WORST_CASE(?,O(1)) * Step 1: RestrictVarsProcessor WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f2(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [A >= 1 + B] (1,1) 1. f0(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f2(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [B >= 1 + A] (1,1) 2. f2(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f3(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [C >= 1 + B] (?,1) 3. f2(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f3(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [B >= 1 + C] (?,1) 4. f3(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f4(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [D >= 1 + B] (?,1) 5. f3(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f4(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [B >= 1 + D] (?,1) 6. f4(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f5(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [E >= 1 + B] (?,1) 7. f4(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f5(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [B >= 1 + E] (?,1) 8. f5(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f6(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [F >= 1 + B] (?,1) 9. f5(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f6(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [B >= 1 + F] (?,1) 10. f6(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f7(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [G >= 1 + B] (?,1) 11. f6(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f7(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [B >= 1 + G] (?,1) 12. f17(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f18(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [0 >= 1 + H] (?,1) 13. f17(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f18(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [H >= 1] (?,1) 14. f18(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f19(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [C >= 1 + A] (?,1) 15. f18(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f19(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [A >= 1 + C] (?,1) 16. f19(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f20(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [D >= 1 + A] (?,1) 17. f19(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f20(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [A >= 1 + D] (?,1) 18. f20(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f21(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [E >= 1 + A] (?,1) 19. f20(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f21(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [A >= 1 + E] (?,1) 20. f21(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f22(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [F >= 1 + A] (?,1) 21. f21(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f22(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [A >= 1 + F] (?,1) 22. f22(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f23(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [G >= 1 + A] (?,1) 23. f22(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f23(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [A >= 1 + G] (?,1) 24. f33(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f34(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [0 >= 1 + H] (?,1) 25. f33(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f34(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [H >= 1] (?,1) 26. f34(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f35(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [D >= 1 + C] (?,1) 27. f34(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f35(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [C >= 1 + D] (?,1) 28. f35(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f36(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [E >= 1 + C] (?,1) 29. f35(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f36(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [C >= 1 + E] (?,1) 30. f36(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f37(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [F >= 1 + C] (?,1) 31. f36(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f37(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [C >= 1 + F] (?,1) 32. f37(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f38(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [G >= 1 + C] (?,1) 33. f37(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f38(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [C >= 1 + G] (?,1) 34. f47(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f48(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [0 >= 1 + H] (?,1) 35. f47(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f48(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [H >= 1] (?,1) 36. f48(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f49(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [E >= 1 + D] (?,1) 37. f48(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f49(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [D >= 1 + E] (?,1) 38. f49(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f50(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [F >= 1 + D] (?,1) 39. f49(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f50(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [D >= 1 + F] (?,1) 40. f50(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f51(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [G >= 1 + D] (?,1) 41. f50(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f51(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [D >= 1 + G] (?,1) 42. f59(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f60(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [0 >= 1 + H] (?,1) 43. f59(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f60(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [H >= 1] (?,1) 44. f60(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f61(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [F >= 1 + E] (?,1) 45. f60(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f61(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [E >= 1 + F] (?,1) 46. f61(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f62(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [G >= 1 + E] (?,1) 47. f61(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f62(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [E >= 1 + G] (?,1) 48. f69(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f70(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [0 >= 1 + H] (?,1) 49. f69(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f70(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [H >= 1] (?,1) 50. f70(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f71(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [G >= 1 + F] (?,1) 51. f70(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f71(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [F >= 1 + G] (?,1) 52. f77(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f78(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [0 >= 1 + H] (?,1) 53. f77(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f78(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [H >= 1] (?,1) 54. f101(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f102(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [0 >= 1 + E] (?,1) 55. f101(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f102(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [E >= 1] (?,1) 56. f108(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f109(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [0 >= 1 + H] (?,1) 57. f108(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f109(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [H >= 1] (?,1) 58. f109(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f110(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [0 >= 1 + I] (?,1) 59. f109(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f110(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [I >= 1] (?,1) 60. f110(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f111(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [0 >= 1 + J] (?,1) 61. f110(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f111(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) [J >= 1] (?,1) 62. f7(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f17(A,B,C,D,E,F,G,1,I,J,K,1,M,N,O,P,Q,R,S,T,U,V) [K >= 1 + B] (?,1) 63. f7(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f17(A,B,C,D,E,F,G,1,I,J,K,1,M,N,O,P,Q,R,S,T,U,V) [B >= 1 + K] (?,1) 64. f7(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f17(A,B,C,D,E,F,G,0,I,J,B,0,M,N,O,P,Q,R,S,T,U,V) [B = K] (?,1) 65. f6(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f17(A,B,C,D,E,F,B,0,I,J,K,0,M,N,O,P,Q,R,S,T,U,V) [B = G] (?,1) 66. f5(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f17(A,B,C,D,E,B,G,0,I,J,K,0,M,N,O,P,Q,R,S,T,U,V) [B = F] (?,1) 67. f4(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f17(A,B,C,D,B,F,G,0,I,J,K,0,M,N,O,P,Q,R,S,T,U,V) [B = E] (?,1) 68. f3(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f17(A,B,C,B,E,F,G,0,I,J,K,0,M,N,O,P,Q,R,S,T,U,V) [B = D] (?,1) 69. f2(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f17(A,B,B,D,E,F,G,0,I,J,K,0,M,N,O,P,Q,R,S,T,U,V) [B = C] (?,1) 70. f0(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f17(B,B,C,D,E,F,G,0,I,J,K,0,M,N,O,P,Q,R,S,T,U,V) [B = A] (1,1) 71. f23(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f33(A,B,C,D,E,F,G,1,I,J,K,L,1,N,O,P,Q,R,S,T,U,V) [K >= 1 + A] (?,1) 72. f23(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f33(A,B,C,D,E,F,G,1,I,J,K,L,1,N,O,P,Q,R,S,T,U,V) [A >= 1 + K] (?,1) 73. f23(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f33(A,B,C,D,E,F,G,0,I,J,A,L,0,N,O,P,Q,R,S,T,U,V) [A = K] (?,1) 74. f22(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f33(A,B,C,D,E,F,A,0,I,J,K,L,0,N,O,P,Q,R,S,T,U,V) [A = G] (?,1) 75. f21(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f33(A,B,C,D,E,A,G,0,I,J,K,L,0,N,O,P,Q,R,S,T,U,V) [A = F] (?,1) 76. f20(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f33(A,B,C,D,A,F,G,0,I,J,K,L,0,N,O,P,Q,R,S,T,U,V) [A = E] (?,1) 77. f19(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f33(A,B,C,A,E,F,G,0,I,J,K,L,0,N,O,P,Q,R,S,T,U,V) [A = D] (?,1) 78. f18(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f33(A,B,A,D,E,F,G,0,I,J,K,L,0,N,O,P,Q,R,S,T,U,V) [A = C] (?,1) 79. f17(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f33(A,B,C,D,E,F,G,0,I,J,K,L,0,N,O,P,Q,R,S,T,U,V) [H = 0] (?,1) 80. f38(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f47(A,B,C,D,E,F,G,1,I,J,K,L,M,1,O,P,Q,R,S,T,U,V) [K >= 1 + C] (?,1) 81. f38(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f47(A,B,C,D,E,F,G,1,I,J,K,L,M,1,O,P,Q,R,S,T,U,V) [C >= 1 + K] (?,1) 82. f38(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f47(A,B,C,D,E,F,G,0,I,J,C,L,M,0,O,P,Q,R,S,T,U,V) [C = K] (?,1) 83. f37(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f47(A,B,C,D,E,F,C,0,I,J,K,L,M,0,O,P,Q,R,S,T,U,V) [C = G] (?,1) 84. f36(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f47(A,B,C,D,E,C,G,0,I,J,K,L,M,0,O,P,Q,R,S,T,U,V) [C = F] (?,1) 85. f35(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f47(A,B,C,D,C,F,G,0,I,J,K,L,M,0,O,P,Q,R,S,T,U,V) [C = E] (?,1) 86. f34(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f47(A,B,C,C,E,F,G,0,I,J,K,L,M,0,O,P,Q,R,S,T,U,V) [C = D] (?,1) 87. f33(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f47(A,B,C,D,E,F,G,0,I,J,K,L,M,0,O,P,Q,R,S,T,U,V) [H = 0] (?,1) 88. f51(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f59(A,B,C,D,E,F,G,1,I,J,K,L,M,N,1,P,Q,R,S,T,U,V) [K >= 1 + D] (?,1) 89. f51(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f59(A,B,C,D,E,F,G,1,I,J,K,L,M,N,1,P,Q,R,S,T,U,V) [D >= 1 + K] (?,1) 90. f51(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f59(A,B,C,D,E,F,G,0,I,J,D,L,M,N,0,P,Q,R,S,T,U,V) [D = K] (?,1) 91. f50(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f59(A,B,C,D,E,F,D,0,I,J,K,L,M,N,0,P,Q,R,S,T,U,V) [D = G] (?,1) 92. f49(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f59(A,B,C,D,E,D,G,0,I,J,K,L,M,N,0,P,Q,R,S,T,U,V) [D = F] (?,1) 93. f48(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f59(A,B,C,D,D,F,G,0,I,J,K,L,M,N,0,P,Q,R,S,T,U,V) [D = E] (?,1) 94. f47(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f59(A,B,C,D,E,F,G,0,I,J,K,L,M,N,0,P,Q,R,S,T,U,V) [H = 0] (?,1) 95. f62(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f69(A,B,C,D,E,F,G,1,I,J,K,L,M,N,O,1,Q,R,S,T,U,V) [K >= 1 + E] (?,1) 96. f62(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f69(A,B,C,D,E,F,G,1,I,J,K,L,M,N,O,1,Q,R,S,T,U,V) [E >= 1 + K] (?,1) 97. f62(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f69(A,B,C,D,E,F,G,0,I,J,E,L,M,N,O,0,Q,R,S,T,U,V) [E = K] (?,1) 98. f61(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f69(A,B,C,D,E,F,E,0,I,J,K,L,M,N,O,0,Q,R,S,T,U,V) [E = G] (?,1) 99. f60(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f69(A,B,C,D,E,E,G,0,I,J,K,L,M,N,O,0,Q,R,S,T,U,V) [E = F] (?,1) 100. f59(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f69(A,B,C,D,E,F,G,0,I,J,K,L,M,N,O,0,Q,R,S,T,U,V) [H = 0] (?,1) 101. f71(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f77(A,B,C,D,E,F,G,1,I,J,K,L,M,N,O,P,1,R,S,T,U,V) [K >= 1 + F] (?,1) 102. f71(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f77(A,B,C,D,E,F,G,1,I,J,K,L,M,N,O,P,1,R,S,T,U,V) [F >= 1 + K] (?,1) 103. f71(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f77(A,B,C,D,E,F,G,0,I,J,F,L,M,N,O,P,0,R,S,T,U,V) [F = K] (?,1) 104. f70(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f77(A,B,C,D,E,F,F,0,I,J,K,L,M,N,O,P,0,R,S,T,U,V) [F = G] (?,1) 105. f69(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f77(A,B,C,D,E,F,G,0,I,J,K,L,M,N,O,P,0,R,S,T,U,V) [H = 0] (?,1) 106. f78(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f83(A,B,C,D,E,F,G,1,I,J,K,L,M,N,O,P,Q,1,S,T,U,V) [K >= 1 + G] (?,1) 107. f78(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f83(A,B,C,D,E,F,G,1,I,J,K,L,M,N,O,P,Q,1,S,T,U,V) [G >= 1 + K] (?,1) 108. f78(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f83(A,B,C,D,E,F,G,0,I,J,G,L,M,N,O,P,Q,0,S,T,U,V) [G = K] (?,1) 109. f77(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f83(A,B,C,D,E,F,G,0,I,J,K,L,M,N,O,P,Q,0,S,T,U,V) [H = 0] (?,1) 110. f83(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f101(A,B,C,D,E,F,G,H,1,J,K,L,M,N,O,P,Q,R,1,T,U,V) [9 >= K && 9 >= G && 9 >= F && 9 >= E && 9 >= D && 9 >= C && 9 >= B && 9 >= A] (?,1) 111. f83(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f101(A,B,C,D,E,F,G,H,0,J,K,L,M,N,O,P,Q,R,0,T,U,V) [K >= 10 && 9 >= G && 9 >= F && 9 >= E && 9 >= D && 9 >= C && 9 >= B && 9 >= A] (?,1) 112. f83(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f101(A,B,C,D,E,F,G,H,0,J,K,L,M,N,O,P,Q,R,0,T,U,V) [G >= 10 && 9 >= F && 9 >= E && 9 >= D && 9 >= C && 9 >= B && 9 >= A] (?,1) 113. f83(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f101(A,B,C,D,E,F,G,H,0,J,K,L,M,N,O,P,Q,R,0,T,U,V) [F >= 10 && 9 >= E && 9 >= D && 9 >= C && 9 >= B && 9 >= A] (?,1) 114. f83(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f101(A,B,C,D,E,F,G,H,0,J,K,L,M,N,O,P,Q,R,0,T,U,V) [E >= 10 && 9 >= D && 9 >= C && 9 >= B && 9 >= A] (?,1) 115. f83(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f101(A,B,C,D,E,F,G,H,0,J,K,L,M,N,O,P,Q,R,0,T,U,V) [D >= 10 && 9 >= C && 9 >= B && 9 >= A] (?,1) 116. f83(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f101(A,B,C,D,E,F,G,H,0,J,K,L,M,N,O,P,Q,R,0,T,U,V) [C >= 10 && 9 >= B && 9 >= A] (?,1) 117. f83(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f101(A,B,C,D,E,F,G,H,0,J,K,L,M,N,O,P,Q,R,0,T,U,V) [9 >= B && A >= 10] (?,1) 118. f83(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f101(A,B,C,D,E,F,G,H,0,J,K,L,M,N,O,P,Q,R,0,T,U,V) [B >= 10] (?,1) 119. f102(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f108(A,B,C,D,E,F,G,H,I,1,K,L,M,N,O,P,Q,R,S,1,W,V) [0 >= 1 + B] (?,1) 120. f102(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f108(A,B,C,D,E,F,G,H,I,1,K,L,M,N,O,P,Q,R,S,1,W,V) [B >= 1] (?,1) 121. f102(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f108(A,0,C,D,E,F,G,H,I,0,K,L,M,N,O,P,Q,R,S,0,W,V) [B = 0] (?,1) 122. f101(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f108(A,B,C,D,0,F,G,H,I,0,K,L,M,N,O,P,Q,R,S,0,W,V) [E = 0] (?,1) 123. f111(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f119(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,0) [0 >= 1 + U] (?,1) 124. f111(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f119(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,0) [U >= 1] (?,1) 125. f111(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f119(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,0,1) [U = 0] (?,1) 126. f110(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f119(A,B,C,D,E,F,G,H,I,0,K,L,M,N,O,P,Q,R,S,T,U,1) [J = 0] (?,1) 127. f109(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f119(A,B,C,D,E,F,G,H,0,J,K,L,M,N,O,P,Q,R,S,T,U,1) [I = 0] (?,1) 128. f108(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V) -> f119(A,B,C,D,E,F,G,0,I,J,K,L,M,N,O,P,Q,R,S,T,U,1) [H = 0] (?,1) Signature: {(f0,22) ;(f101,22) ;(f102,22) ;(f108,22) ;(f109,22) ;(f110,22) ;(f111,22) ;(f119,22) ;(f17,22) ;(f18,22) ;(f19,22) ;(f2,22) ;(f20,22) ;(f21,22) ;(f22,22) ;(f23,22) ;(f3,22) ;(f33,22) ;(f34,22) ;(f35,22) ;(f36,22) ;(f37,22) ;(f38,22) ;(f4,22) ;(f47,22) ;(f48,22) ;(f49,22) ;(f5,22) ;(f50,22) ;(f51,22) ;(f59,22) ;(f6,22) ;(f60,22) ;(f61,22) ;(f62,22) ;(f69,22) ;(f7,22) ;(f70,22) ;(f71,22) ;(f77,22) ;(f78,22) ;(f83,22)} Flow Graph: [0->{2,3,69},1->{2,3,69},2->{4,5,68},3->{4,5,68},4->{6,7,67},5->{6,7,67},6->{8,9,66},7->{8,9,66},8->{10,11 ,65},9->{10,11,65},10->{62,63,64},11->{62,63,64},12->{14,15,78},13->{14,15,78},14->{16,17,77},15->{16,17,77} ,16->{18,19,76},17->{18,19,76},18->{20,21,75},19->{20,21,75},20->{22,23,74},21->{22,23,74},22->{71,72,73} ,23->{71,72,73},24->{26,27,86},25->{26,27,86},26->{28,29,85},27->{28,29,85},28->{30,31,84},29->{30,31,84} ,30->{32,33,83},31->{32,33,83},32->{80,81,82},33->{80,81,82},34->{36,37,93},35->{36,37,93},36->{38,39,92} ,37->{38,39,92},38->{40,41,91},39->{40,41,91},40->{88,89,90},41->{88,89,90},42->{44,45,99},43->{44,45,99} ,44->{46,47,98},45->{46,47,98},46->{95,96,97},47->{95,96,97},48->{50,51,104},49->{50,51,104},50->{101,102 ,103},51->{101,102,103},52->{106,107,108},53->{106,107,108},54->{119,120,121},55->{119,120,121},56->{58,59 ,127},57->{58,59,127},58->{60,61,126},59->{60,61,126},60->{123,124,125},61->{123,124,125},62->{12,13,79} ,63->{12,13,79},64->{12,13,79},65->{12,13,79},66->{12,13,79},67->{12,13,79},68->{12,13,79},69->{12,13,79} ,70->{12,13,79},71->{24,25,87},72->{24,25,87},73->{24,25,87},74->{24,25,87},75->{24,25,87},76->{24,25,87} ,77->{24,25,87},78->{24,25,87},79->{24,25,87},80->{34,35,94},81->{34,35,94},82->{34,35,94},83->{34,35,94} ,84->{34,35,94},85->{34,35,94},86->{34,35,94},87->{34,35,94},88->{42,43,100},89->{42,43,100},90->{42,43,100} ,91->{42,43,100},92->{42,43,100},93->{42,43,100},94->{42,43,100},95->{48,49,105},96->{48,49,105},97->{48,49 ,105},98->{48,49,105},99->{48,49,105},100->{48,49,105},101->{52,53,109},102->{52,53,109},103->{52,53,109} ,104->{52,53,109},105->{52,53,109},106->{110,111,112,113,114,115,116,117,118},107->{110,111,112,113,114,115 ,116,117,118},108->{110,111,112,113,114,115,116,117,118},109->{110,111,112,113,114,115,116,117,118},110->{54 ,55,122},111->{54,55,122},112->{54,55,122},113->{54,55,122},114->{54,55,122},115->{54,55,122},116->{54,55 ,122},117->{54,55,122},118->{54,55,122},119->{56,57,128},120->{56,57,128},121->{56,57,128},122->{56,57,128} ,123->{},124->{},125->{},126->{},127->{},128->{}] + Applied Processor: RestrictVarsProcessor + Details: We removed the arguments [L,M,N,O,P,Q,R,S,T,V] . * Step 2: LocalSizeboundsProc WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,D,E,F,G,H,I,J,K,U) -> f2(A,B,C,D,E,F,G,H,I,J,K,U) [A >= 1 + B] (1,1) 1. f0(A,B,C,D,E,F,G,H,I,J,K,U) -> f2(A,B,C,D,E,F,G,H,I,J,K,U) [B >= 1 + A] (1,1) 2. f2(A,B,C,D,E,F,G,H,I,J,K,U) -> f3(A,B,C,D,E,F,G,H,I,J,K,U) [C >= 1 + B] (?,1) 3. f2(A,B,C,D,E,F,G,H,I,J,K,U) -> f3(A,B,C,D,E,F,G,H,I,J,K,U) [B >= 1 + C] (?,1) 4. f3(A,B,C,D,E,F,G,H,I,J,K,U) -> f4(A,B,C,D,E,F,G,H,I,J,K,U) [D >= 1 + B] (?,1) 5. f3(A,B,C,D,E,F,G,H,I,J,K,U) -> f4(A,B,C,D,E,F,G,H,I,J,K,U) [B >= 1 + D] (?,1) 6. f4(A,B,C,D,E,F,G,H,I,J,K,U) -> f5(A,B,C,D,E,F,G,H,I,J,K,U) [E >= 1 + B] (?,1) 7. f4(A,B,C,D,E,F,G,H,I,J,K,U) -> f5(A,B,C,D,E,F,G,H,I,J,K,U) [B >= 1 + E] (?,1) 8. f5(A,B,C,D,E,F,G,H,I,J,K,U) -> f6(A,B,C,D,E,F,G,H,I,J,K,U) [F >= 1 + B] (?,1) 9. f5(A,B,C,D,E,F,G,H,I,J,K,U) -> f6(A,B,C,D,E,F,G,H,I,J,K,U) [B >= 1 + F] (?,1) 10. f6(A,B,C,D,E,F,G,H,I,J,K,U) -> f7(A,B,C,D,E,F,G,H,I,J,K,U) [G >= 1 + B] (?,1) 11. f6(A,B,C,D,E,F,G,H,I,J,K,U) -> f7(A,B,C,D,E,F,G,H,I,J,K,U) [B >= 1 + G] (?,1) 12. f17(A,B,C,D,E,F,G,H,I,J,K,U) -> f18(A,B,C,D,E,F,G,H,I,J,K,U) [0 >= 1 + H] (?,1) 13. f17(A,B,C,D,E,F,G,H,I,J,K,U) -> f18(A,B,C,D,E,F,G,H,I,J,K,U) [H >= 1] (?,1) 14. f18(A,B,C,D,E,F,G,H,I,J,K,U) -> f19(A,B,C,D,E,F,G,H,I,J,K,U) [C >= 1 + A] (?,1) 15. f18(A,B,C,D,E,F,G,H,I,J,K,U) -> f19(A,B,C,D,E,F,G,H,I,J,K,U) [A >= 1 + C] (?,1) 16. f19(A,B,C,D,E,F,G,H,I,J,K,U) -> f20(A,B,C,D,E,F,G,H,I,J,K,U) [D >= 1 + A] (?,1) 17. f19(A,B,C,D,E,F,G,H,I,J,K,U) -> f20(A,B,C,D,E,F,G,H,I,J,K,U) [A >= 1 + D] (?,1) 18. f20(A,B,C,D,E,F,G,H,I,J,K,U) -> f21(A,B,C,D,E,F,G,H,I,J,K,U) [E >= 1 + A] (?,1) 19. f20(A,B,C,D,E,F,G,H,I,J,K,U) -> f21(A,B,C,D,E,F,G,H,I,J,K,U) [A >= 1 + E] (?,1) 20. f21(A,B,C,D,E,F,G,H,I,J,K,U) -> f22(A,B,C,D,E,F,G,H,I,J,K,U) [F >= 1 + A] (?,1) 21. f21(A,B,C,D,E,F,G,H,I,J,K,U) -> f22(A,B,C,D,E,F,G,H,I,J,K,U) [A >= 1 + F] (?,1) 22. f22(A,B,C,D,E,F,G,H,I,J,K,U) -> f23(A,B,C,D,E,F,G,H,I,J,K,U) [G >= 1 + A] (?,1) 23. f22(A,B,C,D,E,F,G,H,I,J,K,U) -> f23(A,B,C,D,E,F,G,H,I,J,K,U) [A >= 1 + G] (?,1) 24. f33(A,B,C,D,E,F,G,H,I,J,K,U) -> f34(A,B,C,D,E,F,G,H,I,J,K,U) [0 >= 1 + H] (?,1) 25. f33(A,B,C,D,E,F,G,H,I,J,K,U) -> f34(A,B,C,D,E,F,G,H,I,J,K,U) [H >= 1] (?,1) 26. f34(A,B,C,D,E,F,G,H,I,J,K,U) -> f35(A,B,C,D,E,F,G,H,I,J,K,U) [D >= 1 + C] (?,1) 27. f34(A,B,C,D,E,F,G,H,I,J,K,U) -> f35(A,B,C,D,E,F,G,H,I,J,K,U) [C >= 1 + D] (?,1) 28. f35(A,B,C,D,E,F,G,H,I,J,K,U) -> f36(A,B,C,D,E,F,G,H,I,J,K,U) [E >= 1 + C] (?,1) 29. f35(A,B,C,D,E,F,G,H,I,J,K,U) -> f36(A,B,C,D,E,F,G,H,I,J,K,U) [C >= 1 + E] (?,1) 30. f36(A,B,C,D,E,F,G,H,I,J,K,U) -> f37(A,B,C,D,E,F,G,H,I,J,K,U) [F >= 1 + C] (?,1) 31. f36(A,B,C,D,E,F,G,H,I,J,K,U) -> f37(A,B,C,D,E,F,G,H,I,J,K,U) [C >= 1 + F] (?,1) 32. f37(A,B,C,D,E,F,G,H,I,J,K,U) -> f38(A,B,C,D,E,F,G,H,I,J,K,U) [G >= 1 + C] (?,1) 33. f37(A,B,C,D,E,F,G,H,I,J,K,U) -> f38(A,B,C,D,E,F,G,H,I,J,K,U) [C >= 1 + G] (?,1) 34. f47(A,B,C,D,E,F,G,H,I,J,K,U) -> f48(A,B,C,D,E,F,G,H,I,J,K,U) [0 >= 1 + H] (?,1) 35. f47(A,B,C,D,E,F,G,H,I,J,K,U) -> f48(A,B,C,D,E,F,G,H,I,J,K,U) [H >= 1] (?,1) 36. f48(A,B,C,D,E,F,G,H,I,J,K,U) -> f49(A,B,C,D,E,F,G,H,I,J,K,U) [E >= 1 + D] (?,1) 37. f48(A,B,C,D,E,F,G,H,I,J,K,U) -> f49(A,B,C,D,E,F,G,H,I,J,K,U) [D >= 1 + E] (?,1) 38. f49(A,B,C,D,E,F,G,H,I,J,K,U) -> f50(A,B,C,D,E,F,G,H,I,J,K,U) [F >= 1 + D] (?,1) 39. f49(A,B,C,D,E,F,G,H,I,J,K,U) -> f50(A,B,C,D,E,F,G,H,I,J,K,U) [D >= 1 + F] (?,1) 40. f50(A,B,C,D,E,F,G,H,I,J,K,U) -> f51(A,B,C,D,E,F,G,H,I,J,K,U) [G >= 1 + D] (?,1) 41. f50(A,B,C,D,E,F,G,H,I,J,K,U) -> f51(A,B,C,D,E,F,G,H,I,J,K,U) [D >= 1 + G] (?,1) 42. f59(A,B,C,D,E,F,G,H,I,J,K,U) -> f60(A,B,C,D,E,F,G,H,I,J,K,U) [0 >= 1 + H] (?,1) 43. f59(A,B,C,D,E,F,G,H,I,J,K,U) -> f60(A,B,C,D,E,F,G,H,I,J,K,U) [H >= 1] (?,1) 44. f60(A,B,C,D,E,F,G,H,I,J,K,U) -> f61(A,B,C,D,E,F,G,H,I,J,K,U) [F >= 1 + E] (?,1) 45. f60(A,B,C,D,E,F,G,H,I,J,K,U) -> f61(A,B,C,D,E,F,G,H,I,J,K,U) [E >= 1 + F] (?,1) 46. f61(A,B,C,D,E,F,G,H,I,J,K,U) -> f62(A,B,C,D,E,F,G,H,I,J,K,U) [G >= 1 + E] (?,1) 47. f61(A,B,C,D,E,F,G,H,I,J,K,U) -> f62(A,B,C,D,E,F,G,H,I,J,K,U) [E >= 1 + G] (?,1) 48. f69(A,B,C,D,E,F,G,H,I,J,K,U) -> f70(A,B,C,D,E,F,G,H,I,J,K,U) [0 >= 1 + H] (?,1) 49. f69(A,B,C,D,E,F,G,H,I,J,K,U) -> f70(A,B,C,D,E,F,G,H,I,J,K,U) [H >= 1] (?,1) 50. f70(A,B,C,D,E,F,G,H,I,J,K,U) -> f71(A,B,C,D,E,F,G,H,I,J,K,U) [G >= 1 + F] (?,1) 51. f70(A,B,C,D,E,F,G,H,I,J,K,U) -> f71(A,B,C,D,E,F,G,H,I,J,K,U) [F >= 1 + G] (?,1) 52. f77(A,B,C,D,E,F,G,H,I,J,K,U) -> f78(A,B,C,D,E,F,G,H,I,J,K,U) [0 >= 1 + H] (?,1) 53. f77(A,B,C,D,E,F,G,H,I,J,K,U) -> f78(A,B,C,D,E,F,G,H,I,J,K,U) [H >= 1] (?,1) 54. f101(A,B,C,D,E,F,G,H,I,J,K,U) -> f102(A,B,C,D,E,F,G,H,I,J,K,U) [0 >= 1 + E] (?,1) 55. f101(A,B,C,D,E,F,G,H,I,J,K,U) -> f102(A,B,C,D,E,F,G,H,I,J,K,U) [E >= 1] (?,1) 56. f108(A,B,C,D,E,F,G,H,I,J,K,U) -> f109(A,B,C,D,E,F,G,H,I,J,K,U) [0 >= 1 + H] (?,1) 57. f108(A,B,C,D,E,F,G,H,I,J,K,U) -> f109(A,B,C,D,E,F,G,H,I,J,K,U) [H >= 1] (?,1) 58. f109(A,B,C,D,E,F,G,H,I,J,K,U) -> f110(A,B,C,D,E,F,G,H,I,J,K,U) [0 >= 1 + I] (?,1) 59. f109(A,B,C,D,E,F,G,H,I,J,K,U) -> f110(A,B,C,D,E,F,G,H,I,J,K,U) [I >= 1] (?,1) 60. f110(A,B,C,D,E,F,G,H,I,J,K,U) -> f111(A,B,C,D,E,F,G,H,I,J,K,U) [0 >= 1 + J] (?,1) 61. f110(A,B,C,D,E,F,G,H,I,J,K,U) -> f111(A,B,C,D,E,F,G,H,I,J,K,U) [J >= 1] (?,1) 62. f7(A,B,C,D,E,F,G,H,I,J,K,U) -> f17(A,B,C,D,E,F,G,1,I,J,K,U) [K >= 1 + B] (?,1) 63. f7(A,B,C,D,E,F,G,H,I,J,K,U) -> f17(A,B,C,D,E,F,G,1,I,J,K,U) [B >= 1 + K] (?,1) 64. f7(A,B,C,D,E,F,G,H,I,J,K,U) -> f17(A,B,C,D,E,F,G,0,I,J,B,U) [B = K] (?,1) 65. f6(A,B,C,D,E,F,G,H,I,J,K,U) -> f17(A,B,C,D,E,F,B,0,I,J,K,U) [B = G] (?,1) 66. f5(A,B,C,D,E,F,G,H,I,J,K,U) -> f17(A,B,C,D,E,B,G,0,I,J,K,U) [B = F] (?,1) 67. f4(A,B,C,D,E,F,G,H,I,J,K,U) -> f17(A,B,C,D,B,F,G,0,I,J,K,U) [B = E] (?,1) 68. f3(A,B,C,D,E,F,G,H,I,J,K,U) -> f17(A,B,C,B,E,F,G,0,I,J,K,U) [B = D] (?,1) 69. f2(A,B,C,D,E,F,G,H,I,J,K,U) -> f17(A,B,B,D,E,F,G,0,I,J,K,U) [B = C] (?,1) 70. f0(A,B,C,D,E,F,G,H,I,J,K,U) -> f17(B,B,C,D,E,F,G,0,I,J,K,U) [B = A] (1,1) 71. f23(A,B,C,D,E,F,G,H,I,J,K,U) -> f33(A,B,C,D,E,F,G,1,I,J,K,U) [K >= 1 + A] (?,1) 72. f23(A,B,C,D,E,F,G,H,I,J,K,U) -> f33(A,B,C,D,E,F,G,1,I,J,K,U) [A >= 1 + K] (?,1) 73. f23(A,B,C,D,E,F,G,H,I,J,K,U) -> f33(A,B,C,D,E,F,G,0,I,J,A,U) [A = K] (?,1) 74. f22(A,B,C,D,E,F,G,H,I,J,K,U) -> f33(A,B,C,D,E,F,A,0,I,J,K,U) [A = G] (?,1) 75. f21(A,B,C,D,E,F,G,H,I,J,K,U) -> f33(A,B,C,D,E,A,G,0,I,J,K,U) [A = F] (?,1) 76. f20(A,B,C,D,E,F,G,H,I,J,K,U) -> f33(A,B,C,D,A,F,G,0,I,J,K,U) [A = E] (?,1) 77. f19(A,B,C,D,E,F,G,H,I,J,K,U) -> f33(A,B,C,A,E,F,G,0,I,J,K,U) [A = D] (?,1) 78. f18(A,B,C,D,E,F,G,H,I,J,K,U) -> f33(A,B,A,D,E,F,G,0,I,J,K,U) [A = C] (?,1) 79. f17(A,B,C,D,E,F,G,H,I,J,K,U) -> f33(A,B,C,D,E,F,G,0,I,J,K,U) [H = 0] (?,1) 80. f38(A,B,C,D,E,F,G,H,I,J,K,U) -> f47(A,B,C,D,E,F,G,1,I,J,K,U) [K >= 1 + C] (?,1) 81. f38(A,B,C,D,E,F,G,H,I,J,K,U) -> f47(A,B,C,D,E,F,G,1,I,J,K,U) [C >= 1 + K] (?,1) 82. f38(A,B,C,D,E,F,G,H,I,J,K,U) -> f47(A,B,C,D,E,F,G,0,I,J,C,U) [C = K] (?,1) 83. f37(A,B,C,D,E,F,G,H,I,J,K,U) -> f47(A,B,C,D,E,F,C,0,I,J,K,U) [C = G] (?,1) 84. f36(A,B,C,D,E,F,G,H,I,J,K,U) -> f47(A,B,C,D,E,C,G,0,I,J,K,U) [C = F] (?,1) 85. f35(A,B,C,D,E,F,G,H,I,J,K,U) -> f47(A,B,C,D,C,F,G,0,I,J,K,U) [C = E] (?,1) 86. f34(A,B,C,D,E,F,G,H,I,J,K,U) -> f47(A,B,C,C,E,F,G,0,I,J,K,U) [C = D] (?,1) 87. f33(A,B,C,D,E,F,G,H,I,J,K,U) -> f47(A,B,C,D,E,F,G,0,I,J,K,U) [H = 0] (?,1) 88. f51(A,B,C,D,E,F,G,H,I,J,K,U) -> f59(A,B,C,D,E,F,G,1,I,J,K,U) [K >= 1 + D] (?,1) 89. f51(A,B,C,D,E,F,G,H,I,J,K,U) -> f59(A,B,C,D,E,F,G,1,I,J,K,U) [D >= 1 + K] (?,1) 90. f51(A,B,C,D,E,F,G,H,I,J,K,U) -> f59(A,B,C,D,E,F,G,0,I,J,D,U) [D = K] (?,1) 91. f50(A,B,C,D,E,F,G,H,I,J,K,U) -> f59(A,B,C,D,E,F,D,0,I,J,K,U) [D = G] (?,1) 92. f49(A,B,C,D,E,F,G,H,I,J,K,U) -> f59(A,B,C,D,E,D,G,0,I,J,K,U) [D = F] (?,1) 93. f48(A,B,C,D,E,F,G,H,I,J,K,U) -> f59(A,B,C,D,D,F,G,0,I,J,K,U) [D = E] (?,1) 94. f47(A,B,C,D,E,F,G,H,I,J,K,U) -> f59(A,B,C,D,E,F,G,0,I,J,K,U) [H = 0] (?,1) 95. f62(A,B,C,D,E,F,G,H,I,J,K,U) -> f69(A,B,C,D,E,F,G,1,I,J,K,U) [K >= 1 + E] (?,1) 96. f62(A,B,C,D,E,F,G,H,I,J,K,U) -> f69(A,B,C,D,E,F,G,1,I,J,K,U) [E >= 1 + K] (?,1) 97. f62(A,B,C,D,E,F,G,H,I,J,K,U) -> f69(A,B,C,D,E,F,G,0,I,J,E,U) [E = K] (?,1) 98. f61(A,B,C,D,E,F,G,H,I,J,K,U) -> f69(A,B,C,D,E,F,E,0,I,J,K,U) [E = G] (?,1) 99. f60(A,B,C,D,E,F,G,H,I,J,K,U) -> f69(A,B,C,D,E,E,G,0,I,J,K,U) [E = F] (?,1) 100. f59(A,B,C,D,E,F,G,H,I,J,K,U) -> f69(A,B,C,D,E,F,G,0,I,J,K,U) [H = 0] (?,1) 101. f71(A,B,C,D,E,F,G,H,I,J,K,U) -> f77(A,B,C,D,E,F,G,1,I,J,K,U) [K >= 1 + F] (?,1) 102. f71(A,B,C,D,E,F,G,H,I,J,K,U) -> f77(A,B,C,D,E,F,G,1,I,J,K,U) [F >= 1 + K] (?,1) 103. f71(A,B,C,D,E,F,G,H,I,J,K,U) -> f77(A,B,C,D,E,F,G,0,I,J,F,U) [F = K] (?,1) 104. f70(A,B,C,D,E,F,G,H,I,J,K,U) -> f77(A,B,C,D,E,F,F,0,I,J,K,U) [F = G] (?,1) 105. f69(A,B,C,D,E,F,G,H,I,J,K,U) -> f77(A,B,C,D,E,F,G,0,I,J,K,U) [H = 0] (?,1) 106. f78(A,B,C,D,E,F,G,H,I,J,K,U) -> f83(A,B,C,D,E,F,G,1,I,J,K,U) [K >= 1 + G] (?,1) 107. f78(A,B,C,D,E,F,G,H,I,J,K,U) -> f83(A,B,C,D,E,F,G,1,I,J,K,U) [G >= 1 + K] (?,1) 108. f78(A,B,C,D,E,F,G,H,I,J,K,U) -> f83(A,B,C,D,E,F,G,0,I,J,G,U) [G = K] (?,1) 109. f77(A,B,C,D,E,F,G,H,I,J,K,U) -> f83(A,B,C,D,E,F,G,0,I,J,K,U) [H = 0] (?,1) 110. f83(A,B,C,D,E,F,G,H,I,J,K,U) -> f101(A,B,C,D,E,F,G,H,1,J,K,U) [9 >= K && 9 >= G && 9 >= F && 9 >= E && 9 >= D && 9 >= C && 9 >= B && 9 >= A] (?,1) 111. f83(A,B,C,D,E,F,G,H,I,J,K,U) -> f101(A,B,C,D,E,F,G,H,0,J,K,U) [K >= 10 && 9 >= G && 9 >= F && 9 >= E && 9 >= D && 9 >= C && 9 >= B && 9 >= A] (?,1) 112. f83(A,B,C,D,E,F,G,H,I,J,K,U) -> f101(A,B,C,D,E,F,G,H,0,J,K,U) [G >= 10 && 9 >= F && 9 >= E && 9 >= D && 9 >= C && 9 >= B && 9 >= A] (?,1) 113. f83(A,B,C,D,E,F,G,H,I,J,K,U) -> f101(A,B,C,D,E,F,G,H,0,J,K,U) [F >= 10 && 9 >= E && 9 >= D && 9 >= C && 9 >= B && 9 >= A] (?,1) 114. f83(A,B,C,D,E,F,G,H,I,J,K,U) -> f101(A,B,C,D,E,F,G,H,0,J,K,U) [E >= 10 && 9 >= D && 9 >= C && 9 >= B && 9 >= A] (?,1) 115. f83(A,B,C,D,E,F,G,H,I,J,K,U) -> f101(A,B,C,D,E,F,G,H,0,J,K,U) [D >= 10 && 9 >= C && 9 >= B && 9 >= A] (?,1) 116. f83(A,B,C,D,E,F,G,H,I,J,K,U) -> f101(A,B,C,D,E,F,G,H,0,J,K,U) [C >= 10 && 9 >= B && 9 >= A] (?,1) 117. f83(A,B,C,D,E,F,G,H,I,J,K,U) -> f101(A,B,C,D,E,F,G,H,0,J,K,U) [9 >= B && A >= 10] (?,1) 118. f83(A,B,C,D,E,F,G,H,I,J,K,U) -> f101(A,B,C,D,E,F,G,H,0,J,K,U) [B >= 10] (?,1) 119. f102(A,B,C,D,E,F,G,H,I,J,K,U) -> f108(A,B,C,D,E,F,G,H,I,1,K,W) [0 >= 1 + B] (?,1) 120. f102(A,B,C,D,E,F,G,H,I,J,K,U) -> f108(A,B,C,D,E,F,G,H,I,1,K,W) [B >= 1] (?,1) 121. f102(A,B,C,D,E,F,G,H,I,J,K,U) -> f108(A,0,C,D,E,F,G,H,I,0,K,W) [B = 0] (?,1) 122. f101(A,B,C,D,E,F,G,H,I,J,K,U) -> f108(A,B,C,D,0,F,G,H,I,0,K,W) [E = 0] (?,1) 123. f111(A,B,C,D,E,F,G,H,I,J,K,U) -> f119(A,B,C,D,E,F,G,H,I,J,K,U) [0 >= 1 + U] (?,1) 124. f111(A,B,C,D,E,F,G,H,I,J,K,U) -> f119(A,B,C,D,E,F,G,H,I,J,K,U) [U >= 1] (?,1) 125. f111(A,B,C,D,E,F,G,H,I,J,K,U) -> f119(A,B,C,D,E,F,G,H,I,J,K,0) [U = 0] (?,1) 126. f110(A,B,C,D,E,F,G,H,I,J,K,U) -> f119(A,B,C,D,E,F,G,H,I,0,K,U) [J = 0] (?,1) 127. f109(A,B,C,D,E,F,G,H,I,J,K,U) -> f119(A,B,C,D,E,F,G,H,0,J,K,U) [I = 0] (?,1) 128. f108(A,B,C,D,E,F,G,H,I,J,K,U) -> f119(A,B,C,D,E,F,G,0,I,J,K,U) [H = 0] (?,1) Signature: {(f0,12) ;(f101,12) ;(f102,12) ;(f108,12) ;(f109,12) ;(f110,12) ;(f111,12) ;(f119,12) ;(f17,12) ;(f18,12) ;(f19,12) ;(f2,12) ;(f20,12) ;(f21,12) ;(f22,12) ;(f23,12) ;(f3,12) ;(f33,12) ;(f34,12) ;(f35,12) ;(f36,12) ;(f37,12) ;(f38,12) ;(f4,12) ;(f47,12) ;(f48,12) ;(f49,12) ;(f5,12) ;(f50,12) ;(f51,12) ;(f59,12) ;(f6,12) ;(f60,12) ;(f61,12) ;(f62,12) ;(f69,12) ;(f7,12) ;(f70,12) ;(f71,12) ;(f77,12) ;(f78,12) ;(f83,12)} Flow Graph: [0->{2,3,69},1->{2,3,69},2->{4,5,68},3->{4,5,68},4->{6,7,67},5->{6,7,67},6->{8,9,66},7->{8,9,66},8->{10,11 ,65},9->{10,11,65},10->{62,63,64},11->{62,63,64},12->{14,15,78},13->{14,15,78},14->{16,17,77},15->{16,17,77} ,16->{18,19,76},17->{18,19,76},18->{20,21,75},19->{20,21,75},20->{22,23,74},21->{22,23,74},22->{71,72,73} ,23->{71,72,73},24->{26,27,86},25->{26,27,86},26->{28,29,85},27->{28,29,85},28->{30,31,84},29->{30,31,84} ,30->{32,33,83},31->{32,33,83},32->{80,81,82},33->{80,81,82},34->{36,37,93},35->{36,37,93},36->{38,39,92} ,37->{38,39,92},38->{40,41,91},39->{40,41,91},40->{88,89,90},41->{88,89,90},42->{44,45,99},43->{44,45,99} ,44->{46,47,98},45->{46,47,98},46->{95,96,97},47->{95,96,97},48->{50,51,104},49->{50,51,104},50->{101,102 ,103},51->{101,102,103},52->{106,107,108},53->{106,107,108},54->{119,120,121},55->{119,120,121},56->{58,59 ,127},57->{58,59,127},58->{60,61,126},59->{60,61,126},60->{123,124,125},61->{123,124,125},62->{12,13,79} ,63->{12,13,79},64->{12,13,79},65->{12,13,79},66->{12,13,79},67->{12,13,79},68->{12,13,79},69->{12,13,79} ,70->{12,13,79},71->{24,25,87},72->{24,25,87},73->{24,25,87},74->{24,25,87},75->{24,25,87},76->{24,25,87} ,77->{24,25,87},78->{24,25,87},79->{24,25,87},80->{34,35,94},81->{34,35,94},82->{34,35,94},83->{34,35,94} ,84->{34,35,94},85->{34,35,94},86->{34,35,94},87->{34,35,94},88->{42,43,100},89->{42,43,100},90->{42,43,100} ,91->{42,43,100},92->{42,43,100},93->{42,43,100},94->{42,43,100},95->{48,49,105},96->{48,49,105},97->{48,49 ,105},98->{48,49,105},99->{48,49,105},100->{48,49,105},101->{52,53,109},102->{52,53,109},103->{52,53,109} ,104->{52,53,109},105->{52,53,109},106->{110,111,112,113,114,115,116,117,118},107->{110,111,112,113,114,115 ,116,117,118},108->{110,111,112,113,114,115,116,117,118},109->{110,111,112,113,114,115,116,117,118},110->{54 ,55,122},111->{54,55,122},112->{54,55,122},113->{54,55,122},114->{54,55,122},115->{54,55,122},116->{54,55 ,122},117->{54,55,122},118->{54,55,122},119->{56,57,128},120->{56,57,128},121->{56,57,128},122->{56,57,128} ,123->{},124->{},125->{},126->{},127->{},128->{}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (< 0,0,A>, A, .= 0) (< 0,0,B>, B, .= 0) (< 0,0,C>, C, .= 0) (< 0,0,D>, D, .= 0) (< 0,0,E>, E, .= 0) (< 0,0,F>, F, .= 0) (< 0,0,G>, G, .= 0) (< 0,0,H>, H, .= 0) (< 0,0,I>, I, .= 0) (< 0,0,J>, J, .= 0) (< 0,0,K>, K, .= 0) (< 0,0,U>, U, .= 0) (< 1,0,A>, A, .= 0) (< 1,0,B>, B, .= 0) (< 1,0,C>, C, .= 0) (< 1,0,D>, D, .= 0) (< 1,0,E>, E, .= 0) (< 1,0,F>, F, .= 0) (< 1,0,G>, G, .= 0) (< 1,0,H>, H, .= 0) (< 1,0,I>, I, .= 0) (< 1,0,J>, J, .= 0) (< 1,0,K>, K, .= 0) (< 1,0,U>, U, .= 0) (< 2,0,A>, A, .= 0) (< 2,0,B>, B, .= 0) (< 2,0,C>, C, .= 0) (< 2,0,D>, D, .= 0) (< 2,0,E>, E, .= 0) (< 2,0,F>, F, .= 0) (< 2,0,G>, G, .= 0) (< 2,0,H>, H, .= 0) (< 2,0,I>, I, .= 0) (< 2,0,J>, J, .= 0) (< 2,0,K>, K, .= 0) (< 2,0,U>, U, .= 0) (< 3,0,A>, A, .= 0) (< 3,0,B>, B, .= 0) (< 3,0,C>, C, .= 0) (< 3,0,D>, D, .= 0) (< 3,0,E>, E, .= 0) (< 3,0,F>, F, .= 0) (< 3,0,G>, G, .= 0) (< 3,0,H>, H, .= 0) (< 3,0,I>, I, .= 0) (< 3,0,J>, J, .= 0) (< 3,0,K>, K, .= 0) (< 3,0,U>, U, .= 0) (< 4,0,A>, A, .= 0) (< 4,0,B>, B, .= 0) (< 4,0,C>, C, .= 0) (< 4,0,D>, D, .= 0) (< 4,0,E>, E, .= 0) (< 4,0,F>, F, .= 0) (< 4,0,G>, G, .= 0) (< 4,0,H>, H, .= 0) (< 4,0,I>, I, .= 0) (< 4,0,J>, J, .= 0) (< 4,0,K>, K, .= 0) (< 4,0,U>, U, .= 0) (< 5,0,A>, A, .= 0) (< 5,0,B>, B, .= 0) (< 5,0,C>, C, .= 0) (< 5,0,D>, D, .= 0) (< 5,0,E>, E, .= 0) (< 5,0,F>, F, .= 0) (< 5,0,G>, G, .= 0) (< 5,0,H>, H, .= 0) (< 5,0,I>, I, .= 0) (< 5,0,J>, J, .= 0) (< 5,0,K>, K, .= 0) (< 5,0,U>, U, .= 0) (< 6,0,A>, A, .= 0) (< 6,0,B>, B, .= 0) (< 6,0,C>, C, .= 0) (< 6,0,D>, D, .= 0) (< 6,0,E>, E, .= 0) (< 6,0,F>, F, .= 0) (< 6,0,G>, G, .= 0) (< 6,0,H>, H, .= 0) (< 6,0,I>, I, .= 0) (< 6,0,J>, J, .= 0) (< 6,0,K>, K, .= 0) (< 6,0,U>, U, .= 0) (< 7,0,A>, A, .= 0) (< 7,0,B>, B, .= 0) (< 7,0,C>, C, .= 0) (< 7,0,D>, D, .= 0) (< 7,0,E>, E, .= 0) (< 7,0,F>, F, .= 0) (< 7,0,G>, G, .= 0) (< 7,0,H>, H, .= 0) (< 7,0,I>, I, .= 0) (< 7,0,J>, J, .= 0) (< 7,0,K>, K, .= 0) (< 7,0,U>, U, .= 0) (< 8,0,A>, A, .= 0) (< 8,0,B>, B, .= 0) (< 8,0,C>, C, .= 0) (< 8,0,D>, D, .= 0) (< 8,0,E>, E, .= 0) (< 8,0,F>, F, .= 0) (< 8,0,G>, G, .= 0) (< 8,0,H>, H, .= 0) (< 8,0,I>, I, .= 0) (< 8,0,J>, J, .= 0) (< 8,0,K>, K, .= 0) (< 8,0,U>, U, .= 0) (< 9,0,A>, A, .= 0) (< 9,0,B>, B, .= 0) (< 9,0,C>, C, .= 0) (< 9,0,D>, D, .= 0) (< 9,0,E>, E, .= 0) (< 9,0,F>, F, .= 0) (< 9,0,G>, G, .= 0) (< 9,0,H>, H, .= 0) (< 9,0,I>, I, .= 0) (< 9,0,J>, J, .= 0) (< 9,0,K>, K, .= 0) (< 9,0,U>, U, .= 0) (< 10,0,A>, A, .= 0) (< 10,0,B>, B, .= 0) (< 10,0,C>, C, .= 0) (< 10,0,D>, D, .= 0) (< 10,0,E>, E, .= 0) (< 10,0,F>, F, .= 0) (< 10,0,G>, G, .= 0) (< 10,0,H>, H, .= 0) (< 10,0,I>, I, .= 0) (< 10,0,J>, J, .= 0) (< 10,0,K>, K, .= 0) (< 10,0,U>, U, .= 0) (< 11,0,A>, A, .= 0) (< 11,0,B>, B, .= 0) (< 11,0,C>, C, .= 0) (< 11,0,D>, D, .= 0) (< 11,0,E>, E, .= 0) (< 11,0,F>, F, .= 0) (< 11,0,G>, G, .= 0) (< 11,0,H>, H, .= 0) (< 11,0,I>, I, .= 0) (< 11,0,J>, J, .= 0) (< 11,0,K>, K, .= 0) (< 11,0,U>, U, .= 0) (< 12,0,A>, A, .= 0) (< 12,0,B>, B, .= 0) (< 12,0,C>, C, .= 0) (< 12,0,D>, D, .= 0) (< 12,0,E>, E, .= 0) (< 12,0,F>, F, .= 0) (< 12,0,G>, G, .= 0) (< 12,0,H>, H, .= 0) (< 12,0,I>, I, .= 0) (< 12,0,J>, J, .= 0) (< 12,0,K>, K, .= 0) (< 12,0,U>, U, .= 0) (< 13,0,A>, A, .= 0) (< 13,0,B>, B, .= 0) (< 13,0,C>, C, .= 0) (< 13,0,D>, D, .= 0) (< 13,0,E>, E, .= 0) (< 13,0,F>, F, .= 0) (< 13,0,G>, G, .= 0) (< 13,0,H>, H, .= 0) (< 13,0,I>, I, .= 0) (< 13,0,J>, J, .= 0) (< 13,0,K>, K, .= 0) (< 13,0,U>, U, .= 0) (< 14,0,A>, A, .= 0) (< 14,0,B>, B, .= 0) (< 14,0,C>, C, .= 0) (< 14,0,D>, D, .= 0) (< 14,0,E>, E, .= 0) (< 14,0,F>, F, .= 0) (< 14,0,G>, G, .= 0) (< 14,0,H>, H, .= 0) (< 14,0,I>, I, .= 0) (< 14,0,J>, J, .= 0) (< 14,0,K>, K, .= 0) (< 14,0,U>, U, .= 0) (< 15,0,A>, A, .= 0) (< 15,0,B>, B, .= 0) (< 15,0,C>, C, .= 0) (< 15,0,D>, D, .= 0) (< 15,0,E>, E, .= 0) (< 15,0,F>, F, .= 0) (< 15,0,G>, G, .= 0) (< 15,0,H>, H, .= 0) (< 15,0,I>, I, .= 0) (< 15,0,J>, J, .= 0) (< 15,0,K>, K, .= 0) (< 15,0,U>, U, .= 0) (< 16,0,A>, A, .= 0) (< 16,0,B>, B, .= 0) (< 16,0,C>, C, .= 0) (< 16,0,D>, D, .= 0) (< 16,0,E>, E, .= 0) (< 16,0,F>, F, .= 0) (< 16,0,G>, G, .= 0) (< 16,0,H>, H, .= 0) (< 16,0,I>, I, .= 0) (< 16,0,J>, J, .= 0) (< 16,0,K>, K, .= 0) (< 16,0,U>, U, .= 0) (< 17,0,A>, A, .= 0) (< 17,0,B>, B, .= 0) (< 17,0,C>, C, .= 0) (< 17,0,D>, D, .= 0) (< 17,0,E>, E, .= 0) (< 17,0,F>, F, .= 0) (< 17,0,G>, G, .= 0) (< 17,0,H>, H, .= 0) (< 17,0,I>, I, .= 0) (< 17,0,J>, J, .= 0) (< 17,0,K>, K, .= 0) (< 17,0,U>, U, .= 0) (< 18,0,A>, A, .= 0) (< 18,0,B>, B, .= 0) (< 18,0,C>, C, .= 0) (< 18,0,D>, D, .= 0) (< 18,0,E>, E, .= 0) (< 18,0,F>, F, .= 0) (< 18,0,G>, G, .= 0) (< 18,0,H>, H, .= 0) (< 18,0,I>, I, .= 0) (< 18,0,J>, J, .= 0) (< 18,0,K>, K, .= 0) (< 18,0,U>, U, .= 0) (< 19,0,A>, A, .= 0) (< 19,0,B>, B, .