WORST_CASE(?,O(n^1)) * Step 1: RestrictVarsProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f0(A,B,C,D,E,F,G,H,I,J,K,L) -> f3(A,B,C,D,E,F,G,H,I,J,K,L) True (1,1) 1. f0(A,B,C,D,E,F,G,H,I,J,K,L) -> f4(A,B,C,D,E,F,G,H,I,J,K,L) True (1,1) 2. f0(A,B,C,D,E,F,G,H,I,J,K,L) -> f8(A,B,C,D,E,F,G,H,I,J,K,L) True (1,1) 3. f3(A,B,C,D,E,F,G,H,I,J,K,L) -> f4(A,B,D,D,F,F,A,B,I,J,K,L) [A >= 1 + B] (?,1) 4. f3(A,B,C,D,E,F,G,H,I,J,K,L) -> f4(A,B,D,D,F,F,A,B,I,J,K,L) [B >= 1 + A] (?,1) 5. f0(A,B,C,D,E,F,G,H,I,J,K,L) -> f3(F,D,D,D,F,F,A,B,I,J,K,L) True (1,1) 6. f0(A,B,C,D,E,F,G,H,I,J,K,L) -> f3(F,D,D,D,F,F,M,N,M,N,K,L) True (1,1) 7. f0(A,B,C,D,E,F,G,H,I,J,K,L) -> f8(O,P,D,M,F,N,A,B,M,N,O,P) True (1,1) 8. f3(A,B,C,D,E,F,G,H,I,J,K,L) -> f8(O,P,D,M,F,N,A,A,M,N,O,P) [A = B] (?,1) 9. f0(A,B,C,D,E,F,G,H,I,J,K,L) -> f3(1 + A,B,D,D,F,F,A,B,I,J,K,L) True (1,1) 10. f4(A,B,C,D,E,F,G,H,I,J,K,L) -> f3(1 + A,B,D,D,F,F,A,B,I,J,K,L) [B >= 1 + A] (?,1) 11. f0(A,B,C,D,E,F,G,H,I,J,K,L) -> f3(A,1 + B,D,D,F,F,A,B,I,J,K,L) True (1,1) 12. f4(A,B,C,D,E,F,G,H,I,J,K,L) -> f3(A,1 + B,D,D,F,F,A,B,I,J,K,L) [A >= B] (?,1) Signature: {(f0,12);(f3,12);(f4,12);(f8,12)} Flow Graph: [0->{3,4,8},1->{10,12},2->{},3->{10,12},4->{10,12},5->{3,4,8},6->{3,4,8},7->{},8->{},9->{3,4,8},10->{3,4 ,8},11->{3,4,8},12->{3,4,8}] + Applied Processor: RestrictVarsProcessor + Details: We removed the arguments [C,E,G,H,I,J,K,L] . * Step 2: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f0(A,B,D,F) -> f3(A,B,D,F) True (1,1) 1. f0(A,B,D,F) -> f4(A,B,D,F) True (1,1) 2. f0(A,B,D,F) -> f8(A,B,D,F) True (1,1) 3. f3(A,B,D,F) -> f4(A,B,D,F) [A >= 1 + B] (?,1) 4. f3(A,B,D,F) -> f4(A,B,D,F) [B >= 1 + A] (?,1) 5. f0(A,B,D,F) -> f3(F,D,D,F) True (1,1) 6. f0(A,B,D,F) -> f3(F,D,D,F) True (1,1) 7. f0(A,B,D,F) -> f8(O,P,M,N) True (1,1) 8. f3(A,B,D,F) -> f8(O,P,M,N) [A = B] (?,1) 9. f0(A,B,D,F) -> f3(1 + A,B,D,F) True (1,1) 10. f4(A,B,D,F) -> f3(1 + A,B,D,F) [B >= 1 + A] (?,1) 11. f0(A,B,D,F) -> f3(A,1 + B,D,F) True (1,1) 12. f4(A,B,D,F) -> f3(A,1 + B,D,F) [A >= B] (?,1) Signature: {(f0,4);(f3,4);(f4,4);(f8,4)} Flow Graph: [0->{3,4,8},1->{10,12},2->{},3->{10,12},4->{10,12},5->{3,4,8},6->{3,4,8},7->{},8->{},9->{3,4,8},10->{3,4 ,8},11->{3,4,8},12->{3,4,8}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (< 0,0,A>, A, .= 0) (< 0,0,B>, B, .= 0) (< 0,0,D>, D, .= 0) (< 0,0,F>, F, .= 0) (< 1,0,A>, A, .= 0) (< 1,0,B>, B, .= 0) (< 1,0,D>, D, .= 0) (< 1,0,F>, F, .= 0) (< 2,0,A>, A, .= 0) (< 2,0,B>, B, .= 0) (< 2,0,D>, D, .= 0) (< 2,0,F>, F, .= 0) (< 3,0,A>, A, .= 0) (< 3,0,B>, B, .= 0) (< 3,0,D>, D, .= 0) (< 3,0,F>, F, .= 0) (< 4,0,A>, A, .= 0) (< 4,0,B>, B, .= 0) (< 4,0,D>, D, .= 0) (< 4,0,F>, F, .= 0) (< 5,0,A>, F, .= 0) (< 5,0,B>, D, .= 0) (< 5,0,D>, D, .= 0) (< 5,0,F>, F, .= 0) (< 6,0,A>, F, .= 0) (< 6,0,B>, D, .= 0) (< 6,0,D>, D, .= 0) (< 6,0,F>, F, .= 0) (< 7,0,A>, ?, .?) (< 7,0,B>, ?, .?) (< 7,0,D>, ?, .?) (< 7,0,F>, ?, .?) (< 8,0,A>, ?, .?) (< 8,0,B>, ?, .?) (< 8,0,D>, ?, .?) (< 8,0,F>, ?, .?) (< 9,0,A>, 1 + A, .+ 1) (< 9,0,B>, B, .= 0) (< 9,0,D>, D, .= 0) (< 9,0,F>, F, .= 0) (<10,0,A>, 1 + A, .+ 1) (<10,0,B>, B, .= 0) (<10,0,D>, D, .= 0) (<10,0,F>, F, .= 0) (<11,0,A>, A, .= 0) (<11,0,B>, 1 + B, .+ 1) (<11,0,D>, D, .= 0) (<11,0,F>, F, .= 0) (<12,0,A>, A, .= 0) (<12,0,B>, 1 + B, .+ 1) (<12,0,D>, D, .= 0) (<12,0,F>, F, .= 0) * Step 3: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f0(A,B,D,F) -> f3(A,B,D,F) True (1,1) 1. f0(A,B,D,F) -> f4(A,B,D,F) True (1,1) 2. f0(A,B,D,F) -> f8(A,B,D,F) True (1,1) 3. f3(A,B,D,F) -> f4(A,B,D,F) [A >= 1 + B] (?,1) 4. f3(A,B,D,F) -> f4(A,B,D,F) [B >= 1 + A] (?,1) 5. f0(A,B,D,F) -> f3(F,D,D,F) True (1,1) 6. f0(A,B,D,F) -> f3(F,D,D,F) True (1,1) 7. f0(A,B,D,F) -> f8(O,P,M,N) True (1,1) 8. f3(A,B,D,F) -> f8(O,P,M,N) [A = B] (?,1) 9. f0(A,B,D,F) -> f3(1 + A,B,D,F) True (1,1) 10. f4(A,B,D,F) -> f3(1 + A,B,D,F) [B >= 1 + A] (?,1) 11. f0(A,B,D,F) -> f3(A,1 + B,D,F) True (1,1) 12. f4(A,B,D,F) -> f3(A,1 + B,D,F) [A >= B] (?,1) Signature: {(f0,4);(f3,4);(f4,4);(f8,4)} Flow Graph: [0->{3,4,8},1->{10,12},2->{},3->{10,12},4->{10,12},5->{3,4,8},6->{3,4,8},7->{},8->{},9->{3,4,8},10->{3,4 ,8},11->{3,4,8},12->{3,4,8}] Sizebounds: (< 0,0,A>, ?) (< 0,0,B>, ?) (< 0,0,D>, ?) (< 0,0,F>, ?) (< 1,0,A>, ?) (< 1,0,B>, ?) (< 1,0,D>, ?) (< 1,0,F>, ?) (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,D>, ?) (< 2,0,F>, ?) (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,D>, ?) (< 3,0,F>, ?) (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,D>, ?) (< 4,0,F>, ?) (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,0,D>, ?) (< 5,0,F>, ?) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,D>, ?) (< 6,0,F>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,D>, ?) (< 7,0,F>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,D>, ?) (< 8,0,F>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,D>, ?) (< 9,0,F>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,D>, ?) (<10,0,F>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,D>, ?) (<11,0,F>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,D>, ?) (<12,0,F>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,D>, D) (< 0,0,F>, F) (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,D>, D) (< 1,0,F>, F) (< 2,0,A>, A) (< 2,0,B>, B) (< 2,0,D>, D) (< 2,0,F>, F) (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,D>, D) (< 3,0,F>, F) (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,D>, D) (< 4,0,F>, F) (< 5,0,A>, F) (< 5,0,B>, D) (< 5,0,D>, D) (< 5,0,F>, F) (< 6,0,A>, F) (< 6,0,B>, D) (< 6,0,D>, D) (< 6,0,F>, F) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,D>, ?) (< 7,0,F>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,D>, ?) (< 8,0,F>, ?) (< 9,0,A>, 1 + A) (< 9,0,B>, B) (< 9,0,D>, D) (< 9,0,F>, F) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,D>, D) (<10,0,F>, F) (<11,0,A>, A) (<11,0,B>, 1 + B) (<11,0,D>, D) (<11,0,F>, F) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,D>, D) (<12,0,F>, F) * Step 4: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f0(A,B,D,F) -> f3(A,B,D,F) True (1,1) 1. f0(A,B,D,F) -> f4(A,B,D,F) True (1,1) 2. f0(A,B,D,F) -> f8(A,B,D,F) True (1,1) 