f19,7);(f22,7);(f32,7);(f35,7);(f38,7);(f48,7);(f52,7);(f62,7);(f63,7);(f71,7)}
        Flow Graph:
          [2->{3},3->{3,34},4->{6,7,8},5->{6,7,8},6->{5,33},7->{9,33},8->{9,33},9->{9,33},10->{11,12,16},11->{13,14
          ,15},12->{13,14,15},13->{12,31},14->{12,31},15->{16,31},16->{16,31},17->{19,20,21,22},18->{19,20,21,22}
          ,19->{18},20->{18},21->{23},22->{23},23->{23},31->{10,32},32->{17,18,23},33->{10,32},34->{4,5,9,33}]
        Sizebounds:
          (< 2,0,A>, 1) (< 2,0,B>, 12) (< 2,0,C>, 1) (< 2,0,D>, 1) (< 2,0,F>,  0) (< 2,0,H>,  H) (< 2,0,J>, J) 
          (< 3,0,A>, 1) (< 3,0,B>, 12) (< 3,0,C>, 1) (< 3,0,D>, 1) (< 3,0,F>, 12) (< 3,0,H>,  H) (< 3,0,J>, J) 
          (< 4,0,A>, 1) (< 4,0,B>, 12) (< 4,0,C>, 1) (< 4,0,D>, 1) (< 4,0,F>, 12) (< 4,0,H>,  H) (< 4,0,J>, J) 
          (< 5,0,A>, 1) (< 5,0,B>, 12) (< 5,0,C>, 1) (< 5,0,D>, 1) (< 5,0,F>, 12) (< 5,0,H>,  H) (< 5,0,J>, J) 
          (< 6,0,A>, 1) (< 6,0,B>, 12) (< 6,0,C>, 1) (< 6,0,D>, 1) (< 6,0,F>, 12) (< 6,0,H>,  H) (< 6,0,J>, J) 
          (< 7,0,A>, 1) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 1) (< 7,0,F>, 12) (< 7,0,H>,  H) (< 7,0,J>, J) 
          (< 8,0,A>, 1) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>, 1) (< 8,0,F>, 12) (< 8,0,H>,  H) (< 8,0,J>, J) 
          (< 9,0,A>, 1) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 1) (< 9,0,F>, 12) (< 9,0,H>,  H) (< 9,0,J>, J) 
          (<10,0,A>, 1) (<10,0,B>, 12) (<10,0,C>, 1) (<10,0,D>, 1) (<10,0,F>, 12) (<10,0,H>,  ?) (<10,0,J>, J) 
          (<11,0,A>, 1) (<11,0,B>, 12) (<11,0,C>, 1) (<11,0,D>, 1) (<11,0,F>,  ?) (<11,0,H>, 12) (<11,0,J>, J) 
          (<12,0,A>, 1) (<12,0,B>, 12) (<12,0,C>, 1) (<12,0,D>, 1) (<12,0,F>,  ?) (<12,0,H>, 12) (<12,0,J>, J) 
          (<13,0,A>, 1) (<13,0,B>, 12) (<13,0,C>, 1) (<13,0,D>, 1) (<13,0,F>,  ?) (<13,0,H>, 12) (<13,0,J>, J) 
          (<14,0,A>, 1) (<14,0,B>, 12) (<14,0,C>, 1) (<14,0,D>, 1) (<14,0,F>,  ?) (<14,0,H>, 12) (<14,0,J>, J) 
          (<15,0,A>, 0) (<15,0,B>, 12) (<15,0,C>, 1) (<15,0,D>, 1) (<15,0,F>,  ?) (<15,0,H>, 12) (<15,0,J>, J) 
          (<16,0,A>, 0) (<16,0,B>, 12) (<16,0,C>, 1) (<16,0,D>, 1) (<16,0,F>,  ?) (<16,0,H>, 12) (<16,0,J>, J) 
          (<17,0,A>, 1) (<17,0,B>, 12) (<17,0,C>, 1) (<17,0,D>, 1) (<17,0,F>, 12) (<17,0,H>,  ?) (<17,0,J>, ?) 
          (<18,0,A>, 1) (<18,0,B>, 12) (<18,0,C>, 1) (<18,0,D>, 1) (<18,0,F>, 12) (<18,0,H>,  ?) (<18,0,J>, ?) 
          (<19,0,A>, 1) (<19,0,B>, 12) (<19,0,C>, 1) (<19,0,D>, 1) (<19,0,F>, 12) (<19,0,H>,  ?) (<19,0,J>, ?) 
          (<20,0,A>, 1) (<20,0,B>, 12) (<20,0,C>, 1) (<20,0,D>, 1) (<20,0,F>, 12) (<20,0,H>,  ?) (<20,0,J>, ?) 
          (<21,0,A>, 1) (<21,0,B>, 12) (<21,0,C>, 1) (<21,0,D>, 0) (<21,0,F>, 12) (<21,0,H>,  ?) (<21,0,J>, 0) 
          (<22,0,A>, 1) (<22,0,B>, 12) (<22,0,C>, 1) (<22,0,D>, 0) (<22,0,F>, 12) (<22,0,H>,  ?) (<22,0,J>, ?) 
          (<23,0,A>, 1) (<23,0,B>, 12) (<23,0,C>, 1) (<23,0,D>, 0) (<23,0,F>, 12) (<23,0,H>,  ?) (<23,0,J>, ?) 
          (<31,0,A>, 1) (<31,0,B>, 12) (<31,0,C>, 1) (<31,0,D>, 1) (<31,0,F>,  ?) (<31,0,H>,  ?) (<31,0,J>, J) 
          (<32,0,A>, 1) (<32,0,B>, 12) (<32,0,C>, 1) (<32,0,D>, 1) (<32,0,F>,  0) (<32,0,H>,  ?) (<32,0,J>, J) 
          (<33,0,A>, 1) (<33,0,B>, 12) (<33,0,C>, 1) (<33,0,D>, 1) (<33,0,F>,  0) (<33,0,H>,  H) (<33,0,J>, J) 
          (<34,0,A>, 1) (<34,0,B>, 12) (<34,0,C>, 1) (<34,0,D>, 1) (<34,0,F>,  0) (<34,0,H>,  H) (<34,0,J>, J) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [3], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f13) = x2 + -1*x5
        
        The following rules are strictly oriented:
                [B >= 1 + F] ==>                       
          f13(A,B,C,D,F,H,J)   = B + -1*F              
                               > -1 + B + -1*F         
                               = f13(A,B,C,D,1 + F,H,J)
        
        
        The following rules are weakly oriented:
        
        We use the following global sizebounds:
        (< 2,0,A>, 1) (< 2,0,B>, 12) (< 2,0,C>, 1) (< 2,0,D>, 1) (< 2,0,F>,  0) (< 2,0,H>,  H) (< 2,0,J>, J) 
        (< 3,0,A>, 1) (< 3,0,B>, 12) (< 3,0,C>, 1) (< 3,0,D>, 1) (< 3,0,F>, 12) (< 3,0,H>,  H) (< 3,0,J>, J) 
        (< 4,0,A>, 1) (< 4,0,B>, 12) (< 4,0,C>, 1) (< 4,0,D>, 1) (< 4,0,F>, 12) (< 4,0,H>,  H) (< 4,0,J>, J) 
        (< 5,0,A>, 1) (< 5,0,B>, 12) (< 5,0,C>, 1) (< 5,0,D>, 1) (< 5,0,F>, 12) (< 5,0,H>,  H) (< 5,0,J>, J) 
        (< 6,0,A>, 1) (< 6,0,B>, 12) (< 6,0,C>, 1) (< 6,0,D>, 1) (< 6,0,F>, 12) (< 6,0,H>,  H) (< 6,0,J>, J) 
        (< 7,0,A>, 1) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 1) (< 7,0,F>, 12) (< 7,0,H>,  H) (< 7,0,J>, J) 
        (< 8,0,A>, 1) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>, 1) (< 8,0,F>, 12) (< 8,0,H>,  H) (< 8,0,J>, J) 
        (< 9,0,A>, 1) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 1) (< 9,0,F>, 12) (< 9,0,H>,  H) (< 9,0,J>, J) 
        (<10,0,A>, 1) (<10,0,B>, 12) (<10,0,C>, 1) (<10,0,D>, 1) (<10,0,F>, 12) (<10,0,H>,  ?) (<10,0,J>, J) 
        (<11,0,A>, 1) (<11,0,B>, 12) (<11,0,C>, 1) (<11,0,D>, 1) (<11,0,F>,  ?) (<11,0,H>, 12) (<11,0,J>, J) 
        (<12,0,A>, 1) (<12,0,B>, 12) (<12,0,C>, 1) (<12,0,D>, 1) (<12,0,F>,  ?) (<12,0,H>, 12) (<12,0,J>, J) 
        (<13,0,A>, 1) (<13,0,B>, 12) (<13,0,C>, 1) (<13,0,D>, 1) (<13,0,F>,  ?) (<13,0,H>, 12) (<13,0,J>, J) 
        (<14,0,A>, 1) (<14,0,B>, 12) (<14,0,C>, 1) (<14,0,D>, 1) (<14,0,F>,  ?) (<14,0,H>, 12) (<14,0,J>, J) 
        (<15,0,A>, 0) (<15,0,B>, 12) (<15,0,C>, 1) (<15,0,D>, 1) (<15,0,F>,  ?) (<15,0,H>, 12) (<15,0,J>, J) 
        (<16,0,A>, 0) (<16,0,B>, 12) (<16,0,C>, 1) (<16,0,D>, 1) (<16,0,F>,  ?) (<16,0,H>, 12) (<16,0,J>, J) 
        (<17,0,A>, 1) (<17,0,B>, 12) (<17,0,C>, 1) (<17,0,D>, 1) (<17,0,F>, 12) (<17,0,H>,  ?) (<17,0,J>, ?) 
        (<18,0,A>, 1) (<18,0,B>, 12) (<18,0,C>, 1) (<18,0,D>, 1) (<18,0,F>, 12) (<18,0,H>,  ?) (<18,0,J>, ?) 
        (<19,0,A>, 1) (<19,0,B>, 12) (<19,0,C>, 1) (<19,0,D>, 1) (<19,0,F>, 12) (<19,0,H>,  ?) (<19,0,J>, ?) 
        (<20,0,A>, 1) (<20,0,B>, 12) (<20,0,C>, 1) (<20,0,D>, 1) (<20,0,F>, 12) (<20,0,H>,  ?) (<20,0,J>, ?) 
        (<21,0,A>, 1) (<21,0,B>, 12) (<21,0,C>, 1) (<21,0,D>, 0) (<21,0,F>, 12) (<21,0,H>,  ?) (<21,0,J>, 0) 
        (<22,0,A>, 1) (<22,0,B>, 12) (<22,0,C>, 1) (<22,0,D>, 0) (<22,0,F>, 12) (<22,0,H>,  ?) (<22,0,J>, ?) 
        (<23,0,A>, 1) (<23,0,B>, 12) (<23,0,C>, 1) (<23,0,D>, 0) (<23,0,F>, 12) (<23,0,H>,  ?) (<23,0,J>, ?) 
        (<31,0,A>, 1) (<31,0,B>, 12) (<31,0,C>, 1) (<31,0,D>, 1) (<31,0,F>,  ?) (<31,0,H>,  ?) (<31,0,J>, J) 
        (<32,0,A>, 1) (<32,0,B>, 12) (<32,0,C>, 1) (<32,0,D>, 1) (<32,0,F>,  0) (<32,0,H>,  ?) (<32,0,J>, J) 
        (<33,0,A>, 1) (<33,0,B>, 12) (<33,0,C>, 1) (<33,0,D>, 1) (<33,0,F>,  0) (<33,0,H>,  H) (<33,0,J>, J) 
        (<34,0,A>, 1) (<34,0,B>, 12) (<34,0,C>, 1) (<34,0,D>, 1) (<34,0,F>,  0) (<34,0,H>,  H) (<34,0,J>, J) 
* Step 15: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f0(A,B,C,D,F,H,J)  -> f13(1,12,1,1,0,H,J)    True                       (1,1) 
          3.  f13(A,B,C,D,F,H,J) -> f13(A,B,C,D,1 + F,H,J) [B >= 1 + F]               (12,1)
          4.  f19(A,B,C,D,F,H,J) -> f22(A,B,C,D,F,H,J)     [0 >= 1 + C && B >= 1 + F] (1,1) 
          5.  f19(A,B,C,D,F,H,J) -> f22(A,B,C,D,F,H,J)     [C >= 1 && B >= 1 + F]     (?,1) 
          6.  f22(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J) [M >= 0 && B >= 1 + N]     (?,1) 
          7.  f22(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [M >= 0]                   (?,1) 
          8.  f22(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [0 >= 1 + M]               (?,1) 
          9.  f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [B >= 1 + F && C = 0]      (?,1) 
          10. f32(A,B,C,D,F,H,J) -> f35(A,B,C,D,F,1 + F,J) [B >= 2 + F]               (?,1) 
          11. f35(A,B,C,D,F,H,J) -> f38(A,B,C,D,F,H,J)     [0 >= 1 + A && B >= 1 + H] (?,1) 
          12. f35(A,B,C,D,F,H,J) -> f38(A,B,C,D,F,H,J)     [A >= 1 && B >= 1 + H]     (?,1) 
          13. f38(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) [M >= 1 + N]               (?,1) 
          14. f38(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) True                       (?,1) 
          15. f38(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) True                       (?,1) 
          16. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) [B >= 1 + H && A = 0]      (?,1) 
          17. f48(A,B,C,D,F,H,J) -> f52(A,B,C,D,F,H,M)     [0 >= 1 + D && B >= 2 + F] (1,1) 
          18. f48(A,B,C,D,F,H,J) -> f52(A,B,C,D,F,H,M)     [D >= 1 && B >= 2 + F]     (12,1)
          19. f52(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,J) [0 >= 1 + J]               (13,1)
          20. f52(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,J) [J >= 1]                   (13,1)
          21. f52(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0) [J = 0]                    (13,1)
          22. f52(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,J) True                       (13,1)
          23. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M) [B >= 2 + F && D = 0]      (12,1)
          31. f35(A,B,C,D,F,H,J) -> f32(A,B,C,D,1 + F,H,J) [H >= B]                   (?,1) 
          32. f32(A,B,C,D,F,H,J) -> f48(A,B,C,D,0,H,J)     [1 + F >= B]               (1,1) 
          33. f19(A,B,C,D,F,H,J) -> f32(A,B,C,D,0,H,J)     [F >= B]                   (2,1) 
          34. f13(A,B,C,D,F,H,J) -> f19(A,B,C,D,0,H,J)     [F >= B]                   (1,1) 
        Signature:
          {(f0,7);(f13,7);(f19,7);(f22,7);(f32,7);(f35,7);(f38,7);(f48,7);(f52,7);(f62,7);(f63,7);(f71,7)}
        Flow Graph:
          [2->{3},3->{3,34},4->{6,7,8},5->{6,7,8},6->{5,33},7->{9,33},8->{9,33},9->{9,33},10->{11,12,16},11->{13,14
          ,15},12->{13,14,15},13->{12,31},14->{12,31},15->{16,31},16->{16,31},17->{19,20,21,22},18->{19,20,21,22}
          ,19->{18},20->{18},21->{23},22->{23},23->{23},31->{10,32},32->{17,18,23},33->{10,32},34->{4,5,9,33}]
        Sizebounds:
          (< 2,0,A>, 1) (< 2,0,B>, 12) (< 2,0,C>, 1) (< 2,0,D>, 1) (< 2,0,F>,  0) (< 2,0,H>,  H) (< 2,0,J>, J) 
          (< 3,0,A>, 1) (< 3,0,B>, 12) (< 3,0,C>, 1) (< 3,0,D>, 1) (< 3,0,F>, 12) (< 3,0,H>,  H) (< 3,0,J>, J) 
          (< 4,0,A>, 1) (< 4,0,B>, 12) (< 4,0,C>, 1) (< 4,0,D>, 1) (< 4,0,F>, 12) (< 4,0,H>,  H) (< 4,0,J>, J) 
          (< 5,0,A>, 1) (< 5,0,B>, 12) (< 5,0,C>, 1) (< 5,0,D>, 1) (< 5,0,F>, 12) (< 5,0,H>,  H) (< 5,0,J>, J) 
          (< 6,0,A>, 1) (< 6,0,B>, 12) (< 6,0,C>, 1) (< 6,0,D>, 1) (< 6,0,F>, 12) (< 6,0,H>,  H) (< 6,0,J>, J) 
          (< 7,0,A>, 1) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 1) (< 7,0,F>, 12) (< 7,0,H>,  H) (< 7,0,J>, J) 
          (< 8,0,A>, 1) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>, 1) (< 8,0,F>, 12) (< 8,0,H>,  H) (< 8,0,J>, J) 
          (< 9,0,A>, 1) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 1) (< 9,0,F>, 12) (< 9,0,H>,  H) (< 9,0,J>, J) 
          (<10,0,A>, 1) (<10,0,B>, 12) (<10,0,C>, 1) (<10,0,D>, 1) (<10,0,F>, 12) (<10,0,H>,  ?) (<10,0,J>, J) 
          (<11,0,A>, 1) (<11,0,B>, 12) (<11,0,C>, 1) (<11,0,D>, 1) (<11,0,F>,  ?) (<11,0,H>, 12) (<11,0,J>, J) 
          (<12,0,A>, 1) (<12,0,B>, 12) (<12,0,C>, 1) (<12,0,D>, 1) (<12,0,F>,  ?) (<12,0,H>, 12) (<12,0,J>, J) 
          (<13,0,A>, 1) (<13,0,B>, 12) (<13,0,C>, 1) (<13,0,D>, 1) (<13,0,F>,  ?) (<13,0,H>, 12) (<13,0,J>, J) 
          (<14,0,A>, 1) (<14,0,B>, 12) (<14,0,C>, 1) (<14,0,D>, 1) (<14,0,F>,  ?) (<14,0,H>, 12) (<14,0,J>, J) 
          (<15,0,A>, 0) (<15,0,B>, 12) (<15,0,C>, 1) (<15,0,D>, 1) (<15,0,F>,  ?) (<15,0,H>, 12) (<15,0,J>, J) 
          (<16,0,A>, 0) (<16,0,B>, 12) (<16,0,C>, 1) (<16,0,D>, 1) (<16,0,F>,  ?) (<16,0,H>, 12) (<16,0,J>, J) 
          (<17,0,A>, 1) (<17,0,B>, 12) (<17,0,C>, 1) (<17,0,D>, 1) (<17,0,F>, 12) (<17,0,H>,  ?) (<17,0,J>, ?) 
          (<18,0,A>, 1) (<18,0,B>, 12) (<18,0,C>, 1) (<18,0,D>, 1) (<18,0,F>, 12) (<18,0,H>,  ?) (<18,0,J>, ?) 
          (<19,0,A>, 1) (<19,0,B>, 12) (<19,0,C>, 1) (<19,0,D>, 1) (<19,0,F>, 12) (<19,0,H>,  ?) (<19,0,J>, ?) 
          (<20,0,A>, 1) (<20,0,B>, 12) (<20,0,C>, 1) (<20,0,D>, 1) (<20,0,F>, 12) (<20,0,H>,  ?) (<20,0,J>, ?) 
          (<21,0,A>, 1) (<21,0,B>, 12) (<21,0,C>, 1) (<21,0,D>, 0) (<21,0,F>, 12) (<21,0,H>,  ?) (<21,0,J>, 0) 
          (<22,0,A>, 1) (<22,0,B>, 12) (<22,0,C>, 1) (<22,0,D>, 0) (<22,0,F>, 12) (<22,0,H>,  ?) (<22,0,J>, ?) 
          (<23,0,A>, 1) (<23,0,B>, 12) (<23,0,C>, 1) (<23,0,D>, 0) (<23,0,F>, 12) (<23,0,H>,  ?) (<23,0,J>, ?) 
          (<31,0,A>, 1) (<31,0,B>, 12) (<31,0,C>, 1) (<31,0,D>, 1) (<31,0,F>,  ?) (<31,0,H>,  ?) (<31,0,J>, J) 
          (<32,0,A>, 1) (<32,0,B>, 12) (<32,0,C>, 1) (<32,0,D>, 1) (<32,0,F>,  0) (<32,0,H>,  ?) (<32,0,J>, J) 
          (<33,0,A>, 1) (<33,0,B>, 12) (<33,0,C>, 1) (<33,0,D>, 1) (<33,0,F>,  0) (<33,0,H>,  H) (<33,0,J>, J) 
          (<34,0,A>, 1) (<34,0,B>, 12) (<34,0,C>, 1) (<34,0,D>, 1) (<34,0,F>,  0) (<34,0,H>,  H) (<34,0,J>, J) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [6,5], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f19) = 2 + x2 + -1*x5
          p(f22) = 1 + x2 + -1*x5
        
        The following rules are strictly oriented:
        [C >= 1 && B >= 1 + F] ==>                   
            f19(A,B,C,D,F,H,J)   = 2 + B + -1*F      
                                 > 1 + B + -1*F      
                                 = f22(A,B,C,D,F,H,J)
        
        
        The following rules are weakly oriented:
        [M >= 0 && B >= 1 + N] ==>                       
            f22(A,B,C,D,F,H,J)   = 1 + B + -1*F          
                                >= 1 + B + -1*F          
                                 = f19(A,B,1,D,1 + F,H,J)
        
        We use the following global sizebounds:
        (< 2,0,A>, 1) (< 2,0,B>, 12) (< 2,0,C>, 1) (< 2,0,D>, 1) (< 2,0,F>,  0) (< 2,0,H>,  H) (< 2,0,J>, J) 
        (< 3,0,A>, 1) (< 3,0,B>, 12) (< 3,0,C>, 1) (< 3,0,D>, 1) (< 3,0,F>, 12) (< 3,0,H>,  H) (< 3,0,J>, J) 
        (< 4,0,A>, 1) (< 4,0,B>, 12) (< 4,0,C>, 1) (< 4,0,D>, 1) (< 4,0,F>, 12) (< 4,0,H>,  H) (< 4,0,J>, J) 
        (< 5,0,A>, 1) (< 5,0,B>, 12) (< 5,0,C>, 1) (< 5,0,D>, 1) (< 5,0,F>, 12) (< 5,0,H>,  H) (< 5,0,J>, J) 
        (< 6,0,A>, 1) (< 6,0,B>, 12) (< 6,0,C>, 1) (< 6,0,D>, 1) (< 6,0,F>, 12) (< 6,0,H>,  H) (< 6,0,J>, J) 
        (< 7,0,A>, 1) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 1) (< 7,0,F>, 12) (< 7,0,H>,  H) (< 7,0,J>, J) 
        (< 8,0,A>, 1) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>, 1) (< 8,0,F>, 12) (< 8,0,H>,  H) (< 8,0,J>, J) 
        (< 9,0,A>, 1) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 1) (< 9,0,F>, 12) (< 9,0,H>,  H) (< 9,0,J>, J) 
        (<10,0,A>, 1) (<10,0,B>, 12) (<10,0,C>, 1) (<10,0,D>, 1) (<10,0,F>, 12) (<10,0,H>,  ?) (<10,0,J>, J) 
        (<11,0,A>, 1) (<11,0,B>, 12) (<11,0,C>, 1) (<11,0,D>, 1) (<11,0,F>,  ?) (<11,0,H>, 12) (<11,0,J>, J) 
        (<12,0,A>, 1) (<12,0,B>, 12) (<12,0,C>, 1) (<12,0,D>, 1) (<12,0,F>,  ?) (<12,0,H>, 12) (<12,0,J>, J) 
        (<13,0,A>, 1) (<13,0,B>, 12) (<13,0,C>, 1) (<13,0,D>, 1) (<13,0,F>,  ?) (<13,0,H>, 12) (<13,0,J>, J) 
        (<14,0,A>, 1) (<14,0,B>, 12) (<14,0,C>, 1) (<14,0,D>, 1) (<14,0,F>,  ?) (<14,0,H>, 12) (<14,0,J>, J) 
        (<15,0,A>, 0) (<15,0,B>, 12) (<15,0,C>, 1) (<15,0,D>, 1) (<15,0,F>,  ?) (<15,0,H>, 12) (<15,0,J>, J) 
        (<16,0,A>, 0) (<16,0,B>, 12) (<16,0,C>, 1) (<16,0,D>, 1) (<16,0,F>,  ?) (<16,0,H>, 12) (<16,0,J>, J) 
        (<17,0,A>, 1) (<17,0,B>, 12) (<17,0,C>, 1) (<17,0,D>, 1) (<17,0,F>, 12) (<17,0,H>,  ?) (<17,0,J>, ?) 
        (<18,0,A>, 1) (<18,0,B>, 12) (<18,0,C>, 1) (<18,0,D>, 1) (<18,0,F>, 12) (<18,0,H>,  ?) (<18,0,J>, ?) 
        (<19,0,A>, 1) (<19,0,B>, 12) (<19,0,C>, 1) (<19,0,D>, 1) (<19,0,F>, 12) (<19,0,H>,  ?) (<19,0,J>, ?) 
        (<20,0,A>, 1) (<20,0,B>, 12) (<20,0,C>, 1) (<20,0,D>, 1) (<20,0,F>, 12) (<20,0,H>,  ?) (<20,0,J>, ?) 
        (<21,0,A>, 1) (<21,0,B>, 12) (<21,0,C>, 1) (<21,0,D>, 0) (<21,0,F>, 12) (<21,0,H>,  ?) (<21,0,J>, 0) 
        (<22,0,A>, 1) (<22,0,B>, 12) (<22,0,C>, 1) (<22,0,D>, 0) (<22,0,F>, 12) (<22,0,H>,  ?) (<22,0,J>, ?) 
        (<23,0,A>, 1) (<23,0,B>, 12) (<23,0,C>, 1) (<23,0,D>, 0) (<23,0,F>, 12) (<23,0,H>,  ?) (<23,0,J>, ?) 
        (<31,0,A>, 1) (<31,0,B>, 12) (<31,0,C>, 1) (<31,0,D>, 1) (<31,0,F>,  ?) (<31,0,H>,  ?) (<31,0,J>, J) 
        (<32,0,A>, 1) (<32,0,B>, 12) (<32,0,C>, 1) (<32,0,D>, 1) (<32,0,F>,  0) (<32,0,H>,  ?) (<32,0,J>, J) 
        (<33,0,A>, 1) (<33,0,B>, 12) (<33,0,C>, 1) (<33,0,D>, 1) (<33,0,F>,  0) (<33,0,H>,  H) (<33,0,J>, J) 
        (<34,0,A>, 1) (<34,0,B>, 12) (<34,0,C>, 1) (<34,0,D>, 1) (<34,0,F>,  0) (<34,0,H>,  H) (<34,0,J>, J) 
* Step 16: KnowledgePropagation WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f0(A,B,C,D,F,H,J)  -> f13(1,12,1,1,0,H,J)    True                       (1,1) 
          3.  f13(A,B,C,D,F,H,J) -> f13(A,B,C,D,1 + F,H,J) [B >= 1 + F]               (12,1)
          4.  f19(A,B,C,D,F,H,J) -> f22(A,B,C,D,F,H,J)     [0 >= 1 + C && B >= 1 + F] (1,1) 
          5.  f19(A,B,C,D,F,H,J) -> f22(A,B,C,D,F,H,J)     [C >= 1 && B >= 1 + F]     (39,1)
          6.  f22(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J) [M >= 0 && B >= 1 + N]     (?,1) 
          7.  f22(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [M >= 0]                   (?,1) 
          8.  f22(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [0 >= 1 + M]               (?,1) 
          9.  f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [B >= 1 + F && C = 0]      (?,1) 
          10. f32(A,B,C,D,F,H,J) -> f35(A,B,C,D,F,1 + F,J) [B >= 2 + F]               (?,1) 
          11. f35(A,B,C,D,F,H,J) -> f38(A,B,C,D,F,H,J)     [0 >= 1 + A && B >= 1 + H] (?,1) 
          12. f35(A,B,C,D,F,H,J) -> f38(A,B,C,D,F,H,J)     [A >= 1 && B >= 1 + H]     (?,1) 
          13. f38(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) [M >= 1 + N]               (?,1) 
          14. f38(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) True                       (?,1) 
          15. f38(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) True                       (?,1) 
          16. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) [B >= 1 + H && A = 0]      (?,1) 
          17. f48(A,B,C,D,F,H,J) -> f52(A,B,C,D,F,H,M)     [0 >= 1 + D && B >= 2 + F] (1,1) 
          18. f48(A,B,C,D,F,H,J) -> f52(A,B,C,D,F,H,M)     [D >= 1 && B >= 2 + F]     (12,1)
          19. f52(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,J) [0 >= 1 + J]               (13,1)
          20. f52(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,J) [J >= 1]                   (13,1)
          21. f52(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0) [J = 0]                    (13,1)
          22. f52(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,J) True                       (13,1)
          23. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M) [B >= 2 + F && D = 0]      (12,1)
          31. f35(A,B,C,D,F,H,J) -> f32(A,B,C,D,1 + F,H,J) [H >= B]                   (?,1) 
          32. f32(A,B,C,D,F,H,J) -> f48(A,B,C,D,0,H,J)     [1 + F >= B]               (1,1) 
          33. f19(A,B,C,D,F,H,J) -> f32(A,B,C,D,0,H,J)     [F >= B]                   (2,1) 
          34. f13(A,B,C,D,F,H,J) -> f19(A,B,C,D,0,H,J)     [F >= B]                   (1,1) 
        Signature:
          {(f0,7);(f13,7);(f19,7);(f22,7);(f32,7);(f35,7);(f38,7);(f48,7);(f52,7);(f62,7);(f63,7);(f71,7)}
        Flow Graph:
          [2->{3},3->{3,34},4->{6,7,8},5->{6,7,8},6->{5,33},7->{9,33},8->{9,33},9->{9,33},10->{11,12,16},11->{13,14
          ,15},12->{13,14,15},13->{12,31},14->{12,31},15->{16,31},16->{16,31},17->{19,20,21,22},18->{19,20,21,22}
          ,19->{18},20->{18},21->{23},22->{23},23->{23},31->{10,32},32->{17,18,23},33->{10,32},34->{4,5,9,33}]
        Sizebounds:
          (< 2,0,A>, 1) (< 2,0,B>, 12) (< 2,0,C>, 1) (< 2,0,D>, 1) (< 2,0,F>,  0) (< 2,0,H>,  H) (< 2,0,J>, J) 
          (< 3,0,A>, 1) (< 3,0,B>, 12) (< 3,0,C>, 1) (< 3,0,D>, 1) (< 3,0,F>, 12) (< 3,0,H>,  H) (< 3,0,J>, J) 
          (< 4,0,A>, 1) (< 4,0,B>, 12) (< 4,0,C>, 1) (< 4,0,D>, 1) (< 4,0,F>, 12) (< 4,0,H>,  H) (< 4,0,J>, J) 
          (< 5,0,A>, 1) (< 5,0,B>, 12) (< 5,0,C>, 1) (< 5,0,D>, 1) (< 5,0,F>, 12) (< 5,0,H>,  H) (< 5,0,J>, J) 
          (< 6,0,A>, 1) (< 6,0,B>, 12) (< 6,0,C>, 1) (< 6,0,D>, 1) (< 6,0,F>, 12) (< 6,0,H>,  H) (< 6,0,J>, J) 
          (< 7,0,A>, 1) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 1) (< 7,0,F>, 12) (< 7,0,H>,  H) (< 7,0,J>, J) 
          (< 8,0,A>, 1) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>, 1) (< 8,0,F>, 12) (< 8,0,H>,  H) (< 8,0,J>, J) 
          (< 9,0,A>, 1) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 1) (< 9,0,F>, 12) (< 9,0,H>,  H) (< 9,0,J>, J) 
          (<10,0,A>, 1) (<10,0,B>, 12) (<10,0,C>, 1) (<10,0,D>, 1) (<10,0,F>, 12) (<10,0,H>,  ?) (<10,0,J>, J) 
          (<11,0,A>, 1) (<11,0,B>, 12) (<11,0,C>, 1) (<11,0,D>, 1) (<11,0,F>,  ?) (<11,0,H>, 12) (<11,0,J>, J) 
          (<12,0,A>, 1) (<12,0,B>, 12) (<12,0,C>, 1) (<12,0,D>, 1) (<12,0,F>,  ?) (<12,0,H>, 12) (<12,0,J>, J) 
          (<13,0,A>, 1) (<13,0,B>, 12) (<13,0,C>, 1) (<13,0,D>, 1) (<13,0,F>,  ?) (<13,0,H>, 12) (<13,0,J>, J) 
          (<14,0,A>, 1) (<14,0,B>, 12) (<14,0,C>, 1) (<14,0,D>, 1) (<14,0,F>,  ?) (<14,0,H>, 12) (<14,0,J>, J) 
          (<15,0,A>, 0) (<15,0,B>, 12) (<15,0,C>, 1) (<15,0,D>, 1) (<15,0,F>,  ?) (<15,0,H>, 12) (<15,0,J>, J) 
          (<16,0,A>, 0) (<16,0,B>, 12) (<16,0,C>, 1) (<16,0,D>, 1) (<16,0,F>,  ?) (<16,0,H>, 12) (<16,0,J>, J) 
          (<17,0,A>, 1) (<17,0,B>, 12) (<17,0,C>, 1) (<17,0,D>, 1) (<17,0,F>, 12) (<17,0,H>,  ?) (<17,0,J>, ?) 
          (<18,0,A>, 1) (<18,0,B>, 12) (<18,0,C>, 1) (<18,0,D>, 1) (<18,0,F>, 12) (<18,0,H>,  ?) (<18,0,J>, ?) 
          (<19,0,A>, 1) (<19,0,B>, 12) (<19,0,C>, 1) (<19,0,D>, 1) (<19,0,F>, 12) (<19,0,H>,  ?) (<19,0,J>, ?) 
          (<20,0,A>, 1) (<20,0,B>, 12) (<20,0,C>, 1) (<20,0,D>, 1) (<20,0,F>, 12) (<20,0,H>,  ?) (<20,0,J>, ?) 
          (<21,0,A>, 1) (<21,0,B>, 12) (<21,0,C>, 1) (<21,0,D>, 0) (<21,0,F>, 12) (<21,0,H>,  ?) (<21,0,J>, 0) 
          (<22,0,A>, 1) (<22,0,B>, 12) (<22,0,C>, 1) (<22,0,D>, 0) (<22,0,F>, 12) (<22,0,H>,  ?) (<22,0,J>, ?) 
          (<23,0,A>, 1) (<23,0,B>, 12) (<23,0,C>, 1) (<23,0,D>, 0) (<23,0,F>, 12) (<23,0,H>,  ?) (<23,0,J>, ?) 
          (<31,0,A>, 1) (<31,0,B>, 12) (<31,0,C>, 1) (<31,0,D>, 1) (<31,0,F>,  ?) (<31,0,H>,  ?) (<31,0,J>, J) 
          (<32,0,A>, 1) (<32,0,B>, 12) (<32,0,C>, 1) (<32,0,D>, 1) (<32,0,F>,  0) (<32,0,H>,  ?) (<32,0,J>, J) 
          (<33,0,A>, 1) (<33,0,B>, 12) (<33,0,C>, 1) (<33,0,D>, 1) (<33,0,F>,  0) (<33,0,H>,  H) (<33,0,J>, J) 
          (<34,0,A>, 1) (<34,0,B>, 12) (<34,0,C>, 1) (<34,0,D>, 1) (<34,0,F>,  0) (<34,0,H>,  H) (<34,0,J>, J) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 17: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f0(A,B,C,D,F,H,J)  -> f13(1,12,1,1,0,H,J)    True                       (1,1) 
          3.  f13(A,B,C,D,F,H,J) -> f13(A,B,C,D,1 + F,H,J) [B >= 1 + F]               (12,1)
          4.  f19(A,B,C,D,F,H,J) -> f22(A,B,C,D,F,H,J)     [0 >= 1 + C && B >= 1 + F] (1,1) 
          5.  f19(A,B,C,D,F,H,J) -> f22(A,B,C,D,F,H,J)     [C >= 1 && B >= 1 + F]     (39,1)
          6.  f22(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J) [M >= 0 && B >= 1 + N]     (40,1)
          7.  f22(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [M >= 0]                   (40,1)
          8.  f22(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [0 >= 1 + M]               (40,1)
          9.  f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [B >= 1 + F && C = 0]      (?,1) 
          10. f32(A,B,C,D,F,H,J) -> f35(A,B,C,D,F,1 + F,J) [B >= 2 + F]               (?,1) 
          11. f35(A,B,C,D,F,H,J) -> f38(A,B,C,D,F,H,J)     [0 >= 1 + A && B >= 1 + H] (?,1) 
          12. f35(A,B,C,D,F,H,J) -> f38(A,B,C,D,F,H,J)     [A >= 1 && B >= 1 + H]     (?,1) 
          13. f38(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) [M >= 1 + N]               (?,1) 
          14. f38(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) True                       (?,1) 
          15. f38(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) True                       (?,1) 
          16. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) [B >= 1 + H && A = 0]      (?,1) 
          17. f48(A,B,C,D,F,H,J) -> f52(A,B,C,D,F,H,M)     [0 >= 1 + D && B >= 2 + F] (1,1) 
          18. f48(A,B,C,D,F,H,J) -> f52(A,B,C,D,F,H,M)     [D >= 1 && B >= 2 + F]     (12,1)
          19. f52(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,J) [0 >= 1 + J]               (13,1)
          20. f52(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,J) [J >= 1]                   (13,1)
          21. f52(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0) [J = 0]                    (13,1)
          22. f52(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,J) True                       (13,1)
          23. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M) [B >= 2 + F && D = 0]      (12,1)
          31. f35(A,B,C,D,F,H,J) -> f32(A,B,C,D,1 + F,H,J) [H >= B]                   (?,1) 
          32. f32(A,B,C,D,F,H,J) -> f48(A,B,C,D,0,H,J)     [1 + F >= B]               (1,1) 
          33. f19(A,B,C,D,F,H,J) -> f32(A,B,C,D,0,H,J)     [F >= B]                   (2,1) 
          34. f13(A,B,C,D,F,H,J) -> f19(A,B,C,D,0,H,J)     [F >= B]                   (1,1) 
        Signature:
          {(f0,7);(f13,7);(f19,7);(f22,7);(f32,7);(f35,7);(f38,7);(f48,7);(f52,7);(f62,7);(f63,7);(f71,7)}
        Flow Graph:
          [2->{3},3->{3,34},4->{6,7,8},5->{6,7,8},6->{5,33},7->{9,33},8->{9,33},9->{9,33},10->{11,12,16},11->{13,14
          ,15},12->{13,14,15},13->{12,31},14->{12,31},15->{16,31},16->{16,31},17->{19,20,21,22},18->{19,20,21,22}
          ,19->{18},20->{18},21->{23},22->{23},23->{23},31->{10,32},32->{17,18,23},33->{10,32},34->{4,5,9,33}]
        Sizebounds:
          (< 2,0,A>, 1) (< 2,0,B>, 12) (< 2,0,C>, 1) (< 2,0,D>, 1) (< 2,0,F>,  0) (< 2,0,H>,  H) (< 2,0,J>, J) 
          (< 3,0,A>, 1) (< 3,0,B>, 12) (< 3,0,C>, 1) (< 3,0,D>, 1) (< 3,0,F>, 12) (< 3,0,H>,  H) (< 3,0,J>, J) 
          (< 4,0,A>, 1) (< 4,0,B>, 12) (< 4,0,C>, 1) (< 4,0,D>, 1) (< 4,0,F>, 12) (< 4,0,H>,  H) (< 4,0,J>, J) 
          (< 5,0,A>, 1) (< 5,0,B>, 12) (< 5,0,C>, 1) (< 5,0,D>, 1) (< 5,0,F>, 12) (< 5,0,H>,  H) (< 5,0,J>, J) 
          (< 6,0,A>, 1) (< 6,0,B>, 12) (< 6,0,C>, 1) (< 6,0,D>, 1) (< 6,0,F>, 12) (< 6,0,H>,  H) (< 6,0,J>, J) 
          (< 7,0,A>, 1) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 1) (< 7,0,F>, 12) (< 7,0,H>,  H) (< 7,0,J>, J) 
          (< 8,0,A>, 1) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>, 1) (< 8,0,F>, 12) (< 8,0,H>,  H) (< 8,0,J>, J) 
          (< 9,0,A>, 1) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 1) (< 9,0,F>, 12) (< 9,0,H>,  H) (< 9,0,J>, J) 
          (<10,0,A>, 1) (<10,0,B>, 12) (<10,0,C>, 1) (<10,0,D>, 1) (<10,0,F>, 12) (<10,0,H>,  ?) (<10,0,J>, J) 
          (<11,0,A>, 1) (<11,0,B>, 12) (<11,0,C>, 1) (<11,0,D>, 1) (<11,0,F>,  ?) (<11,0,H>, 12) (<11,0,J>, J) 
          (<12,0,A>, 1) (<12,0,B>, 12) (<12,0,C>, 1) (<12,0,D>, 1) (<12,0,F>,  ?) (<12,0,H>, 12) (<12,0,J>, J) 
          (<13,0,A>, 1) (<13,0,B>, 12) (<13,0,C>, 1) (<13,0,D>, 1) (<13,0,F>,  ?) (<13,0,H>, 12) (<13,0,J>, J) 
          (<14,0,A>, 1) (<14,0,B>, 12) (<14,0,C>, 1) (<14,0,D>, 1) (<14,0,F>,  ?) (<14,0,H>, 12) (<14,0,J>, J) 
          (<15,0,A>, 0) (<15,0,B>, 12) (<15,0,C>, 1) (<15,0,D>, 1) (<15,0,F>,  ?) (<15,0,H>, 12) (<15,0,J>, J) 
          (<16,0,A>, 0) (<16,0,B>, 12) (<16,0,C>, 1) (<16,0,D>, 1) (<16,0,F>,  ?) (<16,0,H>, 12) (<16,0,J>, J) 
          (<17,0,A>, 1) (<17,0,B>, 12) (<17,0,C>, 1) (<17,0,D>, 1) (<17,0,F>, 12) (<17,0,H>,  ?) (<17,0,J>, ?) 
          (<18,0,A>, 1) (<18,0,B>, 12) (<18,0,C>, 1) (<18,0,D>, 1) (<18,0,F>, 12) (<18,0,H>,  ?) (<18,0,J>, ?) 
          (<19,0,A>, 1) (<19,0,B>, 12) (<19,0,C>, 1) (<19,0,D>, 1) (<19,0,F>, 12) (<19,0,H>,  ?) (<19,0,J>, ?) 
          (<20,0,A>, 1) (<20,0,B>, 12) (<20,0,C>, 1) (<20,0,D>, 1) (<20,0,F>, 12) (<20,0,H>,  ?) (<20,0,J>, ?) 
          (<21,0,A>, 1) (<21,0,B>, 12) (<21,0,C>, 1) (<21,0,D>, 0) (<21,0,F>, 12) (<21,0,H>,  ?) (<21,0,J>, 0) 
          (<22,0,A>, 1) (<22,0,B>, 12) (<22,0,C>, 1) (<22,0,D>, 0) (<22,0,F>, 12) (<22,0,H>,  ?) (<22,0,J>, ?) 
          (<23,0,A>, 1) (<23,0,B>, 12) (<23,0,C>, 1) (<23,0,D>, 0) (<23,0,F>, 12) (<23,0,H>,  ?) (<23,0,J>, ?) 
          (<31,0,A>, 1) (<31,0,B>, 12) (<31,0,C>, 1) (<31,0,D>, 1) (<31,0,F>,  ?) (<31,0,H>,  ?) (<31,0,J>, J) 
          (<32,0,A>, 1) (<32,0,B>, 12) (<32,0,C>, 1) (<32,0,D>, 1) (<32,0,F>,  0) (<32,0,H>,  ?) (<32,0,J>, J) 
          (<33,0,A>, 1) (<33,0,B>, 12) (<33,0,C>, 1) (<33,0,D>, 1) (<33,0,F>,  0) (<33,0,H>,  H) (<33,0,J>, J) 
          (<34,0,A>, 1) (<34,0,B>, 12) (<34,0,C>, 1) (<34,0,D>, 1) (<34,0,F>,  0) (<34,0,H>,  H) (<34,0,J>, J) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [9], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f19) = x2 + -1*x5
        
        The following rules are strictly oriented:
        [B >= 1 + F && C = 0] ==>                       
           f19(A,B,C,D,F,H,J)   = B + -1*F              
                                > -1 + B + -1*F         
                                = f19(A,B,0,D,1 + F,H,J)
        
        
        The following rules are weakly oriented:
        
        We use the following global sizebounds:
        (< 2,0,A>, 1) (< 2,0,B>, 12) (< 2,0,C>, 1) (< 2,0,D>, 1) (< 2,0,F>,  0) (< 2,0,H>,  H) (< 2,0,J>, J) 
        (< 3,0,A>, 1) (< 3,0,B>, 12) (< 3,0,C>, 1) (< 3,0,D>, 1) (< 3,0,F>, 12) (< 3,0,H>,  H) (< 3,0,J>, J) 
        (< 4,0,A>, 1) (< 4,0,B>, 12) (< 4,0,C>, 1) (< 4,0,D>, 1) (< 4,0,F>, 12) (< 4,0,H>,  H) (< 4,0,J>, J) 
        (< 5,0,A>, 1) (< 5,0,B>, 12) (< 5,0,C>, 1) (< 5,0,D>, 1) (< 5,0,F>, 12) (< 5,0,H>,  H) (< 5,0,J>, J) 
        (< 6,0,A>, 1) (< 6,0,B>, 12) (< 6,0,C>, 1) (< 6,0,D>, 1) (< 6,0,F>, 12) (< 6,0,H>,  H) (< 6,0,J>, J) 
        (< 7,0,A>, 1) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 1) (< 7,0,F>, 12) (< 7,0,H>,  H) (< 7,0,J>, J) 
        (< 8,0,A>, 1) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>, 1) (< 8,0,F>, 12) (< 8,0,H>,  H) (< 8,0,J>, J) 
        (< 9,0,A>, 1) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 1) (< 9,0,F>, 12) (< 9,0,H>,  H) (< 9,0,J>, J) 
        (<10,0,A>, 1) (<10,0,B>, 12) (<10,0,C>, 1) (<10,0,D>, 1) (<10,0,F>, 12) (<10,0,H>,  ?) (<10,0,J>, J) 
        (<11,0,A>, 1) (<11,0,B>, 12) (<11,0,C>, 1) (<11,0,D>, 1) (<11,0,F>,  ?) (<11,0,H>, 12) (<11,0,J>, J) 
        (<12,0,A>, 1) (<12,0,B>, 12) (<12,0,C>, 1) (<12,0,D>, 1) (<12,0,F>,  ?) (<12,0,H>, 12) (<12,0,J>, J) 
        (<13,0,A>, 1) (<13,0,B>, 12) (<13,0,C>, 1) (<13,0,D>, 1) (<13,0,F>,  ?) (<13,0,H>, 12) (<13,0,J>, J) 
        (<14,0,A>, 1) (<14,0,B>, 12) (<14,0,C>, 1) (<14,0,D>, 1) (<14,0,F>,  ?) (<14,0,H>, 12) (<14,0,J>, J) 
        (<15,0,A>, 0) (<15,0,B>, 12) (<15,0,C>, 1) (<15,0,D>, 1) (<15,0,F>,  ?) (<15,0,H>, 12) (<15,0,J>, J) 
        (<16,0,A>, 0) (<16,0,B>, 12) (<16,0,C>, 1) (<16,0,D>, 1) (<16,0,F>,  ?) (<16,0,H>, 12) (<16,0,J>, J) 
        (<17,0,A>, 1) (<17,0,B>, 12) (<17,0,C>, 1) (<17,0,D>, 1) (<17,0,F>, 12) (<17,0,H>,  ?) (<17,0,J>, ?) 
        (<18,0,A>, 1) (<18,0,B>, 12) (<18,0,C>, 1) (<18,0,D>, 1) (<18,0,F>, 12) (<18,0,H>,  ?) (<18,0,J>, ?) 
        (<19,0,A>, 1) (<19,0,B>, 12) (<19,0,C>, 1) (<19,0,D>, 1) (<19,0,F>, 12) (<19,0,H>,  ?) (<19,0,J>, ?) 
        (<20,0,A>, 1) (<20,0,B>, 12) (<20,0,C>, 1) (<20,0,D>, 1) (<20,0,F>, 12) (<20,0,H>,  ?) (<20,0,J>, ?) 
        (<21,0,A>, 1) (<21,0,B>, 12) (<21,0,C>, 1) (<21,0,D>, 0) (<21,0,F>, 12) (<21,0,H>,  ?) (<21,0,J>, 0) 
        (<22,0,A>, 1) (<22,0,B>, 12) (<22,0,C>, 1) (<22,0,D>, 0) (<22,0,F>, 12) (<22,0,H>,  ?) (<22,0,J>, ?) 
        (<23,0,A>, 1) (<23,0,B>, 12) (<23,0,C>, 1) (<23,0,D>, 0) (<23,0,F>, 12) (<23,0,H>,  ?) (<23,0,J>, ?) 
        (<31,0,A>, 1) (<31,0,B>, 12) (<31,0,C>, 1) (<31,0,D>, 1) (<31,0,F>,  ?) (<31,0,H>,  ?) (<31,0,J>, J) 
        (<32,0,A>, 1) (<32,0,B>, 12) (<32,0,C>, 1) (<32,0,D>, 1) (<32,0,F>,  0) (<32,0,H>,  ?) (<32,0,J>, J) 
        (<33,0,A>, 1) (<33,0,B>, 12) (<33,0,C>, 1) (<33,0,D>, 1) (<33,0,F>,  0) (<33,0,H>,  H) (<33,0,J>, J) 
        (<34,0,A>, 1) (<34,0,B>, 12) (<34,0,C>, 1) (<34,0,D>, 1) (<34,0,F>,  0) (<34,0,H>,  H) (<34,0,J>, J) 
* Step 18: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f0(A,B,C,D,F,H,J)  -> f13(1,12,1,1,0,H,J)    True                       (1,1)   
          3.  f13(A,B,C,D,F,H,J) -> f13(A,B,C,D,1 + F,H,J) [B >= 1 + F]               (12,1)  
          4.  f19(A,B,C,D,F,H,J) -> f22(A,B,C,D,F,H,J)     [0 >= 1 + C && B >= 1 + F] (1,1)   
          5.  f19(A,B,C,D,F,H,J) -> f22(A,B,C,D,F,H,J)     [C >= 1 && B >= 1 + F]     (39,1)  
          6.  f22(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J) [M >= 0 && B >= 1 + N]     (40,1)  
          7.  f22(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [M >= 0]                   (40,1)  
          8.  f22(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [0 >= 1 + M]               (40,1)  
          9.  f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [B >= 1 + F && C = 0]      (1932,1)
          10. f32(A,B,C,D,F,H,J) -> f35(A,B,C,D,F,1 + F,J) [B >= 2 + F]               (?,1)   
          11. f35(A,B,C,D,F,H,J) -> f38(A,B,C,D,F,H,J)     [0 >= 1 + A && B >= 1 + H] (?,1)   
          12. f35(A,B,C,D,F,H,J) -> f38(A,B,C,D,F,H,J)     [A >= 1 && B >= 1 + H]     (?,1)   
          13. f38(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) [M >= 1 + N]               (?,1)   
          14. f38(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) True                       (?,1)   
          15. f38(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) True                       (?,1)   
          16. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) [B >= 1 + H && A = 0]      (?,1)   
          17. f48(A,B,C,D,F,H,J) -> f52(A,B,C,D,F,H,M)     [0 >= 1 + D && B >= 2 + F] (1,1)   
          18. f48(A,B,C,D,F,H,J) -> f52(A,B,C,D,F,H,M)     [D >= 1 && B >= 2 + F]     (12,1)  
          19. f52(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,J) [0 >= 1 + J]               (13,1)  
          20. f52(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,J) [J >= 1]                   (13,1)  
          21. f52(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0) [J = 0]                    (13,1)  
          22. f52(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,J) True                       (13,1)  
          23. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M) [B >= 2 + F && D = 0]      (12,1)  
          31. f35(A,B,C,D,F,H,J) -> f32(A,B,C,D,1 + F,H,J) [H >= B]                   (?,1)   
          32. f32(A,B,C,D,F,H,J) -> f48(A,B,C,D,0,H,J)     [1 + F >= B]               (1,1)   
          33. f19(A,B,C,D,F,H,J) -> f32(A,B,C,D,0,H,J)     [F >= B]                   (2,1)   
          34. f13(A,B,C,D,F,H,J) -> f19(A,B,C,D,0,H,J)     [F >= B]                   (1,1)   
        Signature:
          {(f0,7);(f13,7);(f19,7);(f22,7);(f32,7);(f35,7);(f38,7);(f48,7);(f52,7);(f62,7);(f63,7);(f71,7)}
        Flow Graph:
          [2->{3},3->{3,34},4->{6,7,8},5->{6,7,8},6->{5,33},7->{9,33},8->{9,33},9->{9,33},10->{11,12,16},11->{13,14
          ,15},12->{13,14,15},13->{12,31},14->{12,31},15->{16,31},16->{16,31},17->{19,20,21,22},18->{19,20,21,22}
          ,19->{18},20->{18},21->{23},22->{23},23->{23},31->{10,32},32->{17,18,23},33->{10,32},34->{4,5,9,33}]
        Sizebounds:
          (< 2,0,A>, 1) (< 2,0,B>, 12) (< 2,0,C>, 1) (< 2,0,D>, 1) (< 2,0,F>,  0) (< 2,0,H>,  H) (< 2,0,J>, J) 
          (< 3,0,A>, 1) (< 3,0,B>, 12) (< 3,0,C>, 1) (< 3,0,D>, 1) (< 3,0,F>, 12) (< 3,0,H>,  H) (< 3,0,J>, J) 
          (< 4,0,A>, 1) (< 4,0,B>, 12) (< 4,0,C>, 1) (< 4,0,D>, 1) (< 4,0,F>, 12) (< 4,0,H>,  H) (< 4,0,J>, J) 
          (< 5,0,A>, 1) (< 5,0,B>, 12) (< 5,0,C>, 1) (< 5,0,D>, 1) (< 5,0,F>, 12) (< 5,0,H>,  H) (< 5,0,J>, J) 
          (< 6,0,A>, 1) (< 6,0,B>, 12) (< 6,0,C>, 1) (< 6,0,D>, 1) (< 6,0,F>, 12) (< 6,0,H>,  H) (< 6,0,J>, J) 
          (< 7,0,A>, 1) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 1) (< 7,0,F>, 12) (< 7,0,H>,  H) (< 7,0,J>, J) 
          (< 8,0,A>, 1) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>, 1) (< 8,0,F>, 12) (< 8,0,H>,  H) (< 8,0,J>, J) 
          (< 9,0,A>, 1) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 1) (< 9,0,F>, 12) (< 9,0,H>,  H) (< 9,0,J>, J) 
          (<10,0,A>, 1) (<10,0,B>, 12) (<10,0,C>, 1) (<10,0,D>, 1) (<10,0,F>, 12) (<10,0,H>,  ?) (<10,0,J>, J) 
          (<11,0,A>, 1) (<11,0,B>, 12) (<11,0,C>, 1) (<11,0,D>, 1) (<11,0,F>,  ?) (<11,0,H>, 12) (<11,0,J>, J) 
          (<12,0,A>, 1) (<12,0,B>, 12) (<12,0,C>, 1) (<12,0,D>, 1) (<12,0,F>,  ?) (<12,0,H>, 12) (<12,0,J>, J) 
          (<13,0,A>, 1) (<13,0,B>, 12) (<13,0,C>, 1) (<13,0,D>, 1) (<13,0,F>,  ?) (<13,0,H>, 12) (<13,0,J>, J) 
          (<14,0,A>, 1) (<14,0,B>, 12) (<14,0,C>, 1) (<14,0,D>, 1) (<14,0,F>,  ?) (<14,0,H>, 12) (<14,0,J>, J) 
          (<15,0,A>, 0) (<15,0,B>, 12) (<15,0,C>, 1) (<15,0,D>, 1) (<15,0,F>,  ?) (<15,0,H>, 12) (<15,0,J>, J) 
          (<16,0,A>, 0) (<16,0,B>, 12) (<16,0,C>, 1) (<16,0,D>, 1) (<16,0,F>,  ?) (<16,0,H>, 12) (<16,0,J>, J) 
          (<17,0,A>, 1) (<17,0,B>, 12) (<17,0,C>, 1) (<17,0,D>, 1) (<17,0,F>, 12) (<17,0,H>,  ?) (<17,0,J>, ?) 
          (<18,0,A>, 1) (<18,0,B>, 12) (<18,0,C>, 1) (<18,0,D>, 1) (<18,0,F>, 12) (<18,0,H>,  ?) (<18,0,J>, ?) 
          (<19,0,A>, 1) (<19,0,B>, 12) (<19,0,C>, 1) (<19,0,D>, 1) (<19,0,F>, 12) (<19,0,H>,  ?) (<19,0,J>, ?) 
          (<20,0,A>, 1) (<20,0,B>, 12) (<20,0,C>, 1) (<20,0,D>, 1) (<20,0,F>, 12) (<20,0,H>,  ?) (<20,0,J>, ?) 
          (<21,0,A>, 1) (<21,0,B>, 12) (<21,0,C>, 1) (<21,0,D>, 0) (<21,0,F>, 12) (<21,0,H>,  ?) (<21,0,J>, 0) 
          (<22,0,A>, 1) (<22,0,B>, 12) (<22,0,C>, 1) (<22,0,D>, 0) (<22,0,F>, 12) (<22,0,H>,  ?) (<22,0,J>, ?) 
          (<23,0,A>, 1) (<23,0,B>, 12) (<23,0,C>, 1) (<23,0,D>, 0) (<23,0,F>, 12) (<23,0,H>,  ?) (<23,0,J>, ?) 
          (<31,0,A>, 1) (<31,0,B>, 12) (<31,0,C>, 1) (<31,0,D>, 1) (<31,0,F>,  ?) (<31,0,H>,  ?) (<31,0,J>, J) 
          (<32,0,A>, 1) (<32,0,B>, 12) (<32,0,C>, 1) (<32,0,D>, 1) (<32,0,F>,  0) (<32,0,H>,  ?) (<32,0,J>, J) 
          (<33,0,A>, 1) (<33,0,B>, 12) (<33,0,C>, 1) (<33,0,D>, 1) (<33,0,F>,  0) (<33,0,H>,  H) (<33,0,J>, J) 
          (<34,0,A>, 1) (<34,0,B>, 12) (<34,0,C>, 1) (<34,0,D>, 1) (<34,0,F>,  0) (<34,0,H>,  H) (<34,0,J>, J) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [10,31,13,11,12,14,15,16], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f32) = 2 + x2 + -1*x5
          p(f35) = 1 + x2 + -1*x5
          p(f38) = 1 + x2 + -1*x5
        