= 0) (< 19,0,C>, C, .= 0) (< 19,0,D>, D, .= 0) (< 19,0,E>, E, .= 0) (< 19,0,F>, F, .= 0) (< 19,0,G>, G, .= 0) (< 19,0,H>, H, .= 0) (< 19,0,I>, I, .= 0) (< 19,0,J>, J, .= 0) (< 19,0,K>, K, .= 0) (< 19,0,U>, U, .= 0) (< 20,0,A>, A, .= 0) (< 20,0,B>, B, .= 0) (< 20,0,C>, C, .= 0) (< 20,0,D>, D, .= 0) (< 20,0,E>, E, .= 0) (< 20,0,F>, F, .= 0) (< 20,0,G>, G, .= 0) (< 20,0,H>, H, .= 0) (< 20,0,I>, I, .= 0) (< 20,0,J>, J, .= 0) (< 20,0,K>, K, .= 0) (< 20,0,U>, U, .= 0) (< 21,0,A>, A, .= 0) (< 21,0,B>, B, .= 0) (< 21,0,C>, C, .= 0) (< 21,0,D>, D, .= 0) (< 21,0,E>, E, .= 0) (< 21,0,F>, F, .= 0) (< 21,0,G>, G, .= 0) (< 21,0,H>, H, .= 0) (< 21,0,I>, I, .= 0) (< 21,0,J>, J, .= 0) (< 21,0,K>, K, .= 0) (< 21,0,U>, U, .= 0) (< 22,0,A>, A, .= 0) (< 22,0,B>, B, .= 0) (< 22,0,C>, C, .= 0) (< 22,0,D>, D, .= 0) (< 22,0,E>, E, .= 0) (< 22,0,F>, F, .= 0) (< 22,0,G>, G, .= 0) (< 22,0,H>, H, .= 0) (< 22,0,I>, I, .= 0) (< 22,0,J>, J, .= 0) (< 22,0,K>, K, .= 0) (< 22,0,U>, U, .= 0) (< 23,0,A>, A, .= 0) (< 23,0,B>, B, .= 0) (< 23,0,C>, C, .= 0) (< 23,0,D>, D, .= 0) (< 23,0,E>, E, .= 0) (< 23,0,F>, F, .= 0) (< 23,0,G>, G, .= 0) (< 23,0,H>, H, .= 0) (< 23,0,I>, I, .= 0) (< 23,0,J>, J, .= 0) (< 23,0,K>, K, .= 0) (< 23,0,U>, U, .= 0) (< 24,0,A>, A, .= 0) (< 24,0,B>, B, .= 0) (< 24,0,C>, C, .= 0) (< 24,0,D>, D, .= 0) (< 24,0,E>, E, .= 0) (< 24,0,F>, F, .= 0) (< 24,0,G>, G, .= 0) (< 24,0,H>, H, .= 0) (< 24,0,I>, I, .= 0) (< 24,0,J>, J, .= 0) (< 24,0,K>, K, .= 0) (< 24,0,U>, U, .= 0) (< 25,0,A>, A, .= 0) (< 25,0,B>, B, .= 0) (< 25,0,C>, C, .= 0) (< 25,0,D>, D, .= 0) (< 25,0,E>, E, .= 0) (< 25,0,F>, F, .= 0) (< 25,0,G>, G, .= 0) (< 25,0,H>, H, .= 0) (< 25,0,I>, I, .= 0) (< 25,0,J>, J, .= 0) (< 25,0,K>, K, .= 0) (< 25,0,U>, U, .= 0) (< 26,0,A>, A, .= 0) (< 26,0,B>, B, .= 0) (< 26,0,C>, C, .= 0) (< 26,0,D>, D, .= 0) (< 26,0,E>, E, .= 0) (< 26,0,F>, F, .= 0) (< 26,0,G>, G, .= 0) (< 26,0,H>, H, .= 0) (< 26,0,I>, I, .= 0) (< 26,0,J>, J, .= 0) (< 26,0,K>, K, .= 0) (< 26,0,U>, U, .= 0) (< 27,0,A>, A, .= 0) (< 27,0,B>, B, .= 0) (< 27,0,C>, C, .= 0) (< 27,0,D>, D, .= 0) (< 27,0,E>, E, .= 0) (< 27,0,F>, F, .= 0) (< 27,0,G>, G, .= 0) (< 27,0,H>, H, .= 0) (< 27,0,I>, I, .= 0) (< 27,0,J>, J, .= 0) (< 27,0,K>, K, .= 0) (< 27,0,U>, U, .= 0) (< 28,0,A>, A, .= 0) (< 28,0,B>, B, .= 0) (< 28,0,C>, C, .= 0) (< 28,0,D>, D, .= 0) (< 28,0,E>, E, .= 0) (< 28,0,F>, F, .= 0) (< 28,0,G>, G, .= 0) (< 28,0,H>, H, .= 0) (< 28,0,I>, I, .= 0) (< 28,0,J>, J, .= 0) (< 28,0,K>, K, .= 0) (< 28,0,U>, U, .= 0) (< 29,0,A>, A, .= 0) (< 29,0,B>, B, .= 0) (< 29,0,C>, C, .= 0) (< 29,0,D>, D, .= 0) (< 29,0,E>, E, .= 0) (< 29,0,F>, F, .= 0) (< 29,0,G>, G, .= 0) (< 29,0,H>, H, .= 0) (< 29,0,I>, I, .= 0) (< 29,0,J>, J, .= 0) (< 29,0,K>, K, .= 0) (< 29,0,U>, U, .= 0) (< 30,0,A>, A, .= 0) (< 30,0,B>, B, .= 0) (< 30,0,C>, C, .= 0) (< 30,0,D>, D, .= 0) (< 30,0,E>, E, .= 0) (< 30,0,F>, F, .= 0) (< 30,0,G>, G, .= 0) (< 30,0,H>, H, .= 0) (< 30,0,I>, I, .= 0) (< 30,0,J>, J, .= 0) (< 30,0,K>, K, .= 0) (< 30,0,U>, U, .= 0) (< 31,0,A>, A, .= 0) (< 31,0,B>, B, .= 0) (< 31,0,C>, C, .= 0) (< 31,0,D>, D, .= 0) (< 31,0,E>, E, .= 0) (< 31,0,F>, F, .= 0) (< 31,0,G>, G, .= 0) (< 31,0,H>, H, .= 0) (< 31,0,I>, I, .= 0) (< 31,0,J>, J, .= 0) (< 31,0,K>, K, .= 0) (< 31,0,U>, U, .= 0) (< 32,0,A>, A, .= 0) (< 32,0,B>, B, .= 0) (< 32,0,C>, C, .= 0) (< 32,0,D>, D, .= 0) (< 32,0,E>, E, .= 0) (< 32,0,F>, F, .= 0) (< 32,0,G>, G, .= 0) (< 32,0,H>, H, .= 0) (< 32,0,I>, I, .= 0) (< 32,0,J>, J, .= 0) (< 32,0,K>, K, .= 0) (< 32,0,U>, U, .= 0) (< 33,0,A>, A, .= 0) (< 33,0,B>, B, .= 0) (< 33,0,C>, C, .= 0) (< 33,0,D>, D, .= 0) (< 33,0,E>, E, .= 0) (< 33,0,F>, F, .= 0) (< 33,0,G>, G, .= 0) (< 33,0,H>, H, .= 0) (< 33,0,I>, I, .= 0) (< 33,0,J>, J, .= 0) (< 33,0,K>, K, .= 0) (< 33,0,U>, U, .= 0) (< 34,0,A>, A, .= 0) (< 34,0,B>, B, .= 0) (< 34,0,C>, C, .= 0) (< 34,0,D>, D, .= 0) (< 34,0,E>, E, .= 0) (< 34,0,F>, F, .= 0) (< 34,0,G>, G, .= 0) (< 34,0,H>, H, .= 0) (< 34,0,I>, I, .= 0) (< 34,0,J>, J, .= 0) (< 34,0,K>, K, .= 0) (< 34,0,U>, U, .= 0) (< 35,0,A>, A, .= 0) (< 35,0,B>, B, .= 0) (< 35,0,C>, C, .= 0) (< 35,0,D>, D, .= 0) (< 35,0,E>, E, .= 0) (< 35,0,F>, F, .= 0) (< 35,0,G>, G, .= 0) (< 35,0,H>, H, .= 0) (< 35,0,I>, I, .= 0) (< 35,0,J>, J, .= 0) (< 35,0,K>, K, .= 0) (< 35,0,U>, U, .= 0) (< 36,0,A>, A, .= 0) (< 36,0,B>, B, .= 0) (< 36,0,C>, C, .= 0) (< 36,0,D>, D, .= 0) (< 36,0,E>, E, .= 0) (< 36,0,F>, F, .= 0) (< 36,0,G>, G, .= 0) (< 36,0,H>, H, .= 0) (< 36,0,I>, I, .= 0) (< 36,0,J>, J, .= 0) (< 36,0,K>, K, .= 0) (< 36,0,U>, U, .= 0) (< 37,0,A>, A, .= 0) (< 37,0,B>, B, .= 0) (< 37,0,C>, C, .= 0) (< 37,0,D>, D, .= 0) (< 37,0,E>, E, .= 0) (< 37,0,F>, F, .= 0) (< 37,0,G>, G, .= 0) (< 37,0,H>, H, .= 0) (< 37,0,I>, I, .= 0) (< 37,0,J>, J, .= 0) (< 37,0,K>, K, .= 0) (< 37,0,U>, U, .= 0) (< 38,0,A>, A, .= 0) (< 38,0,B>, B, .= 0) (< 38,0,C>, C, .= 0) (< 38,0,D>, D, .= 0) (< 38,0,E>, E, .= 0) (< 38,0,F>, F, .= 0) (< 38,0,G>, G, .= 0) (< 38,0,H>, H, .= 0) (< 38,0,I>, I, .= 0) (< 38,0,J>, J, .= 0) (< 38,0,K>, K, .= 0) (< 38,0,U>, U, .= 0) (< 39,0,A>, A, .= 0) (< 39,0,B>, B, .= 0) (< 39,0,C>, C, .= 0) (< 39,0,D>, D, .= 0) (< 39,0,E>, E, .= 0) (< 39,0,F>, F, .= 0) (< 39,0,G>, G, .= 0) (< 39,0,H>, H, .= 0) (< 39,0,I>, I, .= 0) (< 39,0,J>, J, .= 0) (< 39,0,K>, K, .= 0) (< 39,0,U>, U, .= 0) (< 40,0,A>, A, .= 0) (< 40,0,B>, B, .= 0) (< 40,0,C>, C, .= 0) (< 40,0,D>, D, .= 0) (< 40,0,E>, E, .= 0) (< 40,0,F>, F, .= 0) (< 40,0,G>, G, .= 0) (< 40,0,H>, H, .= 0) (< 40,0,I>, I, .= 0) (< 40,0,J>, J, .= 0) (< 40,0,K>, K, .= 0) (< 40,0,U>, U, .= 0) (< 41,0,A>, A, .= 0) (< 41,0,B>, B, .= 0) (< 41,0,C>, C, .= 0) (< 41,0,D>, D, .= 0) (< 41,0,E>, E, .= 0) (< 41,0,F>, F, .= 0) (< 41,0,G>, G, .= 0) (< 41,0,H>, H, .= 0) (< 41,0,I>, I, .= 0) (< 41,0,J>, J, .= 0) (< 41,0,K>, K, .= 0) (< 41,0,U>, U, .= 0) (< 42,0,A>, A, .= 0) (< 42,0,B>, B, .= 0) (< 42,0,C>, C, .= 0) (< 42,0,D>, D, .= 0) (< 42,0,E>, E, .= 0) (< 42,0,F>, F, .= 0) (< 42,0,G>, G, .= 0) (< 42,0,H>, H, .= 0) (< 42,0,I>, I, .= 0) (< 42,0,J>, J, .= 0) (< 42,0,K>, K, .= 0) (< 42,0,U>, U, .= 0) (< 43,0,A>, A, .= 0) (< 43,0,B>, B, .= 0) (< 43,0,C>, C, .= 0) (< 43,0,D>, D, .= 0) (< 43,0,E>, E, .= 0) (< 43,0,F>, F, .= 0) (< 43,0,G>, G, .= 0) (< 43,0,H>, H, .= 0) (< 43,0,I>, I, .= 0) (< 43,0,J>, J, .= 0) (< 43,0,K>, K, .= 0) (< 43,0,U>, U, .= 0) (< 44,0,A>, A, .= 0) (< 44,0,B>, B, .= 0) (< 44,0,C>, C, .= 0) (< 44,0,D>, D, .= 0) (< 44,0,E>, E, .= 0) (< 44,0,F>, F, .= 0) (< 44,0,G>, G, .= 0) (< 44,0,H>, H, .= 0) (< 44,0,I>, I, .= 0) (< 44,0,J>, J, .= 0) (< 44,0,K>, K, .= 0) (< 44,0,U>, U, .= 0) (< 45,0,A>, A, .= 0) (< 45,0,B>, B, .= 0) (< 45,0,C>, C, .= 0) (< 45,0,D>, D, .= 0) (< 45,0,E>, E, .= 0) (< 45,0,F>, F, .= 0) (< 45,0,G>, G, .= 0) (< 45,0,H>, H, .= 0) (< 45,0,I>, I, .= 0) (< 45,0,J>, J, .= 0) (< 45,0,K>, K, .= 0) (< 45,0,U>, U, .= 0) (< 46,0,A>, A, .= 0) (< 46,0,B>, B, .= 0) (< 46,0,C>, C, .= 0) (< 46,0,D>, D, .= 0) (< 46,0,E>, E, .= 0) (< 46,0,F>, F, .= 0) (< 46,0,G>, G, .= 0) (< 46,0,H>, H, .= 0) (< 46,0,I>, I, .= 0) (< 46,0,J>, J, .= 0) (< 46,0,K>, K, .= 0) (< 46,0,U>, U, .= 0) (< 47,0,A>, A, .= 0) (< 47,0,B>, B, .= 0) (< 47,0,C>, C, .= 0) (< 47,0,D>, D, .= 0) (< 47,0,E>, E, .= 0) (< 47,0,F>, F, .= 0) (< 47,0,G>, G, .= 0) (< 47,0,H>, H, .= 0) (< 47,0,I>, I, .= 0) (< 47,0,J>, J, .= 0) (< 47,0,K>, K, .= 0) (< 47,0,U>, U, .= 0) (< 48,0,A>, A, .= 0) (< 48,0,B>, B, .= 0) (< 48,0,C>, C, .= 0) (< 48,0,D>, D, .= 0) (< 48,0,E>, E, .= 0) (< 48,0,F>, F, .= 0) (< 48,0,G>, G, .= 0) (< 48,0,H>, H, .= 0) (< 48,0,I>, I, .= 0) (< 48,0,J>, J, .= 0) (< 48,0,K>, K, .= 0) (< 48,0,U>, U, .= 0) (< 49,0,A>, A, .= 0) (< 49,0,B>, B, .= 0) (< 49,0,C>, C, .= 0) (< 49,0,D>, D, .= 0) (< 49,0,E>, E, .= 0) (< 49,0,F>, F, .= 0) (< 49,0,G>, G, .= 0) (< 49,0,H>, H, .= 0) (< 49,0,I>, I, .= 0) (< 49,0,J>, J, .= 0) (< 49,0,K>, K, .= 0) (< 49,0,U>, U, .= 0) (< 50,0,A>, A, .= 0) (< 50,0,B>, B, .= 0) (< 50,0,C>, C, .= 0) (< 50,0,D>, D, .= 0) (< 50,0,E>, E, .= 0) (< 50,0,F>, F, .= 0) (< 50,0,G>, G, .= 0) (< 50,0,H>, H, .= 0) (< 50,0,I>, I, .= 0) (< 50,0,J>, J, .= 0) (< 50,0,K>, K, .= 0) (< 50,0,U>, U, .= 0) (< 51,0,A>, A, .= 0) (< 51,0,B>, B, .= 0) (< 51,0,C>, C, .= 0) (< 51,0,D>, D, .= 0) (< 51,0,E>, E, .= 0) (< 51,0,F>, F, .= 0) (< 51,0,G>, G, .= 0) (< 51,0,H>, H, .= 0) (< 51,0,I>, I, .= 0) (< 51,0,J>, J, .= 0) (< 51,0,K>, K, .= 0) (< 51,0,U>, U, .= 0) (< 52,0,A>, A, .= 0) (< 52,0,B>, B, .= 0) (< 52,0,C>, C, .= 0) (< 52,0,D>, D, .= 0) (< 52,0,E>, E, .= 0) (< 52,0,F>, F, .= 0) (< 52,0,G>, G, .= 0) (< 52,0,H>, H, .= 0) (< 52,0,I>, I, .= 0) (< 52,0,J>, J, .= 0) (< 52,0,K>, K, .= 0) (< 52,0,U>, U, .= 0) (< 53,0,A>, A, .= 0) (< 53,0,B>, B, .= 0) (< 53,0,C>, C, .= 0) (< 53,0,D>, D, .= 0) (< 53,0,E>, E, .= 0) (< 53,0,F>, F, .= 0) (< 53,0,G>, G, .= 0) (< 53,0,H>, H, .= 0) (< 53,0,I>, I, .= 0) (< 53,0,J>, J, .= 0) (< 53,0,K>, K, .= 0) (< 53,0,U>, U, .= 0) (< 54,0,A>, A, .= 0) (< 54,0,B>, B, .= 0) (< 54,0,C>, C, .= 0) (< 54,0,D>, D, .= 0) (< 54,0,E>, E, .= 0) (< 54,0,F>, F, .= 0) (< 54,0,G>, G, .= 0) (< 54,0,H>, H, .= 0) (< 54,0,I>, I, .= 0) (< 54,0,J>, J, .= 0) (< 54,0,K>, K, .= 0) (< 54,0,U>, U, .= 0) (< 55,0,A>, A, .= 0) (< 55,0,B>, B, .= 0) (< 55,0,C>, C, .= 0) (< 55,0,D>, D, .= 0) (< 55,0,E>, E, .= 0) (< 55,0,F>, F, .= 0) (< 55,0,G>, G, .= 0) (< 55,0,H>, H, .= 0) (< 55,0,I>, I, .= 0) (< 55,0,J>, J, .= 0) (< 55,0,K>, K, .= 0) (< 55,0,U>, U, .= 0) (< 56,0,A>, A, .= 0) (< 56,0,B>, B, .= 0) (< 56,0,C>, C, .= 0) (< 56,0,D>, D, .= 0) (< 56,0,E>, E, .= 0) (< 56,0,F>, F, .= 0) (< 56,0,G>, G, .= 0) (< 56,0,H>, H, .= 0) (< 56,0,I>, I, .= 0) (< 56,0,J>, J, .= 0) (< 56,0,K>, K, .= 0) (< 56,0,U>, U, .= 0) (< 57,0,A>, A, .= 0) (< 57,0,B>, B, .= 0) (< 57,0,C>, C, .= 0) (< 57,0,D>, D, .= 0) (< 57,0,E>, E, .= 0) (< 57,0,F>, F, .= 0) (< 57,0,G>, G, .= 0) (< 57,0,H>, H, .= 0) (< 57,0,I>, I, .= 0) (< 57,0,J>, J, .= 0) (< 57,0,K>, K, .= 0) (< 57,0,U>, U, .= 0) (< 58,0,A>, A, .= 0) (< 58,0,B>, B, .= 0) (< 58,0,C>, C, .= 0) (< 58,0,D>, D, .= 0) (< 58,0,E>, E, .= 0) (< 58,0,F>, F, .= 0) (< 58,0,G>, G, .= 0) (< 58,0,H>, H, .= 0) (< 58,0,I>, I, .= 0) (< 58,0,J>, J, .= 0) (< 58,0,K>, K, .= 0) (< 58,0,U>, U, .= 0) (< 59,0,A>, A, .= 0) (< 59,0,B>, B, .= 0) (< 59,0,C>, C, .= 0) (< 59,0,D>, D, .= 0) (< 59,0,E>, E, .= 0) (< 59,0,F>, F, .= 0) (< 59,0,G>, G, .= 0) (< 59,0,H>, H, .= 0) (< 59,0,I>, I, .= 0) (< 59,0,J>, J, .= 0) (< 59,0,K>, K, .= 0) (< 59,0,U>, U, .= 0) (< 60,0,A>, A, .= 0) (< 60,0,B>, B, .= 0) (< 60,0,C>, C, .= 0) (< 60,0,D>, D, .= 0) (< 60,0,E>, E, .= 0) (< 60,0,F>, F, .= 0) (< 60,0,G>, G, .= 0) (< 60,0,H>, H, .= 0) (< 60,0,I>, I, .= 0) (< 60,0,J>, J, .= 0) (< 60,0,K>, K, .= 0) (< 60,0,U>, U, .= 0) (< 61,0,A>, A, .= 0) (< 61,0,B>, B, .= 0) (< 61,0,C>, C, .= 0) (< 61,0,D>, D, .= 0) (< 61,0,E>, E, .= 0) (< 61,0,F>, F, .= 0) (< 61,0,G>, G, .= 0) (< 61,0,H>, H, .= 0) (< 61,0,I>, I, .= 0) (< 61,0,J>, J, .= 0) (< 61,0,K>, K, .= 0) (< 61,0,U>, U, .= 0) (< 62,0,A>, A, .= 0) (< 62,0,B>, B, .= 0) (< 62,0,C>, C, .= 0) (< 62,0,D>, D, .= 0) (< 62,0,E>, E, .= 0) (< 62,0,F>, F, .= 0) (< 62,0,G>, G, .= 0) (< 62,0,H>, 1, .= 1) (< 62,0,I>, I, .= 0) (< 62,0,J>, J, .= 0) (< 62,0,K>, K, .= 0) (< 62,0,U>, U, .= 0) (< 63,0,A>, A, .= 0) (< 63,0,B>, B, .= 0) (< 63,0,C>, C, .= 0) (< 63,0,D>, D, .= 0) (< 63,0,E>, E, .= 0) (< 63,0,F>, F, .= 0) (< 63,0,G>, G, .= 0) (< 63,0,H>, 1, .= 1) (< 63,0,I>, I, .= 0) (< 63,0,J>, J, .= 0) (< 63,0,K>, K, .= 0) (< 63,0,U>, U, .= 0) (< 64,0,A>, A, .= 0) (< 64,0,B>, B, .= 0) (< 64,0,C>, C, .= 0) (< 64,0,D>, D, .= 0) (< 64,0,E>, E, .= 0) (< 64,0,F>, F, .= 0) (< 64,0,G>, G, .= 0) (< 64,0,H>, 0, .= 0) (< 64,0,I>, I, .= 0) (< 64,0,J>, J, .= 0) (< 64,0,K>, B, .= 0) (< 64,0,U>, U, .= 0) (< 65,0,A>, A, .= 0) (< 65,0,B>, B, .= 0) (< 65,0,C>, C, .= 0) (< 65,0,D>, D, .= 0) (< 65,0,E>, E, .= 0) (< 65,0,F>, F, .= 0) (< 65,0,G>, B, .= 0) (< 65,0,H>, 0, .= 0) (< 65,0,I>, I, .= 0) (< 65,0,J>, J, .= 0) (< 65,0,K>, K, .= 0) (< 65,0,U>, U, .= 0) (< 66,0,A>, A, .= 0) (< 66,0,B>, B, .= 0) (< 66,0,C>, C, .= 0) (< 66,0,D>, D, .= 0) (< 66,0,E>, E, .= 0) (< 66,0,F>, B, .= 0) (< 66,0,G>, G, .= 0) (< 66,0,H>, 0, .= 0) (< 66,0,I>, I, .= 0) (< 66,0,J>, J, .= 0) (< 66,0,K>, K, .= 0) (< 66,0,U>, U, .= 0) (< 67,0,A>, A, .= 0) (< 67,0,B>, B, .= 0) (< 67,0,C>, C, .= 0) (< 67,0,D>, D, .= 0) (< 67,0,E>, B, .= 0) (< 67,0,F>, F, .= 0) (< 67,0,G>, G, .= 0) (< 67,0,H>, 0, .= 0) (< 67,0,I>, I, .= 0) (< 67,0,J>, J, .= 0) (< 67,0,K>, K, .= 0) (< 67,0,U>, U, .= 0) (< 68,0,A>, A, .= 0) (< 68,0,B>, B, .= 0) (< 68,0,C>, C, .= 0) (< 68,0,D>, B, .= 0) (< 68,0,E>, E, .= 0) (< 68,0,F>, F, .= 0) (< 68,0,G>, G, .= 0) (< 68,0,H>, 0, .= 0) (< 68,0,I>, I, .= 0) (< 68,0,J>, J, .= 0) (< 68,0,K>, K, .= 0) (< 68,0,U>, U, .= 0) (< 69,0,A>, A, .= 0) (< 69,0,B>, B, .= 0) (< 69,0,C>, B, .= 0) (< 69,0,D>, D, .= 0) (< 69,0,E>, E, .= 0) (< 69,0,F>, F, .= 0) (< 69,0,G>, G, .= 0) (< 69,0,H>, 0, .= 0) (< 69,0,I>, I, .= 0) (< 69,0,J>, J, .= 0) (< 69,0,K>, K, .= 0) (< 69,0,U>, U, .= 0) (< 70,0,A>, B, .= 0) (< 70,0,B>, B, .= 0) (< 70,0,C>, C, .= 0) (< 70,0,D>, D, .= 0) (< 70,0,E>, E, .= 0) (< 70,0,F>, F, .= 0) (< 70,0,G>, G, .= 0) (< 70,0,H>, 0, .= 0) (< 70,0,I>, I, .= 0) (< 70,0,J>, J, .= 0) (< 70,0,K>, K, .= 0) (< 70,0,U>, U, .= 0) (< 71,0,A>, A, .= 0) (< 71,0,B>, B, .= 0) (< 71,0,C>, C, .= 0) (< 71,0,D>, D, .= 0) (< 71,0,E>, E, .= 0) (< 71,0,F>, F, .= 0) (< 71,0,G>, G, .= 0) (< 71,0,H>, 1, .= 1) (< 71,0,I>, I, .= 0) (< 71,0,J>, J, .= 0) (< 71,0,K>, K, .= 0) (< 71,0,U>, U, .= 0) (< 72,0,A>, A, .= 0) (< 72,0,B>, B, .= 0) (< 72,0,C>, C, .= 0) (< 72,0,D>, D, .= 0) (< 72,0,E>, E, .= 0) (< 72,0,F>, F, .= 0) (< 72,0,G>, G, .= 0) (< 72,0,H>, 1, .= 1) (< 72,0,I>, I, .= 0) (< 72,0,J>, J, .= 0) (< 72,0,K>, K, .= 0) (< 72,0,U>, U, .= 0) (< 73,0,A>, A, .= 0) (< 73,0,B>, B, .= 0) (< 73,0,C>, C, .= 0) (< 73,0,D>, D, .= 0) (< 73,0,E>, E, .= 0) (< 73,0,F>, F, .= 0) (< 73,0,G>, G, .= 0) (< 73,0,H>, 0, .= 0) (< 73,0,I>, I, .= 0) (< 73,0,J>, J, .= 0) (< 73,0,K>, A, .= 0) (< 73,0,U>, U, .= 0) (< 74,0,A>, A, .= 0) (< 74,0,B>, B, .= 0) (< 74,0,C>, C, .= 0) (< 74,0,D>, D, .= 0) (< 74,0,E>, E, .= 0) (< 74,0,F>, F, .= 0) (< 74,0,G>, A, .= 0) (< 74,0,H>, 0, .= 0) (< 74,0,I>, I, .= 0) (< 74,0,J>, J, .= 0) (< 74,0,K>, K, .= 0) (< 74,0,U>, U, .= 0) (< 75,0,A>, A, .= 0) (< 75,0,B>, B, .= 0) (< 75,0,C>, C, .= 0) (< 75,0,D>, D, .= 0) (< 75,0,E>, E, .= 0) (< 75,0,F>, A, .= 0) (< 75,0,G>, G, .= 0) (< 75,0,H>, 0, .= 0) (< 75,0,I>, I, .= 0) (< 75,0,J>, J, .= 0) (< 75,0,K>, K, .= 0) (< 75,0,U>, U, .= 0) (< 76,0,A>, A, .= 0) (< 76,0,B>, B, .= 0) (< 76,0,C>, C, .= 0) (< 76,0,D>, D, .= 0) (< 76,0,E>, A, .= 0) (< 76,0,F>, F, .= 0) (< 76,0,G>, G, .= 0) (< 76,0,H>, 0, .= 0) (< 76,0,I>, I, .= 0) (< 76,0,J>, J, .= 0) (< 76,0,K>, K, .= 0) (< 76,0,U>, U, .= 0) (< 77,0,A>, A, .= 0) (< 77,0,B>, B, .= 0) (< 77,0,C>, C, .= 0) (< 77,0,D>, A, .= 0) (< 77,0,E>, E, .= 0) (< 77,0,F>, F, .= 0) (< 77,0,G>, G, .= 0) (< 77,0,H>, 0, .= 0) (< 77,0,I>, I, .= 0) (< 77,0,J>, J, .= 0) (< 77,0,K>, K, .= 0) (< 77,0,U>, U, .= 0) (< 78,0,A>, A, .= 0) (< 78,0,B>, B, .= 0) (< 78,0,C>, A, .= 0) (< 78,0,D>, D, .= 0) (< 78,0,E>, E, .= 0) (< 78,0,F>, F, .= 0) (< 78,0,G>, G, .= 0) (< 78,0,H>, 0, .= 0) (< 78,0,I>, I, .= 0) (< 78,0,J>, J, .= 0) (< 78,0,K>, K, .= 0) (< 78,0,U>, U, .= 0) (< 79,0,A>, A, .= 0) (< 79,0,B>, B, .= 0) (< 79,0,C>, C, .= 0) (< 79,0,D>, D, .= 0) (< 79,0,E>, E, .= 0) (< 79,0,F>, F, .= 0) (< 79,0,G>, G, .= 0) (< 79,0,H>, 0, .= 0) (< 79,0,I>, I, .= 0) (< 79,0,J>, J, .= 0) (< 79,0,K>, K, .= 0) (< 79,0,U>, U, .= 0) (< 80,0,A>, A, .= 0) (< 80,0,B>, B, .= 0) (< 80,0,C>, C, .= 0) (< 80,0,D>, D, .= 0) (< 80,0,E>, E, .= 0) (< 80,0,F>, F, .= 0) (< 80,0,G>, G, .= 0) (< 80,0,H>, 1, .= 1) (< 80,0,I>, I, .= 0) (< 80,0,J>, J, .= 0) (< 80,0,K>, K, .= 0) (< 80,0,U>, U, .= 0) (< 81,0,A>, A, .= 0) (< 81,0,B>, B, .= 0) (< 81,0,C>, C, .= 0) (< 81,0,D>, D, .= 0) (< 81,0,E>, E, .= 0) (< 81,0,F>, F, .= 0) (< 81,0,G>, G, .= 0) (< 81,0,H>, 1, .= 1) (< 81,0,I>, I, .= 0) (< 81,0,J>, J, .= 0) (< 81,0,K>, K, .= 0) (< 81,0,U>, U, .= 0) (< 82,0,A>, A, .= 0) (< 82,0,B>, B, .= 0) (< 82,0,C>, C, .= 0) (< 82,0,D>, D, .= 0) (< 82,0,E>, E, .= 0) (< 82,0,F>, F, .= 0) (< 82,0,G>, G, .= 0) (< 82,0,H>, 0, .= 0) (< 82,0,I>, I, .= 0) (< 82,0,J>, J, .= 0) (< 82,0,K>, C, .= 0) (< 82,0,U>, U, .= 0) (< 83,0,A>, A, .= 0) (< 83,0,B>, B, .= 0) (< 83,0,C>, C, .= 0) (< 83,0,D>, D, .= 0) (< 83,0,E>, E, .= 0) (< 83,0,F>, F, .= 0) (< 83,0,G>, C, .= 0) (< 83,0,H>, 0, .= 0) (< 83,0,I>, I, .= 0) (< 83,0,J>, J, .= 0) (< 83,0,K>, K, .= 0) (< 83,0,U>, U, .= 0) (< 84,0,A>, A, .= 0) (< 84,0,B>, B, .= 0) (< 84,0,C>, C, .= 0) (< 84,0,D>, D, .= 0) (< 84,0,E>, E, .= 0) (< 84,0,F>, C, .= 0) (< 84,0,G>, G, .= 0) (< 84,0,H>, 0, .= 0) (< 84,0,I>, I, .= 0) (< 84,0,J>, J, .= 0) (< 84,0,K>, K, .= 0) (< 84,0,U>, U, .= 0) (< 85,0,A>, A, .= 0) (< 85,0,B>, B, .= 0) (< 85,0,C>, C, .= 0) (< 85,0,D>, D, .= 0) (< 85,0,E>, C, .= 0) (< 85,0,F>, F, .= 0) (< 85,0,G>, G, .= 0) (< 85,0,H>, 0, .= 0) (< 85,0,I>, I, .= 0) (< 85,0,J>, J, .= 0) (< 85,0,K>, K, .= 0) (< 85,0,U>, U, .= 0) (< 86,0,A>, A, .= 0) (< 86,0,B>, B, .= 0) (< 86,0,C>, C, .= 0) (< 86,0,D>, C, .= 0) (< 86,0,E>, E, .= 0) (< 86,0,F>, F, .= 0) (< 86,0,G>, G, .= 0) (< 86,0,H>, 0, .= 0) (< 86,0,I>, I, .= 0) (< 86,0,J>, J, .= 0) (< 86,0,K>, K, .= 0) (< 86,0,U>, U, .= 0) (< 87,0,A>, A, .= 0) (< 87,0,B>, B, .= 0) (< 87,0,C>, C, .= 0) (< 87,0,D>, D, .= 0) (< 87,0,E>, E, .= 0) (< 87,0,F>, F, .= 0) (< 87,0,G>, G, .= 0) (< 87,0,H>, 0, .= 0) (< 87,0,I>, I, .= 0) (< 87,0,J>, J, .= 0) (< 87,0,K>, K, .= 0) (< 87,0,U>, U, .= 0) (< 88,0,A>, A, .= 0) (< 88,0,B>, B, .= 0) (< 88,0,C>, C, .= 0) (< 88,0,D>, D, .= 0) (< 88,0,E>, E, .= 0) (< 88,0,F>, F, .= 0) (< 88,0,G>, G, .= 0) (< 88,0,H>, 1, .= 1) (< 88,0,I>, I, .= 0) (< 88,0,J>, J, .= 0) (< 88,0,K>, K, .= 0) (< 88,0,U>, U, .= 0) (< 89,0,A>, A, .= 0) (< 89,0,B>, B, .= 0) (< 89,0,C>, C, .= 0) (< 89,0,D>, D, .= 0) (< 89,0,E>, E, .= 0) (< 89,0,F>, F, .= 0) (< 89,0,G>, G, .= 0) (< 89,0,H>, 1, .= 1) (< 89,0,I>, I, .= 0) (< 89,0,J>, J, .= 0) (< 89,0,K>, K, .= 0) (< 89,0,U>, U, .= 0) (< 90,0,A>, A, .= 0) (< 90,0,B>, B, .= 0) (< 90,0,C>, C, .= 0) (< 90,0,D>, D, .= 0) (< 90,0,E>, E, .= 0) (< 90,0,F>, F, .= 0) (< 90,0,G>, G, .= 0) (< 90,0,H>, 0, .= 0) (< 90,0,I>, I, .= 0) (< 90,0,J>, J, .= 0) (< 90,0,K>, D, .= 0) (< 90,0,U>, U, .= 0) (< 91,0,A>, A, .= 0) (< 91,0,B>, B, .= 0) (< 91,0,C>, C, .= 0) (< 91,0,D>, D, .= 0) (< 91,0,E>, E, .= 0) (< 91,0,F>, F, .= 0) (< 91,0,G>, D, .= 0) (< 91,0,H>, 0, .= 0) (< 91,0,I>, I, .= 0) (< 91,0,J>, J, .= 0) (< 91,0,K>, K, .= 0) (< 91,0,U>, U, .= 0) (< 92,0,A>, A, .= 0) (< 92,0,B>, B, .= 0) (< 92,0,C>, C, .= 0) (< 92,0,D>, D, .= 0) (< 92,0,E>, E, .= 0) (< 92,0,F>, D, .= 0) (< 92,0,G>, G, .= 0) (< 92,0,H>, 0, .= 0) (< 92,0,I>, I, .= 0) (< 92,0,J>, J, .= 0) (< 92,0,K>, K, .= 0) (< 92,0,U>, U, .= 0) (< 93,0,A>, A, .= 0) (< 93,0,B>, B, .= 0) (< 93,0,C>, C, .= 0) (< 93,0,D>, D, .= 0) (< 93,0,E>, D, .= 0) (< 93,0,F>, F, .= 0) (< 93,0,G>, G, .= 0) (< 93,0,H>, 0, .= 0) (< 93,0,I>, I, .= 0) (< 93,0,J>, J, .= 0) (< 93,0,K>, K, .= 0) (< 93,0,U>, U, .= 0) (< 94,0,A>, A, .= 0) (< 94,0,B>, B, .= 0) (< 94,0,C>, C, .= 0) (< 94,0,D>, D, .= 0) (< 94,0,E>, E, .= 0) (< 94,0,F>, F, .= 0) (< 94,0,G>, G, .= 0) (< 94,0,H>, 0, .= 0) (< 94,0,I>, I, .= 0) (< 94,0,J>, J, .= 0) (< 94,0,K>, K, .= 0) (< 94,0,U>, U, .= 0) (< 95,0,A>, A, .