3. f3(A,B,D,F) -> f4(A,B,D,F) [A >= 1 + B] (?,1) 4. f3(A,B,D,F) -> f4(A,B,D,F) [B >= 1 + A] (?,1) 5. f0(A,B,D,F) -> f3(F,D,D,F) True (1,1) 6. f0(A,B,D,F) -> f3(F,D,D,F) True (1,1) 7. f0(A,B,D,F) -> f8(O,P,M,N) True (1,1) 8. f3(A,B,D,F) -> f8(O,P,M,N) [A = B] (?,1) 9. f0(A,B,D,F) -> f3(1 + A,B,D,F) True (1,1) 10. f4(A,B,D,F) -> f3(1 + A,B,D,F) [B >= 1 + A] (?,1) 11. f0(A,B,D,F) -> f3(A,1 + B,D,F) True (1,1) 12. f4(A,B,D,F) -> f3(A,1 + B,D,F) [A >= B] (?,1) Signature: {(f0,4);(f3,4);(f4,4);(f8,4)} Flow Graph: [0->{3,4,8},1->{10,12},2->{},3->{10,12},4->{10,12},5->{3,4,8},6->{3,4,8},7->{},8->{},9->{3,4,8},10->{3,4 ,8},11->{3,4,8},12->{3,4,8}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,D>, D) (< 0,0,F>, F) (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,D>, D) (< 1,0,F>, F) (< 2,0,A>, A) (< 2,0,B>, B) (< 2,0,D>, D) (< 2,0,F>, F) (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,D>, D) (< 3,0,F>, F) (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,D>, D) (< 4,0,F>, F) (< 5,0,A>, F) (< 5,0,B>, D) (< 5,0,D>, D) (< 5,0,F>, F) (< 6,0,A>, F) (< 6,0,B>, D) (< 6,0,D>, D) (< 6,0,F>, F) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,D>, ?) (< 7,0,F>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,D>, ?) (< 8,0,F>, ?) (< 9,0,A>, 1 + A) (< 9,0,B>, B) (< 9,0,D>, D) (< 9,0,F>, F) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,D>, D) (<10,0,F>, F) (<11,0,A>, A) (<11,0,B>, 1 + B) (<11,0,D>, D) (<11,0,F>, F) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,D>, D) (<12,0,F>, F) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(3,10),(4,12),(10,3)] * Step 5: LeafRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f0(A,B,D,F) -> f3(A,B,D,F) True (1,1) 1. f0(A,B,D,F) -> f4(A,B,D,F) True (1,1) 2. f0(A,B,D,F) -> f8(A,B,D,F) True (1,1) 3. f3(A,B,D,F) -> f4(A,B,D,F) [A >= 1 + B] (?,1) 4. f3(A,B,D,F) -> f4(A,B,D,F) [B >= 1 + A] (?,1) 5. f0(A,B,D,F) -> f3(F,D,D,F) True (1,1) 6. f0(A,B,D,F) -> f3(F,D,D,F) True (1,1) 7. f0(A,B,D,F) -> f8(O,P,M,N) True (1,1) 8. f3(A,B,D,F) -> f8(O,P,M,N) [A = B] (?,1) 9. f0(A,B,D,F) -> f3(1 + A,B,D,F) True (1,1) 10. f4(A,B,D,F) -> f3(1 + A,B,D,F) [B >= 1 + A] (?,1) 11. f0(A,B,D,F) -> f3(A,1 + B,D,F) True (1,1) 12. f4(A,B,D,F) -> f3(A,1 + B,D,F) [A >= B] (?,1) Signature: {(f0,4);(f3,4);(f4,4);(f8,4)} Flow Graph: [0->{3,4,8},1->{10,12},2->{},3->{12},4->{10},5->{3,4,8},6->{3,4,8},7->{},8->{},9->{3,4,8},10->{4,8},11->{3 ,4,8},12->{3,4,8}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,D>, D) (< 0,0,F>, F) (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,D>, D) (< 1,0,F>, F) (< 2,0,A>, A) (< 2,0,B>, B) (< 2,0,D>, D) (< 2,0,F>, F) (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,D>, D) (< 3,0,F>, F) (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,D>, D) (< 4,0,F>, F) (< 5,0,A>, F) (< 5,0,B>, D) (< 5,0,D>, D) (< 5,0,F>, F) (< 6,0,A>, F) (< 6,0,B>, D) (< 6,0,D>, D) (< 6,0,F>, F) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,D>, ?) (< 7,0,F>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,D>, ?) (< 8,0,F>, ?) (< 9,0,A>, 1 + A) (< 9,0,B>, B) (< 9,0,D>, D) (< 9,0,F>, F) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,D>, D) (<10,0,F>, F) (<11,0,A>, A) (<11,0,B>, 1 + B) (<11,0,D>, D) (<11,0,F>, F) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,D>, D) (<12,0,F>, F) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [8] * Step 6: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f0(A,B,D,F) -> f3(A,B,D,F) True (1,1) 1. f0(A,B,D,F) -> f4(A,B,D,F) True (1,1) 2. f0(A,B,D,F) -> f8(A,B,D,F) True (1,1) 3. f3(A,B,D,F) -> f4(A,B,D,F) [A >= 1 + B] (?,1) 4. f3(A,B,D,F) -> f4(A,B,D,F) [B >= 1 + A] (?,1) 5. f0(A,B,D,F) -> f3(F,D,D,F) True (1,1) 6. f0(A,B,D,F) -> f3(F,D,D,F) True (1,1) 7. f0(A,B,D,F) -> f8(O,P,M,N) True (1,1) 9. f0(A,B,D,F) -> f3(1 + A,B,D,F) True (1,1) 10. f4(A,B,D,F) -> f3(1 + A,B,D,F) [B >= 1 + A] (?,1) 11. f0(A,B,D,F) -> f3(A,1 + B,D,F) True (1,1) 12. f4(A,B,D,F) -> f3(A,1 + B,D,F) [A >= B] (?,1) Signature: {(f0,4);(f3,4);(f4,4);(f8,4)} Flow Graph: [0->{3,4},1->{10,12},2->{},3->{12},4->{10},5->{3,4},6->{3,4},7->{},9->{3,4},10->{4},11->{3,4},12->{3,4}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,D>, D) (< 0,0,F>, F) (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,D>, D) (< 1,0,F>, F) (< 2,0,A>, A) (< 2,0,B>, B) (< 2,0,D>, D) (< 2,0,F>, F) (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,D>, D) (< 3,0,F>, F) (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,D>, D) (< 4,0,F>, F) (< 5,0,A>, F) (< 5,0,B>, D) (< 5,0,D>, D) (< 5,0,F>, F) (< 6,0,A>, F) (< 6,0,B>, D) (< 6,0,D>, D) (< 6,0,F>, F) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,D>, ?) (< 7,0,F>, ?) (< 9,0,A>, 1 + A) (< 9,0,B>, B) (< 9,0,D>, D) (< 9,0,F>, F) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,D>, D) (<10,0,F>, F) (<11,0,A>, A) (<11,0,B>, 1 + B) (<11,0,D>, D) (<11,0,F>, F) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,D>, D) (<12,0,F>, F) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [3,12], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f3) = 1 + x1 + -1*x2 p(f4) = 1 + x1 + -1*x2 The following rules are strictly oriented: [A >= B] ==> f4(A,B,D,F) = 1 + A + -1*B > A + -1*B = f3(A,1 + B,D,F) The following rules are weakly oriented: [A >= 1 + B] ==> f3(A,B,D,F) = 1 + A + -1*B >= 1 + A + -1*B = f4(A,B,D,F) We use the following global sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,D>, D) (< 0,0,F>, F) (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,D>, D) (< 1,0,F>, F) (< 2,0,A>, A) (< 2,0,B>, B) (< 2,0,D>, D) (< 2,0,F>, F) (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,D>, D) (< 3,0,F>, F) (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,D>, D) (< 4,0,F>, F) (< 5,0,A>, F) (< 5,0,B>, D) (< 5,0,D>, D) (< 5,0,F>, F) (< 6,0,A>, F) (< 6,0,B>, D) (< 6,0,D>, D) (< 6,0,F>, F) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,D>, ?) (< 7,0,F>, ?) (< 9,0,A>, 1 + A) (< 9,0,B>, B) (< 9,0,D>, D) (< 9,0,F>, F) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,D>, D) (<10,0,F>, F) (<11,0,A>, A) (<11,0,B>, 1 + B) (<11,0,D>, D) (<11,0,F>, F) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,D>, D) (<12,0,F>, F) * Step 