        The following rules are strictly oriented:
                [B >= 2 + F] ==>                       
          f32(A,B,C,D,F,H,J)   = 2 + B + -1*F          
                               > 1 + B + -1*F          
                               = f35(A,B,C,D,F,1 + F,J)
        
        
        The following rules are weakly oriented:
        [0 >= 1 + A && B >= 1 + H] ==>                       
                f35(A,B,C,D,F,H,J)   = 1 + B + -1*F          
                                    >= 1 + B + -1*F          
                                     = f38(A,B,C,D,F,H,J)    
        
            [A >= 1 && B >= 1 + H] ==>                       
                f35(A,B,C,D,F,H,J)   = 1 + B + -1*F          
                                    >= 1 + B + -1*F          
                                     = f38(A,B,C,D,F,H,J)    
        
                      [M >= 1 + N] ==>                       
                f38(A,B,C,D,F,H,J)   = 1 + B + -1*F          
                                    >= 1 + B + -1*F          
                                     = f35(1,B,C,D,F,1 + H,J)
        
                              True ==>                       
                f38(A,B,C,D,F,H,J)   = 1 + B + -1*F          
                                    >= 1 + B + -1*F          
                                     = f35(1,B,C,D,F,1 + H,J)
        
                              True ==>                       
                f38(A,B,C,D,F,H,J)   = 1 + B + -1*F          
                                    >= 1 + B + -1*F          
                                     = f35(0,B,C,D,F,1 + H,J)
        
             [B >= 1 + H && A = 0] ==>                       
                f35(A,B,C,D,F,H,J)   = 1 + B + -1*F          
                                    >= 1 + B + -1*F          
                                     = f35(0,B,C,D,F,1 + H,J)
        
                          [H >= B] ==>                       
                f35(A,B,C,D,F,H,J)   = 1 + B + -1*F          
                                    >= 1 + B + -1*F          
                                     = f32(A,B,C,D,1 + F,H,J)
        
        We use the following global sizebounds:
        (< 2,0,A>, 1) (< 2,0,B>, 12) (< 2,0,C>, 1) (< 2,0,D>, 1) (< 2,0,F>,  0) (< 2,0,H>,  H) (< 2,0,J>, J) 
        (< 3,0,A>, 1) (< 3,0,B>, 12) (< 3,0,C>, 1) (< 3,0,D>, 1) (< 3,0,F>, 12) (< 3,0,H>,  H) (< 3,0,J>, J) 
        (< 4,0,A>, 1) (< 4,0,B>, 12) (< 4,0,C>, 1) (< 4,0,D>, 1) (< 4,0,F>, 12) (< 4,0,H>,  H) (< 4,0,J>, J) 
        (< 5,0,A>, 1) (< 5,0,B>, 12) (< 5,0,C>, 1) (< 5,0,D>, 1) (< 5,0,F>, 12) (< 5,0,H>,  H) (< 5,0,J>, J) 
        (< 6,0,A>, 1) (< 6,0,B>, 12) (< 6,0,C>, 1) (< 6,0,D>, 1) (< 6,0,F>, 12) (< 6,0,H>,  H) (< 6,0,J>, J) 
        (< 7,0,A>, 1) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 1) (< 7,0,F>, 12) (< 7,0,H>,  H) (< 7,0,J>, J) 
        (< 8,0,A>, 1) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>, 1) (< 8,0,F>, 12) (< 8,0,H>,  H) (< 8,0,J>, J) 
        (< 9,0,A>, 1) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 1) (< 9,0,F>, 12) (< 9,0,H>,  H) (< 9,0,J>, J) 
        (<10,0,A>, 1) (<10,0,B>, 12) (<10,0,C>, 1) (<10,0,D>, 1) (<10,0,F>, 12) (<10,0,H>,  ?) (<10,0,J>, J) 
        (<11,0,A>, 1) (<11,0,B>, 12) (<11,0,C>, 1) (<11,0,D>, 1) (<11,0,F>,  ?) (<11,0,H>, 12) (<11,0,J>, J) 
        (<12,0,A>, 1) (<12,0,B>, 12) (<12,0,C>, 1) (<12,0,D>, 1) (<12,0,F>,  ?) (<12,0,H>, 12) (<12,0,J>, J) 
        (<13,0,A>, 1) (<13,0,B>, 12) (<13,0,C>, 1) (<13,0,D>, 1) (<13,0,F>,  ?) (<13,0,H>, 12) (<13,0,J>, J) 
        (<14,0,A>, 1) (<14,0,B>, 12) (<14,0,C>, 1) (<14,0,D>, 1) (<14,0,F>,  ?) (<14,0,H>, 12) (<14,0,J>, J) 
        (<15,0,A>, 0) (<15,0,B>, 12) (<15,0,C>, 1) (<15,0,D>, 1) (<15,0,F>,  ?) (<15,0,H>, 12) (<15,0,J>, J) 
        (<16,0,A>, 0) (<16,0,B>, 12) (<16,0,C>, 1) (<16,0,D>, 1) (<16,0,F>,  ?) (<16,0,H>, 12) (<16,0,J>, J) 
        (<17,0,A>, 1) (<17,0,B>, 12) (<17,0,C>, 1) (<17,0,D>, 1) (<17,0,F>, 12) (<17,0,H>,  ?) (<17,0,J>, ?) 
        (<18,0,A>, 1) (<18,0,B>, 12) (<18,0,C>, 1) (<18,0,D>, 1) (<18,0,F>, 12) (<18,0,H>,  ?) (<18,0,J>, ?) 
        (<19,0,A>, 1) (<19,0,B>, 12) (<19,0,C>, 1) (<19,0,D>, 1) (<19,0,F>, 12) (<19,0,H>,  ?) (<19,0,J>, ?) 
        (<20,0,A>, 1) (<20,0,B>, 12) (<20,0,C>, 1) (<20,0,D>, 1) (<20,0,F>, 12) (<20,0,H>,  ?) (<20,0,J>, ?) 
        (<21,0,A>, 1) (<21,0,B>, 12) (<21,0,C>, 1) (<21,0,D>, 0) (<21,0,F>, 12) (<21,0,H>,  ?) (<21,0,J>, 0) 
        (<22,0,A>, 1) (<22,0,B>, 12) (<22,0,C>, 1) (<22,0,D>, 0) (<22,0,F>, 12) (<22,0,H>,  ?) (<22,0,J>, ?) 
        (<23,0,A>, 1) (<23,0,B>, 12) (<23,0,C>, 1) (<23,0,D>, 0) (<23,0,F>, 12) (<23,0,H>,  ?) (<23,0,J>, ?) 
        (<31,0,A>, 1) (<31,0,B>, 12) (<31,0,C>, 1) (<31,0,D>, 1) (<31,0,F>,  ?) (<31,0,H>,  ?) (<31,0,J>, J) 
        (<32,0,A>, 1) (<32,0,B>, 12) (<32,0,C>, 1) (<32,0,D>, 1) (<32,0,F>,  0) (<32,0,H>,  ?) (<32,0,J>, J) 
        (<33,0,A>, 1) (<33,0,B>, 12) (<33,0,C>, 1) (<33,0,D>, 1) (<33,0,F>,  0) (<33,0,H>,  H) (<33,0,J>, J) 
        (<34,0,A>, 1) (<34,0,B>, 12) (<34,0,C>, 1) (<34,0,D>, 1) (<34,0,F>,  0) (<34,0,H>,  H) (<34,0,J>, J) 
* Step 19: KnowledgePropagation WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f0(A,B,C,D,F,H,J)  -> f13(1,12,1,1,0,H,J)    True                       (1,1)   
          3.  f13(A,B,C,D,F,H,J) -> f13(A,B,C,D,1 + F,H,J) [B >= 1 + F]               (12,1)  
          4.  f19(A,B,C,D,F,H,J) -> f22(A,B,C,D,F,H,J)     [0 >= 1 + C && B >= 1 + F] (1,1)   
          5.  f19(A,B,C,D,F,H,J) -> f22(A,B,C,D,F,H,J)     [C >= 1 && B >= 1 + F]     (39,1)  
          6.  f22(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J) [M >= 0 && B >= 1 + N]     (40,1)  
          7.  f22(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [M >= 0]                   (40,1)  
          8.  f22(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [0 >= 1 + M]               (40,1)  
          9.  f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [B >= 1 + F && C = 0]      (1932,1)
          10. f32(A,B,C,D,F,H,J) -> f35(A,B,C,D,F,1 + F,J) [B >= 2 + F]               (28,1)  
          11. f35(A,B,C,D,F,H,J) -> f38(A,B,C,D,F,H,J)     [0 >= 1 + A && B >= 1 + H] (?,1)   
          12. f35(A,B,C,D,F,H,J) -> f38(A,B,C,D,F,H,J)     [A >= 1 && B >= 1 + H]     (?,1)   
          13. f38(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) [M >= 1 + N]               (?,1)   
          14. f38(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) True                       (?,1)   
          15. f38(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) True                       (?,1)   
          16. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) [B >= 1 + H && A = 0]      (?,1)   
          17. f48(A,B,C,D,F,H,J) -> f52(A,B,C,D,F,H,M)     [0 >= 1 + D && B >= 2 + F] (1,1)   
          18. f48(A,B,C,D,F,H,J) -> f52(A,B,C,D,F,H,M)     [D >= 1 && B >= 2 + F]     (12,1)  
          19. f52(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,J) [0 >= 1 + J]               (13,1)  
          20. f52(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,J) [J >= 1]                   (13,1)  
          21. f52(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0) [J = 0]                    (13,1)  
          22. f52(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,J) True                       (13,1)  
          23. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M) [B >= 2 + F && D = 0]      (12,1)  
          31. f35(A,B,C,D,F,H,J) -> f32(A,B,C,D,1 + F,H,J) [H >= B]                   (?,1)   
          32. f32(A,B,C,D,F,H,J) -> f48(A,B,C,D,0,H,J)     [1 + F >= B]               (1,1)   
          33. f19(A,B,C,D,F,H,J) -> f32(A,B,C,D,0,H,J)     [F >= B]                   (2,1)   
          34. f13(A,B,C,D,F,H,J) -> f19(A,B,C,D,0,H,J)     [F >= B]                   (1,1)   
        Signature:
          {(f0,7);(f13,7);(f19,7);(f22,7);(f32,7);(f35,7);(f38,7);(f48,7);(f52,7);(f62,7);(f63,7);(f71,7)}
        Flow Graph:
          [2->{3},3->{3,34},4->{6,7,8},5->{6,7,8},6->{5,33},7->{9,33},8->{9,33},9->{9,33},10->{11,12,16},11->{13,14
          ,15},12->{13,14,15},13->{12,31},14->{12,31},15->{16,31},16->{16,31},17->{19,20,21,22},18->{19,20,21,22}
          ,19->{18},20->{18},21->{23},22->{23},23->{23},31->{10,32},32->{17,18,23},33->{10,32},34->{4,5,9,33}]
        Sizebounds:
          (< 2,0,A>, 1) (< 2,0,B>, 12) (< 2,0,C>, 1) (< 2,0,D>, 1) (< 2,0,F>,  0) (< 2,0,H>,  H) (< 2,0,J>, J) 
          (< 3,0,A>, 1) (< 3,0,B>, 12) (< 3,0,C>, 1) (< 3,0,D>, 1) (< 3,0,F>, 12) (< 3,0,H>,  H) (< 3,0,J>, J) 
          (< 4,0,A>, 1) (< 4,0,B>, 12) (< 4,0,C>, 1) (< 4,0,D>, 1) (< 4,0,F>, 12) (< 4,0,H>,  H) (< 4,0,J>, J) 
          (< 5,0,A>, 1) (< 5,0,B>, 12) (< 5,0,C>, 1) (< 5,0,D>, 1) (< 5,0,F>, 12) (< 5,0,H>,  H) (< 5,0,J>, J) 
          (< 6,0,A>, 1) (< 6,0,B>, 12) (< 6,0,C>, 1) (< 6,0,D>, 1) (< 6,0,F>, 12) (< 6,0,H>,  H) (< 6,0,J>, J) 
          (< 7,0,A>, 1) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 1) (< 7,0,F>, 12) (< 7,0,H>,  H) (< 7,0,J>, J) 
          (< 8,0,A>, 1) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>, 1) (< 8,0,F>, 12) (< 8,0,H>,  H) (< 8,0,J>, J) 
          (< 9,0,A>, 1) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 1) (< 9,0,F>, 12) (< 9,0,H>,  H) (< 9,0,J>, J) 
          (<10,0,A>, 1) (<10,0,B>, 12) (<10,0,C>, 1) (<10,0,D>, 1) (<10,0,F>, 12) (<10,0,H>,  ?) (<10,0,J>, J) 
          (<11,0,A>, 1) (<11,0,B>, 12) (<11,0,C>, 1) (<11,0,D>, 1) (<11,0,F>,  ?) (<11,0,H>, 12) (<11,0,J>, J) 
          (<12,0,A>, 1) (<12,0,B>, 12) (<12,0,C>, 1) (<12,0,D>, 1) (<12,0,F>,  ?) (<12,0,H>, 12) (<12,0,J>, J) 
          (<13,0,A>, 1) (<13,0,B>, 12) (<13,0,C>, 1) (<13,0,D>, 1) (<13,0,F>,  ?) (<13,0,H>, 12) (<13,0,J>, J) 
          (<14,0,A>, 1) (<14,0,B>, 12) (<14,0,C>, 1) (<14,0,D>, 1) (<14,0,F>,  ?) (<14,0,H>, 12) (<14,0,J>, J) 
          (<15,0,A>, 0) (<15,0,B>, 12) (<15,0,C>, 1) (<15,0,D>, 1) (<15,0,F>,  ?) (<15,0,H>, 12) (<15,0,J>, J) 
          (<16,0,A>, 0) (<16,0,B>, 12) (<16,0,C>, 1) (<16,0,D>, 1) (<16,0,F>,  ?) (<16,0,H>, 12) (<16,0,J>, J) 
          (<17,0,A>, 1) (<17,0,B>, 12) (<17,0,C>, 1) (<17,0,D>, 1) (<17,0,F>, 12) (<17,0,H>,  ?) (<17,0,J>, ?) 
          (<18,0,A>, 1) (<18,0,B>, 12) (<18,0,C>, 1) (<18,0,D>, 1) (<18,0,F>, 12) (<18,0,H>,  ?) (<18,0,J>, ?) 
          (<19,0,A>, 1) (<19,0,B>, 12) (<19,0,C>, 1) (<19,0,D>, 1) (<19,0,F>, 12) (<19,0,H>,  ?) (<19,0,J>, ?) 
          (<20,0,A>, 1) (<20,0,B>, 12) (<20,0,C>, 1) (<20,0,D>, 1) (<20,0,F>, 12) (<20,0,H>,  ?) (<20,0,J>, ?) 
          (<21,0,A>, 1) (<21,0,B>, 12) (<21,0,C>, 1) (<21,0,D>, 0) (<21,0,F>, 12) (<21,0,H>,  ?) (<21,0,J>, 0) 
          (<22,0,A>, 1) (<22,0,B>, 12) (<22,0,C>, 1) (<22,0,D>, 0) (<22,0,F>, 12) (<22,0,H>,  ?) (<22,0,J>, ?) 
          (<23,0,A>, 1) (<23,0,B>, 12) (<23,0,C>, 1) (<23,0,D>, 0) (<23,0,F>, 12) (<23,0,H>,  ?) (<23,0,J>, ?) 
          (<31,0,A>, 1) (<31,0,B>, 12) (<31,0,C>, 1) (<31,0,D>, 1) (<31,0,F>,  ?) (<31,0,H>,  ?) (<31,0,J>, J) 
          (<32,0,A>, 1) (<32,0,B>, 12) (<32,0,C>, 1) (<32,0,D>, 1) (<32,0,F>,  0) (<32,0,H>,  ?) (<32,0,J>, J) 
          (<33,0,A>, 1) (<33,0,B>, 12) (<33,0,C>, 1) (<33,0,D>, 1) (<33,0,F>,  0) (<33,0,H>,  H) (<33,0,J>, J) 
          (<34,0,A>, 1) (<34,0,B>, 12) (<34,0,C>, 1) (<34,0,D>, 1) (<34,0,F>,  0) (<34,0,H>,  H) (<34,0,J>, J) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 20: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f0(A,B,C,D,F,H,J)  -> f13(1,12,1,1,0,H,J)    True                       (1,1)   
          3.  f13(A,B,C,D,F,H,J) -> f13(A,B,C,D,1 + F,H,J) [B >= 1 + F]               (12,1)  
          4.  f19(A,B,C,D,F,H,J) -> f22(A,B,C,D,F,H,J)     [0 >= 1 + C && B >= 1 + F] (1,1)   
          5.  f19(A,B,C,D,F,H,J) -> f22(A,B,C,D,F,H,J)     [C >= 1 && B >= 1 + F]     (39,1)  
          6.  f22(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J) [M >= 0 && B >= 1 + N]     (40,1)  
          7.  f22(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [M >= 0]                   (40,1)  
          8.  f22(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [0 >= 1 + M]               (40,1)  
          9.  f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [B >= 1 + F && C = 0]      (1932,1)
          10. f32(A,B,C,D,F,H,J) -> f35(A,B,C,D,F,1 + F,J) [B >= 2 + F]               (28,1)  
          11. f35(A,B,C,D,F,H,J) -> f38(A,B,C,D,F,H,J)     [0 >= 1 + A && B >= 1 + H] (28,1)  
          12. f35(A,B,C,D,F,H,J) -> f38(A,B,C,D,F,H,J)     [A >= 1 && B >= 1 + H]     (?,1)   
          13. f38(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) [M >= 1 + N]               (?,1)   
          14. f38(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) True                       (?,1)   
          15. f38(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) True                       (?,1)   
          16. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) [B >= 1 + H && A = 0]      (?,1)   
          17. f48(A,B,C,D,F,H,J) -> f52(A,B,C,D,F,H,M)     [0 >= 1 + D && B >= 2 + F] (1,1)   
          18. f48(A,B,C,D,F,H,J) -> f52(A,B,C,D,F,H,M)     [D >= 1 && B >= 2 + F]     (12,1)  
          19. f52(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,J) [0 >= 1 + J]               (13,1)  
          20. f52(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,J) [J >= 1]                   (13,1)  
          21. f52(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0) [J = 0]                    (13,1)  
          22. f52(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,J) True                       (13,1)  
          23. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M) [B >= 2 + F && D = 0]      (12,1)  
          31. f35(A,B,C,D,F,H,J) -> f32(A,B,C,D,1 + F,H,J) [H >= B]                   (?,1)   
          32. f32(A,B,C,D,F,H,J) -> f48(A,B,C,D,0,H,J)     [1 + F >= B]               (1,1)   
          33. f19(A,B,C,D,F,H,J) -> f32(A,B,C,D,0,H,J)     [F >= B]                   (2,1)   
          34. f13(A,B,C,D,F,H,J) -> f19(A,B,C,D,0,H,J)     [F >= B]                   (1,1)   
        Signature:
          {(f0,7);(f13,7);(f19,7);(f22,7);(f32,7);(f35,7);(f38,7);(f48,7);(f52,7);(f62,7);(f63,7);(f71,7)}
        Flow Graph:
          [2->{3},3->{3,34},4->{6,7,8},5->{6,7,8},6->{5,33},7->{9,33},8->{9,33},9->{9,33},10->{11,12,16},11->{13,14
          ,15},12->{13,14,15},13->{12,31},14->{12,31},15->{16,31},16->{16,31},17->{19,20,21,22},18->{19,20,21,22}
          ,19->{18},20->{18},21->{23},22->{23},23->{23},31->{10,32},32->{17,18,23},33->{10,32},34->{4,5,9,33}]
        Sizebounds:
          (< 2,0,A>, 1) (< 2,0,B>, 12) (< 2,0,C>, 1) (< 2,0,D>, 1) (< 2,0,F>,  0) (< 2,0,H>,  H) (< 2,0,J>, J) 
          (< 3,0,A>, 1) (< 3,0,B>, 12) (< 3,0,C>, 1) (< 3,0,D>, 1) (< 3,0,F>, 12) (< 3,0,H>,  H) (< 3,0,J>, J) 
          (< 4,0,A>, 1) (< 4,0,B>, 12) (< 4,0,C>, 1) (< 4,0,D>, 1) (< 4,0,F>, 12) (< 4,0,H>,  H) (< 4,0,J>, J) 
          (< 5,0,A>, 1) (< 5,0,B>, 12) (< 5,0,C>, 1) (< 5,0,D>, 1) (< 5,0,F>, 12) (< 5,0,H>,  H) (< 5,0,J>, J) 
          (< 6,0,A>, 1) (< 6,0,B>, 12) (< 6,0,C>, 1) (< 6,0,D>, 1) (< 6,0,F>, 12) (< 6,0,H>,  H) (< 6,0,J>, J) 
          (< 7,0,A>, 1) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 1) (< 7,0,F>, 12) (< 7,0,H>,  H) (< 7,0,J>, J) 
          (< 8,0,A>, 1) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>, 1) (< 8,0,F>, 12) (< 8,0,H>,  H) (< 8,0,J>, J) 
          (< 9,0,A>, 1) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 1) (< 9,0,F>, 12) (< 9,0,H>,  H) (< 9,0,J>, J) 
          (<10,0,A>, 1) (<10,0,B>, 12) (<10,0,C>, 1) (<10,0,D>, 1) (<10,0,F>, 12) (<10,0,H>,  ?) (<10,0,J>, J) 
          (<11,0,A>, 1) (<11,0,B>, 12) (<11,0,C>, 1) (<11,0,D>, 1) (<11,0,F>,  ?) (<11,0,H>, 12) (<11,0,J>, J) 
          (<12,0,A>, 1) (<12,0,B>, 12) (<12,0,C>, 1) (<12,0,D>, 1) (<12,0,F>,  ?) (<12,0,H>, 12) (<12,0,J>, J) 
          (<13,0,A>, 1) (<13,0,B>, 12) (<13,0,C>, 1) (<13,0,D>, 1) (<13,0,F>,  ?) (<13,0,H>, 12) (<13,0,J>, J) 
          (<14,0,A>, 1) (<14,0,B>, 12) (<14,0,C>, 1) (<14,0,D>, 1) (<14,0,F>,  ?) (<14,0,H>, 12) (<14,0,J>, J) 
          (<15,0,A>, 0) (<15,0,B>, 12) (<15,0,C>, 1) (<15,0,D>, 1) (<15,0,F>,  ?) (<15,0,H>, 12) (<15,0,J>, J) 
          (<16,0,A>, 0) (<16,0,B>, 12) (<16,0,C>, 1) (<16,0,D>, 1) (<16,0,F>,  ?) (<16,0,H>, 12) (<16,0,J>, J) 
          (<17,0,A>, 1) (<17,0,B>, 12) (<17,0,C>, 1) (<17,0,D>, 1) (<17,0,F>, 12) (<17,0,H>,  ?) (<17,0,J>, ?) 
          (<18,0,A>, 1) (<18,0,B>, 12) (<18,0,C>, 1) (<18,0,D>, 1) (<18,0,F>, 12) (<18,0,H>,  ?) (<18,0,J>, ?) 
          (<19,0,A>, 1) (<19,0,B>, 12) (<19,0,C>, 1) (<19,0,D>, 1) (<19,0,F>, 12) (<19,0,H>,  ?) (<19,0,J>, ?) 
          (<20,0,A>, 1) (<20,0,B>, 12) (<20,0,C>, 1) (<20,0,D>, 1) (<20,0,F>, 12) (<20,0,H>,  ?) (<20,0,J>, ?) 
          (<21,0,A>, 1) (<21,0,B>, 12) (<21,0,C>, 1) (<21,0,D>, 0) (<21,0,F>, 12) (<21,0,H>,  ?) (<21,0,J>, 0) 
          (<22,0,A>, 1) (<22,0,B>, 12) (<22,0,C>, 1) (<22,0,D>, 0) (<22,0,F>, 12) (<22,0,H>,  ?) (<22,0,J>, ?) 
          (<23,0,A>, 1) (<23,0,B>, 12) (<23,0,C>, 1) (<23,0,D>, 0) (<23,0,F>, 12) (<23,0,H>,  ?) (<23,0,J>, ?) 
          (<31,0,A>, 1) (<31,0,B>, 12) (<31,0,C>, 1) (<31,0,D>, 1) (<31,0,F>,  ?) (<31,0,H>,  ?) (<31,0,J>, J) 
          (<32,0,A>, 1) (<32,0,B>, 12) (<32,0,C>, 1) (<32,0,D>, 1) (<32,0,F>,  0) (<32,0,H>,  ?) (<32,0,J>, J) 
          (<33,0,A>, 1) (<33,0,B>, 12) (<33,0,C>, 1) (<33,0,D>, 1) (<33,0,F>,  0) (<33,0,H>,  H) (<33,0,J>, J) 
          (<34,0,A>, 1) (<34,0,B>, 12) (<34,0,C>, 1) (<34,0,D>, 1) (<34,0,F>,  0) (<34,0,H>,  H) (<34,0,J>, J) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [31,13,11,12,14,15,16], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f32) = 0
          p(f35) = 1
          p(f38) = 1
        
        The following rules are strictly oriented:
                    [H >= B] ==>                       
          f35(A,B,C,D,F,H,J)   = 1                     
                               > 0                     
                               = f32(A,B,C,D,1 + F,H,J)
        
        
        The following rules are weakly oriented:
        [0 >= 1 + A && B >= 1 + H] ==>                       
                f35(A,B,C,D,F,H,J)   = 1                     
                                    >= 1                     
                                     = f38(A,B,C,D,F,H,J)    
        
            [A >= 1 && B >= 1 + H] ==>                       
                f35(A,B,C,D,F,H,J)   = 1                     
                                    >= 1                     
                                     = f38(A,B,C,D,F,H,J)    
        
                      [M >= 1 + N] ==>                       
                f38(A,B,C,D,F,H,J)   = 1                     
                                    >= 1                     
                                     = f35(1,B,C,D,F,1 + H,J)
        
                              True ==>                       
                f38(A,B,C,D,F,H,J)   = 1                     
                                    >= 1                     
                                     = f35(1,B,C,D,F,1 + H,J)
        
                              True ==>                       
                f38(A,B,C,D,F,H,J)   = 1                     
                                    >= 1                     
                                     = f35(0,B,C,D,F,1 + H,J)
        
             [B >= 1 + H && A = 0] ==>                       
                f35(A,B,C,D,F,H,J)   = 1                     
                                    >= 1                     
                                     = f35(0,B,C,D,F,1 + H,J)
        
        We use the following global sizebounds:
        (< 2,0,A>, 1) (< 2,0,B>, 12) (< 2,0,C>, 1) (< 2,0,D>, 1) (< 2,0,F>,  0) (< 2,0,H>,  H) (< 2,0,J>, J) 
        (< 3,0,A>, 1) (< 3,0,B>, 12) (< 3,0,C>, 1) (< 3,0,D>, 1) (< 3,0,F>, 12) (< 3,0,H>,  H) (< 3,0,J>, J) 
        (< 4,0,A>, 1) (< 4,0,B>, 12) (< 4,0,C>, 1) (< 4,0,D>, 1) (< 4,0,F>, 12) (< 4,0,H>,  H) (< 4,0,J>, J) 
        (< 5,0,A>, 1) (< 5,0,B>, 12) (< 5,0,C>, 1) (< 5,0,D>, 1) (< 5,0,F>, 12) (< 5,0,H>,  H) (< 5,0,J>, J) 
        (< 6,0,A>, 1) (< 6,0,B>, 12) (< 6,0,C>, 1) (< 6,0,D>, 1) (< 6,0,F>, 12) (< 6,0,H>,  H) (< 6,0,J>, J) 
        (< 7,0,A>, 1) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 1) (< 7,0,F>, 12) (< 7,0,H>,  H) (< 7,0,J>, J) 
        (< 8,0,A>, 1) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>, 1) (< 8,0,F>, 12) (< 8,0,H>,  H) (< 8,0,J>, J) 
        (< 9,0,A>, 1) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 1) (< 9,0,F>, 12) (< 9,0,H>,  H) (< 9,0,J>, J) 
        (<10,0,A>, 1) (<10,0,B>, 12) (<10,0,C>, 1) (<10,0,D>, 1) (<10,0,F>, 12) (<10,0,H>,  ?) (<10,0,J>, J) 
        (<11,0,A>, 1) (<11,0,B>, 12) (<11,0,C>, 1) (<11,0,D>, 1) (<11,0,F>,  ?) (<11,0,H>, 12) (<11,0,J>, J) 
        (<12,0,A>, 1) (<12,0,B>, 12) (<12,0,C>, 1) (<12,0,D>, 1) (<12,0,F>,  ?) (<12,0,H>, 12) (<12,0,J>, J) 
        (<13,0,A>, 1) (<13,0,B>, 12) (<13,0,C>, 1) (<13,0,D>, 1) (<13,0,F>,  ?) (<13,0,H>, 12) (<13,0,J>, J) 
        (<14,0,A>, 1) (<14,0,B>, 12) (<14,0,C>, 1) (<14,0,D>, 1) (<14,0,F>,  ?) (<14,0,H>, 12) (<14,0,J>, J) 
        (<15,0,A>, 0) (<15,0,B>, 12) (<15,0,C>, 1) (<15,0,D>, 1) (<15,0,F>,  ?) (<15,0,H>, 12) (<15,0,J>, J) 
        (<16,0,A>, 0) (<16,0,B>, 12) (<16,0,C>, 1) (<16,0,D>, 1) (<16,0,F>,  ?) (<16,0,H>, 12) (<16,0,J>, J) 
        (<17,0,A>, 1) (<17,0,B>, 12) (<17,0,C>, 1) (<17,0,D>, 1) (<17,0,F>, 12) (<17,0,H>,  ?) (<17,0,J>, ?) 
        (<18,0,A>, 1) (<18,0,B>, 12) (<18,0,C>, 1) (<18,0,D>, 1) (<18,0,F>, 12) (<18,0,H>,  ?) (<18,0,J>, ?) 
        (<19,0,A>, 1) (<19,0,B>, 12) (<19,0,C>, 1) (<19,0,D>, 1) (<19,0,F>, 12) (<19,0,H>,  ?) (<19,0,J>, ?) 
        (<20,0,A>, 1) (<20,0,B>, 12) (<20,0,C>, 1) (<20,0,D>, 1) (<20,0,F>, 12) (<20,0,H>,  ?) (<20,0,J>, ?) 
        (<21,0,A>, 1) (<21,0,B>, 12) (<21,0,C>, 1) (<21,0,D>, 0) (<21,0,F>, 12) (<21,0,H>,  ?) (<21,0,J>, 0) 
        (<22,0,A>, 1) (<22,0,B>, 12) (<22,0,C>, 1) (<22,0,D>, 0) (<22,0,F>, 12) (<22,0,H>,  ?) (<22,0,J>, ?) 
        (<23,0,A>, 1) (<23,0,B>, 12) (<23,0,C>, 1) (<23,0,D>, 0) (<23,0,F>, 12) (<23,0,H>,  ?) (<23,0,J>, ?) 
        (<31,0,A>, 1) (<31,0,B>, 12) (<31,0,C>, 1) (<31,0,D>, 1) (<31,0,F>,  ?) (<31,0,H>,  ?) (<31,0,J>, J) 
        (<32,0,A>, 1) (<32,0,B>, 12) (<32,0,C>, 1) (<32,0,D>, 1) (<32,0,F>,  0) (<32,0,H>,  ?) (<32,0,J>, J) 
        (<33,0,A>, 1) (<33,0,B>, 12) (<33,0,C>, 1) (<33,0,D>, 1) (<33,0,F>,  0) (<33,0,H>,  H) (<33,0,J>, J) 
        (<34,0,A>, 1) (<34,0,B>, 12) (<34,0,C>, 1) (<34,0,D>, 1) (<34,0,F>,  0) (<34,0,H>,  H) (<34,0,J>, J) 
* Step 21: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f0(A,B,C,D,F,H,J)  -> f13(1,12,1,1,0,H,J)    True                       (1,1)   
          3.  f13(A,B,C,D,F,H,J) -> f13(A,B,C,D,1 + F,H,J) [B >= 1 + F]               (12,1)  
          4.  f19(A,B,C,D,F,H,J) -> f22(A,B,C,D,F,H,J)     [0 >= 1 + C && B >= 1 + F] (1,1)   
          5.  f19(A,B,C,D,F,H,J) -> f22(A,B,C,D,F,H,J)     [C >= 1 && B >= 1 + F]     (39,1)  
          6.  f22(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J) [M >= 0 && B >= 1 + N]     (40,1)  
          7.  f22(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [M >= 0]                   (40,1)  
          8.  f22(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [0 >= 1 + M]               (40,1)  
          9.  f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [B >= 1 + F && C = 0]      (1932,1)
          10. f32(A,B,C,D,F,H,J) -> f35(A,B,C,D,F,1 + F,J) [B >= 2 + F]               (28,1)  
          11. f35(A,B,C,D,F,H,J) -> f38(A,B,C,D,F,H,J)     [0 >= 1 + A && B >= 1 + H] (28,1)  
          12. f35(A,B,C,D,F,H,J) -> f38(A,B,C,D,F,H,J)     [A >= 1 && B >= 1 + H]     (?,1)   
          13. f38(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) [M >= 1 + N]               (?,1)   
          14. f38(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) True                       (?,1)   
          15. f38(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) True                       (?,1)   
          16. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) [B >= 1 + H && A = 0]      (?,1)   
          17. f48(A,B,C,D,F,H,J) -> f52(A,B,C,D,F,H,M)     [0 >= 1 + D && B >= 2 + F] (1,1)   
          18. f48(A,B,C,D,F,H,J) -> f52(A,B,C,D,F,H,M)     [D >= 1 && B >= 2 + F]     (12,1)  
          19. f52(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,J) [0 >= 1 + J]               (13,1)  
          20. f52(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,J) [J >= 1]                   (13,1)  
          21. f52(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0) [J = 0]                    (13,1)  
          22. f52(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,J) True                       (13,1)  
          23. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M) [B >= 2 + F && D = 0]      (12,1)  
          31. f35(A,B,C,D,F,H,J) -> f32(A,B,C,D,1 + F,H,J) [H >= B]                   (28,1)  
          32. f32(A,B,C,D,F,H,J) -> f48(A,B,C,D,0,H,J)     [1 + F >= B]               (1,1)   
          33. f19(A,B,C,D,F,H,J) -> f32(A,B,C,D,0,H,J)     [F >= B]                   (2,1)   
          34. f13(A,B,C,D,F,H,J) -> f19(A,B,C,D,0,H,J)     [F >= B]                   (1,1)   
        Signature:
          {(f0,7);(f13,7);(f19,7);(f22,7);(f32,7);(f35,7);(f38,7);(f48,7);(f52,7);(f62,7);(f63,7);(f71,7)}
        Flow Graph:
          [2->{3},3->{3,34},4->{6,7,8},5->{6,7,8},6->{5,33},7->{9,33},8->{9,33},9->{9,33},10->{11,12,16},11->{13,14
          ,15},12->{13,14,15},13->{12,31},14->{12,31},15->{16,31},16->{16,31},17->{19,20,21,22},18->{19,20,21,22}
          ,19->{18},20->{18},21->{23},22->{23},23->{23},31->{10,32},32->{17,18,23},33->{10,32},34->{4,5,9,33}]
        Sizebounds:
          (< 2,0,A>, 1) (< 2,0,B>, 12) (< 2,0,C>, 1) (< 2,0,D>, 1) (< 2,0,F>,  0) (< 2,0,H>,  H) (< 2,0,J>, J) 
          (< 3,0,A>, 1) (< 3,0,B>, 12) (< 3,0,C>, 1) (< 3,0,D>, 1) (< 3,0,F>, 12) (< 3,0,H>,  H) (< 3,0,J>, J) 
          (< 4,0,A>, 1) (< 4,0,B>, 12) (< 4,0,C>, 1) (< 4,0,D>, 1) (< 4,0,F>, 12) (< 4,0,H>,  H) (< 4,0,J>, J) 
          (< 5,0,A>, 1) (< 5,0,B>, 12) (< 5,0,C>, 1) (< 5,0,D>, 1) (< 5,0,F>, 12) (< 5,0,H>,  H) (< 5,0,J>, J) 
          (< 6,0,A>, 1) (< 6,0,B>, 12) (< 6,0,C>, 1) (< 6,0,D>, 1) (< 6,0,F>, 12) (< 6,0,H>,  H) (< 6,0,J>, J) 
          (< 7,0,A>, 1) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 1) (< 7,0,F>, 12) (< 7,0,H>,  H) (< 7,0,J>, J) 
          (< 8,0,A>, 1) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>, 1) (< 8,0,F>, 12) (< 8,0,H>,  H) (< 8,0,J>, J) 
          (< 9,0,A>, 1) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 1) (< 9,0,F>, 12) (< 9,0,H>,  H) (< 9,0,J>, J) 
          (<10,0,A>, 1) (<10,0,B>, 12) (<10,0,C>, 1) (<10,0,D>, 1) (<10,0,F>, 12) (<10,0,H>,  ?) (<10,0,J>, J) 
          (<11,0,A>, 1) (<11,0,B>, 12) (<11,0,C>, 1) (<11,0,D>, 1) (<11,0,F>,  ?) (<11,0,H>, 12) (<11,0,J>, J) 
          (<12,0,A>, 1) (<12,0,B>, 12) (<12,0,C>, 1) (<12,0,D>, 1) (<12,0,F>,  ?) (<12,0,H>, 12) (<12,0,J>, J) 
          (<13,0,A>, 1) (<13,0,B>, 12) (<13,0,C>, 1) (<13,0,D>, 1) (<13,0,F>,  ?) (<13,0,H>, 12) (<13,0,J>, J) 
          (<14,0,A>, 1) (<14,0,B>, 12) (<14,0,C>, 1) (<14,0,D>, 1) (<14,0,F>,  ?) (<14,0,H>, 12) (<14,0,J>, J) 
          (<15,0,A>, 0) (<15,0,B>, 12) (<15,0,C>, 1) (<15,0,D>, 1) (<15,0,F>,  ?) (<15,0,H>, 12) (<15,0,J>, J) 
          (<16,0,A>, 0) (<16,0,B>, 12) (<16,0,C>, 1) (<16,0,D>, 1) (<16,0,F>,  ?) (<16,0,H>, 12) (<16,0,J>, J) 
          (<17,0,A>, 1) (<17,0,B>, 12) (<17,0,C>, 1) (<17,0,D>, 1) (<17,0,F>, 12) (<17,0,H>,  ?) (<17,0,J>, ?) 
          (<18,0,A>, 1) (<18,0,B>, 12) (<18,0,C>, 1) (<18,0,D>, 1) (<18,0,F>, 12) (<18,0,H>,  ?) (<18,0,J>, ?) 
          (<19,0,A>, 1) (<19,0,B>, 12) (<19,0,C>, 1) (<19,0,D>, 1) (<19,0,F>, 12) (<19,0,H>,  ?) (<19,0,J>, ?) 
          (<20,0,A>, 1) (<20,0,B>, 12) (<20,0,C>, 1) (<20,0,D>, 1) (<20,0,F>, 12) (<20,0,H>,  ?) (<20,0,J>, ?) 
          (<21,0,A>, 1) (<21,0,B>, 12) (<21,0,C>, 1) (<21,0,D>, 0) (<21,0,F>, 12) (<21,0,H>,  ?) (<21,0,J>, 0) 
          (<22,0,A>, 1) (<22,0,B>, 12) (<22,0,C>, 1) (<22,0,D>, 0) (<22,0,F>, 12) (<22,0,H>,  ?) (<22,0,J>, ?) 
          (<23,0,A>, 1) (<23,0,B>, 12) (<23,0,C>, 1) (<23,0,D>, 0) (<23,0,F>, 12) (<23,0,H>,  ?) (<23,0,J>, ?) 
          (<31,0,A>, 1) (<31,0,B>, 12) (<31,0,C>, 1) (<31,0,D>, 1) (<31,0,F>,  ?) (<31,0,H>,  ?) (<31,0,J>, J) 
          (<32,0,A>, 1) (<32,0,B>, 12) (<32,0,C>, 1) (<32,0,D>, 1) (<32,0,F>,  0) (<32,0,H>,  ?) (<32,0,J>, J) 
          (<33,0,A>, 1) (<33,0,B>, 12) (<33,0,C>, 1) (<33,0,D>, 1) (<33,0,F>,  0) (<33,0,H>,  H) (<33,0,J>, J) 
          (<34,0,A>, 1) (<34,0,B>, 12) (<34,0,C>, 1) (<34,0,D>, 1) (<34,0,F>,  0) (<34,0,H>,  H) (<34,0,J>, J) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [10,31,13,12,14,15,16], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f32) = x1
          p(f35) = x1
          p(f38) = 1 
        
        The following rules are strictly oriented:
                        True ==>                       
          f38(A,B,C,D,F,H,J)   = 1                     
                               > 0                     
                               = f35(0,B,C,D,F,1 + H,J)
        
        
        The following rules are weakly oriented:
                  [B >= 2 + F] ==>                       
            f32(A,B,C,D,F,H,J)   = A                     
                                >= A                     
                                 = f35(A,B,C,D,F,1 + F,J)
        
        [A >= 1 && B >= 1 + H] ==>                       
            f35(A,B,C,D,F,H,J)   = A                     
                                >= 1                     
                                 = f38(A,B,C,D,F,H,J)    
        
                  [M >= 1 + N] ==>                       
            f38(A,B,C,D,F,H,J)   = 1                     
                                >= 1                     
                                 = f35(1,B,C,D,F,1 + H,J)
        
                          True ==>                       
            f38(A,B,C,D,F,H,J)   = 1                     
                                >= 1                     
                                 = f35(1,B,C,D,F,1 + H,J)
        
         [B >= 1 + H && A = 0] ==>                       
            f35(A,B,C,D,F,H,J)   = A                     
                                >= 0                     
                                 = f35(0,B,C,D,F,1 + H,J)
        
                      [H >= B] ==>                       
            f35(A,B,C,D,F,H,J)   = A                     
                                >= A                     
                                 = f32(A,B,C,D,1 + F,H,J)
        