= 0) (< 95,0,B>, B, .= 0) (< 95,0,C>, C, .= 0) (< 95,0,D>, D, .= 0) (< 95,0,E>, E, .= 0) (< 95,0,F>, F, .= 0) (< 95,0,G>, G, .= 0) (< 95,0,H>, 1, .= 1) (< 95,0,I>, I, .= 0) (< 95,0,J>, J, .= 0) (< 95,0,K>, K, .= 0) (< 95,0,U>, U, .= 0) (< 96,0,A>, A, .= 0) (< 96,0,B>, B, .= 0) (< 96,0,C>, C, .= 0) (< 96,0,D>, D, .= 0) (< 96,0,E>, E, .= 0) (< 96,0,F>, F, .= 0) (< 96,0,G>, G, .= 0) (< 96,0,H>, 1, .= 1) (< 96,0,I>, I, .= 0) (< 96,0,J>, J, .= 0) (< 96,0,K>, K, .= 0) (< 96,0,U>, U, .= 0) (< 97,0,A>, A, .= 0) (< 97,0,B>, B, .= 0) (< 97,0,C>, C, .= 0) (< 97,0,D>, D, .= 0) (< 97,0,E>, E, .= 0) (< 97,0,F>, F, .= 0) (< 97,0,G>, G, .= 0) (< 97,0,H>, 0, .= 0) (< 97,0,I>, I, .= 0) (< 97,0,J>, J, .= 0) (< 97,0,K>, E, .= 0) (< 97,0,U>, U, .= 0) (< 98,0,A>, A, .= 0) (< 98,0,B>, B, .= 0) (< 98,0,C>, C, .= 0) (< 98,0,D>, D, .= 0) (< 98,0,E>, E, .= 0) (< 98,0,F>, F, .= 0) (< 98,0,G>, E, .= 0) (< 98,0,H>, 0, .= 0) (< 98,0,I>, I, .= 0) (< 98,0,J>, J, .= 0) (< 98,0,K>, K, .= 0) (< 98,0,U>, U, .= 0) (< 99,0,A>, A, .= 0) (< 99,0,B>, B, .= 0) (< 99,0,C>, C, .= 0) (< 99,0,D>, D, .= 0) (< 99,0,E>, E, .= 0) (< 99,0,F>, E, .= 0) (< 99,0,G>, G, .= 0) (< 99,0,H>, 0, .= 0) (< 99,0,I>, I, .= 0) (< 99,0,J>, J, .= 0) (< 99,0,K>, K, .= 0) (< 99,0,U>, U, .= 0) (<100,0,A>, A, .= 0) (<100,0,B>, B, .= 0) (<100,0,C>, C, .= 0) (<100,0,D>, D, .= 0) (<100,0,E>, E, .= 0) (<100,0,F>, F, .= 0) (<100,0,G>, G, .= 0) (<100,0,H>, 0, .= 0) (<100,0,I>, I, .= 0) (<100,0,J>, J, .= 0) (<100,0,K>, K, .= 0) (<100,0,U>, U, .= 0) (<101,0,A>, A, .= 0) (<101,0,B>, B, .= 0) (<101,0,C>, C, .= 0) (<101,0,D>, D, .= 0) (<101,0,E>, E, .= 0) (<101,0,F>, F, .= 0) (<101,0,G>, G, .= 0) (<101,0,H>, 1, .= 1) (<101,0,I>, I, .= 0) (<101,0,J>, J, .= 0) (<101,0,K>, K, .= 0) (<101,0,U>, U, .= 0) (<102,0,A>, A, .= 0) (<102,0,B>, B, .= 0) (<102,0,C>, C, .= 0) (<102,0,D>, D, .= 0) (<102,0,E>, E, .= 0) (<102,0,F>, F, .= 0) (<102,0,G>, G, .= 0) (<102,0,H>, 1, .= 1) (<102,0,I>, I, .= 0) (<102,0,J>, J, .= 0) (<102,0,K>, K, .= 0) (<102,0,U>, U, .= 0) (<103,0,A>, A, .= 0) (<103,0,B>, B, .= 0) (<103,0,C>, C, .= 0) (<103,0,D>, D, .= 0) (<103,0,E>, E, .= 0) (<103,0,F>, F, .= 0) (<103,0,G>, G, .= 0) (<103,0,H>, 0, .= 0) (<103,0,I>, I, .= 0) (<103,0,J>, J, .= 0) (<103,0,K>, F, .= 0) (<103,0,U>, U, .= 0) (<104,0,A>, A, .= 0) (<104,0,B>, B, .= 0) (<104,0,C>, C, .= 0) (<104,0,D>, D, .= 0) (<104,0,E>, E, .= 0) (<104,0,F>, F, .= 0) (<104,0,G>, F, .= 0) (<104,0,H>, 0, .= 0) (<104,0,I>, I, .= 0) (<104,0,J>, J, .= 0) (<104,0,K>, K, .= 0) (<104,0,U>, U, .= 0) (<105,0,A>, A, .= 0) (<105,0,B>, B, .= 0) (<105,0,C>, C, .= 0) (<105,0,D>, D, .= 0) (<105,0,E>, E, .= 0) (<105,0,F>, F, .= 0) (<105,0,G>, G, .= 0) (<105,0,H>, 0, .= 0) (<105,0,I>, I, .= 0) (<105,0,J>, J, .= 0) (<105,0,K>, K, .= 0) (<105,0,U>, U, .= 0) (<106,0,A>, A, .= 0) (<106,0,B>, B, .= 0) (<106,0,C>, C, .= 0) (<106,0,D>, D, .= 0) (<106,0,E>, E, .= 0) (<106,0,F>, F, .= 0) (<106,0,G>, G, .= 0) (<106,0,H>, 1, .= 1) (<106,0,I>, I, .= 0) (<106,0,J>, J, .= 0) (<106,0,K>, K, .= 0) (<106,0,U>, U, .= 0) (<107,0,A>, A, .= 0) (<107,0,B>, B, .= 0) (<107,0,C>, C, .= 0) (<107,0,D>, D, .= 0) (<107,0,E>, E, .= 0) (<107,0,F>, F, .= 0) (<107,0,G>, G, .= 0) (<107,0,H>, 1, .= 1) (<107,0,I>, I, .= 0) (<107,0,J>, J, .= 0) (<107,0,K>, K, .= 0) (<107,0,U>, U, .= 0) (<108,0,A>, A, .= 0) (<108,0,B>, B, .= 0) (<108,0,C>, C, .= 0) (<108,0,D>, D, .= 0) (<108,0,E>, E, .= 0) (<108,0,F>, F, .= 0) (<108,0,G>, G, .= 0) (<108,0,H>, 0, .= 0) (<108,0,I>, I, .= 0) (<108,0,J>, J, .= 0) (<108,0,K>, G, .= 0) (<108,0,U>, U, .= 0) (<109,0,A>, A, .= 0) (<109,0,B>, B, .= 0) (<109,0,C>, C, .= 0) (<109,0,D>, D, .= 0) (<109,0,E>, E, .= 0) (<109,0,F>, F, .= 0) (<109,0,G>, G, .= 0) (<109,0,H>, 0, .= 0) (<109,0,I>, I, .= 0) (<109,0,J>, J, .= 0) (<109,0,K>, K, .= 0) (<109,0,U>, U, .= 0) (<110,0,A>, A, .= 0) (<110,0,B>, B, .= 0) (<110,0,C>, C, .= 0) (<110,0,D>, D, .= 0) (<110,0,E>, E, .= 0) (<110,0,F>, F, .= 0) (<110,0,G>, G, .= 0) (<110,0,H>, H, .= 0) (<110,0,I>, 1, .= 1) (<110,0,J>, J, .= 0) (<110,0,K>, K, .= 0) (<110,0,U>, U, .= 0) (<111,0,A>, A, .= 0) (<111,0,B>, B, .= 0) (<111,0,C>, C, .= 0) (<111,0,D>, D, .= 0) (<111,0,E>, E, .= 0) (<111,0,F>, F, .= 0) (<111,0,G>, G, .= 0) (<111,0,H>, H, .= 0) (<111,0,I>, 0, .= 0) (<111,0,J>, J, .= 0) (<111,0,K>, K, .= 0) (<111,0,U>, U, .= 0) (<112,0,A>, A, .= 0) (<112,0,B>, B, .= 0) (<112,0,C>, C, .= 0) (<112,0,D>, D, .= 0) (<112,0,E>, E, .= 0) (<112,0,F>, F, .= 0) (<112,0,G>, G, .= 0) (<112,0,H>, H, .= 0) (<112,0,I>, 0, .= 0) (<112,0,J>, J, .= 0) (<112,0,K>, K, .= 0) (<112,0,U>, U, .= 0) (<113,0,A>, A, .= 0) (<113,0,B>, B, .= 0) (<113,0,C>, C, .= 0) (<113,0,D>, D, .= 0) (<113,0,E>, E, .= 0) (<113,0,F>, F, .= 0) (<113,0,G>, G, .= 0) (<113,0,H>, H, .= 0) (<113,0,I>, 0, .= 0) (<113,0,J>, J, .= 0) (<113,0,K>, K, .= 0) (<113,0,U>, U, .= 0) (<114,0,A>, A, .= 0) (<114,0,B>, B, .= 0) (<114,0,C>, C, .= 0) (<114,0,D>, D, .= 0) (<114,0,E>, E, .= 0) (<114,0,F>, F, .= 0) (<114,0,G>, G, .= 0) (<114,0,H>, H, .= 0) (<114,0,I>, 0, .= 0) (<114,0,J>, J, .= 0) (<114,0,K>, K, .= 0) (<114,0,U>, U, .= 0) (<115,0,A>, A, .= 0) (<115,0,B>, B, .= 0) (<115,0,C>, C, .= 0) (<115,0,D>, D, .= 0) (<115,0,E>, E, .= 0) (<115,0,F>, F, .= 0) (<115,0,G>, G, .= 0) (<115,0,H>, H, .= 0) (<115,0,I>, 0, .= 0) (<115,0,J>, J, .= 0) (<115,0,K>, K, .= 0) (<115,0,U>, U, .= 0) (<116,0,A>, A, .= 0) (<116,0,B>, B, .= 0) (<116,0,C>, C, .= 0) (<116,0,D>, D, .= 0) (<116,0,E>, E, .= 0) (<116,0,F>, F, .= 0) (<116,0,G>, G, .= 0) (<116,0,H>, H, .= 0) (<116,0,I>, 0, .= 0) (<116,0,J>, J, .= 0) (<116,0,K>, K, .= 0) (<116,0,U>, U, .= 0) (<117,0,A>, A, .= 0) (<117,0,B>, B, .= 0) (<117,0,C>, C, .= 0) (<117,0,D>, D, .= 0) (<117,0,E>, E, .= 0) (<117,0,F>, F, .= 0) (<117,0,G>, G, .= 0) (<117,0,H>, H, .= 0) (<117,0,I>, 0, .= 0) (<117,0,J>, J, .= 0) (<117,0,K>, K, .= 0) (<117,0,U>, U, .= 0) (<118,0,A>, A, .= 0) (<118,0,B>, B, .= 0) (<118,0,C>, C, .= 0) (<118,0,D>, D, .= 0) (<118,0,E>, E, .= 0) (<118,0,F>, F, .= 0) (<118,0,G>, G, .= 0) (<118,0,H>, H, .= 0) (<118,0,I>, 0, .= 0) (<118,0,J>, J, .= 0) (<118,0,K>, K, .= 0) (<118,0,U>, U, .= 0) (<119,0,A>, A, .= 0) (<119,0,B>, B, .= 0) (<119,0,C>, C, .= 0) (<119,0,D>, D, .= 0) (<119,0,E>, E, .= 0) (<119,0,F>, F, .= 0) (<119,0,G>, G, .= 0) (<119,0,H>, H, .= 0) (<119,0,I>, I, .= 0) (<119,0,J>, 1, .= 1) (<119,0,K>, K, .= 0) (<119,0,U>, ?, .?) (<120,0,A>, A, .= 0) (<120,0,B>, B, .= 0) (<120,0,C>, C, .= 0) (<120,0,D>, D, .= 0) (<120,0,E>, E, .= 0) (<120,0,F>, F, .= 0) (<120,0,G>, G, .= 0) (<120,0,H>, H, .= 0) (<120,0,I>, I, .= 0) (<120,0,J>, 1, .= 1) (<120,0,K>, K, .= 0) (<120,0,U>, ?, .?) (<121,0,A>, A, .= 0) (<121,0,B>, 0, .= 0) (<121,0,C>, C, .= 0) (<121,0,D>, D, .= 0) (<121,0,E>, E, .= 0) (<121,0,F>, F, .= 0) (<121,0,G>, G, .= 0) (<121,0,H>, H, .= 0) (<121,0,I>, I, .= 0) (<121,0,J>, 0, .= 0) (<121,0,K>, K, .= 0) (<121,0,U>, ?, .?) (<122,0,A>, A, .= 0) (<122,0,B>, B, .= 0) (<122,0,C>, C, .= 0) (<122,0,D>, D, .= 0) (<122,0,E>, 0, .= 0) (<122,0,F>, F, .= 0) (<122,0,G>, G, .= 0) (<122,0,H>, H, .= 0) (<122,0,I>, I, .= 0) (<122,0,J>, 0, .= 0) (<122,0,K>, K, .= 0) (<122,0,U>, ?, .?) (<123,0,A>, A, .= 0) (<123,0,B>, B, .= 0) (<123,0,C>, C, .= 0) (<123,0,D>, D, .= 0) (<123,0,E>, E, .= 0) (<123,0,F>, F, .= 0) (<123,0,G>, G, .= 0) (<123,0,H>, H, .= 0) (<123,0,I>, I, .= 0) (<123,0,J>, J, .= 0) (<123,0,K>, K, .= 0) (<123,0,U>, U, .= 0) (<124,0,A>, A, .= 0) (<124,0,B>, B, .= 0) (<124,0,C>, C, .= 0) (<124,0,D>, D, .= 0) (<124,0,E>, E, .= 0) (<124,0,F>, F, .= 0) (<124,0,G>, G, .= 0) (<124,0,H>, H, .= 0) (<124,0,I>, I, .= 0) (<124,0,J>, J, .= 0) (<124,0,K>, K, .= 0) (<124,0,U>, U, .= 0) (<125,0,A>, A, .= 0) (<125,0,B>, B, .= 0) (<125,0,C>, C, .= 0) (<125,0,D>, D, .= 0) (<125,0,E>, E, .= 0) (<125,0,F>, F, .= 0) (<125,0,G>, G, .= 0) (<125,0,H>, H, .= 0) (<125,0,I>, I, .= 0) (<125,0,J>, J, .= 0) (<125,0,K>, K, .= 0) (<125,0,U>, 0, .= 0) (<126,0,A>, A, .= 0) (<126,0,B>, B, .= 0) (<126,0,C>, C, .= 0) (<126,0,D>, D, .= 0) (<126,0,E>, E, .= 0) (<126,0,F>, F, .= 0) (<126,0,G>, G, .= 0) (<126,0,H>, H, .= 0) (<126,0,I>, I, .= 0) (<126,0,J>, 0, .= 0) (<126,0,K>, K, .= 0) (<126,0,U>, U, .= 0) (<127,0,A>, A, .= 0) (<127,0,B>, B, .= 0) (<127,0,C>, C, .= 0) (<127,0,D>, D, .= 0) (<127,0,E>, E, .= 0) (<127,0,F>, F, .= 0) (<127,0,G>, G, .= 0) (<127,0,H>, H, .= 0) (<127,0,I>, 0, .= 0) (<127,0,J>, J, .= 0) (<127,0,K>, K, .= 0) (<127,0,U>, U, .= 0) (<128,0,A>, A, .= 0) (<128,0,B>, B, .= 0) (<128,0,C>, C, .= 0) (<128,0,D>, D, .= 0) (<128,0,E>, E, .= 0) (<128,0,F>, F, .= 0) (<128,0,G>, G, .= 0) (<128,0,H>, 0, .= 0) (<128,0,I>, I, .= 0) (<128,0,J>, J, .= 0) (<128,0,K>, K, .= 0) (<128,0,U>, U, .= 0) * Step 3: SizeboundsProc WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,D,E,F,G,H,I,J,K,U) -> f2(A,B,C,D,E,F,G,H,I,J,K,U) [A >= 1 + B] (1,1) 1. f0(A,B,C,D,E,F,G,H,I,J,K,U) -> f2(A,B,C,D,E,F,G,H,I,J,K,U) [B >= 1 + A] (1,1) 2. f2(A,B,C,D,E,F,G,H,I,J,K,U) -> f3(A,B,C,D,E,F,G,H,I,J,K,U) [C >= 1 + B] (?,1) 3. f2(A,B,C,D,E,F,G,H,I,J,K,U) -> f3(A,B,C,D,E,F,G,H,I,J,K,U) [B >= 1 + C] (?,1) 4. f3(A,B,C,D,E,F,G,H,I,J,K,U) -> f4(A,B,C,D,E,F,G,H,I,J,K,U) [D >= 1 + B] (?,1) 5. f3(A,B,C,D,E,F,G,H,I,J,K,U) -> f4(A,B,C,D,E,F,G,H,I,J,K,U) [B >= 1 + D] (?,1) 6. f4(A,B,C,D,E,F,G,H,I,J,K,U) -> f5(A,B,C,D,E,F,G,H,I,J,K,U) [E >= 1 + B] (?,1) 7. f4(A,B,C,D,E,F,G,H,I,J,K,U) -> f5(A,B,C,D,E,F,G,H,I,J,K,U) [B >= 1 + E] (?,1) 8. f5(A,B,C,D,E,F,G,H,I,J,K,U) -> f6(A,B,C,D,E,F,G,H,I,J,K,U) [F >= 1 + B] (?,1) 9. f5(A,B,C,D,E,F,G,H,I,J,K,U) -> f6(A,B,C,D,E,F,G,H,I,J,K,U) [B >= 1 + F] (?,1) 10. f6(A,B,C,D,E,F,G,H,I,J,K,U) -> f7(A,B,C,D,E,F,G,H,I,J,K,U) [G >= 1 + B] (?,1) 11. f6(A,B,C,D,E,F,G,H,I,J,K,U) -> f7(A,B,C,D,E,F,G,H,I,J,K,U) [B >= 1 + G] (?,1) 12. f17(A,B,C,D,E,F,G,H,I,J,K,U) -> f18(A,B,C,D,E,F,G,H,I,J,K,U) [0 >= 1 + H] (?,1) 13. f17(A,B,C,D,E,F,G,H,I,J,K,U) -> f18(A,B,C,D,E,F,G,H,I,J,K,U) [H >= 1] (?,1) 14. f18(A,B,C,D,E,F,G,H,I,J,K,U) -> f19(A,B,C,D,E,F,G,H,I,J,K,U) [C >= 1 + A] (?,1) 15. f18(A,B,C,D,E,F,G,H,I,J,K,U) -> f19(A,B,C,D,E,F,G,H,I,J,K,U) [A >= 1 + C] (?,1) 16. f19(A,B,C,D,E,F,G,H,I,J,K,U) -> f20(A,B,C,D,E,F,G,H,I,J,K,U) [D >= 1 + A] (?,1) 17. f19(A,B,C,D,E,F,G,H,I,J,K,U) -> f20(A,B,C,D,E,F,G,H,I,J,K,U) [A >= 1 + D] (?,1) 18. f20(A,B,C,D,E,F,G,H,I,J,K,U) -> f21(A,B,C,D,E,F,G,H,I,J,K,U) [E >= 1 + A] (?,1) 19. f20(A,B,C,D,E,F,G,H,I,J,K,U) -> f21(A,B,C,D,E,F,G,H,I,J,K,U) [A >= 1 + E] (?,1) 20. f21(A,B,C,D,E,F,G,H,I,J,K,U) -> f22(A,B,C,D,E,F,G,H,I,J,K,U) [F >= 1 + A] (?,1) 21. f21(A,B,C,D,E,F,G,H,I,J,K,U) -> f22(A,B,C,D,E,F,G,H,I,J,K,U) [A >= 1 + F] (?,1) 22. f22(A,B,C,D,E,F,G,H,I,J,K,U) -> f23(A,B,C,D,E,F,G,H,I,J,K,U) [G >= 1 + A] (?,1) 23. f22(A,B,C,D,E,F,G,H,I,J,K,U) -> f23(A,B,C,D,E,F,G,H,I,J,K,U) [A >= 1 + G] (?,1) 24. f33(A,B,C,D,E,F,G,H,I,J,K,U) -> f34(A,B,C,D,E,F,G,H,I,J,K,U) [0 >= 1 + H] (?,1) 25. f33(A,B,C,D,E,F,G,H,I,J,K,U) -> f34(A,B,C,D,E,F,G,H,I,J,K,U) [H >= 1] (?,1) 26. f34(A,B,C,D,E,F,G,H,I,J,K,U) -> f35(A,B,C,D,E,F,G,H,I,J,K,U) [D >= 1 + C] (?,1) 27. f34(A,B,C,D,E,F,G,H,I,J,K,U) -> f35(A,B,C,D,E,F,G,H,I,J,K,U) [C >= 1 + D] (?,1) 28. f35(A,B,C,D,E,F,G,H,I,J,K,U) -> f36(A,B,C,D,E,F,G,H,I,J,K,U) [E >= 1 + C] (?,1) 29. f35(A,B,C,D,E,F,G,H,I,J,K,U) -> f36(A,B,C,D,E,F,G,H,I,J,K,U) [C >= 1 + E] (?,1) 30. f36(A,B,C,D,E,F,G,H,I,J,K,U) -> f37(A,B,C,D,E,F,G,H,I,J,K,U) [F >= 1 + C] (?,1) 31. f36(A,B,C,D,E,F,G,H,I,J,K,U) -> f37(A,B,C,D,E,F,G,H,I,J,K,U) [C >= 1 + F] (?,1) 32. f37(A,B,C,D,E,F,G,H,I,J,K,U) -> f38(A,B,C,D,E,F,G,H,I,J,K,U) [G >= 1 + C] (?,1) 33. f37(A,B,C,D,E,F,G,H,I,J,K,U) -> f38(A,B,C,D,E,F,G,H,I,J,K,U) [C >= 1 + G] (?,1) 34. f47(A,B,C,D,E,F,G,H,I,J,K,U) -> f48(A,B,C,D,E,F,G,H,I,J,K,U) [0 >= 1 + H] (?,1) 35. f47(A,B,C,D,E,F,G,H,I,J,K,U) -> f48(A,B,C,D,E,F,G,H,I,J,K,U) [H >= 1] (?,1) 36. f48(A,B,C,D,E,F,G,H,I,J,K,U) -> f49(A,B,C,D,E,F,G,H,I,J,K,U) [E >= 1 + D] (?,1) 37. f48(A,B,C,D,E,F,G,H,I,J,K,U) -> f49(A,B,C,D,E,F,G,H,I,J,K,U) [D >= 1 + E] (?,1) 38. f49(A,B,C,D,E,F,G,H,I,J,K,U) -> f50(A,B,C,D,E,F,G,H,I,J,K,U) [F >= 1 + D] (?,1) 39. f49(A,B,C,D,E,F,G,H,I,J,K,U) -> f50(A,B,C,D,E,F,G,H,I,J,K,U) [D >= 1 + F] (?,1) 40. f50(A,B,C,D,E,F,G,H,I,J,K,U) -> f51(A,B,C,D,E,F,G,H,I,J,K,U) [G >= 1 + D] (?,1) 41. f50(A,B,C,D,E,F,G,H,I,J,K,U) -> f51(A,B,C,D,E,F,G,H,I,J,K,U) [D >= 1 + G] (?,1) 42. f59(A,B,C,D,E,F,G,H,I,J,K,U) -> f60(A,B,C,D,E,F,G,H,I,J,K,U) [0 >= 1 + H] (?,1) 43. f59(A,B,C,D,E,F,G,H,I,J,K,U) -> f60(A,B,C,D,E,F,G,H,I,J,K,U) [H >= 1] (?,1) 44. f60(A,B,C,D,E,F,G,H,I,J,K,U) -> f61(A,B,C,D,E,F,G,H,I,J,K,U) [F >= 1 + E] (?,1) 45. f60(A,B,C,D,E,F,G,H,I,J,K,U) -> f61(A,B,C,D,E,F,G,H,I,J,K,U) [E >= 1 + F] (?,1) 46. f61(A,B,C,D,E,F,G,H,I,J,K,U) -> f62(A,B,C,D,E,F,G,H,I,J,K,U) [G >= 1 + E] (?,1) 47. f61(A,B,C,D,E,F,G,H,I,J,K,U) -> f62(A,B,C,D,E,F,G,H,I,J,K,U) [E >= 1 + G] (?,1) 48. f69(A,B,C,D,E,F,G,H,I,J,K,U) -> f70(A,B,C,D,E,F,G,H,I,J,K,U) [0 >= 1 + H] (?,1) 49. f69(A,B,C,D,E,F,G,H,I,J,K,U) -> f70(A,B,C,D,E,F,G,H,I,J,K,U) [H >= 1] (?,1) 50. f70(A,B,C,D,E,F,G,H,I,J,K,U) -> f71(A,B,C,D,E,F,G,H,I,J,K,U) [G >= 1 + F] (?,1) 51. f70(A,B,C,D,E,F,G,H,I,J,K,U) -> f71(A,B,C,D,E,F,G,H,I,J,K,U) [F >= 1 + G] (?,1) 52. f77(A,B,C,D,E,F,G,H,I,J,K,U) -> f78(A,B,C,D,E,F,G,H,I,J,K,U) [0 >= 1 + H] (?,1) 53. f77(A,B,C,D,E,F,G,H,I,J,K,U) -> f78(A,B,C,D,E,F,G,H,I,J,K,U) [H >= 1] (?,1) 54. f101(A,B,C,D,E,F,G,H,I,J,K,U) -> f102(A,B,C,D,E,F,G,H,I,J,K,U) [0 >= 1 + E] (?,1) 55. f101(A,B,C,D,E,F,G,H,I,J,K,U) -> f102(A,B,C,D,E,F,G,H,I,J,K,U) [E >= 1] (?,1) 56. f108(A,B,C,D,E,F,G,H,I,J,K,U) -> f109(A,B,C,D,E,F,G,H,I,J,K,U) [0 >= 1 + H] (?,1) 57. f108(A,B,C,D,E,F,G,H,I,J,K,U) -> f109(A,B,C,D,E,F,G,H,I,J,K,U) [H >= 1] (?,1) 58. f109(A,B,C,D,E,F,G,H,I,J,K,U) -> f110(A,B,C,D,E,F,G,H,I,J,K,U) [0 >= 1 + I] (?,1) 59. f109(A,B,C,D,E,F,G,H,I,J,K,U) -> f110(A,B,C,D,E,F,G,H,I,J,K,U) [I >= 1] (?,1) 60. f110(A,B,C,D,E,F,G,H,I,J,K,U) -> f111(A,B,C,D,E,F,G,H,I,J,K,U) [0 >= 1 + J] (?,1) 61. f110(A,B,C,D,E,F,G,H,I,J,K,U) -> f111(A,B,C,D,E,F,G,H,I,J,K,U) [J >= 1] (?,1) 62. f7(A,B,C,D,E,F,G,H,I,J,K,U) -> f17(A,B,C,D,E,F,G,1,I,J,K,U) [K >= 1 + B] (?,1) 63. f7(A,B,C,D,E,F,G,H,I,J,K,U) -> f17(A,B,C,D,E,F,G,1,I,J,K,U) [B >= 1 + K] (?,1) 64. f7(A,B,C,D,E,F,G,H,I,J,K,U) -> f17(A,B,C,D,E,F,G,0,I,J,B,U) [B = K] (?,1) 65. f6(A,B,C,D,E,F,G,H,I,J,K,U) -> f17(A,B,C,D,E,F,B,0,I,J,K,U) [B = G] (?,1) 66. f5(A,B,C,D,E,F,G,H,I,J,K,U) -> f17(A,B,C,D,E,B,G,0,I,J,K,U) [B = F] (?,1) 67. f4(A,B,C,D,E,F,G,H,I,J,K,U) -> f17(A,B,C,D,B,F,G,0,I,J,K,U) [B = E] (?,1) 68. f3(A,B,C,D,E,F,G,H,I,J,K,U) -> f17(A,B,C,B,E,F,G,0,I,J,K,U) [B = D] (?,1) 69. f2(A,B,C,D,E,F,G,H,I,J,K,U) -> f17(A,B,B,D,E,F,G,0,I,J,K,U) [B = C] (?,1) 70. f0(A,B,C,D,E,F,G,H,I,J,K,U) -> f17(B,B,C,D,E,F,G,0,I,J,K,U) [B = A] (1,1) 71. f23(A,B,C,D,E,F,G,H,I,J,K,U) -> f33(A,B,C,D,E,F,G,1,I,J,K,U) [K >= 1 + A] (?,1) 72. f23(A,B,C,D,E,F,G,H,I,J,K,U) -> f33(A,B,C,D,E,F,G,1,I,J,K,U) [A >= 1 + K] (?,1) 73. f23(A,B,C,D,E,F,G,H,I,J,K,U) -> f33(A,B,C,D,E,F,G,0,I,J,A,U) [A = K] (?,1) 74. f22(A,B,C,D,E,F,G,H,I,J,K,U) -> f33(A,B,C,D,E,F,A,0,I,J,K,U) [A = G] (?,1) 75. f21(A,B,C,D,E,F,G,H,I,J,K,U) -> f33(A,B,C,D,E,A,G,0,I,J,K,U) [A = F] (?,1) 76. f20(A,B,C,D,E,F,G,H,I,J,K,U) -> f33(A,B,C,D,A,F,G,0,I,J,K,U) [A = E] (?,1) 77. f19(A,B,C,D,E,F,G,H,I,J,K,U) -> f33(A,B,C,A,E,F,G,0,I,J,K,U) [A = D] (?,1) 78. f18(A,B,C,D,E,F,G,H,I,J,K,U) -> f33(A,B,A,D,E,F,G,0,I,J,K,U) [A = C] (?,1) 79. f17(A,B,C,D,E,F,G,H,I,J,K,U) -> f33(A,B,C,D,E,F,G,0,I,J,K,U) [H = 0] (?,1) 80. f38(A,B,C,D,E,F,G,H,I,J,K,U) -> f47(A,B,C,D,E,F,G,1,I,J,K,U) [K >= 1 + C] (?,1) 81. f38(A,B,C,D,E,F,G,H,I,J,K,U) -> f47(A,B,C,D,E,F,G,1,I,J,K,U) [C >= 1 + K] (?,1) 82. f38(A,B,C,D,E,F,G,H,I,J,K,U) -> f47(A,B,C,D,E,F,G,0,I,J,C,U) [C = K] (?,1) 83. f37(A,B,C,D,E,F,G,H,I,J,K,U) -> f47(A,B,C,D,E,F,C,0,I,J,K,U) [C = G] (?,1) 84. f36(A,B,C,D,E,F,G,H,I,J,K,U) -> f47(A,B,C,D,E,C,G,0,I,J,K,U) [C = F] (?,1) 85. f35(A,B,C,D,E,F,G,H,I,J,K,U) -> f47(A,B,C,D,C,F,G,0,I,J,K,U) [C = E] (?,1) 86. f34(A,B,C,D,E,F,G,H,I,J,K,U) -> f47(A,B,C,C,E,F,G,0,I,J,K,U) [C = D] (?,1) 87. f33(A,B,C,D,E,F,G,H,I,J,K,U) -> f47(A,B,C,D,E,F,G,0,I,J,K,U) [H = 0] (?,1) 88. f51(A,B,C,D,E,F,G,H,I,J,K,U) -> f59(A,B,C,D,E,F,G,1,I,J,K,U) [K >= 1 + D] (?,1) 89. f51(A,B,C,D,E,F,G,H,I,J,K,U) -> f59(A,B,C,D,E,F,G,1,I,J,K,U) [D >= 1 + K] (?,1) 90. f51(A,B,C,D,E,F,G,H,I,J,K,U) -> f59(A,B,C,D,E,F,G,0,I,J,D,U) [D = K] (?,1) 91. f50(A,B,C,D,E,F,G,H,I,J,K,U) -> f59(A,B,C,D,E,F,D,0,I,J,K,U) [D = G] (?,1) 92. f49(A,B,C,D,E,F,G,H,I,J,K,U) -> f59(A,B,C,D,E,D,G,0,I,J,K,U) [D = F] (?,1) 93. f48(A,B,C,D,E,F,G,H,I,J,K,U) -> f59(A,B,C,D,D,F,G,0,I,J,K,U) [D = E] (?,1) 94. f47(A,B,C,D,E,F,G,H,I,J,K,U) -> f59(A,B,C,D,E,F,G,0,I,J,K,U) [H = 0] (?,1) 95. f62(A,B,C,D,E,F,G,H,I,J,K,U) -> f69(A,B,C,D,E,F,G,1,I,J,K,U) [K >= 1 + E] (?,1) 96. f62(A,B,C,D,E,F,G,H,I,J,K,U) -> f69(A,B,C,D,E,F,G,1,I,J,K,U) [E >= 1 + K] (?,1) 97. f62(A,B,C,D,E,F,G,H,I,J,K,U) -> f69(A,B,C,D,E,F,G,0,I,J,E,U) [E = K] (?,1) 98. f61(A,B,C,D,E,F,G,H,I,J,K,U) -> f69(A,B,C,D,E,F,E,0,I,J,K,U) [E = G] (?,1) 99. f60(A,B,C,D,E,F,G,H,I,J,K,U) -> f69(A,B,C,D,E,E,G,0,I,J,K,U) [E = F] (?,1) 100. f59(A,B,C,D,E,F,G,H,I,J,K,U) -> f69(A,B,C,D,E,F,G,0,I,J,K,U) [H = 0] (?,1) 101. f71(A,B,C,D,E,F,G,H,I,J,K,U) -> f77(A,B,C,D,E,F,G,1,I,J,K,U) [K >= 1 + F] (?,1) 102. f71(A,B,C,D,E,F,G,H,I,J,K,U) -> f77(A,B,C,D,E,F,G,1,I,J,K,U) [F >= 1 + K] (?,1) 103. f71(A,B,C,D,E,F,G,H,I,J,K,U) -> f77(A,B,C,D,E,F,G,0,I,J,F,U) [F = K] (?,1) 104. f70(A,B,C,D,E,F,G,H,I,J,K,U) -> f77(A,B,C,D,E,F,F,0,I,J,K,U) [F = G] (?,1) 105. f69(A,B,C,D,E,F,G,H,I,J,K,U) -> f77(A,B,C,D,E,F,G,0,I,J,K,U) [H = 0] (?,1) 106. f78(A,B,C,D,E,F,G,H,I,J,K,U) -> f83(A,B,C,D,E,F,G,1,I,J,K,U) [K >= 1 + G] (?,1) 107. f78(A,B,C,D,E,F,G,H,I,J,K,U) -> f83(A,B,C,D,E,F,G,1,I,J,K,U) [G >= 1 + K] (?,1) 108. f78(A,B,C,D,E,F,G,H,I,J,K,U) -> f83(A,B,C,D,E,F,G,0,I,J,G,U) [G = K] (?,1) 109. f77(A,B,C,D,E,F,G,H,I,J,K,U) -> f83(A,B,C,D,E,F,G,0,I,J,K,U) [H = 0] (?,1) 110. f83(A,B,C,D,E,F,G,H,I,J,K,U) -> f101(A,B,C,D,E,F,G,H,1,J,K,U) [9 >= K && 9 >= G && 9 >= F && 9 >= E && 9 >= D && 9 >= C && 9 >= B && 9 >= A] (?,1) 111. f83(A,B,C,D,E,F,G,H,I,J,K,U) -> f101(A,B,C,D,E,F,G,H,0,J,K,U) [K >= 10 && 9 >= G && 9 >= F && 9 >= E && 9 >= D && 9 >= C && 9 >= B && 9 >= A] (?,1) 112. f83(A,B,C,D,E,F,G,H,I,J,K,U) -> f101(A,B,C,D,E,F,G,H,0,J,K,U) [G >= 10 && 9 >= F && 9 >= E && 9 >= D && 9 >= C && 9 >= B && 9 >= A] (?,1) 113. f83(A,B,C,D,E,F,G,H,I,J,K,U) -> f101(A,B,C,D,E,F,G,H,0,J,K,U) [F >= 10 && 9 >= E && 9 >= D && 9 >= C && 9 >= B && 9 >= A] (?,1) 114. f83(A,B,C,D,E,F,G,H,I,J,K,U) -> f101(A,B,C,D,E,F,G,H,0,J,K,U) [E >= 10 && 9 >= D && 9 >= C && 9 >= B && 9 >= A] (?,1) 115. f83(A,B,C,D,E,F,G,H,I,J,K,U) -> f101(A,B,C,D,E,F,G,H,0,J,K,U) [D >= 10 && 9 >= C && 9 >= B && 9 >= A] (?,1) 116. f83(A,B,C,D,E,F,G,H,I,J,K,U) -> f101(A,B,C,D,E,F,G,H,0,J,K,U) [C >= 10 && 9 >= B && 9 >= A] (?,1) 117. f83(A,B,C,D,E,F,G,H,I,J,K,U) -> f101(A,B,C,D,E,F,G,H,0,J,K,U) [9 >= B && A >= 10] (?,1) 118. f83(A,B,C,D,E,F,G,H,I,J,K,U) -> f101(A,B,C,D,E,F,G,H,0,J,K,U) [B >= 10] (?,1) 119. f102(A,B,C,D,E,F,G,H,I,J,K,U) -> f108(A,B,C,D,E,F,G,H,I,1,K,W) [0 >= 1 + B] (?,1) 120. f102(A,B,C,D,E,F,G,H,I,J,K,U) -> f108(A,B,C,D,E,F,G,H,I,1,K,W) [B >= 1] (?,1) 121. f102(A,B,C,D,E,F,G,H,I,J,K,U) -> f108(A,0,C,D,E,F,G,H,I,0,K,W) [B = 0] (?,1) 122. f101(A,B,C,D,E,F,G,H,I,J,K,U) -> f108(A,B,C,D,0,F,G,H,I,0,K,W) [E = 0] (?,1) 123. f111(A,B,C,D,E,F,G,H,I,J,K,U) -> f119(A,B,C,D,E,F,G,H,I,J,K,U) [0 >= 1 + U] (?,1) 