7: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f0(A,B,D,F) -> f3(A,B,D,F) True (1,1) 1. f0(A,B,D,F) -> f4(A,B,D,F) True (1,1) 2. f0(A,B,D,F) -> f8(A,B,D,F) True (1,1) 3. f3(A,B,D,F) -> f4(A,B,D,F) [A >= 1 + B] (?,1) 4. f3(A,B,D,F) -> f4(A,B,D,F) [B >= 1 + A] (?,1) 5. f0(A,B,D,F) -> f3(F,D,D,F) True (1,1) 6. f0(A,B,D,F) -> f3(F,D,D,F) True (1,1) 7. f0(A,B,D,F) -> f8(O,P,M,N) True (1,1) 9. f0(A,B,D,F) -> f3(1 + A,B,D,F) True (1,1) 10. f4(A,B,D,F) -> f3(1 + A,B,D,F) [B >= 1 + A] (?,1) 11. f0(A,B,D,F) -> f3(A,1 + B,D,F) True (1,1) 12. f4(A,B,D,F) -> f3(A,1 + B,D,F) [A >= B] (8 + 4*A + 4*B + 2*D + 2*F,1) Signature: {(f0,4);(f3,4);(f4,4);(f8,4)} Flow Graph: [0->{3,4},1->{10,12},2->{},3->{12},4->{10},5->{3,4},6->{3,4},7->{},9->{3,4},10->{4},11->{3,4},12->{3,4}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,D>, D) (< 0,0,F>, F) (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,D>, D) (< 1,0,F>, F) (< 2,0,A>, A) (< 2,0,B>, B) (< 2,0,D>, D) (< 2,0,F>, F) (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,D>, D) (< 3,0,F>, F) (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,D>, D) (< 4,0,F>, F) (< 5,0,A>, F) (< 5,0,B>, D) (< 5,0,D>, D) (< 5,0,F>, F) (< 6,0,A>, F) (< 6,0,B>, D) (< 6,0,D>, D) (< 6,0,F>, F) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,D>, ?) (< 7,0,F>, ?) (< 9,0,A>, 1 + A) (< 9,0,B>, B) (< 9,0,D>, D) (< 9,0,F>, F) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,D>, D) (<10,0,F>, F) (<11,0,A>, A) (<11,0,B>, 1 + B) (<11,0,D>, D) (<11,0,F>, F) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,D>, D) (<12,0,F>, F) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 8: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f0(A,B,D,F) -> f3(A,B,D,F) True (1,1) 1. f0(A,B,D,F) -> f4(A,B,D,F) True (1,1) 2. f0(A,B,D,F) -> f8(A,B,D,F) True (1,1) 3. f3(A,B,D,F) -> f4(A,B,D,F) [A >= 1 + B] (13 + 4*A + 4*B + 2*D + 2*F,1) 4. f3(A,B,D,F) -> f4(A,B,D,F) [B >= 1 + A] (?,1) 5. f0(A,B,D,F) -> f3(F,D,D,F) True (1,1) 6. f0(A,B,D,F) -> f3(F,D,D,F) True (1,1) 7. f0(A,B,D,F) -> f8(O,P,M,N) True (1,1) 9. f0(A,B,D,F) -> f3(1 + A,B,D,F) True (1,1) 10. f4(A,B,D,F) -> f3(1 + A,B,D,F) [B >= 1 + A] (?,1) 11. f0(A,B,D,F) -> f3(A,1 + B,D,F) True (1,1) 12. f4(A,B,D,F) -> f3(A,1 + B,D,F) [A >= B] (8 + 4*A + 4*B + 2*D + 2*F,1) Signature: {(f0,4);(f3,4);(f4,4);(f8,4)} Flow Graph: [0->{3,4},1->{10,12},2->{},3->{12},4->{10},5->{3,4},6->{3,4},7->{},9->{3,4},10->{4},11->{3,4},12->{3,4}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,D>, D) (< 0,0,F>, F) (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,D>, D) (< 1,0,F>, F) (< 2,0,A>, A) (< 2,0,B>, B) (< 2,0,D>, D) (< 2,0,F>, F) (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,D>, D) (< 3,0,F>, F) (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,D>, D) (< 4,0,F>, F) (< 5,0,A>, F) (< 5,0,B>, D) (< 5,0,D>, D) (< 5,0,F>, F) (< 6,0,A>, F) (< 6,0,B>, D) (< 6,0,D>, D) (< 6,0,F>, F) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,D>, ?) (< 7,0,F>, ?) (< 9,0,A>, 1 + A) (< 9,0,B>, B) (< 9,0,D>, D) (< 9,0,F>, F) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,D>, D) (<10,0,F>, F) (<11,0,A>, A) (<11,0,B>, 1 + B) (<11,0,D>, D) (<11,0,F>, F) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,D>, D) (<12,0,F>, F) + Applied Processor: ChainProcessor False [0,1,2,3,4,5,6,7,9,10,11,12] + Details: We chained rule 0 to obtain the rules [13,14] . * Step 9: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 1. f0(A,B,D,F) -> f4(A,B,D,F) True (1,1) 2. f0(A,B,D,F) -> f8(A,B,D,F) True (1,1) 3. f3(A,B,D,F) -> f4(A,B,D,F) [A >= 1 + B] (13 + 4*A + 4*B + 2*D + 2*F,1) 4. f3(A,B,D,F) -> f4(A,B,D,F) [B >= 1 + A] (?,1) 5. f0(A,B,D,F) -> f3(F,D,D,F) True (1,1) 6. f0(A,B,D,F) -> f3(F,D,D,F) True (1,1) 7. f0(A,B,D,F) -> f8(O,P,M,N) True (1,1) 9. f0(A,B,D,F) -> f3(1 + A,B,D,F) True (1,1) 10. f4(A,B,D,F) -> f3(1 + A,B,D,F) [B >= 1 + A] (?,1) 11. f0(A,B,D,F) -> f3(A,1 + B,D,F) True (1,1) 12. f4(A,B,D,F) -> f3(A,1 + B,D,F) [A >= B] (8 + 4*A + 4*B + 2*D + 2*F,1) 13. f0(A,B,D,F) -> f4(A,B,D,F) [A >= 1 + B] (1,2) 14. f0(A,B,D,F) -> f4(A,B,D,F) [B >= 1 + A] (1,2) Signature: {(f0,4);(f3,4);(f4,4);(f8,4)} Flow Graph: [1->{10,12},2->{},3->{10,12},4->{10,12},5->{3,4},6->{3,4},7->{},9->{3,4},10->{3,4},11->{3,4},12->{3,4} ,13->{10,12},14->{10,12}] Sizebounds: (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,D>, D) (< 1,0,F>, F) (< 2,0,A>, A) (< 2,0,B>, B) (< 2,0,D>, D) (< 2,0,F>, F) (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,D>, D) (< 3,0,F>, F) (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,D>, D) (< 4,0,F>, F) (< 5,0,A>, F) (< 5,0,B>, D) (< 5,0,D>, D) (< 5,0,F>, F) (< 6,0,A>, F) (< 6,0,B>, D) (< 6,0,D>, D) (< 6,0,F>, F) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,D>, ?) (< 7,0,F>, ?) (< 9,0,A>, 1 + A) (< 9,0,B>, B) (< 9,0,D>, D) (< 9,0,F>, F) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,D>, D) (<10,0,F>, F) (<11,0,A>, A) (<11,0,B>, 1 + B) (<11,0,D>, D) (<11,0,F>, F) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,D>, D) (<12,0,F>, F) (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,D>, D) (<13,0,F>, F) (<14,0,A>, ?) (<14,0,B>, ?) (<14,0,D>, D) (<14,0,F>, F) + Applied Processor: ChainProcessor False [1,2,3,4,5,6,7,9,10,11,12,13,14] + Details: We chained rule 1 to obtain the rules [15,16] . * Step 10: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 2. f0(A,B,D,F) -> f8(A,B,D,F) True (1,1) 3. f3(A,B,D,F) -> f4(A,B,D,F) [A >= 1 + B] (13 + 4*A + 4*B + 2*D + 2*F,1) 4. f3(A,B,D,F) -> f4(A,B,D,F) [B >= 1 + A] (?,1) 5. f0(A,B,D,F) -> f3(F,D,D,F) True (1,1) 6. f0(A,B,D,F) -> f3(F,D,D,F) True (1,1) 7. f0(A,B,D,F) -> f8(O,P,M,N) True (1,1) 9. f0(A,B,D,F) -> f3(1 + A,B,D,F) True (1,1) 10. f4(A,B,D,F) -> f3(1 + A,B,D,F) [B >= 1 + A] (?,1) 11. f0(A,B,D,F) -> f3(A,1 + B,D,F) True (1,1) 12. f4(A,B,D,F) -> f3(A,1 + B,D,F) [A >= B] (8 + 4*A + 4*B + 2*D + 2*F,1) 13. f0(A,B,D,F) -> f4(A,B,D,F) [A >= 1 + B] (1,2) 14. f0(A,B,D,F) -> f4(A,B,D,F) [B >= 1 + A] (1,2) 15. f0(A,B,D,F) -> f3(1 + A,B,D,F) [B >= 1 + A] (1,2) 16. f0(A,B,D,F) -> f3(A,1 + B,D,F) [A >= B] (1,2) Signature: {(f0,4);(f3,4);(f4,4);(f8,4)} Flow Graph: [2->{},3->{10,12},4->{10,12},5->{3,4},6->{3,4},7->{},9->{3,4},10->{3,4},11->{3,4},12->{3,4},13->{10,12} ,14->{10,12},15->{3,4},16->{3,4}] Sizebounds: (< 2,0,A>, A) (< 2,0,B>, B) (< 2,0,D>, D) (< 2,0,F>, F) (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,D>, D) (< 3,0,F>, F) (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,D>, D) (< 4,0,F>, F) (< 5,0,A>, F) (< 5,0,B>, D) (< 5,0,D>, D) (< 5,0,F>, F) (< 6,0,A>, F) (< 6,0,B>, D) (< 6,0,D>, D) (< 6,0,F>, F) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,D>, ?) (< 7,0,F>, ?) (< 9,0,A>, 1 + A) (< 9,0,B>, B) (< 9,0,D>, D) (< 9,0,F>, F) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,D>, D) (<10,0,F>, F) (<11,0,A>, A) (<11,0,B>, 1 + B) (<11,0,D>, D) (<11,0,F>, F) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,D>, D) (<12,0,F>, F) (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,D>, D) (<13,0,F>, F) (<14,0,A>, ?) (<14,0,B>, ?) (<14,0,D>, D) (<14,0,F>, F) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,D>, D) (<15,0,F>, F) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,D>, D) (<16,0,F>, F) + Applied Processor: ChainProcessor False [2,3,4,5,6,7,9,10,11,12,13,14,15,16] + Details: We chained rule 3 to obtain the rules [17,18] . * Step 11: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 2. f0(A,B,D,F) -> f8(A,B,D,F) True (1,1) 4. f3(A,B,D,F) -> f4(A,B,D,F) [B >= 1 + A] (?,1) 5. f0(A,B,D,F) -> f3(F,D,D,F) True (1,1) 6. f0(A,B,D,F) -> f3(F,D,D,F) True (1,1) 7. f0(A,B,D,F) -> f8(O,P,M,N) True (1,1) 9. f0(A,B,D,F) -> f3(1 + A,B,D,F) True (1,1) 10. f4(A,B,D,F) -> f3(1 + A,B,D,F) [B >= 1 + A] (?,1) 11. f0(A,B,D,F) -> f3(A,1 + B,D,F) True (1,1) 12. f4(A,B,D,F) -> f3(A,1 + B,D,F) [A >= B] (8 + 4*A + 4*B + 2*D + 2*F,1) 13. f0(A,B,D,F) -> f4(A,B,D,F) [A >= 1 + B] (1,2) 14. f0(A,B,D,F) -> f4(A,B,D,F) [B >= 1 + A] (1,2) 15. f0(A,B,D,F) -> f3(1 + A,B,D,F) [B >= 1 + A] (1,2) 16. f0(A,B,D,F) -> f3(A,1 + B,D,F) [A >= B] (1,2) 17. f3(A,B,D,F) -> f3(1 + A,B,D,F) [A >= 1 + B && B >= 1 + A] (13 + 4*A + 4*B + 2*D + 2*F,2) 18. f3(A,B,D,F) -> f3(A,1 + B,D,F) [A >= 1 + B && A >= B] (13 + 4*A + 4*B + 2*D + 2*F,2) Signature: {(f0,4);(f3,4);(f4,4);(f8,4)} Flow Graph: [2->{},4->{10,12},5->{4,17,18},6->{4,17,18},7->{},9->{4,17,18},10->{4,17,18},11->{4,17,18},12->{4,17,18} ,13->{10,12},14->{10,12},15->{4,17,18},16->{4,17,18},17->{4,17,18},18->{4,17,18}] Sizebounds: (< 2,0,A>, A) (< 2,0,B>, B) (< 2,0,D>, D) (< 2,0,F>, F) (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,D>, D) (< 4,0,F>, F) (< 5,0,A>, F) (< 5,0,B>, D) (< 5,0,D>, D) (< 5,0,F>, F) (< 6,0,A>, F) (< 6,0,B>, D) (< 6,0,D>, D) (< 6,0,F>, F) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,D>, ?) (< 7,0,F>, ?) (< 9,0,A>, 1 + A) (< 9,0,B>, B) (< 9,0,D>, D) (< 9,0,F>, F) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,D>, D) (<10,0,F>, F) (<11,0,A>, A) (<11,0,B>, 1 + B) (<11,0,D>, D) (<11,0,F>, F) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,D>, D) (<12,0,F>, F) (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,D>, D) (<13,0,F>, F) (<14,0,A>, ?) (<14,0,B>, ?) (<14,0,D>, D) (<14,0,F>, F) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,D>, D) (<15,0,F>, F) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,D>, D) (<16,0,F>, F) (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,D>, D) (<17,0,F>, F) (<18,0,A>, ?) (<18,0,B>, ?) (<18,0,D>, D) (<18,0,F>, F) + Applied Processor: ChainProcessor False [2,4,5,6,7,9,10,11,12,13,14,15,16,17,18] + Details: We chained rule 4 to obtain the rules [19,20] . * Step 12: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 2. f0(A,B,D,F) -> f8(A,B,D,F) True (1,1) 5. f0(A,B,D,F) -> f3(F,D,D,F) True (1,1) 6. f0(A,B,D,F) -> f3(F,D,D,F) True (1,1) 7. f0(A,B,D,F) -> f8(O,P,M,N) True (1,1) 9. f0(A,B,D,F) -> f3(1 + A,B,D,F) True (1,1) 10. f4(A,B,D,F) -> f3(1 + A,B,D,F) [B >= 1 + A] (?,1) 11. f0(A,B,D,F) -> f3(A,1 + B,D,F) True (1,1) 12. f4(A,B,D,F) -> f3(A,1 + B,D,F) [A >= B] (8 + 4*A + 4*B + 2*D + 2*F,1) 13. f0(A,B,D,F) -> f4(A,B,D,F) [A >= 1 + B] (1,2) 14. f0(A,B,D,F) -> f4(A,B,D,F) [B >= 1 + A] (1,2) 15. f0(A,B,D,F) -> f3(1 + A,B,D,F) [B >= 1 + A] (1,2) 16. f0(A,B,D,F) -> f3(A,1 + B,D,F) [A >= B] (1,2) 17. f3(A,B,D,F) -> f3(1 + A,B,D,F) [A >= 1 + B && B >= 1 + A] (13 + 4*A + 4*B + 2*D + 2*F,2) 18. f3(A,B,D,F) -> f3(A,1 + B,D,F) [A >= 1 + B && A >= B] (13 + 4*A + 4*B + 2*D + 2*F,2) 19. f3(A,B,D,F) -> f3(1 + A,B,D,F) [B >= 1 + A && B >= 1 + A] (?,2) 20. f3(A,B,D,F) -> f3(A,1 + B,D,F) [B >= 1 + A && A >= B] (?,2) Signature: {(f0,4);(f3,4);(f4,4);(f8,4)} Flow Graph: [2->{},5->{17,18,19,20},6->{17,18,19,20},7->{},9->{17,18,19,20},10->{17,18,19,20},11->{17,18,19,20} ,12->{17,18,19,20},13->{10,12},14->{10,12},15->{17,18,19,20},16->{17,18,19,20},17->{17,18,19,20},18->{17,18 ,19,20},19->{17,18,19,20},20->{17,18,19,20}] Sizebounds: (< 2,0,A>, A) (< 2,0,B>, B) (< 2,0,D>, D) (< 2,0,F>, F) (< 5,0,A>, F) (< 5,0,B>, D) (< 5,0,D>, D) (< 5,0,F>, F) (< 6,0,A>, F) (< 6,0,B>, D) (< 6,0,D>, D) (< 6,0,F>, F) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,D>, ?) (< 7,0,F>, ?) (< 9,0,A>, 1 + A) (< 9,0,B>, B) (< 9,0,D>, D) (< 9,0,F>, F) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,D>, D) (<10,0,F>, F) (<11,0,A>, A) (<11,0,B>, 1 + B) (<11,0,D>, D) (<11,0,F>, F) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,D>, D) (<12,0,F>, F) (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,D>, D) (<13,0,F>, F) (<14,0,A>, ?) (<14,0,B>, ?) (<14,0,D>, D) (<14,0,F>, F) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,D>, D) (<15,0,F>, F) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,D>, D) (<16,0,F>, F) (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,D>, D) (<17,0,F>, F) (<18,0,A>, ?) (<18,0,B>, ?) (<18,0,D>, D) (<18,0,F>, F) (<19,0,A>, ?) (<19,0,B>, ?) (<19,0,D>, D) (<19,0,F>, F) (<20,0,A>, ?) (<20,0,B>, ?) (<20,0,D>, D) (<20,0,F>, F) + Applied Processor: ChainProcessor False [2,5,6,7,9,10,11,12,13,14,15,16,17,18,19,20] + Details: We chained rule 13 to obtain the rules [21,22] . * Step 13: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 2. f0(A,B,D,F) -> f8(A,B,D,F) True (1,1) 5. f0(A,B,D,F) -> f3(F,D,D,F) True (1,1) 6. f0(A,B,D,F) -> f3(F,D,D,F) True (1,1) 7. f0(A,B,D,F) -> f8(O,P,M,N) True (1,1) 9. f0(A,B,D,F) -> f3(1 + A,B,D,F) True (1,1) 10. f4(A,B,D,F) -> f3(1 + A,B,D,F) [B >= 1 + A] (?,1) 11. f0(A,B,D,F) -> f3(A,1 + B,D,F) True (1,1) 12. f4(A,B,D,F) -> f3(A,1 + B,D,F) [A >= B] (8 + 4*A + 4*B + 2*D + 2*F,1) 14. f0(A,B,D,F) -> f4(A,B,D,F) [B >= 1 + A] (1,2) 15. f0(A,B,D,F) -> f3(1 + A,B,D,F) [B >= 1 + A] (1,2) 16. f0(A,B,D,F) -> f3(A,1 + B,D,F) [A >= B] (1,2) 17. f3(A,B,D,F) -> f3(1 + A,B,D,F) [A >= 1 + B && B >= 1 + A] (13 + 4*A + 4*B + 2*D + 2*F,2) 18. f3(A,B,D,F) -> f3(A,1 + B,D,F) [A >= 1 + B && A >= B] (13 + 4*A + 4*B + 2*D + 2*F,2) 19. f3(A,B,D,F) -> f3(1 + A,B,D,F) [B >= 1 + A && B >= 1 + A] (?,2) 20. f3(A,B,D,F) -> f3(A,1 + B,D,F) [B >= 1 + A && A >= B] (?,2) 21. f0(A,B,D,F) -> f3(1 + A,B,D,F) [A >= 1 + B && B >= 1 + A] (1,3) 22. f0(A,B,D,F) -> f3(A,1 + B,D,F) [A >= 1 + B && A >= B] (1,3) Signature: {(f0,4);(f3,4);(f4,4);(f8,4)} Flow Graph: [2->{},5->{17,18,19,20},6->{17,18,19,20},7->{},9->{17,18,19,20},10->{17,18,19,20},11->{17,18,19,20} ,12->{17,18,19,20},14->{10,12},15->{17,18,19,20},16->{17,18,19,20},17->{17,18,19,20},18->{17,18,19,20} ,19->{17,18,19,20},20->{17,18,19,20},21->{17,18,19,20},22->{17,18,19,20}] Sizebounds: (< 2,0,A>, A) (< 2,0,B>, B) (< 2,0,D>, D) (< 2,0,F>, F) (< 5,0,A>, F) (< 5,0,B>, D) (< 5,0,D>, D) (< 5,0,F>, F) (< 6,0,A>, F) (< 6,0,B>, D) (< 6,0,D>, D) (< 6,0,F>, F) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,D>, ?) (< 7,0,F>, ?) (< 9,0,A>, 1 + A) (< 9,0,B>, B) (< 9,0,D>, D) (< 9,0,F>, F) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,D>, D) (<10,0,F>, F) (<11,0,A>, A) (<11,0,B>, 1 + B) (<11,0,D>, D) (<11,0,F>, F) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,D>, D) (<12,0,F>, F) (<14,0,A>, ?) (<14,0,B>, ?) (<14,0,D>, D) (<14,0,F>, F) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,D>, D) (<15,0,F>, F) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,D>, D) (<16,0,F>, F) (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,D>, D) (<17,0,F>, F) (<18,0,A>, ?) (<18,0,B>, ?) (<18,0,D>, D) (<18,0,F>, F) (<19,0,A>, ?) (<19,0,B>, ?) (<19,0,D>, D) (<19,0,F>, F) (<20,0,A>, ?) (<20,0,B>, ?) (<20,0,D>, D) (<20,0,F>, F) (<21,0,A>, ?) (<21,0,B>, ?) (<21,0,D>, D) (<21,0,F>, F) (<22,0,A>, ?) (<22,0,B>, ?) (<22,0,D>, D) (<22,0,F>, F) + Applied Processor: ChainProcessor False [2,5,6,7,9,10,11,12,14,15,16,17,18,19,20,21,22] + Details: We chained rule 14 to obtain the rules [23,24] . * Step 14: UnreachableRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 2. f0(A,B,D,F) -> f8(A,B,D,F) True (1,1) 5. f0(A,B,D,F) -> f3(F,D,D,F) True (1,1) 6. f0(A,B,D,F) -> f3(F,D,D,F) True (1,1) 7. f0(A,B,D,F) -> f8(O,P,M,N) True (1,1) 9. f0(A,B,D,F) -> f3(1 + A,B,D,F) True (1,1) 10. f4(A,B,D,F) -> f3(1 + A,B,D,F) [B >= 1 + A] (?,1) 11. f0(A,B,D,F) -> f3(A,1 + B,D,F) True (1,1) 12. f4(A,B,D,F) -> f3(A,1 + B,D,F) [A >= B] (8 + 4*A + 4*B + 2*D + 2*F,1) 15. f0(A,B,D,F) -> f3(1 + A,B,D,F) [B >= 1 + A] (1,2) 16. f0(A,B,D,F) -> f3(A,1 + B,D,F) [A >= B] (1,2) 17. f3(A,B,D,F) -> f3(1 + A,B,D,F) [A >= 1 + B && B >= 1 + A] (13 + 4*A + 4*B + 2*D + 2*F,2) 18. f3(A,B,D,F) -> f3(A,1 + B,D,F) [A >= 1 + B && A >= B] (13 + 4*A + 4*B + 2*D + 2*F,2) 19. f3(A,B,D,F) -> f3(1 + A,B,D,F) [B >= 1 + A && B >= 1 + A] (?,2) 20. f3(A,B,D,F) -> f3(A,1 + B,D,F) [B >= 1 + A && A >= B] (?,2) 21. f0(A,B,D,F) -> f3(1 + A,B,D,F) [A >= 1 + B && B >= 1 + A] (1,3) 22. f0(A,B,D,F) -> f3(A,1 + B,D,F) [A >= 1 + B && A >= B] (1,3) 23. f0(A,B,D,F) -> f3(1 + A,B,D,F) [B >= 1 + A && B >= 1 + A] (1,3) 24. f0(A,B,D,F) -> f3(A,1 + B,D,F) [B >= 1 + A && A >= B] (1,3) Signature: {(f0,4);(f3,4);(f4,4);(f8,4)} Flow Graph: [2->{},5->{17,18,19,20},6->{17,18,19,20},7->{},9->{17,18,19,20},10->{17,18,19,20},11->{17,18,19,20} ,12->{17,18,19,20},15->{17,18,19,20},16->{17,18,19,20},17->{17,18,19,20},18->{17,18,19,20},19->{17,18,19,20} ,20->{17,18,19,20},21->{17,18,19,20},22->{17,18,19,20},23->{17,18,19,20},24->{17,18,19,20}] Sizebounds: (< 2,0,A>, A) (< 2,0,B>, B) (< 2,0,D>, D) (< 2,0,F>, F) (< 5,0,A>, F) (< 5,0,B>, D) (< 5,0,D>, D) (< 5,0,F>, F) (< 6,0,A>, F) (< 6,0,B>, D) (< 6,0,D>, D) (< 6,0,F>, F) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,D>, ?) (< 7,0,F>, ?) (< 9,0,A>, 1 + A) (< 9,0,B>, B) (< 9,0,D>, D) (< 9,0,F>, F) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,D>, D) (<10,0,F>, F) (<11,0,A>, A) (<11,0,B>, 1 + B) (<11,0,D>, D) (<11,0,F>, F) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,D>, D) (<12,0,F>, F) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,D>, D) (<15,0,F>, F) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,D>, D) (<16,0,F>, F) (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,D>, D) (<17,0,F>, F) (<18,0,A>, ?) (<18,0,B>, ?) (<18,0,D>, D) (<18,0,F>, F) (<19,0,A>, ?) (<19,0,B>, ?) (<19,0,D>, D) (<19,0,F>, F) (<20,0,A>, ?) (<20,0,B>, ?) (<20,0,D>, D) (<20,0,F>, F) (<21,0,A>, ?) (<21,0,B>, ?) (<21,0,D>, D) (<21,0,F>, F) (<22,0,A>, ?) (<22,0,B>, ?) (<22,0,D>, D) (<22,0,F>, F) (<23,0,A>, ?) (<23,0,B>, ?) (<23,0,D>, D) (<23,0,F>, F) (<24,0,A>, ?) (<24,0,B>, ?) (<24,0,D>, D) (<24,0,F>, F) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [10,12] * Step 15: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 2. f0(A,B,D,F) -> f8(A,B,D,F) True (1,1) 5. f0(A,B,D,F) -> f3(F,D,D,F) True (1,1) 6. f0(A,B,D,F) -> f3(F,D,D,F) True (1,1) 7. f0(A,B,D,F) -> f8(O,P,M,N) True (1,1) 9. f0(A,B,D,F) -> f3(1 + A,B,D,F) True (1,1) 11. f0(A,B,D,F) -> f3(A,1 + B,D,F) True (1,1) 15. f0(A,B,D,F) -> f3(1 + A,B,D,F) [B >= 1 + A] (1,2) 16. f0(A,B,D,F) -> f3(A,1 + B,D,F) [A >= B] (1,2) 17. f3(A,B,D,F) -> f3(1 + A,B,D,F) [A >= 1 + B && B >= 1 + A] (13 + 4*A + 4*B + 2*D + 2*F,2) 18. f3(A,B,D,F) -> f3(A,1 + B,D,F) [A >= 1 + B && A >= B] (13 + 4*A + 4*B + 2*D + 2*F,2) 19. f3(A,B,D,F) -> f3(1 + A,B,D,F) [B >= 1 + A && B >= 1 + A] (?,2) 20. f3(A,B,D,F) -> f3(A,1 + B,D,F) [B >= 1 + A && A >= B] (?,2) 21. f0(A,B,D,F) -> f3(1 + A,B,D,F) [A >= 1 + B && B >= 1 + A] (1,3) 22. f0(A,B,D,F) -> f3(A,1 + B,D,F) [A >= 1 + B && A >= B] (1,3) 23. f0(A,B,D,F) -> f3(1 + A,B,D,F) [B >= 1 + A && B >= 1 + A] (1,3) 24. f0(A,B,D,F) -> f3(A,1 + B,D,F) [B >= 1 + A && A >= B] (1,3) Signature: {(f0,4);(f3,4);(f4,4);(f8,4)} Flow Graph: [2->{},5->{17,18,19,20},6->{17,18,19,20},7->{},9->{17,18,19,20},11->{17,18,19,20},15->{17,18,19,20} ,16->{17,18,19,20},17->{17,18,19,20},18->{17,18,19,20},19->{17,18,19,20},20->{17,18,19,20},21->{17,18,19,20} ,22->{17,18,19,20},23->{17,18,19,20},24->{17,18,19,20}] Sizebounds: (< 2,0,A>, A) (< 2,0,B>, B) (< 2,0,D>, D) (< 2,0,F>, F) (< 5,0,A>, F) (< 5,0,B>, D) (< 5,0,D>, D) (< 5,0,F>, F) (< 6,0,A>, F) (< 6,0,B>, D) (< 6,0,D>, D) (< 6,0,F>, F) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,D>, ?) (< 7,0,F>, ?) (< 9,0,A>, 1 + A) (< 9,0,B>, B) (< 9,0,D>, D) (< 9,0,F>, F) (<11,0,A>, A) (<11,0,B>, 1 + B) (<11,0,D>, D) (<11,0,F>, F) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,D>, D) (<15,0,F>, F) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,D>, D) (<16,0,F>, F) (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,D>, D) (<17,0,F>, F) (<18,0,A>, ?) (<18,0,B>, ?) (<18,0,D>, D) (<18,0,F>, F) (<19,0,A>, ?) (<19,0,B>, ?) (<19,0,D>, D) (<19,0,F>, F) (<20,0,A>, ?) (<20,0,B>, ?) (<20,0,D>, D) (<20,0,F>, F) (<21,0,A>, ?) (<21,0,B>, ?) (<21,0,D>, D) (<21,0,F>, F) (<22,0,A>, ?) (<22,0,B>, ?) (<22,0,D>, D) (<22,0,F>, F) (<23,0,A>, ?) (<23,0,B>, ?) (<23,0,D>, D) (<23,0,F>, F) (<24,0,A>, ?) (<24,0,B>, ?) (<24,0,D>, D) (<24,0,F>, F) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(5,17) ,(5,20) ,(6,17) ,(6,20) ,(9,17) ,(9,20) ,(11,17) ,(11,20) ,(15,17) ,(15,18) ,(15,20) ,(16,17) ,(16,20) ,(17,17) ,(17,18) ,(17,19) ,(17,20) ,(18,17) ,(18,19) ,(18,20) ,(19,17) ,(19,18) ,(19,20) ,(20,17) ,(20,18) ,(20,19) ,(20,20) ,(21,17) ,(21,18) ,(21,19) ,(21,20) ,(22,17) ,(22,19) ,(22,20) ,(23,17) ,(23,18) ,(23,20) ,(24,17) ,(24,18) ,(24,19) ,(24,20)] * Step 16: UnreachableRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 2. f0(A,B,D,F) -> f8(A,B,D,F) True (1,1) 5. f0(A,B,D,F) -> f3(F,D,D,F) True (1,1) 6. f0(A,B,D,F) -> f3(F,D,D,F) True (1,1) 7. f0(A,B,D,F) -> f8(O,P,M,N) True (1,1) 9. f0(A,B,D,F) -> f3(1 + A,B,D,F) True (1,1) 11. f0(A,B,D,F) -> f3(A,1 + B,D,F) True (1,1) 15. f0(A,B,D,F) -> f3(1 + A,B,D,F) [B >= 1 + A] (1,2) 16. f0(A,B,D,F) -> f3(A,1 + B,D,F) [A >= B] (1,2) 17. f3(A,B,D,F) -> f3(1 + A,B,D,F) [A >= 1 + B && B >= 1 + A] (13 + 4*A + 4*B + 2*D + 2*F,2) 18. f3(A,B,D,F) -> f3(A,1 + B,D,F) [A >= 1 + B && A >= B] (13 + 4*A + 4*B + 2*D + 2*F,2) 19. f3(A,B,D,F) -> f3(1 + A,B,D,F) [B >= 1 + A && B >= 1 + A] (?,2) 20. f3(A,B,D,F) -> f3(A,1 + B,D,F) [B >= 1 + A && A >= B] (?,2) 21. f0(A,B,D,F) -> f3(1 + A,B,D,F) [A >= 1 + B && B >= 1 + A] (1,3) 22. f0(A,B,D,F) -> f3(A,1 + B,D,F) [A >= 1 + B && A >= B] (1,3) 23. f0(A,B,D,F) -> f3(1 + A,B,D,F) [B >= 1 + A && B >= 1 + A] (1,3) 24. f0(A,B,D,F) -> f3(A,1 + B,D,F) [B >= 1 + A && A >= B] (1,3) Signature: {(f0,4);(f3,4);(f4,4);(f8,4)} Flow Graph: [2->{},5->{18,19},6->{18,19},7->{},9->{18,19},11->{18,19},15->{19},16->{18,19},17->{},18->{18},19->{19} ,20->{},21->{},22->{18},23->{19},24->{}] Sizebounds: (< 2,0,A>, A) (< 2,0,B>, B) (< 2,0,D>, D) (< 2,0,F>, F) (< 5,0,A>, F) (< 5,0,B>, D) (< 5,0,D>, D) (< 5,0,F>, F) (< 6,0,A>, F) (< 6,0,B>, D) (< 6,0,D>, D) (< 6,0,F>, F) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,D>, ?) (< 7,0,F>, ?) (< 9,0,A>, 1 + A) (< 9,0,B>, B) (< 9,0,D>, D) (< 9,0,F>, F) (<11,0,A>, A) (<11,0,B>, 1 + B) (<11,0,D>, D) (<11,0,F>, F) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,D>, D) (<15,0,F>, F) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,D>, D) (<16,0,F>, F) (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,D>, D) (<17,0,F>, F) (<18,0,A>, ?) (<18,0,B>, ?) (<18,0,D>, D) (<18,0,F>, F) (<19,0,A>, ?) (<19,0,B>, ?) (<19,0,D>, D) (<19,0,F>, F) (<20,0,A>, ?) (<20,0,B>, ?) (<20,0,D>, D) (<20,0,F>, F) (<21,0,A>, ?) (<21,0,B>, ?) (<21,0,D>, D) (<21,0,F>, F) (<22,0,A>, ?) (<22,0,B>, ?) (<22,0,D>, D) (<22,0,F>, F) (<23,0,A>, ?) (<23,0,B>, ?) (<23,0,D>, D) (<23,0,F>, F) (<24,0,A>, ?) (<24,0,B>, ?) (<24,0,D>, D) (<24,0,F>, F) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [17,20] * Step 17: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 2. f0(A,B,D,F) -> f8(A,B,D,F) True (1,1) 5. f0(A,B,D,F) -> f3(F,D,D,F) True (1,1) 6. f0(A,B,D,F) -> f3(F,D,D,F) True (1,1) 7. f0(A,B,D,F) -> f8(O,P,M,N) True (1,1) 9. f0(A,B,D,F) -> f3(1 + A,B,D,F) True (1,1) 11. f0(A,B,D,F) -> f3(A,1 + B,D,F) True (1,1) 15. f0(A,B,D,F) -> f3(1 + A,B,D,F) [B >= 1 + A] (1,2) 16. f0(A,B,D,F) -> f3(A,1 + B,D,F) [A >= B] (1,2) 18. f3(A,B,D,F) -> f3(A,1 + B,D,F) [A >= 1 + B && A >= B] (13 + 4*A + 4*B + 2*D + 2*F,2) 19. f3(A,B,D,F) -> f3(1 + A,B,D,F) [B >= 1 + A && B >= 1 + A] (?,2) 21. f0(A,B,D,F) -> f3(1 + A,B,D,F) [A >= 1 + B && B >= 1 + A] (1,3) 22. f0(A,B,D,F) -> f3(A,1 + B,D,F) [A >= 1 + B && A >= B] (1,3) 23. f0(A,B,D,F) -> f3(1 + A,B,D,F) [B >= 1 + A && B >= 1 + A] (1,3) 24. f0(A,B,D,F) -> f3(A,1 + B,D,F) [B >= 1 + A && A >= B] (1,3) Signature: {(f0,4);(f3,4);(f4,4);(f8,4)} Flow Graph: [2->{},5->{18,19},6->{18,19},7->{},9->{18,19},11->{18,19},15->{19},16->{18,19},18->{18},19->{19},21->{} ,22->{18},23->{19},24->{}] Sizebounds: (< 2,0,A>, A) (< 2,0,B>, B) (< 2,0,D>, D) (< 2,0,F>, F) (< 5,0,A>, F) (< 5,0,B>, D) (< 5,0,D>, D) (< 5,0,F>, F) (< 6,0,A>, F) (< 6,0,B>, D) (< 6,0,D>, D) (< 6,0,F>, F) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,D>, ?) (< 7,0,F>, ?) (< 9,0,A>, 1 + A) (< 9,0,B>, B) (< 9,0,D>, D) (< 9,0,F>, F) (<11,0,A>, A) (<11,0,B>, 1 + B) (<11,0,D>, D) (<11,0,F>, F) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,D>, D) (<15,0,F>, F) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,D>, D) (<16,0,F>, F) (<18,0,A>, ?) (<18,0,B>, ?) (<18,0,D>, D) (<18,0,F>, F) (<19,0,A>, ?) (<19,0,B>, ?) (<19,0,D>, D) (<19,0,F>, F) (<21,0,A>, ?) (<21,0,B>, ?) (<21,0,D>, D) (<21,0,F>, F) (<22,0,A>, ?) (<22,0,B>, ?) (<22,0,D>, D) (<22,0,F>, F) (<23,0,A>, ?) (<23,0,B>, ?) (<23,0,D>, D) (<23,0,F>, F) (<24,0,A>, ?) (<24,0,B>, ?) (<24,0,D>, D) (<24,0,F>, F) + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (< 2,0,A>, A, .= 0) (< 2,0,B>, B, .= 0) (< 2,0,D>, D, .= 0) (< 2,0,F>, F, .= 0) (< 5,0,A>, F, .= 0) (< 5,0,B>, D, .= 0) (< 5,0,D>, D, .= 0) (< 5,0,F>, F, .= 0) (< 6,0,A>, F, .= 0) (< 6,0,B>, D, .