        We use the following global sizebounds:
        (< 2,0,A>, 1) (< 2,0,B>, 12) (< 2,0,C>, 1) (< 2,0,D>, 1) (< 2,0,F>,  0) (< 2,0,H>,  H) (< 2,0,J>, J) 
        (< 3,0,A>, 1) (< 3,0,B>, 12) (< 3,0,C>, 1) (< 3,0,D>, 1) (< 3,0,F>, 12) (< 3,0,H>,  H) (< 3,0,J>, J) 
        (< 4,0,A>, 1) (< 4,0,B>, 12) (< 4,0,C>, 1) (< 4,0,D>, 1) (< 4,0,F>, 12) (< 4,0,H>,  H) (< 4,0,J>, J) 
        (< 5,0,A>, 1) (< 5,0,B>, 12) (< 5,0,C>, 1) (< 5,0,D>, 1) (< 5,0,F>, 12) (< 5,0,H>,  H) (< 5,0,J>, J) 
        (< 6,0,A>, 1) (< 6,0,B>, 12) (< 6,0,C>, 1) (< 6,0,D>, 1) (< 6,0,F>, 12) (< 6,0,H>,  H) (< 6,0,J>, J) 
        (< 7,0,A>, 1) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 1) (< 7,0,F>, 12) (< 7,0,H>,  H) (< 7,0,J>, J) 
        (< 8,0,A>, 1) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>, 1) (< 8,0,F>, 12) (< 8,0,H>,  H) (< 8,0,J>, J) 
        (< 9,0,A>, 1) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 1) (< 9,0,F>, 12) (< 9,0,H>,  H) (< 9,0,J>, J) 
        (<10,0,A>, 1) (<10,0,B>, 12) (<10,0,C>, 1) (<10,0,D>, 1) (<10,0,F>, 12) (<10,0,H>,  ?) (<10,0,J>, J) 
        (<11,0,A>, 1) (<11,0,B>, 12) (<11,0,C>, 1) (<11,0,D>, 1) (<11,0,F>,  ?) (<11,0,H>, 12) (<11,0,J>, J) 
        (<12,0,A>, 1) (<12,0,B>, 12) (<12,0,C>, 1) (<12,0,D>, 1) (<12,0,F>,  ?) (<12,0,H>, 12) (<12,0,J>, J) 
        (<13,0,A>, 1) (<13,0,B>, 12) (<13,0,C>, 1) (<13,0,D>, 1) (<13,0,F>,  ?) (<13,0,H>, 12) (<13,0,J>, J) 
        (<14,0,A>, 1) (<14,0,B>, 12) (<14,0,C>, 1) (<14,0,D>, 1) (<14,0,F>,  ?) (<14,0,H>, 12) (<14,0,J>, J) 
        (<15,0,A>, 0) (<15,0,B>, 12) (<15,0,C>, 1) (<15,0,D>, 1) (<15,0,F>,  ?) (<15,0,H>, 12) (<15,0,J>, J) 
        (<16,0,A>, 0) (<16,0,B>, 12) (<16,0,C>, 1) (<16,0,D>, 1) (<16,0,F>,  ?) (<16,0,H>, 12) (<16,0,J>, J) 
        (<17,0,A>, 1) (<17,0,B>, 12) (<17,0,C>, 1) (<17,0,D>, 1) (<17,0,F>, 12) (<17,0,H>,  ?) (<17,0,J>, ?) 
        (<18,0,A>, 1) (<18,0,B>, 12) (<18,0,C>, 1) (<18,0,D>, 1) (<18,0,F>, 12) (<18,0,H>,  ?) (<18,0,J>, ?) 
        (<19,0,A>, 1) (<19,0,B>, 12) (<19,0,C>, 1) (<19,0,D>, 1) (<19,0,F>, 12) (<19,0,H>,  ?) (<19,0,J>, ?) 
        (<20,0,A>, 1) (<20,0,B>, 12) (<20,0,C>, 1) (<20,0,D>, 1) (<20,0,F>, 12) (<20,0,H>,  ?) (<20,0,J>, ?) 
        (<21,0,A>, 1) (<21,0,B>, 12) (<21,0,C>, 1) (<21,0,D>, 0) (<21,0,F>, 12) (<21,0,H>,  ?) (<21,0,J>, 0) 
        (<22,0,A>, 1) (<22,0,B>, 12) (<22,0,C>, 1) (<22,0,D>, 0) (<22,0,F>, 12) (<22,0,H>,  ?) (<22,0,J>, ?) 
        (<23,0,A>, 1) (<23,0,B>, 12) (<23,0,C>, 1) (<23,0,D>, 0) (<23,0,F>, 12) (<23,0,H>,  ?) (<23,0,J>, ?) 
        (<31,0,A>, 1) (<31,0,B>, 12) (<31,0,C>, 1) (<31,0,D>, 1) (<31,0,F>,  ?) (<31,0,H>,  ?) (<31,0,J>, J) 
        (<32,0,A>, 1) (<32,0,B>, 12) (<32,0,C>, 1) (<32,0,D>, 1) (<32,0,F>,  0) (<32,0,H>,  ?) (<32,0,J>, J) 
        (<33,0,A>, 1) (<33,0,B>, 12) (<33,0,C>, 1) (<33,0,D>, 1) (<33,0,F>,  0) (<33,0,H>,  H) (<33,0,J>, J) 
        (<34,0,A>, 1) (<34,0,B>, 12) (<34,0,C>, 1) (<34,0,D>, 1) (<34,0,F>,  0) (<34,0,H>,  H) (<34,0,J>, J) 
* Step 22: ChainProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f0(A,B,C,D,F,H,J)  -> f13(1,12,1,1,0,H,J)    True                       (1,1)   
          3.  f13(A,B,C,D,F,H,J) -> f13(A,B,C,D,1 + F,H,J) [B >= 1 + F]               (12,1)  
          4.  f19(A,B,C,D,F,H,J) -> f22(A,B,C,D,F,H,J)     [0 >= 1 + C && B >= 1 + F] (1,1)   
          5.  f19(A,B,C,D,F,H,J) -> f22(A,B,C,D,F,H,J)     [C >= 1 && B >= 1 + F]     (39,1)  
          6.  f22(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J) [M >= 0 && B >= 1 + N]     (40,1)  
          7.  f22(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [M >= 0]                   (40,1)  
          8.  f22(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [0 >= 1 + M]               (40,1)  
          9.  f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [B >= 1 + F && C = 0]      (1932,1)
          10. f32(A,B,C,D,F,H,J) -> f35(A,B,C,D,F,1 + F,J) [B >= 2 + F]               (28,1)  
          11. f35(A,B,C,D,F,H,J) -> f38(A,B,C,D,F,H,J)     [0 >= 1 + A && B >= 1 + H] (28,1)  
          12. f35(A,B,C,D,F,H,J) -> f38(A,B,C,D,F,H,J)     [A >= 1 && B >= 1 + H]     (?,1)   
          13. f38(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) [M >= 1 + N]               (?,1)   
          14. f38(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) True                       (?,1)   
          15. f38(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) True                       (30,1)  
          16. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) [B >= 1 + H && A = 0]      (?,1)   
          17. f48(A,B,C,D,F,H,J) -> f52(A,B,C,D,F,H,M)     [0 >= 1 + D && B >= 2 + F] (1,1)   
          18. f48(A,B,C,D,F,H,J) -> f52(A,B,C,D,F,H,M)     [D >= 1 && B >= 2 + F]     (12,1)  
          19. f52(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,J) [0 >= 1 + J]               (13,1)  
          20. f52(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,J) [J >= 1]                   (13,1)  
          21. f52(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0) [J = 0]                    (13,1)  
          22. f52(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,J) True                       (13,1)  
          23. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M) [B >= 2 + F && D = 0]      (12,1)  
          31. f35(A,B,C,D,F,H,J) -> f32(A,B,C,D,1 + F,H,J) [H >= B]                   (28,1)  
          32. f32(A,B,C,D,F,H,J) -> f48(A,B,C,D,0,H,J)     [1 + F >= B]               (1,1)   
          33. f19(A,B,C,D,F,H,J) -> f32(A,B,C,D,0,H,J)     [F >= B]                   (2,1)   
          34. f13(A,B,C,D,F,H,J) -> f19(A,B,C,D,0,H,J)     [F >= B]                   (1,1)   
        Signature:
          {(f0,7);(f13,7);(f19,7);(f22,7);(f32,7);(f35,7);(f38,7);(f48,7);(f52,7);(f62,7);(f63,7);(f71,7)}
        Flow Graph:
          [2->{3},3->{3,34},4->{6,7,8},5->{6,7,8},6->{5,33},7->{9,33},8->{9,33},9->{9,33},10->{11,12,16},11->{13,14
          ,15},12->{13,14,15},13->{12,31},14->{12,31},15->{16,31},16->{16,31},17->{19,20,21,22},18->{19,20,21,22}
          ,19->{18},20->{18},21->{23},22->{23},23->{23},31->{10,32},32->{17,18,23},33->{10,32},34->{4,5,9,33}]
        Sizebounds:
          (< 2,0,A>, 1) (< 2,0,B>, 12) (< 2,0,C>, 1) (< 2,0,D>, 1) (< 2,0,F>,  0) (< 2,0,H>,  H) (< 2,0,J>, J) 
          (< 3,0,A>, 1) (< 3,0,B>, 12) (< 3,0,C>, 1) (< 3,0,D>, 1) (< 3,0,F>, 12) (< 3,0,H>,  H) (< 3,0,J>, J) 
          (< 4,0,A>, 1) (< 4,0,B>, 12) (< 4,0,C>, 1) (< 4,0,D>, 1) (< 4,0,F>, 12) (< 4,0,H>,  H) (< 4,0,J>, J) 
          (< 5,0,A>, 1) (< 5,0,B>, 12) (< 5,0,C>, 1) (< 5,0,D>, 1) (< 5,0,F>, 12) (< 5,0,H>,  H) (< 5,0,J>, J) 
          (< 6,0,A>, 1) (< 6,0,B>, 12) (< 6,0,C>, 1) (< 6,0,D>, 1) (< 6,0,F>, 12) (< 6,0,H>,  H) (< 6,0,J>, J) 
          (< 7,0,A>, 1) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 1) (< 7,0,F>, 12) (< 7,0,H>,  H) (< 7,0,J>, J) 
          (< 8,0,A>, 1) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>, 1) (< 8,0,F>, 12) (< 8,0,H>,  H) (< 8,0,J>, J) 
          (< 9,0,A>, 1) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 1) (< 9,0,F>, 12) (< 9,0,H>,  H) (< 9,0,J>, J) 
          (<10,0,A>, 1) (<10,0,B>, 12) (<10,0,C>, 1) (<10,0,D>, 1) (<10,0,F>, 12) (<10,0,H>,  ?) (<10,0,J>, J) 
          (<11,0,A>, 1) (<11,0,B>, 12) (<11,0,C>, 1) (<11,0,D>, 1) (<11,0,F>,  ?) (<11,0,H>, 12) (<11,0,J>, J) 
          (<12,0,A>, 1) (<12,0,B>, 12) (<12,0,C>, 1) (<12,0,D>, 1) (<12,0,F>,  ?) (<12,0,H>, 12) (<12,0,J>, J) 
          (<13,0,A>, 1) (<13,0,B>, 12) (<13,0,C>, 1) (<13,0,D>, 1) (<13,0,F>,  ?) (<13,0,H>, 12) (<13,0,J>, J) 
          (<14,0,A>, 1) (<14,0,B>, 12) (<14,0,C>, 1) (<14,0,D>, 1) (<14,0,F>,  ?) (<14,0,H>, 12) (<14,0,J>, J) 
          (<15,0,A>, 0) (<15,0,B>, 12) (<15,0,C>, 1) (<15,0,D>, 1) (<15,0,F>,  ?) (<15,0,H>, 12) (<15,0,J>, J) 
          (<16,0,A>, 0) (<16,0,B>, 12) (<16,0,C>, 1) (<16,0,D>, 1) (<16,0,F>,  ?) (<16,0,H>, 12) (<16,0,J>, J) 
          (<17,0,A>, 1) (<17,0,B>, 12) (<17,0,C>, 1) (<17,0,D>, 1) (<17,0,F>, 12) (<17,0,H>,  ?) (<17,0,J>, ?) 
          (<18,0,A>, 1) (<18,0,B>, 12) (<18,0,C>, 1) (<18,0,D>, 1) (<18,0,F>, 12) (<18,0,H>,  ?) (<18,0,J>, ?) 
          (<19,0,A>, 1) (<19,0,B>, 12) (<19,0,C>, 1) (<19,0,D>, 1) (<19,0,F>, 12) (<19,0,H>,  ?) (<19,0,J>, ?) 
          (<20,0,A>, 1) (<20,0,B>, 12) (<20,0,C>, 1) (<20,0,D>, 1) (<20,0,F>, 12) (<20,0,H>,  ?) (<20,0,J>, ?) 
          (<21,0,A>, 1) (<21,0,B>, 12) (<21,0,C>, 1) (<21,0,D>, 0) (<21,0,F>, 12) (<21,0,H>,  ?) (<21,0,J>, 0) 
          (<22,0,A>, 1) (<22,0,B>, 12) (<22,0,C>, 1) (<22,0,D>, 0) (<22,0,F>, 12) (<22,0,H>,  ?) (<22,0,J>, ?) 
          (<23,0,A>, 1) (<23,0,B>, 12) (<23,0,C>, 1) (<23,0,D>, 0) (<23,0,F>, 12) (<23,0,H>,  ?) (<23,0,J>, ?) 
          (<31,0,A>, 1) (<31,0,B>, 12) (<31,0,C>, 1) (<31,0,D>, 1) (<31,0,F>,  ?) (<31,0,H>,  ?) (<31,0,J>, J) 
          (<32,0,A>, 1) (<32,0,B>, 12) (<32,0,C>, 1) (<32,0,D>, 1) (<32,0,F>,  0) (<32,0,H>,  ?) (<32,0,J>, J) 
          (<33,0,A>, 1) (<33,0,B>, 12) (<33,0,C>, 1) (<33,0,D>, 1) (<33,0,F>,  0) (<33,0,H>,  H) (<33,0,J>, J) 
          (<34,0,A>, 1) (<34,0,B>, 12) (<34,0,C>, 1) (<34,0,D>, 1) (<34,0,F>,  0) (<34,0,H>,  H) (<34,0,J>, J) 
    + Applied Processor:
        ChainProcessor False [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,31,32,33,34]
    + Details:
        We chained rule 4 to obtain the rules [35,36,37] .
* Step 23: ChainProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f0(A,B,C,D,F,H,J)  -> f13(1,12,1,1,0,H,J)    True                                                 (1,1)   
          3.  f13(A,B,C,D,F,H,J) -> f13(A,B,C,D,1 + F,H,J) [B >= 1 + F]                                         (12,1)  
          5.  f19(A,B,C,D,F,H,J) -> f22(A,B,C,D,F,H,J)     [C >= 1 && B >= 1 + F]                               (39,1)  
          6.  f22(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J) [M >= 0 && B >= 1 + N]                               (40,1)  
          7.  f22(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [M >= 0]                                             (40,1)  
          8.  f22(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [0 >= 1 + M]                                         (40,1)  
          9.  f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [B >= 1 + F && C = 0]                                (1932,1)
          10. f32(A,B,C,D,F,H,J) -> f35(A,B,C,D,F,1 + F,J) [B >= 2 + F]                                         (28,1)  
          11. f35(A,B,C,D,F,H,J) -> f38(A,B,C,D,F,H,J)     [0 >= 1 + A && B >= 1 + H]                           (28,1)  
          12. f35(A,B,C,D,F,H,J) -> f38(A,B,C,D,F,H,J)     [A >= 1 && B >= 1 + H]                               (?,1)   
          13. f38(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) [M >= 1 + N]                                         (?,1)   
          14. f38(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) True                                                 (?,1)   
          15. f38(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) True                                                 (30,1)  
          16. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) [B >= 1 + H && A = 0]                                (?,1)   
          17. f48(A,B,C,D,F,H,J) -> f52(A,B,C,D,F,H,M)     [0 >= 1 + D && B >= 2 + F]                           (1,1)   
          18. f48(A,B,C,D,F,H,J) -> f52(A,B,C,D,F,H,M)     [D >= 1 && B >= 2 + F]                               (12,1)  
          19. f52(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,J) [0 >= 1 + J]                                         (13,1)  
          20. f52(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,J) [J >= 1]                                             (13,1)  
          21. f52(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0) [J = 0]                                              (13,1)  
          22. f52(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,J) True                                                 (13,1)  
          23. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M) [B >= 2 + F && D = 0]                                (12,1)  
          31. f35(A,B,C,D,F,H,J) -> f32(A,B,C,D,1 + F,H,J) [H >= B]                                             (28,1)  
          32. f32(A,B,C,D,F,H,J) -> f48(A,B,C,D,0,H,J)     [1 + F >= B]                                         (1,1)   
          33. f19(A,B,C,D,F,H,J) -> f32(A,B,C,D,0,H,J)     [F >= B]                                             (2,1)   
          34. f13(A,B,C,D,F,H,J) -> f19(A,B,C,D,0,H,J)     [F >= B]                                             (1,1)   
          35. f19(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J) [0 >= 1 + C && B >= 1 + F && M$ >= 0 && B >= 1 + N$] (1,2)   
          36. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [0 >= 1 + C && B >= 1 + F && M$ >= 0]                (1,2)   
          37. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [0 >= 1 + C && B >= 1 + F && 0 >= 1 + M$]            (1,2)   
        Signature:
          {(f0,7);(f13,7);(f19,7);(f22,7);(f32,7);(f35,7);(f38,7);(f48,7);(f52,7);(f62,7);(f63,7);(f71,7)}
        Flow Graph:
          [2->{3,34},3->{3,34},5->{6,7,8},6->{5,9,33,35,36,37},7->{5,9,33,35,36,37},8->{5,9,33,35,36,37},9->{5,9,33
          ,35,36,37},10->{11,12,16,31},11->{13,14,15},12->{13,14,15},13->{11,12,16,31},14->{11,12,16,31},15->{11,12,16
          ,31},16->{11,12,16,31},17->{19,20,21,22},18->{19,20,21,22},19->{17,18,23},20->{17,18,23},21->{17,18,23}
          ,22->{17,18,23},23->{17,18,23},31->{10,32},32->{17,18,23},33->{10,32},34->{5,9,33,35,36,37},35->{5,9,33,35
          ,36,37},36->{5,9,33,35,36,37},37->{5,9,33,35,36,37}]
        Sizebounds:
          (< 2,0,A>, 1) (< 2,0,B>, 12) (< 2,0,C>, 1) (< 2,0,D>, 1) (< 2,0,F>,  0) (< 2,0,H>,  H) (< 2,0,J>, J) 
          (< 3,0,A>, 1) (< 3,0,B>, 12) (< 3,0,C>, 1) (< 3,0,D>, 1) (< 3,0,F>, 12) (< 3,0,H>,  H) (< 3,0,J>, J) 
          (< 5,0,A>, 1) (< 5,0,B>, 12) (< 5,0,C>, 1) (< 5,0,D>, 1) (< 5,0,F>, 12) (< 5,0,H>,  H) (< 5,0,J>, J) 
          (< 6,0,A>, 1) (< 6,0,B>, 12) (< 6,0,C>, 1) (< 6,0,D>, 1) (< 6,0,F>, 12) (< 6,0,H>,  H) (< 6,0,J>, J) 
          (< 7,0,A>, 1) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 1) (< 7,0,F>, 12) (< 7,0,H>,  H) (< 7,0,J>, J) 
          (< 8,0,A>, 1) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>, 1) (< 8,0,F>, 12) (< 8,0,H>,  H) (< 8,0,J>, J) 
          (< 9,0,A>, 1) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 1) (< 9,0,F>, 12) (< 9,0,H>,  H) (< 9,0,J>, J) 
          (<10,0,A>, 1) (<10,0,B>, 12) (<10,0,C>, 1) (<10,0,D>, 1) (<10,0,F>, 12) (<10,0,H>,  ?) (<10,0,J>, J) 
          (<11,0,A>, 1) (<11,0,B>, 12) (<11,0,C>, 1) (<11,0,D>, 1) (<11,0,F>,  ?) (<11,0,H>, 12) (<11,0,J>, J) 
          (<12,0,A>, 1) (<12,0,B>, 12) (<12,0,C>, 1) (<12,0,D>, 1) (<12,0,F>,  ?) (<12,0,H>, 12) (<12,0,J>, J) 
          (<13,0,A>, 1) (<13,0,B>, 12) (<13,0,C>, 1) (<13,0,D>, 1) (<13,0,F>,  ?) (<13,0,H>, 12) (<13,0,J>, J) 
          (<14,0,A>, 1) (<14,0,B>, 12) (<14,0,C>, 1) (<14,0,D>, 1) (<14,0,F>,  ?) (<14,0,H>, 12) (<14,0,J>, J) 
          (<15,0,A>, 0) (<15,0,B>, 12) (<15,0,C>, 1) (<15,0,D>, 1) (<15,0,F>,  ?) (<15,0,H>, 12) (<15,0,J>, J) 
          (<16,0,A>, 0) (<16,0,B>, 12) (<16,0,C>, 1) (<16,0,D>, 1) (<16,0,F>,  ?) (<16,0,H>, 12) (<16,0,J>, J) 
          (<17,0,A>, 1) (<17,0,B>, 12) (<17,0,C>, 1) (<17,0,D>, 1) (<17,0,F>, 12) (<17,0,H>,  ?) (<17,0,J>, ?) 
          (<18,0,A>, 1) (<18,0,B>, 12) (<18,0,C>, 1) (<18,0,D>, 1) (<18,0,F>, 12) (<18,0,H>,  ?) (<18,0,J>, ?) 
          (<19,0,A>, 1) (<19,0,B>, 12) (<19,0,C>, 1) (<19,0,D>, 1) (<19,0,F>, 12) (<19,0,H>,  ?) (<19,0,J>, ?) 
          (<20,0,A>, 1) (<20,0,B>, 12) (<20,0,C>, 1) (<20,0,D>, 1) (<20,0,F>, 12) (<20,0,H>,  ?) (<20,0,J>, ?) 
          (<21,0,A>, 1) (<21,0,B>, 12) (<21,0,C>, 1) (<21,0,D>, 0) (<21,0,F>, 12) (<21,0,H>,  ?) (<21,0,J>, 0) 
          (<22,0,A>, 1) (<22,0,B>, 12) (<22,0,C>, 1) (<22,0,D>, 0) (<22,0,F>, 12) (<22,0,H>,  ?) (<22,0,J>, ?) 
          (<23,0,A>, 1) (<23,0,B>, 12) (<23,0,C>, 1) (<23,0,D>, 0) (<23,0,F>, 12) (<23,0,H>,  ?) (<23,0,J>, ?) 
          (<31,0,A>, 1) (<31,0,B>, 12) (<31,0,C>, 1) (<31,0,D>, 1) (<31,0,F>,  ?) (<31,0,H>,  ?) (<31,0,J>, J) 
          (<32,0,A>, 1) (<32,0,B>, 12) (<32,0,C>, 1) (<32,0,D>, 1) (<32,0,F>,  0) (<32,0,H>,  ?) (<32,0,J>, J) 
          (<33,0,A>, 1) (<33,0,B>, 12) (<33,0,C>, 1) (<33,0,D>, 1) (<33,0,F>,  0) (<33,0,H>,  H) (<33,0,J>, J) 
          (<34,0,A>, 1) (<34,0,B>, 12) (<34,0,C>, 1) (<34,0,D>, 1) (<34,0,F>,  0) (<34,0,H>,  H) (<34,0,J>, J) 
          (<35,0,A>, 1) (<35,0,B>, 12) (<35,0,C>, 1) (<35,0,D>, 1) (<35,0,F>, 12) (<35,0,H>,  H) (<35,0,J>, J) 
          (<36,0,A>, 1) (<36,0,B>, 12) (<36,0,C>, 0) (<36,0,D>, 1) (<36,0,F>, 12) (<36,0,H>,  H) (<36,0,J>, J) 
          (<37,0,A>, 1) (<37,0,B>, 12) (<37,0,C>, 0) (<37,0,D>, 1) (<37,0,F>, 12) (<37,0,H>,  H) (<37,0,J>, J) 
    + Applied Processor:
        ChainProcessor False [2,3,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,31,32,33,34,35,36,37]
    + Details:
        We chained rule 5 to obtain the rules [38,39,40] .
* Step 24: UnreachableRules WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f0(A,B,C,D,F,H,J)  -> f13(1,12,1,1,0,H,J)    True                                                 (1,1)   
          3.  f13(A,B,C,D,F,H,J) -> f13(A,B,C,D,1 + F,H,J) [B >= 1 + F]                                         (12,1)  
          6.  f22(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J) [M >= 0 && B >= 1 + N]                               (40,1)  
          7.  f22(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [M >= 0]                                             (40,1)  
          8.  f22(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [0 >= 1 + M]                                         (40,1)  
          9.  f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [B >= 1 + F && C = 0]                                (1932,1)
          10. f32(A,B,C,D,F,H,J) -> f35(A,B,C,D,F,1 + F,J) [B >= 2 + F]                                         (28,1)  
          11. f35(A,B,C,D,F,H,J) -> f38(A,B,C,D,F,H,J)     [0 >= 1 + A && B >= 1 + H]                           (28,1)  
          12. f35(A,B,C,D,F,H,J) -> f38(A,B,C,D,F,H,J)     [A >= 1 && B >= 1 + H]                               (?,1)   
          13. f38(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) [M >= 1 + N]                                         (?,1)   
          14. f38(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) True                                                 (?,1)   
          15. f38(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) True                                                 (30,1)  
          16. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) [B >= 1 + H && A = 0]                                (?,1)   
          17. f48(A,B,C,D,F,H,J) -> f52(A,B,C,D,F,H,M)     [0 >= 1 + D && B >= 2 + F]                           (1,1)   
          18. f48(A,B,C,D,F,H,J) -> f52(A,B,C,D,F,H,M)     [D >= 1 && B >= 2 + F]                               (12,1)  
          19. f52(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,J) [0 >= 1 + J]                                         (13,1)  
          20. f52(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,J) [J >= 1]                                             (13,1)  
          21. f52(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0) [J = 0]                                              (13,1)  
          22. f52(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,J) True                                                 (13,1)  
          23. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M) [B >= 2 + F && D = 0]                                (12,1)  
          31. f35(A,B,C,D,F,H,J) -> f32(A,B,C,D,1 + F,H,J) [H >= B]                                             (28,1)  
          32. f32(A,B,C,D,F,H,J) -> f48(A,B,C,D,0,H,J)     [1 + F >= B]                                         (1,1)   
          33. f19(A,B,C,D,F,H,J) -> f32(A,B,C,D,0,H,J)     [F >= B]                                             (2,1)   
          34. f13(A,B,C,D,F,H,J) -> f19(A,B,C,D,0,H,J)     [F >= B]                                             (1,1)   
          35. f19(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J) [0 >= 1 + C && B >= 1 + F && M$ >= 0 && B >= 1 + N$] (1,2)   
          36. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [0 >= 1 + C && B >= 1 + F && M$ >= 0]                (1,2)   
          37. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [0 >= 1 + C && B >= 1 + F && 0 >= 1 + M$]            (1,2)   
          38. f19(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J) [C >= 1 && B >= 1 + F && M$ >= 0 && B >= 1 + N$]     (39,2)  
          39. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [C >= 1 && B >= 1 + F && M$ >= 0]                    (39,2)  
          40. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [C >= 1 && B >= 1 + F && 0 >= 1 + M$]                (39,2)  
        Signature:
          {(f0,7);(f13,7);(f19,7);(f22,7);(f32,7);(f35,7);(f38,7);(f48,7);(f52,7);(f62,7);(f63,7);(f71,7)}
        Flow Graph:
          [2->{3,34},3->{3,34},6->{9,33,35,36,37,38,39,40},7->{9,33,35,36,37,38,39,40},8->{9,33,35,36,37,38,39,40}
          ,9->{9,33,35,36,37,38,39,40},10->{11,12,16,31},11->{13,14,15},12->{13,14,15},13->{11,12,16,31},14->{11,12,16
          ,31},15->{11,12,16,31},16->{11,12,16,31},17->{19,20,21,22},18->{19,20,21,22},19->{17,18,23},20->{17,18,23}
          ,21->{17,18,23},22->{17,18,23},23->{17,18,23},31->{10,32},32->{17,18,23},33->{10,32},34->{9,33,35,36,37,38
          ,39,40},35->{9,33,35,36,37,38,39,40},36->{9,33,35,36,37,38,39,40},37->{9,33,35,36,37,38,39,40},38->{9,33,35
          ,36,37,38,39,40},39->{9,33,35,36,37,38,39,40},40->{9,33,35,36,37,38,39,40}]
        Sizebounds:
          (< 2,0,A>, 1) (< 2,0,B>, 12) (< 2,0,C>, 1) (< 2,0,D>, 1) (< 2,0,F>,  0) (< 2,0,H>,  H) (< 2,0,J>, J) 
          (< 3,0,A>, 1) (< 3,0,B>, 12) (< 3,0,C>, 1) (< 3,0,D>, 1) (< 3,0,F>, 12) (< 3,0,H>,  H) (< 3,0,J>, J) 
          (< 6,0,A>, 1) (< 6,0,B>, 12) (< 6,0,C>, 1) (< 6,0,D>, 1) (< 6,0,F>, 12) (< 6,0,H>,  H) (< 6,0,J>, J) 
          (< 7,0,A>, 1) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 1) (< 7,0,F>, 12) (< 7,0,H>,  H) (< 7,0,J>, J) 
          (< 8,0,A>, 1) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>, 1) (< 8,0,F>, 12) (< 8,0,H>,  H) (< 8,0,J>, J) 
          (< 9,0,A>, 1) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 1) (< 9,0,F>, 12) (< 9,0,H>,  H) (< 9,0,J>, J) 
          (<10,0,A>, 1) (<10,0,B>, 12) (<10,0,C>, 1) (<10,0,D>, 1) (<10,0,F>, 12) (<10,0,H>,  ?) (<10,0,J>, J) 
          (<11,0,A>, 1) (<11,0,B>, 12) (<11,0,C>, 1) (<11,0,D>, 1) (<11,0,F>,  ?) (<11,0,H>, 12) (<11,0,J>, J) 
          (<12,0,A>, 1) (<12,0,B>, 12) (<12,0,C>, 1) (<12,0,D>, 1) (<12,0,F>,  ?) (<12,0,H>, 12) (<12,0,J>, J) 
          (<13,0,A>, 1) (<13,0,B>, 12) (<13,0,C>, 1) (<13,0,D>, 1) (<13,0,F>,  ?) (<13,0,H>, 12) (<13,0,J>, J) 
          (<14,0,A>, 1) (<14,0,B>, 12) (<14,0,C>, 1) (<14,0,D>, 1) (<14,0,F>,  ?) (<14,0,H>, 12) (<14,0,J>, J) 
          (<15,0,A>, 0) (<15,0,B>, 12) (<15,0,C>, 1) (<15,0,D>, 1) (<15,0,F>,  ?) (<15,0,H>, 12) (<15,0,J>, J) 
          (<16,0,A>, 0) (<16,0,B>, 12) (<16,0,C>, 1) (<16,0,D>, 1) (<16,0,F>,  ?) (<16,0,H>, 12) (<16,0,J>, J) 
          (<17,0,A>, 1) (<17,0,B>, 12) (<17,0,C>, 1) (<17,0,D>, 1) (<17,0,F>, 12) (<17,0,H>,  ?) (<17,0,J>, ?) 
          (<18,0,A>, 1) (<18,0,B>, 12) (<18,0,C>, 1) (<18,0,D>, 1) (<18,0,F>, 12) (<18,0,H>,  ?) (<18,0,J>, ?) 
          (<19,0,A>, 1) (<19,0,B>, 12) (<19,0,C>, 1) (<19,0,D>, 1) (<19,0,F>, 12) (<19,0,H>,  ?) (<19,0,J>, ?) 
          (<20,0,A>, 1) (<20,0,B>, 12) (<20,0,C>, 1) (<20,0,D>, 1) (<20,0,F>, 12) (<20,0,H>,  ?) (<20,0,J>, ?) 
          (<21,0,A>, 1) (<21,0,B>, 12) (<21,0,C>, 1) (<21,0,D>, 0) (<21,0,F>, 12) (<21,0,H>,  ?) (<21,0,J>, 0) 
          (<22,0,A>, 1) (<22,0,B>, 12) (<22,0,C>, 1) (<22,0,D>, 0) (<22,0,F>, 12) (<22,0,H>,  ?) (<22,0,J>, ?) 
          (<23,0,A>, 1) (<23,0,B>, 12) (<23,0,C>, 1) (<23,0,D>, 0) (<23,0,F>, 12) (<23,0,H>,  ?) (<23,0,J>, ?) 
          (<31,0,A>, 1) (<31,0,B>, 12) (<31,0,C>, 1) (<31,0,D>, 1) (<31,0,F>,  ?) (<31,0,H>,  ?) (<31,0,J>, J) 
          (<32,0,A>, 1) (<32,0,B>, 12) (<32,0,C>, 1) (<32,0,D>, 1) (<32,0,F>,  0) (<32,0,H>,  ?) (<32,0,J>, J) 
          (<33,0,A>, 1) (<33,0,B>, 12) (<33,0,C>, 1) (<33,0,D>, 1) (<33,0,F>,  0) (<33,0,H>,  H) (<33,0,J>, J) 
          (<34,0,A>, 1) (<34,0,B>, 12) (<34,0,C>, 1) (<34,0,D>, 1) (<34,0,F>,  0) (<34,0,H>,  H) (<34,0,J>, J) 
          (<35,0,A>, 1) (<35,0,B>, 12) (<35,0,C>, 1) (<35,0,D>, 1) (<35,0,F>, 12) (<35,0,H>,  H) (<35,0,J>, J) 
          (<36,0,A>, 1) (<36,0,B>, 12) (<36,0,C>, 0) (<36,0,D>, 1) (<36,0,F>, 12) (<36,0,H>,  H) (<36,0,J>, J) 
          (<37,0,A>, 1) (<37,0,B>, 12) (<37,0,C>, 0) (<37,0,D>, 1) (<37,0,F>, 12) (<37,0,H>,  H) (<37,0,J>, J) 
          (<38,0,A>, 1) (<38,0,B>, 12) (<38,0,C>, 1) (<38,0,D>, 1) (<38,0,F>, 12) (<38,0,H>,  H) (<38,0,J>, J) 
          (<39,0,A>, 1) (<39,0,B>, 12) (<39,0,C>, 0) (<39,0,D>, 1) (<39,0,F>, 12) (<39,0,H>,  H) (<39,0,J>, J) 
          (<40,0,A>, 1) (<40,0,B>, 12) (<40,0,C>, 0) (<40,0,D>, 1) (<40,0,F>, 12) (<40,0,H>,  H) (<40,0,J>, J) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [6,7,8]
* Step 25: ChainProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f0(A,B,C,D,F,H,J)  -> f13(1,12,1,1,0,H,J)    True                                                 (1,1)   
          3.  f13(A,B,C,D,F,H,J) -> f13(A,B,C,D,1 + F,H,J) [B >= 1 + F]                                         (12,1)  
          9.  f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [B >= 1 + F && C = 0]                                (1932,1)
          10. f32(A,B,C,D,F,H,J) -> f35(A,B,C,D,F,1 + F,J) [B >= 2 + F]                                         (28,1)  
          11. f35(A,B,C,D,F,H,J) -> f38(A,B,C,D,F,H,J)     [0 >= 1 + A && B >= 1 + H]                           (28,1)  
          12. f35(A,B,C,D,F,H,J) -> f38(A,B,C,D,F,H,J)     [A >= 1 && B >= 1 + H]                               (?,1)   
          13. f38(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) [M >= 1 + N]                                         (?,1)   
          14. f38(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) True                                                 (?,1)   
          15. f38(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) True                                                 (30,1)  
          16. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) [B >= 1 + H && A = 0]                                (?,1)   
          17. f48(A,B,C,D,F,H,J) -> f52(A,B,C,D,F,H,M)     [0 >= 1 + D && B >= 2 + F]                           (1,1)   
          18. f48(A,B,C,D,F,H,J) -> f52(A,B,C,D,F,H,M)     [D >= 1 && B >= 2 + F]                               (12,1)  
          19. f52(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,J) [0 >= 1 + J]                                         (13,1)  
          20. f52(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,J) [J >= 1]                                             (13,1)  
          21. f52(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0) [J = 0]                                              (13,1)  
          22. f52(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,J) True                                                 (13,1)  
          23. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M) [B >= 2 + F && D = 0]                                (12,1)  
          31. f35(A,B,C,D,F,H,J) -> f32(A,B,C,D,1 + F,H,J) [H >= B]                                             (28,1)  
          32. f32(A,B,C,D,F,H,J) -> f48(A,B,C,D,0,H,J)     [1 + F >= B]                                         (1,1)   
          33. f19(A,B,C,D,F,H,J) -> f32(A,B,C,D,0,H,J)     [F >= B]                                             (2,1)   
          34. f13(A,B,C,D,F,H,J) -> f19(A,B,C,D,0,H,J)     [F >= B]                                             (1,1)   
          35. f19(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J) [0 >= 1 + C && B >= 1 + F && M$ >= 0 && B >= 1 + N$] (1,2)   
          36. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [0 >= 1 + C && B >= 1 + F && M$ >= 0]                (1,2)   
          37. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [0 >= 1 + C && B >= 1 + F && 0 >= 1 + M$]            (1,2)   
          38. f19(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J) [C >= 1 && B >= 1 + F && M$ >= 0 && B >= 1 + N$]     (39,2)  
          39. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [C >= 1 && B >= 1 + F && M$ >= 0]                    (39,2)  
          40. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [C >= 1 && B >= 1 + F && 0 >= 1 + M$]                (39,2)  
        Signature:
          {(f0,7);(f13,7);(f19,7);(f22,7);(f32,7);(f35,7);(f38,7);(f48,7);(f52,7);(f62,7);(f63,7);(f71,7)}
        Flow Graph:
          [2->{3,34},3->{3,34},9->{9,33,35,36,37,38,39,40},10->{11,12,16,31},11->{13,14,15},12->{13,14,15},13->{11
          ,12,16,31},14->{11,12,16,31},15->{11,12,16,31},16->{11,12,16,31},17->{19,20,21,22},18->{19,20,21,22},19->{17
          ,18,23},20->{17,18,23},21->{17,18,23},22->{17,18,23},23->{17,18,23},31->{10,32},32->{17,18,23},33->{10,32}
          ,34->{9,33,35,36,37,38,39,40},35->{9,33,35,36,37,38,39,40},36->{9,33,35,36,37,38,39,40},37->{9,33,35,36,37
          ,38,39,40},38->{9,33,35,36,37,38,39,40},39->{9,33,35,36,37,38,39,40},40->{9,33,35,36,37,38,39,40}]
        Sizebounds:
          (< 2,0,A>, 1) (< 2,0,B>, 12) (< 2,0,C>, 1) (< 2,0,D>, 1) (< 2,0,F>,  0) (< 2,0,H>,  H) (< 2,0,J>, J) 
          (< 3,0,A>, 1) (< 3,0,B>, 12) (< 3,0,C>, 1) (< 3,0,D>, 1) (< 3,0,F>, 12) (< 3,0,H>,  H) (< 3,0,J>, J) 
          (< 9,0,A>, 1) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 1) (< 9,0,F>, 12) (< 9,0,H>,  H) (< 9,0,J>, J) 
          (<10,0,A>, 1) (<10,0,B>, 12) (<10,0,C>, 1) (<10,0,D>, 1) (<10,0,F>, 12) (<10,0,H>,  ?) (<10,0,J>, J) 
          (<11,0,A>, 1) (<11,0,B>, 12) (<11,0,C>, 1) (<11,0,D>, 1) (<11,0,F>,  ?) (<11,0,H>, 12) (<11,0,J>, J) 
          (<12,0,A>, 1) (<12,0,B>, 12) (<12,0,C>, 1) (<12,0,D>, 1) (<12,0,F>,  ?) (<12,0,H>, 12) (<12,0,J>, J) 
          (<13,0,A>, 1) (<13,0,B>, 12) (<13,0,C>, 1) (<13,0,D>, 1) (<13,0,F>,  ?) (<13,0,H>, 12) (<13,0,J>, J) 
          (<14,0,A>, 1) (<14,0,B>, 12) (<14,0,C>, 1) (<14,0,D>, 1) (<14,0,F>,  ?) (<14,0,H>, 12) (<14,0,J>, J) 
          (<15,0,A>, 0) (<15,0,B>, 12) (<15,0,C>, 1) (<15,0,D>, 1) (<15,0,F>,  ?) (<15,0,H>, 12) (<15,0,J>, J) 
          (<16,0,A>, 0) (<16,0,B>, 12) (<16,0,C>, 1) (<16,0,D>, 1) (<16,0,F>,  ?) (<16,0,H>, 12) (<16,0,J>, J) 
          (<17,0,A>, 1) (<17,0,B>, 12) (<17,0,C>, 1) (<17,0,D>, 1) (<17,0,F>, 12) (<17,0,H>,  ?) (<17,0,J>, ?) 
          (<18,0,A>, 1) (<18,0,B>, 12) (<18,0,C>, 1) (<18,0,D>, 1) (<18,0,F>, 12) (<18,0,H>,  ?) (<18,0,J>, ?) 
          (<19,0,A>, 1) (<19,0,B>, 12) (<19,0,C>, 1) (<19,0,D>, 1) (<19,0,F>, 12) (<19,0,H>,  ?) (<19,0,J>, ?) 
          (<20,0,A>, 1) (<20,0,B>, 12) (<20,0,C>, 1) (<20,0,D>, 1) (<20,0,F>, 12) (<20,0,H>,  ?) (<20,0,J>, ?) 
          (<21,0,A>, 1) (<21,0,B>, 12) (<21,0,C>, 1) (<21,0,D>, 0) (<21,0,F>, 12) (<21,0,H>,  ?) (<21,0,J>, 0) 
          (<22,0,A>, 1) (<22,0,B>, 12) (<22,0,C>, 1) (<22,0,D>, 0) (<22,0,F>, 12) (<22,0,H>,  ?) (<22,0,J>, ?) 
          (<23,0,A>, 1) (<23,0,B>, 12) (<23,0,C>, 1) (<23,0,D>, 0) (<23,0,F>, 12) (<23,0,H>,  ?) (<23,0,J>, ?) 
          (<31,0,A>, 1) (<31,0,B>, 12) (<31,0,C>, 1) (<31,0,D>, 1) (<31,0,F>,  ?) (<31,0,H>,  ?) (<31,0,J>, J) 
          (<32,0,A>, 1) (<32,0,B>, 12) (<32,0,C>, 1) (<32,0,D>, 1) (<32,0,F>,  0) (<32,0,H>,  ?) (<32,0,J>, J) 
          (<33,0,A>, 1) (<33,0,B>, 12) (<33,0,C>, 1) (<33,0,D>, 1) (<33,0,F>,  0) (<33,0,H>,  H) (<33,0,J>, J) 
          (<34,0,A>, 1) (<34,0,B>, 12) (<34,0,C>, 1) (<34,0,D>, 1) (<34,0,F>,  0) (<34,0,H>,  H) (<34,0,J>, J) 
          (<35,0,A>, 1) (<35,0,B>, 12) (<35,0,C>, 1) (<35,0,D>, 1) (<35,0,F>, 12) (<35,0,H>,  H) (<35,0,J>, J) 
          (<36,0,A>, 1) (<36,0,B>, 12) (<36,0,C>, 0) (<36,0,D>, 1) (<36,0,F>, 12) (<36,0,H>,  H) (<36,0,J>, J) 
          (<37,0,A>, 1) (<37,0,B>, 12) (<37,0,C>, 0) (<37,0,D>, 1) (<37,0,F>, 12) (<37,0,H>,  H) (<37,0,J>, J) 
          (<38,0,A>, 1) (<38,0,B>, 12) (<38,0,C>, 1) (<38,0,D>, 1) (<38,0,F>, 12) (<38,0,H>,  H) (<38,0,J>, J) 
          (<39,0,A>, 1) (<39,0,B>, 12) (<39,0,C>, 0) (<39,0,D>, 1) (<39,0,F>, 12) (<39,0,H>,  H) (<39,0,J>, J) 
          (<40,0,A>, 1) (<40,0,B>, 12) (<40,0,C>, 0) (<40,0,D>, 1) (<40,0,F>, 12) (<40,0,H>,  H) (<40,0,J>, J) 
    + Applied Processor:
        ChainProcessor False [2,3,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,31,32,33,34,35,36,37,38,39,40]
    + Details:
        We chained rule 11 to obtain the rules [41,42,43] .
* Step 26: ChainProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f0(A,B,C,D,F,H,J)  -> f13(1,12,1,1,0,H,J)    True                                                 (1,1)   
          3.  f13(A,B,C,D,F,H,J) -> f13(A,B,C,D,1 + F,H,J) [B >= 1 + F]                                         (12,1)  
          9.  f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [B >= 1 + F && C = 0]                                (1932,1)
          10. f32(A,B,C,D,F,H,J) -> f35(A,B,C,D,F,1 + F,J) [B >= 2 + F]                                         (28,1)  
          12. f35(A,B,C,D,F,H,J) -> f38(A,B,C,D,F,H,J)     [A >= 1 && B >= 1 + H]                               (?,1)   
          13. f38(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) [M >= 1 + N]                                         (?,1)   
          14. f38(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) True                                                 (?,1)   
          15. f38(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) True                                                 (30,1)  
          16. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) [B >= 1 + H && A = 0]                                (?,1)   
          17. f48(A,B,C,D,F,H,J) -> f52(A,B,C,D,F,H,M)     [0 >= 1 + D && B >= 2 + F]                           (1,1)   
          18. f48(A,B,C,D,F,H,J) -> f52(A,B,C,D,F,H,M)     [D >= 1 && B >= 2 + F]                               (12,1)  
          19. f52(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,J) [0 >= 1 + J]                                         (13,1)  
          20. f52(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,J) [J >= 1]                                             (13,1)  
          21. f52(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0) [J = 0]                                              (13,1)  
          22. f52(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,J) True                                                 (13,1)  
          23. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M) [B >= 2 + F && D = 0]                                (12,1)  
          31. f35(A,B,C,D,F,H,J) -> f32(A,B,C,D,1 + F,H,J) [H >= B]                                             (28,1)  
          32. f32(A,B,C,D,F,H,J) -> f48(A,B,C,D,0,H,J)     [1 + F >= B]                                         (1,1)   
          33. f19(A,B,C,D,F,H,J) -> f32(A,B,C,D,0,H,J)     [F >= B]                                             (2,1)   
          34. f13(A,B,C,D,F,H,J) -> f19(A,B,C,D,0,H,J)     [F >= B]                                             (1,1)   
          35. f19(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J) [0 >= 1 + C && B >= 1 + F && M$ >= 0 && B >= 1 + N$] (1,2)   
          36. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [0 >= 1 + C && B >= 1 + F && M$ >= 0]                (1,2)   
          37. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [0 >= 1 + C && B >= 1 + F && 0 >= 1 + M$]            (1,2)   
          38. f19(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J) [C >= 1 && B >= 1 + F && M$ >= 0 && B >= 1 + N$]     (39,2)  
          39. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [C >= 1 && B >= 1 + F && M$ >= 0]                    (39,2)  
          40. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [C >= 1 && B >= 1 + F && 0 >= 1 + M$]                (39,2)  
          41. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) [0 >= 1 + A && B >= 1 + H && M$ >= 1 + N$]           (28,2)  
          42. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) [0 >= 1 + A && B >= 1 + H]                           (28,2)  
          43. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) [0 >= 1 + A && B >= 1 + H]                           (28,2)  
        Signature:
          {(f0,7);(f13,7);(f19,7);(f22,7);(f32,7);(f35,7);(f38,7);(f48,7);(f52,7);(f62,7);(f63,7);(f71,7)}
        Flow Graph:
          [2->{3,34},3->{3,34},9->{9,33,35,36,37,38,39,40},10->{12,16,31,41,42,43},12->{13,14,15},13->{12,16,31,41
          ,42,43},14->{12,16,31,41,42,43},15->{12,16,31,41,42,43},16->{12,16,31,41,42,43},17->{19,20,21,22},18->{19,20
          ,21,22},19->{17,18,23},20->{17,18,23},21->{17,18,23},22->{17,18,23},23->{17,18,23},31->{10,32},32->{17,18
          ,23},33->{10,32},34->{9,33,35,36,37,38,39,40},35->{9,33,35,36,37,38,39,40},36->{9,33,35,36,37,38,39,40}
          ,37->{9,33,35,36,37,38,39,40},38->{9,33,35,36,37,38,39,40},39->{9,33,35,36,37,38,39,40},40->{9,33,35,36,37
          ,38,39,40},41->{12,16,31,41,42,43},42->{12,16,31,41,42,43},43->{12,16,31,41,42,43}]
        Sizebounds:
          (< 2,0,A>, 1) (< 2,0,B>, 12) (< 2,0,C>, 1) (< 2,0,D>, 1) (< 2,0,F>,  0) (< 2,0,H>,  H) (< 2,0,J>, J) 
          (< 3,0,A>, 1) (< 3,0,B>, 12) (< 3,0,C>, 1) (< 3,0,D>, 1) (< 3,0,F>, 12) (< 3,0,H>,  H) (< 3,0,J>, J) 
          (< 9,0,A>, 1) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 1) (< 9,0,F>, 12) (< 9,0,H>,  H) (< 9,0,J>, J) 
          (<10,0,A>, 1) (<10,0,B>, 12) (<10,0,C>, 1) (<10,0,D>, 1) (<10,0,F>, 12) (<10,0,H>,  ?) (<10,0,J>, J) 
          (<12,0,A>, 1) (<12,0,B>, 12) (<12,0,C>, 1) (<12,0,D>, 1) (<12,0,F>,  ?) (<12,0,H>, 12) (<12,0,J>, J) 
          (<13,0,A>, 1) (<13,0,B>, 12) (<13,0,C>, 1) (<13,0,D>, 1) (<13,0,F>,  ?) (<13,0,H>, 12) (<13,0,J>, J) 
          (<14,0,A>, 1) (<14,0,B>, 12) (<14,0,C>, 1) (<14,0,D>, 1) (<14,0,F>,  ?) (<14,0,H>, 12) (<14,0,J>, J) 
          (<15,0,A>, 0) (<15,0,B>, 12) (<15,0,C>, 1) (<15,0,D>, 1) (<15,0,F>,  ?) (<15,0,H>, 12) (<15,0,J>, J) 
          (<16,0,A>, 0) (<16,0,B>, 12) (<16,0,C>, 1) (<16,0,D>, 1) (<16,0,F>,  ?) (<16,0,H>, 12) (<16,0,J>, J) 
          (<17,0,A>, 1) (<17,0,B>, 12) (<17,0,C>, 1) (<17,0,D>, 1) (<17,0,F>, 12) (<17,0,H>,  ?) (<17,0,J>, ?) 
          (<18,0,A>, 1) (<18,0,B>, 12) (<18,0,C>, 1) (<18,0,D>, 1) (<18,0,F>, 12) (<18,0,H>,  ?) (<18,0,J>, ?) 
          (<19,0,A>, 1) (<19,0,B>, 12) (<19,0,C>, 1) (<19,0,D>, 1) (<19,0,F>, 12) (<19,0,H>,  ?) (<19,0,J>, ?) 
          (<20,0,A>, 1) (<20,0,B>, 12) (<20,0,C>, 1) (<20,0,D>, 1) (<20,0,F>, 12) (<20,0,H>,  ?) (<20,0,J>, ?) 
          (<21,0,A>, 1) (<21,0,B>, 12) (<21,0,C>, 1) (<21,0,D>, 0) (<21,0,F>, 12) (<21,0,H>,  ?) (<21,0,J>, 0) 
          (<22,0,A>, 1) (<22,0,B>, 12) (<22,0,C>, 1) (<22,0,D>, 0) (<22,0,F>, 12) (<22,0,H>,  ?) (<22,0,J>, ?) 
          (<23,0,A>, 1) (<23,0,B>, 12) (<23,0,C>, 1) (<23,0,D>, 0) (<23,0,F>, 12) (<23,0,H>,  ?) (<23,0,J>, ?) 
          (<31,0,A>, 1) (<31,0,B>, 12) (<31,0,C>, 1) (<31,0,D>, 1) (<31,0,F>,  ?) (<31,0,H>,  ?) (<31,0,J>, J) 
          (<32,0,A>, 1) (<32,0,B>, 12) (<32,0,C>, 1) (<32,0,D>, 1) (<32,0,F>,  0) (<32,0,H>,  ?) (<32,0,J>, J) 
          (<33,0,A>, 1) (<33,0,B>, 12) (<33,0,C>, 1) (<33,0,D>, 1) (<33,0,F>,  0) (<33,0,H>,  H) (<33,0,J>, J) 
          (<34,0,A>, 1) (<34,0,B>, 12) (<34,0,C>, 1) (<34,0,D>, 1) (<34,0,F>,  0) (<34,0,H>,  H) (<34,0,J>, J) 
          (<35,0,A>, 1) (<35,0,B>, 12) (<35,0,C>, 1) (<35,0,D>, 1) (<35,0,F>, 12) (<35,0,H>,  H) (<35,0,J>, J) 
          (<36,0,A>, 1) (<36,0,B>, 12) (<36,0,C>, 0) (<36,0,D>, 1) (<36,0,F>, 12) (<36,0,H>,  H) (<36,0,J>, J) 
          (<37,0,A>, 1) (<37,0,B>, 12) (<37,0,C>, 0) (<37,0,D>, 1) (<37,0,F>, 12) (<37,0,H>,  H) (<37,0,J>, J) 
          (<38,0,A>, 1) (<38,0,B>, 12) (<38,0,C>, 1) (<38,0,D>, 1) (<38,0,F>, 12) (<38,0,H>,  H) (<38,0,J>, J) 
          (<39,0,A>, 1) (<39,0,B>, 12) (<39,0,C>, 0) (<39,0,D>, 1) (<39,0,F>, 12) (<39,0,H>,  H) (<39,0,J>, J) 
          (<40,0,A>, 1) (<40,0,B>, 12) (<40,0,C>, 0) (<40,0,D>, 1) (<40,0,F>, 12) (<40,0,H>,  H) (<40,0,J>, J) 
          (<41,0,A>, 1) (<41,0,B>, 12) (<41,0,C>, 1) (<41,0,D>, 1) (<41,0,F>,  ?) (<41,0,H>, 12) (<41,0,J>, J) 
          (<42,0,A>, 1) (<42,0,B>, 12) (<42,0,C>, 1) (<42,0,D>, 1) (<42,0,F>,  ?) (<42,0,H>, 12) (<42,0,J>, J) 
          (<43,0,A>, 0) (<43,0,B>, 12) (<43,0,C>, 1) (<43,0,D>, 1) (<43,0,F>,  ?) (<43,0,H>, 12) (<43,0,J>, J) 
    + Applied Processor:
        ChainProcessor False [2,3,9,10,12,13,14,15,16,17,18,19,20,21,22,23,31,32,33,34,35,36,37,38,39,40,41,42,43]
    + Details:
        We chained rule 12 to obtain the rules [44,45,46] .
* Step 27: UnreachableRules WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f0(A,B,C,D,F,H,J)  -> f13(1,12,1,1,0,H,J)    True                                                 (1,1)   
          3.  f13(A,B,C,D,F,H,J) -> f13(A,B,C,D,1 + F,H,J) [B >= 1 + F]                                         (12,1)  
          9.  f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [B >= 1 + F && C = 0]                                (1932,1)
          10. f32(A,B,C,D,F,H,J) -> f35(A,B,C,D,F,1 + F,J) [B >= 2 + F]                                         (28,1)  
          13. f38(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) [M >= 1 + N]                                         (?,1)   
          14. f38(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) True                                                 (?,1)   
          15. f38(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) True                                                 (30,1)  
          16. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) [B >= 1 + H && A = 0]                                (?,1)   
          17. f48(A,B,C,D,F,H,J) -> f52(A,B,C,D,F,H,M)     [0 >= 1 + D && B >= 2 + F]                           (1,1)   
          18. f48(A,B,C,D,F,H,J) -> f52(A,B,C,D,F,H,M)     [D >= 1 && B >= 2 + F]                               (12,1)  
          19. f52(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,J) [0 >= 1 + J]                                         (13,1)  
          20. f52(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,J) [J >= 1]                                             (13,1)  
          21. f52(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0) [J = 0]                                              (13,1)  
          22. f52(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,J) True                                                 (13,1)  
          23. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M) [B >= 2 + F && D = 0]                                (12,1)  
          31. f35(A,B,C,D,F,H,J) -> f32(A,B,C,D,1 + F,H,J) [H >= B]                                             (28,1)  
          32. f32(A,B,C,D,F,H,J) -> f48(A,B,C,D,0,H,J)     [1 + F >= B]                                         (1,1)   
          33. f19(A,B,C,D,F,H,J) -> f32(A,B,C,D,0,H,J)     [F >= B]                                             (2,1)   
          34. f13(A,B,C,D,F,H,J) -> f19(A,B,C,D,0,H,J)     [F >= B]                                             (1,1)   
          35. f19(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J) [0 >= 1 + C && B >= 1 + F && M$ >= 0 && B >= 1 + N$] (1,2)   
          36. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [0 >= 1 + C && B >= 1 + F && M$ >= 0]                (1,2)   
          37. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [0 >= 1 + C && B >= 1 + F && 0 >= 1 + M$]            (1,2)   
          38. f19(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J) [C >= 1 && B >= 1 + F && M$ >= 0 && B >= 1 + N$]     (39,2)  
          39. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [C >= 1 && B >= 1 + F && M$ >= 0]                    (39,2)  
          40. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [C >= 1 && B >= 1 + F && 0 >= 1 + M$]                (39,2)  
          41. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) [0 >= 1 + A && B >= 1 + H && M$ >= 1 + N$]           (28,2)  
          42. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) [0 >= 1 + A && B >= 1 + H]                           (28,2)  
          43. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) [0 >= 1 + A && B >= 1 + H]                           (28,2)  
          44. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) [A >= 1 && B >= 1 + H && M$ >= 1 + N$]               (?,2)   
          45. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) [A >= 1 && B >= 1 + H]                               (?,2)   
          46. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) [A >= 1 && B >= 1 + H]                               (?,2)   
        Signature:
          {(f0,7);(f13,7);(f19,7);(f22,7);(f32,7);(f35,7);(f38,7);(f48,7);(f52,7);(f62,7);(f63,7);(f71,7)}
        Flow Graph:
          [2->{3,34},3->{3,34},9->{9,33,35,36,37,38,39,40},10->{16,31,41,42,43,44,45,46},13->{16,31,41,42,43,44,45
          ,46},14->{16,31,41,42,43,44,45,46},15->{16,31,41,42,43,44,45,46},16->{16,31,41,42,43,44,45,46},17->{19,20,21
          ,22},18->{19,20,21,22},19->{17,18,23},20->{17,18,23},21->{17,18,23},22->{17,18,23},23->{17,18,23},31->{10
          ,32},32->{17,18,23},33->{10,32},34->{9,33,35,36,37,38,39,40},35->{9,33,35,36,37,38,39,40},36->{9,33,35,36,37
          ,38,39,40},37->{9,33,35,36,37,38,39,40},38->{9,33,35,36,37,38,39,40},39->{9,33,35,36,37,38,39,40},40->{9,33
          ,35,36,37,38,39,40},41->{16,31,41,42,43,44,45,46},42->{16,31,41,42,43,44,45,46},43->{16,31,41,42,43,44,45
          ,46},44->{16,31,41,42,43,44,45,46},45->{16,31,41,42,43,44,45,46},46->{16,31,41,42,43,44,45,46}]
        Sizebounds:
          (< 2,0,A>, 1) (< 2,0,B>, 12) (< 2,0,C>, 1) (< 2,0,D>, 1) (< 2,0,F>,  0) (< 2,0,H>,  H) (< 2,0,J>, J) 
          (< 3,0,A>, 1) (< 3,0,B>, 12) (< 3,0,C>, 1) (< 3,0,D>, 1) (< 3,0,F>, 12) (< 3,0,H>,  H) (< 3,0,J>, J) 
          (< 9,0,A>, 1) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 1) (< 9,0,F>, 12) (< 9,0,H>,  H) (< 9,0,J>, J) 
          (<10,0,A>, 1) (<10,0,B>, 12) (<10,0,C>, 1) (<10,0,D>, 1) (<10,0,F>, 12) (<10,0,H>,  ?) (<10,0,J>, J) 
          (<13,0,A>, 1) (<13,0,B>, 12) (<13,0,C>, 1) (<13,0,D>, 1) (<13,0,F>,  ?) (<13,0,H>, 12) (<13,0,J>, J) 
          (<14,0,A>, 1) (<14,0,B>, 12) (<14,0,C>, 1) (<14,0,D>, 1) (<14,0,F>,  ?) (<14,0,H>, 12) (<14,0,J>, J) 
          (<15,0,A>, 0) (<15,0,B>, 12) (<15,0,C>, 1) (<15,0,D>, 1) (<15,0,F>,  ?) (<15,0,H>, 12) (<15,0,J>, J) 
          (<16,0,A>, 0) (<16,0,B>, 12) (<16,0,C>, 1) (<16,0,D>, 1) (<16,0,F>,  ?) (<16,0,H>, 12) (<16,0,J>, J) 
          (<17,0,A>, 1) (<17,0,B>, 12) (<17,0,C>, 1) (<17,0,D>, 1) (<17,0,F>, 12) (<17,0,H>,  ?) (<17,0,J>, ?) 
          (<18,0,A>, 1) (<18,0,B>, 12) (<18,0,C>, 1) (<18,0,D>, 1) (<18,0,F>, 12) (<18,0,H>,  ?) (<18,0,J>, ?) 
          (<19,0,A>, 1) (<19,0,B>, 12) (<19,0,C>, 1) (<19,0,D>, 1) (<19,0,F>, 12) (<19,0,H>,  ?) (<19,0,J>, ?) 
          (<20,0,A>, 1) (<20,0,B>, 12) (<20,0,C>, 1) (<20,0,D>, 1) (<20,0,F>, 12) (<20,0,H>,  ?) (<20,0,J>, ?) 
          (<21,0,A>, 1) (<21,0,B>, 12) (<21,0,C>, 1) (<21,0,D>, 0) (<21,0,F>, 12) (<21,0,H>,  ?) (<21,0,J>, 0) 
          (<22,0,A>, 1) (<22,0,B>, 12) (<22,0,C>, 1) (<22,0,D>, 0) (<22,0,F>, 12) (<22,0,H>,  ?) (<22,0,J>, ?) 
          (<23,0,A>, 1) (<23,0,B>, 12) (<23,0,C>, 1) (<23,0,D>, 0) (<23,0,F>, 12) (<23,0,H>,  ?) (<23,0,J>, ?) 
          (<31,0,A>, 1) (<31,0,B>, 12) (<31,0,C>, 1) (<31,0,D>, 1) (<31,0,F>,  ?) (<31,0,H>,  ?) (<31,0,J>, J) 
          (<32,0,A>, 1) (<32,0,B>, 12) (<32,0,C>, 1) (<32,0,D>, 1) (<32,0,F>,  0) (<32,0,H>,  ?) (<32,0,J>, J) 
          (<33,0,A>, 1) (<33,0,B>, 12) (<33,0,C>, 1) (<33,0,D>, 1) (<33,0,F>,  0) (<33,0,H>,  H) (<33,0,J>, J) 
          (<34,0,A>, 1) (<34,0,B>, 12) (<34,0,C>, 1) (<34,0,D>, 1) (<34,0,F>,  0) (<34,0,H>,  H) (<34,0,J>, J) 
          (<35,0,A>, 1) (<35,0,B>, 12) (<35,0,C>, 1) (<35,0,D>, 1) (<35,0,F>, 12) (<35,0,H>,  H) (<35,0,J>, J) 
          (<36,0,A>, 1) (<36,0,B>, 12) (<36,0,C>, 0) (<36,0,D>, 1) (<36,0,F>, 12) (<36,0,H>,  H) (<36,0,J>, J) 
          (<37,0,A>, 1) (<37,0,B>, 12) (<37,0,C>, 0) (<37,0,D>, 1) (<37,0,F>, 12) (<37,0,H>,  H) (<37,0,J>, J) 
          (<38,0,A>, 1) (<38,0,B>, 12) (<38,0,C>, 1) (<38,0,D>, 1) (<38,0,F>, 12) (<38,0,H>,  H) (<38,0,J>, J) 
          (<39,0,A>, 1) (<39,0,B>, 12) (<39,0,C>, 0) (<39,0,D>, 1) (<39,0,F>, 12) (<39,0,H>,  H) (<39,0,J>, J) 
          (<40,0,A>, 1) (<40,0,B>, 12) (<40,0,C>, 0) (<40,0,D>, 1) (<40,0,F>, 12) (<40,0,H>,  H) (<40,0,J>, J) 
          (<41,0,A>, 1) (<41,0,B>, 12) (<41,0,C>, 1) (<41,0,D>, 1) (<41,0,F>,  ?) (<41,0,H>, 12) (<41,0,J>, J) 
          (<42,0,A>, 1) (<42,0,B>, 12) (<42,0,C>, 1) (<42,0,D>, 1) (<42,0,F>,  ?) (<42,0,H>, 12) (<42,0,J>, J) 
          (<43,0,A>, 0) (<43,0,B>, 12) (<43,0,C>, 1) (<43,0,D>, 1) (<43,0,F>,  ?) (<43,0,H>, 12) (<43,0,J>, J) 
          (<44,0,A>, 1) (<44,0,B>, 12) (<44,0,C>, 1) (<44,0,D>, 1) (<44,0,F>,  ?) (<44,0,H>, 12) (<44,0,J>, J) 
          (<45,0,A>, 1) (<45,0,B>, 12) (<45,0,C>, 1) (<45,0,D>, 1) (<45,0,F>,  ?) (<45,0,H>, 12) (<45,0,J>, J) 
          (<46,0,A>, 0) (<46,0,B>, 12) (<46,0,C>, 1) (<46,0,D>, 1) (<46,0,F>,  ?) (<46,0,H>, 12) (<46,0,J>, J) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [13,14,15]
* Step 28: ChainProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f0(A,B,C,D,F,H,J)  -> f13(1,12,1,1,0,H,J)    True                                                 (1,1)   
          3.  f13(A,B,C,D,F,H,J) -> f13(A,B,C,D,1 + F,H,J) [B >= 1 + F]                                         (12,1)  
          9.  f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [B >= 1 + F && C = 0]                                (1932,1)
          10. f32(A,B,C,D,F,H,J) -> f35(A,B,C,D,F,1 + F,J) [B >= 2 + F]                                         (28,1)  
          16. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) [B >= 1 + H && A = 0]                                (?,1)   
          17. f48(A,B,C,D,F,H,J) -> f52(A,B,C,D,F,H,M)     [0 >= 1 + D && B >= 2 + F]                           (1,1)   
          18. f48(A,B,C,D,F,H,J) -> f52(A,B,C,D,F,H,M)     [D >= 1 && B >= 2 + F]                               (12,1)  
          19. f52(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,J) [0 >= 1 + J]                                         (13,1)  
          20. f52(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,J) [J >= 1]                                             (13,1)  
          21. f52(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0) [J = 0]                                              (13,1)  
          22. f52(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,J) True                                                 (13,1)  
          23. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M) [B >= 2 + F && D = 0]                                (12,1)  
          31. f35(A,B,C,D,F,H,J) -> f32(A,B,C,D,1 + F,H,J) [H >= B]                                             (28,1)  
          32. f32(A,B,C,D,F,H,J) -> f48(A,B,C,D,0,H,J)     [1 + F >= B]                                         (1,1)   
          33. f19(A,B,C,D,F,H,J) -> f32(A,B,C,D,0,H,J)     [F >= B]                                             (2,1)   
          34. f13(A,B,C,D,F,H,J) -> f19(A,B,C,D,0,H,J)     [F >= B]                                             (1,1)   
          35. f19(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J) [0 >= 1 + C && B >= 1 + F && M$ >= 0 && B >= 1 + N$] (1,2)   
          36. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [0 >= 1 + C && B >= 1 + F && M$ >= 0]                (1,2)   
          37. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [0 >= 1 + C && B >= 1 + F && 0 >= 1 + M$]            (1,2)   
          38. f19(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J) [C >= 1 && B >= 1 + F && M$ >= 0 && B >= 1 + N$]     (39,2)  
          39. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [C >= 1 && B >= 1 + F && M$ >= 0]                    (39,2)  
          40. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [C >= 1 && B >= 1 + F && 0 >= 1 + M$]                (39,2)  
          41. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) [0 >= 1 + A && B >= 1 + H && M$ >= 1 + N$]           (28,2)  
          42. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) [0 >= 1 + A && B >= 1 + H]                           (28,2)  
          43. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) [0 >= 1 + A && B >= 1 + H]                           (28,2)  
          44. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) [A >= 1 && B >= 1 + H && M$ >= 1 + N$]               (?,2)   
          45. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) [A >= 1 && B >= 1 + H]                               (?,2)   
          46. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) [A >= 1 && B >= 1 + H]                               (?,2)   
        Signature:
          {(f0,7);(f13,7);(f19,7);(f22,7);(f32,7);(f35,7);(f38,7);(f48,7);(f52,7);(f62,7);(f63,7);(f71,7)}
        Flow Graph:
          [2->{3,34},3->{3,34},9->{9,33,35,36,37,38,39,40},10->{16,31,41,42,43,44,45,46},16->{16,31,41,42,43,44,45
          ,46},17->{19,20,21,22},18->{19,20,21,22},19->{17,18,23},20->{17,18,23},21->{17,18,23},22->{17,18,23},23->{17
          ,18,23},31->{10,32},32->{17,18,23},33->{10,32},34->{9,33,35,36,37,38,39,40},35->{9,33,35,36,37,38,39,40}
          ,36->{9,33,35,36,37,38,39,40},37->{9,33,35,36,37,38,39,40},38->{9,33,35,36,37,38,39,40},39->{9,33,35,36,37
          ,38,39,40},40->{9,33,35,36,37,38,39,40},41->{16,31,41,42,43,44,45,46},42->{16,31,41,42,43,44,45,46},43->{16
          ,31,41,42,43,44,45,46},44->{16,31,41,42,43,44,45,46},45->{16,31,41,42,43,44,45,46},46->{16,31,41,42,43,44,45
          ,46}]
        Sizebounds:
          (< 2,0,A>, 1) (< 2,0,B>, 12) (< 2,0,C>, 1) (< 2,0,D>, 1) (< 2,0,F>,  0) (< 2,0,H>,  H) (< 2,0,J>, J) 
          (< 3,0,A>, 1) (< 3,0,B>, 12) (< 3,0,C>, 1) (< 3,0,D>, 1) (< 3,0,F>, 12) (< 3,0,H>,  H) (< 3,0,J>, J) 
          (< 9,0,A>, 1) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 1) (< 9,0,F>, 12) (< 9,0,H>,  H) (< 9,0,J>, J) 
          (<10,0,A>, 1) (<10,0,B>, 12) (<10,0,C>, 1) (<10,0,D>, 1) (<10,0,F>, 12) (<10,0,H>,  ?) (<10,0,J>, J) 
          (<16,0,A>, 0) (<16,0,B>, 12) (<16,0,C>, 1) (<16,0,D>, 1) (<16,0,F>,  ?) (<16,0,H>, 12) (<16,0,J>, J) 
          (<17,0,A>, 1) (<17,0,B>, 12) (<17,0,C>, 1) (<17,0,D>, 1) (<17,0,F>, 12) (<17,0,H>,  ?) (<17,0,J>, ?) 
          (<18,0,A>, 1) (<18,0,B>, 12) (<18,0,C>, 1) (<18,0,D>, 1) (<18,0,F>, 12) (<18,0,H>,  ?) (<18,0,J>, ?) 
          (<19,0,A>, 1) (<19,0,B>, 12) (<19,0,C>, 1) (<19,0,D>, 1) (<19,0,F>, 12) (<19,0,H>,  ?) (<19,0,J>, ?) 
          (<20,0,A>, 1) (<20,0,B>, 12) (<20,0,C>, 1) (<20,0,D>, 1) (<20,0,F>, 12) (<20,0,H>,  ?) (<20,0,J>, ?) 
          (<21,0,A>, 1) (<21,0,B>, 12) (<21,0,C>, 1) (<21,0,D>, 0) (<21,0,F>, 12) (<21,0,H>,  ?) (<21,0,J>, 0) 
          (<22,0,A>, 1) (<22,0,B>, 12) (<22,0,C>, 1) (<22,0,D>, 0) (<22,0,F>, 12) (<22,0,H>,  ?) (<22,0,J>, ?) 
          (<23,0,A>, 1) (<23,0,B>, 12) (<23,0,C>, 1) (<23,0,D>, 0) (<23,0,F>, 12) (<23,0,H>,  ?) (<23,0,J>, ?) 
          (<31,0,A>, 1) (<31,0,B>, 12) (<31,0,C>, 1) (<31,0,D>, 1) (<31,0,F>,  ?) (<31,0,H>,  ?) (<31,0,J>, J) 
          (<32,0,A>, 1) (<32,0,B>, 12) (<32,0,C>, 1) (<32,0,D>, 1) (<32,0,F>,  0) (<32,0,H>,  ?) (<32,0,J>, J) 
          (<33,0,A>, 1) (<33,0,B>, 12) (<33,0,C>, 1) (<33,0,D>, 1) (<33,0,F>,  0) (<33,0,H>,  H) (<33,0,J>, J) 
          (<34,0,A>, 1) (<34,0,B>, 12) (<34,0,C>, 1) (<34,0,D>, 1) (<34,0,F>,  0) (<34,0,H>,  H) (<34,0,J>, J) 
          (<35,0,A>, 1) (<35,0,B>, 12) (<35,0,C>, 1) (<35,0,D>, 1) (<35,0,F>, 12) (<35,0,H>,  H) (<35,0,J>, J) 
          (<36,0,A>, 1) (<36,0,B>, 12) (<36,0,C>, 0) (<36,0,D>, 1) (<36,0,F>, 12) (<36,0,H>,  H) (<36,0,J>, J) 
          (<37,0,A>, 1) (<37,0,B>, 12) (<37,0,C>, 0) (<37,0,D>, 1) (<37,0,F>, 12) (<37,0,H>,  H) (<37,0,J>, J) 
          (<38,0,A>, 1) (<38,0,B>, 12) (<38,0,C>, 1) (<38,0,D>, 1) (<38,0,F>, 12) (<38,0,H>,  H) (<38,0,J>, J) 
          (<39,0,A>, 1) (<39,0,B>, 12) (<39,0,C>, 0) (<39,0,D>, 1) (<39,0,F>, 12) (<39,0,H>,  H) (<39,0,J>, J) 
          (<40,0,A>, 1) (<40,0,B>, 12) (<40,0,C>, 0) (<40,0,D>, 1) (<40,0,F>, 12) (<40,0,H>,  H) (<40,0,J>, J) 
          (<41,0,A>, 1) (<41,0,B>, 12) (<41,0,C>, 1) (<41,0,D>, 1) (<41,0,F>,  ?) (<41,0,H>, 12) (<41,0,J>, J) 
          (<42,0,A>, 1) (<42,0,B>, 12) (<42,0,C>, 1) (<42,0,D>, 1) (<42,0,F>,  ?) (<42,0,H>, 12) (<42,0,J>, J) 
          (<43,0,A>, 0) (<43,0,B>, 12) (<43,0,C>, 1) (<43,0,D>, 1) (<43,0,F>,  ?) (<43,0,H>, 12) (<43,0,J>, J) 
          (<44,0,A>, 1) (<44,0,B>, 12) (<44,0,C>, 1) (<44,0,D>, 1) (<44,0,F>,  ?) (<44,0,H>, 12) (<44,0,J>, J) 
          (<45,0,A>, 1) (<45,0,B>, 12) (<45,0,C>, 1) (<45,0,D>, 1) (<45,0,F>,  ?) (<45,0,H>, 12) (<45,0,J>, J) 
          (<46,0,A>, 0) (<46,0,B>, 12) (<46,0,C>, 1) (<46,0,D>, 1) (<46,0,F>,  ?) (<46,0,H>, 12) (<46,0,J>, J) 
    + Applied Processor:
        ChainProcessor False [2,3,9,10,16,17,18,19,20,21,22,23,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46]
    + Details:
        We chained rule 17 to obtain the rules [47,48,49,50] .
* Step 29: ChainProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f0(A,B,C,D,F,H,J)  -> f13(1,12,1,1,0,H,J)    True                                                 (1,1)   
          3.  f13(A,B,C,D,F,H,J) -> f13(A,B,C,D,1 + F,H,J) [B >= 1 + F]                                         (12,1)  
          9.  f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [B >= 1 + F && C = 0]                                (1932,1)
          10. f32(A,B,C,D,F,H,J) -> f35(A,B,C,D,F,1 + F,J) [B >= 2 + F]                                         (28,1)  
          16. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) [B >= 1 + H && A = 0]                                (?,1)   
          18. f48(A,B,C,D,F,H,J) -> f52(A,B,C,D,F,H,M)     [D >= 1 && B >= 2 + F]                               (12,1)  
          19. f52(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,J) [0 >= 1 + J]                                         (13,1)  
          20. f52(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,J) [J >= 1]                                             (13,1)  
          21. f52(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0) [J = 0]                                              (13,1)  
          22. f52(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,J) True                                                 (13,1)  
          23. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M) [B >= 2 + F && D = 0]                                (12,1)  
          31. f35(A,B,C,D,F,H,J) -> f32(A,B,C,D,1 + F,H,J) [H >= B]                                             (28,1)  
          32. f32(A,B,C,D,F,H,J) -> f48(A,B,C,D,0,H,J)     [1 + F >= B]                                         (1,1)   
          33. f19(A,B,C,D,F,H,J) -> f32(A,B,C,D,0,H,J)     [F >= B]                                             (2,1)   
          34. f13(A,B,C,D,F,H,J) -> f19(A,B,C,D,0,H,J)     [F >= B]                                             (1,1)   
          35. f19(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J) [0 >= 1 + C && B >= 1 + F && M$ >= 0 && B >= 1 + N$] (1,2)   
          36. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [0 >= 1 + C && B >= 1 + F && M$ >= 0]                (1,2)   
          37. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [0 >= 1 + C && B >= 1 + F && 0 >= 1 + M$]            (1,2)   
          38. f19(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J) [C >= 1 && B >= 1 + F && M$ >= 0 && B >= 1 + N$]     (39,2)  
          39. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [C >= 1 && B >= 1 + F && M$ >= 0]                    (39,2)  
          40. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [C >= 1 && B >= 1 + F && 0 >= 1 + M$]                (39,2)  
          41. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) [0 >= 1 + A && B >= 1 + H && M$ >= 1 + N$]           (28,2)  
          42. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) [0 >= 1 + A && B >= 1 + H]                           (28,2)  
          43. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) [0 >= 1 + A && B >= 1 + H]                           (28,2)  
          44. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) [A >= 1 && B >= 1 + H && M$ >= 1 + N$]               (?,2)   
          45. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) [A >= 1 && B >= 1 + H]                               (?,2)   
          46. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) [A >= 1 && B >= 1 + H]                               (?,2)   
          47. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M) [0 >= 1 + D && B >= 2 + F && 0 >= 1 + M]             (1,2)   
          48. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M) [0 >= 1 + D && B >= 2 + F && M >= 1]                 (1,2)   
          49. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0) [0 >= 1 + D && B >= 2 + F && M = 0]                  (1,2)   
          50. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M) [0 >= 1 + D && B >= 2 + F]                           (1,2)   
        Signature:
          {(f0,7);(f13,7);(f19,7);(f22,7);(f32,7);(f35,7);(f38,7);(f48,7);(f52,7);(f62,7);(f63,7);(f71,7)}
        Flow Graph:
          [2->{3,34},3->{3,34},9->{9,33,35,36,37,38,39,40},10->{16,31,41,42,43,44,45,46},16->{16,31,41,42,43,44,45
          ,46},18->{19,20,21,22},19->{18,23,47,48,49,50},20->{18,23,47,48,49,50},21->{18,23,47,48,49,50},22->{18,23,47
          ,48,49,50},23->{18,23,47,48,49,50},31->{10,32},32->{18,23,47,48,49,50},33->{10,32},34->{9,33,35,36,37,38,39
          ,40},35->{9,33,35,36,37,38,39,40},36->{9,33,35,36,37,38,39,40},37->{9,33,35,36,37,38,39,40},38->{9,33,35,36
          ,37,38,39,40},39->{9,33,35,36,37,38,39,40},40->{9,33,35,36,37,38,39,40},41->{16,31,41,42,43,44,45,46}
          ,42->{16,31,41,42,43,44,45,46},43->{16,31,41,42,43,44,45,46},44->{16,31,41,42,43,44,45,46},45->{16,31,41,42
          ,43,44,45,46},46->{16,31,41,42,43,44,45,46},47->{18,23,47,48,49,50},48->{18,23,47,48,49,50},49->{18,23,47,48
          ,49,50},50->{18,23,47,48,49,50}]
        Sizebounds:
          (< 2,0,A>, 1) (< 2,0,B>, 12) (< 2,0,C>, 1) (< 2,0,D>, 1) (< 2,0,F>,  0) (< 2,0,H>,  H) (< 2,0,J>, J) 
          (< 3,0,A>, 1) (< 3,0,B>, 12) (< 3,0,C>, 1) (< 3,0,D>, 1) (< 3,0,F>, 12) (< 3,0,H>,  H) (< 3,0,J>, J) 
          (< 9,0,A>, 1) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 1) (< 9,0,F>, 12) (< 9,0,H>,  H) (< 9,0,J>, J) 
          (<10,0,A>, 1) (<10,0,B>, 12) (<10,0,C>, 1) (<10,0,D>, 1) (<10,0,F>, 12) (<10,0,H>,  ?) (<10,0,J>, J) 
          (<16,0,A>, 0) (<16,0,B>, 12) (<16,0,C>, 1) (<16,0,D>, 1) (<16,0,F>,  ?) (<16,0,H>, 12) (<16,0,J>, J) 
          (<18,0,A>, 1) (<18,0,B>, 12) (<18,0,C>, 1) (<18,0,D>, 1) (<18,0,F>, 12) (<18,0,H>,  ?) (<18,0,J>, ?) 
          (<19,0,A>, 1) (<19,0,B>, 12) (<19,0,C>, 1) (<19,0,D>, 1) (<19,0,F>, 12) (<19,0,H>,  ?) (<19,0,J>, ?) 
          (<20,0,A>, 1) (<20,0,B>, 12) (<20,0,C>, 1) (<20,0,D>, 1) (<20,0,F>, 12) (<20,0,H>,  ?) (<20,0,J>, ?) 
          (<21,0,A>, 1) (<21,0,B>, 12) (<21,0,C>, 1) (<21,0,D>, 0) (<21,0,F>, 12) (<21,0,H>,  ?) (<21,0,J>, 0) 
          (<22,0,A>, 1) (<22,0,B>, 12) (<22,0,C>, 1) (<22,0,D>, 0) (<22,0,F>, 12) (<22,0,H>,  ?) (<22,0,J>, ?) 
          (<23,0,A>, 1) (<23,0,B>, 12) (<23,0,C>, 1) (<23,0,D>, 0) (<23,0,F>, 12) (<23,0,H>,  ?) (<23,0,J>, ?) 
          (<31,0,A>, 1) (<31,0,B>, 12) (<31,0,C>, 1) (<31,0,D>, 1) (<31,0,F>,  ?) (<31,0,H>,  ?) (<31,0,J>, J) 
          (<32,0,A>, 1) (<32,0,B>, 12) (<32,0,C>, 1) (<32,0,D>, 1) (<32,0,F>,  0) (<32,0,H>,  ?) (<32,0,J>, J) 
          (<33,0,A>, 1) (<33,0,B>, 12) (<33,0,C>, 1) (<33,0,D>, 1) (<33,0,F>,  0) (<33,0,H>,  H) (<33,0,J>, J) 
          (<34,0,A>, 1) (<34,0,B>, 12) (<34,0,C>, 1) (<34,0,D>, 1) (<34,0,F>,  0) (<34,0,H>,  H) (<34,0,J>, J) 
          (<35,0,A>, 1) (<35,0,B>, 12) (<35,0,C>, 1) (<35,0,D>, 1) (<35,0,F>, 12) (<35,0,H>,  H) (<35,0,J>, J) 
          (<36,0,A>, 1) (<36,0,B>, 12) (<36,0,C>, 0) (<36,0,D>, 1) (<36,0,F>, 12) (<36,0,H>,  H) (<36,0,J>, J) 
          (<37,0,A>, 1) (<37,0,B>, 12) (<37,0,C>, 0) (<37,0,D>, 1) (<37,0,F>, 12) (<37,0,H>,  H) (<37,0,J>, J) 
          (<38,0,A>, 1) (<38,0,B>, 12) (<38,0,C>, 1) (<38,0,D>, 1) (<38,0,F>, 12) (<38,0,H>,  H) (<38,0,J>, J) 
          (<39,0,A>, 1) (<39,0,B>, 12) (<39,0,C>, 0) (<39,0,D>, 1) (<39,0,F>, 12) (<39,0,H>,  H) (<39,0,J>, J) 
          (<40,0,A>, 1) (<40,0,B>, 12) (<40,0,C>, 0) (<40,0,D>, 1) (<40,0,F>, 12) (<40,0,H>,  H) (<40,0,J>, J) 
          (<41,0,A>, 1) (<41,0,B>, 12) (<41,0,C>, 1) (<41,0,D>, 1) (<41,0,F>,  ?) (<41,0,H>, 12) (<41,0,J>, J) 
          (<42,0,A>, 1) (<42,0,B>, 12) (<42,0,C>, 1) (<42,0,D>, 1) (<42,0,F>,  ?) (<42,0,H>, 12) (<42,0,J>, J) 
          (<43,0,A>, 0) (<43,0,B>, 12) (<43,0,C>, 1) (<43,0,D>, 1) (<43,0,F>,  ?) (<43,0,H>, 12) (<43,0,J>, J) 
          (<44,0,A>, 1) (<44,0,B>, 12) (<44,0,C>, 1) (<44,0,D>, 1) (<44,0,F>,  ?) (<44,0,H>, 12) (<44,0,J>, J) 
          (<45,0,A>, 1) (<45,0,B>, 12) (<45,0,C>, 1) (<45,0,D>, 1) (<45,0,F>,  ?) (<45,0,H>, 12) (<45,0,J>, J) 
          (<46,0,A>, 0) (<46,0,B>, 12) (<46,0,C>, 1) (<46,0,D>, 1) (<46,0,F>,  ?) (<46,0,H>, 12) (<46,0,J>, J) 
          (<47,0,A>, 1) (<47,0,B>, 12) (<47,0,C>, 1) (<47,0,D>, 1) (<47,0,F>, 12) (<47,0,H>,  ?) (<47,0,J>, ?) 
          (<48,0,A>, 1) (<48,0,B>, 12) (<48,0,C>, 1) (<48,0,D>, 1) (<48,0,F>, 12) (<48,0,H>,  ?) (<48,0,J>, ?) 
          (<49,0,A>, 1) (<49,0,B>, 12) (<49,0,C>, 1) (<49,0,D>, 0) (<49,0,F>, 12) (<49,0,H>,  ?) (<49,0,J>, 0) 
          (<50,0,A>, 1) (<50,0,B>, 12) (<50,0,C>, 1) (<50,0,D>, 0) (<50,0,F>, 12) (<50,0,H>,  ?) (<50,0,J>, ?) 
    + Applied Processor:
        ChainProcessor False [2,3,9,10,16,18,19,20,21,22,23,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50]
    + Details:
        We chained rule 18 to obtain the rules [51,52,53,54] .
* Step 30: UnreachableRules WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f0(A,B,C,D,F,H,J)  -> f13(1,12,1,1,0,H,J)    True                                                 (1,1)   
          3.  f13(A,B,C,D,F,H,J) -> f13(A,B,C,D,1 + F,H,J) [B >= 1 + F]                                         (12,1)  
          9.  f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [B >= 1 + F && C = 0]                                (1932,1)
          10. f32(A,B,C,D,F,H,J) -> f35(A,B,C,D,F,1 + F,J) [B >= 2 + F]                                         (28,1)  
          16. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) [B >= 1 + H && A = 0]                                (?,1)   
          19. f52(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,J) [0 >= 1 + J]                                         (13,1)  
          20. f52(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,J) [J >= 1]                                             (13,1)  
          21. f52(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0) [J = 0]                                              (13,1)  
          22. f52(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,J) True                                                 (13,1)  
          23. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M) [B >= 2 + F && D = 0]                                (12,1)  
          31. f35(A,B,C,D,F,H,J) -> f32(A,B,C,D,1 + F,H,J) [H >= B]                                             (28,1)  
          32. f32(A,B,C,D,F,H,J) -> f48(A,B,C,D,0,H,J)     [1 + F >= B]                                         (1,1)   
          33. f19(A,B,C,D,F,H,J) -> f32(A,B,C,D,0,H,J)     [F >= B]                                             (2,1)   
          34. f13(A,B,C,D,F,H,J) -> f19(A,B,C,D,0,H,J)     [F >= B]                                             (1,1)   
          35. f19(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J) [0 >= 1 + C && B >= 1 + F && M$ >= 0 && B >= 1 + N$] (1,2)   
          36. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [0 >= 1 + C && B >= 1 + F && M$ >= 0]                (1,2)   
          37. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [0 >= 1 + C && B >= 1 + F && 0 >= 1 + M$]            (1,2)   
          38. f19(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J) [C >= 1 && B >= 1 + F && M$ >= 0 && B >= 1 + N$]     (39,2)  
          39. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [C >= 1 && B >= 1 + F && M$ >= 0]                    (39,2)  
          40. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [C >= 1 && B >= 1 + F && 0 >= 1 + M$]                (39,2)  
          41. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) [0 >= 1 + A && B >= 1 + H && M$ >= 1 + N$]           (28,2)  
          42. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) [0 >= 1 + A && B >= 1 + H]                           (28,2)  
          43. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) [0 >= 1 + A && B >= 1 + H]                           (28,2)  
          44. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) [A >= 1 && B >= 1 + H && M$ >= 1 + N$]               (?,2)   
          45. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) [A >= 1 && B >= 1 + H]                               (?,2)   
          46. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) [A >= 1 && B >= 1 + H]                               (?,2)   
          47. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M) [0 >= 1 + D && B >= 2 + F && 0 >= 1 + M]             (1,2)   
          48. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M) [0 >= 1 + D && B >= 2 + F && M >= 1]                 (1,2)   
          49. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0) [0 >= 1 + D && B >= 2 + F && M = 0]                  (1,2)   
          50. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M) [0 >= 1 + D && B >= 2 + F]                           (1,2)   
          51. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M) [D >= 1 && B >= 2 + F && 0 >= 1 + M]                 (12,2)  
          52. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M) [D >= 1 && B >= 2 + F && M >= 1]                     (12,2)  
          53. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0) [D >= 1 && B >= 2 + F && M = 0]                      (12,2)  
          54. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M) [D >= 1 && B >= 2 + F]                               (12,2)  
        Signature:
          {(f0,7);(f13,7);(f19,7);(f22,7);(f32,7);(f35,7);(f38,7);(f48,7);(f52,7);(f62,7);(f63,7);(f71,7)}
        Flow Graph:
          [2->{3,34},3->{3,34},9->{9,33,35,36,37,38,39,40},10->{16,31,41,42,43,44,45,46},16->{16,31,41,42,43,44,45
          ,46},19->{23,47,48,49,50,51,52,53,54},20->{23,47,48,49,50,51,52,53,54},21->{23,47,48,49,50,51,52,53,54}
          ,22->{23,47,48,49,50,51,52,53,54},23->{23,47,48,49,50,51,52,53,54},31->{10,32},32->{23,47,48,49,50,51,52,53
          ,54},33->{10,32},34->{9,33,35,36,37,38,39,40},35->{9,33,35,36,37,38,39,40},36->{9,33,35,36,37,38,39,40}
          ,37->{9,33,35,36,37,38,39,40},38->{9,33,35,36,37,38,39,40},39->{9,33,35,36,37,38,39,40},40->{9,33,35,36,37
          ,38,39,40},41->{16,31,41,42,43,44,45,46},42->{16,31,41,42,43,44,45,46},43->{16,31,41,42,43,44,45,46},44->{16
          ,31,41,42,43,44,45,46},45->{16,31,41,42,43,44,45,46},46->{16,31,41,42,43,44,45,46},47->{23,47,48,49,50,51,52
          ,53,54},48->{23,47,48,49,50,51,52,53,54},49->{23,47,48,49,50,51,52,53,54},50->{23,47,48,49,50,51,52,53,54}
          ,51->{23,47,48,49,50,51,52,53,54},52->{23,47,48,49,50,51,52,53,54},53->{23,47,48,49,50,51,52,53,54},54->{23
          ,47,48,49,50,51,52,53,54}]
        Sizebounds:
          (< 2,0,A>, 1) (< 2,0,B>, 12) (< 2,0,C>, 1) (< 2,0,D>, 1) (< 2,0,F>,  0) (< 2,0,H>,  H) (< 2,0,J>, J) 
          (< 3,0,A>, 1) (< 3,0,B>, 12) (< 3,0,C>, 1) (< 3,0,D>, 1) (< 3,0,F>, 12) (< 3,0,H>,  H) (< 3,0,J>, J) 
          (< 9,0,A>, 1) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 1) (< 9,0,F>, 12) (< 9,0,H>,  H) (< 9,0,J>, J) 
          (<10,0,A>, 1) (<10,0,B>, 12) (<10,0,C>, 1) (<10,0,D>, 1) (<10,0,F>, 12) (<10,0,H>,  ?) (<10,0,J>, J) 
          (<16,0,A>, 0) (<16,0,B>, 12) (<16,0,C>, 1) (<16,0,D>, 1) (<16,0,F>,  ?) (<16,0,H>, 12) (<16,0,J>, J) 
          (<19,0,A>, 1) (<19,0,B>, 12) (<19,0,C>, 1) (<19,0,D>, 1) (<19,0,F>, 12) (<19,0,H>,  ?) (<19,0,J>, ?) 
          (<20,0,A>, 1) (<20,0,B>, 12) (<20,0,C>, 1) (<20,0,D>, 1) (<20,0,F>, 12) (<20,0,H>,  ?) (<20,0,J>, ?) 
          (<21,0,A>, 1) (<21,0,B>, 12) (<21,0,C>, 1) (<21,0,D>, 0) (<21,0,F>, 12) (<21,0,H>,  ?) (<21,0,J>, 0) 
          (<22,0,A>, 1) (<22,0,B>, 12) (<22,0,C>, 1) (<22,0,D>, 0) (<22,0,F>, 12) (<22,0,H>,  ?) (<22,0,J>, ?) 
          (<23,0,A>, 1) (<23,0,B>, 12) (<23,0,C>, 1) (<23,0,D>, 0) (<23,0,F>, 12) (<23,0,H>,  ?) (<23,0,J>, ?) 
          (<31,0,A>, 1) (<31,0,B>, 12) (<31,0,C>, 1) (<31,0,D>, 1) (<31,0,F>,  ?) (<31,0,H>,  ?) (<31,0,J>, J) 
          (<32,0,A>, 1) (<32,0,B>, 12) (<32,0,C>, 1) (<32,0,D>, 1) (<32,0,F>,  0) (<32,0,H>,  ?) (<32,0,J>, J) 
          (<33,0,A>, 1) (<33,0,B>, 12) (<33,0,C>, 1) (<33,0,D>, 1) (<33,0,F>,  0) (<33,0,H>,  H) (<33,0,J>, J) 
          (<34,0,A>, 1) (<34,0,B>, 12) (<34,0,C>, 1) (<34,0,D>, 1) (<34,0,F>,  0) (<34,0,H>,  H) (<34,0,J>, J) 
          (<35,0,A>, 1) (<35,0,B>, 12) (<35,0,C>, 1) (<35,0,D>, 1) (<35,0,F>, 12) (<35,0,H>,  H) (<35,0,J>, J) 
          (<36,0,A>, 1) (<36,0,B>, 12) (<36,0,C>, 0) (<36,0,D>, 1) (<36,0,F>, 12) (<36,0,H>,  H) (<36,0,J>, J) 
          (<37,0,A>, 1) (<37,0,B>, 12) (<37,0,C>, 0) (<37,0,D>, 1) (<37,0,F>, 12) (<37,0,H>,  H) (<37,0,J>, J) 
          (<38,0,A>, 1) (<38,0,B>, 12) (<38,0,C>, 1) (<38,0,D>, 1) (<38,0,F>, 12) (<38,0,H>,  H) (<38,0,J>, J) 
          (<39,0,A>, 1) (<39,0,B>, 12) (<39,0,C>, 0) (<39,0,D>, 1) (<39,0,F>, 12) (<39,0,H>,  H) (<39,0,J>, J) 
          (<40,0,A>, 1) (<40,0,B>, 12) (<40,0,C>, 0) (<40,0,D>, 1) (<40,0,F>, 12) (<40,0,H>,  H) (<40,0,J>, J) 
          (<41,0,A>, 1) (<41,0,B>, 12) (<41,0,C>, 1) (<41,0,D>, 1) (<41,0,F>,  ?) (<41,0,H>, 12) (<41,0,J>, J) 
          (<42,0,A>, 1) (<42,0,B>, 12) (<42,0,C>, 1) (<42,0,D>, 1) (<42,0,F>,  ?) (<42,0,H>, 12) (<42,0,J>, J) 
          (<43,0,A>, 0) (<43,0,B>, 12) (<43,0,C>, 1) (<43,0,D>, 1) (<43,0,F>,  ?) (<43,0,H>, 12) (<43,0,J>, J) 
          (<44,0,A>, 1) (<44,0,B>, 12) (<44,0,C>, 1) (<44,0,D>, 1) (<44,0,F>,  ?) (<44,0,H>, 12) (<44,0,J>, J) 
          (<45,0,A>, 1) (<45,0,B>, 12) (<45,0,C>, 1) (<45,0,D>, 1) (<45,0,F>,  ?) (<45,0,H>, 12) (<45,0,J>, J) 
          (<46,0,A>, 0) (<46,0,B>, 12) (<46,0,C>, 1) (<46,0,D>, 1) (<46,0,F>,  ?) (<46,0,H>, 12) (<46,0,J>, J) 
          (<47,0,A>, 1) (<47,0,B>, 12) (<47,0,C>, 1) (<47,0,D>, 1) (<47,0,F>, 12) (<47,0,H>,  ?) (<47,0,J>, ?) 
          (<48,0,A>, 1) (<48,0,B>, 12) (<48,0,C>, 1) (<48,0,D>, 1) (<48,0,F>, 12) (<48,0,H>,  ?) (<48,0,J>, ?) 
          (<49,0,A>, 1) (<49,0,B>, 12) (<49,0,C>, 1) (<49,0,D>, 0) (<49,0,F>, 12) (<49,0,H>,  ?) (<49,0,J>, 0) 
          (<50,0,A>, 1) (<50,0,B>, 12) (<50,0,C>, 1) (<50,0,D>, 0) (<50,0,F>, 12) (<50,0,H>,  ?) (<50,0,J>, ?) 
          (<51,0,A>, 1) (<51,0,B>, 12) (<51,0,C>, 1) (<51,0,D>, 1) (<51,0,F>, 12) (<51,0,H>,  ?) (<51,0,J>, ?) 
          (<52,0,A>, 1) (<52,0,B>, 12) (<52,0,C>, 1) (<52,0,D>, 1) (<52,0,F>, 12) (<52,0,H>,  ?) (<52,0,J>, ?) 
          (<53,0,A>, 1) (<53,0,B>, 12) (<53,0,C>, 1) (<53,0,D>, 0) (<53,0,F>, 12) (<53,0,H>,  ?) (<53,0,J>, 0) 
          (<54,0,A>, 1) (<54,0,B>, 12) (<54,0,C>, 1) (<54,0,D>, 0) (<54,0,F>, 12) (<54,0,H>,  ?) (<54,0,J>, ?) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [19,20,21,22]
* Step 31: ChainProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f0(A,B,C,D,F,H,J)  -> f13(1,12,1,1,0,H,J)    True                                                 (1,1)   
          3.  f13(A,B,C,D,F,H,J) -> f13(A,B,C,D,1 + F,H,J) [B >= 1 + F]                                         (12,1)  
          9.  f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [B >= 1 + F && C = 0]                                (1932,1)
          10. f32(A,B,C,D,F,H,J) -> f35(A,B,C,D,F,1 + F,J) [B >= 2 + F]                                         (28,1)  
          16. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) [B >= 1 + H && A = 0]                                (?,1)   
          23. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M) [B >= 2 + F && D = 0]                                (12,1)  
          31. f35(A,B,C,D,F,H,J) -> f32(A,B,C,D,1 + F,H,J) [H >= B]                                             (28,1)  
          32. f32(A,B,C,D,F,H,J) -> f48(A,B,C,D,0,H,J)     [1 + F >= B]                                         (1,1)   
          33. f19(A,B,C,D,F,H,J) -> f32(A,B,C,D,0,H,J)     [F >= B]                                             (2,1)   
          34. f13(A,B,C,D,F,H,J) -> f19(A,B,C,D,0,H,J)     [F >= B]                                             (1,1)   
          35. f19(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J) [0 >= 1 + C && B >= 1 + F && M$ >= 0 && B >= 1 + N$] (1,2)   
          36. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [0 >= 1 + C && B >= 1 + F && M$ >= 0]                (1,2)   
          37. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [0 >= 1 + C && B >= 1 + F && 0 >= 1 + M$]            (1,2)   
          38. f19(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J) [C >= 1 && B >= 1 + F && M$ >= 0 && B >= 1 + N$]     (39,2)  
          39. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [C >= 1 && B >= 1 + F && M$ >= 0]                    (39,2)  
          40. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J) [C >= 1 && B >= 1 + F && 0 >= 1 + M$]                (39,2)  
          41. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) [0 >= 1 + A && B >= 1 + H && M$ >= 1 + N$]           (28,2)  
          42. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) [0 >= 1 + A && B >= 1 + H]                           (28,2)  
          43. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) [0 >= 1 + A && B >= 1 + H]                           (28,2)  
          44. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) [A >= 1 && B >= 1 + H && M$ >= 1 + N$]               (?,2)   
          45. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J) [A >= 1 && B >= 1 + H]                               (?,2)   
          46. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J) [A >= 1 && B >= 1 + H]                               (?,2)   
          47. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M) [0 >= 1 + D && B >= 2 + F && 0 >= 1 + M]             (1,2)   
          48. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M) [0 >= 1 + D && B >= 2 + F && M >= 1]                 (1,2)   
          49. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0) [0 >= 1 + D && B >= 2 + F && M = 0]                  (1,2)   
          50. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M) [0 >= 1 + D && B >= 2 + F]                           (1,2)   
          51. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M) [D >= 1 && B >= 2 + F && 0 >= 1 + M]                 (12,2)  
          52. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M) [D >= 1 && B >= 2 + F && M >= 1]                     (12,2)  
          53. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0) [D >= 1 && B >= 2 + F && M = 0]                      (12,2)  
          54. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M) [D >= 1 && B >= 2 + F]                               (12,2)  
        Signature:
          {(f0,7);(f13,7);(f19,7);(f22,7);(f32,7);(f35,7);(f38,7);(f48,7);(f52,7);(f62,7);(f63,7);(f71,7)}
        Flow Graph:
          [2->{3,34},3->{3,34},9->{9,33,35,36,37,38,39,40},10->{16,31,41,42,43,44,45,46},16->{16,31,41,42,43,44,45
          ,46},23->{23,47,48,49,50,51,52,53,54},31->{10,32},32->{23,47,48,49,50,51,52,53,54},33->{10,32},34->{9,33,35
          ,36,37,38,39,40},35->{9,33,35,36,37,38,39,40},36->{9,33,35,36,37,38,39,40},37->{9,33,35,36,37,38,39,40}
          ,38->{9,33,35,36,37,38,39,40},39->{9,33,35,36,37,38,39,40},40->{9,33,35,36,37,38,39,40},41->{16,31,41,42,43
          ,44,45,46},42->{16,31,41,42,43,44,45,46},43->{16,31,41,42,43,44,45,46},44->{16,31,41,42,43,44,45,46},45->{16
          ,31,41,42,43,44,45,46},46->{16,31,41,42,43,44,45,46},47->{23,47,48,49,50,51,52,53,54},48->{23,47,48,49,50,51
          ,52,53,54},49->{23,47,48,49,50,51,52,53,54},50->{23,47,48,49,50,51,52,53,54},51->{23,47,48,49,50,51,52,53
          ,54},52->{23,47,48,49,50,51,52,53,54},53->{23,47,48,49,50,51,52,53,54},54->{23,47,48,49,50,51,52,53,54}]
        Sizebounds:
          (< 2,0,A>, 1) (< 2,0,B>, 12) (< 2,0,C>, 1) (< 2,0,D>, 1) (< 2,0,F>,  0) (< 2,0,H>,  H) (< 2,0,J>, J) 
          (< 3,0,A>, 1) (< 3,0,B>, 12) (< 3,0,C>, 1) (< 3,0,D>, 1) (< 3,0,F>, 12) (< 3,0,H>,  H) (< 3,0,J>, J) 
          (< 9,0,A>, 1) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 1) (< 9,0,F>, 12) (< 9,0,H>,  H) (< 9,0,J>, J) 
          (<10,0,A>, 1) (<10,0,B>, 12) (<10,0,C>, 1) (<10,0,D>, 1) (<10,0,F>, 12) (<10,0,H>,  ?) (<10,0,J>, J) 
          (<16,0,A>, 0) (<16,0,B>, 12) (<16,0,C>, 1) (<16,0,D>, 1) (<16,0,F>,  ?) (<16,0,H>, 12) (<16,0,J>, J) 
          (<23,0,A>, 1) (<23,0,B>, 12) (<23,0,C>, 1) (<23,0,D>, 0) (<23,0,F>, 12) (<23,0,H>,  ?) (<23,0,J>, ?) 
          (<31,0,A>, 1) (<31,0,B>, 12) (<31,0,C>, 1) (<31,0,D>, 1) (<31,0,F>,  ?) (<31,0,H>,  ?) (<31,0,J>, J) 
          (<32,0,A>, 1) (<32,0,B>, 12) (<32,0,C>, 1) (<32,0,D>, 1) (<32,0,F>,  0) (<32,0,H>,  ?) (<32,0,J>, J) 
          (<33,0,A>, 1) (<33,0,B>, 12) (<33,0,C>, 1) (<33,0,D>, 1) (<33,0,F>,  0) (<33,0,H>,  H) (<33,0,J>, J) 
          (<34,0,A>, 1) (<34,0,B>, 12) (<34,0,C>, 1) (<34,0,D>, 1) (<34,0,F>,  0) (<34,0,H>,  H) (<34,0,J>, J) 
          (<35,0,A>, 1) (<35,0,B>, 12) (<35,0,C>, 1) (<35,0,D>, 1) (<35,0,F>, 12) (<35,0,H>,  H) (<35,0,J>, J) 
          (<36,0,A>, 1) (<36,0,B>, 12) (<36,0,C>, 0) (<36,0,D>, 1) (<36,0,F>, 12) (<36,0,H>,  H) (<36,0,J>, J) 
          (<37,0,A>, 1) (<37,0,B>, 12) (<37,0,C>, 0) (<37,0,D>, 1) (<37,0,F>, 12) (<37,0,H>,  H) (<37,0,J>, J) 
          (<38,0,A>, 1) (<38,0,B>, 12) (<38,0,C>, 1) (<38,0,D>, 1) (<38,0,F>, 12) (<38,0,H>,  H) (<38,0,J>, J) 
          (<39,0,A>, 1) (<39,0,B>, 12) (<39,0,C>, 0) (<39,0,D>, 1) (<39,0,F>, 12) (<39,0,H>,  H) (<39,0,J>, J) 
          (<40,0,A>, 1) (<40,0,B>, 12) (<40,0,C>, 0) (<40,0,D>, 1) (<40,0,F>, 12) (<40,0,H>,  H) (<40,0,J>, J) 
          (<41,0,A>, 1) (<41,0,B>, 12) (<41,0,C>, 1) (<41,0,D>, 1) (<41,0,F>,  ?) (<41,0,H>, 12) (<41,0,J>, J) 
          (<42,0,A>, 1) (<42,0,B>, 12) (<42,0,C>, 1) (<42,0,D>, 1) (<42,0,F>,  ?) (<42,0,H>, 12) (<42,0,J>, J) 
          (<43,0,A>, 0) (<43,0,B>, 12) (<43,0,C>, 1) (<43,0,D>, 1) (<43,0,F>,  ?) (<43,0,H>, 12) (<43,0,J>, J) 
          (<44,0,A>, 1) (<44,0,B>, 12) (<44,0,C>, 1) (<44,0,D>, 1) (<44,0,F>,  ?) (<44,0,H>, 12) (<44,0,J>, J) 
          (<45,0,A>, 1) (<45,0,B>, 12) (<45,0,C>, 1) (<45,0,D>, 1) (<45,0,F>,  ?) (<45,0,H>, 12) (<45,0,J>, J) 
          (<46,0,A>, 0) (<46,0,B>, 12) (<46,0,C>, 1) (<46,0,D>, 1) (<46,0,F>,  ?) (<46,0,H>, 12) (<46,0,J>, J) 
          (<47,0,A>, 1) (<47,0,B>, 12) (<47,0,C>, 1) (<47,0,D>, 1) (<47,0,F>, 12) (<47,0,H>,  ?) (<47,0,J>, ?) 
          (<48,0,A>, 1) (<48,0,B>, 12) (<48,0,C>, 1) (<48,0,D>, 1) (<48,0,F>, 12) (<48,0,H>,  ?) (<48,0,J>, ?) 
          (<49,0,A>, 1) (<49,0,B>, 12) (<49,0,C>, 1) (<49,0,D>, 0) (<49,0,F>, 12) (<49,0,H>,  ?) (<49,0,J>, 0) 
          (<50,0,A>, 1) (<50,0,B>, 12) (<50,0,C>, 1) (<50,0,D>, 0) (<50,0,F>, 12) (<50,0,H>,  ?) (<50,0,J>, ?) 
          (<51,0,A>, 1) (<51,0,B>, 12) (<51,0,C>, 1) (<51,0,D>, 1) (<51,0,F>, 12) (<51,0,H>,  ?) (<51,0,J>, ?) 
          (<52,0,A>, 1) (<52,0,B>, 12) (<52,0,C>, 1) (<52,0,D>, 1) (<52,0,F>, 12) (<52,0,H>,  ?) (<52,0,J>, ?) 
          (<53,0,A>, 1) (<53,0,B>, 12) (<53,0,C>, 1) (<53,0,D>, 0) (<53,0,F>, 12) (<53,0,H>,  ?) (<53,0,J>, 0) 
          (<54,0,A>, 1) (<54,0,B>, 12) (<54,0,C>, 1) (<54,0,D>, 0) (<54,0,F>, 12) (<54,0,H>,  ?) (<54,0,J>, ?) 
    + Applied Processor:
        ChainProcessor False [2,3,9,10,16,23,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54]
    + Details:
        We chained rule 31 to obtain the rules [55,56] .
* Step 32: ChainProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f0(A,B,C,D,F,H,J)  -> f13(1,12,1,1,0,H,J)        True                                                 (1,1)   
          3.  f13(A,B,C,D,F,H,J) -> f13(A,B,C,D,1 + F,H,J)     [B >= 1 + F]                                         (12,1)  
          9.  f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [B >= 1 + F && C = 0]                                (1932,1)
          10. f32(A,B,C,D,F,H,J) -> f35(A,B,C,D,F,1 + F,J)     [B >= 2 + F]                                         (28,1)  
          16. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J)     [B >= 1 + H && A = 0]                                (?,1)   
          23. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M)     [B >= 2 + F && D = 0]                                (12,1)  
          32. f32(A,B,C,D,F,H,J) -> f48(A,B,C,D,0,H,J)         [1 + F >= B]                                         (1,1)   
          33. f19(A,B,C,D,F,H,J) -> f32(A,B,C,D,0,H,J)         [F >= B]                                             (2,1)   
          34. f13(A,B,C,D,F,H,J) -> f19(A,B,C,D,0,H,J)         [F >= B]                                             (1,1)   
          35. f19(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J)     [0 >= 1 + C && B >= 1 + F && M$ >= 0 && B >= 1 + N$] (1,2)   
          36. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [0 >= 1 + C && B >= 1 + F && M$ >= 0]                (1,2)   
          37. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [0 >= 1 + C && B >= 1 + F && 0 >= 1 + M$]            (1,2)   
          38. f19(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J)     [C >= 1 && B >= 1 + F && M$ >= 0 && B >= 1 + N$]     (39,2)  
          39. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [C >= 1 && B >= 1 + F && M$ >= 0]                    (39,2)  
          40. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [C >= 1 && B >= 1 + F && 0 >= 1 + M$]                (39,2)  
          41. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [0 >= 1 + A && B >= 1 + H && M$ >= 1 + N$]           (28,2)  
          42. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [0 >= 1 + A && B >= 1 + H]                           (28,2)  
          43. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J)     [0 >= 1 + A && B >= 1 + H]                           (28,2)  
          44. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [A >= 1 && B >= 1 + H && M$ >= 1 + N$]               (?,2)   
          45. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [A >= 1 && B >= 1 + H]                               (?,2)   
          46. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J)     [A >= 1 && B >= 1 + H]                               (?,2)   
          47. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [0 >= 1 + D && B >= 2 + F && 0 >= 1 + M]             (1,2)   
          48. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [0 >= 1 + D && B >= 2 + F && M >= 1]                 (1,2)   
          49. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0)     [0 >= 1 + D && B >= 2 + F && M = 0]                  (1,2)   
          50. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M)     [0 >= 1 + D && B >= 2 + F]                           (1,2)   
          51. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [D >= 1 && B >= 2 + F && 0 >= 1 + M]                 (12,2)  
          52. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [D >= 1 && B >= 2 + F && M >= 1]                     (12,2)  
          53. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0)     [D >= 1 && B >= 2 + F && M = 0]                      (12,2)  
          54. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M)     [D >= 1 && B >= 2 + F]                               (12,2)  
          55. f35(A,B,C,D,F,H,J) -> f35(A,B,C,D,1 + F,2 + F,J) [H >= B && B >= 3 + F]                               (28,2)  
          56. f35(A,B,C,D,F,H,J) -> f48(A,B,C,D,0,H,J)         [H >= B && 2 + F >= B]                               (28,2)  
        Signature:
          {(f0,7);(f13,7);(f19,7);(f22,7);(f32,7);(f35,7);(f38,7);(f48,7);(f52,7);(f62,7);(f63,7);(f71,7)}
        Flow Graph:
          [2->{3,34},3->{3,34},9->{9,33,35,36,37,38,39,40},10->{16,41,42,43,44,45,46,55,56},16->{16,41,42,43,44,45
          ,46,55,56},23->{23,47,48,49,50,51,52,53,54},32->{23,47,48,49,50,51,52,53,54},33->{10,32},34->{9,33,35,36,37
          ,38,39,40},35->{9,33,35,36,37,38,39,40},36->{9,33,35,36,37,38,39,40},37->{9,33,35,36,37,38,39,40},38->{9,33
          ,35,36,37,38,39,40},39->{9,33,35,36,37,38,39,40},40->{9,33,35,36,37,38,39,40},41->{16,41,42,43,44,45,46,55
          ,56},42->{16,41,42,43,44,45,46,55,56},43->{16,41,42,43,44,45,46,55,56},44->{16,41,42,43,44,45,46,55,56}
          ,45->{16,41,42,43,44,45,46,55,56},46->{16,41,42,43,44,45,46,55,56},47->{23,47,48,49,50,51,52,53,54},48->{23
          ,47,48,49,50,51,52,53,54},49->{23,47,48,49,50,51,52,53,54},50->{23,47,48,49,50,51,52,53,54},51->{23,47,48,49
          ,50,51,52,53,54},52->{23,47,48,49,50,51,52,53,54},53->{23,47,48,49,50,51,52,53,54},54->{23,47,48,49,50,51,52
          ,53,54},55->{16,41,42,43,44,45,46,55,56},56->{23,47,48,49,50,51,52,53,54}]
        Sizebounds:
          (< 2,0,A>, 1) (< 2,0,B>, 12) (< 2,0,C>, 1) (< 2,0,D>, 1) (< 2,0,F>,  0) (< 2,0,H>,  H) (< 2,0,J>, J) 
          (< 3,0,A>, 1) (< 3,0,B>, 12) (< 3,0,C>, 1) (< 3,0,D>, 1) (< 3,0,F>, 12) (< 3,0,H>,  H) (< 3,0,J>, J) 
          (< 9,0,A>, 1) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 1) (< 9,0,F>, 12) (< 9,0,H>,  H) (< 9,0,J>, J) 
          (<10,0,A>, 1) (<10,0,B>, 12) (<10,0,C>, 1) (<10,0,D>, 1) (<10,0,F>, 12) (<10,0,H>,  ?) (<10,0,J>, J) 
          (<16,0,A>, 0) (<16,0,B>, 12) (<16,0,C>, 1) (<16,0,D>, 1) (<16,0,F>,  ?) (<16,0,H>, 12) (<16,0,J>, J) 
          (<23,0,A>, 1) (<23,0,B>, 12) (<23,0,C>, 1) (<23,0,D>, 0) (<23,0,F>, 12) (<23,0,H>,  ?) (<23,0,J>, ?) 
          (<32,0,A>, 1) (<32,0,B>, 12) (<32,0,C>, 1) (<32,0,D>, 1) (<32,0,F>,  0) (<32,0,H>,  ?) (<32,0,J>, J) 
          (<33,0,A>, 1) (<33,0,B>, 12) (<33,0,C>, 1) (<33,0,D>, 1) (<33,0,F>,  0) (<33,0,H>,  H) (<33,0,J>, J) 
          (<34,0,A>, 1) (<34,0,B>, 12) (<34,0,C>, 1) (<34,0,D>, 1) (<34,0,F>,  0) (<34,0,H>,  H) (<34,0,J>, J) 
          (<35,0,A>, 1) (<35,0,B>, 12) (<35,0,C>, 1) (<35,0,D>, 1) (<35,0,F>, 12) (<35,0,H>,  H) (<35,0,J>, J) 
          (<36,0,A>, 1) (<36,0,B>, 12) (<36,0,C>, 0) (<36,0,D>, 1) (<36,0,F>, 12) (<36,0,H>,  H) (<36,0,J>, J) 
          (<37,0,A>, 1) (<37,0,B>, 12) (<37,0,C>, 0) (<37,0,D>, 1) (<37,0,F>, 12) (<37,0,H>,  H) (<37,0,J>, J) 
          (<38,0,A>, 1) (<38,0,B>, 12) (<38,0,C>, 1) (<38,0,D>, 1) (<38,0,F>, 12) (<38,0,H>,  H) (<38,0,J>, J) 
          (<39,0,A>, 1) (<39,0,B>, 12) (<39,0,C>, 0) (<39,0,D>, 1) (<39,0,F>, 12) (<39,0,H>,  H) (<39,0,J>, J) 
          (<40,0,A>, 1) (<40,0,B>, 12) (<40,0,C>, 0) (<40,0,D>, 1) (<40,0,F>, 12) (<40,0,H>,  H) (<40,0,J>, J) 
          (<41,0,A>, 1) (<41,0,B>, 12) (<41,0,C>, 1) (<41,0,D>, 1) (<41,0,F>,  ?) (<41,0,H>, 12) (<41,0,J>, J) 
          (<42,0,A>, 1) (<42,0,B>, 12) (<42,0,C>, 1) (<42,0,D>, 1) (<42,0,F>,  ?) (<42,0,H>, 12) (<42,0,J>, J) 
          (<43,0,A>, 0) (<43,0,B>, 12) (<43,0,C>, 1) (<43,0,D>, 1) (<43,0,F>,  ?) (<43,0,H>, 12) (<43,0,J>, J) 
          (<44,0,A>, 1) (<44,0,B>, 12) (<44,0,C>, 1) (<44,0,D>, 1) (<44,0,F>,  ?) (<44,0,H>, 12) (<44,0,J>, J) 
          (<45,0,A>, 1) (<45,0,B>, 12) (<45,0,C>, 1) (<45,0,D>, 1) (<45,0,F>,  ?) (<45,0,H>, 12) (<45,0,J>, J) 
          (<46,0,A>, 0) (<46,0,B>, 12) (<46,0,C>, 1) (<46,0,D>, 1) (<46,0,F>,  ?) (<46,0,H>, 12) (<46,0,J>, J) 
          (<47,0,A>, 1) (<47,0,B>, 12) (<47,0,C>, 1) (<47,0,D>, 1) (<47,0,F>, 12) (<47,0,H>,  ?) (<47,0,J>, ?) 
          (<48,0,A>, 1) (<48,0,B>, 12) (<48,0,C>, 1) (<48,0,D>, 1) (<48,0,F>, 12) (<48,0,H>,  ?) (<48,0,J>, ?) 
          (<49,0,A>, 1) (<49,0,B>, 12) (<49,0,C>, 1) (<49,0,D>, 0) (<49,0,F>, 12) (<49,0,H>,  ?) (<49,0,J>, 0) 
          (<50,0,A>, 1) (<50,0,B>, 12) (<50,0,C>, 1) (<50,0,D>, 0) (<50,0,F>, 12) (<50,0,H>,  ?) (<50,0,J>, ?) 
          (<51,0,A>, 1) (<51,0,B>, 12) (<51,0,C>, 1) (<51,0,D>, 1) (<51,0,F>, 12) (<51,0,H>,  ?) (<51,0,J>, ?) 
          (<52,0,A>, 1) (<52,0,B>, 12) (<52,0,C>, 1) (<52,0,D>, 1) (<52,0,F>, 12) (<52,0,H>,  ?) (<52,0,J>, ?) 
          (<53,0,A>, 1) (<53,0,B>, 12) (<53,0,C>, 1) (<53,0,D>, 0) (<53,0,F>, 12) (<53,0,H>,  ?) (<53,0,J>, 0) 
          (<54,0,A>, 1) (<54,0,B>, 12) (<54,0,C>, 1) (<54,0,D>, 0) (<54,0,F>, 12) (<54,0,H>,  ?) (<54,0,J>, ?) 
          (<55,0,A>, 1) (<55,0,B>, 12) (<55,0,C>, 1) (<55,0,D>, 1) (<55,0,F>, 12) (<55,0,H>,  ?) (<55,0,J>, J) 
          (<56,0,A>, 1) (<56,0,B>, 12) (<56,0,C>, 1) (<56,0,D>, 1) (<56,0,F>,  0) (<56,0,H>,  ?) (<56,0,J>, J) 
    + Applied Processor:
        ChainProcessor False [2,3,9,10,16,23,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56]
    + Details:
        We chained rule 33 to obtain the rules [57,58] .
* Step 33: UnreachableRules WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f0(A,B,C,D,F,H,J)  -> f13(1,12,1,1,0,H,J)        True                                                 (1,1)   
          3.  f13(A,B,C,D,F,H,J) -> f13(A,B,C,D,1 + F,H,J)     [B >= 1 + F]                                         (12,1)  
          9.  f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [B >= 1 + F && C = 0]                                (1932,1)
          10. f32(A,B,C,D,F,H,J) -> f35(A,B,C,D,F,1 + F,J)     [B >= 2 + F]                                         (28,1)  
          16. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J)     [B >= 1 + H && A = 0]                                (?,1)   
          23. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M)     [B >= 2 + F && D = 0]                                (12,1)  
          32. f32(A,B,C,D,F,H,J) -> f48(A,B,C,D,0,H,J)         [1 + F >= B]                                         (1,1)   
          34. f13(A,B,C,D,F,H,J) -> f19(A,B,C,D,0,H,J)         [F >= B]                                             (1,1)   
          35. f19(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J)     [0 >= 1 + C && B >= 1 + F && M$ >= 0 && B >= 1 + N$] (1,2)   
          36. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [0 >= 1 + C && B >= 1 + F && M$ >= 0]                (1,2)   
          37. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [0 >= 1 + C && B >= 1 + F && 0 >= 1 + M$]            (1,2)   
          38. f19(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J)     [C >= 1 && B >= 1 + F && M$ >= 0 && B >= 1 + N$]     (39,2)  
          39. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [C >= 1 && B >= 1 + F && M$ >= 0]                    (39,2)  
          40. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [C >= 1 && B >= 1 + F && 0 >= 1 + M$]                (39,2)  
          41. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [0 >= 1 + A && B >= 1 + H && M$ >= 1 + N$]           (28,2)  
          42. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [0 >= 1 + A && B >= 1 + H]                           (28,2)  
          43. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J)     [0 >= 1 + A && B >= 1 + H]                           (28,2)  
          44. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [A >= 1 && B >= 1 + H && M$ >= 1 + N$]               (?,2)   
          45. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [A >= 1 && B >= 1 + H]                               (?,2)   
          46. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J)     [A >= 1 && B >= 1 + H]                               (?,2)   
          47. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [0 >= 1 + D && B >= 2 + F && 0 >= 1 + M]             (1,2)   
          48. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [0 >= 1 + D && B >= 2 + F && M >= 1]                 (1,2)   
          49. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0)     [0 >= 1 + D && B >= 2 + F && M = 0]                  (1,2)   
          50. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M)     [0 >= 1 + D && B >= 2 + F]                           (1,2)   
          51. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [D >= 1 && B >= 2 + F && 0 >= 1 + M]                 (12,2)  
          52. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [D >= 1 && B >= 2 + F && M >= 1]                     (12,2)  
          53. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0)     [D >= 1 && B >= 2 + F && M = 0]                      (12,2)  
          54. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M)     [D >= 1 && B >= 2 + F]                               (12,2)  
          55. f35(A,B,C,D,F,H,J) -> f35(A,B,C,D,1 + F,2 + F,J) [H >= B && B >= 3 + F]                               (28,2)  
          56. f35(A,B,C,D,F,H,J) -> f48(A,B,C,D,0,H,J)         [H >= B && 2 + F >= B]                               (28,2)  
          57. f19(A,B,C,D,F,H,J) -> f35(A,B,C,D,0,1,J)         [F >= B && B >= 2]                                   (2,2)   
          58. f19(A,B,C,D,F,H,J) -> f48(A,B,C,D,0,H,J)         [F >= B && 1 >= B]                                   (2,2)   
        Signature:
          {(f0,7);(f13,7);(f19,7);(f22,7);(f32,7);(f35,7);(f38,7);(f48,7);(f52,7);(f62,7);(f63,7);(f71,7)}
        Flow Graph:
          [2->{3,34},3->{3,34},9->{9,35,36,37,38,39,40,57,58},10->{16,41,42,43,44,45,46,55,56},16->{16,41,42,43,44
          ,45,46,55,56},23->{23,47,48,49,50,51,52,53,54},32->{23,47,48,49,50,51,52,53,54},34->{9,35,36,37,38,39,40,57
          ,58},35->{9,35,36,37,38,39,40,57,58},36->{9,35,36,37,38,39,40,57,58},37->{9,35,36,37,38,39,40,57,58},38->{9
          ,35,36,37,38,39,40,57,58},39->{9,35,36,37,38,39,40,57,58},40->{9,35,36,37,38,39,40,57,58},41->{16,41,42,43
          ,44,45,46,55,56},42->{16,41,42,43,44,45,46,55,56},43->{16,41,42,43,44,45,46,55,56},44->{16,41,42,43,44,45,46
          ,55,56},45->{16,41,42,43,44,45,46,55,56},46->{16,41,42,43,44,45,46,55,56},47->{23,47,48,49,50,51,52,53,54}
          ,48->{23,47,48,49,50,51,52,53,54},49->{23,47,48,49,50,51,52,53,54},50->{23,47,48,49,50,51,52,53,54},51->{23
          ,47,48,49,50,51,52,53,54},52->{23,47,48,49,50,51,52,53,54},53->{23,47,48,49,50,51,52,53,54},54->{23,47,48,49
          ,50,51,52,53,54},55->{16,41,42,43,44,45,46,55,56},56->{23,47,48,49,50,51,52,53,54},57->{16,41,42,43,44,45,46
          ,55,56},58->{23,47,48,49,50,51,52,53,54}]
        Sizebounds:
          (< 2,0,A>, 1) (< 2,0,B>, 12) (< 2,0,C>, 1) (< 2,0,D>, 1) (< 2,0,F>,  0) (< 2,0,H>,  H) (< 2,0,J>, J) 
          (< 3,0,A>, 1) (< 3,0,B>, 12) (< 3,0,C>, 1) (< 3,0,D>, 1) (< 3,0,F>, 12) (< 3,0,H>,  H) (< 3,0,J>, J) 
          (< 9,0,A>, 1) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 1) (< 9,0,F>, 12) (< 9,0,H>,  H) (< 9,0,J>, J) 
          (<10,0,A>, 1) (<10,0,B>, 12) (<10,0,C>, 1) (<10,0,D>, 1) (<10,0,F>, 12) (<10,0,H>,  ?) (<10,0,J>, J) 
          (<16,0,A>, 0) (<16,0,B>, 12) (<16,0,C>, 1) (<16,0,D>, 1) (<16,0,F>,  ?) (<16,0,H>, 12) (<16,0,J>, J) 
          (<23,0,A>, 1) (<23,0,B>, 12) (<23,0,C>, 1) (<23,0,D>, 0) (<23,0,F>, 12) (<23,0,H>,  ?) (<23,0,J>, ?) 
          (<32,0,A>, 1) (<32,0,B>, 12) (<32,0,C>, 1) (<32,0,D>, 1) (<32,0,F>,  0) (<32,0,H>,  ?) (<32,0,J>, J) 
          (<34,0,A>, 1) (<34,0,B>, 12) (<34,0,C>, 1) (<34,0,D>, 1) (<34,0,F>,  0) (<34,0,H>,  H) (<34,0,J>, J) 
          (<35,0,A>, 1) (<35,0,B>, 12) (<35,0,C>, 1) (<35,0,D>, 1) (<35,0,F>, 12) (<35,0,H>,  H) (<35,0,J>, J) 
          (<36,0,A>, 1) (<36,0,B>, 12) (<36,0,C>, 0) (<36,0,D>, 1) (<36,0,F>, 12) (<36,0,H>,  H) (<36,0,J>, J) 
          (<37,0,A>, 1) (<37,0,B>, 12) (<37,0,C>, 0) (<37,0,D>, 1) (<37,0,F>, 12) (<37,0,H>,  H) (<37,0,J>, J) 
          (<38,0,A>, 1) (<38,0,B>, 12) (<38,0,C>, 1) (<38,0,D>, 1) (<38,0,F>, 12) (<38,0,H>,  H) (<38,0,J>, J) 
          (<39,0,A>, 1) (<39,0,B>, 12) (<39,0,C>, 0) (<39,0,D>, 1) (<39,0,F>, 12) (<39,0,H>,  H) (<39,0,J>, J) 
          (<40,0,A>, 1) (<40,0,B>, 12) (<40,0,C>, 0) (<40,0,D>, 1) (<40,0,F>, 12) (<40,0,H>,  H) (<40,0,J>, J) 
          (<41,0,A>, 1) (<41,0,B>, 12) (<41,0,C>, 1) (<41,0,D>, 1) (<41,0,F>,  ?) (<41,0,H>, 12) (<41,0,J>, J) 
          (<42,0,A>, 1) (<42,0,B>, 12) (<42,0,C>, 1) (<42,0,D>, 1) (<42,0,F>,  ?) (<42,0,H>, 12) (<42,0,J>, J) 
          (<43,0,A>, 0) (<43,0,B>, 12) (<43,0,C>, 1) (<43,0,D>, 1) (<43,0,F>,  ?) (<43,0,H>, 12) (<43,0,J>, J) 
          (<44,0,A>, 1) (<44,0,B>, 12) (<44,0,C>, 1) (<44,0,D>, 1) (<44,0,F>,  ?) (<44,0,H>, 12) (<44,0,J>, J) 
          (<45,0,A>, 1) (<45,0,B>, 12) (<45,0,C>, 1) (<45,0,D>, 1) (<45,0,F>,  ?) (<45,0,H>, 12) (<45,0,J>, J) 
          (<46,0,A>, 0) (<46,0,B>, 12) (<46,0,C>, 1) (<46,0,D>, 1) (<46,0,F>,  ?) (<46,0,H>, 12) (<46,0,J>, J) 
          (<47,0,A>, 1) (<47,0,B>, 12) (<47,0,C>, 1) (<47,0,D>, 1) (<47,0,F>, 12) (<47,0,H>,  ?) (<47,0,J>, ?) 
          (<48,0,A>, 1) (<48,0,B>, 12) (<48,0,C>, 1) (<48,0,D>, 1) (<48,0,F>, 12) (<48,0,H>,  ?) (<48,0,J>, ?) 
          (<49,0,A>, 1) (<49,0,B>, 12) (<49,0,C>, 1) (<49,0,D>, 0) (<49,0,F>, 12) (<49,0,H>,  ?) (<49,0,J>, 0) 
          (<50,0,A>, 1) (<50,0,B>, 12) (<50,0,C>, 1) (<50,0,D>, 0) (<50,0,F>, 12) (<50,0,H>,  ?) (<50,0,J>, ?) 
          (<51,0,A>, 1) (<51,0,B>, 12) (<51,0,C>, 1) (<51,0,D>, 1) (<51,0,F>, 12) (<51,0,H>,  ?) (<51,0,J>, ?) 
          (<52,0,A>, 1) (<52,0,B>, 12) (<52,0,C>, 1) (<52,0,D>, 1) (<52,0,F>, 12) (<52,0,H>,  ?) (<52,0,J>, ?) 
          (<53,0,A>, 1) (<53,0,B>, 12) (<53,0,C>, 1) (<53,0,D>, 0) (<53,0,F>, 12) (<53,0,H>,  ?) (<53,0,J>, 0) 
          (<54,0,A>, 1) (<54,0,B>, 12) (<54,0,C>, 1) (<54,0,D>, 0) (<54,0,F>, 12) (<54,0,H>,  ?) (<54,0,J>, ?) 
          (<55,0,A>, 1) (<55,0,B>, 12) (<55,0,C>, 1) (<55,0,D>, 1) (<55,0,F>, 12) (<55,0,H>,  ?) (<55,0,J>, J) 
          (<56,0,A>, 1) (<56,0,B>, 12) (<56,0,C>, 1) (<56,0,D>, 1) (<56,0,F>,  0) (<56,0,H>,  ?) (<56,0,J>, J) 
          (<57,0,A>, 1) (<57,0,B>, 12) (<57,0,C>, 1) (<57,0,D>, 1) (<57,0,F>, 12) (<57,0,H>,  ?) (<57,0,J>, J) 
          (<58,0,A>, 1) (<58,0,B>, 12) (<58,0,C>, 1) (<58,0,D>, 1) (<58,0,F>,  0) (<58,0,H>,  ?) (<58,0,J>, J) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [10,32]
* Step 34: UnsatPaths WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f0(A,B,C,D,F,H,J)  -> f13(1,12,1,1,0,H,J)        True                                                 (1,1)   
          3.  f13(A,B,C,D,F,H,J) -> f13(A,B,C,D,1 + F,H,J)     [B >= 1 + F]                                         (12,1)  
          9.  f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [B >= 1 + F && C = 0]                                (1932,1)
          16. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J)     [B >= 1 + H && A = 0]                                (?,1)   
          23. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M)     [B >= 2 + F && D = 0]                                (12,1)  
          34. f13(A,B,C,D,F,H,J) -> f19(A,B,C,D,0,H,J)         [F >= B]                                             (1,1)   
          35. f19(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J)     [0 >= 1 + C && B >= 1 + F && M$ >= 0 && B >= 1 + N$] (1,2)   
          36. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [0 >= 1 + C && B >= 1 + F && M$ >= 0]                (1,2)   
          37. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [0 >= 1 + C && B >= 1 + F && 0 >= 1 + M$]            (1,2)   
          38. f19(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J)     [C >= 1 && B >= 1 + F && M$ >= 0 && B >= 1 + N$]     (39,2)  
          39. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [C >= 1 && B >= 1 + F && M$ >= 0]                    (39,2)  
          40. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [C >= 1 && B >= 1 + F && 0 >= 1 + M$]                (39,2)  
          41. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [0 >= 1 + A && B >= 1 + H && M$ >= 1 + N$]           (28,2)  
          42. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [0 >= 1 + A && B >= 1 + H]                           (28,2)  
          43. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J)     [0 >= 1 + A && B >= 1 + H]                           (28,2)  
          44. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [A >= 1 && B >= 1 + H && M$ >= 1 + N$]               (?,2)   
          45. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [A >= 1 && B >= 1 + H]                               (?,2)   
          46. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J)     [A >= 1 && B >= 1 + H]                               (?,2)   
          47. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [0 >= 1 + D && B >= 2 + F && 0 >= 1 + M]             (1,2)   
          48. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [0 >= 1 + D && B >= 2 + F && M >= 1]                 (1,2)   
          49. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0)     [0 >= 1 + D && B >= 2 + F && M = 0]                  (1,2)   
          50. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M)     [0 >= 1 + D && B >= 2 + F]                           (1,2)   
          51. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [D >= 1 && B >= 2 + F && 0 >= 1 + M]                 (12,2)  
          52. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [D >= 1 && B >= 2 + F && M >= 1]                     (12,2)  
          53. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0)     [D >= 1 && B >= 2 + F && M = 0]                      (12,2)  
          54. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M)     [D >= 1 && B >= 2 + F]                               (12,2)  
          55. f35(A,B,C,D,F,H,J) -> f35(A,B,C,D,1 + F,2 + F,J) [H >= B && B >= 3 + F]                               (28,2)  
          56. f35(A,B,C,D,F,H,J) -> f48(A,B,C,D,0,H,J)         [H >= B && 2 + F >= B]                               (28,2)  
          57. f19(A,B,C,D,F,H,J) -> f35(A,B,C,D,0,1,J)         [F >= B && B >= 2]                                   (2,2)   