124. f111(A,B,C,D,E,F,G,H,I,J,K,U) -> f119(A,B,C,D,E,F,G,H,I,J,K,U) [U >= 1] (?,1) 125. f111(A,B,C,D,E,F,G,H,I,J,K,U) -> f119(A,B,C,D,E,F,G,H,I,J,K,0) [U = 0] (?,1) 126. f110(A,B,C,D,E,F,G,H,I,J,K,U) -> f119(A,B,C,D,E,F,G,H,I,0,K,U) [J = 0] (?,1) 127. f109(A,B,C,D,E,F,G,H,I,J,K,U) -> f119(A,B,C,D,E,F,G,H,0,J,K,U) [I = 0] (?,1) 128. f108(A,B,C,D,E,F,G,H,I,J,K,U) -> f119(A,B,C,D,E,F,G,0,I,J,K,U) [H = 0] (?,1) Signature: {(f0,12) ;(f101,12) ;(f102,12) ;(f108,12) ;(f109,12) ;(f110,12) ;(f111,12) ;(f119,12) ;(f17,12) ;(f18,12) ;(f19,12) ;(f2,12) ;(f20,12) ;(f21,12) ;(f22,12) ;(f23,12) ;(f3,12) ;(f33,12) ;(f34,12) ;(f35,12) ;(f36,12) ;(f37,12) ;(f38,12) ;(f4,12) ;(f47,12) ;(f48,12) ;(f49,12) ;(f5,12) ;(f50,12) ;(f51,12) ;(f59,12) ;(f6,12) ;(f60,12) ;(f61,12) ;(f62,12) ;(f69,12) ;(f7,12) ;(f70,12) ;(f71,12) ;(f77,12) ;(f78,12) ;(f83,12)} Flow Graph: [0->{2,3,69},1->{2,3,69},2->{4,5,68},3->{4,5,68},4->{6,7,67},5->{6,7,67},6->{8,9,66},7->{8,9,66},8->{10,11 ,65},9->{10,11,65},10->{62,63,64},11->{62,63,64},12->{14,15,78},13->{14,15,78},14->{16,17,77},15->{16,17,77} ,16->{18,19,76},17->{18,19,76},18->{20,21,75},19->{20,21,75},20->{22,23,74},21->{22,23,74},22->{71,72,73} ,23->{71,72,73},24->{26,27,86},25->{26,27,86},26->{28,29,85},27->{28,29,85},28->{30,31,84},29->{30,31,84} ,30->{32,33,83},31->{32,33,83},32->{80,81,82},33->{80,81,82},34->{36,37,93},35->{36,37,93},36->{38,39,92} ,37->{38,39,92},38->{40,41,91},39->{40,41,91},40->{88,89,90},41->{88,89,90},42->{44,45,99},43->{44,45,99} ,44->{46,47,98},45->{46,47,98},46->{95,96,97},47->{95,96,97},48->{50,51,104},49->{50,51,104},50->{101,102 ,103},51->{101,102,103},52->{106,107,108},53->{106,107,108},54->{119,120,121},55->{119,120,121},56->{58,59 ,127},57->{58,59,127},58->{60,61,126},59->{60,61,126},60->{123,124,125},61->{123,124,125},62->{12,13,79} ,63->{12,13,79},64->{12,13,79},65->{12,13,79},66->{12,13,79},67->{12,13,79},68->{12,13,79},69->{12,13,79} ,70->{12,13,79},71->{24,25,87},72->{24,25,87},73->{24,25,87},74->{24,25,87},75->{24,25,87},76->{24,25,87} ,77->{24,25,87},78->{24,25,87},79->{24,25,87},80->{34,35,94},81->{34,35,94},82->{34,35,94},83->{34,35,94} ,84->{34,35,94},85->{34,35,94},86->{34,35,94},87->{34,35,94},88->{42,43,100},89->{42,43,100},90->{42,43,100} ,91->{42,43,100},92->{42,43,100},93->{42,43,100},94->{42,43,100},95->{48,49,105},96->{48,49,105},97->{48,49 ,105},98->{48,49,105},99->{48,49,105},100->{48,49,105},101->{52,53,109},102->{52,53,109},103->{52,53,109} ,104->{52,53,109},105->{52,53,109},106->{110,111,112,113,114,115,116,117,118},107->{110,111,112,113,114,115 ,116,117,118},108->{110,111,112,113,114,115,116,117,118},109->{110,111,112,113,114,115,116,117,118},110->{54 ,55,122},111->{54,55,122},112->{54,55,122},113->{54,55,122},114->{54,55,122},115->{54,55,122},116->{54,55 ,122},117->{54,55,122},118->{54,55,122},119->{56,57,128},120->{56,57,128},121->{56,57,128},122->{56,57,128} ,123->{},124->{},125->{},126->{},127->{},128->{}] Sizebounds: (< 0,0,A>, ?) (< 0,0,B>, ?) (< 0,0,C>, ?) (< 0,0,D>, ?) (< 0,0,E>, ?) (< 0,0,F>, ?) (< 0,0,G>, ?) (< 0,0,H>, ?) (< 0,0,I>, ?) (< 0,0,J>, ?) (< 0,0,K>, ?) (< 0,0,U>, ?) (< 1,0,A>, ?) (< 1,0,B>, ?) (< 1,0,C>, ?) (< 1,0,D>, ?) (< 1,0,E>, ?) (< 1,0,F>, ?) (< 1,0,G>, ?) (< 1,0,H>, ?) (< 1,0,I>, ?) (< 1,0,J>, ?) (< 1,0,K>, ?) (< 1,0,U>, ?) (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 2,0,F>, ?) (< 2,0,G>, ?) (< 2,0,H>, ?) (< 2,0,I>, ?) (< 2,0,J>, ?) (< 2,0,K>, ?) (< 2,0,U>, ?) (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, ?) (< 3,0,E>, ?) (< 3,0,F>, ?) (< 3,0,G>, ?) (< 3,0,H>, ?) (< 3,0,I>, ?) (< 3,0,J>, ?) (< 3,0,K>, ?) (< 3,0,U>, ?) (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 4,0,F>, ?) (< 4,0,G>, ?) (< 4,0,H>, ?) (< 4,0,I>, ?) (< 4,0,J>, ?) (< 4,0,K>, ?) (< 4,0,U>, ?) (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 5,0,F>, ?) (< 5,0,G>, ?) (< 5,0,H>, ?) (< 5,0,I>, ?) (< 5,0,J>, ?) (< 5,0,K>, ?) (< 5,0,U>, ?) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, ?) (< 6,0,F>, ?) (< 6,0,G>, ?) (< 6,0,H>, ?) (< 6,0,I>, ?) (< 6,0,J>, ?) (< 6,0,K>, ?) (< 6,0,U>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 7,0,F>, ?) (< 7,0,G>, ?) (< 7,0,H>, ?) (< 7,0,I>, ?) (< 7,0,J>, ?) (< 7,0,K>, ?) (< 7,0,U>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,G>, ?) (< 8,0,H>, ?) (< 8,0,I>, ?) (< 8,0,J>, ?) (< 8,0,K>, ?) (< 8,0,U>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) (< 9,0,G>, ?) (< 9,0,H>, ?) (< 9,0,I>, ?) (< 9,0,J>, ?) (< 9,0,K>, ?) (< 9,0,U>, ?) (< 10,0,A>, ?) (< 10,0,B>, ?) (< 10,0,C>, ?) (< 10,0,D>, ?) (< 10,0,E>, ?) (< 10,0,F>, ?) (< 10,0,G>, ?) (< 10,0,H>, ?) (< 10,0,I>, ?) (< 10,0,J>, ?) (< 10,0,K>, ?) (< 10,0,U>, ?) (< 11,0,A>, ?) (< 11,0,B>, ?) (< 11,0,C>, ?) (< 11,0,D>, ?) (< 11,0,E>, ?) (< 11,0,F>, ?) (< 11,0,G>, ?) (< 11,0,H>, ?) (< 11,0,I>, ?) (< 11,0,J>, ?) (< 11,0,K>, ?) (< 11,0,U>, ?) (< 12,0,A>, ?) (< 12,0,B>, ?) (< 12,0,C>, ?) (< 12,0,D>, ?) (< 12,0,E>, ?) (< 12,0,F>, ?) (< 12,0,G>, ?) (< 12,0,H>, ?) (< 12,0,I>, ?) (< 12,0,J>, ?) (< 12,0,K>, ?) (< 12,0,U>, ?) (< 13,0,A>, ?) (< 13,0,B>, ?) (< 13,0,C>, ?) (< 13,0,D>, ?) (< 13,0,E>, ?) (< 13,0,F>, ?) (< 13,0,G>, ?) (< 13,0,H>, ?) (< 13,0,I>, ?) (< 13,0,J>, ?) (< 13,0,K>, ?) (< 13,0,U>, ?) (< 14,0,A>, ?) (< 14,0,B>, ?) (< 14,0,C>, ?) (< 14,0,D>, ?) (< 14,0,E>, ?) (< 14,0,F>, ?) (< 14,0,G>, ?) (< 14,0,H>, ?) (< 14,0,I>, ?) (< 14,0,J>, ?) (< 14,0,K>, ?) (< 14,0,U>, ?) (< 15,0,A>, ?) (< 15,0,B>, ?) (< 15,0,C>, ?) (< 15,0,D>, ?) (< 15,0,E>, ?) (< 15,0,F>, ?) (< 15,0,G>, ?) (< 15,0,H>, ?) (< 15,0,I>, ?) (< 15,0,J>, ?) (< 15,0,K>, ?) (< 15,0,U>, ?) (< 16,0,A>, ?) (< 16,0,B>, ?) (< 16,0,C>, ?) (< 16,0,D>, ?) (< 16,0,E>, ?) (< 16,0,F>, ?) (< 16,0,G>, ?) (< 16,0,H>, ?) (< 16,0,I>, ?) (< 16,0,J>, ?) (< 16,0,K>, ?) (< 16,0,U>, ?) (< 17,0,A>, ?) (< 17,0,B>, ?) (< 17,0,C>, ?) (< 17,0,D>, ?) (< 17,0,E>, ?) (< 17,0,F>, ?) (< 17,0,G>, ?) (< 17,0,H>, ?) (< 17,0,I>, ?) (< 17,0,J>, ?) (< 17,0,K>, ?) (< 17,0,U>, ?) (< 18,0,A>, ?) (< 18,0,B>, ?) (< 18,0,C>, ?) (< 18,0,D>, ?) (< 18,0,E>, ?) (< 18,0,F>, ?) (< 18,0,G>, ?) (< 18,0,H>, ?) (< 18,0,I>, ?) (< 18,0,J>, ?) (< 18,0,K>, ?) (< 18,0,U>, ?) (< 19,0,A>, ?) (< 19,0,B>, ?) (< 19,0,C>, ?) (< 19,0,D>, ?) (< 19,0,E>, ?) (< 19,0,F>, ?) (< 19,0,G>, ?) (< 19,0,H>, ?) (< 19,0,I>, ?) (< 19,0,J>, ?) (< 19,0,K>, ?) (< 19,0,U>, ?) (< 20,0,A>, ?) (< 20,0,B>, ?) (< 20,0,C>, ?) (< 20,0,D>, ?) (< 20,0,E>, ?) (< 20,0,F>, ?) (< 20,0,G>, ?) (< 20,0,H>, ?) (< 20,0,I>, ?) (< 20,0,J>, ?) (< 20,0,K>, ?) (< 20,0,U>, ?) (< 21,0,A>, ?) (< 21,0,B>, ?) (< 21,0,C>, ?) (< 21,0,D>, ?) (< 21,0,E>, ?) (< 21,0,F>, ?) (< 21,0,G>, ?) (< 21,0,H>, ?) (< 21,0,I>, ?) (< 21,0,J>, ?) (< 21,0,K>, ?) (< 21,0,U>, ?) (< 22,0,A>, ?) (< 22,0,B>, ?) (< 22,0,C>, ?) (< 22,0,D>, ?) (< 22,0,E>, ?) (< 22,0,F>, ?) (< 22,0,G>, ?) (< 22,0,H>, ?) (< 22,0,I>, ?) (< 22,0,J>, ?) (< 22,0,K>, ?) (< 22,0,U>, ?) (< 23,0,A>, ?) (< 23,0,B>, ?) (< 23,0,C>, ?) (< 23,0,D>, ?) (< 23,0,E>, ?) (< 23,0,F>, ?) (< 23,0,G>, ?) (< 23,0,H>, ?) (< 23,0,I>, ?) (< 23,0,J>, ?) (< 23,0,K>, ?) (< 23,0,U>, ?) (< 24,0,A>, ?) (< 24,0,B>, ?) (< 24,0,C>, ?) (< 24,0,D>, ?) (< 24,0,E>, ?) (< 24,0,F>, ?) (< 24,0,G>, ?) (< 24,0,H>, ?) (< 24,0,I>, ?) (< 24,0,J>, ?) (< 24,0,K>, ?) (< 24,0,U>, ?) (< 25,0,A>, ?) (< 25,0,B>, ?) (< 25,0,C>, ?) (< 25,0,D>, ?) (< 25,0,E>, ?) (< 25,0,F>, ?) (< 25,0,G>, ?) (< 25,0,H>, ?) (< 25,0,I>, ?) (< 25,0,J>, ?) (< 25,0,K>, ?) (< 25,0,U>, ?) (< 26,0,A>, ?) (< 26,0,B>, ?) (< 26,0,C>, ?) (< 26,0,D>, ?) (< 26,0,E>, ?) (< 26,0,F>, ?) (< 26,0,G>, ?) (< 26,0,H>, ?) (< 26,0,I>, ?) (< 26,0,J>, ?) (< 26,0,K>, ?) (< 26,0,U>, ?) (< 27,0,A>, ?) (< 27,0,B>, ?) (< 27,0,C>, ?) (< 27,0,D>, ?) (< 27,0,E>, ?) (< 27,0,F>, ?) (< 27,0,G>, ?) (< 27,0,H>, ?) (< 27,0,I>, ?) (< 27,0,J>, ?) (< 27,0,K>, ?) (< 27,0,U>, ?) (< 28,0,A>, ?) (< 28,0,B>, ?) (< 28,0,C>, ?) (< 28,0,D>, ?) (< 28,0,E>, ?) (< 28,0,F>, ?) (< 28,0,G>, ?) (< 28,0,H>, ?) (< 28,0,I>, ?) (< 28,0,J>, ?) (< 28,0,K>, ?) (< 28,0,U>, ?) (< 29,0,A>, ?) (< 29,0,B>, ?) (< 29,0,C>, ?) (< 29,0,D>, ?) (< 29,0,E>, ?) (< 29,0,F>, ?) (< 29,0,G>, ?) (< 29,0,H>, ?) (< 29,0,I>, ?) (< 29,0,J>, ?) (< 29,0,K>, ?) (< 29,0,U>, ?) (< 30,0,A>, ?) (< 30,0,B>, ?) (< 30,0,C>, ?) (< 30,0,D>, ?) (< 30,0,E>, ?) (< 30,0,F>, ?) (< 30,0,G>, ?) (< 30,0,H>, ?) (< 30,0,I>, ?) (< 30,0,J>, ?) (< 30,0,K>, ?) (< 30,0,U>, ?) (< 31,0,A>, ?) (< 31,0,B>, ?) (< 31,0,C>, ?) (< 31,0,D>, ?) (< 31,0,E>, ?) (< 31,0,F>, ?) (< 31,0,G>, ?) (< 31,0,H>, ?) (< 31,0,I>, ?) (< 31,0,J>, ?) (< 31,0,K>, ?) (< 31,0,U>, ?) (< 32,0,A>, ?) (< 32,0,B>, ?) (< 32,0,C>, ?) (< 32,0,D>, ?) (< 32,0,E>, ?) (< 32,0,F>, ?) (< 32,0,G>, ?) (< 32,0,H>, ?) (< 32,0,I>, ?) (< 32,0,J>, ?) (< 32,0,K>, ?) (< 32,0,U>, ?) (< 33,0,A>, ?) (< 33,0,B>, ?) (< 33,0,C>, ?) (< 33,0,D>, ?) (< 33,0,E>, ?) (< 33,0,F>, ?) (< 33,0,G>, ?) (< 33,0,H>, ?) (< 33,0,I>, ?) (< 33,0,J>, ?) (< 33,0,K>, ?) (< 33,0,U>, ?) (< 34,0,A>, ?) (< 34,0,B>, ?) (< 34,0,C>, ?) (< 34,0,D>, ?) (< 34,0,E>, ?) (< 34,0,F>, ?) (< 34,0,G>, ?) (< 34,0,H>, ?) (< 34,0,I>, ?) (< 34,0,J>, ?) (< 34,0,K>, ?) (< 34,0,U>, ?) (< 35,0,A>, ?) (< 35,0,B>, ?) (< 35,0,C>, ?) (< 35,0,D>, ?) (< 35,0,E>, ?) (< 35,0,F>, ?) (< 35,0,G>, ?) (< 35,0,H>, ?) (< 35,0,I>, ?) (< 35,0,J>, ?) (< 35,0,K>, ?) (< 35,0,U>, ?) (< 36,0,A>, ?) (< 36,0,B>, ?) (< 36,0,C>, ?) (< 36,0,D>, ?) (< 36,0,E>, ?) (< 36,0,F>, ?) (< 36,0,G>, ?) (< 36,0,H>, ?) (< 36,0,I>, ?) (< 36,0,J>, ?) (< 36,0,K>, ?) (< 36,0,U>, ?) (< 37,0,A>, ?) (< 37,0,B>, ?) (< 37,0,C>, ?) (< 37,0,D>, ?) (< 37,0,E>, ?) (< 37,0,F>, ?) (< 37,0,G>, ?) (< 37,0,H>, ?) (< 37,0,I>, ?) (< 37,0,J>, ?) (< 37,0,K>, ?) (< 37,0,U>, ?) (< 38,0,A>, ?) (< 38,0,B>, ?) (< 38,0,C>, ?) (< 38,0,D>, ?) (< 38,0,E>, ?) (< 38,0,F>, ?) (< 38,0,G>, ?) (< 38,0,H>, ?) (< 38,0,I>, ?) (< 38,0,J>, ?) (< 38,0,K>, ?) (< 38,0,U>, ?) (< 39,0,A>, ?) (< 39,0,B>, ?) (< 39,0,C>, ?) (< 39,0,D>, ?) (< 39,0,E>, ?) (< 39,0,F>, ?) (< 39,0,G>, ?) (< 39,0,H>, ?) (< 39,0,I>, ?) (< 39,0,J>, ?) (< 39,0,K>, ?) (< 39,0,U>, ?) (< 40,0,A>, ?) (< 40,0,B>, ?) (< 40,0,C>, ?) (< 40,0,D>, ?) (< 40,0,E>, ?) (< 40,0,F>, ?) (< 40,0,G>, ?) (< 40,0,H>, ?) (< 40,0,I>, ?) (< 40,0,J>, ?) (< 40,0,K>, ?) (< 40,0,U>, ?) (< 41,0,A>, ?) (< 41,0,B>, ?) (< 41,0,C>, ?) (< 41,0,D>, ?) (< 41,0,E>, ?) (< 41,0,F>, ?) (< 41,0,G>, ?) (< 41,0,H>, ?) (< 41,0,I>, ?) (< 41,0,J>, ?) (< 41,0,K>, ?) (< 41,0,U>, ?) (< 42,0,A>, ?) (< 42,0,B>, ?) (< 42,0,C>, ?) (< 42,0,D>, ?) (< 42,0,E>, ?) (< 42,0,F>, ?) (< 42,0,G>, ?) (< 42,0,H>, ?) (< 42,0,I>, ?) (< 42,0,J>, ?) (< 42,0,K>, ?) (< 42,0,U>, ?) (< 43,0,A>, ?) (< 43,0,B>, ?) (< 43,0,C>, ?) (< 43,0,D>, ?) (< 43,0,E>, ?) (< 43,0,F>, ?) (< 43,0,G>, ?) (< 43,0,H>, ?) (< 43,0,I>, ?) (< 43,0,J>, ?) (< 43,0,K>, ?) (< 43,0,U>, ?) (< 44,0,A>, ?) (< 44,0,B>, ?) (< 44,0,C>, ?) (< 44,0,D>, ?) (< 44,0,E>, ?) (< 44,0,F>, ?) (< 44,0,G>, ?) (< 44,0,H>, ?) (< 44,0,I>, ?) (< 44,0,J>, ?) (< 44,0,K>, ?) (< 44,0,U>, ?) (< 45,0,A>, ?) (< 45,0,B>, ?) (< 45,0,C>, ?) (< 45,0,D>, ?) (< 45,0,E>, ?) (< 45,0,F>, ?) (< 45,0,G>, ?) (< 45,0,H>, ?) (< 45,0,I>, ?) (< 45,0,J>, ?) (< 45,0,K>, ?) (< 45,0,U>, ?) (< 46,0,A>, ?) (< 46,0,B>, ?) (< 46,0,C>, ?) (< 46,0,D>, ?) (< 46,0,E>, ?) (< 46,0,F>, ?) (< 46,0,G>, ?) (< 46,0,H>, ?) (< 46,0,I>, ?) (< 46,0,J>, ?) (< 46,0,K>, ?) (< 46,0,U>, ?) (< 47,0,A>, ?) (< 47,0,B>, ?) (< 47,0,C>, ?) (< 47,0,D>, ?) (< 47,0,E>, ?) (< 47,0,F>, ?) (< 47,0,G>, ?) (< 47,0,H>, ?) (< 47,0,I>, ?) (< 47,0,J>, ?) (< 47,0,K>, ?) (< 47,0,U>, ?) (< 48,0,A>, ?) (< 48,0,B>, ?) (< 48,0,C>, ?) (< 48,0,D>, ?) (< 48,0,E>, ?) (< 48,0,F>, ?) (< 48,0,G>, ?) (< 48,0,H>, ?) (< 48,0,I>, ?) (< 48,0,J>, ?) (< 48,0,K>, ?) (< 48,0,U>, ?) (< 49,0,A>, ?) (< 49,0,B>, ?) (< 49,0,C>, ?) (< 49,0,D>, ?) (< 49,0,E>, ?) (< 49,0,F>, ?) (< 49,0,G>, ?) (< 49,0,H>, ?) (< 49,0,I>, ?) (< 49,0,J>, ?) (< 49,0,K>, ?) (< 49,0,U>, ?) (< 50,0,A>, ?) (< 50,0,B>, ?) (< 50,0,C>, ?) (< 50,0,D>, ?) (< 50,0,E>, ?) (< 50,0,F>, ?) (< 50,0,G>, ?) (< 50,0,H>, ?) (< 50,0,I>, ?) (< 50,0,J>, ?) (< 50,0,K>, ?) (< 50,0,U>, ?) (< 51,0,A>, ?) (< 51,0,B>, ?) (< 51,0,C>, ?) (< 51,0,D>, ?) (< 51,0,E>, ?) (< 51,0,F>, ?) (< 51,0,G>, ?) (< 51,0,H>, ?) (< 51,0,I>, ?) (< 51,0,J>, ?) (< 51,0,K>, ?) (< 51,0,U>, ?) (< 52,0,A>, ?) (< 52,0,B>, ?) (< 52,0,C>, ?) (< 52,0,D>, ?) (< 52,0,E>, ?) (< 52,0,F>, ?) (< 52,0,G>, ?) (< 52,0,H>, ?) (< 52,0,I>, ?) (< 52,0,J>, ?) (< 52,0,K>, ?) (< 52,0,U>, ?) (< 53,0,A>, ?) (< 53,0,B>, ?) (< 53,0,C>, ?) (< 53,0,D>, ?) (< 53,0,E>, ?) (< 53,0,F>, ?) (< 53,0,G>, ?) (< 53,0,H>, ?) (< 53,0,I>, ?) (< 53,0,J>, ?) (< 53,0,K>, ?) (< 53,0,U>, ?) (< 54,0,A>, ?) (< 54,0,B>, ?) (< 54,0,C>, ?) (< 54,0,D>, ?) (< 54,0,E>, ?) (< 54,0,F>, ?) (< 54,0,G>, ?) (< 54,0,H>, ?) (< 54,0,I>, ?) (< 54,0,J>, ?) (< 54,0,K>, ?) (< 54,0,U>, ?) (< 55,0,A>, ?) (< 55,0,B>, ?) (< 55,0,C>, ?) (< 55,0,D>, ?) (< 55,0,E>, ?) (< 55,0,F>, ?) (< 55,0,G>, ?) (< 55,0,H>, ?) (< 55,0,I>, ?) (< 55,0,J>, ?) (< 55,0,K>, ?) (< 55,0,U>, ?) (< 56,0,A>, ?) (< 56,0,B>, ?) (< 56,0,C>, ?) (< 56,0,D>, ?) (< 56,0,E>, ?) (< 56,0,F>, ?) (< 56,0,G>, ?) (< 56,0,H>, ?) (< 56,0,I>, ?) (< 56,0,J>, ?) (< 56,0,K>, ?) (< 56,0,U>, ?) (< 57,0,A>, ?) (< 57,0,B>, ?) (< 57,0,C>, ?) (< 57,0,D>, ?) (< 57,0,E>, ?) (< 57,0,F>, ?) (< 57,0,G>, ?) (< 57,0,H>, ?) (< 57,0,I>, ?) (< 57,0,J>, ?) (< 57,0,K>, ?) (< 57,0,U>, ?) (< 58,0,A>, ?) (< 58,0,B>, ?) (< 58,0,C>, ?) (< 58,0,D>, ?) (< 58,0,E>, ?) (< 58,0,F>, ?) (< 58,0,G>, ?) (< 58,0,H>, ?) (< 58,0,I>, ?) (< 58,0,J>, ?) (< 58,0,K>, ?) (< 58,0,U>, ?) (< 59,0,A>, ?) (< 59,0,B>, ?) (< 59,0,C>, ?) (< 59,0,D>, ?) (< 59,0,E>, ?) (< 59,0,F>, ?) (< 59,0,G>, ?) (< 59,0,H>, ?) (< 59,0,I>, ?) (< 59,0,J>, ?) (< 59,0,K>, ?) (< 59,0,U>, ?) (< 60,0,A>, ?) (< 60,0,B>, ?) (< 60,0,C>, ?) (< 60,0,D>, ?) (< 60,0,E>, ?) (< 60,0,F>, ?) (< 60,0,G>, ?) (< 60,0,H>, ?) (< 60,0,I>, ?) (< 60,0,J>, ?) (< 60,0,K>, ?) (< 60,0,U>, ?) (< 61,0,A>, ?) (< 61,0,B>, ?) (< 61,0,C>, ?) (< 61,0,D>, ?) (< 61,0,E>, ?) (< 61,0,F>, ?) (< 61,0,G>, ?) (< 61,0,H>, ?) (< 61,0,I>, ?) (< 61,0,J>, ?) (< 61,0,K>, ?) (< 61,0,U>, ?) (< 62,0,A>, ?) (< 62,0,B>, ?) (< 62,0,C>, ?) (< 62,0,D>, ?) (< 62,0,E>, ?) (< 62,0,F>, ?) (< 62,0,G>, ?) (< 62,0,H>, ?) (< 62,0,I>, ?) (< 62,0,J>, ?) (< 62,0,K>, ?) (< 62,0,U>, ?) (< 63,0,A>, ?) (< 63,0,B>, ?) (< 63,0,C>, ?) (< 63,0,D>, ?) (< 63,0,E>, ?) (< 63,0,F>, ?) (< 63,0,G>, ?) (< 63,0,H>, ?) (< 63,0,I>, ?) (< 63,0,J>, ?) (< 63,0,K>, ?) (< 63,0,U>, ?) (< 64,0,A>, ?) (< 64,0,B>, ?) (< 64,0,C>, ?) (< 64,0,D>, ?) (< 64,0,E>, ?) (< 64,0,F>, ?) (< 64,0,G>, ?) (< 64,0,H>, ?) (< 64,0,I>, ?) (< 64,0,J>, ?) (< 64,0,K>, ?) (< 64,0,U>, ?) (< 65,0,A>, ?) (< 65,0,B>, ?) (< 65,0,C>, ?) (< 65,0,D>, ?) (< 65,0,E>, ?) (< 65,0,F>, ?) (< 65,0,G>, ?) (< 65,0,H>, ?) (< 65,0,I>, ?) (< 65,0,J>, ?) (< 65,0,K>, ?) (< 65,0,U>, ?) (< 66,0,A>, ?) (< 66,0,B>, ?) (< 66,0,C>, ?) (< 66,0,D>, ?) (< 66,0,E>, ?) (< 66,0,F>, ?) (< 66,0,G>, ?) (< 66,0,H>, ?) (< 66,0,I>, ?) (< 66,0,J>, ?) (< 66,0,K>, ?) (< 66,0,U>, ?) (< 67,0,A>, ?) (< 67,0,B>, ?) (< 67,0,C>, ?) (< 67,0,D>, ?) (< 67,0,E>, ?) (< 67,0,F>, ?) (< 67,0,G>, ?) (< 67,0,H>, ?) (< 67,0,I>, ?) (< 67,0,J>, ?) (< 67,0,K>, ?) (< 67,0,U>, ?) (< 68,0,A>, ?) (< 68,0,B>, ?) (< 68,0,C>, ?) (< 68,0,D>, ?) (< 68,0,E>, ?) (< 68,0,F>, ?) (< 68,0,G>, ?) (< 68,0,H>, ?) (< 68,0,I>, ?) (< 68,0,J>, ?) (< 68,0,K>, ?) (< 68,0,U>, ?) (< 69,0,A>, ?) (< 69,0,B>, ?) (< 69,0,C>, ?) (< 69,0,D>, ?) (< 69,0,E>, ?) (< 69,0,F>, ?) (< 69,0,G>, ?) (< 69,0,H>, ?) (< 69,0,I>, ?) (< 69,0,J>, ?) (< 69,0,K>, ?) (< 69,0,U>, ?) (< 70,0,A>, ?) (< 70,0,B>, ?) (< 70,0,C>, ?) (< 70,0,D>, ?) (< 70,0,E>, ?) (< 70,0,F>, ?) (< 70,0,G>, ?) (< 70,0,H>, ?) (< 70,0,I>, ?) (< 70,0,J>, ?) (< 70,0,K>, ?) (< 70,0,U>, ?) (< 71,0,A>, ?) (< 71,0,B>, ?) (< 71,0,C>, ?) (< 71,0,D>, ?) (< 71,0,E>, ?) (< 71,0,F>, ?) (< 71,0,G>, ?) (< 71,0,H>, ?) (< 71,0,I>, ?) (< 71,0,J>, ?) (< 71,0,K>, ?) (< 71,0,U>, ?) (< 72,0,A>, ?) (< 72,0,B>, ?) (< 72,0,C>, ?) (< 72,0,D>, ?) (< 72,0,E>, ?) (< 72,0,F>, ?) (< 72,0,G>, ?) (< 72,0,H>, ?) (< 72,0,I>, ?) (< 72,0,J>, ?) (< 72,0,K>, ?) (< 72,0,U>, ?) (< 73,0,A>, ?) (< 73,0,B>, ?) (< 73,0,C>, ?) (< 73,0,D>, ?) (< 73,0,E>, ?) (< 73,0,F>, ?) (< 73,0,G>, ?) (< 73,0,H>, ?) (< 73,0,I>, ?) (< 73,0,J>, ?) (< 73,0,K>, ?) (< 73,0,U>, ?) (< 74,0,A>, ?) (< 74,0,B>, ?) (< 74,0,C>, ?) (< 74,0,D>, ?) (< 74,0,E>, ?) (< 74,0,F>, ?) (< 74,0,G>, ?) (< 74,0,H>, ?) (< 74,0,I>, ?) (< 74,0,J>, ?) (< 74,0,K>, ?) (< 74,0,U>, ?) (< 75,0,A>, ?) (< 75,0,B>, ?) (< 75,0,C>, ?) (< 75,0,D>, ?) (< 75,0,E>, ?) (< 75,0,F>, ?) (< 75,0,G>, ?) (< 75,0,H>, ?) (< 75,0,I>, ?) (< 75,0,J>, ?) (< 75,0,K>, ?) (< 75,0,U>, ?) (< 76,0,A>, ?) (< 76,0,B>, ?) (< 76,0,C>, ?) (< 76,0,D>, ?) (< 76,0,E>, ?) (< 76,0,F>, ?) (< 76,0,G>, ?) (< 76,0,H>, ?) (< 76,0,I>, ?) (< 76,0,J>, ?) (< 76,0,K>, ?) (< 76,0,U>, ?) (< 77,0,A>, ?) (< 77,0,B>, ?) (< 77,0,C>, ?) (< 77,0,D>, ?) (< 77,0,E>, ?) (< 77,0,F>, ?) (< 77,0,G>, ?) (< 77,0,H>, ?) (< 77,0,I>, ?) (< 77,0,J>, ?) (< 77,0,K>, ?) (< 77,0,U>, ?) (< 78,0,A>, ?) (< 78,0,B>, ?) (< 78,0,C>, ?) (< 78,0,D>, ?) (< 78,0,E>, ?) (< 78,0,F>, ?) (< 78,0,G>, ?) (< 78,0,H>, ?) (< 78,0,I>, ?) (< 78,0,J>, ?) (< 78,0,K>, ?) (< 78,0,U>, ?) (< 79,0,A>, ?) (< 79,0,B>, ?) (< 79,0,C>, ?) (< 79,0,D>, ?) (< 79,0,E>, ?) (< 79,0,F>, ?) (< 79,0,G>, ?) (< 79,0,H>, ?) (< 79,0,I>, ?) (< 79,0,J>, ?) (< 79,0,K>, ?) (< 79,0,U>, ?) (< 80,0,A>, ?) (< 80,0,B>, ?) (< 80,0,C>, ?) (< 80,0,D>, ?) (< 80,0,E>, ?) (< 80,0,F>, ?) (< 80,0,G>, ?) (< 80,0,H>, ?) (< 80,0,I>, ?) (< 80,0,J>, ?) (< 80,0,K>, ?) (< 80,0,U>, ?) (< 81,0,A>, ?) (< 81,0,B>, ?) (< 81,0,C>, ?) (< 81,0,D>, ?) (< 81,0,E>, ?) (< 81,0,F>, ?) (< 81,0,G>, ?) (< 81,0,H>, ?) (< 81,0,I>, ?) (< 81,0,J>, ?) (< 81,0,K>, ?) (< 81,0,U>, ?) (< 82,0,A>, ?) (< 82,0,B>, ?) (< 82,0,C>, ?) (< 82,0,D>, ?) (< 82,0,E>, ?) (< 82,0,F>, ?) (< 82,0,G>, ?) (< 82,0,H>, ?) (< 82,0,I>, ?) (< 82,0,J>, ?) (< 82,0,K>, ?) (< 82,0,U>, ?) (< 83,0,A>, ?) (< 83,0,B>, ?) (< 83,0,C>, ?) (< 83,0,D>, ?) (< 83,0,E>, ?) (< 83,0,F>, ?) (< 83,0,G>, ?) (< 83,0,H>, ?) (< 83,0,I>, ?) (< 83,0,J>, ?) (< 83,0,K>, ?) (< 83,0,U>, ?) (< 84,0,A>, ?) (< 84,0,B>, ?) (< 84,0,C>, ?) (< 84,0,D>, ?) (< 84,0,E>, ?) (< 84,0,F>, ?) (< 84,0,G>, ?) (< 84,0,H>, ?) (< 84,0,I>, ?) (< 84,0,J>, ?) (< 84,0,K>, ?) (< 84,0,U>, ?) (< 85,0,A>, ?) (< 85,0,B>, ?) (< 85,0,C>, ?) (< 85,0,D>, ?) (< 85,0,E>, ?) (< 85,0,F>, ?) (< 85,0,G>, ?) (< 85,0,H>, ?) (< 85,0,I>, ?) (< 85,0,J>, ?) (< 85,0,K>, ?) (< 85,0,U>, ?) (< 86,0,A>, ?) (< 86,0,B>, ?) (< 86,0,C>, ?) (< 86,0,D>, ?) (< 86,0,E>, ?) (< 86,0,F>, ?) (< 86,0,G>, ?) (< 86,0,H>, ?) (< 86,0,I>, ?) (< 86,0,J>, ?) (< 86,0,K>, ?) (< 86,0,U>, ?) (< 87,0,A>, ?) (< 87,0,B>, ?) (< 87,0,C>, ?) (< 87,0,D>, ?) (< 87,0,E>, ?) (< 87,0,F>, ?) (< 87,0,G>, ?) (< 87,0,H>, ?) (< 87,0,I>, ?) (< 87,0,J>, ?) (< 87,0,K>, ?) (< 87,0,U>, ?) (< 88,0,A>, ?) (< 88,0,B>, ?) (< 88,0,C>, ?) (< 88,0,D>, ?) (< 88,0,E>, ?) (< 88,0,F>, ?) (< 88,0,G>, ?) (< 88,0,H>, ?) (< 88,0,I>, ?) (< 88,0,J>, ?) (< 88,0,K>, ?) (< 88,0,U>, ?) (< 89,0,A>, ?) (< 89,0,B>, ?) (< 89,0,C>, ?) (< 89,0,D>, ?) (< 89,0,E>, ?) (< 89,0,F>, ?) (< 89,0,G>, ?) (< 89,0,H>, ?) (< 89,0,I>, ?) (< 89,0,J>, ?) (< 89,0,K>, ?) (< 89,0,U>, ?) (< 90,0,A>, ?) (< 90,0,B>, ?) (< 90,0,C>, ?) (< 90,0,D>, ?) (< 90,0,E>, ?) (< 90,0,F>, ?) (< 90,0,G>, ?) (< 90,0,H>, ?) (< 90,0,I>, ?) (< 90,0,J>, ?) (< 90,0,K>, ?) (< 90,0,U>, ?) (< 91,0,A>, ?) (< 91,0,B>, ?) (< 91,0,C>, ?) (< 91,0,D>, ?) (< 91,0,E>, ?) (< 91,0,F>, ?) (< 