= 0) (< 6,0,D>, D, .= 0) (< 6,0,F>, F, .= 0) (< 7,0,A>, ?, .?) (< 7,0,B>, ?, .?) (< 7,0,D>, ?, .?) (< 7,0,F>, ?, .?) (< 9,0,A>, 1 + A, .+ 1) (< 9,0,B>, B, .= 0) (< 9,0,D>, D, .= 0) (< 9,0,F>, F, .= 0) (<11,0,A>, A, .= 0) (<11,0,B>, 1 + B, .+ 1) (<11,0,D>, D, .= 0) (<11,0,F>, F, .= 0) (<15,0,A>, 1 + A, .+ 1) (<15,0,B>, B, .= 0) (<15,0,D>, D, .= 0) (<15,0,F>, F, .= 0) (<16,0,A>, A, .= 0) (<16,0,B>, 1 + B, .+ 1) (<16,0,D>, D, .= 0) (<16,0,F>, F, .= 0) (<18,0,A>, A, .= 0) (<18,0,B>, 1 + B, .+ 1) (<18,0,D>, D, .= 0) (<18,0,F>, F, .= 0) (<19,0,A>, 1 + A, .+ 1) (<19,0,B>, B, .= 0) (<19,0,D>, D, .= 0) (<19,0,F>, F, .= 0) (<21,0,A>, 1 + A, .+ 1) (<21,0,B>, B, .= 0) (<21,0,D>, D, .= 0) (<21,0,F>, F, .= 0) (<22,0,A>, A, .= 0) (<22,0,B>, 1 + B, .+ 1) (<22,0,D>, D, .= 0) (<22,0,F>, F, .= 0) (<23,0,A>, 1 + A, .+ 1) (<23,0,B>, B, .= 0) (<23,0,D>, D, .= 0) (<23,0,F>, F, .= 0) (<24,0,A>, A, .= 0) (<24,0,B>, 1 + B, .+ 1) (<24,0,D>, D, .= 0) (<24,0,F>, F, .= 0) * Step 18: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 2. f0(A,B,D,F) -> f8(A,B,D,F) True (1,1) 5. f0(A,B,D,F) -> f3(F,D,D,F) True (1,1) 6. f0(A,B,D,F) -> f3(F,D,D,F) True (1,1) 7. f0(A,B,D,F) -> f8(O,P,M,N) True (1,1) 9. f0(A,B,D,F) -> f3(1 + A,B,D,F) True (1,1) 11. f0(A,B,D,F) -> f3(A,1 + B,D,F) True (1,1) 15. f0(A,B,D,F) -> f3(1 + A,B,D,F) [B >= 1 + A] (1,2) 16. f0(A,B,D,F) -> f3(A,1 + B,D,F) [A >= B] (1,2) 18. f3(A,B,D,F) -> f3(A,1 + B,D,F) [A >= 1 + B && A >= B] (13 + 4*A + 4*B + 2*D + 2*F,2) 19. f3(A,B,D,F) -> f3(1 + A,B,D,F) [B >= 1 + A && B >= 1 + A] (?,2) 21. f0(A,B,D,F) -> f3(1 + A,B,D,F) [A >= 1 + B && B >= 1 + A] (1,3) 22. f0(A,B,D,F) -> f3(A,1 + B,D,F) [A >= 1 + B && A >= B] (1,3) 23. f0(A,B,D,F) -> f3(1 + A,B,D,F) [B >= 1 + A && B >= 1 + A] (1,3) 24. f0(A,B,D,F) -> f3(A,1 + B,D,F) [B >= 1 + A && A >= B] (1,3) Signature: {(f0,4);(f3,4);(f4,4);(f8,4)} Flow Graph: [2->{},5->{18,19},6->{18,19},7->{},9->{18,19},11->{18,19},15->{19},16->{18,19},18->{18},19->{19},21->{} ,22->{18},23->{19},24->{}] Sizebounds: (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,D>, ?) (< 2,0,F>, ?) (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,0,D>, ?) (< 5,0,F>, ?) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,D>, ?) (< 6,0,F>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,D>, ?) (< 7,0,F>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,D>, ?) (< 9,0,F>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,D>, ?) (<11,0,F>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,D>, ?) (<15,0,F>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,D>, ?) (<16,0,F>, ?) (<18,0,A>, ?) (<18,0,B>, ?) (<18,0,D>, ?) (<18,0,F>, ?) (<19,0,A>, ?) (<19,0,B>, ?) (<19,0,D>, ?) (<19,0,F>, ?) (<21,0,A>, ?) (<21,0,B>, ?) (<21,0,D>, ?) (<21,0,F>, ?) (<22,0,A>, ?) (<22,0,B>, ?) (<22,0,D>, ?) (<22,0,F>, ?) (<23,0,A>, ?) (<23,0,B>, ?) (<23,0,D>, ?) (<23,0,F>, ?) (<24,0,A>, ?) (<24,0,B>, ?) (<24,0,D>, ?) (<24,0,F>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (< 2,0,A>, A) (< 2,0,B>, B) (< 2,0,D>, D) (< 2,0,F>, F) (< 5,0,A>, F) (< 5,0,B>, D) (< 5,0,D>, D) (< 5,0,F>, F) (< 6,0,A>, F) (< 6,0,B>, D) (< 6,0,D>, D) (< 6,0,F>, F) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,D>, ?) (< 7,0,F>, ?) (< 9,0,A>, 1 + A) (< 9,0,B>, B) (< 9,0,D>, D) (< 9,0,F>, F) (<11,0,A>, A) (<11,0,B>, 1 + B) (<11,0,D>, D) (<11,0,F>, F) (<15,0,A>, 1 + A) (<15,0,B>, B) (<15,0,D>, D) (<15,0,F>, F) (<16,0,A>, A) (<16,0,B>, 1 + B) (<16,0,D>, D) (<16,0,F>, F) (<18,0,A>, 1 + A + F) (<18,0,B>, 14 + 4*A + 5*B + 3*D + 2*F) (<18,0,D>, D) (<18,0,F>, F) (<19,0,A>, 1 + B + D) (<19,0,B>, 1 + B + D) (<19,0,D>, D) (<19,0,F>, F) (<21,0,A>, 1 + A) (<21,0,B>, B) (<21,0,D>, D) (<21,0,F>, F) (<22,0,A>, A) (<22,0,B>, 1 + B) (<22,0,D>, D) (<22,0,F>, F) (<23,0,A>, 1 + A) (<23,0,B>, B) (<23,0,D>, D) (<23,0,F>, F) (<24,0,A>, A) (<24,0,B>, 1 + B) (<24,0,D>, D) (<24,0,F>, F) * Step 19: LocationConstraintsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 2. f0(A,B,D,F) -> f8(A,B,D,F) True (1,1) 5. f0(A,B,D,F) -> f3(F,D,D,F) True (1,1) 6. f0(A,B,D,F) -> f3(F,D,D,F) True (1,1) 7. f0(A,B,D,F) -> f8(O,P,M,N) True (1,1) 9. f0(A,B,D,F) -> f3(1 + A,B,D,F) True (1,1) 11. f0(A,B,D,F) -> f3(A,1 + B,D,F) True (1,1) 15. f0(A,B,D,F) -> f3(1 + A,B,D,F) [B >= 1 + A] (1,2) 16. f0(A,B,D,F) -> f3(A,1 + B,D,F) [A >= B] (1,2) 18. f3(A,B,D,F) -> f3(A,1 + B,D,F) [A >= 1 + B && A >= B] (13 + 4*A + 4*B + 2*D + 2*F,2) 19. f3(A,B,D,F) -> f3(1 + A,B,D,F) [B >= 1 + A && B >= 1 + A] (?,2) 21. f0(A,B,D,F) -> f3(1 + A,B,D,F) [A >= 1 + B && B >= 1 + A] (1,3) 22. f0(A,B,D,F) -> f3(A,1 + B,D,F) [A >= 1 + B && A >= B] (1,3) 23. f0(A,B,D,F) -> f3(1 + A,B,D,F) [B >= 1 + A && B >= 1 + A] (1,3) 24. f0(A,B,D,F) -> f3(A,1 + B,D,F) [B >= 1 + A && A >= B] (1,3) Signature: {(f0,4);(f3,4);(f4,4);(f8,4)} Flow Graph: [2->{},5->{18,19},6->{18,19},7->{},9->{18,19},11->{18,19},15->{19},16->{18,19},18->{18},19->{19},21->{} ,22->{18},23->{19},24->{}] Sizebounds: (< 2,0,A>, A) (< 2,0,B>, B) (< 2,0,D>, D) (< 2,0,F>, F) (< 5,0,A>, F) (< 5,0,B>, D) (< 5,0,D>, D) (< 5,0,F>, F) (< 6,0,A>, F) (< 6,0,B>, D) (< 6,0,D>, D) (< 6,0,F>, F) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,D>, ?) (< 7,0,F>, ?) (< 9,0,A>, 1 + A) (< 9,0,B>, B) (< 9,0,D>, D) (< 9,0,F>, F) (<11,0,A>, A) (<11,0,B>, 1 + B) (<11,0,D>, D) (<11,0,F>, F) (<15,0,A>, 1 + A) (<15,0,B>, B) (<15,0,D>, D) (<15,0,F>, F) (<16,0,A>, A) (<16,0,B>, 1 + B) (<16,0,D>, D) (<16,0,F>, F) (<18,0,A>, 1 + A + F) (<18,0,B>, 14 + 4*A + 5*B + 3*D + 2*F) (<18,0,D>, D) (<18,0,F>, F) (<19,0,A>, 1 + B + D) (<19,0,B>, 1 + B + D) (<19,0,D>, D) (<19,0,F>, F) (<21,0,A>, 1 + A) (<21,0,B>, B) (<21,0,D>, D) (<21,0,F>, F) (<22,0,A>, A) (<22,0,B>, 1 + B) (<22,0,D>, D) (<22,0,F>, F) (<23,0,A>, 1 + A) (<23,0,B>, B) (<23,0,D>, D) (<23,0,F>, F) (<24,0,A>, A) (<24,0,B>, 1 + B) (<24,0,D>, D) (<24,0,F>, F) + Applied Processor: LocationConstraintsProc + Details: We computed the location constraints 2 : True 5 : True 6 : True 7 : True 9 : True 11 : True 15 : True 16 : True 18 : True 19 : True 21 : True 22 : True 23 : True 24 : True . * Step 20: LoopRecurrenceProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 2. f0(A,B,D,F) -> f8(A,B,D,F) True (1,1) 