          58. f19(A,B,C,D,F,H,J) -> f48(A,B,C,D,0,H,J)         [F >= B && 1 >= B]                                   (2,2)   
        Signature:
          {(f0,7);(f13,7);(f19,7);(f22,7);(f32,7);(f35,7);(f38,7);(f48,7);(f52,7);(f62,7);(f63,7);(f71,7)}
        Flow Graph:
          [2->{3,34},3->{3,34},9->{9,35,36,37,38,39,40,57,58},16->{16,41,42,43,44,45,46,55,56},23->{23,47,48,49,50
          ,51,52,53,54},34->{9,35,36,37,38,39,40,57,58},35->{9,35,36,37,38,39,40,57,58},36->{9,35,36,37,38,39,40,57
          ,58},37->{9,35,36,37,38,39,40,57,58},38->{9,35,36,37,38,39,40,57,58},39->{9,35,36,37,38,39,40,57,58},40->{9
          ,35,36,37,38,39,40,57,58},41->{16,41,42,43,44,45,46,55,56},42->{16,41,42,43,44,45,46,55,56},43->{16,41,42,43
          ,44,45,46,55,56},44->{16,41,42,43,44,45,46,55,56},45->{16,41,42,43,44,45,46,55,56},46->{16,41,42,43,44,45,46
          ,55,56},47->{23,47,48,49,50,51,52,53,54},48->{23,47,48,49,50,51,52,53,54},49->{23,47,48,49,50,51,52,53,54}
          ,50->{23,47,48,49,50,51,52,53,54},51->{23,47,48,49,50,51,52,53,54},52->{23,47,48,49,50,51,52,53,54},53->{23
          ,47,48,49,50,51,52,53,54},54->{23,47,48,49,50,51,52,53,54},55->{16,41,42,43,44,45,46,55,56},56->{23,47,48,49
          ,50,51,52,53,54},57->{16,41,42,43,44,45,46,55,56},58->{23,47,48,49,50,51,52,53,54}]
        Sizebounds:
          (< 2,0,A>, 1) (< 2,0,B>, 12) (< 2,0,C>, 1) (< 2,0,D>, 1) (< 2,0,F>,  0) (< 2,0,H>,  H) (< 2,0,J>, J) 
          (< 3,0,A>, 1) (< 3,0,B>, 12) (< 3,0,C>, 1) (< 3,0,D>, 1) (< 3,0,F>, 12) (< 3,0,H>,  H) (< 3,0,J>, J) 
          (< 9,0,A>, 1) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 1) (< 9,0,F>, 12) (< 9,0,H>,  H) (< 9,0,J>, J) 
          (<16,0,A>, 0) (<16,0,B>, 12) (<16,0,C>, 1) (<16,0,D>, 1) (<16,0,F>,  ?) (<16,0,H>, 12) (<16,0,J>, J) 
          (<23,0,A>, 1) (<23,0,B>, 12) (<23,0,C>, 1) (<23,0,D>, 0) (<23,0,F>, 12) (<23,0,H>,  ?) (<23,0,J>, ?) 
          (<34,0,A>, 1) (<34,0,B>, 12) (<34,0,C>, 1) (<34,0,D>, 1) (<34,0,F>,  0) (<34,0,H>,  H) (<34,0,J>, J) 
          (<35,0,A>, 1) (<35,0,B>, 12) (<35,0,C>, 1) (<35,0,D>, 1) (<35,0,F>, 12) (<35,0,H>,  H) (<35,0,J>, J) 
          (<36,0,A>, 1) (<36,0,B>, 12) (<36,0,C>, 0) (<36,0,D>, 1) (<36,0,F>, 12) (<36,0,H>,  H) (<36,0,J>, J) 
          (<37,0,A>, 1) (<37,0,B>, 12) (<37,0,C>, 0) (<37,0,D>, 1) (<37,0,F>, 12) (<37,0,H>,  H) (<37,0,J>, J) 
          (<38,0,A>, 1) (<38,0,B>, 12) (<38,0,C>, 1) (<38,0,D>, 1) (<38,0,F>, 12) (<38,0,H>,  H) (<38,0,J>, J) 
          (<39,0,A>, 1) (<39,0,B>, 12) (<39,0,C>, 0) (<39,0,D>, 1) (<39,0,F>, 12) (<39,0,H>,  H) (<39,0,J>, J) 
          (<40,0,A>, 1) (<40,0,B>, 12) (<40,0,C>, 0) (<40,0,D>, 1) (<40,0,F>, 12) (<40,0,H>,  H) (<40,0,J>, J) 
          (<41,0,A>, 1) (<41,0,B>, 12) (<41,0,C>, 1) (<41,0,D>, 1) (<41,0,F>,  ?) (<41,0,H>, 12) (<41,0,J>, J) 
          (<42,0,A>, 1) (<42,0,B>, 12) (<42,0,C>, 1) (<42,0,D>, 1) (<42,0,F>,  ?) (<42,0,H>, 12) (<42,0,J>, J) 
          (<43,0,A>, 0) (<43,0,B>, 12) (<43,0,C>, 1) (<43,0,D>, 1) (<43,0,F>,  ?) (<43,0,H>, 12) (<43,0,J>, J) 
          (<44,0,A>, 1) (<44,0,B>, 12) (<44,0,C>, 1) (<44,0,D>, 1) (<44,0,F>,  ?) (<44,0,H>, 12) (<44,0,J>, J) 
          (<45,0,A>, 1) (<45,0,B>, 12) (<45,0,C>, 1) (<45,0,D>, 1) (<45,0,F>,  ?) (<45,0,H>, 12) (<45,0,J>, J) 
          (<46,0,A>, 0) (<46,0,B>, 12) (<46,0,C>, 1) (<46,0,D>, 1) (<46,0,F>,  ?) (<46,0,H>, 12) (<46,0,J>, J) 
          (<47,0,A>, 1) (<47,0,B>, 12) (<47,0,C>, 1) (<47,0,D>, 1) (<47,0,F>, 12) (<47,0,H>,  ?) (<47,0,J>, ?) 
          (<48,0,A>, 1) (<48,0,B>, 12) (<48,0,C>, 1) (<48,0,D>, 1) (<48,0,F>, 12) (<48,0,H>,  ?) (<48,0,J>, ?) 
          (<49,0,A>, 1) (<49,0,B>, 12) (<49,0,C>, 1) (<49,0,D>, 0) (<49,0,F>, 12) (<49,0,H>,  ?) (<49,0,J>, 0) 
          (<50,0,A>, 1) (<50,0,B>, 12) (<50,0,C>, 1) (<50,0,D>, 0) (<50,0,F>, 12) (<50,0,H>,  ?) (<50,0,J>, ?) 
          (<51,0,A>, 1) (<51,0,B>, 12) (<51,0,C>, 1) (<51,0,D>, 1) (<51,0,F>, 12) (<51,0,H>,  ?) (<51,0,J>, ?) 
          (<52,0,A>, 1) (<52,0,B>, 12) (<52,0,C>, 1) (<52,0,D>, 1) (<52,0,F>, 12) (<52,0,H>,  ?) (<52,0,J>, ?) 
          (<53,0,A>, 1) (<53,0,B>, 12) (<53,0,C>, 1) (<53,0,D>, 0) (<53,0,F>, 12) (<53,0,H>,  ?) (<53,0,J>, 0) 
          (<54,0,A>, 1) (<54,0,B>, 12) (<54,0,C>, 1) (<54,0,D>, 0) (<54,0,F>, 12) (<54,0,H>,  ?) (<54,0,J>, ?) 
          (<55,0,A>, 1) (<55,0,B>, 12) (<55,0,C>, 1) (<55,0,D>, 1) (<55,0,F>, 12) (<55,0,H>,  ?) (<55,0,J>, J) 
          (<56,0,A>, 1) (<56,0,B>, 12) (<56,0,C>, 1) (<56,0,D>, 1) (<56,0,F>,  0) (<56,0,H>,  ?) (<56,0,J>, J) 
          (<57,0,A>, 1) (<57,0,B>, 12) (<57,0,C>, 1) (<57,0,D>, 1) (<57,0,F>, 12) (<57,0,H>,  ?) (<57,0,J>, J) 
          (<58,0,A>, 1) (<58,0,B>, 12) (<58,0,C>, 1) (<58,0,D>, 1) (<58,0,F>,  0) (<58,0,H>,  ?) (<58,0,J>, J) 
    + Applied Processor:
        UnsatPaths
    + Details:
        We remove following edges from the transition graph: [(2,34)
                                                             ,(9,35)
                                                             ,(9,36)
                                                             ,(9,37)
                                                             ,(9,38)
                                                             ,(9,39)
                                                             ,(9,40)
                                                             ,(16,41)
                                                             ,(16,42)
                                                             ,(16,43)
                                                             ,(16,44)
                                                             ,(16,45)
                                                             ,(16,46)
                                                             ,(23,47)
                                                             ,(23,48)
                                                             ,(23,49)
                                                             ,(23,50)
                                                             ,(23,51)
                                                             ,(23,52)
                                                             ,(23,53)
                                                             ,(23,54)
                                                             ,(34,57)
                                                             ,(35,9)
                                                             ,(35,35)
                                                             ,(35,36)
                                                             ,(35,37)
                                                             ,(36,35)
                                                             ,(36,36)
                                                             ,(36,37)
                                                             ,(36,38)
                                                             ,(36,39)
                                                             ,(36,40)
                                                             ,(37,35)
                                                             ,(37,36)
                                                             ,(37,37)
                                                             ,(37,38)
                                                             ,(37,39)
                                                             ,(37,40)
                                                             ,(38,9)
                                                             ,(38,35)
                                                             ,(38,36)
                                                             ,(38,37)
                                                             ,(39,35)
                                                             ,(39,36)
                                                             ,(39,37)
                                                             ,(39,38)
                                                             ,(39,39)
                                                             ,(39,40)
                                                             ,(40,35)
                                                             ,(40,36)
                                                             ,(40,37)
                                                             ,(40,38)
                                                             ,(40,39)
                                                             ,(40,40)
                                                             ,(41,16)
                                                             ,(41,41)
                                                             ,(41,42)
                                                             ,(41,43)
                                                             ,(42,16)
                                                             ,(42,41)
                                                             ,(42,42)
                                                             ,(42,43)
                                                             ,(43,41)
                                                             ,(43,42)
                                                             ,(43,43)
                                                             ,(43,44)
                                                             ,(43,45)
                                                             ,(43,46)
                                                             ,(44,16)
                                                             ,(44,41)
                                                             ,(44,42)
                                                             ,(44,43)
                                                             ,(45,16)
                                                             ,(45,41)
                                                             ,(45,42)
                                                             ,(45,43)
                                                             ,(46,41)
                                                             ,(46,42)
                                                             ,(46,43)
                                                             ,(46,44)
                                                             ,(46,45)
                                                             ,(46,46)
                                                             ,(47,23)
                                                             ,(47,47)
                                                             ,(47,48)
                                                             ,(47,49)
                                                             ,(47,50)
                                                             ,(48,23)
                                                             ,(48,47)
                                                             ,(48,48)
                                                             ,(48,49)
                                                             ,(48,50)
                                                             ,(49,47)
                                                             ,(49,48)
                                                             ,(49,49)
                                                             ,(49,50)
                                                             ,(49,51)
                                                             ,(49,52)
                                                             ,(49,53)
                                                             ,(49,54)
                                                             ,(50,47)
                                                             ,(50,48)
                                                             ,(50,49)
                                                             ,(50,50)
                                                             ,(50,51)
                                                             ,(50,52)
                                                             ,(50,53)
                                                             ,(50,54)
                                                             ,(51,23)
                                                             ,(51,47)
                                                             ,(51,48)
                                                             ,(51,49)
                                                             ,(51,50)
                                                             ,(52,23)
                                                             ,(52,47)
                                                             ,(52,48)
                                                             ,(52,49)
                                                             ,(52,50)
                                                             ,(53,47)
                                                             ,(53,48)
                                                             ,(53,49)
                                                             ,(53,50)
                                                             ,(53,51)
                                                             ,(53,52)
                                                             ,(53,53)
                                                             ,(53,54)
                                                             ,(54,47)
                                                             ,(54,48)
                                                             ,(54,49)
                                                             ,(54,50)
                                                             ,(54,51)
                                                             ,(54,52)
                                                             ,(54,53)
                                                             ,(54,54)
                                                             ,(55,55)
                                                             ,(55,56)
                                                             ,(57,55)
                                                             ,(57,56)
                                                             ,(58,23)
                                                             ,(58,47)
                                                             ,(58,48)
                                                             ,(58,49)
                                                             ,(58,50)
                                                             ,(58,51)
                                                             ,(58,52)
                                                             ,(58,53)
                                                             ,(58,54)]
* Step 35: LeafRules WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f0(A,B,C,D,F,H,J)  -> f13(1,12,1,1,0,H,J)        True                                                 (1,1)   
          3.  f13(A,B,C,D,F,H,J) -> f13(A,B,C,D,1 + F,H,J)     [B >= 1 + F]                                         (12,1)  
          9.  f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [B >= 1 + F && C = 0]                                (1932,1)
          16. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J)     [B >= 1 + H && A = 0]                                (?,1)   
          23. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M)     [B >= 2 + F && D = 0]                                (12,1)  
          34. f13(A,B,C,D,F,H,J) -> f19(A,B,C,D,0,H,J)         [F >= B]                                             (1,1)   
          35. f19(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J)     [0 >= 1 + C && B >= 1 + F && M$ >= 0 && B >= 1 + N$] (1,2)   
          36. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [0 >= 1 + C && B >= 1 + F && M$ >= 0]                (1,2)   
          37. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [0 >= 1 + C && B >= 1 + F && 0 >= 1 + M$]            (1,2)   
          38. f19(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J)     [C >= 1 && B >= 1 + F && M$ >= 0 && B >= 1 + N$]     (39,2)  
          39. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [C >= 1 && B >= 1 + F && M$ >= 0]                    (39,2)  
          40. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [C >= 1 && B >= 1 + F && 0 >= 1 + M$]                (39,2)  
          41. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [0 >= 1 + A && B >= 1 + H && M$ >= 1 + N$]           (28,2)  
          42. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [0 >= 1 + A && B >= 1 + H]                           (28,2)  
          43. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J)     [0 >= 1 + A && B >= 1 + H]                           (28,2)  
          44. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [A >= 1 && B >= 1 + H && M$ >= 1 + N$]               (?,2)   
          45. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [A >= 1 && B >= 1 + H]                               (?,2)   
          46. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J)     [A >= 1 && B >= 1 + H]                               (?,2)   
          47. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [0 >= 1 + D && B >= 2 + F && 0 >= 1 + M]             (1,2)   
          48. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [0 >= 1 + D && B >= 2 + F && M >= 1]                 (1,2)   
          49. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0)     [0 >= 1 + D && B >= 2 + F && M = 0]                  (1,2)   
          50. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M)     [0 >= 1 + D && B >= 2 + F]                           (1,2)   
          51. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [D >= 1 && B >= 2 + F && 0 >= 1 + M]                 (12,2)  
          52. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [D >= 1 && B >= 2 + F && M >= 1]                     (12,2)  
          53. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0)     [D >= 1 && B >= 2 + F && M = 0]                      (12,2)  
          54. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M)     [D >= 1 && B >= 2 + F]                               (12,2)  
          55. f35(A,B,C,D,F,H,J) -> f35(A,B,C,D,1 + F,2 + F,J) [H >= B && B >= 3 + F]                               (28,2)  
          56. f35(A,B,C,D,F,H,J) -> f48(A,B,C,D,0,H,J)         [H >= B && 2 + F >= B]                               (28,2)  
          57. f19(A,B,C,D,F,H,J) -> f35(A,B,C,D,0,1,J)         [F >= B && B >= 2]                                   (2,2)   
          58. f19(A,B,C,D,F,H,J) -> f48(A,B,C,D,0,H,J)         [F >= B && 1 >= B]                                   (2,2)   
        Signature:
          {(f0,7);(f13,7);(f19,7);(f22,7);(f32,7);(f35,7);(f38,7);(f48,7);(f52,7);(f62,7);(f63,7);(f71,7)}
        Flow Graph:
          [2->{3},3->{3,34},9->{9,57,58},16->{16,55,56},23->{23},34->{9,35,36,37,38,39,40,58},35->{38,39,40,57,58}
          ,36->{9,57,58},37->{9,57,58},38->{38,39,40,57,58},39->{9,57,58},40->{9,57,58},41->{44,45,46,55,56},42->{44
          ,45,46,55,56},43->{16,55,56},44->{44,45,46,55,56},45->{44,45,46,55,56},46->{16,55,56},47->{51,52,53,54}
          ,48->{51,52,53,54},49->{23},50->{23},51->{51,52,53,54},52->{51,52,53,54},53->{23},54->{23},55->{16,41,42,43
          ,44,45,46},56->{23,47,48,49,50,51,52,53,54},57->{16,41,42,43,44,45,46},58->{}]
        Sizebounds:
          (< 2,0,A>, 1) (< 2,0,B>, 12) (< 2,0,C>, 1) (< 2,0,D>, 1) (< 2,0,F>,  0) (< 2,0,H>,  H) (< 2,0,J>, J) 
          (< 3,0,A>, 1) (< 3,0,B>, 12) (< 3,0,C>, 1) (< 3,0,D>, 1) (< 3,0,F>, 12) (< 3,0,H>,  H) (< 3,0,J>, J) 
          (< 9,0,A>, 1) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 1) (< 9,0,F>, 12) (< 9,0,H>,  H) (< 9,0,J>, J) 
          (<16,0,A>, 0) (<16,0,B>, 12) (<16,0,C>, 1) (<16,0,D>, 1) (<16,0,F>,  ?) (<16,0,H>, 12) (<16,0,J>, J) 
          (<23,0,A>, 1) (<23,0,B>, 12) (<23,0,C>, 1) (<23,0,D>, 0) (<23,0,F>, 12) (<23,0,H>,  ?) (<23,0,J>, ?) 
          (<34,0,A>, 1) (<34,0,B>, 12) (<34,0,C>, 1) (<34,0,D>, 1) (<34,0,F>,  0) (<34,0,H>,  H) (<34,0,J>, J) 
          (<35,0,A>, 1) (<35,0,B>, 12) (<35,0,C>, 1) (<35,0,D>, 1) (<35,0,F>, 12) (<35,0,H>,  H) (<35,0,J>, J) 
          (<36,0,A>, 1) (<36,0,B>, 12) (<36,0,C>, 0) (<36,0,D>, 1) (<36,0,F>, 12) (<36,0,H>,  H) (<36,0,J>, J) 
          (<37,0,A>, 1) (<37,0,B>, 12) (<37,0,C>, 0) (<37,0,D>, 1) (<37,0,F>, 12) (<37,0,H>,  H) (<37,0,J>, J) 
          (<38,0,A>, 1) (<38,0,B>, 12) (<38,0,C>, 1) (<38,0,D>, 1) (<38,0,F>, 12) (<38,0,H>,  H) (<38,0,J>, J) 
          (<39,0,A>, 1) (<39,0,B>, 12) (<39,0,C>, 0) (<39,0,D>, 1) (<39,0,F>, 12) (<39,0,H>,  H) (<39,0,J>, J) 
          (<40,0,A>, 1) (<40,0,B>, 12) (<40,0,C>, 0) (<40,0,D>, 1) (<40,0,F>, 12) (<40,0,H>,  H) (<40,0,J>, J) 
          (<41,0,A>, 1) (<41,0,B>, 12) (<41,0,C>, 1) (<41,0,D>, 1) (<41,0,F>,  ?) (<41,0,H>, 12) (<41,0,J>, J) 
          (<42,0,A>, 1) (<42,0,B>, 12) (<42,0,C>, 1) (<42,0,D>, 1) (<42,0,F>,  ?) (<42,0,H>, 12) (<42,0,J>, J) 
          (<43,0,A>, 0) (<43,0,B>, 12) (<43,0,C>, 1) (<43,0,D>, 1) (<43,0,F>,  ?) (<43,0,H>, 12) (<43,0,J>, J) 
          (<44,0,A>, 1) (<44,0,B>, 12) (<44,0,C>, 1) (<44,0,D>, 1) (<44,0,F>,  ?) (<44,0,H>, 12) (<44,0,J>, J) 
          (<45,0,A>, 1) (<45,0,B>, 12) (<45,0,C>, 1) (<45,0,D>, 1) (<45,0,F>,  ?) (<45,0,H>, 12) (<45,0,J>, J) 
          (<46,0,A>, 0) (<46,0,B>, 12) (<46,0,C>, 1) (<46,0,D>, 1) (<46,0,F>,  ?) (<46,0,H>, 12) (<46,0,J>, J) 
          (<47,0,A>, 1) (<47,0,B>, 12) (<47,0,C>, 1) (<47,0,D>, 1) (<47,0,F>, 12) (<47,0,H>,  ?) (<47,0,J>, ?) 
          (<48,0,A>, 1) (<48,0,B>, 12) (<48,0,C>, 1) (<48,0,D>, 1) (<48,0,F>, 12) (<48,0,H>,  ?) (<48,0,J>, ?) 
          (<49,0,A>, 1) (<49,0,B>, 12) (<49,0,C>, 1) (<49,0,D>, 0) (<49,0,F>, 12) (<49,0,H>,  ?) (<49,0,J>, 0) 
          (<50,0,A>, 1) (<50,0,B>, 12) (<50,0,C>, 1) (<50,0,D>, 0) (<50,0,F>, 12) (<50,0,H>,  ?) (<50,0,J>, ?) 
          (<51,0,A>, 1) (<51,0,B>, 12) (<51,0,C>, 1) (<51,0,D>, 1) (<51,0,F>, 12) (<51,0,H>,  ?) (<51,0,J>, ?) 
          (<52,0,A>, 1) (<52,0,B>, 12) (<52,0,C>, 1) (<52,0,D>, 1) (<52,0,F>, 12) (<52,0,H>,  ?) (<52,0,J>, ?) 
          (<53,0,A>, 1) (<53,0,B>, 12) (<53,0,C>, 1) (<53,0,D>, 0) (<53,0,F>, 12) (<53,0,H>,  ?) (<53,0,J>, 0) 
          (<54,0,A>, 1) (<54,0,B>, 12) (<54,0,C>, 1) (<54,0,D>, 0) (<54,0,F>, 12) (<54,0,H>,  ?) (<54,0,J>, ?) 
          (<55,0,A>, 1) (<55,0,B>, 12) (<55,0,C>, 1) (<55,0,D>, 1) (<55,0,F>, 12) (<55,0,H>,  ?) (<55,0,J>, J) 
          (<56,0,A>, 1) (<56,0,B>, 12) (<56,0,C>, 1) (<56,0,D>, 1) (<56,0,F>,  0) (<56,0,H>,  ?) (<56,0,J>, J) 
          (<57,0,A>, 1) (<57,0,B>, 12) (<57,0,C>, 1) (<57,0,D>, 1) (<57,0,F>, 12) (<57,0,H>,  ?) (<57,0,J>, J) 
          (<58,0,A>, 1) (<58,0,B>, 12) (<58,0,C>, 1) (<58,0,D>, 1) (<58,0,F>,  0) (<58,0,H>,  ?) (<58,0,J>, J) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [58]
* Step 36: LocalSizeboundsProc WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f0(A,B,C,D,F,H,J)  -> f13(1,12,1,1,0,H,J)        True                                                 (1,1)   
          3.  f13(A,B,C,D,F,H,J) -> f13(A,B,C,D,1 + F,H,J)     [B >= 1 + F]                                         (12,1)  
          9.  f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [B >= 1 + F && C = 0]                                (1932,1)
          16. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J)     [B >= 1 + H && A = 0]                                (?,1)   
          23. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M)     [B >= 2 + F && D = 0]                                (12,1)  
          34. f13(A,B,C,D,F,H,J) -> f19(A,B,C,D,0,H,J)         [F >= B]                                             (1,1)   
          35. f19(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J)     [0 >= 1 + C && B >= 1 + F && M$ >= 0 && B >= 1 + N$] (1,2)   
          36. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [0 >= 1 + C && B >= 1 + F && M$ >= 0]                (1,2)   
          37. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [0 >= 1 + C && B >= 1 + F && 0 >= 1 + M$]            (1,2)   
          38. f19(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J)     [C >= 1 && B >= 1 + F && M$ >= 0 && B >= 1 + N$]     (39,2)  
          39. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [C >= 1 && B >= 1 + F && M$ >= 0]                    (39,2)  
          40. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [C >= 1 && B >= 1 + F && 0 >= 1 + M$]                (39,2)  
          41. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [0 >= 1 + A && B >= 1 + H && M$ >= 1 + N$]           (28,2)  
          42. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [0 >= 1 + A && B >= 1 + H]                           (28,2)  
          43. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J)     [0 >= 1 + A && B >= 1 + H]                           (28,2)  
          44. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [A >= 1 && B >= 1 + H && M$ >= 1 + N$]               (?,2)   
          45. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [A >= 1 && B >= 1 + H]                               (?,2)   
          46. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J)     [A >= 1 && B >= 1 + H]                               (?,2)   
          47. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [0 >= 1 + D && B >= 2 + F && 0 >= 1 + M]             (1,2)   
          48. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [0 >= 1 + D && B >= 2 + F && M >= 1]                 (1,2)   
          49. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0)     [0 >= 1 + D && B >= 2 + F && M = 0]                  (1,2)   
          50. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M)     [0 >= 1 + D && B >= 2 + F]                           (1,2)   
          51. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [D >= 1 && B >= 2 + F && 0 >= 1 + M]                 (12,2)  
          52. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [D >= 1 && B >= 2 + F && M >= 1]                     (12,2)  
          53. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0)     [D >= 1 && B >= 2 + F && M = 0]                      (12,2)  
          54. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M)     [D >= 1 && B >= 2 + F]                               (12,2)  
          55. f35(A,B,C,D,F,H,J) -> f35(A,B,C,D,1 + F,2 + F,J) [H >= B && B >= 3 + F]                               (28,2)  
          56. f35(A,B,C,D,F,H,J) -> f48(A,B,C,D,0,H,J)         [H >= B && 2 + F >= B]                               (28,2)  
          57. f19(A,B,C,D,F,H,J) -> f35(A,B,C,D,0,1,J)         [F >= B && B >= 2]                                   (2,2)   
        Signature:
          {(f0,7);(f13,7);(f19,7);(f22,7);(f32,7);(f35,7);(f38,7);(f48,7);(f52,7);(f62,7);(f63,7);(f71,7)}
        Flow Graph:
          [2->{3},3->{3,34},9->{9,57},16->{16,55,56},23->{23},34->{9,35,36,37,38,39,40},35->{38,39,40,57},36->{9,57}
          ,37->{9,57},38->{38,39,40,57},39->{9,57},40->{9,57},41->{44,45,46,55,56},42->{44,45,46,55,56},43->{16,55,56}
          ,44->{44,45,46,55,56},45->{44,45,46,55,56},46->{16,55,56},47->{51,52,53,54},48->{51,52,53,54},49->{23}
          ,50->{23},51->{51,52,53,54},52->{51,52,53,54},53->{23},54->{23},55->{16,41,42,43,44,45,46},56->{23,47,48,49
          ,50,51,52,53,54},57->{16,41,42,43,44,45,46}]
        Sizebounds:
          (< 2,0,A>, 1) (< 2,0,B>, 12) (< 2,0,C>, 1) (< 2,0,D>, 1) (< 2,0,F>,  0) (< 2,0,H>,  H) (< 2,0,J>, J) 
          (< 3,0,A>, 1) (< 3,0,B>, 12) (< 3,0,C>, 1) (< 3,0,D>, 1) (< 3,0,F>, 12) (< 3,0,H>,  H) (< 3,0,J>, J) 
          (< 9,0,A>, 1) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 1) (< 9,0,F>, 12) (< 9,0,H>,  H) (< 9,0,J>, J) 
          (<16,0,A>, 0) (<16,0,B>, 12) (<16,0,C>, 1) (<16,0,D>, 1) (<16,0,F>,  ?) (<16,0,H>, 12) (<16,0,J>, J) 
          (<23,0,A>, 1) (<23,0,B>, 12) (<23,0,C>, 1) (<23,0,D>, 0) (<23,0,F>, 12) (<23,0,H>,  ?) (<23,0,J>, ?) 
          (<34,0,A>, 1) (<34,0,B>, 12) (<34,0,C>, 1) (<34,0,D>, 1) (<34,0,F>,  0) (<34,0,H>,  H) (<34,0,J>, J) 
          (<35,0,A>, 1) (<35,0,B>, 12) (<35,0,C>, 1) (<35,0,D>, 1) (<35,0,F>, 12) (<35,0,H>,  H) (<35,0,J>, J) 
          (<36,0,A>, 1) (<36,0,B>, 12) (<36,0,C>, 0) (<36,0,D>, 1) (<36,0,F>, 12) (<36,0,H>,  H) (<36,0,J>, J) 
          (<37,0,A>, 1) (<37,0,B>, 12) (<37,0,C>, 0) (<37,0,D>, 1) (<37,0,F>, 12) (<37,0,H>,  H) (<37,0,J>, J) 
          (<38,0,A>, 1) (<38,0,B>, 12) (<38,0,C>, 1) (<38,0,D>, 1) (<38,0,F>, 12) (<38,0,H>,  H) (<38,0,J>, J) 
          (<39,0,A>, 1) (<39,0,B>, 12) (<39,0,C>, 0) (<39,0,D>, 1) (<39,0,F>, 12) (<39,0,H>,  H) (<39,0,J>, J) 
          (<40,0,A>, 1) (<40,0,B>, 12) (<40,0,C>, 0) (<40,0,D>, 1) (<40,0,F>, 12) (<40,0,H>,  H) (<40,0,J>, J) 
          (<41,0,A>, 1) (<41,0,B>, 12) (<41,0,C>, 1) (<41,0,D>, 1) (<41,0,F>,  ?) (<41,0,H>, 12) (<41,0,J>, J) 
          (<42,0,A>, 1) (<42,0,B>, 12) (<42,0,C>, 1) (<42,0,D>, 1) (<42,0,F>,  ?) (<42,0,H>, 12) (<42,0,J>, J) 
          (<43,0,A>, 0) (<43,0,B>, 12) (<43,0,C>, 1) (<43,0,D>, 1) (<43,0,F>,  ?) (<43,0,H>, 12) (<43,0,J>, J) 
          (<44,0,A>, 1) (<44,0,B>, 12) (<44,0,C>, 1) (<44,0,D>, 1) (<44,0,F>,  ?) (<44,0,H>, 12) (<44,0,J>, J) 
          (<45,0,A>, 1) (<45,0,B>, 12) (<45,0,C>, 1) (<45,0,D>, 1) (<45,0,F>,  ?) (<45,0,H>, 12) (<45,0,J>, J) 
          (<46,0,A>, 0) (<46,0,B>, 12) (<46,0,C>, 1) (<46,0,D>, 1) (<46,0,F>,  ?) (<46,0,H>, 12) (<46,0,J>, J) 
          (<47,0,A>, 1) (<47,0,B>, 12) (<47,0,C>, 1) (<47,0,D>, 1) (<47,0,F>, 12) (<47,0,H>,  ?) (<47,0,J>, ?) 
          (<48,0,A>, 1) (<48,0,B>, 12) (<48,0,C>, 1) (<48,0,D>, 1) (<48,0,F>, 12) (<48,0,H>,  ?) (<48,0,J>, ?) 
          (<49,0,A>, 1) (<49,0,B>, 12) (<49,0,C>, 1) (<49,0,D>, 0) (<49,0,F>, 12) (<49,0,H>,  ?) (<49,0,J>, 0) 
          (<50,0,A>, 1) (<50,0,B>, 12) (<50,0,C>, 1) (<50,0,D>, 0) (<50,0,F>, 12) (<50,0,H>,  ?) (<50,0,J>, ?) 
          (<51,0,A>, 1) (<51,0,B>, 12) (<51,0,C>, 1) (<51,0,D>, 1) (<51,0,F>, 12) (<51,0,H>,  ?) (<51,0,J>, ?) 
          (<52,0,A>, 1) (<52,0,B>, 12) (<52,0,C>, 1) (<52,0,D>, 1) (<52,0,F>, 12) (<52,0,H>,  ?) (<52,0,J>, ?) 
          (<53,0,A>, 1) (<53,0,B>, 12) (<53,0,C>, 1) (<53,0,D>, 0) (<53,0,F>, 12) (<53,0,H>,  ?) (<53,0,J>, 0) 
          (<54,0,A>, 1) (<54,0,B>, 12) (<54,0,C>, 1) (<54,0,D>, 0) (<54,0,F>, 12) (<54,0,H>,  ?) (<54,0,J>, ?) 
          (<55,0,A>, 1) (<55,0,B>, 12) (<55,0,C>, 1) (<55,0,D>, 1) (<55,0,F>, 12) (<55,0,H>,  ?) (<55,0,J>, J) 
          (<56,0,A>, 1) (<56,0,B>, 12) (<56,0,C>, 1) (<56,0,D>, 1) (<56,0,F>,  0) (<56,0,H>,  ?) (<56,0,J>, J) 
          (<57,0,A>, 1) (<57,0,B>, 12) (<57,0,C>, 1) (<57,0,D>, 1) (<57,0,F>, 12) (<57,0,H>,  ?) (<57,0,J>, J) 
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (< 2,0,A>, 1, .= 1) (< 2,0,B>, 12, .= 12) (< 2,0,C>, 1, .= 1) (< 2,0,D>, 1, .= 1) (< 2,0,F>,     0, .= 0) (< 2,0,H>,     H, .= 0) (< 2,0,J>, J, .= 0) 
          (< 3,0,A>, A, .= 0) (< 3,0,B>,  B,  .= 0) (< 3,0,C>, C, .= 0) (< 3,0,D>, D, .= 0) (< 3,0,F>, 1 + F, .+ 1) (< 3,0,H>,     H, .= 0) (< 3,0,J>, J, .= 0) 
          (< 9,0,A>, A, .= 0) (< 9,0,B>,  B,  .= 0) (< 9,0,C>, 0, .= 0) (< 9,0,D>, D, .= 0) (< 9,0,F>, 1 + F, .+ 1) (< 9,0,H>,     H, .= 0) (< 9,0,J>, J, .= 0) 
          (<16,0,A>, 0, .= 0) (<16,0,B>,  B,  .= 0) (<16,0,C>, C, .= 0) (<16,0,D>, D, .= 0) (<16,0,F>,     F, .= 0) (<16,0,H>, 1 + H, .+ 1) (<16,0,J>, J, .= 0) 
          (<23,0,A>, A, .= 0) (<23,0,B>,  B,  .= 0) (<23,0,C>, C, .= 0) (<23,0,D>, 0, .= 0) (<23,0,F>, 1 + F, .+ 1) (<23,0,H>,     H, .= 0) (<23,0,J>, ?,   .?) 
          (<34,0,A>, A, .= 0) (<34,0,B>,  B,  .= 0) (<34,0,C>, C, .= 0) (<34,0,D>, D, .= 0) (<34,0,F>,     0, .= 0) (<34,0,H>,     H, .= 0) (<34,0,J>, J, .= 0) 
          (<35,0,A>, A, .= 0) (<35,0,B>,  B,  .= 0) (<35,0,C>, 1, .= 1) (<35,0,D>, D, .= 0) (<35,0,F>, 1 + F, .+ 1) (<35,0,H>,     H, .= 0) (<35,0,J>, J, .= 0) 
          (<36,0,A>, A, .= 0) (<36,0,B>,  B,  .= 0) (<36,0,C>, 0, .= 0) (<36,0,D>, D, .= 0) (<36,0,F>, 1 + F, .+ 1) (<36,0,H>,     H, .= 0) (<36,0,J>, J, .= 0) 
          (<37,0,A>, A, .= 0) (<37,0,B>,  B,  .= 0) (<37,0,C>, 0, .= 0) (<37,0,D>, D, .= 0) (<37,0,F>, 1 + F, .+ 1) (<37,0,H>,     H, .= 0) (<37,0,J>, J, .= 0) 
          (<38,0,A>, A, .= 0) (<38,0,B>,  B,  .= 0) (<38,0,C>, 1, .= 1) (<38,0,D>, D, .= 0) (<38,0,F>, 1 + F, .+ 1) (<38,0,H>,     H, .= 0) (<38,0,J>, J, .= 0) 
          (<39,0,A>, A, .= 0) (<39,0,B>,  B,  .= 0) (<39,0,C>, 0, .= 0) (<39,0,D>, D, .= 0) (<39,0,F>, 1 + F, .+ 1) (<39,0,H>,     H, .= 0) (<39,0,J>, J, .= 0) 
          (<40,0,A>, A, .= 0) (<40,0,B>,  B,  .= 0) (<40,0,C>, 0, .= 0) (<40,0,D>, D, .= 0) (<40,0,F>, 1 + F, .+ 1) (<40,0,H>,     H, .= 0) (<40,0,J>, J, .= 0) 
          (<41,0,A>, 1, .= 1) (<41,0,B>,  B,  .= 0) (<41,0,C>, C, .= 0) (<41,0,D>, D, .= 0) (<41,0,F>,     F, .= 0) (<41,0,H>, 1 + H, .+ 1) (<41,0,J>, J, .= 0) 
          (<42,0,A>, 1, .= 1) (<42,0,B>,  B,  .= 0) (<42,0,C>, C, .= 0) (<42,0,D>, D, .= 0) (<42,0,F>,     F, .= 0) (<42,0,H>, 1 + H, .+ 1) (<42,0,J>, J, .= 0) 
          (<43,0,A>, 0, .= 0) (<43,0,B>,  B,  .= 0) (<43,0,C>, C, .= 0) (<43,0,D>, D, .= 0) (<43,0,F>,     F, .= 0) (<43,0,H>, 1 + H, .+ 1) (<43,0,J>, J, .= 0) 
          (<44,0,A>, 1, .= 1) (<44,0,B>,  B,  .= 0) (<44,0,C>, C, .= 0) (<44,0,D>, D, .= 0) (<44,0,F>,     F, .= 0) (<44,0,H>, 1 + H, .+ 1) (<44,0,J>, J, .= 0) 
          (<45,0,A>, 1, .= 1) (<45,0,B>,  B,  .= 0) (<45,0,C>, C, .= 0) (<45,0,D>, D, .= 0) (<45,0,F>,     F, .= 0) (<45,0,H>, 1 + H, .+ 1) (<45,0,J>, J, .= 0) 
          (<46,0,A>, 0, .= 0) (<46,0,B>,  B,  .= 0) (<46,0,C>, C, .= 0) (<46,0,D>, D, .= 0) (<46,0,F>,     F, .= 0) (<46,0,H>, 1 + H, .+ 1) (<46,0,J>, J, .= 0) 
          (<47,0,A>, A, .= 0) (<47,0,B>,  B,  .= 0) (<47,0,C>, C, .= 0) (<47,0,D>, 1, .= 1) (<47,0,F>, 1 + F, .+ 1) (<47,0,H>,     H, .= 0) (<47,0,J>, ?,   .?) 
          (<48,0,A>, A, .= 0) (<48,0,B>,  B,  .= 0) (<48,0,C>, C, .= 0) (<48,0,D>, 1, .= 1) (<48,0,F>, 1 + F, .+ 1) (<48,0,H>,     H, .= 0) (<48,0,J>, ?,   .?) 
          (<49,0,A>, A, .= 0) (<49,0,B>,  B,  .= 0) (<49,0,C>, C, .= 0) (<49,0,D>, 0, .= 0) (<49,0,F>, 1 + F, .+ 1) (<49,0,H>,     H, .= 0) (<49,0,J>, 0, .= 0) 
          (<50,0,A>, A, .= 0) (<50,0,B>,  B,  .= 0) (<50,0,C>, C, .= 0) (<50,0,D>, 0, .= 0) (<50,0,F>, 1 + F, .+ 1) (<50,0,H>,     H, .= 0) (<50,0,J>, ?,   .?) 
          (<51,0,A>, A, .= 0) (<51,0,B>,  B,  .= 0) (<51,0,C>, C, .= 0) (<51,0,D>, 1, .= 1) (<51,0,F>, 1 + F, .+ 1) (<51,0,H>,     H, .= 0) (<51,0,J>, ?,   .?) 
          (<52,0,A>, A, .= 0) (<52,0,B>,  B,  .= 0) (<52,0,C>, C, .= 0) (<52,0,D>, 1, .= 1) (<52,0,F>, 1 + F, .+ 1) (<52,0,H>,     H, .= 0) (<52,0,J>, ?,   .?) 
          (<53,0,A>, A, .= 0) (<53,0,B>,  B,  .= 0) (<53,0,C>, C, .= 0) (<53,0,D>, 0, .= 0) (<53,0,F>, 1 + F, .+ 1) (<53,0,H>,     H, .= 0) (<53,0,J>, 0, .= 0) 
          (<54,0,A>, A, .= 0) (<54,0,B>,  B,  .= 0) (<54,0,C>, C, .= 0) (<54,0,D>, 0, .= 0) (<54,0,F>, 1 + F, .+ 1) (<54,0,H>,     H, .= 0) (<54,0,J>, ?,   .?) 
          (<55,0,A>, A, .= 0) (<55,0,B>,  B,  .= 0) (<55,0,C>, C, .= 0) (<55,0,D>, D, .= 0) (<55,0,F>, 1 + F, .+ 1) (<55,0,H>, 2 + F, .+ 2) (<55,0,J>, J, .= 0) 
          (<56,0,A>, A, .= 0) (<56,0,B>,  B,  .= 0) (<56,0,C>, C, .= 0) (<56,0,D>, D, .= 0) (<56,0,F>,     0, .= 0) (<56,0,H>,     H, .= 0) (<56,0,J>, J, .= 0) 
          (<57,0,A>, A, .= 0) (<57,0,B>,  B,  .= 0) (<57,0,C>, C, .= 0) (<57,0,D>, D, .= 0) (<57,0,F>,     0, .= 0) (<57,0,H>,     1, .= 1) (<57,0,J>, J, .= 0) 
* Step 37: SizeboundsProc WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f0(A,B,C,D,F,H,J)  -> f13(1,12,1,1,0,H,J)        True                                                 (1,1)   
          3.  f13(A,B,C,D,F,H,J) -> f13(A,B,C,D,1 + F,H,J)     [B >= 1 + F]                                         (12,1)  
          9.  f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [B >= 1 + F && C = 0]                                (1932,1)
          16. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J)     [B >= 1 + H && A = 0]                                (?,1)   
          23. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M)     [B >= 2 + F && D = 0]                                (12,1)  
          34. f13(A,B,C,D,F,H,J) -> f19(A,B,C,D,0,H,J)         [F >= B]                                             (1,1)   
          35. f19(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J)     [0 >= 1 + C && B >= 1 + F && M$ >= 0 && B >= 1 + N$] (1,2)   
          36. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [0 >= 1 + C && B >= 1 + F && M$ >= 0]                (1,2)   
          37. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [0 >= 1 + C && B >= 1 + F && 0 >= 1 + M$]            (1,2)   
          38. f19(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J)     [C >= 1 && B >= 1 + F && M$ >= 0 && B >= 1 + N$]     (39,2)  
          39. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [C >= 1 && B >= 1 + F && M$ >= 0]                    (39,2)  
          40. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [C >= 1 && B >= 1 + F && 0 >= 1 + M$]                (39,2)  
          41. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [0 >= 1 + A && B >= 1 + H && M$ >= 1 + N$]           (28,2)  
          42. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [0 >= 1 + A && B >= 1 + H]                           (28,2)  
          43. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J)     [0 >= 1 + A && B >= 1 + H]                           (28,2)  
          44. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [A >= 1 && B >= 1 + H && M$ >= 1 + N$]               (?,2)   
          45. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [A >= 1 && B >= 1 + H]                               (?,2)   
          46. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J)     [A >= 1 && B >= 1 + H]                               (?,2)   
          47. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [0 >= 1 + D && B >= 2 + F && 0 >= 1 + M]             (1,2)   
          48. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [0 >= 1 + D && B >= 2 + F && M >= 1]                 (1,2)   
          49. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0)     [0 >= 1 + D && B >= 2 + F && M = 0]                  (1,2)   
          50. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M)     [0 >= 1 + D && B >= 2 + F]                           (1,2)   
          51. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [D >= 1 && B >= 2 + F && 0 >= 1 + M]                 (12,2)  
          52. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [D >= 1 && B >= 2 + F && M >= 1]                     (12,2)  
          53. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0)     [D >= 1 && B >= 2 + F && M = 0]                      (12,2)  
          54. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M)     [D >= 1 && B >= 2 + F]                               (12,2)  
          55. f35(A,B,C,D,F,H,J) -> f35(A,B,C,D,1 + F,2 + F,J) [H >= B && B >= 3 + F]                               (28,2)  
          56. f35(A,B,C,D,F,H,J) -> f48(A,B,C,D,0,H,J)         [H >= B && 2 + F >= B]                               (28,2)  
          57. f19(A,B,C,D,F,H,J) -> f35(A,B,C,D,0,1,J)         [F >= B && B >= 2]                                   (2,2)   
        Signature:
          {(f0,7);(f13,7);(f19,7);(f22,7);(f32,7);(f35,7);(f38,7);(f48,7);(f52,7);(f62,7);(f63,7);(f71,7)}
        Flow Graph:
          [2->{3},3->{3,34},9->{9,57},16->{16,55,56},23->{23},34->{9,35,36,37,38,39,40},35->{38,39,40,57},36->{9,57}
          ,37->{9,57},38->{38,39,40,57},39->{9,57},40->{9,57},41->{44,45,46,55,56},42->{44,45,46,55,56},43->{16,55,56}
          ,44->{44,45,46,55,56},45->{44,45,46,55,56},46->{16,55,56},47->{51,52,53,54},48->{51,52,53,54},49->{23}
          ,50->{23},51->{51,52,53,54},52->{51,52,53,54},53->{23},54->{23},55->{16,41,42,43,44,45,46},56->{23,47,48,49
          ,50,51,52,53,54},57->{16,41,42,43,44,45,46}]
        Sizebounds:
          (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, ?) (< 2,0,F>, ?) (< 2,0,H>, ?) (< 2,0,J>, ?) 
          (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, ?) (< 3,0,F>, ?) (< 3,0,H>, ?) (< 3,0,J>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,F>, ?) (< 9,0,H>, ?) (< 9,0,J>, ?) 
          (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,F>, ?) (<16,0,H>, ?) (<16,0,J>, ?) 
          (<23,0,A>, ?) (<23,0,B>, ?) (<23,0,C>, ?) (<23,0,D>, ?) (<23,0,F>, ?) (<23,0,H>, ?) (<23,0,J>, ?) 
          (<34,0,A>, ?) (<34,0,B>, ?) (<34,0,C>, ?) (<34,0,D>, ?) (<34,0,F>, ?) (<34,0,H>, ?) (<34,0,J>, ?) 
          (<35,0,A>, ?) (<35,0,B>, ?) (<35,0,C>, ?) (<35,0,D>, ?) (<35,0,F>, ?) (<35,0,H>, ?) (<35,0,J>, ?) 
          (<36,0,A>, ?) (<36,0,B>, ?) (<36,0,C>, ?) (<36,0,D>, ?) (<36,0,F>, ?) (<36,0,H>, ?) (<36,0,J>, ?) 
          (<37,0,A>, ?) (<37,0,B>, ?) (<37,0,C>, ?) (<37,0,D>, ?) (<37,0,F>, ?) (<37,0,H>, ?) (<37,0,J>, ?) 
          (<38,0,A>, ?) (<38,0,B>, ?) (<38,0,C>, ?) (<38,0,D>, ?) (<38,0,F>, ?) (<38,0,H>, ?) (<38,0,J>, ?) 
          (<39,0,A>, ?) (<39,0,B>, ?) (<39,0,C>, ?) (<39,0,D>, ?) (<39,0,F>, ?) (<39,0,H>, ?) (<39,0,J>, ?) 
          (<40,0,A>, ?) (<40,0,B>, ?) (<40,0,C>, ?) (<40,0,D>, ?) (<40,0,F>, ?) (<40,0,H>, ?) (<40,0,J>, ?) 
          (<41,0,A>, ?) (<41,0,B>, ?) (<41,0,C>, ?) (<41,0,D>, ?) (<41,0,F>, ?) (<41,0,H>, ?) (<41,0,J>, ?) 
          (<42,0,A>, ?) (<42,0,B>, ?) (<42,0,C>, ?) (<42,0,D>, ?) (<42,0,F>, ?) (<42,0,H>, ?) (<42,0,J>, ?) 
          (<43,0,A>, ?) (<43,0,B>, ?) (<43,0,C>, ?) (<43,0,D>, ?) (<43,0,F>, ?) (<43,0,H>, ?) (<43,0,J>, ?) 
          (<44,0,A>, ?) (<44,0,B>, ?) (<44,0,C>, ?) (<44,0,D>, ?) (<44,0,F>, ?) (<44,0,H>, ?) (<44,0,J>, ?) 
          (<45,0,A>, ?) (<45,0,B>, ?) (<45,0,C>, ?) (<45,0,D>, ?) (<45,0,F>, ?) (<45,0,H>, ?) (<45,0,J>, ?) 
          (<46,0,A>, ?) (<46,0,B>, ?) (<46,0,C>, ?) (<46,0,D>, ?) (<46,0,F>, ?) (<46,0,H>, ?) (<46,0,J>, ?) 
          (<47,0,A>, ?) (<47,0,B>, ?) (<47,0,C>, ?) (<47,0,D>, ?) (<47,0,F>, ?) (<47,0,H>, ?) (<47,0,J>, ?) 
          (<48,0,A>, ?) (<48,0,B>, ?) (<48,0,C>, ?) (<48,0,D>, ?) (<48,0,F>, ?) (<48,0,H>, ?) (<48,0,J>, ?) 
          (<49,0,A>, ?) (<49,0,B>, ?) (<49,0,C>, ?) (<49,0,D>, ?) (<49,0,F>, ?) (<49,0,H>, ?) (<49,0,J>, ?) 
          (<50,0,A>, ?) (<50,0,B>, ?) (<50,0,C>, ?) (<50,0,D>, ?) (<50,0,F>, ?) (<50,0,H>, ?) (<50,0,J>, ?) 
          (<51,0,A>, ?) (<51,0,B>, ?) (<51,0,C>, ?) (<51,0,D>, ?) (<51,0,F>, ?) (<51,0,H>, ?) (<51,0,J>, ?) 
          (<52,0,A>, ?) (<52,0,B>, ?) (<52,0,C>, ?) (<52,0,D>, ?) (<52,0,F>, ?) (<52,0,H>, ?) (<52,0,J>, ?) 
          (<53,0,A>, ?) (<53,0,B>, ?) (<53,0,C>, ?) (<53,0,D>, ?) (<53,0,F>, ?) (<53,0,H>, ?) (<53,0,J>, ?) 
          (<54,0,A>, ?) (<54,0,B>, ?) (<54,0,C>, ?) (<54,0,D>, ?) (<54,0,F>, ?) (<54,0,H>, ?) (<54,0,J>, ?) 
          (<55,0,A>, ?) (<55,0,B>, ?) (<55,0,C>, ?) (<55,0,D>, ?) (<55,0,F>, ?) (<55,0,H>, ?) (<55,0,J>, ?) 
          (<56,0,A>, ?) (<56,0,B>, ?) (<56,0,C>, ?) (<56,0,D>, ?) (<56,0,F>, ?) (<56,0,H>, ?) (<56,0,J>, ?) 
          (<57,0,A>, ?) (<57,0,B>, ?) (<57,0,C>, ?) (<57,0,D>, ?) (<57,0,F>, ?) (<57,0,H>, ?) (<57,0,J>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (< 2,0,A>, 1) (< 2,0,B>, 12) (< 2,0,C>, 1) (< 2,0,D>, 1) (< 2,0,F>,    0) (< 2,0,H>,  H) (< 2,0,J>, J) 
          (< 3,0,A>, 1) (< 3,0,B>, 12) (< 3,0,C>, 1) (< 3,0,D>, 1) (< 3,0,F>,   12) (< 3,0,H>,  H) (< 3,0,J>, J) 
          (< 9,0,A>, 1) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 1) (< 9,0,F>, 1973) (< 9,0,H>,  H) (< 9,0,J>, J) 
          (<16,0,A>, 0) (<16,0,B>, 12) (<16,0,C>, 1) (<16,0,D>, 1) (<16,0,F>,   28) (<16,0,H>, 12) (<16,0,J>, J) 
          (<23,0,A>, 1) (<23,0,B>, 12) (<23,0,C>, 1) (<23,0,D>, 0) (<23,0,F>,   38) (<23,0,H>,  ?) (<23,0,J>, ?) 
          (<34,0,A>, 1) (<34,0,B>, 12) (<34,0,C>, 1) (<34,0,D>, 1) (<34,0,F>,    0) (<34,0,H>,  H) (<34,0,J>, J) 
          (<35,0,A>, 1) (<35,0,B>, 12) (<35,0,C>, 1) (<35,0,D>, 1) (<35,0,F>,    1) (<35,0,H>,  H) (<35,0,J>, J) 
          (<36,0,A>, 1) (<36,0,B>, 12) (<36,0,C>, 0) (<36,0,D>, 1) (<36,0,F>,    1) (<36,0,H>,  H) (<36,0,J>, J) 
          (<37,0,A>, 1) (<37,0,B>, 12) (<37,0,C>, 0) (<37,0,D>, 1) (<37,0,F>,    1) (<37,0,H>,  H) (<37,0,J>, J) 
          (<38,0,A>, 1) (<38,0,B>, 12) (<38,0,C>, 1) (<38,0,D>, 1) (<38,0,F>,   40) (<38,0,H>,  H) (<38,0,J>, J) 
          (<39,0,A>, 1) (<39,0,B>, 12) (<39,0,C>, 0) (<39,0,D>, 1) (<39,0,F>,   41) (<39,0,H>,  H) (<39,0,J>, J) 
          (<40,0,A>, 1) (<40,0,B>, 12) (<40,0,C>, 0) (<40,0,D>, 1) (<40,0,F>,   41) (<40,0,H>,  H) (<40,0,J>, J) 
          (<41,0,A>, 1) (<41,0,B>, 12) (<41,0,C>, 1) (<41,0,D>, 1) (<41,0,F>,   28) (<41,0,H>, 31) (<41,0,J>, J) 
          (<42,0,A>, 1) (<42,0,B>, 12) (<42,0,C>, 1) (<42,0,D>, 1) (<42,0,F>,   28) (<42,0,H>, 31) (<42,0,J>, J) 
          (<43,0,A>, 0) (<43,0,B>, 12) (<43,0,C>, 1) (<43,0,D>, 1) (<43,0,F>,   28) (<43,0,H>, 31) (<43,0,J>, J) 
          (<44,0,A>, 1) (<44,0,B>, 12) (<44,0,C>, 1) (<44,0,D>, 1) (<44,0,F>,   28) (<44,0,H>, 12) (<44,0,J>, J) 
          (<45,0,A>, 1) (<45,0,B>, 12) (<45,0,C>, 1) (<45,0,D>, 1) (<45,0,F>,   28) (<45,0,H>, 12) (<45,0,J>, J) 
          (<46,0,A>, 0) (<46,0,B>, 12) (<46,0,C>, 1) (<46,0,D>, 1) (<46,0,F>,   28) (<46,0,H>, 32) (<46,0,J>, J) 
          (<47,0,A>, 1) (<47,0,B>, 12) (<47,0,C>, 1) (<47,0,D>, 1) (<47,0,F>,    1) (<47,0,H>, 32) (<47,0,J>, ?) 
          (<48,0,A>, 1) (<48,0,B>, 12) (<48,0,C>, 1) (<48,0,D>, 1) (<48,0,F>,    1) (<48,0,H>, 32) (<48,0,J>, ?) 
          (<49,0,A>, 1) (<49,0,B>, 12) (<49,0,C>, 1) (<49,0,D>, 0) (<49,0,F>,    1) (<49,0,H>, 32) (<49,0,J>, 0) 
          (<50,0,A>, 1) (<50,0,B>, 12) (<50,0,C>, 1) (<50,0,D>, 0) (<50,0,F>,    1) (<50,0,H>, 32) (<50,0,J>, ?) 
          (<51,0,A>, 1) (<51,0,B>, 12) (<51,0,C>, 1) (<51,0,D>, 1) (<51,0,F>,   25) (<51,0,H>,  ?) (<51,0,J>, ?) 
          (<52,0,A>, 1) (<52,0,B>, 12) (<52,0,C>, 1) (<52,0,D>, 1) (<52,0,F>,   25) (<52,0,H>,  ?) (<52,0,J>, ?) 
          (<53,0,A>, 1) (<53,0,B>, 12) (<53,0,C>, 1) (<53,0,D>, 0) (<53,0,F>,   26) (<53,0,H>,  ?) (<53,0,J>, 0) 
          (<54,0,A>, 1) (<54,0,B>, 12) (<54,0,C>, 1) (<54,0,D>, 0) (<54,0,F>,   26) (<54,0,H>,  ?) (<54,0,J>, ?) 
          (<55,0,A>, 1) (<55,0,B>, 12) (<55,0,C>, 1) (<55,0,D>, 1) (<55,0,F>,   28) (<55,0,H>, 30) (<55,0,J>, J) 
          (<56,0,A>, 1) (<56,0,B>, 12) (<56,0,C>, 1) (<56,0,D>, 1) (<56,0,F>,    0) (<56,0,H>, 32) (<56,0,J>, J) 
          (<57,0,A>, 1) (<57,0,B>, 12) (<57,0,C>, 1) (<57,0,D>, 1) (<57,0,F>,    0) (<57,0,H>,  1) (<57,0,J>, J) 
* Step 38: LocationConstraintsProc WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f0(A,B,C,D,F,H,J)  -> f13(1,12,1,1,0,H,J)        True                                                 (1,1)   
          3.  f13(A,B,C,D,F,H,J) -> f13(A,B,C,D,1 + F,H,J)     [B >= 1 + F]                                         (12,1)  
          9.  f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [B >= 1 + F && C = 0]                                (1932,1)
          16. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J)     [B >= 1 + H && A = 0]                                (?,1)   
          23. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M)     [B >= 2 + F && D = 0]                                (12,1)  
          34. f13(A,B,C,D,F,H,J) -> f19(A,B,C,D,0,H,J)         [F >= B]                                             (1,1)   
          35. f19(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J)     [0 >= 1 + C && B >= 1 + F && M$ >= 0 && B >= 1 + N$] (1,2)   
          36. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [0 >= 1 + C && B >= 1 + F && M$ >= 0]                (1,2)   
          37. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [0 >= 1 + C && B >= 1 + F && 0 >= 1 + M$]            (1,2)   
          38. f19(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J)     [C >= 1 && B >= 1 + F && M$ >= 0 && B >= 1 + N$]     (39,2)  
          39. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [C >= 1 && B >= 1 + F && M$ >= 0]                    (39,2)  
          40. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [C >= 1 && B >= 1 + F && 0 >= 1 + M$]                (39,2)  
          41. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [0 >= 1 + A && B >= 1 + H && M$ >= 1 + N$]           (28,2)  
          42. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [0 >= 1 + A && B >= 1 + H]                           (28,2)  
          43. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J)     [0 >= 1 + A && B >= 1 + H]                           (28,2)  
          44. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [A >= 1 && B >= 1 + H && M$ >= 1 + N$]               (?,2)   
          45. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [A >= 1 && B >= 1 + H]                               (?,2)   
          46. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J)     [A >= 1 && B >= 1 + H]                               (?,2)   
          47. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [0 >= 1 + D && B >= 2 + F && 0 >= 1 + M]             (1,2)   
          48. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [0 >= 1 + D && B >= 2 + F && M >= 1]                 (1,2)   
          49. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0)     [0 >= 1 + D && B >= 2 + F && M = 0]                  (1,2)   
          50. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M)     [0 >= 1 + D && B >= 2 + F]                           (1,2)   
          51. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [D >= 1 && B >= 2 + F && 0 >= 1 + M]                 (12,2)  
          52. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [D >= 1 && B >= 2 + F && M >= 1]                     (12,2)  
          53. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0)     [D >= 1 && B >= 2 + F && M = 0]                      (12,2)  
          54. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M)     [D >= 1 && B >= 2 + F]                               (12,2)  
          55. f35(A,B,C,D,F,H,J) -> f35(A,B,C,D,1 + F,2 + F,J) [H >= B && B >= 3 + F]                               (28,2)  
          56. f35(A,B,C,D,F,H,J) -> f48(A,B,C,D,0,H,J)         [H >= B && 2 + F >= B]                               (28,2)  
          57. f19(A,B,C,D,F,H,J) -> f35(A,B,C,D,0,1,J)         [F >= B && B >= 2]                                   (2,2)   
        Signature:
          {(f0,7);(f13,7);(f19,7);(f22,7);(f32,7);(f35,7);(f38,7);(f48,7);(f52,7);(f62,7);(f63,7);(f71,7)}
        Flow Graph:
          [2->{3},3->{3,34},9->{9,57},16->{16,55,56},23->{23},34->{9,35,36,37,38,39,40},35->{38,39,40,57},36->{9,57}
          ,37->{9,57},38->{38,39,40,57},39->{9,57},40->{9,57},41->{44,45,46,55,56},42->{44,45,46,55,56},43->{16,55,56}
          ,44->{44,45,46,55,56},45->{44,45,46,55,56},46->{16,55,56},47->{51,52,53,54},48->{51,52,53,54},49->{23}
          ,50->{23},51->{51,52,53,54},52->{51,52,53,54},53->{23},54->{23},55->{16,41,42,43,44,45,46},56->{23,47,48,49
          ,50,51,52,53,54},57->{16,41,42,43,44,45,46}]
        Sizebounds:
          (< 2,0,A>, 1) (< 2,0,B>, 12) (< 2,0,C>, 1) (< 2,0,D>, 1) (< 2,0,F>,    0) (< 2,0,H>,  H) (< 2,0,J>, J) 
          (< 3,0,A>, 1) (< 3,0,B>, 12) (< 3,0,C>, 1) (< 3,0,D>, 1) (< 3,0,F>,   12) (< 3,0,H>,  H) (< 3,0,J>, J) 
          (< 9,0,A>, 1) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 1) (< 9,0,F>, 1973) (< 9,0,H>,  H) (< 9,0,J>, J) 
          (<16,0,A>, 0) (<16,0,B>, 12) (<16,0,C>, 1) (<16,0,D>, 1) (<16,0,F>,   28) (<16,0,H>, 12) (<16,0,J>, J) 
          (<23,0,A>, 1) (<23,0,B>, 12) (<23,0,C>, 1) (<23,0,D>, 0) (<23,0,F>,   38) (<23,0,H>,  ?) (<23,0,J>, ?) 
          (<34,0,A>, 1) (<34,0,B>, 12) (<34,0,C>, 1) (<34,0,D>, 1) (<34,0,F>,    0) (<34,0,H>,  H) (<34,0,J>, J) 
          (<35,0,A>, 1) (<35,0,B>, 12) (<35,0,C>, 1) (<35,0,D>, 1) (<35,0,F>,    1) (<35,0,H>,  H) (<35,0,J>, J) 
          (<36,0,A>, 1) (<36,0,B>, 12) (<36,0,C>, 0) (<36,0,D>, 1) (<36,0,F>,    1) (<36,0,H>,  H) (<36,0,J>, J) 
          (<37,0,A>, 1) (<37,0,B>, 12) (<37,0,C>, 0) (<37,0,D>, 1) (<37,0,F>,    1) (<37,0,H>,  H) (<37,0,J>, J) 
          (<38,0,A>, 1) (<38,0,B>, 12) (<38,0,C>, 1) (<38,0,D>, 1) (<38,0,F>,   40) (<38,0,H>,  H) (<38,0,J>, J) 
          (<39,0,A>, 1) (<39,0,B>, 12) (<39,0,C>, 0) (<39,0,D>, 1) (<39,0,F>,   41) (<39,0,H>,  H) (<39,0,J>, J) 
          (<40,0,A>, 1) (<40,0,B>, 12) (<40,0,C>, 0) (<40,0,D>, 1) (<40,0,F>,   41) (<40,0,H>,  H) (<40,0,J>, J) 
          (<41,0,A>, 1) (<41,0,B>, 12) (<41,0,C>, 1) (<41,0,D>, 1) (<41,0,F>,   28) (<41,0,H>, 31) (<41,0,J>, J) 
          (<42,0,A>, 1) (<42,0,B>, 12) (<42,0,C>, 1) (<42,0,D>, 1) (<42,0,F>,   28) (<42,0,H>, 31) (<42,0,J>, J) 
          (<43,0,A>, 0) (<43,0,B>, 12) (<43,0,C>, 1) (<43,0,D>, 1) (<43,0,F>,   28) (<43,0,H>, 31) (<43,0,J>, J) 
          (<44,0,A>, 1) (<44,0,B>, 12) (<44,0,C>, 1) (<44,0,D>, 1) (<44,0,F>,   28) (<44,0,H>, 12) (<44,0,J>, J) 
          (<45,0,A>, 1) (<45,0,B>, 12) (<45,0,C>, 1) (<45,0,D>, 1) (<45,0,F>,   28) (<45,0,H>, 12) (<45,0,J>, J) 