91,0,G>, ?) (< 91,0,H>, ?) (< 91,0,I>, ?) (< 91,0,J>, ?) (< 91,0,K>, ?) (< 91,0,U>, ?) (< 92,0,A>, ?) (< 92,0,B>, ?) (< 92,0,C>, ?) (< 92,0,D>, ?) (< 92,0,E>, ?) (< 92,0,F>, ?) (< 92,0,G>, ?) (< 92,0,H>, ?) (< 92,0,I>, ?) (< 92,0,J>, ?) (< 92,0,K>, ?) (< 92,0,U>, ?) (< 93,0,A>, ?) (< 93,0,B>, ?) (< 93,0,C>, ?) (< 93,0,D>, ?) (< 93,0,E>, ?) (< 93,0,F>, ?) (< 93,0,G>, ?) (< 93,0,H>, ?) (< 93,0,I>, ?) (< 93,0,J>, ?) (< 93,0,K>, ?) (< 93,0,U>, ?) (< 94,0,A>, ?) (< 94,0,B>, ?) (< 94,0,C>, ?) (< 94,0,D>, ?) (< 94,0,E>, ?) (< 94,0,F>, ?) (< 94,0,G>, ?) (< 94,0,H>, ?) (< 94,0,I>, ?) (< 94,0,J>, ?) (< 94,0,K>, ?) (< 94,0,U>, ?) (< 95,0,A>, ?) (< 95,0,B>, ?) (< 95,0,C>, ?) (< 95,0,D>, ?) (< 95,0,E>, ?) (< 95,0,F>, ?) (< 95,0,G>, ?) (< 95,0,H>, ?) (< 95,0,I>, ?) (< 95,0,J>, ?) (< 95,0,K>, ?) (< 95,0,U>, ?) (< 96,0,A>, ?) (< 96,0,B>, ?) (< 96,0,C>, ?) (< 96,0,D>, ?) (< 96,0,E>, ?) (< 96,0,F>, ?) (< 96,0,G>, ?) (< 96,0,H>, ?) (< 96,0,I>, ?) (< 96,0,J>, ?) (< 96,0,K>, ?) (< 96,0,U>, ?) (< 97,0,A>, ?) (< 97,0,B>, ?) (< 97,0,C>, ?) (< 97,0,D>, ?) (< 97,0,E>, ?) (< 97,0,F>, ?) (< 97,0,G>, ?) (< 97,0,H>, ?) (< 97,0,I>, ?) (< 97,0,J>, ?) (< 97,0,K>, ?) (< 97,0,U>, ?) (< 98,0,A>, ?) (< 98,0,B>, ?) (< 98,0,C>, ?) (< 98,0,D>, ?) (< 98,0,E>, ?) (< 98,0,F>, ?) (< 98,0,G>, ?) (< 98,0,H>, ?) (< 98,0,I>, ?) (< 98,0,J>, ?) (< 98,0,K>, ?) (< 98,0,U>, ?) (< 99,0,A>, ?) (< 99,0,B>, ?) (< 99,0,C>, ?) (< 99,0,D>, ?) (< 99,0,E>, ?) (< 99,0,F>, ?) (< 99,0,G>, ?) (< 99,0,H>, ?) (< 99,0,I>, ?) (< 99,0,J>, ?) (< 99,0,K>, ?) (< 99,0,U>, ?) (<100,0,A>, ?) (<100,0,B>, ?) (<100,0,C>, ?) (<100,0,D>, ?) (<100,0,E>, ?) (<100,0,F>, ?) (<100,0,G>, ?) (<100,0,H>, ?) (<100,0,I>, ?) (<100,0,J>, ?) (<100,0,K>, ?) (<100,0,U>, ?) (<101,0,A>, ?) (<101,0,B>, ?) (<101,0,C>, ?) (<101,0,D>, ?) (<101,0,E>, ?) (<101,0,F>, ?) (<101,0,G>, ?) (<101,0,H>, ?) (<101,0,I>, ?) (<101,0,J>, ?) (<101,0,K>, ?) (<101,0,U>, ?) (<102,0,A>, ?) (<102,0,B>, ?) (<102,0,C>, ?) (<102,0,D>, ?) (<102,0,E>, ?) (<102,0,F>, ?) (<102,0,G>, ?) (<102,0,H>, ?) (<102,0,I>, ?) (<102,0,J>, ?) (<102,0,K>, ?) (<102,0,U>, ?) (<103,0,A>, ?) (<103,0,B>, ?) (<103,0,C>, ?) (<103,0,D>, ?) (<103,0,E>, ?) (<103,0,F>, ?) (<103,0,G>, ?) (<103,0,H>, ?) (<103,0,I>, ?) (<103,0,J>, ?) (<103,0,K>, ?) (<103,0,U>, ?) (<104,0,A>, ?) (<104,0,B>, ?) (<104,0,C>, ?) (<104,0,D>, ?) (<104,0,E>, ?) (<104,0,F>, ?) (<104,0,G>, ?) (<104,0,H>, ?) (<104,0,I>, ?) (<104,0,J>, ?) (<104,0,K>, ?) (<104,0,U>, ?) (<105,0,A>, ?) (<105,0,B>, ?) (<105,0,C>, ?) (<105,0,D>, ?) (<105,0,E>, ?) (<105,0,F>, ?) (<105,0,G>, ?) (<105,0,H>, ?) (<105,0,I>, ?) (<105,0,J>, ?) (<105,0,K>, ?) (<105,0,U>, ?) (<106,0,A>, ?) (<106,0,B>, ?) (<106,0,C>, ?) (<106,0,D>, ?) (<106,0,E>, ?) (<106,0,F>, ?) (<106,0,G>, ?) (<106,0,H>, ?) (<106,0,I>, ?) (<106,0,J>, ?) (<106,0,K>, ?) (<106,0,U>, ?) (<107,0,A>, ?) (<107,0,B>, ?) (<107,0,C>, ?) (<107,0,D>, ?) (<107,0,E>, ?) (<107,0,F>, ?) (<107,0,G>, ?) (<107,0,H>, ?) (<107,0,I>, ?) (<107,0,J>, ?) (<107,0,K>, ?) (<107,0,U>, ?) (<108,0,A>, ?) (<108,0,B>, ?) (<108,0,C>, ?) (<108,0,D>, ?) (<108,0,E>, ?) (<108,0,F>, ?) (<108,0,G>, ?) (<108,0,H>, ?) (<108,0,I>, ?) (<108,0,J>, ?) (<108,0,K>, ?) (<108,0,U>, ?) (<109,0,A>, ?) (<109,0,B>, ?) (<109,0,C>, ?) (<109,0,D>, ?) (<109,0,E>, ?) (<109,0,F>, ?) (<109,0,G>, ?) (<109,0,H>, ?) (<109,0,I>, ?) (<109,0,J>, ?) (<109,0,K>, ?) (<109,0,U>, ?) (<110,0,A>, ?) (<110,0,B>, ?) (<110,0,C>, ?) (<110,0,D>, ?) (<110,0,E>, ?) (<110,0,F>, ?) (<110,0,G>, ?) (<110,0,H>, ?) (<110,0,I>, ?) (<110,0,J>, ?) (<110,0,K>, ?) (<110,0,U>, ?) (<111,0,A>, ?) (<111,0,B>, ?) (<111,0,C>, ?) (<111,0,D>, ?) (<111,0,E>, ?) (<111,0,F>, ?) (<111,0,G>, ?) (<111,0,H>, ?) (<111,0,I>, ?) (<111,0,J>, ?) (<111,0,K>, ?) (<111,0,U>, ?) (<112,0,A>, ?) (<112,0,B>, ?) (<112,0,C>, ?) (<112,0,D>, ?) (<112,0,E>, ?) (<112,0,F>, ?) (<112,0,G>, ?) (<112,0,H>, ?) (<112,0,I>, ?) (<112,0,J>, ?) (<112,0,K>, ?) (<112,0,U>, ?) (<113,0,A>, ?) (<113,0,B>, ?) (<113,0,C>, ?) (<113,0,D>, ?) (<113,0,E>, ?) (<113,0,F>, ?) (<113,0,G>, ?) (<113,0,H>, ?) (<113,0,I>, ?) (<113,0,J>, ?) (<113,0,K>, ?) (<113,0,U>, ?) (<114,0,A>, ?) (<114,0,B>, ?) (<114,0,C>, ?) (<114,0,D>, ?) (<114,0,E>, ?) (<114,0,F>, ?) (<114,0,G>, ?) (<114,0,H>, ?) (<114,0,I>, ?) (<114,0,J>, ?) (<114,0,K>, ?) (<114,0,U>, ?) (<115,0,A>, ?) (<115,0,B>, ?) (<115,0,C>, ?) (<115,0,D>, ?) (<115,0,E>, ?) (<115,0,F>, ?) (<115,0,G>, ?) (<115,0,H>, ?) (<115,0,I>, ?) (<115,0,J>, ?) (<115,0,K>, ?) (<115,0,U>, ?) (<116,0,A>, ?) (<116,0,B>, ?) (<116,0,C>, ?) (<116,0,D>, ?) (<116,0,E>, ?) (<116,0,F>, ?) (<116,0,G>, ?) (<116,0,H>, ?) (<116,0,I>, ?) (<116,0,J>, ?) (<116,0,K>, ?) (<116,0,U>, ?) (<117,0,A>, ?) (<117,0,B>, ?) (<117,0,C>, ?) (<117,0,D>, ?) (<117,0,E>, ?) (<117,0,F>, ?) (<117,0,G>, ?) (<117,0,H>, ?) (<117,0,I>, ?) (<117,0,J>, ?) (<117,0,K>, ?) (<117,0,U>, ?) (<118,0,A>, ?) (<118,0,B>, ?) (<118,0,C>, ?) (<118,0,D>, ?) (<118,0,E>, ?) (<118,0,F>, ?) (<118,0,G>, ?) (<118,0,H>, ?) (<118,0,I>, ?) (<118,0,J>, ?) (<118,0,K>, ?) (<118,0,U>, ?) (<119,0,A>, ?) (<119,0,B>, ?) (<119,0,C>, ?) (<119,0,D>, ?) (<119,0,E>, ?) (<119,0,F>, ?) (<119,0,G>, ?) (<119,0,H>, ?) (<119,0,I>, ?) (<119,0,J>, ?) (<119,0,K>, ?) (<119,0,U>, ?) (<120,0,A>, ?) (<120,0,B>, ?) (<120,0,C>, ?) (<120,0,D>, ?) (<120,0,E>, ?) (<120,0,F>, ?) (<120,0,G>, ?) (<120,0,H>, ?) (<120,0,I>, ?) (<120,0,J>, ?) (<120,0,K>, ?) (<120,0,U>, ?) (<121,0,A>, ?) (<121,0,B>, ?) (<121,0,C>, ?) (<121,0,D>, ?) (<121,0,E>, ?) (<121,0,F>, ?) (<121,0,G>, ?) (<121,0,H>, ?) (<121,0,I>, ?) (<121,0,J>, ?) (<121,0,K>, ?) (<121,0,U>, ?) (<122,0,A>, ?) (<122,0,B>, ?) (<122,0,C>, ?) (<122,0,D>, ?) (<122,0,E>, ?) (<122,0,F>, ?) (<122,0,G>, ?) (<122,0,H>, ?) (<122,0,I>, ?) (<122,0,J>, ?) (<122,0,K>, ?) (<122,0,U>, ?) (<123,0,A>, ?) (<123,0,B>, ?) (<123,0,C>, ?) (<123,0,D>, ?) (<123,0,E>, ?) (<123,0,F>, ?) (<123,0,G>, ?) (<123,0,H>, ?) (<123,0,I>, ?) (<123,0,J>, ?) (<123,0,K>, ?) (<123,0,U>, ?) (<124,0,A>, ?) (<124,0,B>, ?) (<124,0,C>, ?) (<124,0,D>, ?) (<124,0,E>, ?) (<124,0,F>, ?) (<124,0,G>, ?) (<124,0,H>, ?) (<124,0,I>, ?) (<124,0,J>, ?) (<124,0,K>, ?) (<124,0,U>, ?) (<125,0,A>, ?) (<125,0,B>, ?) (<125,0,C>, ?) (<125,0,D>, ?) (<125,0,E>, ?) (<125,0,F>, ?) (<125,0,G>, ?) (<125,0,H>, ?) (<125,0,I>, ?) (<125,0,J>, ?) (<125,0,K>, ?) (<125,0,U>, ?) (<126,0,A>, ?) (<126,0,B>, ?) (<126,0,C>, ?) (<126,0,D>, ?) (<126,0,E>, ?) (<126,0,F>, ?) (<126,0,G>, ?) (<126,0,H>, ?) (<126,0,I>, ?) (<126,0,J>, ?) (<126,0,K>, ?) (<126,0,U>, ?) (<127,0,A>, ?) (<127,0,B>, ?) (<127,0,C>, ?) (<127,0,D>, ?) (<127,0,E>, ?) (<127,0,F>, ?) (<127,0,G>, ?) (<127,0,H>, ?) (<127,0,I>, ?) (<127,0,J>, ?) (<127,0,K>, ?) (<127,0,U>, ?) (<128,0,A>, ?) (<128,0,B>, ?) (<128,0,C>, ?) (<128,0,D>, ?) (<128,0,E>, ?) (<128,0,F>, ?) (<128,0,G>, ?) (<128,0,H>, ?) (<128,0,I>, ?) (<128,0,J>, ?) (<128,0,K>, ?) (<128,0,U>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,J>, J) (< 0,0,K>, K) (< 0,0,U>, U) (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,J>, J) (< 1,0,K>, K) (< 1,0,U>, U) (< 2,0,A>, A) (< 2,0,B>, B) (< 2,0,C>, C) (< 2,0,D>, D) (< 2,0,E>, E) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 2,0,J>, J) (< 2,0,K>, K) (< 2,0,U>, U) (< 3,0,A>, A) (< 3,0,B>, B) (< 3,0,C>, C) (< 3,0,D>, D) (< 3,0,E>, E) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,I>, I) (< 3,0,J>, J) (< 3,0,K>, K) (< 3,0,U>, U) (< 4,0,A>, A) (< 4,0,B>, B) (< 4,0,C>, C) (< 4,0,D>, D) (< 4,0,E>, E) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,I>, I) (< 4,0,J>, J) (< 4,0,K>, K) (< 4,0,U>, U) (< 5,0,A>, A) (< 5,0,B>, B) (< 5,0,C>, C) (< 5,0,D>, D) (< 5,0,E>, E) (< 5,0,F>, F) (< 5,0,G>, G) (< 5,0,H>, H) (< 5,0,I>, I) (< 5,0,J>, J) (< 5,0,K>, K) (< 5,0,U>, U) (< 6,0,A>, A) (< 6,0,B>, B) (< 6,0,C>, C) (< 6,0,D>, D) (< 6,0,E>, E) (< 6,0,F>, F) (< 6,0,G>, G) (< 6,0,H>, H) (< 6,0,I>, I) (< 6,0,J>, J) (< 6,0,K>, K) (< 6,0,U>, U) (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, C) (< 7,0,D>, D) (< 7,0,E>, E) (< 7,0,F>, F) (< 7,0,G>, G) (< 7,0,H>, H) (< 7,0,I>, I) (< 7,0,J>, J) (< 7,0,K>, K) (< 7,0,U>, U) (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, C) (< 8,0,D>, D) (< 8,0,E>, E) (< 8,0,F>, F) (< 8,0,G>, G) (< 8,0,H>, H) (< 8,0,I>, I) (< 8,0,J>, J) (< 8,0,K>, K) (< 8,0,U>, U) (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, C) (< 9,0,D>, D) (< 9,0,E>, E) (< 9,0,F>, F) (< 9,0,G>, G) (< 9,0,H>, H) (< 9,0,I>, I) (< 9,0,J>, J) (< 9,0,K>, K) (< 9,0,U>, U) (< 10,0,A>, A) (< 10,0,B>, B) (< 10,0,C>, C) (< 10,0,D>, D) (< 10,0,E>, E) (< 10,0,F>, F) (< 10,0,G>, G) (< 10,0,H>, H) (< 10,0,I>, I) (< 10,0,J>, J) (< 10,0,K>, K) (< 10,0,U>, U) (< 11,0,A>, A) (< 11,0,B>, B) (< 11,0,C>, C) (< 11,0,D>, D) (< 11,0,E>, E) (< 11,0,F>, F) (< 11,0,G>, G) (< 11,0,H>, H) (< 11,0,I>, I) (< 11,0,J>, J) (< 11,0,K>, K) (< 11,0,U>, U) (< 12,0,A>, A + B) (< 12,0,B>, B) (< 12,0,C>, B + C) (< 12,0,D>, B + D) (< 12,0,E>, B + E) (< 12,0,F>, B + F) (< 12,0,G>, B + G) (< 12,0,H>, 1) (< 12,0,I>, I) (< 12,0,J>, J) (< 12,0,K>, B + K) (< 12,0,U>, U) (< 13,0,A>, A + B) (< 13,0,B>, B) (< 13,0,C>, B + C) (< 13,0,D>, B + D) (< 13,0,E>, B + E) (< 13,0,F>, B + F) (< 13,0,G>, B + G) (< 13,0,H>, 1) (< 13,0,I>, I) (< 13,0,J>, J) (< 13,0,K>, B + K) (< 13,0,U>, U) (< 14,0,A>, A + B) (< 14,0,B>, B) (< 14,0,C>, B + C) (< 14,0,D>, B + D) (< 14,0,E>, B + E) (< 14,0,F>, B + F) (< 14,0,G>, B + G) (< 14,0,H>, 1) (< 14,0,I>, I) (< 14,0,J>, J) (< 14,0,K>, B + K) (< 14,0,U>, U) (< 15,0,A>, A + B) (< 15,0,B>, B) (< 15,0,C>, B + C) (< 15,0,D>, B + D) (< 15,0,E>, B + E) (< 15,0,F>, B + F) (< 15,0,G>, B + G) (< 15,0,H>, 1) (< 15,0,I>, I) (< 15,0,J>, J) (< 15,0,K>, B + K) (< 15,0,U>, U) (< 16,0,A>, A + B) (< 16,0,B>, B) (< 16,0,C>, B + C) (< 16,0,D>, B + D) (< 16,0,E>, B + E) (< 16,0,F>, B + F) (< 16,0,G>, B + G) (< 16,0,H>, 1) (< 16,0,I>, I) (< 16,0,J>, J) (< 16,0,K>, B + K) (< 16,0,U>, U) (< 17,0,A>, A + B) (< 17,0,B>, B) (< 17,0,C>, B + C) (< 17,0,D>, B + D) (< 17,0,E>, B + E) (< 17,0,F>, B + F) (< 17,0,G>, B + G) (< 17,0,H>, 1) (< 17,0,I>, I) (< 17,0,J>, J) (< 17,0,K>, B + K) (< 17,0,U>, U) (< 18,0,A>, A + B) (< 18,0,B>, B) (< 18,0,C>, B + C) (< 18,0,D>, B + D) (< 18,0,E>, B + E) (< 18,0,F>, B + F) (< 18,0,G>, B + G) (< 18,0,H>, 1) (< 18,0,I>, I) (< 18,0,J>, J) (< 18,0,K>, B + K) (< 18,0,U>, U) (< 19,0,A>, A + B) (< 19,0,B>, B) (< 19,0,C>, B + C) (< 19,0,D>, B + D) (< 19,0,E>, B + E) (< 19,0,F>, B + F) (< 19,0,G>, B + G) (< 19,0,H>, 1) (< 19,0,I>, I) (< 19,0,J>, J) (< 19,0,K>, B + K) (< 19,0,U>, U) (< 20,0,A>, A + B) (< 20,0,B>, B) (< 20,0,C>, B + C) (< 20,0,D>, B + D) (< 20,0,E>, B + E) (< 20,0,F>, B + F) (< 20,0,G>, B + G) (< 20,0,H>, 1) (< 20,0,I>, I) (< 20,0,J>, J) (< 20,0,K>, B + K) (< 20,0,U>, U) (< 21,0,A>, A + B) (< 21,0,B>, B) (< 21,0,C>, B + C) (< 21,0,D>, B + D) (< 21,0,E>, B + E) (< 21,0,F>, B + F) (< 21,0,G>, B + G) (< 21,0,H>, 1) (< 21,0,I>, I) (< 21,0,J>, J) (< 21,0,K>, B + K) (< 21,0,U>, U) (< 22,0,A>, A + B) (< 22,0,B>, B) (< 22,0,C>, B + C) (< 22,0,D>, B + D) (< 22,0,E>, B + E) (< 22,0,F>, B + F) (< 22,0,G>, B + G) (< 22,0,H>, 1) (< 22,0,I>, I) (< 22,0,J>, J) (< 22,0,K>, B + K) (< 22,0,U>, U) (< 23,0,A>, A + B) (< 23,0,B>, B) (< 23,0,C>, B + C) (< 23,0,D>, B + D) (< 23,0,E>, B + E) (< 23,0,F>, B + F) (< 23,0,G>, B + G) (< 23,0,H>, 1) (< 23,0,I>, I) (< 23,0,J>, J) (< 23,0,K>, B + K) (< 23,0,U>, U) (< 24,0,A>, A + B) (< 24,0,B>, B) (< 24,0,C>, A + B + C) (< 24,0,D>, A + B + D) (< 24,0,E>, A + B + E) (< 24,0,F>, A + B + F) (< 24,0,G>, A + B + G) (< 24,0,H>, 1) (< 24,0,I>, I) (< 24,0,J>, J) (< 24,0,K>, A + B + K) (< 24,0,U>, U) (< 25,0,A>, A + B) (< 25,0,B>, B) (< 25,0,C>, A + B + C) (< 25,0,D>, A + B + D) (< 25,0,E>, A + B + E) (< 25,0,F>, A + B + F) (< 25,0,G>, A + B + G) (< 25,0,H>, 1) (< 25,0,I>, I) (< 25,0,J>, J) (< 25,0,K>, A + B + K) (< 25,0,U>, U) (< 26,0,A>, A + B) (< 26,0,B>, B) (< 26,0,C>, A + B + C) (< 26,0,D>, A + B + D) (< 26,0,E>, A + B + E) (< 26,0,F>, A + B + F) (< 26,0,G>, A + B + G) (< 26,0,H>, 1) (< 26,0,I>, I) (< 26,0,J>, J) (< 26,0,K>, A + B + K) (< 26,0,U>, U) (< 27,0,A>, A + B) (< 27,0,B>, B) (< 27,0,C>, A + B + C) (< 27,0,D>, A + B + D) (< 27,0,E>, A + B + E) (< 27,0,F>, A + B + F) (< 27,0,G>, A + B + G) (< 27,0,H>, 1) (< 27,0,I>, I) (< 27,0,J>, J) (< 27,0,K>, A + B + K) (< 27,0,U>, U) (< 28,0,A>, A + B) (< 28,0,B>, B) (< 28,0,C>, A + B + C) (< 28,0,D>, A + B + D) (< 28,0,E>, A + B + E) (< 28,0,F>, A + B + F) (< 28,0,G>, A + B + G) (< 28,0,H>, 1) (< 28,0,I>, I) (< 28,0,J>, J) (< 28,0,K>, A + B + K) (< 28,0,U>, U) (< 29,0,A>, A + B) (< 29,0,B>, B) (< 29,0,C>, A + B + C) (< 29,0,D>, A + B + D) (< 29,0,E>, A + B + E) (< 29,0,F>, A + B + F) (< 29,0,G>, A + B + G) (< 29,0,H>, 1) (< 29,0,I>, I) (< 29,0,J>, J) (< 29,0,K>, A + B + K) (< 29,0,U>, U) (< 30,0,A>, A + B) (< 30,0,B>, B) (< 30,0,C>, A + B + C) (< 30,0,D>, A + B + D) (< 30,0,E>, A + B + E) (< 30,0,F>, A + B + F) (< 30,0,G>, A + B + G) (< 30,0,H>, 1) (< 30,0,I>, I) (< 30,0,J>, J) (< 30,0,K>, A + B + K) (< 30,0,U>, U) (< 31,0,A>, A + B) (< 31,0,B>, B) (< 31,0,C>, A + B + C) (< 31,0,D>, A + B + D) (< 31,0,E>, A + B + E) (< 31,0,F>, A + B + F) (< 31,0,G>, A + B + G) (< 31,0,H>, 1) (< 31,0,I>, I) (< 31,0,J>, J) (< 31,0,K>, A + B + K) (< 31,0,U>, U) (< 32,0,A>, A + B) (< 32,0,B>, B) (< 32,0,C>, A + B + C) (< 32,0,D>, A + B + D) (< 32,0,E>, A + B + E) (< 32,0,F>, A + B + F) (< 32,0,G>, A + B + G) (< 32,0,H>, 1) (< 32,0,I>, I) (< 32,0,J>, J) (< 32,0,K>, A + B + K) (< 32,0,U>, U) (< 33,0,A>, A + B) (< 33,0,B>, B) (< 33,0,C>, A + B + C) (< 33,0,D>, A + B + D) (< 33,0,E>, A + B + E) (< 33,0,F>, A + B + F) (< 33,0,G>, A + B + G) (< 33,0,H>, 1) (< 33,0,I>, I) (< 33,0,J>, J) (< 33,0,K>, A + B + K) (< 33,0,U>, U) (< 34,0,A>, A + B) (< 34,0,B>, B) (< 34,0,C>, A + B + C) (< 34,0,D>, A + B + C + D) (< 34,0,E>, A + B + C + E) (< 34,0,F>, A + B + C + F) (< 34,0,G>, A + B + C + G) (< 34,0,H>, 1) (< 34,0,I>, I) (< 34,0,J>, J) (< 34,0,K>, A + B + C + K) (< 34,0,U>, U) (< 35,0,A>, A + B) (< 35,0,B>, B) (< 35,0,C>, A + B + C) (< 35,0,D>, A + B + C + D) (< 35,0,E>, A + B + C + E) (< 35,0,F>, A + B + C + F) (< 35,0,G>, A + B + C + G) (< 35,0,H>, 1) (< 35,0,I>, I) (< 35,0,J>, J) (< 35,0,K>, A + B + C + K) (< 35,0,U>, U) (< 36,0,A>, A + B) (< 36,0,B>, B) (< 36,0,C>, A + B + C) (< 36,0,D>, A + B + C + D) (< 36,0,E>, A + B + C + E) (< 36,0,F>, A + B + C + F) (< 36,0,G>, A + B + C + G) (< 36,0,H>, 1) (< 36,0,I>, I) (< 36,0,J>, J) (< 36,0,K>, A + B + C + K) (< 36,0,U>, U) (< 37,0,A>, A + B) (< 37,0,B>, B) (< 37,0,C>, A + B + C) (< 37,0,D>, A + B + C + D) (< 37,0,E>, A + B + C + E) (< 37,0,F>, A + B + C + F) (< 37,0,G>, A + B + C + G) (< 37,0,H>, 1) (< 37,0,I>, I) (< 37,0,J>, J) (< 37,0,K>, A + B + C + K) (< 37,0,U>, U) (< 38,0,A>, A + B) (< 38,0,B>, B) (< 38,0,C>, A + B + C) (< 38,0,D>, A + B + C + D) (< 38,0,E>, A + B + C + E) (< 38,0,F>, A + B + C + F) (< 38,0,G>, A + B + C + G) (< 38,0,H>, 1) (< 38,0,I>, I) (< 38,0,J>, J) (< 38,0,K>, A + B + C + K) (< 38,0,U>, U) (< 39,0,A>, A + B) (< 39,0,B>, B) (< 39,0,C>, A + B + C) (< 39,0,D>, A + B + C + D) (< 39,0,E>, A + B + C + E) (< 39,0,F>, A + B + C + F) (< 39,0,G>, A + B + C + G) (< 39,0,H>, 1) (< 39,0,I>, I) (< 39,0,J>, J) (< 39,0,K>, A + B + C + K) (< 39,0,U>, U) (< 40,0,A>, A + B) (< 40,0,B>, B) (< 40,0,C>, A + B + C) (< 40,0,D>, A + B + C + D) (< 40,0,E>, A + B + C + E) (< 40,0,F>, A + B + C + F) (< 40,0,G>, A + B + C + G) (< 40,0,H>, 1) (< 40,0,I>, I) (< 40,0,J>, J) (< 40,0,K>, A + B + C + K) (< 40,0,U>, U) (< 41,0,A>, A + B) (< 41,0,B>, B) (< 41,0,C>, A + B + C) (< 41,0,D>, A + B + C + D) (< 41,0,E>, A + B + C + E) (< 41,0,F>, A + B + C + F) (< 41,0,G>, A + B + C + G) (< 41,0,H>, 1) (< 41,0,I>, I) (< 41,0,J>, J) (< 41,0,K>, A + B + C + K) (< 41,0,U>, U) (< 42,0,A>, A + B) (< 42,0,B>, B) (< 42,0,C>, A + B + C) (< 42,0,D>, A + B + C + D) (< 42,0,E>, A + B + C + D + E) (< 42,0,F>, A + B + C + D + F) (< 42,0,G>, A + B + C + D + G) (< 42,0,H>, 1) (< 42,0,I>, I) (< 42,0,J>, J) (< 42,0,K>, A + B + C + D + K) (< 42,0,U>, U) (< 43,0,A>, A + B) (< 43,0,B>, B) (< 43,0,C>, A + B + C) (< 43,0,D>, A + B + C + D) (< 43,0,E>, A + B + C + D + E) (< 43,0,F>, A + B + C + D + F) (< 43,0,G>, A + B + C + D + G) (< 43,0,H>, 1) (< 43,0,I>, I) (< 43,0,J>, J) (< 43,0,K>, A + B + C + D + K) (< 43,0,U>, U) (< 44,0,A>, A + B) (< 44,0,B>, B) (< 44,0,C>, A + B + C) (< 44,0,D>, A + B + C + D) (< 44,0,E>, A + B + C + D + E) (< 44,0,F>, A + B + C + D + F) (< 44,0,G>, A + B + C + D + G) (< 44,0,H>, 1) (< 44,0,I>, I) (< 44,0,J>, J) (< 44,0,K>, A + B + C + D + K) (< 44,0,U>, U) (< 45,0,A>, A + B) (< 45,0,B>, B) (< 45,0,C>, A + B + C) (< 45,0,D>, A + B + C + D) (< 45,0,E>, A + B + C + D + E) (< 45,0,F>, A + B + C + D + F) (< 45,0,G>, A + B + C + D + G) (< 45,0,H>, 1) (< 45,0,I>, I) (< 45,0,J>, J) (< 45,0,K>, A + B + C + D + K) (< 45,0,U>, U) (< 46,0,A>, A + B) (< 46,0,B>, B) (< 46,0,C>, A + B + C) (< 46,0,D>, A + B + C + D) (< 46,0,E>, A + B + C + D + E) (< 46,0,F>, A + B + C + D + F) (< 46,0,G>, A + B + C + D + G) (< 46,0,H>, 1) (< 46,0,I>, I) (< 46,0,J>, J) (< 46,0,K>, A + B + C + D + K) (< 46,0,U>, U) (< 47,0,A>, A + B) (< 47,0,B>, B) (< 47,0,C>, A + B + C) (< 47,0,D>, A + B + C + D) (< 47,0,E>, A + B + C + D + E) (< 47,0,F>, A + B + C + D + F) (< 47,0,G>, A + B + C + D + G) (< 47,0,H>, 1) (< 47,0,I>, I) (< 47,0,J>, J) (< 47,0,K>, A + B + C + D + K) (< 47,0,U>, U) (< 48,0,A>, A + B) (< 48,0,B>, B) (< 48,0,C>, A + B + C) (< 48,0,D>, A + B + C + D) (< 48,0,E>, A + B + C + D + E) (< 48,0,F>, A + B + C + D + E + F) (< 48,0,G>, A + B + C + D + E + G) (< 48,0,H>, 1) (< 48,0,I>, I) (< 48,0,J>, J) (< 48,0,K>, A + B + C + D + E + K) (< 48,0,U>, U) (< 49,0,A>, A + B) (< 49,0,B>, B) (< 49,0,C>, A + B + C) (< 49,0,D>, A + B + C + D) (< 49,0,E>, A + B + C + D + E) (< 49,0,F>, A + B + C + D + E + F) (< 49,0,G>, A + B + C + D + E + G) (< 49,0,H>, 1) (< 49,0,I>, I) (< 49,0,J>, J) (< 49,0,K>, A + B + C + D + E + K) (< 49,0,U>, U) (< 50,0,A>, A + B) (< 50,0,B>, B) (< 50,0,C>, A + B + C) (< 50,0,D>, A + B + C + D) (< 50,0,E>, A + B + C + D + E) (< 50,0,F>, A + B + C + D + E + F) (< 50,0,G>, A + B + C + D + E + G) (< 50,0,H>, 1) (< 50,0,I>, I) (< 50,0,J>, J) (< 50,0,K>, A + B + C + D + E + K) (< 50,0,U>, U) (< 51,0,A>, A + B) (< 51,0,B>, B) (< 51,0,C>, A + B + C) (< 51,0,D>, A + B + C + D) (< 51,0,E>, A + B + C + D + E) (< 51,0,F>, A + B + C + D + E + F) (< 51,0,G>, A + B + C + D + E + G) (< 51,0,H>, 1) (< 51,0,I>, I) (< 51,0,J>, J) (< 51,0,K>, A + B + C + D + E + K) (< 51,0,U>, U) (< 52,0,A>, A + B) (< 52,0,B>, B) (< 52,0,C>, A + B + C) (< 52,0,D>, A + B + C + D) (< 52,0,E>, A + B + C + D + E) (< 52,0,F>, A + B + C + D + E + F) (< 52,0,G>, A + B + C + D + E + F + G) (< 52,0,H>, 1) (< 52,0,I>, I) (< 52,0,J>, J) (< 52,0,K>, A + B + C + D + E + F + K) (< 52,0,U>, U) (< 53,0,A>, A + B) (< 53,0,B>, B) (< 53,0,C>, A + B + C) (< 53,0,D>, A + B + C + D) (< 53,0,E>, A + B + C + D + E) (< 53,0,F>, A + B + C + D + E + F) (< 53,0,G>, A + B + C + D + E + F + G) (< 53,0,H>, 1) (< 53,0,I>, I) (< 53,0,J>, J) (< 53,0,K>, A + B + C + D + E + F + K) (< 53,0,U>, U) (< 54,0,A>, A + B) (< 54,0,B>, B) (< 54,0,C>, A + B + C) (< 54,0,D>, A + B + C + D) (< 54,0,E>, A + B + C + D + E) (< 54,0,F>, A + B + C + D + E + F) (< 54,0,G>, A + B + C + D + E + F + G) (< 54,0,H>, 1) (< 54,0,I>, 1) (< 54,0,J>, J) (< 54,0,K>, A + B + C + D + E + F + G + K) (< 54,0,U>, U) (< 55,0,A>, A + B) (< 