5. f0(A,B,D,F) -> f3(F,D,D,F) True (1,1) 6. f0(A,B,D,F) -> f3(F,D,D,F) True (1,1) 7. f0(A,B,D,F) -> f8(O,P,M,N) True (1,1) 9. f0(A,B,D,F) -> f3(1 + A,B,D,F) True (1,1) 11. f0(A,B,D,F) -> f3(A,1 + B,D,F) True (1,1) 15. f0(A,B,D,F) -> f3(1 + A,B,D,F) [B >= 1 + A] (1,2) 16. f0(A,B,D,F) -> f3(A,1 + B,D,F) [A >= B] (1,2) 18. f3(A,B,D,F) -> f3(A,1 + B,D,F) [A >= 1 + B && A >= B] (13 + 4*A + 4*B + 2*D + 2*F,2) 19. f3(A,B,D,F) -> f3(1 + A,B,D,F) [B >= 1 + A && B >= 1 + A] (?,2) 21. f0(A,B,D,F) -> f3(1 + A,B,D,F) [A >= 1 + B && B >= 1 + A] (1,3) 22. f0(A,B,D,F) -> f3(A,1 + B,D,F) [A >= 1 + B && A >= B] (1,3) 23. f0(A,B,D,F) -> f3(1 + A,B,D,F) [B >= 1 + A && B >= 1 + A] (1,3) 24. f0(A,B,D,F) -> f3(A,1 + B,D,F) [B >= 1 + A && A >= B] (1,3) Signature: {(f0,4);(f3,4);(f4,4);(f8,4)} Flow Graph: [2->{},5->{18,19},6->{18,19},7->{},9->{18,19},11->{18,19},15->{19},16->{18,19},18->{18},19->{19},21->{} ,22->{18},23->{19},24->{}] Sizebounds: (< 2,0,A>, A) (< 2,0,B>, B) (< 2,0,D>, D) (< 2,0,F>, F) (< 5,0,A>, F) (< 5,0,B>, D) (< 5,0,D>, D) (< 5,0,F>, F) (< 6,0,A>, F) (< 6,0,B>, D) (< 6,0,D>, D) (< 6,0,F>, F) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,D>, ?) (< 7,0,F>, ?) (< 9,0,A>, 1 + A) (< 9,0,B>, B) (< 9,0,D>, D) (< 9,0,F>, F) (<11,0,A>, A) (<11,0,B>, 1 + B) (<11,0,D>, D) (<11,0,F>, F) (<15,0,A>, 1 + A) (<15,0,B>, B) (<15,0,D>, D) (<15,0,F>, F) (<16,0,A>, A) (<16,0,B>, 1 + B) (<16,0,D>, D) (<16,0,F>, F) (<18,0,A>, 1 + A + F) (<18,0,B>, 14 + 4*A + 5*B + 3*D + 2*F) (<18,0,D>, D) (<18,0,F>, F) (<19,0,A>, 1 + B + D) (<19,0,B>, 1 + B + D) (<19,0,D>, D) (<19,0,F>, F) (<21,0,A>, 1 + A) (<21,0,B>, B) (<21,0,D>, D) (<21,0,F>, F) (<22,0,A>, A) (<22,0,B>, 1 + B) (<22,0,D>, D) (<22,0,F>, F) (<23,0,A>, 1 + A) (<23,0,B>, B) (<23,0,D>, D) (<23,0,F>, F) (<24,0,A>, A) (<24,0,B>, 1 + B) (<24,0,D>, D) (<24,0,F>, F) + Applied Processor: LoopRecurrenceProcessor [19] + Details: Applying the recurrence pattern linear * f to the expression B-A yields the solution -1*A + B . * Step 21: LoopRecurrenceProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 2. f0(A,B,D,F) -> f8(A,B,D,F) True (1,1) 5. f0(A,B,D,F) -> f3(F,D,D,F) True (1,1) 6. f0(A,B,D,F) -> f3(F,D,D,F) True (1,1) 7. f0(A,B,D,F) -> f8(O,P,M,N) True (1,1) 9. f0(A,B,D,F) -> f3(1 + A,B,D,F) True (1,1) 11. f0(A,B,D,F) -> f3(A,1 + B,D,F) True (1,1) 15. f0(A,B,D,F) -> f3(1 + A,B,D,F) [B >= 1 + A] (1,2) 16. f0(A,B,D,F) -> f3(A,1 + B,D,F) [A >= B] (1,2) 18. f3(A,B,D,F) -> f3(A,1 + B,D,F) [A >= 1 + B && A >= B] (13 + 4*A + 4*B + 2*D + 2*F,2) 19. f3(A,B,D,F) -> f3(1 + A,B,D,F) [B >= 1 + A && B >= 1 + A] (5 + 5*A + 5*B + 2*D + 2*F,2) 21. f0(A,B,D,F) -> f3(1 + A,B,D,F) [A >= 1 + B && B >= 1 + A] (1,3) 22. f0(A,B,D,F) -> f3(A,1 + B,D,F) [A >= 1 + B && A >= B] (1,3) 23. f0(A,B,D,F) -> f3(1 + A,B,D,F) [B >= 1 + A && B >= 1 + A] (1,3) 24. f0(A,B,D,F) -> f3(A,1 + B,D,F) [B >= 1 + A && A >= B] (1,3) Signature: {(f0,4);(f3,4);(f4,4);(f8,4)} Flow Graph: [2->{},5->{18,19},6->{18,19},7->{},9->{18,19},11->{18,19},15->{19},16->{18,19},18->{18},19->{19},21->{} ,22->{18},23->{19},24->{}] Sizebounds: (< 2,0,A>, A) (< 2,0,B>, B) (< 2,0,D>, D) (< 2,0,F>, F) (< 5,0,A>, F) (< 5,0,B>, D) (< 5,0,D>, D) (< 5,0,F>, F) (< 6,0,A>, F) (< 6,0,B>, D) (< 6,0,D>, D) (< 6,0,F>, F) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,D>, ?) (< 7,0,F>, ?) (< 9,0,A>, 1 + A) (< 9,0,B>, B) (< 9,0,D>, D) (< 9,0,F>, F) (<11,0,A>, A) (<11,0,B>, 1 + B) (<11,0,D>, D) (<11,0,F>, F) (<15,0,A>, 1 + A) (<15,0,B>, B) (<15,0,D>, D) (<15,0,F>, F) (<16,0,A>, A) (<16,0,B>, 1 + B) (<16,0,D>, D) (<16,0,F>, F) (<18,0,A>, 1 + A + F) (<18,0,B>, 14 + 4*A + 5*B + 3*D + 2*F) (<18,0,D>, D) (<18,0,F>, F) (<19,0,A>, 1 + B + D) (<19,0,B>, 1 + B + D) (<19,0,D>, D) (<19,0,F>, F) (<21,0,A>, 1 + A) (<21,0,B>, B) (<21,0,D>, D) (<21,0,F>, F) (<22,0,A>, A) (<22,0,B>, 1 + B) (<22,0,D>, D) (<22,0,F>, F) (<23,0,A>, 1 + A) (<23,0,B>, B) (<23,0,D>, D) (<23,0,F>, F) (<24,0,A>, A) (<24,0,B>, 1 + B) (<24,0,D>, D) (<24,0,F>, F) + Applied Processor: LoopRecurrenceProcessor [18] + Details: Applying the recurrence pattern linear * f to the expression A-B yields the solution A + -1*B . * Step 22: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 2. f0(A,B,D,F) -> f8(A,B,D,F) True (1,1) 5. f0(A,B,D,F) -> f3(F,D,D,F) True (1,1) 6. f0(A,B,D,F) -> f3(F,D,D,F) True (1,1) 7. f0(A,B,D,F) -> f8(O,P,M,N) True (1,1) 9. f0(A,B,D,F) -> f3(1 + A,B,D,F) True (1,1) 11. f0(A,B,D,F) -> f3(A,1 + B,D,F) True (1,1) 15. f0(A,B,D,F) -> f3(1 + A,B,D,F) [B >= 1 + A] (1,2) 16. f0(A,B,D,F) -> f3(A,1 + B,D,F) [A >= B] (1,2) 18. f3(A,B,D,F) -> f3(A,1 + B,D,F) [A >= 1 + B && A >= B] (4 + 4*A + 4*B + 2*D + 2*F,2) 19. f3(A,B,D,F) -> f3(1 + A,B,D,F) [B >= 1 + A && B >= 1 + A] (5 + 5*A + 5*B + 2*D + 2*F,2) 21. f0(A,B,D,F) -> f3(1 + A,B,D,F) [A >= 1 + B && B >= 1 + A] (1,3) 22. f0(A,B,D,F) -> f3(A,1 + B,D,F) [A >= 1 + B && A >= B] (1,3) 23. f0(A,B,D,F) -> f3(1 + A,B,D,F) [B >= 1 + A && B >= 1 + A] (1,3) 24. f0(A,B,D,F) -> f3(A,1 + B,D,F) [B >= 1 + A && A >= B] (1,3) Signature: {(f0,4);(f3,4);(f4,4);(f8,4)} Flow Graph: [2->{},5->{18,19},6->{18,19},7->{},9->{18,19},11->{18,19},15->{19},16->{18,19},18->{18},19->{19},21->{} ,22->{18},23->{19},24->{}] Sizebounds: (< 2,0,A>, A) (< 2,0,B>, B) (< 2,0,D>, D) (< 2,0,F>, F) (< 5,0,A>, F) (< 5,0,B>, D) (< 5,0,D>, D) (< 5,0,F>, F) (< 6,0,A>, F) (< 6,0,B>, D) (< 6,0,D>, D) (< 6,0,F>, F) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,D>, ?) (< 7,0,F>, ?) (< 9,0,A>, 1 + A) (< 9,0,B>, B) (< 9,0,D>, D) (< 9,0,F>, F) (<11,0,A>, A) (<11,0,B>, 1 + B) (<11,0,D>, D) (<11,0,F>, F) (<15,0,A>, 1 + A) (<15,0,B>, B) (<15,0,D>, D) (<15,0,F>, F) (<16,0,A>, A) (<16,0,B>, 1 + B) (<16,0,D>, D) (<16,0,F>, F) (<18,0,A>, 1 + A + F) (<18,0,B>, 14 + 4*A + 5*B + 3*D + 2*F) (<18,0,D>, D) (<18,0,F>, F) (<19,0,A>, 1 + B + D) (<19,0,B>, 1 + B + D) (<19,0,D>, D) (<19,0,F>, F) (<21,0,A>, 1 + A) (<21,0,B>, B) (<21,0,D>, D) (<21,0,F>, F) (<22,0,A>, A) (<22,0,B>, 1 + B) (<22,0,D>, D) (<22,0,F>, F) (<23,0,A>, 1 + A) (<23,0,B>, B) (<23,0,D>, D) (<23,0,F>, F) (<24,0,A>, A) (<24,0,B>, 1 + B) (<24,0,D>, D) (<24,0,F>, F) + Applied Processor: UnsatPaths + Details: The problem is already solved. WORST_CASE(?,O(n^1))