          (<46,0,A>, 0) (<46,0,B>, 12) (<46,0,C>, 1) (<46,0,D>, 1) (<46,0,F>,   28) (<46,0,H>, 32) (<46,0,J>, J) 
          (<47,0,A>, 1) (<47,0,B>, 12) (<47,0,C>, 1) (<47,0,D>, 1) (<47,0,F>,    1) (<47,0,H>, 32) (<47,0,J>, ?) 
          (<48,0,A>, 1) (<48,0,B>, 12) (<48,0,C>, 1) (<48,0,D>, 1) (<48,0,F>,    1) (<48,0,H>, 32) (<48,0,J>, ?) 
          (<49,0,A>, 1) (<49,0,B>, 12) (<49,0,C>, 1) (<49,0,D>, 0) (<49,0,F>,    1) (<49,0,H>, 32) (<49,0,J>, 0) 
          (<50,0,A>, 1) (<50,0,B>, 12) (<50,0,C>, 1) (<50,0,D>, 0) (<50,0,F>,    1) (<50,0,H>, 32) (<50,0,J>, ?) 
          (<51,0,A>, 1) (<51,0,B>, 12) (<51,0,C>, 1) (<51,0,D>, 1) (<51,0,F>,   25) (<51,0,H>,  ?) (<51,0,J>, ?) 
          (<52,0,A>, 1) (<52,0,B>, 12) (<52,0,C>, 1) (<52,0,D>, 1) (<52,0,F>,   25) (<52,0,H>,  ?) (<52,0,J>, ?) 
          (<53,0,A>, 1) (<53,0,B>, 12) (<53,0,C>, 1) (<53,0,D>, 0) (<53,0,F>,   26) (<53,0,H>,  ?) (<53,0,J>, 0) 
          (<54,0,A>, 1) (<54,0,B>, 12) (<54,0,C>, 1) (<54,0,D>, 0) (<54,0,F>,   26) (<54,0,H>,  ?) (<54,0,J>, ?) 
          (<55,0,A>, 1) (<55,0,B>, 12) (<55,0,C>, 1) (<55,0,D>, 1) (<55,0,F>,   28) (<55,0,H>, 30) (<55,0,J>, J) 
          (<56,0,A>, 1) (<56,0,B>, 12) (<56,0,C>, 1) (<56,0,D>, 1) (<56,0,F>,    0) (<56,0,H>, 32) (<56,0,J>, J) 
          (<57,0,A>, 1) (<57,0,B>, 12) (<57,0,C>, 1) (<57,0,D>, 1) (<57,0,F>,    0) (<57,0,H>,  1) (<57,0,J>, J) 
    + Applied Processor:
        LocationConstraintsProc
    + Details:
        We computed the location constraints  2 :  True 3 :  True 9 :  True 16 :  True 23 :  True 34 :  [False] 35 :  [False] 36 :  [False] 37 :  [False] 38 :  True 39 :  True 40 :  True 41 :  True 42 :  True 43 :  True 44 :  True 45 :  True 46 :  True 47 :  [H >= B] 48 :  [H >= B] 49 :  [H >= B] 50 :  [H >= B] 51 :  True 52 :  True 53 :  True 54 :  True 55 :  True 56 :  True 57 :  True .
* Step 39: LoopRecurrenceProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f0(A,B,C,D,F,H,J)  -> f13(1,12,1,1,0,H,J)        True                                                 (1,1)   
          3.  f13(A,B,C,D,F,H,J) -> f13(A,B,C,D,1 + F,H,J)     [B >= 1 + F]                                         (12,1)  
          9.  f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [B >= 1 + F && C = 0]                                (1932,1)
          16. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J)     [B >= 1 + H && A = 0]                                (?,1)   
          23. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M)     [B >= 2 + F && D = 0]                                (12,1)  
          34. f13(A,B,C,D,F,H,J) -> f19(A,B,C,D,0,H,J)         [F >= B]                                             (1,1)   
          35. f19(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J)     [0 >= 1 + C && B >= 1 + F && M$ >= 0 && B >= 1 + N$] (1,2)   
          36. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [0 >= 1 + C && B >= 1 + F && M$ >= 0]                (1,2)   
          37. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [0 >= 1 + C && B >= 1 + F && 0 >= 1 + M$]            (1,2)   
          38. f19(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J)     [C >= 1 && B >= 1 + F && M$ >= 0 && B >= 1 + N$]     (39,2)  
          39. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [C >= 1 && B >= 1 + F && M$ >= 0]                    (39,2)  
          40. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [C >= 1 && B >= 1 + F && 0 >= 1 + M$]                (39,2)  
          41. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [0 >= 1 + A && B >= 1 + H && M$ >= 1 + N$]           (28,2)  
          42. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [0 >= 1 + A && B >= 1 + H]                           (28,2)  
          43. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J)     [0 >= 1 + A && B >= 1 + H]                           (28,2)  
          44. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [A >= 1 && B >= 1 + H && M$ >= 1 + N$]               (?,2)   
          45. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [A >= 1 && B >= 1 + H]                               (?,2)   
          46. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J)     [A >= 1 && B >= 1 + H]                               (?,2)   
          47. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [0 >= 1 + D && B >= 2 + F && 0 >= 1 + M]             (1,2)   
          48. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [0 >= 1 + D && B >= 2 + F && M >= 1]                 (1,2)   
          49. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0)     [0 >= 1 + D && B >= 2 + F && M = 0]                  (1,2)   
          50. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M)     [0 >= 1 + D && B >= 2 + F]                           (1,2)   
          51. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [D >= 1 && B >= 2 + F && 0 >= 1 + M]                 (12,2)  
          52. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [D >= 1 && B >= 2 + F && M >= 1]                     (12,2)  
          53. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0)     [D >= 1 && B >= 2 + F && M = 0]                      (12,2)  
          54. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M)     [D >= 1 && B >= 2 + F]                               (12,2)  
          55. f35(A,B,C,D,F,H,J) -> f35(A,B,C,D,1 + F,2 + F,J) [H >= B && B >= 3 + F]                               (28,2)  
          56. f35(A,B,C,D,F,H,J) -> f48(A,B,C,D,0,H,J)         [H >= B && 2 + F >= B]                               (28,2)  
          57. f19(A,B,C,D,F,H,J) -> f35(A,B,C,D,0,1,J)         [F >= B && B >= 2]                                   (2,2)   
        Signature:
          {(f0,7);(f13,7);(f19,7);(f22,7);(f32,7);(f35,7);(f38,7);(f48,7);(f52,7);(f62,7);(f63,7);(f71,7)}
        Flow Graph:
          [2->{3},3->{3,34},9->{9,57},16->{16,55,56},23->{23},34->{9,35,36,37,38,39,40},35->{38,39,40,57},36->{9,57}
          ,37->{9,57},38->{38,39,40,57},39->{9,57},40->{9,57},41->{44,45,46,55,56},42->{44,45,46,55,56},43->{16,55,56}
          ,44->{44,45,46,55,56},45->{44,45,46,55,56},46->{16,55,56},47->{51,52,53,54},48->{51,52,53,54},49->{23}
          ,50->{23},51->{51,52,53,54},52->{51,52,53,54},53->{23},54->{23},55->{16,41,42,43,44,45,46},56->{23,47,48,49
          ,50,51,52,53,54},57->{16,41,42,43,44,45,46}]
        Sizebounds:
          (< 2,0,A>, 1) (< 2,0,B>, 12) (< 2,0,C>, 1) (< 2,0,D>, 1) (< 2,0,F>,    0) (< 2,0,H>,  H) (< 2,0,J>, J) 
          (< 3,0,A>, 1) (< 3,0,B>, 12) (< 3,0,C>, 1) (< 3,0,D>, 1) (< 3,0,F>,   12) (< 3,0,H>,  H) (< 3,0,J>, J) 
          (< 9,0,A>, 1) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 1) (< 9,0,F>, 1973) (< 9,0,H>,  H) (< 9,0,J>, J) 
          (<16,0,A>, 0) (<16,0,B>, 12) (<16,0,C>, 1) (<16,0,D>, 1) (<16,0,F>,   28) (<16,0,H>, 12) (<16,0,J>, J) 
          (<23,0,A>, 1) (<23,0,B>, 12) (<23,0,C>, 1) (<23,0,D>, 0) (<23,0,F>,   38) (<23,0,H>,  ?) (<23,0,J>, ?) 
          (<34,0,A>, 1) (<34,0,B>, 12) (<34,0,C>, 1) (<34,0,D>, 1) (<34,0,F>,    0) (<34,0,H>,  H) (<34,0,J>, J) 
          (<35,0,A>, 1) (<35,0,B>, 12) (<35,0,C>, 1) (<35,0,D>, 1) (<35,0,F>,    1) (<35,0,H>,  H) (<35,0,J>, J) 
          (<36,0,A>, 1) (<36,0,B>, 12) (<36,0,C>, 0) (<36,0,D>, 1) (<36,0,F>,    1) (<36,0,H>,  H) (<36,0,J>, J) 
          (<37,0,A>, 1) (<37,0,B>, 12) (<37,0,C>, 0) (<37,0,D>, 1) (<37,0,F>,    1) (<37,0,H>,  H) (<37,0,J>, J) 
          (<38,0,A>, 1) (<38,0,B>, 12) (<38,0,C>, 1) (<38,0,D>, 1) (<38,0,F>,   40) (<38,0,H>,  H) (<38,0,J>, J) 
          (<39,0,A>, 1) (<39,0,B>, 12) (<39,0,C>, 0) (<39,0,D>, 1) (<39,0,F>,   41) (<39,0,H>,  H) (<39,0,J>, J) 
          (<40,0,A>, 1) (<40,0,B>, 12) (<40,0,C>, 0) (<40,0,D>, 1) (<40,0,F>,   41) (<40,0,H>,  H) (<40,0,J>, J) 
          (<41,0,A>, 1) (<41,0,B>, 12) (<41,0,C>, 1) (<41,0,D>, 1) (<41,0,F>,   28) (<41,0,H>, 31) (<41,0,J>, J) 
          (<42,0,A>, 1) (<42,0,B>, 12) (<42,0,C>, 1) (<42,0,D>, 1) (<42,0,F>,   28) (<42,0,H>, 31) (<42,0,J>, J) 
          (<43,0,A>, 0) (<43,0,B>, 12) (<43,0,C>, 1) (<43,0,D>, 1) (<43,0,F>,   28) (<43,0,H>, 31) (<43,0,J>, J) 
          (<44,0,A>, 1) (<44,0,B>, 12) (<44,0,C>, 1) (<44,0,D>, 1) (<44,0,F>,   28) (<44,0,H>, 12) (<44,0,J>, J) 
          (<45,0,A>, 1) (<45,0,B>, 12) (<45,0,C>, 1) (<45,0,D>, 1) (<45,0,F>,   28) (<45,0,H>, 12) (<45,0,J>, J) 
          (<46,0,A>, 0) (<46,0,B>, 12) (<46,0,C>, 1) (<46,0,D>, 1) (<46,0,F>,   28) (<46,0,H>, 32) (<46,0,J>, J) 
          (<47,0,A>, 1) (<47,0,B>, 12) (<47,0,C>, 1) (<47,0,D>, 1) (<47,0,F>,    1) (<47,0,H>, 32) (<47,0,J>, ?) 
          (<48,0,A>, 1) (<48,0,B>, 12) (<48,0,C>, 1) (<48,0,D>, 1) (<48,0,F>,    1) (<48,0,H>, 32) (<48,0,J>, ?) 
          (<49,0,A>, 1) (<49,0,B>, 12) (<49,0,C>, 1) (<49,0,D>, 0) (<49,0,F>,    1) (<49,0,H>, 32) (<49,0,J>, 0) 
          (<50,0,A>, 1) (<50,0,B>, 12) (<50,0,C>, 1) (<50,0,D>, 0) (<50,0,F>,    1) (<50,0,H>, 32) (<50,0,J>, ?) 
          (<51,0,A>, 1) (<51,0,B>, 12) (<51,0,C>, 1) (<51,0,D>, 1) (<51,0,F>,   25) (<51,0,H>,  ?) (<51,0,J>, ?) 
          (<52,0,A>, 1) (<52,0,B>, 12) (<52,0,C>, 1) (<52,0,D>, 1) (<52,0,F>,   25) (<52,0,H>,  ?) (<52,0,J>, ?) 
          (<53,0,A>, 1) (<53,0,B>, 12) (<53,0,C>, 1) (<53,0,D>, 0) (<53,0,F>,   26) (<53,0,H>,  ?) (<53,0,J>, 0) 
          (<54,0,A>, 1) (<54,0,B>, 12) (<54,0,C>, 1) (<54,0,D>, 0) (<54,0,F>,   26) (<54,0,H>,  ?) (<54,0,J>, ?) 
          (<55,0,A>, 1) (<55,0,B>, 12) (<55,0,C>, 1) (<55,0,D>, 1) (<55,0,F>,   28) (<55,0,H>, 30) (<55,0,J>, J) 
          (<56,0,A>, 1) (<56,0,B>, 12) (<56,0,C>, 1) (<56,0,D>, 1) (<56,0,F>,    0) (<56,0,H>, 32) (<56,0,J>, J) 
          (<57,0,A>, 1) (<57,0,B>, 12) (<57,0,C>, 1) (<57,0,D>, 1) (<57,0,F>,    0) (<57,0,H>,  1) (<57,0,J>, J) 
    + Applied Processor:
        LoopRecurrenceProcessor [3]
    + Details:
        Applying the recurrence pattern linear * f to the expression B-F yields the solution B + -1*F .
* Step 40: LoopRecurrenceProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f0(A,B,C,D,F,H,J)  -> f13(1,12,1,1,0,H,J)        True                                                 (1,1)   
          3.  f13(A,B,C,D,F,H,J) -> f13(A,B,C,D,1 + F,H,J)     [B >= 1 + F]                                         (12,1)  
          9.  f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [B >= 1 + F && C = 0]                                (1932,1)
          16. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J)     [B >= 1 + H && A = 0]                                (?,1)   
          23. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M)     [B >= 2 + F && D = 0]                                (12,1)  
          34. f13(A,B,C,D,F,H,J) -> f19(A,B,C,D,0,H,J)         [F >= B]                                             (1,1)   
          35. f19(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J)     [0 >= 1 + C && B >= 1 + F && M$ >= 0 && B >= 1 + N$] (1,2)   
          36. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [0 >= 1 + C && B >= 1 + F && M$ >= 0]                (1,2)   
          37. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [0 >= 1 + C && B >= 1 + F && 0 >= 1 + M$]            (1,2)   
          38. f19(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J)     [C >= 1 && B >= 1 + F && M$ >= 0 && B >= 1 + N$]     (39,2)  
          39. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [C >= 1 && B >= 1 + F && M$ >= 0]                    (39,2)  
          40. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [C >= 1 && B >= 1 + F && 0 >= 1 + M$]                (39,2)  
          41. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [0 >= 1 + A && B >= 1 + H && M$ >= 1 + N$]           (28,2)  
          42. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [0 >= 1 + A && B >= 1 + H]                           (28,2)  
          43. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J)     [0 >= 1 + A && B >= 1 + H]                           (28,2)  
          44. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [A >= 1 && B >= 1 + H && M$ >= 1 + N$]               (?,2)   
          45. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [A >= 1 && B >= 1 + H]                               (?,2)   
          46. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J)     [A >= 1 && B >= 1 + H]                               (?,2)   
          47. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [0 >= 1 + D && B >= 2 + F && 0 >= 1 + M]             (1,2)   
          48. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [0 >= 1 + D && B >= 2 + F && M >= 1]                 (1,2)   
          49. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0)     [0 >= 1 + D && B >= 2 + F && M = 0]                  (1,2)   
          50. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M)     [0 >= 1 + D && B >= 2 + F]                           (1,2)   
          51. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [D >= 1 && B >= 2 + F && 0 >= 1 + M]                 (12,2)  
          52. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [D >= 1 && B >= 2 + F && M >= 1]                     (12,2)  
          53. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0)     [D >= 1 && B >= 2 + F && M = 0]                      (12,2)  
          54. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M)     [D >= 1 && B >= 2 + F]                               (12,2)  
          55. f35(A,B,C,D,F,H,J) -> f35(A,B,C,D,1 + F,2 + F,J) [H >= B && B >= 3 + F]                               (28,2)  
          56. f35(A,B,C,D,F,H,J) -> f48(A,B,C,D,0,H,J)         [H >= B && 2 + F >= B]                               (28,2)  
          57. f19(A,B,C,D,F,H,J) -> f35(A,B,C,D,0,1,J)         [F >= B && B >= 2]                                   (2,2)   
        Signature:
          {(f0,7);(f13,7);(f19,7);(f22,7);(f32,7);(f35,7);(f38,7);(f48,7);(f52,7);(f62,7);(f63,7);(f71,7)}
        Flow Graph:
          [2->{3},3->{3,34},9->{9,57},16->{16,55,56},23->{23},34->{9,35,36,37,38,39,40},35->{38,39,40,57},36->{9,57}
          ,37->{9,57},38->{38,39,40,57},39->{9,57},40->{9,57},41->{44,45,46,55,56},42->{44,45,46,55,56},43->{16,55,56}
          ,44->{44,45,46,55,56},45->{44,45,46,55,56},46->{16,55,56},47->{51,52,53,54},48->{51,52,53,54},49->{23}
          ,50->{23},51->{51,52,53,54},52->{51,52,53,54},53->{23},54->{23},55->{16,41,42,43,44,45,46},56->{23,47,48,49
          ,50,51,52,53,54},57->{16,41,42,43,44,45,46}]
        Sizebounds:
          (< 2,0,A>, 1) (< 2,0,B>, 12) (< 2,0,C>, 1) (< 2,0,D>, 1) (< 2,0,F>,    0) (< 2,0,H>,  H) (< 2,0,J>, J) 
          (< 3,0,A>, 1) (< 3,0,B>, 12) (< 3,0,C>, 1) (< 3,0,D>, 1) (< 3,0,F>,   12) (< 3,0,H>,  H) (< 3,0,J>, J) 
          (< 9,0,A>, 1) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 1) (< 9,0,F>, 1973) (< 9,0,H>,  H) (< 9,0,J>, J) 
          (<16,0,A>, 0) (<16,0,B>, 12) (<16,0,C>, 1) (<16,0,D>, 1) (<16,0,F>,   28) (<16,0,H>, 12) (<16,0,J>, J) 
          (<23,0,A>, 1) (<23,0,B>, 12) (<23,0,C>, 1) (<23,0,D>, 0) (<23,0,F>,   38) (<23,0,H>,  ?) (<23,0,J>, ?) 
          (<34,0,A>, 1) (<34,0,B>, 12) (<34,0,C>, 1) (<34,0,D>, 1) (<34,0,F>,    0) (<34,0,H>,  H) (<34,0,J>, J) 
          (<35,0,A>, 1) (<35,0,B>, 12) (<35,0,C>, 1) (<35,0,D>, 1) (<35,0,F>,    1) (<35,0,H>,  H) (<35,0,J>, J) 
          (<36,0,A>, 1) (<36,0,B>, 12) (<36,0,C>, 0) (<36,0,D>, 1) (<36,0,F>,    1) (<36,0,H>,  H) (<36,0,J>, J) 
          (<37,0,A>, 1) (<37,0,B>, 12) (<37,0,C>, 0) (<37,0,D>, 1) (<37,0,F>,    1) (<37,0,H>,  H) (<37,0,J>, J) 
          (<38,0,A>, 1) (<38,0,B>, 12) (<38,0,C>, 1) (<38,0,D>, 1) (<38,0,F>,   40) (<38,0,H>,  H) (<38,0,J>, J) 
          (<39,0,A>, 1) (<39,0,B>, 12) (<39,0,C>, 0) (<39,0,D>, 1) (<39,0,F>,   41) (<39,0,H>,  H) (<39,0,J>, J) 
          (<40,0,A>, 1) (<40,0,B>, 12) (<40,0,C>, 0) (<40,0,D>, 1) (<40,0,F>,   41) (<40,0,H>,  H) (<40,0,J>, J) 
          (<41,0,A>, 1) (<41,0,B>, 12) (<41,0,C>, 1) (<41,0,D>, 1) (<41,0,F>,   28) (<41,0,H>, 31) (<41,0,J>, J) 
          (<42,0,A>, 1) (<42,0,B>, 12) (<42,0,C>, 1) (<42,0,D>, 1) (<42,0,F>,   28) (<42,0,H>, 31) (<42,0,J>, J) 
          (<43,0,A>, 0) (<43,0,B>, 12) (<43,0,C>, 1) (<43,0,D>, 1) (<43,0,F>,   28) (<43,0,H>, 31) (<43,0,J>, J) 
          (<44,0,A>, 1) (<44,0,B>, 12) (<44,0,C>, 1) (<44,0,D>, 1) (<44,0,F>,   28) (<44,0,H>, 12) (<44,0,J>, J) 
          (<45,0,A>, 1) (<45,0,B>, 12) (<45,0,C>, 1) (<45,0,D>, 1) (<45,0,F>,   28) (<45,0,H>, 12) (<45,0,J>, J) 
          (<46,0,A>, 0) (<46,0,B>, 12) (<46,0,C>, 1) (<46,0,D>, 1) (<46,0,F>,   28) (<46,0,H>, 32) (<46,0,J>, J) 
          (<47,0,A>, 1) (<47,0,B>, 12) (<47,0,C>, 1) (<47,0,D>, 1) (<47,0,F>,    1) (<47,0,H>, 32) (<47,0,J>, ?) 
          (<48,0,A>, 1) (<48,0,B>, 12) (<48,0,C>, 1) (<48,0,D>, 1) (<48,0,F>,    1) (<48,0,H>, 32) (<48,0,J>, ?) 
          (<49,0,A>, 1) (<49,0,B>, 12) (<49,0,C>, 1) (<49,0,D>, 0) (<49,0,F>,    1) (<49,0,H>, 32) (<49,0,J>, 0) 
          (<50,0,A>, 1) (<50,0,B>, 12) (<50,0,C>, 1) (<50,0,D>, 0) (<50,0,F>,    1) (<50,0,H>, 32) (<50,0,J>, ?) 
          (<51,0,A>, 1) (<51,0,B>, 12) (<51,0,C>, 1) (<51,0,D>, 1) (<51,0,F>,   25) (<51,0,H>,  ?) (<51,0,J>, ?) 
          (<52,0,A>, 1) (<52,0,B>, 12) (<52,0,C>, 1) (<52,0,D>, 1) (<52,0,F>,   25) (<52,0,H>,  ?) (<52,0,J>, ?) 
          (<53,0,A>, 1) (<53,0,B>, 12) (<53,0,C>, 1) (<53,0,D>, 0) (<53,0,F>,   26) (<53,0,H>,  ?) (<53,0,J>, 0) 
          (<54,0,A>, 1) (<54,0,B>, 12) (<54,0,C>, 1) (<54,0,D>, 0) (<54,0,F>,   26) (<54,0,H>,  ?) (<54,0,J>, ?) 
          (<55,0,A>, 1) (<55,0,B>, 12) (<55,0,C>, 1) (<55,0,D>, 1) (<55,0,F>,   28) (<55,0,H>, 30) (<55,0,J>, J) 
          (<56,0,A>, 1) (<56,0,B>, 12) (<56,0,C>, 1) (<56,0,D>, 1) (<56,0,F>,    0) (<56,0,H>, 32) (<56,0,J>, J) 
          (<57,0,A>, 1) (<57,0,B>, 12) (<57,0,C>, 1) (<57,0,D>, 1) (<57,0,F>,    0) (<57,0,H>,  1) (<57,0,J>, J) 
    + Applied Processor:
        LoopRecurrenceProcessor [38]
    + Details:
        Applying the recurrence pattern linear * f to the expression B-F yields the solution B + -1*F .
* Step 41: LoopRecurrenceProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f0(A,B,C,D,F,H,J)  -> f13(1,12,1,1,0,H,J)        True                                                 (1,1)   
          3.  f13(A,B,C,D,F,H,J) -> f13(A,B,C,D,1 + F,H,J)     [B >= 1 + F]                                         (12,1)  
          9.  f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [B >= 1 + F && C = 0]                                (1932,1)
          16. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J)     [B >= 1 + H && A = 0]                                (?,1)   
          23. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M)     [B >= 2 + F && D = 0]                                (12,1)  
          34. f13(A,B,C,D,F,H,J) -> f19(A,B,C,D,0,H,J)         [F >= B]                                             (1,1)   
          35. f19(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J)     [0 >= 1 + C && B >= 1 + F && M$ >= 0 && B >= 1 + N$] (1,2)   
          36. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [0 >= 1 + C && B >= 1 + F && M$ >= 0]                (1,2)   
          37. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [0 >= 1 + C && B >= 1 + F && 0 >= 1 + M$]            (1,2)   
          38. f19(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J)     [C >= 1 && B >= 1 + F && M$ >= 0 && B >= 1 + N$]     (23,2)  
          39. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [C >= 1 && B >= 1 + F && M$ >= 0]                    (39,2)  
          40. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [C >= 1 && B >= 1 + F && 0 >= 1 + M$]                (39,2)  
          41. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [0 >= 1 + A && B >= 1 + H && M$ >= 1 + N$]           (28,2)  
          42. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [0 >= 1 + A && B >= 1 + H]                           (28,2)  
          43. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J)     [0 >= 1 + A && B >= 1 + H]                           (28,2)  
          44. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [A >= 1 && B >= 1 + H && M$ >= 1 + N$]               (?,2)   
          45. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [A >= 1 && B >= 1 + H]                               (?,2)   
          46. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J)     [A >= 1 && B >= 1 + H]                               (?,2)   
          47. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [0 >= 1 + D && B >= 2 + F && 0 >= 1 + M]             (1,2)   
          48. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [0 >= 1 + D && B >= 2 + F && M >= 1]                 (1,2)   
          49. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0)     [0 >= 1 + D && B >= 2 + F && M = 0]                  (1,2)   
          50. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M)     [0 >= 1 + D && B >= 2 + F]                           (1,2)   
          51. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [D >= 1 && B >= 2 + F && 0 >= 1 + M]                 (12,2)  
          52. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [D >= 1 && B >= 2 + F && M >= 1]                     (12,2)  
          53. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0)     [D >= 1 && B >= 2 + F && M = 0]                      (12,2)  
          54. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M)     [D >= 1 && B >= 2 + F]                               (12,2)  
          55. f35(A,B,C,D,F,H,J) -> f35(A,B,C,D,1 + F,2 + F,J) [H >= B && B >= 3 + F]                               (28,2)  
          56. f35(A,B,C,D,F,H,J) -> f48(A,B,C,D,0,H,J)         [H >= B && 2 + F >= B]                               (28,2)  
          57. f19(A,B,C,D,F,H,J) -> f35(A,B,C,D,0,1,J)         [F >= B && B >= 2]                                   (2,2)   
        Signature:
          {(f0,7);(f13,7);(f19,7);(f22,7);(f32,7);(f35,7);(f38,7);(f48,7);(f52,7);(f62,7);(f63,7);(f71,7)}
        Flow Graph:
          [2->{3},3->{3,34},9->{9,57},16->{16,55,56},23->{23},34->{9,35,36,37,38,39,40},35->{38,39,40,57},36->{9,57}
          ,37->{9,57},38->{38,39,40,57},39->{9,57},40->{9,57},41->{44,45,46,55,56},42->{44,45,46,55,56},43->{16,55,56}
          ,44->{44,45,46,55,56},45->{44,45,46,55,56},46->{16,55,56},47->{51,52,53,54},48->{51,52,53,54},49->{23}
          ,50->{23},51->{51,52,53,54},52->{51,52,53,54},53->{23},54->{23},55->{16,41,42,43,44,45,46},56->{23,47,48,49
          ,50,51,52,53,54},57->{16,41,42,43,44,45,46}]
        Sizebounds:
          (< 2,0,A>, 1) (< 2,0,B>, 12) (< 2,0,C>, 1) (< 2,0,D>, 1) (< 2,0,F>,    0) (< 2,0,H>,  H) (< 2,0,J>, J) 
          (< 3,0,A>, 1) (< 3,0,B>, 12) (< 3,0,C>, 1) (< 3,0,D>, 1) (< 3,0,F>,   12) (< 3,0,H>,  H) (< 3,0,J>, J) 
          (< 9,0,A>, 1) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 1) (< 9,0,F>, 1973) (< 9,0,H>,  H) (< 9,0,J>, J) 
          (<16,0,A>, 0) (<16,0,B>, 12) (<16,0,C>, 1) (<16,0,D>, 1) (<16,0,F>,   28) (<16,0,H>, 12) (<16,0,J>, J) 
          (<23,0,A>, 1) (<23,0,B>, 12) (<23,0,C>, 1) (<23,0,D>, 0) (<23,0,F>,   38) (<23,0,H>,  ?) (<23,0,J>, ?) 
          (<34,0,A>, 1) (<34,0,B>, 12) (<34,0,C>, 1) (<34,0,D>, 1) (<34,0,F>,    0) (<34,0,H>,  H) (<34,0,J>, J) 
          (<35,0,A>, 1) (<35,0,B>, 12) (<35,0,C>, 1) (<35,0,D>, 1) (<35,0,F>,    1) (<35,0,H>,  H) (<35,0,J>, J) 
          (<36,0,A>, 1) (<36,0,B>, 12) (<36,0,C>, 0) (<36,0,D>, 1) (<36,0,F>,    1) (<36,0,H>,  H) (<36,0,J>, J) 
          (<37,0,A>, 1) (<37,0,B>, 12) (<37,0,C>, 0) (<37,0,D>, 1) (<37,0,F>,    1) (<37,0,H>,  H) (<37,0,J>, J) 
          (<38,0,A>, 1) (<38,0,B>, 12) (<38,0,C>, 1) (<38,0,D>, 1) (<38,0,F>,   40) (<38,0,H>,  H) (<38,0,J>, J) 
          (<39,0,A>, 1) (<39,0,B>, 12) (<39,0,C>, 0) (<39,0,D>, 1) (<39,0,F>,   41) (<39,0,H>,  H) (<39,0,J>, J) 
          (<40,0,A>, 1) (<40,0,B>, 12) (<40,0,C>, 0) (<40,0,D>, 1) (<40,0,F>,   41) (<40,0,H>,  H) (<40,0,J>, J) 
          (<41,0,A>, 1) (<41,0,B>, 12) (<41,0,C>, 1) (<41,0,D>, 1) (<41,0,F>,   28) (<41,0,H>, 31) (<41,0,J>, J) 
          (<42,0,A>, 1) (<42,0,B>, 12) (<42,0,C>, 1) (<42,0,D>, 1) (<42,0,F>,   28) (<42,0,H>, 31) (<42,0,J>, J) 
          (<43,0,A>, 0) (<43,0,B>, 12) (<43,0,C>, 1) (<43,0,D>, 1) (<43,0,F>,   28) (<43,0,H>, 31) (<43,0,J>, J) 
          (<44,0,A>, 1) (<44,0,B>, 12) (<44,0,C>, 1) (<44,0,D>, 1) (<44,0,F>,   28) (<44,0,H>, 12) (<44,0,J>, J) 
          (<45,0,A>, 1) (<45,0,B>, 12) (<45,0,C>, 1) (<45,0,D>, 1) (<45,0,F>,   28) (<45,0,H>, 12) (<45,0,J>, J) 
          (<46,0,A>, 0) (<46,0,B>, 12) (<46,0,C>, 1) (<46,0,D>, 1) (<46,0,F>,   28) (<46,0,H>, 32) (<46,0,J>, J) 
          (<47,0,A>, 1) (<47,0,B>, 12) (<47,0,C>, 1) (<47,0,D>, 1) (<47,0,F>,    1) (<47,0,H>, 32) (<47,0,J>, ?) 
          (<48,0,A>, 1) (<48,0,B>, 12) (<48,0,C>, 1) (<48,0,D>, 1) (<48,0,F>,    1) (<48,0,H>, 32) (<48,0,J>, ?) 
          (<49,0,A>, 1) (<49,0,B>, 12) (<49,0,C>, 1) (<49,0,D>, 0) (<49,0,F>,    1) (<49,0,H>, 32) (<49,0,J>, 0) 
          (<50,0,A>, 1) (<50,0,B>, 12) (<50,0,C>, 1) (<50,0,D>, 0) (<50,0,F>,    1) (<50,0,H>, 32) (<50,0,J>, ?) 
          (<51,0,A>, 1) (<51,0,B>, 12) (<51,0,C>, 1) (<51,0,D>, 1) (<51,0,F>,   25) (<51,0,H>,  ?) (<51,0,J>, ?) 
          (<52,0,A>, 1) (<52,0,B>, 12) (<52,0,C>, 1) (<52,0,D>, 1) (<52,0,F>,   25) (<52,0,H>,  ?) (<52,0,J>, ?) 
          (<53,0,A>, 1) (<53,0,B>, 12) (<53,0,C>, 1) (<53,0,D>, 0) (<53,0,F>,   26) (<53,0,H>,  ?) (<53,0,J>, 0) 
          (<54,0,A>, 1) (<54,0,B>, 12) (<54,0,C>, 1) (<54,0,D>, 0) (<54,0,F>,   26) (<54,0,H>,  ?) (<54,0,J>, ?) 
          (<55,0,A>, 1) (<55,0,B>, 12) (<55,0,C>, 1) (<55,0,D>, 1) (<55,0,F>,   28) (<55,0,H>, 30) (<55,0,J>, J) 
          (<56,0,A>, 1) (<56,0,B>, 12) (<56,0,C>, 1) (<56,0,D>, 1) (<56,0,F>,    0) (<56,0,H>, 32) (<56,0,J>, J) 
          (<57,0,A>, 1) (<57,0,B>, 12) (<57,0,C>, 1) (<57,0,D>, 1) (<57,0,F>,    0) (<57,0,H>,  1) (<57,0,J>, J) 
    + Applied Processor:
        LoopRecurrenceProcessor [9]
    + Details:
        Applying the recurrence pattern linear * f to the expression B-F yields the solution B + -1*F .
* Step 42: LoopRecurrenceProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f0(A,B,C,D,F,H,J)  -> f13(1,12,1,1,0,H,J)        True                                                 (1,1)   
          3.  f13(A,B,C,D,F,H,J) -> f13(A,B,C,D,1 + F,H,J)     [B >= 1 + F]                                         (12,1)  
          9.  f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [B >= 1 + F && C = 0]                                (1932,1)
          16. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J)     [B >= 1 + H && A = 0]                                (?,1)   
          23. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M)     [B >= 2 + F && D = 0]                                (12,1)  
          34. f13(A,B,C,D,F,H,J) -> f19(A,B,C,D,0,H,J)         [F >= B]                                             (1,1)   
          35. f19(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J)     [0 >= 1 + C && B >= 1 + F && M$ >= 0 && B >= 1 + N$] (1,2)   
          36. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [0 >= 1 + C && B >= 1 + F && M$ >= 0]                (1,2)   
          37. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [0 >= 1 + C && B >= 1 + F && 0 >= 1 + M$]            (1,2)   
          38. f19(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J)     [C >= 1 && B >= 1 + F && M$ >= 0 && B >= 1 + N$]     (23,2)  
          39. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [C >= 1 && B >= 1 + F && M$ >= 0]                    (39,2)  
          40. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [C >= 1 && B >= 1 + F && 0 >= 1 + M$]                (39,2)  
          41. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [0 >= 1 + A && B >= 1 + H && M$ >= 1 + N$]           (28,2)  
          42. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [0 >= 1 + A && B >= 1 + H]                           (28,2)  
          43. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J)     [0 >= 1 + A && B >= 1 + H]                           (28,2)  
          44. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [A >= 1 && B >= 1 + H && M$ >= 1 + N$]               (?,2)   
          45. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [A >= 1 && B >= 1 + H]                               (?,2)   
          46. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J)     [A >= 1 && B >= 1 + H]                               (?,2)   
          47. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [0 >= 1 + D && B >= 2 + F && 0 >= 1 + M]             (1,2)   
          48. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [0 >= 1 + D && B >= 2 + F && M >= 1]                 (1,2)   
          49. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0)     [0 >= 1 + D && B >= 2 + F && M = 0]                  (1,2)   
          50. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M)     [0 >= 1 + D && B >= 2 + F]                           (1,2)   
          51. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [D >= 1 && B >= 2 + F && 0 >= 1 + M]                 (12,2)  
          52. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [D >= 1 && B >= 2 + F && M >= 1]                     (12,2)  
          53. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0)     [D >= 1 && B >= 2 + F && M = 0]                      (12,2)  
          54. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M)     [D >= 1 && B >= 2 + F]                               (12,2)  
          55. f35(A,B,C,D,F,H,J) -> f35(A,B,C,D,1 + F,2 + F,J) [H >= B && B >= 3 + F]                               (28,2)  
          56. f35(A,B,C,D,F,H,J) -> f48(A,B,C,D,0,H,J)         [H >= B && 2 + F >= B]                               (28,2)  
          57. f19(A,B,C,D,F,H,J) -> f35(A,B,C,D,0,1,J)         [F >= B && B >= 2]                                   (2,2)   
        Signature:
          {(f0,7);(f13,7);(f19,7);(f22,7);(f32,7);(f35,7);(f38,7);(f48,7);(f52,7);(f62,7);(f63,7);(f71,7)}
        Flow Graph:
          [2->{3},3->{3,34},9->{9,57},16->{16,55,56},23->{23},34->{9,35,36,37,38,39,40},35->{38,39,40,57},36->{9,57}
          ,37->{9,57},38->{38,39,40,57},39->{9,57},40->{9,57},41->{44,45,46,55,56},42->{44,45,46,55,56},43->{16,55,56}
          ,44->{44,45,46,55,56},45->{44,45,46,55,56},46->{16,55,56},47->{51,52,53,54},48->{51,52,53,54},49->{23}
          ,50->{23},51->{51,52,53,54},52->{51,52,53,54},53->{23},54->{23},55->{16,41,42,43,44,45,46},56->{23,47,48,49
          ,50,51,52,53,54},57->{16,41,42,43,44,45,46}]
        Sizebounds:
          (< 2,0,A>, 1) (< 2,0,B>, 12) (< 2,0,C>, 1) (< 2,0,D>, 1) (< 2,0,F>,    0) (< 2,0,H>,  H) (< 2,0,J>, J) 
          (< 3,0,A>, 1) (< 3,0,B>, 12) (< 3,0,C>, 1) (< 3,0,D>, 1) (< 3,0,F>,   12) (< 3,0,H>,  H) (< 3,0,J>, J) 
          (< 9,0,A>, 1) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 1) (< 9,0,F>, 1973) (< 9,0,H>,  H) (< 9,0,J>, J) 
          (<16,0,A>, 0) (<16,0,B>, 12) (<16,0,C>, 1) (<16,0,D>, 1) (<16,0,F>,   28) (<16,0,H>, 12) (<16,0,J>, J) 
          (<23,0,A>, 1) (<23,0,B>, 12) (<23,0,C>, 1) (<23,0,D>, 0) (<23,0,F>,   38) (<23,0,H>,  ?) (<23,0,J>, ?) 
          (<34,0,A>, 1) (<34,0,B>, 12) (<34,0,C>, 1) (<34,0,D>, 1) (<34,0,F>,    0) (<34,0,H>,  H) (<34,0,J>, J) 
          (<35,0,A>, 1) (<35,0,B>, 12) (<35,0,C>, 1) (<35,0,D>, 1) (<35,0,F>,    1) (<35,0,H>,  H) (<35,0,J>, J) 
          (<36,0,A>, 1) (<36,0,B>, 12) (<36,0,C>, 0) (<36,0,D>, 1) (<36,0,F>,    1) (<36,0,H>,  H) (<36,0,J>, J) 
          (<37,0,A>, 1) (<37,0,B>, 12) (<37,0,C>, 0) (<37,0,D>, 1) (<37,0,F>,    1) (<37,0,H>,  H) (<37,0,J>, J) 
          (<38,0,A>, 1) (<38,0,B>, 12) (<38,0,C>, 1) (<38,0,D>, 1) (<38,0,F>,   40) (<38,0,H>,  H) (<38,0,J>, J) 
          (<39,0,A>, 1) (<39,0,B>, 12) (<39,0,C>, 0) (<39,0,D>, 1) (<39,0,F>,   41) (<39,0,H>,  H) (<39,0,J>, J) 
          (<40,0,A>, 1) (<40,0,B>, 12) (<40,0,C>, 0) (<40,0,D>, 1) (<40,0,F>,   41) (<40,0,H>,  H) (<40,0,J>, J) 
          (<41,0,A>, 1) (<41,0,B>, 12) (<41,0,C>, 1) (<41,0,D>, 1) (<41,0,F>,   28) (<41,0,H>, 31) (<41,0,J>, J) 
          (<42,0,A>, 1) (<42,0,B>, 12) (<42,0,C>, 1) (<42,0,D>, 1) (<42,0,F>,   28) (<42,0,H>, 31) (<42,0,J>, J) 
          (<43,0,A>, 0) (<43,0,B>, 12) (<43,0,C>, 1) (<43,0,D>, 1) (<43,0,F>,   28) (<43,0,H>, 31) (<43,0,J>, J) 
          (<44,0,A>, 1) (<44,0,B>, 12) (<44,0,C>, 1) (<44,0,D>, 1) (<44,0,F>,   28) (<44,0,H>, 12) (<44,0,J>, J) 
          (<45,0,A>, 1) (<45,0,B>, 12) (<45,0,C>, 1) (<45,0,D>, 1) (<45,0,F>,   28) (<45,0,H>, 12) (<45,0,J>, J) 
          (<46,0,A>, 0) (<46,0,B>, 12) (<46,0,C>, 1) (<46,0,D>, 1) (<46,0,F>,   28) (<46,0,H>, 32) (<46,0,J>, J) 
          (<47,0,A>, 1) (<47,0,B>, 12) (<47,0,C>, 1) (<47,0,D>, 1) (<47,0,F>,    1) (<47,0,H>, 32) (<47,0,J>, ?) 
          (<48,0,A>, 1) (<48,0,B>, 12) (<48,0,C>, 1) (<48,0,D>, 1) (<48,0,F>,    1) (<48,0,H>, 32) (<48,0,J>, ?) 
          (<49,0,A>, 1) (<49,0,B>, 12) (<49,0,C>, 1) (<49,0,D>, 0) (<49,0,F>,    1) (<49,0,H>, 32) (<49,0,J>, 0) 
          (<50,0,A>, 1) (<50,0,B>, 12) (<50,0,C>, 1) (<50,0,D>, 0) (<50,0,F>,    1) (<50,0,H>, 32) (<50,0,J>, ?) 
          (<51,0,A>, 1) (<51,0,B>, 12) (<51,0,C>, 1) (<51,0,D>, 1) (<51,0,F>,   25) (<51,0,H>,  ?) (<51,0,J>, ?) 
          (<52,0,A>, 1) (<52,0,B>, 12) (<52,0,C>, 1) (<52,0,D>, 1) (<52,0,F>,   25) (<52,0,H>,  ?) (<52,0,J>, ?) 
          (<53,0,A>, 1) (<53,0,B>, 12) (<53,0,C>, 1) (<53,0,D>, 0) (<53,0,F>,   26) (<53,0,H>,  ?) (<53,0,J>, 0) 
          (<54,0,A>, 1) (<54,0,B>, 12) (<54,0,C>, 1) (<54,0,D>, 0) (<54,0,F>,   26) (<54,0,H>,  ?) (<54,0,J>, ?) 
          (<55,0,A>, 1) (<55,0,B>, 12) (<55,0,C>, 1) (<55,0,D>, 1) (<55,0,F>,   28) (<55,0,H>, 30) (<55,0,J>, J) 
          (<56,0,A>, 1) (<56,0,B>, 12) (<56,0,C>, 1) (<56,0,D>, 1) (<56,0,F>,    0) (<56,0,H>, 32) (<56,0,J>, J) 
          (<57,0,A>, 1) (<57,0,B>, 12) (<57,0,C>, 1) (<57,0,D>, 1) (<57,0,F>,    0) (<57,0,H>,  1) (<57,0,J>, J) 
    + Applied Processor:
        LoopRecurrenceProcessor [23]
    + Details:
        Applying the recurrence pattern linear * f to the expression B-F yields the solution B + -1*F .
* Step 43: SizeboundsProc WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f0(A,B,C,D,F,H,J)  -> f13(1,12,1,1,0,H,J)        True                                                 (1,1)   
          3.  f13(A,B,C,D,F,H,J) -> f13(A,B,C,D,1 + F,H,J)     [B >= 1 + F]                                         (12,1)  
          9.  f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [B >= 1 + F && C = 0]                                (1932,1)
          16. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J)     [B >= 1 + H && A = 0]                                (?,1)   
          23. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M)     [B >= 2 + F && D = 0]                                (12,1)  
          34. f13(A,B,C,D,F,H,J) -> f19(A,B,C,D,0,H,J)         [F >= B]                                             (1,1)   
          35. f19(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J)     [0 >= 1 + C && B >= 1 + F && M$ >= 0 && B >= 1 + N$] (1,2)   
          36. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [0 >= 1 + C && B >= 1 + F && M$ >= 0]                (1,2)   
          37. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [0 >= 1 + C && B >= 1 + F && 0 >= 1 + M$]            (1,2)   
          38. f19(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J)     [C >= 1 && B >= 1 + F && M$ >= 0 && B >= 1 + N$]     (23,2)  
          39. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [C >= 1 && B >= 1 + F && M$ >= 0]                    (39,2)  
          40. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [C >= 1 && B >= 1 + F && 0 >= 1 + M$]                (39,2)  
          41. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [0 >= 1 + A && B >= 1 + H && M$ >= 1 + N$]           (28,2)  
          42. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [0 >= 1 + A && B >= 1 + H]                           (28,2)  
          43. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J)     [0 >= 1 + A && B >= 1 + H]                           (28,2)  
          44. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [A >= 1 && B >= 1 + H && M$ >= 1 + N$]               (?,2)   
          45. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [A >= 1 && B >= 1 + H]                               (?,2)   
          46. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J)     [A >= 1 && B >= 1 + H]                               (?,2)   
          47. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [0 >= 1 + D && B >= 2 + F && 0 >= 1 + M]             (1,2)   
          48. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [0 >= 1 + D && B >= 2 + F && M >= 1]                 (1,2)   
          49. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0)     [0 >= 1 + D && B >= 2 + F && M = 0]                  (1,2)   
          50. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M)     [0 >= 1 + D && B >= 2 + F]                           (1,2)   
          51. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [D >= 1 && B >= 2 + F && 0 >= 1 + M]                 (12,2)  
          52. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [D >= 1 && B >= 2 + F && M >= 1]                     (12,2)  
          53. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0)     [D >= 1 && B >= 2 + F && M = 0]                      (12,2)  
          54. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M)     [D >= 1 && B >= 2 + F]                               (12,2)  
          55. f35(A,B,C,D,F,H,J) -> f35(A,B,C,D,1 + F,2 + F,J) [H >= B && B >= 3 + F]                               (28,2)  
          56. f35(A,B,C,D,F,H,J) -> f48(A,B,C,D,0,H,J)         [H >= B && 2 + F >= B]                               (28,2)  
          57. f19(A,B,C,D,F,H,J) -> f35(A,B,C,D,0,1,J)         [F >= B && B >= 2]                                   (2,2)   
        Signature:
          {(f0,7);(f13,7);(f19,7);(f22,7);(f32,7);(f35,7);(f38,7);(f48,7);(f52,7);(f62,7);(f63,7);(f71,7)}
        Flow Graph:
          [2->{3},3->{3,34},9->{9,57},16->{16,55,56},23->{23},34->{9,35,36,37,38,39,40},35->{38,39,40,57},36->{9,57}
          ,37->{9,57},38->{38,39,40,57},39->{9,57},40->{9,57},41->{44,45,46,55,56},42->{44,45,46,55,56},43->{16,55,56}
          ,44->{44,45,46,55,56},45->{44,45,46,55,56},46->{16,55,56},47->{51,52,53,54},48->{51,52,53,54},49->{23}
          ,50->{23},51->{51,52,53,54},52->{51,52,53,54},53->{23},54->{23},55->{16,41,42,43,44,45,46},56->{23,47,48,49
          ,50,51,52,53,54},57->{16,41,42,43,44,45,46}]
        Sizebounds:
          (< 2,0,A>, 1) (< 2,0,B>, 12) (< 2,0,C>, 1) (< 2,0,D>, 1) (< 2,0,F>,    0) (< 2,0,H>,  H) (< 2,0,J>, J) 
          (< 3,0,A>, 1) (< 3,0,B>, 12) (< 3,0,C>, 1) (< 3,0,D>, 1) (< 3,0,F>,   12) (< 3,0,H>,  H) (< 3,0,J>, J) 
          (< 9,0,A>, 1) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 1) (< 9,0,F>, 1973) (< 9,0,H>,  H) (< 9,0,J>, J) 
          (<16,0,A>, 0) (<16,0,B>, 12) (<16,0,C>, 1) (<16,0,D>, 1) (<16,0,F>,   28) (<16,0,H>, 12) (<16,0,J>, J) 
          (<23,0,A>, 1) (<23,0,B>, 12) (<23,0,C>, 1) (<23,0,D>, 0) (<23,0,F>,   38) (<23,0,H>,  ?) (<23,0,J>, ?) 
          (<34,0,A>, 1) (<34,0,B>, 12) (<34,0,C>, 1) (<34,0,D>, 1) (<34,0,F>,    0) (<34,0,H>,  H) (<34,0,J>, J) 
          (<35,0,A>, 1) (<35,0,B>, 12) (<35,0,C>, 1) (<35,0,D>, 1) (<35,0,F>,    1) (<35,0,H>,  H) (<35,0,J>, J) 
          (<36,0,A>, 1) (<36,0,B>, 12) (<36,0,C>, 0) (<36,0,D>, 1) (<36,0,F>,    1) (<36,0,H>,  H) (<36,0,J>, J) 
          (<37,0,A>, 1) (<37,0,B>, 12) (<37,0,C>, 0) (<37,0,D>, 1) (<37,0,F>,    1) (<37,0,H>,  H) (<37,0,J>, J) 
          (<38,0,A>, 1) (<38,0,B>, 12) (<38,0,C>, 1) (<38,0,D>, 1) (<38,0,F>,   40) (<38,0,H>,  H) (<38,0,J>, J) 
          (<39,0,A>, 1) (<39,0,B>, 12) (<39,0,C>, 0) (<39,0,D>, 1) (<39,0,F>,   41) (<39,0,H>,  H) (<39,0,J>, J) 
          (<40,0,A>, 1) (<40,0,B>, 12) (<40,0,C>, 0) (<40,0,D>, 1) (<40,0,F>,   41) (<40,0,H>,  H) (<40,0,J>, J) 
          (<41,0,A>, 1) (<41,0,B>, 12) (<41,0,C>, 1) (<41,0,D>, 1) (<41,0,F>,   28) (<41,0,H>, 31) (<41,0,J>, J) 
          (<42,0,A>, 1) (<42,0,B>, 12) (<42,0,C>, 1) (<42,0,D>, 1) (<42,0,F>,   28) (<42,0,H>, 31) (<42,0,J>, J) 
          (<43,0,A>, 0) (<43,0,B>, 12) (<43,0,C>, 1) (<43,0,D>, 1) (<43,0,F>,   28) (<43,0,H>, 31) (<43,0,J>, J) 
          (<44,0,A>, 1) (<44,0,B>, 12) (<44,0,C>, 1) (<44,0,D>, 1) (<44,0,F>,   28) (<44,0,H>, 12) (<44,0,J>, J) 
          (<45,0,A>, 1) (<45,0,B>, 12) (<45,0,C>, 1) (<45,0,D>, 1) (<45,0,F>,   28) (<45,0,H>, 12) (<45,0,J>, J) 
          (<46,0,A>, 0) (<46,0,B>, 12) (<46,0,C>, 1) (<46,0,D>, 1) (<46,0,F>,   28) (<46,0,H>, 32) (<46,0,J>, J) 
          (<47,0,A>, 1) (<47,0,B>, 12) (<47,0,C>, 1) (<47,0,D>, 1) (<47,0,F>,    1) (<47,0,H>, 32) (<47,0,J>, ?) 
          (<48,0,A>, 1) (<48,0,B>, 12) (<48,0,C>, 1) (<48,0,D>, 1) (<48,0,F>,    1) (<48,0,H>, 32) (<48,0,J>, ?) 
          (<49,0,A>, 1) (<49,0,B>, 12) (<49,0,C>, 1) (<49,0,D>, 0) (<49,0,F>,    1) (<49,0,H>, 32) (<49,0,J>, 0) 
          (<50,0,A>, 1) (<50,0,B>, 12) (<50,0,C>, 1) (<50,0,D>, 0) (<50,0,F>,    1) (<50,0,H>, 32) (<50,0,J>, ?) 
          (<51,0,A>, 1) (<51,0,B>, 12) (<51,0,C>, 1) (<51,0,D>, 1) (<51,0,F>,   25) (<51,0,H>,  ?) (<51,0,J>, ?) 
          (<52,0,A>, 1) (<52,0,B>, 12) (<52,0,C>, 1) (<52,0,D>, 1) (<52,0,F>,   25) (<52,0,H>,  ?) (<52,0,J>, ?) 
          (<53,0,A>, 1) (<53,0,B>, 12) (<53,0,C>, 1) (<53,0,D>, 0) (<53,0,F>,   26) (<53,0,H>,  ?) (<53,0,J>, 0) 
          (<54,0,A>, 1) (<54,0,B>, 12) (<54,0,C>, 1) (<54,0,D>, 0) (<54,0,F>,   26) (<54,0,H>,  ?) (<54,0,J>, ?) 
          (<55,0,A>, 1) (<55,0,B>, 12) (<55,0,C>, 1) (<55,0,D>, 1) (<55,0,F>,   28) (<55,0,H>, 30) (<55,0,J>, J) 
          (<56,0,A>, 1) (<56,0,B>, 12) (<56,0,C>, 1) (<56,0,D>, 1) (<56,0,F>,    0) (<56,0,H>, 32) (<56,0,J>, J) 
          (<57,0,A>, 1) (<57,0,B>, 12) (<57,0,C>, 1) (<57,0,D>, 1) (<57,0,F>,    0) (<57,0,H>,  1) (<57,0,J>, J) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (< 2,0,A>, 1) (< 2,0,B>, 12) (< 2,0,C>, 1) (< 2,0,D>, 1) (< 2,0,F>,    0) (< 2,0,H>,  H) (< 2,0,J>, J) 
          (< 3,0,A>, 1) (< 3,0,B>, 12) (< 3,0,C>, 1) (< 3,0,D>, 1) (< 3,0,F>,   12) (< 3,0,H>,  H) (< 3,0,J>, J) 
          (< 9,0,A>, 1) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 1) (< 9,0,F>, 1957) (< 9,0,H>,  H) (< 9,0,J>, J) 
          (<16,0,A>, 0) (<16,0,B>, 12) (<16,0,C>, 1) (<16,0,D>, 1) (<16,0,F>,   28) (<16,0,H>, 12) (<16,0,J>, J) 
          (<23,0,A>, 1) (<23,0,B>, 12) (<23,0,C>, 1) (<23,0,D>, 0) (<23,0,F>,   38) (<23,0,H>, 32) (<23,0,J>, ?) 
          (<34,0,A>, 1) (<34,0,B>, 12) (<34,0,C>, 1) (<34,0,D>, 1) (<34,0,F>,    0) (<34,0,H>,  H) (<34,0,J>, J) 
          (<35,0,A>, 1) (<35,0,B>, 12) (<35,0,C>, 1) (<35,0,D>, 1) (<35,0,F>,    1) (<35,0,H>,  H) (<35,0,J>, J) 
          (<36,0,A>, 1) (<36,0,B>, 12) (<36,0,C>, 0) (<36,0,D>, 1) (<36,0,F>,    1) (<36,0,H>,  H) (<36,0,J>, J) 
          (<37,0,A>, 1) (<37,0,B>, 12) (<37,0,C>, 0) (<37,0,D>, 1) (<37,0,F>,    1) (<37,0,H>,  H) (<37,0,J>, J) 
          (<38,0,A>, 1) (<38,0,B>, 12) (<38,0,C>, 1) (<38,0,D>, 1) (<38,0,F>,   24) (<38,0,H>,  H) (<38,0,J>, J) 
          (<39,0,A>, 1) (<39,0,B>, 12) (<39,0,C>, 0) (<39,0,D>, 1) (<39,0,F>,   25) (<39,0,H>,  H) (<39,0,J>, J) 
          (<40,0,A>, 1) (<40,0,B>, 12) (<40,0,C>, 0) (<40,0,D>, 1) (<40,0,F>,   25) (<40,0,H>,  H) (<40,0,J>, J) 
          (<41,0,A>, 1) (<41,0,B>, 12) (<41,0,C>, 1) (<41,0,D>, 1) (<41,0,F>,   28) (<41,0,H>, 31) (<41,0,J>, J) 
          (<42,0,A>, 1) (<42,0,B>, 12) (<42,0,C>, 1) (<42,0,D>, 1) (<42,0,F>,   28) (<42,0,H>, 31) (<42,0,J>, J) 
          (<43,0,A>, 0) (<43,0,B>, 12) (<43,0,C>, 1) (<43,0,D>, 1) (<43,0,F>,   28) (<43,0,H>, 31) (<43,0,J>, J) 
          (<44,0,A>, 1) (<44,0,B>, 12) (<44,0,C>, 1) (<44,0,D>, 1) (<44,0,F>,   28) (<44,0,H>, 12) (<44,0,J>, J) 
          (<45,0,A>, 1) (<45,0,B>, 12) (<45,0,C>, 1) (<45,0,D>, 1) (<45,0,F>,   28) (<45,0,H>, 12) (<45,0,J>, J) 
          (<46,0,A>, 0) (<46,0,B>, 12) (<46,0,C>, 1) (<46,0,D>, 1) (<46,0,F>,   28) (<46,0,H>, 32) (<46,0,J>, J) 
          (<47,0,A>, 1) (<47,0,B>, 12) (<47,0,C>, 1) (<47,0,D>, 1) (<47,0,F>,    1) (<47,0,H>, 32) (<47,0,J>, ?) 
          (<48,0,A>, 1) (<48,0,B>, 12) (<48,0,C>, 1) (<48,0,D>, 1) (<48,0,F>,    1) (<48,0,H>, 32) (<48,0,J>, ?) 
          (<49,0,A>, 1) (<49,0,B>, 12) (<49,0,C>, 1) (<49,0,D>, 0) (<49,0,F>,    1) (<49,0,H>, 32) (<49,0,J>, 0) 
          (<50,0,A>, 1) (<50,0,B>, 12) (<50,0,C>, 1) (<50,0,D>, 0) (<50,0,F>,    1) (<50,0,H>, 32) (<50,0,J>, ?) 
          (<51,0,A>, 1) (<51,0,B>, 12) (<51,0,C>, 1) (<51,0,D>, 1) (<51,0,F>,   25) (<51,0,H>, 32) (<51,0,J>, ?) 
          (<52,0,A>, 1) (<52,0,B>, 12) (<52,0,C>, 1) (<52,0,D>, 1) (<52,0,F>,   25) (<52,0,H>, 32) (<52,0,J>, ?) 
          (<53,0,A>, 1) (<53,0,B>, 12) (<53,0,C>, 1) (<53,0,D>, 0) (<53,0,F>,   26) (<53,0,H>, 32) (<53,0,J>, 0) 
          (<54,0,A>, 1) (<54,0,B>, 12) (<54,0,C>, 1) (<54,0,D>, 0) (<54,0,F>,   26) (<54,0,H>, 32) (<54,0,J>, ?) 
          (<55,0,A>, 1) (<55,0,B>, 12) (<55,0,C>, 1) (<55,0,D>, 1) (<55,0,F>,   28) (<55,0,H>, 30) (<55,0,J>, J) 
          (<56,0,A>, 1) (<56,0,B>, 12) (<56,0,C>, 1) (<56,0,D>, 1) (<56,0,F>,    0) (<56,0,H>, 32) (<56,0,J>, J) 
          (<57,0,A>, 1) (<57,0,B>, 12) (<57,0,C>, 1) (<57,0,D>, 1) (<57,0,F>,    0) (<57,0,H>,  1) (<57,0,J>, J) 
* Step 44: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f0(A,B,C,D,F,H,J)  -> f13(1,12,1,1,0,H,J)        True                                                 (1,1)   
          3.  f13(A,B,C,D,F,H,J) -> f13(A,B,C,D,1 + F,H,J)     [B >= 1 + F]                                         (12,1)  
          9.  f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [B >= 1 + F && C = 0]                                (1932,1)
          16. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J)     [B >= 1 + H && A = 0]                                (?,1)   
          23. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M)     [B >= 2 + F && D = 0]                                (12,1)  
          34. f13(A,B,C,D,F,H,J) -> f19(A,B,C,D,0,H,J)         [F >= B]                                             (1,1)   
          35. f19(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J)     [0 >= 1 + C && B >= 1 + F && M$ >= 0 && B >= 1 + N$] (1,2)   
          36. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [0 >= 1 + C && B >= 1 + F && M$ >= 0]                (1,2)   
          37. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [0 >= 1 + C && B >= 1 + F && 0 >= 1 + M$]            (1,2)   
          38. f19(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J)     [C >= 1 && B >= 1 + F && M$ >= 0 && B >= 1 + N$]     (23,2)  
          39. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [C >= 1 && B >= 1 + F && M$ >= 0]                    (39,2)  
          40. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [C >= 1 && B >= 1 + F && 0 >= 1 + M$]                (39,2)  
          41. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [0 >= 1 + A && B >= 1 + H && M$ >= 1 + N$]           (28,2)  
          42. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [0 >= 1 + A && B >= 1 + H]                           (28,2)  
          43. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J)     [0 >= 1 + A && B >= 1 + H]                           (28,2)  
          44. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [A >= 1 && B >= 1 + H && M$ >= 1 + N$]               (?,2)   
          45. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [A >= 1 && B >= 1 + H]                               (?,2)   
          46. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J)     [A >= 1 && B >= 1 + H]                               (?,2)   
          47. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [0 >= 1 + D && B >= 2 + F && 0 >= 1 + M]             (1,2)   
          48. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [0 >= 1 + D && B >= 2 + F && M >= 1]                 (1,2)   
          49. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0)     [0 >= 1 + D && B >= 2 + F && M = 0]                  (1,2)   
          50. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M)     [0 >= 1 + D && B >= 2 + F]                           (1,2)   
          51. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [D >= 1 && B >= 2 + F && 0 >= 1 + M]                 (12,2)  
          52. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [D >= 1 && B >= 2 + F && M >= 1]                     (12,2)  
          53. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0)     [D >= 1 && B >= 2 + F && M = 0]                      (12,2)  
          54. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M)     [D >= 1 && B >= 2 + F]                               (12,2)  
          55. f35(A,B,C,D,F,H,J) -> f35(A,B,C,D,1 + F,2 + F,J) [H >= B && B >= 3 + F]                               (28,2)  
          56. f35(A,B,C,D,F,H,J) -> f48(A,B,C,D,0,H,J)         [H >= B && 2 + F >= B]                               (28,2)  
          57. f19(A,B,C,D,F,H,J) -> f35(A,B,C,D,0,1,J)         [F >= B && B >= 2]                                   (2,2)   
        Signature:
          {(f0,7);(f13,7);(f19,7);(f22,7);(f32,7);(f35,7);(f38,7);(f48,7);(f52,7);(f62,7);(f63,7);(f71,7)}
        Flow Graph:
          [2->{3},3->{3,34},9->{9,57},16->{16,55,56},23->{23},34->{9,35,36,37,38,39,40},35->{38,39,40,57},36->{9,57}
          ,37->{9,57},38->{38,39,40,57},39->{9,57},40->{9,57},41->{44,45,46,55,56},42->{44,45,46,55,56},43->{16,55,56}
          ,44->{44,45,46,55,56},45->{44,45,46,55,56},46->{16,55,56},47->{51,52,53,54},48->{51,52,53,54},49->{23}
          ,50->{23},51->{51,52,53,54},52->{51,52,53,54},53->{23},54->{23},55->{16,41,42,43,44,45,46},56->{23,47,48,49
          ,50,51,52,53,54},57->{16,41,42,43,44,45,46}]
        Sizebounds:
          (< 2,0,A>, 1) (< 2,0,B>, 12) (< 2,0,C>, 1) (< 2,0,D>, 1) (< 2,0,F>,    0) (< 2,0,H>,  H) (< 2,0,J>, J) 
          (< 3,0,A>, 1) (< 3,0,B>, 12) (< 3,0,C>, 1) (< 3,0,D>, 1) (< 3,0,F>,   12) (< 3,0,H>,  H) (< 3,0,J>, J) 
          (< 9,0,A>, 1) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 1) (< 9,0,F>, 1957) (< 9,0,H>,  H) (< 9,0,J>, J) 
          (<16,0,A>, 0) (<16,0,B>, 12) (<16,0,C>, 1) (<16,0,D>, 1) (<16,0,F>,   28) (<16,0,H>, 12) (<16,0,J>, J) 
          (<23,0,A>, 1) (<23,0,B>, 12) (<23,0,C>, 1) (<23,0,D>, 0) (<23,0,F>,   38) (<23,0,H>, 32) (<23,0,J>, ?) 
          (<34,0,A>, 1) (<34,0,B>, 12) (<34,0,C>, 1) (<34,0,D>, 1) (<34,0,F>,    0) (<34,0,H>,  H) (<34,0,J>, J) 
          (<35,0,A>, 1) (<35,0,B>, 12) (<35,0,C>, 1) (<35,0,D>, 1) (<35,0,F>,    1) (<35,0,H>,  H) (<35,0,J>, J) 
          (<36,0,A>, 1) (<36,0,B>, 12) (<36,0,C>, 0) (<36,0,D>, 1) (<36,0,F>,    1) (<36,0,H>,  H) (<36,0,J>, J) 
          (<37,0,A>, 1) (<37,0,B>, 12) (<37,0,C>, 0) (<37,0,D>, 1) (<37,0,F>,    1) (<37,0,H>,  H) (<37,0,J>, J) 
          (<38,0,A>, 1) (<38,0,B>, 12) (<38,0,C>, 1) (<38,0,D>, 1) (<38,0,F>,   24) (<38,0,H>,  H) (<38,0,J>, J) 
          (<39,0,A>, 1) (<39,0,B>, 12) (<39,0,C>, 0) (<39,0,D>, 1) (<39,0,F>,   25) (<39,0,H>,  H) (<39,0,J>, J) 
          (<40,0,A>, 1) (<40,0,B>, 12) (<40,0,C>, 0) (<40,0,D>, 1) (<40,0,F>,   25) (<40,0,H>,  H) (<40,0,J>, J) 
          (<41,0,A>, 1) (<41,0,B>, 12) (<41,0,C>, 1) (<41,0,D>, 1) (<41,0,F>,   28) (<41,0,H>, 31) (<41,0,J>, J) 
          (<42,0,A>, 1) (<42,0,B>, 12) (<42,0,C>, 1) (<42,0,D>, 1) (<42,0,F>,   28) (<42,0,H>, 31) (<42,0,J>, J) 
          (<43,0,A>, 0) (<43,0,B>, 12) (<43,0,C>, 1) (<43,0,D>, 1) (<43,0,F>,   28) (<43,0,H>, 31) (<43,0,J>, J) 
          (<44,0,A>, 1) (<44,0,B>, 12) (<44,0,C>, 1) (<44,0,D>, 1) (<44,0,F>,   28) (<44,0,H>, 12) (<44,0,J>, J) 
          (<45,0,A>, 1) (<45,0,B>, 12) (<45,0,C>, 1) (<45,0,D>, 1) (<45,0,F>,   28) (<45,0,H>, 12) (<45,0,J>, J) 
          (<46,0,A>, 0) (<46,0,B>, 12) (<46,0,C>, 1) (<46,0,D>, 1) (<46,0,F>,   28) (<46,0,H>, 32) (<46,0,J>, J) 
          (<47,0,A>, 1) (<47,0,B>, 12) (<47,0,C>, 1) (<47,0,D>, 1) (<47,0,F>,    1) (<47,0,H>, 32) (<47,0,J>, ?) 
          (<48,0,A>, 1) (<48,0,B>, 12) (<48,0,C>, 1) (<48,0,D>, 1) (<48,0,F>,    1) (<48,0,H>, 32) (<48,0,J>, ?) 
          (<49,0,A>, 1) (<49,0,B>, 12) (<49,0,C>, 1) (<49,0,D>, 0) (<49,0,F>,    1) (<49,0,H>, 32) (<49,0,J>, 0) 
          (<50,0,A>, 1) (<50,0,B>, 12) (<50,0,C>, 1) (<50,0,D>, 0) (<50,0,F>,    1) (<50,0,H>, 32) (<50,0,J>, ?) 
          (<51,0,A>, 1) (<51,0,B>, 12) (<51,0,C>, 1) (<51,0,D>, 1) (<51,0,F>,   25) (<51,0,H>, 32) (<51,0,J>, ?) 
          (<52,0,A>, 1) (<52,0,B>, 12) (<52,0,C>, 1) (<52,0,D>, 1) (<52,0,F>,   25) (<52,0,H>, 32) (<52,0,J>, ?) 
          (<53,0,A>, 1) (<53,0,B>, 12) (<53,0,C>, 1) (<53,0,D>, 0) (<53,0,F>,   26) (<53,0,H>, 32) (<53,0,J>, 0) 
          (<54,0,A>, 1) (<54,0,B>, 12) (<54,0,C>, 1) (<54,0,D>, 0) (<54,0,F>,   26) (<54,0,H>, 32) (<54,0,J>, ?) 
          (<55,0,A>, 1) (<55,0,B>, 12) (<55,0,C>, 1) (<55,0,D>, 1) (<55,0,F>,   28) (<55,0,H>, 30) (<55,0,J>, J) 
          (<56,0,A>, 1) (<56,0,B>, 12) (<56,0,C>, 1) (<56,0,D>, 1) (<56,0,F>,    0) (<56,0,H>, 32) (<56,0,J>, J) 
          (<57,0,A>, 1) (<57,0,B>, 12) (<57,0,C>, 1) (<57,0,D>, 1) (<57,0,F>,    0) (<57,0,H>,  1) (<57,0,J>, J) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [16,43,41,42,44,45,46], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f35) = x2 + -1*x6
        