55,0,B>, B) (< 55,0,C>, A + B + C) (< 55,0,D>, A + B + C + D) (< 55,0,E>, A + B + C + D + E) (< 55,0,F>, A + B + C + D + E + F) (< 55,0,G>, A + B + C + D + E + F + G) (< 55,0,H>, 1) (< 55,0,I>, 1) (< 55,0,J>, J) (< 55,0,K>, A + B + C + D + E + F + G + K) (< 55,0,U>, U) (< 56,0,A>, A + B) (< 56,0,B>, B) (< 56,0,C>, A + B + C) (< 56,0,D>, A + B + C + D) (< 56,0,E>, A + B + C + D + E) (< 56,0,F>, A + B + C + D + E + F) (< 56,0,G>, A + B + C + D + E + F + G) (< 56,0,H>, 1) (< 56,0,I>, 1) (< 56,0,J>, 1) (< 56,0,K>, A + B + C + D + E + F + G + K) (< 56,0,U>, ?) (< 57,0,A>, A + B) (< 57,0,B>, B) (< 57,0,C>, A + B + C) (< 57,0,D>, A + B + C + D) (< 57,0,E>, A + B + C + D + E) (< 57,0,F>, A + B + C + D + E + F) (< 57,0,G>, A + B + C + D + E + F + G) (< 57,0,H>, 1) (< 57,0,I>, 1) (< 57,0,J>, 1) (< 57,0,K>, A + B + C + D + E + F + G + K) (< 57,0,U>, ?) (< 58,0,A>, A + B) (< 58,0,B>, B) (< 58,0,C>, A + B + C) (< 58,0,D>, A + B + C + D) (< 58,0,E>, A + B + C + D + E) (< 58,0,F>, A + B + C + D + E + F) (< 58,0,G>, A + B + C + D + E + F + G) (< 58,0,H>, 1) (< 58,0,I>, 1) (< 58,0,J>, 1) (< 58,0,K>, A + B + C + D + E + F + G + K) (< 58,0,U>, ?) (< 59,0,A>, A + B) (< 59,0,B>, B) (< 59,0,C>, A + B + C) (< 59,0,D>, A + B + C + D) (< 59,0,E>, A + B + C + D + E) (< 59,0,F>, A + B + C + D + E + F) (< 59,0,G>, A + B + C + D + E + F + G) (< 59,0,H>, 1) (< 59,0,I>, 1) (< 59,0,J>, 1) (< 59,0,K>, A + B + C + D + E + F + G + K) (< 59,0,U>, ?) (< 60,0,A>, A + B) (< 60,0,B>, B) (< 60,0,C>, A + B + C) (< 60,0,D>, A + B + C + D) (< 60,0,E>, A + B + C + D + E) (< 60,0,F>, A + B + C + D + E + F) (< 60,0,G>, A + B + C + D + E + F + G) (< 60,0,H>, 1) (< 60,0,I>, 1) (< 60,0,J>, 1) (< 60,0,K>, A + B + C + D + E + F + G + K) (< 60,0,U>, ?) (< 61,0,A>, A + B) (< 61,0,B>, B) (< 61,0,C>, A + B + C) (< 61,0,D>, A + B + C + D) (< 61,0,E>, A + B + C + D + E) (< 61,0,F>, A + B + C + D + E + F) (< 61,0,G>, A + B + C + D + E + F + G) (< 61,0,H>, 1) (< 61,0,I>, 1) (< 61,0,J>, 1) (< 61,0,K>, A + B + C + D + E + F + G + K) (< 61,0,U>, ?) (< 62,0,A>, A) (< 62,0,B>, B) (< 62,0,C>, C) (< 62,0,D>, D) (< 62,0,E>, E) (< 62,0,F>, F) (< 62,0,G>, G) (< 62,0,H>, 1) (< 62,0,I>, I) (< 62,0,J>, J) (< 62,0,K>, K) (< 62,0,U>, U) (< 63,0,A>, A) (< 63,0,B>, B) (< 63,0,C>, C) (< 63,0,D>, D) (< 63,0,E>, E) (< 63,0,F>, F) (< 63,0,G>, G) (< 63,0,H>, 1) (< 63,0,I>, I) (< 63,0,J>, J) (< 63,0,K>, K) (< 63,0,U>, U) (< 64,0,A>, A) (< 64,0,B>, B) (< 64,0,C>, C) (< 64,0,D>, D) (< 64,0,E>, E) (< 64,0,F>, F) (< 64,0,G>, G) (< 64,0,H>, 0) (< 64,0,I>, I) (< 64,0,J>, J) (< 64,0,K>, B) (< 64,0,U>, U) (< 65,0,A>, A) (< 65,0,B>, B) (< 65,0,C>, C) (< 65,0,D>, D) (< 65,0,E>, E) (< 65,0,F>, F) (< 65,0,G>, B) (< 65,0,H>, 0) (< 65,0,I>, I) (< 65,0,J>, J) (< 65,0,K>, K) (< 65,0,U>, U) (< 66,0,A>, A) (< 66,0,B>, B) (< 66,0,C>, C) (< 66,0,D>, D) (< 66,0,E>, E) (< 66,0,F>, B) (< 66,0,G>, G) (< 66,0,H>, 0) (< 66,0,I>, I) (< 66,0,J>, J) (< 66,0,K>, K) (< 66,0,U>, U) (< 67,0,A>, A) (< 67,0,B>, B) (< 67,0,C>, C) (< 67,0,D>, D) (< 67,0,E>, B) (< 67,0,F>, F) (< 67,0,G>, G) (< 67,0,H>, 0) (< 67,0,I>, I) (< 67,0,J>, J) (< 67,0,K>, K) (< 67,0,U>, U) (< 68,0,A>, A) (< 68,0,B>, B) (< 68,0,C>, C) (< 68,0,D>, B) (< 68,0,E>, E) (< 68,0,F>, F) (< 68,0,G>, G) (< 68,0,H>, 0) (< 68,0,I>, I) (< 68,0,J>, J) (< 68,0,K>, K) (< 68,0,U>, U) (< 69,0,A>, A) (< 69,0,B>, B) (< 69,0,C>, B) (< 69,0,D>, D) (< 69,0,E>, E) (< 69,0,F>, F) (< 69,0,G>, G) (< 69,0,H>, 0) (< 69,0,I>, I) (< 69,0,J>, J) (< 69,0,K>, K) (< 69,0,U>, U) (< 70,0,A>, B) (< 70,0,B>, B) (< 70,0,C>, C) (< 70,0,D>, D) (< 70,0,E>, E) (< 70,0,F>, F) (< 70,0,G>, G) (< 70,0,H>, 0) (< 70,0,I>, I) (< 70,0,J>, J) (< 70,0,K>, K) (< 70,0,U>, U) (< 71,0,A>, A + B) (< 71,0,B>, B) (< 71,0,C>, B + C) (< 71,0,D>, B + D) (< 71,0,E>, B + E) (< 71,0,F>, B + F) (< 71,0,G>, B + G) (< 71,0,H>, 1) (< 71,0,I>, I) (< 71,0,J>, J) (< 71,0,K>, B + K) (< 71,0,U>, U) (< 72,0,A>, A + B) (< 72,0,B>, B) (< 72,0,C>, B + C) (< 72,0,D>, B + D) (< 72,0,E>, B + E) (< 72,0,F>, B + F) (< 72,0,G>, B + G) (< 72,0,H>, 1) (< 72,0,I>, I) (< 72,0,J>, J) (< 72,0,K>, B + K) (< 72,0,U>, U) (< 73,0,A>, A + B) (< 73,0,B>, B) (< 73,0,C>, B + C) (< 73,0,D>, B + D) (< 73,0,E>, B + E) (< 73,0,F>, B + F) (< 73,0,G>, B + G) (< 73,0,H>, 0) (< 73,0,I>, I) (< 73,0,J>, J) (< 73,0,K>, A + B) (< 73,0,U>, U) (< 74,0,A>, A + B) (< 74,0,B>, B) (< 74,0,C>, B + C) (< 74,0,D>, B + D) (< 74,0,E>, B + E) (< 74,0,F>, B + F) (< 74,0,G>, A + B) (< 74,0,H>, 0) (< 74,0,I>, I) (< 74,0,J>, J) (< 74,0,K>, B + K) (< 74,0,U>, U) (< 75,0,A>, A + B) (< 75,0,B>, B) (< 75,0,C>, B + C) (< 75,0,D>, B + D) (< 75,0,E>, B + E) (< 75,0,F>, A + B) (< 75,0,G>, B + G) (< 75,0,H>, 0) (< 75,0,I>, I) (< 75,0,J>, J) (< 75,0,K>, B + K) (< 75,0,U>, U) (< 76,0,A>, A + B) (< 76,0,B>, B) (< 76,0,C>, B + C) (< 76,0,D>, B + D) (< 76,0,E>, A + B) (< 76,0,F>, B + F) (< 76,0,G>, B + G) (< 76,0,H>, 0) (< 76,0,I>, I) (< 76,0,J>, J) (< 76,0,K>, B + K) (< 76,0,U>, U) (< 77,0,A>, A + B) (< 77,0,B>, B) (< 77,0,C>, B + C) (< 77,0,D>, A + B) (< 77,0,E>, B + E) (< 77,0,F>, B + F) (< 77,0,G>, B + G) (< 77,0,H>, 0) (< 77,0,I>, I) (< 77,0,J>, J) (< 77,0,K>, B + K) (< 77,0,U>, U) (< 78,0,A>, A + B) (< 78,0,B>, B) (< 78,0,C>, A + B) (< 78,0,D>, B + D) (< 78,0,E>, B + E) (< 78,0,F>, B + F) (< 78,0,G>, B + G) (< 78,0,H>, 0) (< 78,0,I>, I) (< 78,0,J>, J) (< 78,0,K>, B + K) (< 78,0,U>, U) (< 79,0,A>, A + B) (< 79,0,B>, B) (< 79,0,C>, B + C) (< 79,0,D>, B + D) (< 79,0,E>, B + E) (< 79,0,F>, B + F) (< 79,0,G>, B + G) (< 79,0,H>, 0) (< 79,0,I>, I) (< 79,0,J>, J) (< 79,0,K>, B + K) (< 79,0,U>, U) (< 80,0,A>, A + B) (< 80,0,B>, B) (< 80,0,C>, A + B + C) (< 80,0,D>, A + B + D) (< 80,0,E>, A + B + E) (< 80,0,F>, A + B + F) (< 80,0,G>, A + B + G) (< 80,0,H>, 1) (< 80,0,I>, I) (< 80,0,J>, J) (< 80,0,K>, A + B + K) (< 80,0,U>, U) (< 81,0,A>, A + B) (< 81,0,B>, B) (< 81,0,C>, A + B + C) (< 81,0,D>, A + B + D) (< 81,0,E>, A + B + E) (< 81,0,F>, A + B + F) (< 81,0,G>, A + B + G) (< 81,0,H>, 1) (< 81,0,I>, I) (< 81,0,J>, J) (< 81,0,K>, A + B + K) (< 81,0,U>, U) (< 82,0,A>, A + B) (< 82,0,B>, B) (< 82,0,C>, A + B + C) (< 82,0,D>, A + B + D) (< 82,0,E>, A + B + E) (< 82,0,F>, A + B + F) (< 82,0,G>, A + B + G) (< 82,0,H>, 0) (< 82,0,I>, I) (< 82,0,J>, J) (< 82,0,K>, A + B + C) (< 82,0,U>, U) (< 83,0,A>, A + B) (< 83,0,B>, B) (< 83,0,C>, A + B + C) (< 83,0,D>, A + B + D) (< 83,0,E>, A + B + E) (< 83,0,F>, A + B + F) (< 83,0,G>, A + B + C) (< 83,0,H>, 0) (< 83,0,I>, I) (< 83,0,J>, J) (< 83,0,K>, A + B + K) (< 83,0,U>, U) (< 84,0,A>, A + B) (< 84,0,B>, B) (< 84,0,C>, A + B + C) (< 84,0,D>, A + B + D) (< 84,0,E>, A + B + E) (< 84,0,F>, A + B + C) (< 84,0,G>, A + B + G) (< 84,0,H>, 0) (< 84,0,I>, I) (< 84,0,J>, J) (< 84,0,K>, A + B + K) (< 84,0,U>, U) (< 85,0,A>, A + B) (< 85,0,B>, B) (< 85,0,C>, A + B + C) (< 85,0,D>, A + B + D) (< 85,0,E>, A + B + C) (< 85,0,F>, A + B + F) (< 85,0,G>, A + B + G) (< 85,0,H>, 0) (< 85,0,I>, I) (< 85,0,J>, J) (< 85,0,K>, A + B + K) (< 85,0,U>, U) (< 86,0,A>, A + B) (< 86,0,B>, B) (< 86,0,C>, A + B + C) (< 86,0,D>, A + B + C) (< 86,0,E>, A + B + E) (< 86,0,F>, A + B + F) (< 86,0,G>, A + B + G) (< 86,0,H>, 0) (< 86,0,I>, I) (< 86,0,J>, J) (< 86,0,K>, A + B + K) (< 86,0,U>, U) (< 87,0,A>, A + B) (< 87,0,B>, B) (< 87,0,C>, A + B + C) (< 87,0,D>, A + B + D) (< 87,0,E>, A + B + E) (< 87,0,F>, A + B + F) (< 87,0,G>, A + B + G) (< 87,0,H>, 0) (< 87,0,I>, I) (< 87,0,J>, J) (< 87,0,K>, A + B + K) (< 87,0,U>, U) (< 88,0,A>, A + B) (< 88,0,B>, B) (< 88,0,C>, A + B + C) (< 88,0,D>, A + B + C + D) (< 88,0,E>, A + B + C + E) (< 88,0,F>, A + B + C + F) (< 88,0,G>, A + B + C + G) (< 88,0,H>, 1) (< 88,0,I>, I) (< 88,0,J>, J) (< 88,0,K>, A + B + C + K) (< 88,0,U>, U) (< 89,0,A>, A + B) (< 89,0,B>, B) (< 89,0,C>, A + B + C) (< 89,0,D>, A + B + C + D) (< 89,0,E>, A + B + C + E) (< 89,0,F>, A + B + C + F) (< 89,0,G>, A + B + C + G) (< 89,0,H>, 1) (< 89,0,I>, I) (< 89,0,J>, J) (< 89,0,K>, A + B + C + K) (< 89,0,U>, U) (< 90,0,A>, A + B) (< 90,0,B>, B) (< 90,0,C>, A + B + C) (< 90,0,D>, A + B + C + D) (< 90,0,E>, A + B + C + E) (< 90,0,F>, A + B + C + F) (< 90,0,G>, A + B + C + G) (< 90,0,H>, 0) (< 90,0,I>, I) (< 90,0,J>, J) (< 90,0,K>, A + B + C + D) (< 90,0,U>, U) (< 91,0,A>, A + B) (< 91,0,B>, B) (< 91,0,C>, A + B + C) (< 91,0,D>, A + B + C + D) (< 91,0,E>, A + B + C + E) (< 91,0,F>, A + B + C + F) (< 91,0,G>, A + B + C + D) (< 91,0,H>, 0) (< 91,0,I>, I) (< 91,0,J>, J) (< 91,0,K>, A + B + C + K) (< 91,0,U>, U) (< 92,0,A>, A + B) (< 92,0,B>, B) (< 92,0,C>, A + B + C) (< 92,0,D>, A + B + C + D) (< 92,0,E>, A + B + C + E) (< 92,0,F>, A + B + C + D) (< 92,0,G>, A + B + C + G) (< 92,0,H>, 0) (< 92,0,I>, I) (< 92,0,J>, J) (< 92,0,K>, A + B + C + K) (< 92,0,U>, U) (< 93,0,A>, A + B) (< 93,0,B>, B) (< 93,0,C>, A + B + C) (< 93,0,D>, A + B + C + D) (< 93,0,E>, A + B + C + D) (< 93,0,F>, A + B + C + F) (< 93,0,G>, A + B + C + G) (< 93,0,H>, 0) (< 93,0,I>, I) (< 93,0,J>, J) (< 93,0,K>, A + B + C + K) (< 93,0,U>, U) (< 94,0,A>, A + B) (< 94,0,B>, B) (< 94,0,C>, A + B + C) (< 94,0,D>, A + B + C + D) (< 94,0,E>, A + B + C + E) (< 94,0,F>, A + B + C + F) (< 94,0,G>, A + B + C + G) (< 94,0,H>, 0) (< 94,0,I>, I) (< 94,0,J>, J) (< 94,0,K>, A + B + C + K) (< 94,0,U>, U) (< 95,0,A>, A + B) (< 95,0,B>, B) (< 95,0,C>, A + B + C) (< 95,0,D>, A + B + C + D) (< 95,0,E>, A + B + C + D + E) (< 95,0,F>, A + B + C + D + F) (< 95,0,G>, A + B + C + D + G) (< 95,0,H>, 1) (< 95,0,I>, I) (< 95,0,J>, J) (< 95,0,K>, A + B + C + D + K) (< 95,0,U>, U) (< 96,0,A>, A + B) (< 96,0,B>, B) (< 96,0,C>, A + B + C) (< 96,0,D>, A + B + C + D) (< 96,0,E>, A + B + C + D + E) (< 96,0,F>, A + B + C + D + F) (< 96,0,G>, A + B + C + D + G) (< 96,0,H>, 1) (< 96,0,I>, I) (< 96,0,J>, J) (< 96,0,K>, A + B + C + D + K) (< 96,0,U>, U) (< 97,0,A>, A + B) (< 97,0,B>, B) (< 97,0,C>, A + B + C) (< 97,0,D>, A + B + C + D) (< 97,0,E>, A + B + C + D + E) (< 97,0,F>, A + B + C + D + F) (< 97,0,G>, A + B + C + D + G) (< 97,0,H>, 0) (< 97,0,I>, I) (< 97,0,J>, J) (< 97,0,K>, A + B + C + D + E) (< 97,0,U>, U) (< 98,0,A>, A + B) (< 98,0,B>, B) (< 98,0,C>, A + B + C) (< 98,0,D>, A + B + C + D) (< 98,0,E>, A + B + C + D + E) (< 98,0,F>, A + B + C + D + F) (< 98,0,G>, A + B + C + D + E) (< 98,0,H>, 0) (< 98,0,I>, I) (< 98,0,J>, J) (< 98,0,K>, A + B + C + D + K) (< 98,0,U>, U) (< 99,0,A>, A + B) (< 99,0,B>, B) (< 99,0,C>, A + B + C) (< 99,0,D>, A + B + C + D) (< 99,0,E>, A + B + C + D + E) (< 99,0,F>, A + B + C + D + E) (< 99,0,G>, A + B + C + D + G) (< 99,0,H>, 0) (< 99,0,I>, I) (< 99,0,J>, J) (< 99,0,K>, A + B + C + D + K) (< 99,0,U>, U) (<100,0,A>, A + B) (<100,0,B>, B) (<100,0,C>, A + B + C) (<100,0,D>, A + B + C + D) (<100,0,E>, A + B + C + D + E) (<100,0,F>, A + B + C + D + F) (<100,0,G>, A + B + C + D + G) (<100,0,H>, 0) (<100,0,I>, I) (<100,0,J>, J) (<100,0,K>, A + B + C + D + K) (<100,0,U>, U) (<101,0,A>, A + B) (<101,0,B>, B) (<101,0,C>, A + B + C) (<101,0,D>, A + B + C + D) (<101,0,E>, A + B + C + D + E) (<101,0,F>, A + B + C + D + E + F) (<101,0,G>, A + B + C + D + E + G) (<101,0,H>, 1) (<101,0,I>, I) (<101,0,J>, J) (<101,0,K>, A + B + C + D + E + K) (<101,0,U>, U) (<102,0,A>, A + B) (<102,0,B>, B) (<102,0,C>, A + B + C) (<102,0,D>, A + B + C + D) (<102,0,E>, A + B + C + D + E) (<102,0,F>, A + B + C + D + E + F) (<102,0,G>, A + B + C + D + E + G) (<102,0,H>, 1) (<102,0,I>, I) (<102,0,J>, J) (<102,0,K>, A + B + C + D + E + K) (<102,0,U>, U) (<103,0,A>, A + B) (<103,0,B>, B) (<103,0,C>, A + B + C) (<103,0,D>, A + B + C + D) (<103,0,E>, A + B + C + D + E) (<103,0,F>, A + B + C + D + E + F) (<103,0,G>, A + B + C + D + E + G) (<103,0,H>, 0) (<103,0,I>, I) (<103,0,J>, J) (<103,0,K>, A + B + C + D + E + F) (<103,0,U>, U) (<104,0,A>, A + B) (<104,0,B>, B) (<104,0,C>, A + B + C) (<104,0,D>, A + B + C + D) (<104,0,E>, A + B + C + D + E) (<104,0,F>, A + B + C + D + E + F) (<104,0,G>, A + B + C + D + E + F) (<104,0,H>, 0) (<104,0,I>, I) (<104,0,J>, J) (<104,0,K>, A + B + C + D + E + K) (<104,0,U>, U) (<105,0,A>, A + B) (<105,0,B>, B) (<105,0,C>, A + B + C) (<105,0,D>, A + B + C + D) (<105,0,E>, A + B + C + D + E) (<105,0,F>, A + B + C + D + E + F) (<105,0,G>, A + B + C + D + E + G) (<105,0,H>, 0) (<105,0,I>, I) (<105,0,J>, J) (<105,0,K>, A + B + C + D + E + K) (<105,0,U>, U) (<106,0,A>, A + B) (<106,0,B>, B) (<106,0,C>, A + B + C) (<106,0,D>, A + B + C + D) (<106,0,E>, A + B + C + D + E) (<106,0,F>, A + B + C + D + E + F) (<106,0,G>, A + B + C + D + E + F + G) (<106,0,H>, 1) (<106,0,I>, I) (<106,0,J>, J) (<106,0,K>, A + B + C + D + E + F + K) (<106,0,U>, U) (<107,0,A>, A + B) (<107,0,B>, B) (<107,0,C>, A + B + C) (<107,0,D>, A + B + C + D) (<107,0,E>, A + B + C + D + E) (<107,0,F>, A + B + C + D + E + F) (<107,0,G>, A + B + C + D + E + F + G) (<107,0,H>, 1) (<107,0,I>, I) (<107,0,J>, J) (<107,0,K>, A + B + C + D + E + F + K) (<107,0,U>, U) (<108,0,A>, A + B) (<108,0,B>, B) (<108,0,C>, A + B + C) (<108,0,D>, A + B + C + D) (<108,0,E>, A + B + C + D + E) (<108,0,F>, A + B + C + D + E + F) (<108,0,G>, A + B + C + D + E + F + G) (<108,0,H>, 0) (<108,0,I>, I) (<108,0,J>, J) (<108,0,K>, A + B + C + D + E + F + G) (<108,0,U>, U) (<109,0,A>, A + B) (<109,0,B>, B) (<109,0,C>, A + B + C) (<109,0,D>, A + B + C + D) (<109,0,E>, A + B + C + D + E) (<109,0,F>, A + B + C + D + E + F) (<109,0,G>, A + B + C + D + E + F + G) (<109,0,H>, 0) (<109,0,I>, I) (<109,0,J>, J) (<109,0,K>, A + B + C + D + E + F + K) (<109,0,U>, U) (<110,0,A>, A + B) (<110,0,B>, B) (<110,0,C>, A + B + C) (<110,0,D>, A + B + C + D) (<110,0,E>, A + B + C + D + E) (<110,0,F>, A + B + C + D + E + F) (<110,0,G>, A + B + C + D + E + F + G) (<110,0,H>, 1) (<110,0,I>, 1) (<110,0,J>, J) (<110,0,K>, A + B + C + D + E + F + G + K) (<110,0,U>, U) (<111,0,A>, A + B) (<111,0,B>, B) (<111,0,C>, A + B + C) (<111,0,D>, A + B + C + D) (<111,0,E>, A + B + C + D + E) (<111,0,F>, A + B + C + D + E + F) (<111,0,G>, A + B + C + D + E + F + G) (<111,0,H>, 1) (<111,0,I>, 0) (<111,0,J>, J) (<111,0,K>, A + B + C + D + E + F + G + K) (<111,0,U>, U) (<112,0,A>, A + B) (<112,0,B>, B) (<112,0,C>, A + B + C) (<112,0,D>, A + B + C + D) (<112,0,E>, A + B + C + D + E) (<112,0,F>, A + B + C + D + E + F) (<112,0,G>, A + B + C + D + E + F + G) (<112,0,H>, 1) (<112,0,I>, 0) (<112,0,J>, J) (<112,0,K>, A + B + C + D + E + F + G + K) (<112,0,U>, U) (<113,0,A>, A + B) (<113,0,B>, B) (<113,0,C>, A + B + C) (<113,0,D>, A + B + C + D) (<113,0,E>, A + B + C + D + E) (<113,0,F>, A + B + C + D + E + F) (<113,0,G>, A + B + C + D + E + F + G) (<113,0,H>, 1) (<113,0,I>, 0) (<113,0,J>, J) (<113,0,K>, A + B + C + D + E + F + G + K) (<113,0,U>, U) (<114,0,A>, A + B) (<114,0,B>, B) (<114,0,C>, A + B + C) (<114,0,D>, A + B + C + D) (<114,0,E>, A + B + C + D + E) (<114,0,F>, A + B + C + D + E + F) (<114,0,G>, A + B + C + D + E + F + G) (<114,0,H>, 1) (<114,0,I>, 0) (<114,0,J>, J) (<114,0,K>, A + B + C + D + E + F + G + K) (<114,0,U>, U) (<115,0,A>, A + B) (<115,0,B>, B) (<115,0,C>, A + B + C) (<115,0,D>, A + B + C + D) (<115,0,E>, A + B + C + D + E) (<115,0,F>, A + B + C + D + E + F) (<115,0,G>, A + B + C + D + E + F + G) (<115,0,H>, 1) (<115,0,I>, 0) (<115,0,J>, J) (<115,0,K>, A + B + C + D + E + F + G + K) (<115,0,U>, U) (<116,0,A>, A + B) (<116,0,B>, B) (<116,0,C>, A + B + C) (<116,0,D>, A + B + C + D) (<116,0,E>, A + B + C + D + E) (<116,0,F>, A + B + C + D + E + F) (<116,0,G>, A + B + C + D + E + F + G) (<116,0,H>, 1) (<116,0,I>, 0) (<116,0,J>, J) (<116,0,K>, A + B + C + D + E + F + G + K) (<116,0,U>, U) (<117,0,A>, A + B) (<117,0,B>, B) (<117,0,C>, A + B + C) (<117,0,D>, A + B + C + D) (<117,0,E>, A + B + C + D + E) (<117,0,F>, A + B + C + D + E + F) (<117,0,G>, A + B + C + D + E + F + G) (<117,0,H>, 1) (<117,0,I>, 0) (<117,0,J>, J) (<117,0,K>, A + B + C + D + E + F + G + K) (<117,0,U>, U) (<118,0,A>, A + B) (<118,0,B>, B) (<118,0,C>, A + B + C) (<118,0,D>, A + B + C + D) (<118,0,E>, A + B + C + D + E) (<118,0,F>, A + B + C + D + E + F) (<118,0,G>, A + B + C + D + E + F + G) (<118,0,H>, 1) (<118,0,I>, 0) (<118,0,J>, J) (<118,0,K>, A + B + C + D + E + F + G + K) (<118,0,U>, U) (<119,0,A>, A + B) (<119,0,B>, B) (<119,0,C>, A + B + C) (<119,0,D>, A + B + C + D) (<119,0,E>, A + B + C + D + E) (<119,0,F>, A + B + C + D + E + F) (<119,0,G>, A + B + C + D + E + F + G) (<119,0,H>, 1) (<119,0,I>, 1) (<119,0,J>, 1) (<119,0,K>, A + B + C + D + E + F + G + K) (<119,0,U>, ?) (<120,0,A>, A + B) (<120,0,B>, B) (<120,0,C>, A + B + C) (<120,0,D>, A + B + C + D) (<120,0,E>, A + B + C + D + E) (<120,0,F>, A + B + C + D + E + F) (<120,0,G>, A + B + C + D + E + F + G) (<120,0,H>, 1) (<120,0,I>, 1) (<120,0,J>, 1) (<120,0,K>, A + B + C + D + E + F + G + K) (<120,0,U>, ?) (<121,0,A>, A + B) (<121,0,B>, 0) (<121,0,C>, A + B + C) (<121,0,D>, A + B + C + D) (<121,0,E>, A + B + C + D + E) (<121,0,F>, A + B + C + D + E + F) (<121,0,G>, A + B + C + D + E + F + G) (<121,0,H>, 1) (<121,0,I>, 1) (<121,0,J>, 0) (<121,0,K>, A + B + C + D + E + F + G + K) (<121,0,U>, ?) (<122,0,A>, A + B) (<122,0,B>, B) (<122,0,C>, A + B + C) (<122,0,D>, A + B + C + D) (<122,0,E>, 0) (<122,0,F>, A + B + C + D + E + F) (<122,0,G>, A + B + C + D + E + F + G) (<122,0,H>, 1) (<122,0,I>, 1) (<122,0,J>, 0) (<122,0,K>, A + B + C + D + E + F + G + K) (<122,0,U>, ?) (<123,0,A>, A + B) (<123,0,B>, B) (<123,0,C>, A + B + C) (<123,0,D>, A + B + C + D) (<123,0,E>, A + B + C + D + E) (<123,0,F>, A + B + C + D + E + F) (<123,0,G>, A + B + C + D + E + F + G) (<123,0,H>, 1) (<123,0,I>, 1) (<123,0,J>, 1) (<123,0,K>, A + B + C + D + E + F + G + K) (<123,0,U>, ?) (<124,0,A>, A + B) (<124,0,B>, B) (<124,0,C>, A + B + C) (<124,0,D>, A + B + C + D) (<124,0,E>, A + B + C + D + E) (<124,0,F>, A + B + C + D + E + F) (<124,0,G>, A + B + C + D + E + F + G) (<124,0,H>, 1) (<124,0,I>, 1) (<124,0,J>, 1) (<124,0,K>, A + B + C + D + E + F + G + K) (<124,0,U>, ?) (<125,0,A>, A + B) (<125,0,B>, B) (<125,0,C>, A + B + C) (<125,0,D>, A + B + C + D) (<125,0,E>, A + B + C + D + E) (<125,0,F>, A + B + C + D + E + F) (<125,0,G>, A + B + C + D + E + F + G) (<125,0,H>, 1) (<125,0,I>, 1) (<125,0,J>, 1) (<125,0,K>, A + B + C + D + E + F + G + K) (<125,0,U>, 0) (<126,0,A>, A + B) (<126,0,B>, B) (<126,0,C>, A + B + C) (<126,0,D>, A + B + C + D) (<126,0,E>, A + B + C + D + E) (<126,0,F>, A + B + C + D + E + F) (<126,0,G>, A + B + C + D + E + F + G) (<126,0,H>, 1) (<126,0,I>, 1) (<126,0,J>, 0) (<126,0,K>, A + B + C + D + E + F + G + K) (<126,0,U>, ?) (<127,0,A>, A + B) (<127,0,B>, B) (<127,0,C>, A + B + C) (<127,0,D>, A + B + C + D) (<127,0,E>, A + B + C + D + E) (<127,0,F>, A + B + C + D + E + F) (<127,0,G>, A + B + C + D + E + F + G) (<127,0,H>, 1) (<127,0,I>, 0) (<127,0,J>, 1) (<127,0,K>, A + B + C + D + E + F + G + K) (<127,0,U>, ?) (<128,0,A>, A + B) (<128,0,B>, B) (<128,0,C>, A + B + C) (<128,0,D>, A + B + C + D) (<128,0,E>, A + B + C + D + E) (<128,0,F>, A + B + C + D + E + F) (<128,0,G>, A + B + C + D + E + F + G) (<128,0,H>, 0) (<128,0,I>, 1) (<128,0,J>, 1) (<128,0,K>, A + B + C + D + E + F + G + K) (<128,0,U>, ?) * Step 4: UnsatPaths WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,D,E,F,G,H,I,J,K,U) -> f2(A,B,C,D,E,F,G,H,I,J,K,U) [A >= 1 + B] (1,1) 1. f0(A,B,C,D,E,F,G,H,I,J,K,U) -> f2(A,B,C,D,E,F,G,H,I,J,K,U) [B >= 1 + A] (1,1) 2. f2(A,B,C,D,E,F,G,H,I,J,K,U) -> f3(A,B,C,D,E,F,G,H,I,J,K,U) [C >= 1 + B] (?,1) 