        The following rules are strictly oriented:
        [0 >= 1 + A && B >= 1 + H && M$ >= 1 + N$] ==>                       
                                f35(A,B,C,D,F,H,J)   = B + -1*H              
                                                     > -1 + B + -1*H         
                                                     = f35(1,B,C,D,F,1 + H,J)
        
                        [0 >= 1 + A && B >= 1 + H] ==>                       
                                f35(A,B,C,D,F,H,J)   = B + -1*H              
                                                     > -1 + B + -1*H         
                                                     = f35(1,B,C,D,F,1 + H,J)
        
                        [0 >= 1 + A && B >= 1 + H] ==>                       
                                f35(A,B,C,D,F,H,J)   = B + -1*H              
                                                     > -1 + B + -1*H         
                                                     = f35(0,B,C,D,F,1 + H,J)
        
                            [A >= 1 && B >= 1 + H] ==>                       
                                f35(A,B,C,D,F,H,J)   = B + -1*H              
                                                     > -1 + B + -1*H         
                                                     = f35(0,B,C,D,F,1 + H,J)
        
        
        The following rules are weakly oriented:
                         [B >= 1 + H && A = 0] ==>                       
                            f35(A,B,C,D,F,H,J)   = B + -1*H              
                                                >= -1 + B + -1*H         
                                                 = f35(0,B,C,D,F,1 + H,J)
        
        [A >= 1 && B >= 1 + H && M$ >= 1 + N$] ==>                       
                            f35(A,B,C,D,F,H,J)   = B + -1*H              
                                                >= -1 + B + -1*H         
                                                 = f35(1,B,C,D,F,1 + H,J)
        
                        [A >= 1 && B >= 1 + H] ==>                       
                            f35(A,B,C,D,F,H,J)   = B + -1*H              
                                                >= -1 + B + -1*H         
                                                 = f35(1,B,C,D,F,1 + H,J)
        
        We use the following global sizebounds:
        (< 2,0,A>, 1) (< 2,0,B>, 12) (< 2,0,C>, 1) (< 2,0,D>, 1) (< 2,0,F>,    0) (< 2,0,H>,  H) (< 2,0,J>, J) 
        (< 3,0,A>, 1) (< 3,0,B>, 12) (< 3,0,C>, 1) (< 3,0,D>, 1) (< 3,0,F>,   12) (< 3,0,H>,  H) (< 3,0,J>, J) 
        (< 9,0,A>, 1) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 1) (< 9,0,F>, 1957) (< 9,0,H>,  H) (< 9,0,J>, J) 
        (<16,0,A>, 0) (<16,0,B>, 12) (<16,0,C>, 1) (<16,0,D>, 1) (<16,0,F>,   28) (<16,0,H>, 12) (<16,0,J>, J) 
        (<23,0,A>, 1) (<23,0,B>, 12) (<23,0,C>, 1) (<23,0,D>, 0) (<23,0,F>,   38) (<23,0,H>, 32) (<23,0,J>, ?) 
        (<34,0,A>, 1) (<34,0,B>, 12) (<34,0,C>, 1) (<34,0,D>, 1) (<34,0,F>,    0) (<34,0,H>,  H) (<34,0,J>, J) 
        (<35,0,A>, 1) (<35,0,B>, 12) (<35,0,C>, 1) (<35,0,D>, 1) (<35,0,F>,    1) (<35,0,H>,  H) (<35,0,J>, J) 
        (<36,0,A>, 1) (<36,0,B>, 12) (<36,0,C>, 0) (<36,0,D>, 1) (<36,0,F>,    1) (<36,0,H>,  H) (<36,0,J>, J) 
        (<37,0,A>, 1) (<37,0,B>, 12) (<37,0,C>, 0) (<37,0,D>, 1) (<37,0,F>,    1) (<37,0,H>,  H) (<37,0,J>, J) 
        (<38,0,A>, 1) (<38,0,B>, 12) (<38,0,C>, 1) (<38,0,D>, 1) (<38,0,F>,   24) (<38,0,H>,  H) (<38,0,J>, J) 
        (<39,0,A>, 1) (<39,0,B>, 12) (<39,0,C>, 0) (<39,0,D>, 1) (<39,0,F>,   25) (<39,0,H>,  H) (<39,0,J>, J) 
        (<40,0,A>, 1) (<40,0,B>, 12) (<40,0,C>, 0) (<40,0,D>, 1) (<40,0,F>,   25) (<40,0,H>,  H) (<40,0,J>, J) 
        (<41,0,A>, 1) (<41,0,B>, 12) (<41,0,C>, 1) (<41,0,D>, 1) (<41,0,F>,   28) (<41,0,H>, 31) (<41,0,J>, J) 
        (<42,0,A>, 1) (<42,0,B>, 12) (<42,0,C>, 1) (<42,0,D>, 1) (<42,0,F>,   28) (<42,0,H>, 31) (<42,0,J>, J) 
        (<43,0,A>, 0) (<43,0,B>, 12) (<43,0,C>, 1) (<43,0,D>, 1) (<43,0,F>,   28) (<43,0,H>, 31) (<43,0,J>, J) 
        (<44,0,A>, 1) (<44,0,B>, 12) (<44,0,C>, 1) (<44,0,D>, 1) (<44,0,F>,   28) (<44,0,H>, 12) (<44,0,J>, J) 
        (<45,0,A>, 1) (<45,0,B>, 12) (<45,0,C>, 1) (<45,0,D>, 1) (<45,0,F>,   28) (<45,0,H>, 12) (<45,0,J>, J) 
        (<46,0,A>, 0) (<46,0,B>, 12) (<46,0,C>, 1) (<46,0,D>, 1) (<46,0,F>,   28) (<46,0,H>, 32) (<46,0,J>, J) 
        (<47,0,A>, 1) (<47,0,B>, 12) (<47,0,C>, 1) (<47,0,D>, 1) (<47,0,F>,    1) (<47,0,H>, 32) (<47,0,J>, ?) 
        (<48,0,A>, 1) (<48,0,B>, 12) (<48,0,C>, 1) (<48,0,D>, 1) (<48,0,F>,    1) (<48,0,H>, 32) (<48,0,J>, ?) 
        (<49,0,A>, 1) (<49,0,B>, 12) (<49,0,C>, 1) (<49,0,D>, 0) (<49,0,F>,    1) (<49,0,H>, 32) (<49,0,J>, 0) 
        (<50,0,A>, 1) (<50,0,B>, 12) (<50,0,C>, 1) (<50,0,D>, 0) (<50,0,F>,    1) (<50,0,H>, 32) (<50,0,J>, ?) 
        (<51,0,A>, 1) (<51,0,B>, 12) (<51,0,C>, 1) (<51,0,D>, 1) (<51,0,F>,   25) (<51,0,H>, 32) (<51,0,J>, ?) 
        (<52,0,A>, 1) (<52,0,B>, 12) (<52,0,C>, 1) (<52,0,D>, 1) (<52,0,F>,   25) (<52,0,H>, 32) (<52,0,J>, ?) 
        (<53,0,A>, 1) (<53,0,B>, 12) (<53,0,C>, 1) (<53,0,D>, 0) (<53,0,F>,   26) (<53,0,H>, 32) (<53,0,J>, 0) 
        (<54,0,A>, 1) (<54,0,B>, 12) (<54,0,C>, 1) (<54,0,D>, 0) (<54,0,F>,   26) (<54,0,H>, 32) (<54,0,J>, ?) 
        (<55,0,A>, 1) (<55,0,B>, 12) (<55,0,C>, 1) (<55,0,D>, 1) (<55,0,F>,   28) (<55,0,H>, 30) (<55,0,J>, J) 
        (<56,0,A>, 1) (<56,0,B>, 12) (<56,0,C>, 1) (<56,0,D>, 1) (<56,0,F>,    0) (<56,0,H>, 32) (<56,0,J>, J) 
        (<57,0,A>, 1) (<57,0,B>, 12) (<57,0,C>, 1) (<57,0,D>, 1) (<57,0,F>,    0) (<57,0,H>,  1) (<57,0,J>, J) 
* Step 45: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f0(A,B,C,D,F,H,J)  -> f13(1,12,1,1,0,H,J)        True                                                 (1,1)   
          3.  f13(A,B,C,D,F,H,J) -> f13(A,B,C,D,1 + F,H,J)     [B >= 1 + F]                                         (12,1)  
          9.  f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [B >= 1 + F && C = 0]                                (1932,1)
          16. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J)     [B >= 1 + H && A = 0]                                (?,1)   
          23. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M)     [B >= 2 + F && D = 0]                                (12,1)  
          34. f13(A,B,C,D,F,H,J) -> f19(A,B,C,D,0,H,J)         [F >= B]                                             (1,1)   
          35. f19(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J)     [0 >= 1 + C && B >= 1 + F && M$ >= 0 && B >= 1 + N$] (1,2)   
          36. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [0 >= 1 + C && B >= 1 + F && M$ >= 0]                (1,2)   
          37. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [0 >= 1 + C && B >= 1 + F && 0 >= 1 + M$]            (1,2)   
          38. f19(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J)     [C >= 1 && B >= 1 + F && M$ >= 0 && B >= 1 + N$]     (23,2)  
          39. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [C >= 1 && B >= 1 + F && M$ >= 0]                    (39,2)  
          40. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [C >= 1 && B >= 1 + F && 0 >= 1 + M$]                (39,2)  
          41. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [0 >= 1 + A && B >= 1 + H && M$ >= 1 + N$]           (28,2)  
          42. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [0 >= 1 + A && B >= 1 + H]                           (28,2)  
          43. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J)     [0 >= 1 + A && B >= 1 + H]                           (28,2)  
          44. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [A >= 1 && B >= 1 + H && M$ >= 1 + N$]               (?,2)   
          45. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [A >= 1 && B >= 1 + H]                               (?,2)   
          46. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J)     [A >= 1 && B >= 1 + H]                               (1202,2)
          47. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [0 >= 1 + D && B >= 2 + F && 0 >= 1 + M]             (1,2)   
          48. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [0 >= 1 + D && B >= 2 + F && M >= 1]                 (1,2)   
          49. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0)     [0 >= 1 + D && B >= 2 + F && M = 0]                  (1,2)   
          50. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M)     [0 >= 1 + D && B >= 2 + F]                           (1,2)   
          51. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [D >= 1 && B >= 2 + F && 0 >= 1 + M]                 (12,2)  
          52. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [D >= 1 && B >= 2 + F && M >= 1]                     (12,2)  
          53. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0)     [D >= 1 && B >= 2 + F && M = 0]                      (12,2)  
          54. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M)     [D >= 1 && B >= 2 + F]                               (12,2)  
          55. f35(A,B,C,D,F,H,J) -> f35(A,B,C,D,1 + F,2 + F,J) [H >= B && B >= 3 + F]                               (28,2)  
          56. f35(A,B,C,D,F,H,J) -> f48(A,B,C,D,0,H,J)         [H >= B && 2 + F >= B]                               (28,2)  
          57. f19(A,B,C,D,F,H,J) -> f35(A,B,C,D,0,1,J)         [F >= B && B >= 2]                                   (2,2)   
        Signature:
          {(f0,7);(f13,7);(f19,7);(f22,7);(f32,7);(f35,7);(f38,7);(f48,7);(f52,7);(f62,7);(f63,7);(f71,7)}
        Flow Graph:
          [2->{3},3->{3,34},9->{9,57},16->{16,55,56},23->{23},34->{9,35,36,37,38,39,40},35->{38,39,40,57},36->{9,57}
          ,37->{9,57},38->{38,39,40,57},39->{9,57},40->{9,57},41->{44,45,46,55,56},42->{44,45,46,55,56},43->{16,55,56}
          ,44->{44,45,46,55,56},45->{44,45,46,55,56},46->{16,55,56},47->{51,52,53,54},48->{51,52,53,54},49->{23}
          ,50->{23},51->{51,52,53,54},52->{51,52,53,54},53->{23},54->{23},55->{16,41,42,43,44,45,46},56->{23,47,48,49
          ,50,51,52,53,54},57->{16,41,42,43,44,45,46}]
        Sizebounds:
          (< 2,0,A>, 1) (< 2,0,B>, 12) (< 2,0,C>, 1) (< 2,0,D>, 1) (< 2,0,F>,    0) (< 2,0,H>,  H) (< 2,0,J>, J) 
          (< 3,0,A>, 1) (< 3,0,B>, 12) (< 3,0,C>, 1) (< 3,0,D>, 1) (< 3,0,F>,   12) (< 3,0,H>,  H) (< 3,0,J>, J) 
          (< 9,0,A>, 1) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 1) (< 9,0,F>, 1957) (< 9,0,H>,  H) (< 9,0,J>, J) 
          (<16,0,A>, 0) (<16,0,B>, 12) (<16,0,C>, 1) (<16,0,D>, 1) (<16,0,F>,   28) (<16,0,H>, 12) (<16,0,J>, J) 
          (<23,0,A>, 1) (<23,0,B>, 12) (<23,0,C>, 1) (<23,0,D>, 0) (<23,0,F>,   38) (<23,0,H>, 32) (<23,0,J>, ?) 
          (<34,0,A>, 1) (<34,0,B>, 12) (<34,0,C>, 1) (<34,0,D>, 1) (<34,0,F>,    0) (<34,0,H>,  H) (<34,0,J>, J) 
          (<35,0,A>, 1) (<35,0,B>, 12) (<35,0,C>, 1) (<35,0,D>, 1) (<35,0,F>,    1) (<35,0,H>,  H) (<35,0,J>, J) 
          (<36,0,A>, 1) (<36,0,B>, 12) (<36,0,C>, 0) (<36,0,D>, 1) (<36,0,F>,    1) (<36,0,H>,  H) (<36,0,J>, J) 
          (<37,0,A>, 1) (<37,0,B>, 12) (<37,0,C>, 0) (<37,0,D>, 1) (<37,0,F>,    1) (<37,0,H>,  H) (<37,0,J>, J) 
          (<38,0,A>, 1) (<38,0,B>, 12) (<38,0,C>, 1) (<38,0,D>, 1) (<38,0,F>,   24) (<38,0,H>,  H) (<38,0,J>, J) 
          (<39,0,A>, 1) (<39,0,B>, 12) (<39,0,C>, 0) (<39,0,D>, 1) (<39,0,F>,   25) (<39,0,H>,  H) (<39,0,J>, J) 
          (<40,0,A>, 1) (<40,0,B>, 12) (<40,0,C>, 0) (<40,0,D>, 1) (<40,0,F>,   25) (<40,0,H>,  H) (<40,0,J>, J) 
          (<41,0,A>, 1) (<41,0,B>, 12) (<41,0,C>, 1) (<41,0,D>, 1) (<41,0,F>,   28) (<41,0,H>, 31) (<41,0,J>, J) 
          (<42,0,A>, 1) (<42,0,B>, 12) (<42,0,C>, 1) (<42,0,D>, 1) (<42,0,F>,   28) (<42,0,H>, 31) (<42,0,J>, J) 
          (<43,0,A>, 0) (<43,0,B>, 12) (<43,0,C>, 1) (<43,0,D>, 1) (<43,0,F>,   28) (<43,0,H>, 31) (<43,0,J>, J) 
          (<44,0,A>, 1) (<44,0,B>, 12) (<44,0,C>, 1) (<44,0,D>, 1) (<44,0,F>,   28) (<44,0,H>, 12) (<44,0,J>, J) 
          (<45,0,A>, 1) (<45,0,B>, 12) (<45,0,C>, 1) (<45,0,D>, 1) (<45,0,F>,   28) (<45,0,H>, 12) (<45,0,J>, J) 
          (<46,0,A>, 0) (<46,0,B>, 12) (<46,0,C>, 1) (<46,0,D>, 1) (<46,0,F>,   28) (<46,0,H>, 32) (<46,0,J>, J) 
          (<47,0,A>, 1) (<47,0,B>, 12) (<47,0,C>, 1) (<47,0,D>, 1) (<47,0,F>,    1) (<47,0,H>, 32) (<47,0,J>, ?) 
          (<48,0,A>, 1) (<48,0,B>, 12) (<48,0,C>, 1) (<48,0,D>, 1) (<48,0,F>,    1) (<48,0,H>, 32) (<48,0,J>, ?) 
          (<49,0,A>, 1) (<49,0,B>, 12) (<49,0,C>, 1) (<49,0,D>, 0) (<49,0,F>,    1) (<49,0,H>, 32) (<49,0,J>, 0) 
          (<50,0,A>, 1) (<50,0,B>, 12) (<50,0,C>, 1) (<50,0,D>, 0) (<50,0,F>,    1) (<50,0,H>, 32) (<50,0,J>, ?) 
          (<51,0,A>, 1) (<51,0,B>, 12) (<51,0,C>, 1) (<51,0,D>, 1) (<51,0,F>,   25) (<51,0,H>, 32) (<51,0,J>, ?) 
          (<52,0,A>, 1) (<52,0,B>, 12) (<52,0,C>, 1) (<52,0,D>, 1) (<52,0,F>,   25) (<52,0,H>, 32) (<52,0,J>, ?) 
          (<53,0,A>, 1) (<53,0,B>, 12) (<53,0,C>, 1) (<53,0,D>, 0) (<53,0,F>,   26) (<53,0,H>, 32) (<53,0,J>, 0) 
          (<54,0,A>, 1) (<54,0,B>, 12) (<54,0,C>, 1) (<54,0,D>, 0) (<54,0,F>,   26) (<54,0,H>, 32) (<54,0,J>, ?) 
          (<55,0,A>, 1) (<55,0,B>, 12) (<55,0,C>, 1) (<55,0,D>, 1) (<55,0,F>,   28) (<55,0,H>, 30) (<55,0,J>, J) 
          (<56,0,A>, 1) (<56,0,B>, 12) (<56,0,C>, 1) (<56,0,D>, 1) (<56,0,F>,    0) (<56,0,H>, 32) (<56,0,J>, J) 
          (<57,0,A>, 1) (<57,0,B>, 12) (<57,0,C>, 1) (<57,0,D>, 1) (<57,0,F>,    0) (<57,0,H>,  1) (<57,0,J>, J) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [16,43,41,42,44,45,46], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f35) = x2 + -1*x6
        
        The following rules are strictly oriented:
        [0 >= 1 + A && B >= 1 + H && M$ >= 1 + N$] ==>                       
                                f35(A,B,C,D,F,H,J)   = B + -1*H              
                                                     > -1 + B + -1*H         
                                                     = f35(1,B,C,D,F,1 + H,J)
        
                        [0 >= 1 + A && B >= 1 + H] ==>                       
                                f35(A,B,C,D,F,H,J)   = B + -1*H              
                                                     > -1 + B + -1*H         
                                                     = f35(1,B,C,D,F,1 + H,J)
        
                        [0 >= 1 + A && B >= 1 + H] ==>                       
                                f35(A,B,C,D,F,H,J)   = B + -1*H              
                                                     > -1 + B + -1*H         
                                                     = f35(0,B,C,D,F,1 + H,J)
        
                            [A >= 1 && B >= 1 + H] ==>                       
                                f35(A,B,C,D,F,H,J)   = B + -1*H              
                                                     > -1 + B + -1*H         
                                                     = f35(1,B,C,D,F,1 + H,J)
        
                            [A >= 1 && B >= 1 + H] ==>                       
                                f35(A,B,C,D,F,H,J)   = B + -1*H              
                                                     > -1 + B + -1*H         
                                                     = f35(0,B,C,D,F,1 + H,J)
        
        
        The following rules are weakly oriented:
                         [B >= 1 + H && A = 0] ==>                       
                            f35(A,B,C,D,F,H,J)   = B + -1*H              
                                                >= -1 + B + -1*H         
                                                 = f35(0,B,C,D,F,1 + H,J)
        
        [A >= 1 && B >= 1 + H && M$ >= 1 + N$] ==>                       
                            f35(A,B,C,D,F,H,J)   = B + -1*H              
                                                >= -1 + B + -1*H         
                                                 = f35(1,B,C,D,F,1 + H,J)
        
        We use the following global sizebounds:
        (< 2,0,A>, 1) (< 2,0,B>, 12) (< 2,0,C>, 1) (< 2,0,D>, 1) (< 2,0,F>,    0) (< 2,0,H>,  H) (< 2,0,J>, J) 
        (< 3,0,A>, 1) (< 3,0,B>, 12) (< 3,0,C>, 1) (< 3,0,D>, 1) (< 3,0,F>,   12) (< 3,0,H>,  H) (< 3,0,J>, J) 
        (< 9,0,A>, 1) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 1) (< 9,0,F>, 1957) (< 9,0,H>,  H) (< 9,0,J>, J) 
        (<16,0,A>, 0) (<16,0,B>, 12) (<16,0,C>, 1) (<16,0,D>, 1) (<16,0,F>,   28) (<16,0,H>, 12) (<16,0,J>, J) 
        (<23,0,A>, 1) (<23,0,B>, 12) (<23,0,C>, 1) (<23,0,D>, 0) (<23,0,F>,   38) (<23,0,H>, 32) (<23,0,J>, ?) 
        (<34,0,A>, 1) (<34,0,B>, 12) (<34,0,C>, 1) (<34,0,D>, 1) (<34,0,F>,    0) (<34,0,H>,  H) (<34,0,J>, J) 
        (<35,0,A>, 1) (<35,0,B>, 12) (<35,0,C>, 1) (<35,0,D>, 1) (<35,0,F>,    1) (<35,0,H>,  H) (<35,0,J>, J) 
        (<36,0,A>, 1) (<36,0,B>, 12) (<36,0,C>, 0) (<36,0,D>, 1) (<36,0,F>,    1) (<36,0,H>,  H) (<36,0,J>, J) 
        (<37,0,A>, 1) (<37,0,B>, 12) (<37,0,C>, 0) (<37,0,D>, 1) (<37,0,F>,    1) (<37,0,H>,  H) (<37,0,J>, J) 
        (<38,0,A>, 1) (<38,0,B>, 12) (<38,0,C>, 1) (<38,0,D>, 1) (<38,0,F>,   24) (<38,0,H>,  H) (<38,0,J>, J) 
        (<39,0,A>, 1) (<39,0,B>, 12) (<39,0,C>, 0) (<39,0,D>, 1) (<39,0,F>,   25) (<39,0,H>,  H) (<39,0,J>, J) 
        (<40,0,A>, 1) (<40,0,B>, 12) (<40,0,C>, 0) (<40,0,D>, 1) (<40,0,F>,   25) (<40,0,H>,  H) (<40,0,J>, J) 
        (<41,0,A>, 1) (<41,0,B>, 12) (<41,0,C>, 1) (<41,0,D>, 1) (<41,0,F>,   28) (<41,0,H>, 31) (<41,0,J>, J) 
        (<42,0,A>, 1) (<42,0,B>, 12) (<42,0,C>, 1) (<42,0,D>, 1) (<42,0,F>,   28) (<42,0,H>, 31) (<42,0,J>, J) 
        (<43,0,A>, 0) (<43,0,B>, 12) (<43,0,C>, 1) (<43,0,D>, 1) (<43,0,F>,   28) (<43,0,H>, 31) (<43,0,J>, J) 
        (<44,0,A>, 1) (<44,0,B>, 12) (<44,0,C>, 1) (<44,0,D>, 1) (<44,0,F>,   28) (<44,0,H>, 12) (<44,0,J>, J) 
        (<45,0,A>, 1) (<45,0,B>, 12) (<45,0,C>, 1) (<45,0,D>, 1) (<45,0,F>,   28) (<45,0,H>, 12) (<45,0,J>, J) 
        (<46,0,A>, 0) (<46,0,B>, 12) (<46,0,C>, 1) (<46,0,D>, 1) (<46,0,F>,   28) (<46,0,H>, 32) (<46,0,J>, J) 
        (<47,0,A>, 1) (<47,0,B>, 12) (<47,0,C>, 1) (<47,0,D>, 1) (<47,0,F>,    1) (<47,0,H>, 32) (<47,0,J>, ?) 
        (<48,0,A>, 1) (<48,0,B>, 12) (<48,0,C>, 1) (<48,0,D>, 1) (<48,0,F>,    1) (<48,0,H>, 32) (<48,0,J>, ?) 
        (<49,0,A>, 1) (<49,0,B>, 12) (<49,0,C>, 1) (<49,0,D>, 0) (<49,0,F>,    1) (<49,0,H>, 32) (<49,0,J>, 0) 
        (<50,0,A>, 1) (<50,0,B>, 12) (<50,0,C>, 1) (<50,0,D>, 0) (<50,0,F>,    1) (<50,0,H>, 32) (<50,0,J>, ?) 
        (<51,0,A>, 1) (<51,0,B>, 12) (<51,0,C>, 1) (<51,0,D>, 1) (<51,0,F>,   25) (<51,0,H>, 32) (<51,0,J>, ?) 
        (<52,0,A>, 1) (<52,0,B>, 12) (<52,0,C>, 1) (<52,0,D>, 1) (<52,0,F>,   25) (<52,0,H>, 32) (<52,0,J>, ?) 
        (<53,0,A>, 1) (<53,0,B>, 12) (<53,0,C>, 1) (<53,0,D>, 0) (<53,0,F>,   26) (<53,0,H>, 32) (<53,0,J>, 0) 
        (<54,0,A>, 1) (<54,0,B>, 12) (<54,0,C>, 1) (<54,0,D>, 0) (<54,0,F>,   26) (<54,0,H>, 32) (<54,0,J>, ?) 
        (<55,0,A>, 1) (<55,0,B>, 12) (<55,0,C>, 1) (<55,0,D>, 1) (<55,0,F>,   28) (<55,0,H>, 30) (<55,0,J>, J) 
        (<56,0,A>, 1) (<56,0,B>, 12) (<56,0,C>, 1) (<56,0,D>, 1) (<56,0,F>,    0) (<56,0,H>, 32) (<56,0,J>, J) 
        (<57,0,A>, 1) (<57,0,B>, 12) (<57,0,C>, 1) (<57,0,D>, 1) (<57,0,F>,    0) (<57,0,H>,  1) (<57,0,J>, J) 
* Step 46: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f0(A,B,C,D,F,H,J)  -> f13(1,12,1,1,0,H,J)        True                                                 (1,1)   
          3.  f13(A,B,C,D,F,H,J) -> f13(A,B,C,D,1 + F,H,J)     [B >= 1 + F]                                         (12,1)  
          9.  f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [B >= 1 + F && C = 0]                                (1932,1)
          16. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J)     [B >= 1 + H && A = 0]                                (?,1)   
          23. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M)     [B >= 2 + F && D = 0]                                (12,1)  
          34. f13(A,B,C,D,F,H,J) -> f19(A,B,C,D,0,H,J)         [F >= B]                                             (1,1)   
          35. f19(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J)     [0 >= 1 + C && B >= 1 + F && M$ >= 0 && B >= 1 + N$] (1,2)   
          36. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [0 >= 1 + C && B >= 1 + F && M$ >= 0]                (1,2)   
          37. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [0 >= 1 + C && B >= 1 + F && 0 >= 1 + M$]            (1,2)   
          38. f19(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J)     [C >= 1 && B >= 1 + F && M$ >= 0 && B >= 1 + N$]     (23,2)  
          39. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [C >= 1 && B >= 1 + F && M$ >= 0]                    (39,2)  
          40. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [C >= 1 && B >= 1 + F && 0 >= 1 + M$]                (39,2)  
          41. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [0 >= 1 + A && B >= 1 + H && M$ >= 1 + N$]           (28,2)  
          42. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [0 >= 1 + A && B >= 1 + H]                           (28,2)  
          43. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J)     [0 >= 1 + A && B >= 1 + H]                           (28,2)  
          44. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [A >= 1 && B >= 1 + H && M$ >= 1 + N$]               (?,2)   
          45. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [A >= 1 && B >= 1 + H]                               (1202,2)
          46. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J)     [A >= 1 && B >= 1 + H]                               (1202,2)
          47. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [0 >= 1 + D && B >= 2 + F && 0 >= 1 + M]             (1,2)   
          48. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [0 >= 1 + D && B >= 2 + F && M >= 1]                 (1,2)   
          49. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0)     [0 >= 1 + D && B >= 2 + F && M = 0]                  (1,2)   
          50. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M)     [0 >= 1 + D && B >= 2 + F]                           (1,2)   
          51. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [D >= 1 && B >= 2 + F && 0 >= 1 + M]                 (12,2)  
          52. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [D >= 1 && B >= 2 + F && M >= 1]                     (12,2)  
          53. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0)     [D >= 1 && B >= 2 + F && M = 0]                      (12,2)  
          54. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M)     [D >= 1 && B >= 2 + F]                               (12,2)  
          55. f35(A,B,C,D,F,H,J) -> f35(A,B,C,D,1 + F,2 + F,J) [H >= B && B >= 3 + F]                               (28,2)  
          56. f35(A,B,C,D,F,H,J) -> f48(A,B,C,D,0,H,J)         [H >= B && 2 + F >= B]                               (28,2)  
          57. f19(A,B,C,D,F,H,J) -> f35(A,B,C,D,0,1,J)         [F >= B && B >= 2]                                   (2,2)   
        Signature:
          {(f0,7);(f13,7);(f19,7);(f22,7);(f32,7);(f35,7);(f38,7);(f48,7);(f52,7);(f62,7);(f63,7);(f71,7)}
        Flow Graph:
          [2->{3},3->{3,34},9->{9,57},16->{16,55,56},23->{23},34->{9,35,36,37,38,39,40},35->{38,39,40,57},36->{9,57}
          ,37->{9,57},38->{38,39,40,57},39->{9,57},40->{9,57},41->{44,45,46,55,56},42->{44,45,46,55,56},43->{16,55,56}
          ,44->{44,45,46,55,56},45->{44,45,46,55,56},46->{16,55,56},47->{51,52,53,54},48->{51,52,53,54},49->{23}
          ,50->{23},51->{51,52,53,54},52->{51,52,53,54},53->{23},54->{23},55->{16,41,42,43,44,45,46},56->{23,47,48,49
          ,50,51,52,53,54},57->{16,41,42,43,44,45,46}]
        Sizebounds:
          (< 2,0,A>, 1) (< 2,0,B>, 12) (< 2,0,C>, 1) (< 2,0,D>, 1) (< 2,0,F>,    0) (< 2,0,H>,  H) (< 2,0,J>, J) 
          (< 3,0,A>, 1) (< 3,0,B>, 12) (< 3,0,C>, 1) (< 3,0,D>, 1) (< 3,0,F>,   12) (< 3,0,H>,  H) (< 3,0,J>, J) 
          (< 9,0,A>, 1) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 1) (< 9,0,F>, 1957) (< 9,0,H>,  H) (< 9,0,J>, J) 
          (<16,0,A>, 0) (<16,0,B>, 12) (<16,0,C>, 1) (<16,0,D>, 1) (<16,0,F>,   28) (<16,0,H>, 12) (<16,0,J>, J) 
          (<23,0,A>, 1) (<23,0,B>, 12) (<23,0,C>, 1) (<23,0,D>, 0) (<23,0,F>,   38) (<23,0,H>, 32) (<23,0,J>, ?) 
          (<34,0,A>, 1) (<34,0,B>, 12) (<34,0,C>, 1) (<34,0,D>, 1) (<34,0,F>,    0) (<34,0,H>,  H) (<34,0,J>, J) 
          (<35,0,A>, 1) (<35,0,B>, 12) (<35,0,C>, 1) (<35,0,D>, 1) (<35,0,F>,    1) (<35,0,H>,  H) (<35,0,J>, J) 
          (<36,0,A>, 1) (<36,0,B>, 12) (<36,0,C>, 0) (<36,0,D>, 1) (<36,0,F>,    1) (<36,0,H>,  H) (<36,0,J>, J) 
          (<37,0,A>, 1) (<37,0,B>, 12) (<37,0,C>, 0) (<37,0,D>, 1) (<37,0,F>,    1) (<37,0,H>,  H) (<37,0,J>, J) 
          (<38,0,A>, 1) (<38,0,B>, 12) (<38,0,C>, 1) (<38,0,D>, 1) (<38,0,F>,   24) (<38,0,H>,  H) (<38,0,J>, J) 
          (<39,0,A>, 1) (<39,0,B>, 12) (<39,0,C>, 0) (<39,0,D>, 1) (<39,0,F>,   25) (<39,0,H>,  H) (<39,0,J>, J) 
          (<40,0,A>, 1) (<40,0,B>, 12) (<40,0,C>, 0) (<40,0,D>, 1) (<40,0,F>,   25) (<40,0,H>,  H) (<40,0,J>, J) 
          (<41,0,A>, 1) (<41,0,B>, 12) (<41,0,C>, 1) (<41,0,D>, 1) (<41,0,F>,   28) (<41,0,H>, 31) (<41,0,J>, J) 
          (<42,0,A>, 1) (<42,0,B>, 12) (<42,0,C>, 1) (<42,0,D>, 1) (<42,0,F>,   28) (<42,0,H>, 31) (<42,0,J>, J) 
          (<43,0,A>, 0) (<43,0,B>, 12) (<43,0,C>, 1) (<43,0,D>, 1) (<43,0,F>,   28) (<43,0,H>, 31) (<43,0,J>, J) 
          (<44,0,A>, 1) (<44,0,B>, 12) (<44,0,C>, 1) (<44,0,D>, 1) (<44,0,F>,   28) (<44,0,H>, 12) (<44,0,J>, J) 
          (<45,0,A>, 1) (<45,0,B>, 12) (<45,0,C>, 1) (<45,0,D>, 1) (<45,0,F>,   28) (<45,0,H>, 12) (<45,0,J>, J) 
          (<46,0,A>, 0) (<46,0,B>, 12) (<46,0,C>, 1) (<46,0,D>, 1) (<46,0,F>,   28) (<46,0,H>, 32) (<46,0,J>, J) 
          (<47,0,A>, 1) (<47,0,B>, 12) (<47,0,C>, 1) (<47,0,D>, 1) (<47,0,F>,    1) (<47,0,H>, 32) (<47,0,J>, ?) 
          (<48,0,A>, 1) (<48,0,B>, 12) (<48,0,C>, 1) (<48,0,D>, 1) (<48,0,F>,    1) (<48,0,H>, 32) (<48,0,J>, ?) 
          (<49,0,A>, 1) (<49,0,B>, 12) (<49,0,C>, 1) (<49,0,D>, 0) (<49,0,F>,    1) (<49,0,H>, 32) (<49,0,J>, 0) 
          (<50,0,A>, 1) (<50,0,B>, 12) (<50,0,C>, 1) (<50,0,D>, 0) (<50,0,F>,    1) (<50,0,H>, 32) (<50,0,J>, ?) 
          (<51,0,A>, 1) (<51,0,B>, 12) (<51,0,C>, 1) (<51,0,D>, 1) (<51,0,F>,   25) (<51,0,H>, 32) (<51,0,J>, ?) 
          (<52,0,A>, 1) (<52,0,B>, 12) (<52,0,C>, 1) (<52,0,D>, 1) (<52,0,F>,   25) (<52,0,H>, 32) (<52,0,J>, ?) 
          (<53,0,A>, 1) (<53,0,B>, 12) (<53,0,C>, 1) (<53,0,D>, 0) (<53,0,F>,   26) (<53,0,H>, 32) (<53,0,J>, 0) 
          (<54,0,A>, 1) (<54,0,B>, 12) (<54,0,C>, 1) (<54,0,D>, 0) (<54,0,F>,   26) (<54,0,H>, 32) (<54,0,J>, ?) 
          (<55,0,A>, 1) (<55,0,B>, 12) (<55,0,C>, 1) (<55,0,D>, 1) (<55,0,F>,   28) (<55,0,H>, 30) (<55,0,J>, J) 
          (<56,0,A>, 1) (<56,0,B>, 12) (<56,0,C>, 1) (<56,0,D>, 1) (<56,0,F>,    0) (<56,0,H>, 32) (<56,0,J>, J) 
          (<57,0,A>, 1) (<57,0,B>, 12) (<57,0,C>, 1) (<57,0,D>, 1) (<57,0,F>,    0) (<57,0,H>,  1) (<57,0,J>, J) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [16,43,41,42,44,45,46], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f35) = x2 + -1*x6
        
        The following rules are strictly oriented:
        [0 >= 1 + A && B >= 1 + H && M$ >= 1 + N$] ==>                       
                                f35(A,B,C,D,F,H,J)   = B + -1*H              
                                                     > -1 + B + -1*H         
                                                     = f35(1,B,C,D,F,1 + H,J)
        
                        [0 >= 1 + A && B >= 1 + H] ==>                       
                                f35(A,B,C,D,F,H,J)   = B + -1*H              
                                                     > -1 + B + -1*H         
                                                     = f35(1,B,C,D,F,1 + H,J)
        
                        [0 >= 1 + A && B >= 1 + H] ==>                       
                                f35(A,B,C,D,F,H,J)   = B + -1*H              
                                                     > -1 + B + -1*H         
                                                     = f35(0,B,C,D,F,1 + H,J)
        
            [A >= 1 && B >= 1 + H && M$ >= 1 + N$] ==>                       
                                f35(A,B,C,D,F,H,J)   = B + -1*H              
                                                     > -1 + B + -1*H         
                                                     = f35(1,B,C,D,F,1 + H,J)
        
                            [A >= 1 && B >= 1 + H] ==>                       
                                f35(A,B,C,D,F,H,J)   = B + -1*H              
                                                     > -1 + B + -1*H         
                                                     = f35(1,B,C,D,F,1 + H,J)
        
                            [A >= 1 && B >= 1 + H] ==>                       
                                f35(A,B,C,D,F,H,J)   = B + -1*H              
                                                     > -1 + B + -1*H         
                                                     = f35(0,B,C,D,F,1 + H,J)
        
        
        The following rules are weakly oriented:
        [B >= 1 + H && A = 0] ==>                       
           f35(A,B,C,D,F,H,J)   = B + -1*H              
                               >= -1 + B + -1*H         
                                = f35(0,B,C,D,F,1 + H,J)
        
        We use the following global sizebounds:
        (< 2,0,A>, 1) (< 2,0,B>, 12) (< 2,0,C>, 1) (< 2,0,D>, 1) (< 2,0,F>,    0) (< 2,0,H>,  H) (< 2,0,J>, J) 
        (< 3,0,A>, 1) (< 3,0,B>, 12) (< 3,0,C>, 1) (< 3,0,D>, 1) (< 3,0,F>,   12) (< 3,0,H>,  H) (< 3,0,J>, J) 
        (< 9,0,A>, 1) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 1) (< 9,0,F>, 1957) (< 9,0,H>,  H) (< 9,0,J>, J) 
        (<16,0,A>, 0) (<16,0,B>, 12) (<16,0,C>, 1) (<16,0,D>, 1) (<16,0,F>,   28) (<16,0,H>, 12) (<16,0,J>, J) 
        (<23,0,A>, 1) (<23,0,B>, 12) (<23,0,C>, 1) (<23,0,D>, 0) (<23,0,F>,   38) (<23,0,H>, 32) (<23,0,J>, ?) 
        (<34,0,A>, 1) (<34,0,B>, 12) (<34,0,C>, 1) (<34,0,D>, 1) (<34,0,F>,    0) (<34,0,H>,  H) (<34,0,J>, J) 
        (<35,0,A>, 1) (<35,0,B>, 12) (<35,0,C>, 1) (<35,0,D>, 1) (<35,0,F>,    1) (<35,0,H>,  H) (<35,0,J>, J) 
        (<36,0,A>, 1) (<36,0,B>, 12) (<36,0,C>, 0) (<36,0,D>, 1) (<36,0,F>,    1) (<36,0,H>,  H) (<36,0,J>, J) 
        (<37,0,A>, 1) (<37,0,B>, 12) (<37,0,C>, 0) (<37,0,D>, 1) (<37,0,F>,    1) (<37,0,H>,  H) (<37,0,J>, J) 
        (<38,0,A>, 1) (<38,0,B>, 12) (<38,0,C>, 1) (<38,0,D>, 1) (<38,0,F>,   24) (<38,0,H>,  H) (<38,0,J>, J) 
        (<39,0,A>, 1) (<39,0,B>, 12) (<39,0,C>, 0) (<39,0,D>, 1) (<39,0,F>,   25) (<39,0,H>,  H) (<39,0,J>, J) 
        (<40,0,A>, 1) (<40,0,B>, 12) (<40,0,C>, 0) (<40,0,D>, 1) (<40,0,F>,   25) (<40,0,H>,  H) (<40,0,J>, J) 
        (<41,0,A>, 1) (<41,0,B>, 12) (<41,0,C>, 1) (<41,0,D>, 1) (<41,0,F>,   28) (<41,0,H>, 31) (<41,0,J>, J) 
        (<42,0,A>, 1) (<42,0,B>, 12) (<42,0,C>, 1) (<42,0,D>, 1) (<42,0,F>,   28) (<42,0,H>, 31) (<42,0,J>, J) 
        (<43,0,A>, 0) (<43,0,B>, 12) (<43,0,C>, 1) (<43,0,D>, 1) (<43,0,F>,   28) (<43,0,H>, 31) (<43,0,J>, J) 
        (<44,0,A>, 1) (<44,0,B>, 12) (<44,0,C>, 1) (<44,0,D>, 1) (<44,0,F>,   28) (<44,0,H>, 12) (<44,0,J>, J) 
        (<45,0,A>, 1) (<45,0,B>, 12) (<45,0,C>, 1) (<45,0,D>, 1) (<45,0,F>,   28) (<45,0,H>, 12) (<45,0,J>, J) 
        (<46,0,A>, 0) (<46,0,B>, 12) (<46,0,C>, 1) (<46,0,D>, 1) (<46,0,F>,   28) (<46,0,H>, 32) (<46,0,J>, J) 
        (<47,0,A>, 1) (<47,0,B>, 12) (<47,0,C>, 1) (<47,0,D>, 1) (<47,0,F>,    1) (<47,0,H>, 32) (<47,0,J>, ?) 
        (<48,0,A>, 1) (<48,0,B>, 12) (<48,0,C>, 1) (<48,0,D>, 1) (<48,0,F>,    1) (<48,0,H>, 32) (<48,0,J>, ?) 
        (<49,0,A>, 1) (<49,0,B>, 12) (<49,0,C>, 1) (<49,0,D>, 0) (<49,0,F>,    1) (<49,0,H>, 32) (<49,0,J>, 0) 
        (<50,0,A>, 1) (<50,0,B>, 12) (<50,0,C>, 1) (<50,0,D>, 0) (<50,0,F>,    1) (<50,0,H>, 32) (<50,0,J>, ?) 
        (<51,0,A>, 1) (<51,0,B>, 12) (<51,0,C>, 1) (<51,0,D>, 1) (<51,0,F>,   25) (<51,0,H>, 32) (<51,0,J>, ?) 
        (<52,0,A>, 1) (<52,0,B>, 12) (<52,0,C>, 1) (<52,0,D>, 1) (<52,0,F>,   25) (<52,0,H>, 32) (<52,0,J>, ?) 
        (<53,0,A>, 1) (<53,0,B>, 12) (<53,0,C>, 1) (<53,0,D>, 0) (<53,0,F>,   26) (<53,0,H>, 32) (<53,0,J>, 0) 
        (<54,0,A>, 1) (<54,0,B>, 12) (<54,0,C>, 1) (<54,0,D>, 0) (<54,0,F>,   26) (<54,0,H>, 32) (<54,0,J>, ?) 
        (<55,0,A>, 1) (<55,0,B>, 12) (<55,0,C>, 1) (<55,0,D>, 1) (<55,0,F>,   28) (<55,0,H>, 30) (<55,0,J>, J) 
        (<56,0,A>, 1) (<56,0,B>, 12) (<56,0,C>, 1) (<56,0,D>, 1) (<56,0,F>,    0) (<56,0,H>, 32) (<56,0,J>, J) 
        (<57,0,A>, 1) (<57,0,B>, 12) (<57,0,C>, 1) (<57,0,D>, 1) (<57,0,F>,    0) (<57,0,H>,  1) (<57,0,J>, J) 
* Step 47: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f0(A,B,C,D,F,H,J)  -> f13(1,12,1,1,0,H,J)        True                                                 (1,1)   
          3.  f13(A,B,C,D,F,H,J) -> f13(A,B,C,D,1 + F,H,J)     [B >= 1 + F]                                         (12,1)  
          9.  f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [B >= 1 + F && C = 0]                                (1932,1)
          16. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J)     [B >= 1 + H && A = 0]                                (?,1)   
          23. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M)     [B >= 2 + F && D = 0]                                (12,1)  
          34. f13(A,B,C,D,F,H,J) -> f19(A,B,C,D,0,H,J)         [F >= B]                                             (1,1)   
          35. f19(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J)     [0 >= 1 + C && B >= 1 + F && M$ >= 0 && B >= 1 + N$] (1,2)   
          36. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [0 >= 1 + C && B >= 1 + F && M$ >= 0]                (1,2)   
          37. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [0 >= 1 + C && B >= 1 + F && 0 >= 1 + M$]            (1,2)   
          38. f19(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J)     [C >= 1 && B >= 1 + F && M$ >= 0 && B >= 1 + N$]     (23,2)  
          39. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [C >= 1 && B >= 1 + F && M$ >= 0]                    (39,2)  
          40. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [C >= 1 && B >= 1 + F && 0 >= 1 + M$]                (39,2)  
          41. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [0 >= 1 + A && B >= 1 + H && M$ >= 1 + N$]           (28,2)  
          42. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [0 >= 1 + A && B >= 1 + H]                           (28,2)  
          43. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J)     [0 >= 1 + A && B >= 1 + H]                           (28,2)  
          44. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [A >= 1 && B >= 1 + H && M$ >= 1 + N$]               (1202,2)
          45. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [A >= 1 && B >= 1 + H]                               (1202,2)
          46. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J)     [A >= 1 && B >= 1 + H]                               (1202,2)
          47. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [0 >= 1 + D && B >= 2 + F && 0 >= 1 + M]             (1,2)   
          48. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [0 >= 1 + D && B >= 2 + F && M >= 1]                 (1,2)   
          49. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0)     [0 >= 1 + D && B >= 2 + F && M = 0]                  (1,2)   
          50. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M)     [0 >= 1 + D && B >= 2 + F]                           (1,2)   
          51. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [D >= 1 && B >= 2 + F && 0 >= 1 + M]                 (12,2)  
          52. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [D >= 1 && B >= 2 + F && M >= 1]                     (12,2)  
          53. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0)     [D >= 1 && B >= 2 + F && M = 0]                      (12,2)  
          54. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M)     [D >= 1 && B >= 2 + F]                               (12,2)  
          55. f35(A,B,C,D,F,H,J) -> f35(A,B,C,D,1 + F,2 + F,J) [H >= B && B >= 3 + F]                               (28,2)  
          56. f35(A,B,C,D,F,H,J) -> f48(A,B,C,D,0,H,J)         [H >= B && 2 + F >= B]                               (28,2)  
          57. f19(A,B,C,D,F,H,J) -> f35(A,B,C,D,0,1,J)         [F >= B && B >= 2]                                   (2,2)   
        Signature:
          {(f0,7);(f13,7);(f19,7);(f22,7);(f32,7);(f35,7);(f38,7);(f48,7);(f52,7);(f62,7);(f63,7);(f71,7)}
        Flow Graph:
          [2->{3},3->{3,34},9->{9,57},16->{16,55,56},23->{23},34->{9,35,36,37,38,39,40},35->{38,39,40,57},36->{9,57}
          ,37->{9,57},38->{38,39,40,57},39->{9,57},40->{9,57},41->{44,45,46,55,56},42->{44,45,46,55,56},43->{16,55,56}
          ,44->{44,45,46,55,56},45->{44,45,46,55,56},46->{16,55,56},47->{51,52,53,54},48->{51,52,53,54},49->{23}
          ,50->{23},51->{51,52,53,54},52->{51,52,53,54},53->{23},54->{23},55->{16,41,42,43,44,45,46},56->{23,47,48,49
          ,50,51,52,53,54},57->{16,41,42,43,44,45,46}]
        Sizebounds:
          (< 2,0,A>, 1) (< 2,0,B>, 12) (< 2,0,C>, 1) (< 2,0,D>, 1) (< 2,0,F>,    0) (< 2,0,H>,  H) (< 2,0,J>, J) 
          (< 3,0,A>, 1) (< 3,0,B>, 12) (< 3,0,C>, 1) (< 3,0,D>, 1) (< 3,0,F>,   12) (< 3,0,H>,  H) (< 3,0,J>, J) 
          (< 9,0,A>, 1) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 1) (< 9,0,F>, 1957) (< 9,0,H>,  H) (< 9,0,J>, J) 
          (<16,0,A>, 0) (<16,0,B>, 12) (<16,0,C>, 1) (<16,0,D>, 1) (<16,0,F>,   28) (<16,0,H>, 12) (<16,0,J>, J) 
          (<23,0,A>, 1) (<23,0,B>, 12) (<23,0,C>, 1) (<23,0,D>, 0) (<23,0,F>,   38) (<23,0,H>, 32) (<23,0,J>, ?) 
          (<34,0,A>, 1) (<34,0,B>, 12) (<34,0,C>, 1) (<34,0,D>, 1) (<34,0,F>,    0) (<34,0,H>,  H) (<34,0,J>, J) 
          (<35,0,A>, 1) (<35,0,B>, 12) (<35,0,C>, 1) (<35,0,D>, 1) (<35,0,F>,    1) (<35,0,H>,  H) (<35,0,J>, J) 
          (<36,0,A>, 1) (<36,0,B>, 12) (<36,0,C>, 0) (<36,0,D>, 1) (<36,0,F>,    1) (<36,0,H>,  H) (<36,0,J>, J) 
          (<37,0,A>, 1) (<37,0,B>, 12) (<37,0,C>, 0) (<37,0,D>, 1) (<37,0,F>,    1) (<37,0,H>,  H) (<37,0,J>, J) 
          (<38,0,A>, 1) (<38,0,B>, 12) (<38,0,C>, 1) (<38,0,D>, 1) (<38,0,F>,   24) (<38,0,H>,  H) (<38,0,J>, J) 
          (<39,0,A>, 1) (<39,0,B>, 12) (<39,0,C>, 0) (<39,0,D>, 1) (<39,0,F>,   25) (<39,0,H>,  H) (<39,0,J>, J) 
          (<40,0,A>, 1) (<40,0,B>, 12) (<40,0,C>, 0) (<40,0,D>, 1) (<40,0,F>,   25) (<40,0,H>,  H) (<40,0,J>, J) 
          (<41,0,A>, 1) (<41,0,B>, 12) (<41,0,C>, 1) (<41,0,D>, 1) (<41,0,F>,   28) (<41,0,H>, 31) (<41,0,J>, J) 
          (<42,0,A>, 1) (<42,0,B>, 12) (<42,0,C>, 1) (<42,0,D>, 1) (<42,0,F>,   28) (<42,0,H>, 31) (<42,0,J>, J) 
          (<43,0,A>, 0) (<43,0,B>, 12) (<43,0,C>, 1) (<43,0,D>, 1) (<43,0,F>,   28) (<43,0,H>, 31) (<43,0,J>, J) 
          (<44,0,A>, 1) (<44,0,B>, 12) (<44,0,C>, 1) (<44,0,D>, 1) (<44,0,F>,   28) (<44,0,H>, 12) (<44,0,J>, J) 
          (<45,0,A>, 1) (<45,0,B>, 12) (<45,0,C>, 1) (<45,0,D>, 1) (<45,0,F>,   28) (<45,0,H>, 12) (<45,0,J>, J) 
          (<46,0,A>, 0) (<46,0,B>, 12) (<46,0,C>, 1) (<46,0,D>, 1) (<46,0,F>,   28) (<46,0,H>, 32) (<46,0,J>, J) 
          (<47,0,A>, 1) (<47,0,B>, 12) (<47,0,C>, 1) (<47,0,D>, 1) (<47,0,F>,    1) (<47,0,H>, 32) (<47,0,J>, ?) 
          (<48,0,A>, 1) (<48,0,B>, 12) (<48,0,C>, 1) (<48,0,D>, 1) (<48,0,F>,    1) (<48,0,H>, 32) (<48,0,J>, ?) 
          (<49,0,A>, 1) (<49,0,B>, 12) (<49,0,C>, 1) (<49,0,D>, 0) (<49,0,F>,    1) (<49,0,H>, 32) (<49,0,J>, 0) 
          (<50,0,A>, 1) (<50,0,B>, 12) (<50,0,C>, 1) (<50,0,D>, 0) (<50,0,F>,    1) (<50,0,H>, 32) (<50,0,J>, ?) 
          (<51,0,A>, 1) (<51,0,B>, 12) (<51,0,C>, 1) (<51,0,D>, 1) (<51,0,F>,   25) (<51,0,H>, 32) (<51,0,J>, ?) 
          (<52,0,A>, 1) (<52,0,B>, 12) (<52,0,C>, 1) (<52,0,D>, 1) (<52,0,F>,   25) (<52,0,H>, 32) (<52,0,J>, ?) 
          (<53,0,A>, 1) (<53,0,B>, 12) (<53,0,C>, 1) (<53,0,D>, 0) (<53,0,F>,   26) (<53,0,H>, 32) (<53,0,J>, 0) 
          (<54,0,A>, 1) (<54,0,B>, 12) (<54,0,C>, 1) (<54,0,D>, 0) (<54,0,F>,   26) (<54,0,H>, 32) (<54,0,J>, ?) 
          (<55,0,A>, 1) (<55,0,B>, 12) (<55,0,C>, 1) (<55,0,D>, 1) (<55,0,F>,   28) (<55,0,H>, 30) (<55,0,J>, J) 
          (<56,0,A>, 1) (<56,0,B>, 12) (<56,0,C>, 1) (<56,0,D>, 1) (<56,0,F>,    0) (<56,0,H>, 32) (<56,0,J>, J) 
          (<57,0,A>, 1) (<57,0,B>, 12) (<57,0,C>, 1) (<57,0,D>, 1) (<57,0,F>,    0) (<57,0,H>,  1) (<57,0,J>, J) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [16,43,41,42,44,45,46], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f35) = x2 + -1*x6
        
        The following rules are strictly oriented:
                             [B >= 1 + H && A = 0] ==>                       
                                f35(A,B,C,D,F,H,J)   = B + -1*H              
                                                     > -1 + B + -1*H         
                                                     = f35(0,B,C,D,F,1 + H,J)
        
        [0 >= 1 + A && B >= 1 + H && M$ >= 1 + N$] ==>                       
                                f35(A,B,C,D,F,H,J)   = B + -1*H              
                                                     > -1 + B + -1*H         
                                                     = f35(1,B,C,D,F,1 + H,J)
        
                        [0 >= 1 + A && B >= 1 + H] ==>                       
                                f35(A,B,C,D,F,H,J)   = B + -1*H              
                                                     > -1 + B + -1*H         
                                                     = f35(1,B,C,D,F,1 + H,J)
        
                        [0 >= 1 + A && B >= 1 + H] ==>                       
                                f35(A,B,C,D,F,H,J)   = B + -1*H              
                                                     > -1 + B + -1*H         
                                                     = f35(0,B,C,D,F,1 + H,J)
        
            [A >= 1 && B >= 1 + H && M$ >= 1 + N$] ==>                       
                                f35(A,B,C,D,F,H,J)   = B + -1*H              
                                                     > -1 + B + -1*H         
                                                     = f35(1,B,C,D,F,1 + H,J)
        
                            [A >= 1 && B >= 1 + H] ==>                       
                                f35(A,B,C,D,F,H,J)   = B + -1*H              
                                                     > -1 + B + -1*H         
                                                     = f35(1,B,C,D,F,1 + H,J)
        
                            [A >= 1 && B >= 1 + H] ==>                       
                                f35(A,B,C,D,F,H,J)   = B + -1*H              
                                                     > -1 + B + -1*H         
                                                     = f35(0,B,C,D,F,1 + H,J)
        
        
        The following rules are weakly oriented:
        
        We use the following global sizebounds:
        (< 2,0,A>, 1) (< 2,0,B>, 12) (< 2,0,C>, 1) (< 2,0,D>, 1) (< 2,0,F>,    0) (< 2,0,H>,  H) (< 2,0,J>, J) 
        (< 3,0,A>, 1) (< 3,0,B>, 12) (< 3,0,C>, 1) (< 3,0,D>, 1) (< 3,0,F>,   12) (< 3,0,H>,  H) (< 3,0,J>, J) 
        (< 9,0,A>, 1) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 1) (< 9,0,F>, 1957) (< 9,0,H>,  H) (< 9,0,J>, J) 
        (<16,0,A>, 0) (<16,0,B>, 12) (<16,0,C>, 1) (<16,0,D>, 1) (<16,0,F>,   28) (<16,0,H>, 12) (<16,0,J>, J) 
        (<23,0,A>, 1) (<23,0,B>, 12) (<23,0,C>, 1) (<23,0,D>, 0) (<23,0,F>,   38) (<23,0,H>, 32) (<23,0,J>, ?) 
        (<34,0,A>, 1) (<34,0,B>, 12) (<34,0,C>, 1) (<34,0,D>, 1) (<34,0,F>,    0) (<34,0,H>,  H) (<34,0,J>, J) 
        (<35,0,A>, 1) (<35,0,B>, 12) (<35,0,C>, 1) (<35,0,D>, 1) (<35,0,F>,    1) (<35,0,H>,  H) (<35,0,J>, J) 
        (<36,0,A>, 1) (<36,0,B>, 12) (<36,0,C>, 0) (<36,0,D>, 1) (<36,0,F>,    1) (<36,0,H>,  H) (<36,0,J>, J) 
        (<37,0,A>, 1) (<37,0,B>, 12) (<37,0,C>, 0) (<37,0,D>, 1) (<37,0,F>,    1) (<37,0,H>,  H) (<37,0,J>, J) 
        (<38,0,A>, 1) (<38,0,B>, 12) (<38,0,C>, 1) (<38,0,D>, 1) (<38,0,F>,   24) (<38,0,H>,  H) (<38,0,J>, J) 
        (<39,0,A>, 1) (<39,0,B>, 12) (<39,0,C>, 0) (<39,0,D>, 1) (<39,0,F>,   25) (<39,0,H>,  H) (<39,0,J>, J) 
        (<40,0,A>, 1) (<40,0,B>, 12) (<40,0,C>, 0) (<40,0,D>, 1) (<40,0,F>,   25) (<40,0,H>,  H) (<40,0,J>, J) 
        (<41,0,A>, 1) (<41,0,B>, 12) (<41,0,C>, 1) (<41,0,D>, 1) (<41,0,F>,   28) (<41,0,H>, 31) (<41,0,J>, J) 
        (<42,0,A>, 1) (<42,0,B>, 12) (<42,0,C>, 1) (<42,0,D>, 1) (<42,0,F>,   28) (<42,0,H>, 31) (<42,0,J>, J) 
        (<43,0,A>, 0) (<43,0,B>, 12) (<43,0,C>, 1) (<43,0,D>, 1) (<43,0,F>,   28) (<43,0,H>, 31) (<43,0,J>, J) 
        (<44,0,A>, 1) (<44,0,B>, 12) (<44,0,C>, 1) (<44,0,D>, 1) (<44,0,F>,   28) (<44,0,H>, 12) (<44,0,J>, J) 
        (<45,0,A>, 1) (<45,0,B>, 12) (<45,0,C>, 1) (<45,0,D>, 1) (<45,0,F>,   28) (<45,0,H>, 12) (<45,0,J>, J) 
        (<46,0,A>, 0) (<46,0,B>, 12) (<46,0,C>, 1) (<46,0,D>, 1) (<46,0,F>,   28) (<46,0,H>, 32) (<46,0,J>, J) 
        (<47,0,A>, 1) (<47,0,B>, 12) (<47,0,C>, 1) (<47,0,D>, 1) (<47,0,F>,    1) (<47,0,H>, 32) (<47,0,J>, ?) 
        (<48,0,A>, 1) (<48,0,B>, 12) (<48,0,C>, 1) (<48,0,D>, 1) (<48,0,F>,    1) (<48,0,H>, 32) (<48,0,J>, ?) 
        (<49,0,A>, 1) (<49,0,B>, 12) (<49,0,C>, 1) (<49,0,D>, 0) (<49,0,F>,    1) (<49,0,H>, 32) (<49,0,J>, 0) 
        (<50,0,A>, 1) (<50,0,B>, 12) (<50,0,C>, 1) (<50,0,D>, 0) (<50,0,F>,    1) (<50,0,H>, 32) (<50,0,J>, ?) 
        (<51,0,A>, 1) (<51,0,B>, 12) (<51,0,C>, 1) (<51,0,D>, 1) (<51,0,F>,   25) (<51,0,H>, 32) (<51,0,J>, ?) 
        (<52,0,A>, 1) (<52,0,B>, 12) (<52,0,C>, 1) (<52,0,D>, 1) (<52,0,F>,   25) (<52,0,H>, 32) (<52,0,J>, ?) 
        (<53,0,A>, 1) (<53,0,B>, 12) (<53,0,C>, 1) (<53,0,D>, 0) (<53,0,F>,   26) (<53,0,H>, 32) (<53,0,J>, 0) 
        (<54,0,A>, 1) (<54,0,B>, 12) (<54,0,C>, 1) (<54,0,D>, 0) (<54,0,F>,   26) (<54,0,H>, 32) (<54,0,J>, ?) 
        (<55,0,A>, 1) (<55,0,B>, 12) (<55,0,C>, 1) (<55,0,D>, 1) (<55,0,F>,   28) (<55,0,H>, 30) (<55,0,J>, J) 
        (<56,0,A>, 1) (<56,0,B>, 12) (<56,0,C>, 1) (<56,0,D>, 1) (<56,0,F>,    0) (<56,0,H>, 32) (<56,0,J>, J) 
        (<57,0,A>, 1) (<57,0,B>, 12) (<57,0,C>, 1) (<57,0,D>, 1) (<57,0,F>,    0) (<57,0,H>,  1) (<57,0,J>, J) 
* Step 48: KnowledgePropagation WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          2.  f0(A,B,C,D,F,H,J)  -> f13(1,12,1,1,0,H,J)        True                                                 (1,1)   
          3.  f13(A,B,C,D,F,H,J) -> f13(A,B,C,D,1 + F,H,J)     [B >= 1 + F]                                         (12,1)  
          9.  f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [B >= 1 + F && C = 0]                                (1932,1)
          16. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J)     [B >= 1 + H && A = 0]                                (1202,1)
          23. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M)     [B >= 2 + F && D = 0]                                (12,1)  
          34. f13(A,B,C,D,F,H,J) -> f19(A,B,C,D,0,H,J)         [F >= B]                                             (1,1)   
          35. f19(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J)     [0 >= 1 + C && B >= 1 + F && M$ >= 0 && B >= 1 + N$] (1,2)   
          36. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [0 >= 1 + C && B >= 1 + F && M$ >= 0]                (1,2)   
          37. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [0 >= 1 + C && B >= 1 + F && 0 >= 1 + M$]            (1,2)   
          38. f19(A,B,C,D,F,H,J) -> f19(A,B,1,D,1 + F,H,J)     [C >= 1 && B >= 1 + F && M$ >= 0 && B >= 1 + N$]     (23,2)  
          39. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [C >= 1 && B >= 1 + F && M$ >= 0]                    (39,2)  
          40. f19(A,B,C,D,F,H,J) -> f19(A,B,0,D,1 + F,H,J)     [C >= 1 && B >= 1 + F && 0 >= 1 + M$]                (39,2)  
          41. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [0 >= 1 + A && B >= 1 + H && M$ >= 1 + N$]           (28,2)  
          42. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [0 >= 1 + A && B >= 1 + H]                           (28,2)  
          43. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J)     [0 >= 1 + A && B >= 1 + H]                           (28,2)  
          44. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [A >= 1 && B >= 1 + H && M$ >= 1 + N$]               (1202,2)
          45. f35(A,B,C,D,F,H,J) -> f35(1,B,C,D,F,1 + H,J)     [A >= 1 && B >= 1 + H]                               (1202,2)
          46. f35(A,B,C,D,F,H,J) -> f35(0,B,C,D,F,1 + H,J)     [A >= 1 && B >= 1 + H]                               (1202,2)
          47. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [0 >= 1 + D && B >= 2 + F && 0 >= 1 + M]             (1,2)   
          48. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [0 >= 1 + D && B >= 2 + F && M >= 1]                 (1,2)   
          49. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0)     [0 >= 1 + D && B >= 2 + F && M = 0]                  (1,2)   
          50. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M)     [0 >= 1 + D && B >= 2 + F]                           (1,2)   
          51. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [D >= 1 && B >= 2 + F && 0 >= 1 + M]                 (12,2)  
          52. f48(A,B,C,D,F,H,J) -> f48(A,B,C,1,1 + F,H,M)     [D >= 1 && B >= 2 + F && M >= 1]                     (12,2)  
          53. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,0)     [D >= 1 && B >= 2 + F && M = 0]                      (12,2)  
          54. f48(A,B,C,D,F,H,J) -> f48(A,B,C,0,1 + F,H,M)     [D >= 1 && B >= 2 + F]                               (12,2)  
          55. f35(A,B,C,D,F,H,J) -> f35(A,B,C,D,1 + F,2 + F,J) [H >= B && B >= 3 + F]                               (28,2)  
          56. f35(A,B,C,D,F,H,J) -> f48(A,B,C,D,0,H,J)         [H >= B && 2 + F >= B]                               (28,2)  
          57. f19(A,B,C,D,F,H,J) -> f35(A,B,C,D,0,1,J)         [F >= B && B >= 2]                                   (2,2)   
        Signature:
          {(f0,7);(f13,7);(f19,7);(f22,7);(f32,7);(f35,7);(f38,7);(f48,7);(f52,7);(f62,7);(f63,7);(f71,7)}
        Flow Graph:
          [2->{3},3->{3,34},9->{9,57},16->{16,55,56},23->{23},34->{9,35,36,37,38,39,40},35->{38,39,40,57},36->{9,57}
          ,37->{9,57},38->{38,39,40,57},39->{9,57},40->{9,57},41->{44,45,46,55,56},42->{44,45,46,55,56},43->{16,55,56}
          ,44->{44,45,46,55,56},45->{44,45,46,55,56},46->{16,55,56},47->{51,52,53,54},48->{51,52,53,54},49->{23}
          ,50->{23},51->{51,52,53,54},52->{51,52,53,54},53->{23},54->{23},55->{16,41,42,43,44,45,46},56->{23,47,48,49
          ,50,51,52,53,54},57->{16,41,42,43,44,45,46}]
        Sizebounds:
          (< 2,0,A>, 1) (< 2,0,B>, 12) (< 2,0,C>, 1) (< 2,0,D>, 1) (< 2,0,F>,    0) (< 2,0,H>,  H) (< 2,0,J>, J) 
          (< 3,0,A>, 1) (< 3,0,B>, 12) (< 3,0,C>, 1) (< 3,0,D>, 1) (< 3,0,F>,   12) (< 3,0,H>,  H) (< 3,0,J>, J) 
          (< 9,0,A>, 1) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 1) (< 9,0,F>, 1957) (< 9,0,H>,  H) (< 9,0,J>, J) 
          (<16,0,A>, 0) (<16,0,B>, 12) (<16,0,C>, 1) (<16,0,D>, 1) (<16,0,F>,   28) (<16,0,H>, 12) (<16,0,J>, J) 
          (<23,0,A>, 1) (<23,0,B>, 12) (<23,0,C>, 1) (<23,0,D>, 0) (<23,0,F>,   38) (<23,0,H>, 32) (<23,0,J>, ?) 
          (<34,0,A>, 1) (<34,0,B>, 12) (<34,0,C>, 1) (<34,0,D>, 1) (<34,0,F>,    0) (<34,0,H>,  H) (<34,0,J>, J) 
          (<35,0,A>, 1) (<35,0,B>, 12) (<35,0,C>, 1) (<35,0,D>, 1) (<35,0,F>,    1) (<35,0,H>,  H) (<35,0,J>, J) 
          (<36,0,A>, 1) (<36,0,B>, 12) (<36,0,C>, 0) (<36,0,D>, 1) (<36,0,F>,    1) (<36,0,H>,  H) (<36,0,J>, J) 
          (<37,0,A>, 1) (<37,0,B>, 12) (<37,0,C>, 0) (<37,0,D>, 1) (<37,0,F>,    1) (<37,0,H>,  H) (<37,0,J>, J) 
          (<38,0,A>, 1) (<38,0,B>, 12) (<38,0,C>, 1) (<38,0,D>, 1) (<38,0,F>,   24) (<38,0,H>,  H) (<38,0,J>, J) 
          (<39,0,A>, 1) (<39,0,B>, 12) (<39,0,C>, 0) (<39,0,D>, 1) (<39,0,F>,   25) (<39,0,H>,  H) (<39,0,J>, J) 
          (<40,0,A>, 1) (<40,0,B>, 12) (<40,0,C>, 0) (<40,0,D>, 1) (<40,0,F>,   25) (<40,0,H>,  H) (<40,0,J>, J) 
          (<41,0,A>, 1) (<41,0,B>, 12) (<41,0,C>, 1) (<41,0,D>, 1) (<41,0,F>,   28) (<41,0,H>, 31) (<41,0,J>, J) 
          (<42,0,A>, 1) (<42,0,B>, 12) (<42,0,C>, 1) (<42,0,D>, 1) (<42,0,F>,   28) (<42,0,H>, 31) (<42,0,J>, J) 
          (<43,0,A>, 0) (<43,0,B>, 12) (<43,0,C>, 1) (<43,0,D>, 1) (<43,0,F>,   28) (<43,0,H>, 31) (<43,0,J>, J) 
          (<44,0,A>, 1) (<44,0,B>, 12) (<44,0,C>, 1) (<44,0,D>, 1) (<44,0,F>,   28) (<44,0,H>, 12) (<44,0,J>, J) 
          (<45,0,A>, 1) (<45,0,B>, 12) (<45,0,C>, 1) (<45,0,D>, 1) (<45,0,F>,   28) (<45,0,H>, 12) (<45,0,J>, J) 
          (<46,0,A>, 0) (<46,0,B>, 12) (<46,0,C>, 1) (<46,0,D>, 1) (<46,0,F>,   28) (<46,0,H>, 32) (<46,0,J>, J) 
          (<47,0,A>, 1) (<47,0,B>, 12) (<47,0,C>, 1) (<47,0,D>, 1) (<47,0,F>,    1) (<47,0,H>, 32) (<47,0,J>, ?) 
          (<48,0,A>, 1) (<48,0,B>, 12) (<48,0,C>, 1) (<48,0,D>, 1) (<48,0,F>,    1) (<48,0,H>, 32) (<48,0,J>, ?) 
          (<49,0,A>, 1) (<49,0,B>, 12) (<49,0,C>, 1) (<49,0,D>, 0) (<49,0,F>,    1) (<49,0,H>, 32) (<49,0,J>, 0) 
          (<50,0,A>, 1) (<50,0,B>, 12) (<50,0,C>, 1) (<50,0,D>, 0) (<50,0,F>,    1) (<50,0,H>, 32) (<50,0,J>, ?) 
          (<51,0,A>, 1) (<51,0,B>, 12) (<51,0,C>, 1) (<51,0,D>, 1) (<51,0,F>,   25) (<51,0,H>, 32) (<51,0,J>, ?) 
          (<52,0,A>, 1) (<52,0,B>, 12) (<52,0,C>, 1) (<52,0,D>, 1) (<52,0,F>,   25) (<52,0,H>, 32) (<52,0,J>, ?) 
          (<53,0,A>, 1) (<53,0,B>, 12) (<53,0,C>, 1) (<53,0,D>, 0) (<53,0,F>,   26) (<53,0,H>, 32) (<53,0,J>, 0) 
          (<54,0,A>, 1) (<54,0,B>, 12) (<54,0,C>, 1) (<54,0,D>, 0) (<54,0,F>,   26) (<54,0,H>, 32) (<54,0,J>, ?) 
          (<55,0,A>, 1) (<55,0,B>, 12) (<55,0,C>, 1) (<55,0,D>, 1) (<55,0,F>,   28) (<55,0,H>, 30) (<55,0,J>, J) 
          (<56,0,A>, 1) (<56,0,B>, 12) (<56,0,C>, 1) (<56,0,D>, 1) (<56,0,F>,    0) (<56,0,H>, 32) (<56,0,J>, J) 
          (<57,0,A>, 1) (<57,0,B>, 12) (<57,0,C>, 1) (<57,0,D>, 1) (<57,0,F>,    0) (<57,0,H>,  1) (<57,0,J>, J) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        The problem is already solved.

WORST_CASE(?,O(1))