3. f2(A,B,C,D,E,F,G,H,I,J,K,U) -> f3(A,B,C,D,E,F,G,H,I,J,K,U) [B >= 1 + C] (?,1) 4. f3(A,B,C,D,E,F,G,H,I,J,K,U) -> f4(A,B,C,D,E,F,G,H,I,J,K,U) [D >= 1 + B] (?,1) 5. f3(A,B,C,D,E,F,G,H,I,J,K,U) -> f4(A,B,C,D,E,F,G,H,I,J,K,U) [B >= 1 + D] (?,1) 6. f4(A,B,C,D,E,F,G,H,I,J,K,U) -> f5(A,B,C,D,E,F,G,H,I,J,K,U) [E >= 1 + B] (?,1) 7. f4(A,B,C,D,E,F,G,H,I,J,K,U) -> f5(A,B,C,D,E,F,G,H,I,J,K,U) [B >= 1 + E] (?,1) 8. f5(A,B,C,D,E,F,G,H,I,J,K,U) -> f6(A,B,C,D,E,F,G,H,I,J,K,U) [F >= 1 + B] (?,1) 9. f5(A,B,C,D,E,F,G,H,I,J,K,U) -> f6(A,B,C,D,E,F,G,H,I,J,K,U) [B >= 1 + F] (?,1) 10. f6(A,B,C,D,E,F,G,H,I,J,K,U) -> f7(A,B,C,D,E,F,G,H,I,J,K,U) [G >= 1 + B] (?,1) 11. f6(A,B,C,D,E,F,G,H,I,J,K,U) -> f7(A,B,C,D,E,F,G,H,I,J,K,U) [B >= 1 + G] (?,1) 12. f17(A,B,C,D,E,F,G,H,I,J,K,U) -> f18(A,B,C,D,E,F,G,H,I,J,K,U) [0 >= 1 + H] (?,1) 13. f17(A,B,C,D,E,F,G,H,I,J,K,U) -> f18(A,B,C,D,E,F,G,H,I,J,K,U) [H >= 1] (?,1) 14. f18(A,B,C,D,E,F,G,H,I,J,K,U) -> f19(A,B,C,D,E,F,G,H,I,J,K,U) [C >= 1 + A] (?,1) 15. f18(A,B,C,D,E,F,G,H,I,J,K,U) -> f19(A,B,C,D,E,F,G,H,I,J,K,U) [A >= 1 + C] (?,1) 16. f19(A,B,C,D,E,F,G,H,I,J,K,U) -> f20(A,B,C,D,E,F,G,H,I,J,K,U) [D >= 1 + A] (?,1) 17. f19(A,B,C,D,E,F,G,H,I,J,K,U) -> f20(A,B,C,D,E,F,G,H,I,J,K,U) [A >= 1 + D] (?,1) 18. f20(A,B,C,D,E,F,G,H,I,J,K,U) -> f21(A,B,C,D,E,F,G,H,I,J,K,U) [E >= 1 + A] (?,1) 19. f20(A,B,C,D,E,F,G,H,I,J,K,U) -> f21(A,B,C,D,E,F,G,H,I,J,K,U) [A >= 1 + E] (?,1) 20. f21(A,B,C,D,E,F,G,H,I,J,K,U) -> f22(A,B,C,D,E,F,G,H,I,J,K,U) [F >= 1 + A] (?,1) 21. f21(A,B,C,D,E,F,G,H,I,J,K,U) -> f22(A,B,C,D,E,F,G,H,I,J,K,U) [A >= 1 + F] (?,1) 22. f22(A,B,C,D,E,F,G,H,I,J,K,U) -> f23(A,B,C,D,E,F,G,H,I,J,K,U) [G >= 1 + A] (?,1) 23. f22(A,B,C,D,E,F,G,H,I,J,K,U) -> f23(A,B,C,D,E,F,G,H,I,J,K,U) [A >= 1 + G] (?,1) 24. f33(A,B,C,D,E,F,G,H,I,J,K,U) -> f34(A,B,C,D,E,F,G,H,I,J,K,U) [0 >= 1 + H] (?,1) 25. f33(A,B,C,D,E,F,G,H,I,J,K,U) -> f34(A,B,C,D,E,F,G,H,I,J,K,U) [H >= 1] (?,1) 26. f34(A,B,C,D,E,F,G,H,I,J,K,U) -> f35(A,B,C,D,E,F,G,H,I,J,K,U) [D >= 1 + C] (?,1) 27. f34(A,B,C,D,E,F,G,H,I,J,K,U) -> f35(A,B,C,D,E,F,G,H,I,J,K,U) [C >= 1 + D] (?,1) 28. f35(A,B,C,D,E,F,G,H,I,J,K,U) -> f36(A,B,C,D,E,F,G,H,I,J,K,U) [E >= 1 + C] (?,1) 29. f35(A,B,C,D,E,F,G,H,I,J,K,U) -> f36(A,B,C,D,E,F,G,H,I,J,K,U) [C >= 1 + E] (?,1) 30. f36(A,B,C,D,E,F,G,H,I,J,K,U) -> f37(A,B,C,D,E,F,G,H,I,J,K,U) [F >= 1 + C] (?,1) 31. f36(A,B,C,D,E,F,G,H,I,J,K,U) -> f37(A,B,C,D,E,F,G,H,I,J,K,U) [C >= 1 + F] (?,1) 32. f37(A,B,C,D,E,F,G,H,I,J,K,U) -> f38(A,B,C,D,E,F,G,H,I,J,K,U) [G >= 1 + C] (?,1) 33. f37(A,B,C,D,E,F,G,H,I,J,K,U) -> f38(A,B,C,D,E,F,G,H,I,J,K,U) [C >= 1 + G] (?,1) 34. f47(A,B,C,D,E,F,G,H,I,J,K,U) -> f48(A,B,C,D,E,F,G,H,I,J,K,U) [0 >= 1 + H] (?,1) 35. f47(A,B,C,D,E,F,G,H,I,J,K,U) -> f48(A,B,C,D,E,F,G,H,I,J,K,U) [H >= 1] (?,1) 36. f48(A,B,C,D,E,F,G,H,I,J,K,U) -> f49(A,B,C,D,E,F,G,H,I,J,K,U) [E >= 1 + D] (?,1) 37. f48(A,B,C,D,E,F,G,H,I,J,K,U) -> f49(A,B,C,D,E,F,G,H,I,J,K,U) [D >= 1 + E] (?,1) 38. f49(A,B,C,D,E,F,G,H,I,J,K,U) -> f50(A,B,C,D,E,F,G,H,I,J,K,U) [F >= 1 + D] (?,1) 39. f49(A,B,C,D,E,F,G,H,I,J,K,U) -> f50(A,B,C,D,E,F,G,H,I,J,K,U) [D >= 1 + F] (?,1) 40. f50(A,B,C,D,E,F,G,H,I,J,K,U) -> f51(A,B,C,D,E,F,G,H,I,J,K,U) [G >= 1 + D] (?,1) 41. f50(A,B,C,D,E,F,G,H,I,J,K,U) -> f51(A,B,C,D,E,F,G,H,I,J,K,U) [D >= 1 + G] (?,1) 42. f59(A,B,C,D,E,F,G,H,I,J,K,U) -> f60(A,B,C,D,E,F,G,H,I,J,K,U) [0 >= 1 + H] (?,1) 43. f59(A,B,C,D,E,F,G,H,I,J,K,U) -> f60(A,B,C,D,E,F,G,H,I,J,K,U) [H >= 1] (?,1) 44. f60(A,B,C,D,E,F,G,H,I,J,K,U) -> f61(A,B,C,D,E,F,G,H,I,J,K,U) [F >= 1 + E] (?,1) 45. f60(A,B,C,D,E,F,G,H,I,J,K,U) -> f61(A,B,C,D,E,F,G,H,I,J,K,U) [E >= 1 + F] (?,1) 46. f61(A,B,C,D,E,F,G,H,I,J,K,U) -> f62(A,B,C,D,E,F,G,H,I,J,K,U) [G >= 1 + E] (?,1) 47. f61(A,B,C,D,E,F,G,H,I,J,K,U) -> f62(A,B,C,D,E,F,G,H,I,J,K,U) [E >= 1 + G] (?,1) 48. f69(A,B,C,D,E,F,G,H,I,J,K,U) -> f70(A,B,C,D,E,F,G,H,I,J,K,U) [0 >= 1 + H] (?,1) 49. f69(A,B,C,D,E,F,G,H,I,J,K,U) -> f70(A,B,C,D,E,F,G,H,I,J,K,U) [H >= 1] (?,1) 50. f70(A,B,C,D,E,F,G,H,I,J,K,U) -> f71(A,B,C,D,E,F,G,H,I,J,K,U) [G >= 1 + F] (?,1) 51. f70(A,B,C,D,E,F,G,H,I,J,K,U) -> f71(A,B,C,D,E,F,G,H,I,J,K,U) [F >= 1 + G] (?,1) 52. f77(A,B,C,D,E,F,G,H,I,J,K,U) -> f78(A,B,C,D,E,F,G,H,I,J,K,U) [0 >= 1 + H] (?,1) 53. f77(A,B,C,D,E,F,G,H,I,J,K,U) -> f78(A,B,C,D,E,F,G,H,I,J,K,U) [H >= 1] (?,1) 54. f101(A,B,C,D,E,F,G,H,I,J,K,U) -> f102(A,B,C,D,E,F,G,H,I,J,K,U) [0 >= 1 + E] (?,1) 55. f101(A,B,C,D,E,F,G,H,I,J,K,U) -> f102(A,B,C,D,E,F,G,H,I,J,K,U) [E >= 1] (?,1) 56. f108(A,B,C,D,E,F,G,H,I,J,K,U) -> f109(A,B,C,D,E,F,G,H,I,J,K,U) [0 >= 1 + H] (?,1) 57. f108(A,B,C,D,E,F,G,H,I,J,K,U) -> f109(A,B,C,D,E,F,G,H,I,J,K,U) [H >= 1] (?,1) 58. f109(A,B,C,D,E,F,G,H,I,J,K,U) -> f110(A,B,C,D,E,F,G,H,I,J,K,U) [0 >= 1 + I] (?,1) 59. f109(A,B,C,D,E,F,G,H,I,J,K,U) -> f110(A,B,C,D,E,F,G,H,I,J,K,U) [I >= 1] (?,1) 60. f110(A,B,C,D,E,F,G,H,I,J,K,U) -> f111(A,B,C,D,E,F,G,H,I,J,K,U) [0 >= 1 + J] (?,1) 61. f110(A,B,C,D,E,F,G,H,I,J,K,U) -> f111(A,B,C,D,E,F,G,H,I,J,K,U) [J >= 1] (?,1) 62. f7(A,B,C,D,E,F,G,H,I,J,K,U) -> f17(A,B,C,D,E,F,G,1,I,J,K,U) [K >= 1 + B] (?,1) 63. f7(A,B,C,D,E,F,G,H,I,J,K,U) -> f17(A,B,C,D,E,F,G,1,I,J,K,U) [B >= 1 + K] (?,1) 64. f7(A,B,C,D,E,F,G,H,I,J,K,U) -> f17(A,B,C,D,E,F,G,0,I,J,B,U) [B = K] (?,1) 65. f6(A,B,C,D,E,F,G,H,I,J,K,U) -> f17(A,B,C,D,E,F,B,0,I,J,K,U) [B = G] (?,1) 66. f5(A,B,C,D,E,F,G,H,I,J,K,U) -> f17(A,B,C,D,E,B,G,0,I,J,K,U) [B = F] (?,1) 67. f4(A,B,C,D,E,F,G,H,I,J,K,U) -> f17(A,B,C,D,B,F,G,0,I,J,K,U) [B = E] (?,1) 68. f3(A,B,C,D,E,F,G,H,I,J,K,U) -> f17(A,B,C,B,E,F,G,0,I,J,K,U) [B = D] (?,1) 69. f2(A,B,C,D,E,F,G,H,I,J,K,U) -> f17(A,B,B,D,E,F,G,0,I,J,K,U) [B = C] (?,1) 70. f0(A,B,C,D,E,F,G,H,I,J,K,U) -> f17(B,B,C,D,E,F,G,0,I,J,K,U) [B = A] (1,1) 71. f23(A,B,C,D,E,F,G,H,I,J,K,U) -> f33(A,B,C,D,E,F,G,1,I,J,K,U) [K >= 1 + A] (?,1) 72. f23(A,B,C,D,E,F,G,H,I,J,K,U) -> f33(A,B,C,D,E,F,G,1,I,J,K,U) [A >= 1 + K] (?,1) 73. f23(A,B,C,D,E,F,G,H,I,J,K,U) -> f33(A,B,C,D,E,F,G,0,I,J,A,U) [A = K] (?,1) 74. f22(A,B,C,D,E,F,G,H,I,J,K,U) -> f33(A,B,C,D,E,F,A,0,I,J,K,U) [A = G] (?,1) 75. f21(A,B,C,D,E,F,G,H,I,J,K,U) -> f33(A,B,C,D,E,A,G,0,I,J,K,U) [A = F] (?,1) 76. f20(A,B,C,D,E,F,G,H,I,J,K,U) -> f33(A,B,C,D,A,F,G,0,I,J,K,U) [A = E] (?,1) 77. f19(A,B,C,D,E,F,G,H,I,J,K,U) -> f33(A,B,C,A,E,F,G,0,I,J,K,U) [A = D] (?,1) 78. f18(A,B,C,D,E,F,G,H,I,J,K,U) -> f33(A,B,A,D,E,F,G,0,I,J,K,U) [A = C] (?,1) 79. f17(A,B,C,D,E,F,G,H,I,J,K,U) -> f33(A,B,C,D,E,F,G,0,I,J,K,U) [H = 0] (?,1) 80. f38(A,B,C,D,E,F,G,H,I,J,K,U) -> f47(A,B,C,D,E,F,G,1,I,J,K,U) [K >= 1 + C] (?,1) 81. f38(A,B,C,D,E,F,G,H,I,J,K,U) -> f47(A,B,C,D,E,F,G,1,I,J,K,U) [C >= 1 + K] (?,1) 82. f38(A,B,C,D,E,F,G,H,I,J,K,U) -> f47(A,B,C,D,E,F,G,0,I,J,C,U) [C = K] (?,1) 83. f37(A,B,C,D,E,F,G,H,I,J,K,U) -> f47(A,B,C,D,E,F,C,0,I,J,K,U) [C = G] (?,1) 84. f36(A,B,C,D,E,F,G,H,I,J,K,U) -> f47(A,B,C,D,E,C,G,0,I,J,K,U) [C = F] (?,1) 85. f35(A,B,C,D,E,F,G,H,I,J,K,U) -> f47(A,B,C,D,C,F,G,0,I,J,K,U) [C = E] (?,1) 86. f34(A,B,C,D,E,F,G,H,I,J,K,U) -> f47(A,B,C,C,E,F,G,0,I,J,K,U) [C = D] (?,1) 87. f33(A,B,C,D,E,F,G,H,I,J,K,U) -> f47(A,B,C,D,E,F,G,0,I,J,K,U) [H = 0] (?,1) 88. f51(A,B,C,D,E,F,G,H,I,J,K,U) -> f59(A,B,C,D,E,F,G,1,I,J,K,U) [K >= 1 + D] (?,1) 89. f51(A,B,C,D,E,F,G,H,I,J,K,U) -> f59(A,B,C,D,E,F,G,1,I,J,K,U) [D >= 1 + K] (?,1) 90. f51(A,B,C,D,E,F,G,H,I,J,K,U) -> f59(A,B,C,D,E,F,G,0,I,J,D,U) [D = K] (?,1) 91. f50(A,B,C,D,E,F,G,H,I,J,K,U) -> f59(A,B,C,D,E,F,D,0,I,J,K,U) [D = G] (?,1) 92. f49(A,B,C,D,E,F,G,H,I,J,K,U) -> f59(A,B,C,D,E,D,G,0,I,J,K,U) [D = F] (?,1) 93. f48(A,B,C,D,E,F,G,H,I,J,K,U) -> f59(A,B,C,D,D,F,G,0,I,J,K,U) [D = E] (?,1) 94. f47(A,B,C,D,E,F,G,H,I,J,K,U) -> f59(A,B,C,D,E,F,G,0,I,J,K,U) [H = 0] (?,1) 95. f62(A,B,C,D,E,F,G,H,I,J,K,U) -> f69(A,B,C,D,E,F,G,1,I,J,K,U) [K >= 1 + E] (?,1) 96. f62(A,B,C,D,E,F,G,H,I,J,K,U) -> f69(A,B,C,D,E,F,G,1,I,J,K,U) [E >= 1 + K] (?,1) 97. f62(A,B,C,D,E,F,G,H,I,J,K,U) -> f69(A,B,C,D,E,F,G,0,I,J,E,U) [E = K] (?,1) 98. f61(A,B,C,D,E,F,G,H,I,J,K,U) -> f69(A,B,C,D,E,F,E,0,I,J,K,U) [E = G] (?,1) 99. f60(A,B,C,D,E,F,G,H,I,J,K,U) -> f69(A,B,C,D,E,E,G,0,I,J,K,U) [E = F] (?,1) 100. f59(A,B,C,D,E,F,G,H,I,J,K,U) -> f69(A,B,C,D,E,F,G,0,I,J,K,U) [H = 0] (?,1) 101. f71(A,B,C,D,E,F,G,H,I,J,K,U) -> f77(A,B,C,D,E,F,G,1,I,J,K,U) [K >= 1 + F] (?,1) 102. f71(A,B,C,D,E,F,G,H,I,J,K,U) -> f77(A,B,C,D,E,F,G,1,I,J,K,U) [F >= 1 + K] (?,1) 103. f71(A,B,C,D,E,F,G,H,I,J,K,U) -> f77(A,B,C,D,E,F,G,0,I,J,F,U) [F = K] (?,1) 104. f70(A,B,C,D,E,F,G,H,I,J,K,U) -> f77(A,B,C,D,E,F,F,0,I,J,K,U) [F = G] (?,1) 105. f69(A,B,C,D,E,F,G,H,I,J,K,U) -> f77(A,B,C,D,E,F,G,0,I,J,K,U) [H = 0] (?,1) 106. f78(A,B,C,D,E,F,G,H,I,J,K,U) -> f83(A,B,C,D,E,F,G,1,I,J,K,U) [K >= 1 + G] (?,1) 107. f78(A,B,C,D,E,F,G,H,I,J,K,U) -> f83(A,B,C,D,E,F,G,1,I,J,K,U) [G >= 1 + K] (?,1) 108. f78(A,B,C,D,E,F,G,H,I,J,K,U) -> f83(A,B,C,D,E,F,G,0,I,J,G,U) [G = K] (?,1) 109. f77(A,B,C,D,E,F,G,H,I,J,K,U) -> f83(A,B,C,D,E,F,G,0,I,J,K,U) [H = 0] (?,1) 110. f83(A,B,C,D,E,F,G,H,I,J,K,U) -> f101(A,B,C,D,E,F,G,H,1,J,K,U) [9 >= K && 9 >= G && 9 >= F && 9 >= E && 9 >= D && 9 >= C && 9 >= B && 9 >= A] (?,1) 111. f83(A,B,C,D,E,F,G,H,I,J,K,U) -> f101(A,B,C,D,E,F,G,H,0,J,K,U) [K >= 10 && 9 >= G && 9 >= F && 9 >= E && 9 >= D && 9 >= C && 9 >= B && 9 >= A] (?,1) 112. f83(A,B,C,D,E,F,G,H,I,J,K,U) -> f101(A,B,C,D,E,F,G,H,0,J,K,U) [G >= 10 && 9 >= F && 9 >= E && 9 >= D && 9 >= C && 9 >= B && 9 >= A] (?,1) 113. f83(A,B,C,D,E,F,G,H,I,J,K,U) -> f101(A,B,C,D,E,F,G,H,0,J,K,U) [F >= 10 && 9 >= E && 9 >= D && 9 >= C && 9 >= B && 9 >= A] (?,1) 114. f83(A,B,C,D,E,F,G,H,I,J,K,U) -> f101(A,B,C,D,E,F,G,H,0,J,K,U) [E >= 10 && 9 >= D && 9 >= C && 9 >= B && 9 >= A] (?,1) 115. f83(A,B,C,D,E,F,G,H,I,J,K,U) -> f101(A,B,C,D,E,F,G,H,0,J,K,U) [D >= 10 && 9 >= C && 9 >= B && 9 >= A] (?,1) 116. f83(A,B,C,D,E,F,G,H,I,J,K,U) -> f101(A,B,C,D,E,F,G,H,0,J,K,U) [C >= 10 && 9 >= B && 9 >= A] (?,1) 117. f83(A,B,C,D,E,F,G,H,I,J,K,U) -> f101(A,B,C,D,E,F,G,H,0,J,K,U) [9 >= B && A >= 10] (?,1) 118. f83(A,B,C,D,E,F,G,H,I,J,K,U) -> f101(A,B,C,D,E,F,G,H,0,J,K,U) [B >= 10] (?,1) 119. f102(A,B,C,D,E,F,G,H,I,J,K,U) -> f108(A,B,C,D,E,F,G,H,I,1,K,W) [0 >= 1 + B] (?,1) 120. f102(A,B,C,D,E,F,G,H,I,J,K,U) -> f108(A,B,C,D,E,F,G,H,I,1,K,W) [B >= 1] (?,1) 121. f102(A,B,C,D,E,F,G,H,I,J,K,U) -> f108(A,0,C,D,E,F,G,H,I,0,K,W) [B = 0] (?,1) 122. f101(A,B,C,D,E,F,G,H,I,J,K,U) -> f108(A,B,C,D,0,F,G,H,I,0,K,W) [E = 0] (?,1) 123. f111(A,B,C,D,E,F,G,H,I,J,K,U) -> f119(A,B,C,D,E,F,G,H,I,J,K,U) [0 >= 1 + U] (?,1) 124. f111(A,B,C,D,E,F,G,H,I,J,K,U) -> f119(A,B,C,D,E,F,G,H,I,J,K,U) [U >= 1] (?,1) 125. f111(A,B,C,D,E,F,G,H,I,J,K,U) -> f119(A,B,C,D,E,F,G,H,I,J,K,0) [U = 0] (?,1) 126. f110(A,B,C,D,E,F,G,H,I,J,K,U) -> f119(A,B,C,D,E,F,G,H,I,0,K,U) [J = 0] (?,1) 127. f109(A,B,C,D,E,F,G,H,I,J,K,U) -> f119(A,B,C,D,E,F,G,H,0,J,K,U) [I = 0] (?,1) 128. f108(A,B,C,D,E,F,G,H,I,J,K,U) -> f119(A,B,C,D,E,F,G,0,I,J,K,U) [H = 0] (?,1) Signature: {(f0,12) ;(f101,12) ;(f102,12) ;(f108,12) ;(f109,12) ;(f110,12) ;(f111,12) ;(f119,12) ;(f17,12) ;(f18,12) ;(f19,12) ;(f2,12) ;(f20,12) ;(f21,12) ;(f22,12) ;(f23,12) ;(f3,12) ;(f33,12) ;(f34,12) ;(f35,12) ;(f36,12) ;(f37,12) ;(f38,12) ;(f4,12) ;(f47,12) ;(f48,12) ;(f49,12) ;(f5,12) ;(f50,12) ;(f51,12) ;(f59,12) ;(f6,12) ;(f60,12) ;(f61,12) ;(f62,12) ;(f69,12) ;(f7,12) ;(f70,12) ;(f71,12) ;(f77,12) ;(f78,12) ;(f83,12)} Flow Graph: [0->{2,3,69},1->{2,3,69},2->{4,5,68},3->{4,5,68},4->{6,7,67},5->{6,7,67},6->{8,9,66},7->{8,9,66},8->{10,11 ,65},9->{10,11,65},10->{62,63,64},11->{62,63,64},12->{14,15,78},13->{14,15,78},14->{16,17,77},15->{16,17,77} ,16->{18,19,76},17->{18,19,76},18->{20,21,75},19->{20,21,75},20->{22,23,74},21->{22,23,74},22->{71,72,73} ,23->{71,72,73},24->{26,27,86},25->{26,27,86},26->{28,29,85},27->{28,29,85},28->{30,31,84},29->{30,31,84} ,30->{32,33,83},31->{32,33,83},32->{80,81,82},33->{80,81,82},34->{36,37,93},35->{36,37,93},36->{38,39,92} ,37->{38,39,92},38->{40,41,91},39->{40,41,91},40->{88,89,90},41->{88,89,90},42->{44,45,99},43->{44,45,99} ,44->{46,47,98},45->{46,47,98},46->{95,96,97},47->{95,96,97},48->{50,51,104},49->{50,51,104},50->{101,102 ,103},51->{101,102,103},52->{106,107,108},53->{106,107,108},54->{119,120,121},55->{119,120,121},56->{58,59 ,127},57->{58,59,127},58->{60,61,126},59->{60,61,126},60->{123,124,125},61->{123,124,125},62->{12,13,79} ,63->{12,13,79},64->{12,13,79},65->{12,13,79},66->{12,13,79},67->{12,13,79},68->{12,13,79},69->{12,13,79} ,70->{12,13,79},71->{24,25,87},72->{24,25,87},73->{24,25,87},74->{24,25,87},75->{24,25,87},76->{24,25,87} ,77->{24,25,87},78->{24,25,87},79->{24,25,87},80->{34,35,94},81->{34,35,94},82->{34,35,94},83->{34,35,94} ,84->{34,35,94},85->{34,35,94},86->{34,35,94},87->{34,35,94},88->{42,43,100},89->{42,43,100},90->{42,43,100} ,91->{42,43,100},92->{42,43,100},93->{42,43,100},94->{42,43,100},95->{48,49,105},96->{48,49,105},97->{48,49 ,105},98->{48,49,105},99->{48,49,105},100->{48,49,105},101->{52,53,109},102->{52,53,109},103->{52,53,109} ,104->{52,53,109},105->{52,53,109},106->{110,111,112,113,114,115,116,117,118},107->{110,111,112,113,114,115 ,116,117,118},108->{110,111,112,113,114,115,116,117,118},109->{110,111,112,113,114,115,116,117,118},110->{54 ,55,122},111->{54,55,122},112->{54,55,122},113->{54,55,122},114->{54,55,122},115->{54,55,122},116->{54,55 ,122},117->{54,55,122},118->{54,55,122},119->{56,57,128},120->{56,57,128},121->{56,57,128},122->{56,57,128} ,123->{},124->{},125->{},126->{},127->{},128->{}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,J>, J) (< 0,0,K>, K) (< 0,0,U>, U) (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,J>, J) (< 1,0,K>, K) (< 1,0,U>, U) (< 2,0,A>, A) (< 2,0,B>, B) (< 2,0,C>, C) (< 2,0,D>, D) (< 2,0,E>, E) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 2,0,J>, J) (< 2,0,K>, K) (< 2,0,U>, U) (< 3,0,A>, A) (< 3,0,B>, B) (< 3,0,C>, C) (< 3,0,D>, D) (< 3,0,E>, E) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,I>, I) (< 3,0,J>, J) (< 3,0,K>, K) (< 3,0,U>, U) (< 4,0,A>, A) (< 4,0,B>, B) (< 4,0,C>, C) (< 4,0,D>, D) (< 4,0,E>, E) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,I>, I) (< 4,0,J>, J) (< 4,0,K>, K) (< 4,0,U>, U) (< 5,0,A>, A) (< 5,0,B>, B) (< 5,0,C>, C) (< 5,0,D>, D) (< 5,0,E>, E) (< 5,0,F>, F) (< 5,0,G>, G) (< 5,0,H>, H) (< 5,0,I>, I) (< 5,0,J>, J) (< 5,0,K>, K) (< 5,0,U>, U) (< 6,0,A>, A) (< 6,0,B>, B) (< 6,0,C>, C) (< 6,0,D>, D) (< 6,0,E>, E) (< 6,0,F>, F) (< 6,0,G>, G) (< 6,0,H>, H) (< 6,0,I>, I) (< 6,0,J>, J) (< 6,0,K>, K) (< 6,0,U>, U) (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, C) (< 7,0,D>, D) (< 7,0,E>, E) (< 7,0,F>, F) (< 7,0,G>, G) (< 7,0,H>, H) (< 7,0,I>, I) (< 7,0,J>, J) (< 7,0,K>, K) (< 7,0,U>, U) (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, C) (< 8,0,D>, D) (< 8,0,E>, E) (< 8,0,F>, F) (< 8,0,G>, G) (< 8,0,H>, H) (< 8,0,I>, I) (< 8,0,J>, J) (< 8,0,K>, K) (< 8,0,U>, U) (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, C) (< 9,0,D>, D) (< 9,0,E>, E) (< 9,0,F>, F) (< 9,0,G>, G) (< 9,0,H>, H) (< 9,0,I>, I) (< 9,0,J>, J) (< 9,0,K>, K) (< 9,0,U>, U) (< 10,0,A>, A) (< 10,0,B>, B) (< 10,0,C>, C) (< 10,0,D>, D) (< 10,0,E>, E) (< 10,0,F>, F) (< 10,0,G>, G) (< 10,0,H>, H) (< 10,0,I>, I) (< 10,0,J>, J) (< 10,0,K>, K) (< 10,0,U>, U) (< 11,0,A>, A) (< 11,0,B>, B) (< 11,0,C>, C) (< 11,0,D>, D) (< 11,0,E>, E) (< 11,0,F>, F) (< 11,0,G>, G) (< 11,0,H>, H) (< 11,0,I>, I) (< 11,0,J>, J) (< 11,0,K>, K) (< 11,0,U>, U) (< 12,0,A>, A + B) (< 12,0,B>, B) (< 12,0,C>, B + C) (< 12,0,D>, B + D) (< 12,0,E>, B + E) (< 12,0,F>, B + F) (< 12,0,G>, B + G) (< 12,0,H>, 1) (< 12,0,I>, I) (< 12,0,J>, J) (< 12,0,K>, B + K) (< 12,0,U>, U) (< 13,0,A>, A + B) (< 13,0,B>, B) (< 13,0,C>, B + C) (< 13,0,D>, B + D) (< 13,0,E>, B + E) (< 13,0,F>, B + F) (< 13,0,G>, B + G) (< 13,0,H>, 1) (< 13,0,I>, I) (< 13,0,J>, J) (< 13,0,K>, B + K) (< 13,0,U>, U) (< 14,0,A>, A + B) (< 14,0,B>, B) (< 14,0,C>, B + C) (< 14,0,D>, B + D) (< 14,0,E>, B + E) (< 14,0,F>, B + F) (< 14,0,G>, B + G) (< 14,0,H>, 1) (< 14,0,I>, I) (< 14,0,J>, J) (< 14,0,K>, B + K) (< 14,0,U>, U) (< 15,0,A>, A + B) (< 15,0,B>, B) (< 15,0,C>, B + C) (< 15,0,D>, B + D) (< 15,0,E>, B + E) (< 15,0,F>, B + F) (< 15,0,G>, B + G) (< 15,0,H>, 1) (< 15,0,I>, I) (< 15,0,J>, J) (< 15,0,K>, B + K) (< 15,0,U>, U) (< 16,0,A>, A + B) (< 16,0,B>, B) (< 16,0,C>, B + C) (< 16,0,D>, B + D) (< 16,0,E>, B + E) (< 16,0,F>, B + F) (< 16,0,G>, B + G) (< 16,0,H>, 1) (< 16,0,I>, I) (< 16,0,J>, J) (< 16,0,K>, B + K) (< 16,0,U>, U) (< 17,0,A>, A + B) (< 17,0,B>, B) (< 17,0,C>, B + C) (< 17,0,D>, B + D) (< 17,0,E>, B + E) (< 17,0,F>, B + F) (< 17,0,G>, B + G) (< 17,0,H>, 1) (< 17,0,I>, I) (< 17,0,J>, J) (< 17,0,K>, B + K) (< 17,0,U>, U) (< 18,0,A>, A + B) (< 18,0,B>, B) (< 18,0,C>, B + C) (< 18,0,D>, B + D) (< 18,0,E>, B + E) (< 18,0,F>, B + F) (< 18,0,G>, B + G) (< 18,0,H>, 1) (< 18,0,I>, I) (< 18,0,J>, J) (< 18,0,K>, B + K) (< 18,0,U>, U) (< 19,0,A>, A + B) (< 19,0,B>, B) (< 19,0,C>, B + C) (< 19,0,D>, B + D) (< 19,0,E>, B + E) (< 19,0,F>, B + F) (< 19,0,G>, B + G) (< 19,0,H>, 1) (< 19,0,I>, I) (< 19,0,J>, J) (< 19,0,K>, B + K) (< 19,0,U>, U) (< 20,0,A>, A + B) (< 20,0,B>, B) (< 20,0,C>, B + C) (< 20,0,D>, B + D) (< 20,0,E>, B + E) (< 20,0,F>, B + F) (< 20,0,G>, B + G) (< 20,0,H>, 1) (< 20,0,I>, I) (< 20,0,J>, J) (< 20,0,K>, B + K) (< 20,0,U>, U) (< 21,0,A>, A + B) (< 21,0,B>, B) (< 21,0,C>, B + C) (< 21,0,D>, B + D) (< 21,0,E>, B + E) (< 21,0,F>, B + F) (< 21,0,G>, B + G) (< 21,0,H>, 1) (< 21,0,I>, I) (< 21,0,J>, J) (< 21,0,K>, B + K) (< 21,0,U>, U) (< 22,0,A>, A + B) (< 22,0,B>, B) (< 22,0,C>, B + C) (< 22,0,D>, B + D) (< 22,0,E>, B + E) (< 22,0,F>, B + F) (< 22,0,G>, B + G) (< 22,0,H>, 1) (< 22,0,I>, I) (< 22,0,J>, J) (< 22,0,K>, B + K) (< 22,0,U>, U) (< 23,0,A>, A + B) (< 23,0,B>, B) (< 23,0,C>, B + C) (< 23,0,D>, B + D) (< 23,0,E>, B + E) (< 23,0,F>, B + F) (< 23,0,G>, B + G) (< 23,0,H>, 1) (< 23,0,I>, I) (< 23,0,J>, J) (< 23,0,K>, B + K) (< 23,0,U>, U) (< 24,0,A>, A + B) (< 24,0,B>, B) (< 24,0,C>, A + B + C) (< 24,0,D>, A + B + D) (< 24,0,E>, A + B + E) (< 24,0,F>, A + B + F) (< 24,0,G>, A + B + G) (< 24,0,H>, 1) (< 24,0,I>, I) (< 24,0,J>, J) (< 24,0,K>, A + B + K) (< 24,0,U>, U) (< 25,0,A>, A + B) (< 25,0,B>, B) (< 25,0,C>, A + B + C) (< 25,0,D>, A + B + D) (< 25,0,E>, A + B + E) (< 25,0,F>, A + B + F) (< 25,0,G>, A + B + G) (< 25,0,H>, 1) (< 25,0,I>, I) (< 25,0,J>, J) (< 25,0,K>, A + B + K) (< 25,0,U>, U) (< 26,0,A>, A + B) (< 26,0,B>, B) (< 26,0,C>, A + B + C) (< 26,0,D>, A + B + D) (< 26,0,E>, A + B + E) (< 26,0,F>, A + B + F) (< 26,0,G>, A + B + G) (< 26,0,H>, 1) (< 26,0,I>, I) (< 26,0,J>, J) (< 26,0,K>, A + B + K) (< 26,0,U>, U) (< 27,0,A>, A + B) (< 27,0,B>, B) (< 27,0,C>, A + B + C) (< 27,0,D>, A + B + D) (< 27,0,E>, A + B + E) (< 27,0,F>, A + B + F) (< 27,0,G>, A + B + G) (< 27,0,H>, 1) (< 27,0,I>, I) (< 27,0,J>, J) (< 27,0,K>, A + B + K) (< 27,0,U>, U) (< 28,0,A>, A + B) (< 28,0,B>, B) (< 28,0,C>, A + B + C) (< 28,0,D>, A + B + D) (< 28,0,E>, A + B + E) (< 28,0,F>, A + B + F) (< 28,0,G>, A + B + G) (< 28,0,H>, 1) (< 28,0,I>, I) (< 28,0,J>, J) (< 28,0,K>, A + B + K) (< 28,0,U>, U) (< 29,0,A>, A + B) (< 29,0,B>, B) (< 29,0,C>, A + B + C) (< 29,0,D>, A + B + D) (< 29,0,E>, A + B + E) (< 29,0,F>, A + B + F) (< 29,0,G>, A + B + G) (< 29,0,H>, 1) (< 29,0,I>, I) (< 29,0,J>, J) (< 29,0,K>, A + B + K) (< 29,0,U>, U) (< 30,0,A>, A + B) (< 30,0,B>, B) (< 30,0,C>, A + B + C) (< 30,0,D>, A + B + D) (< 30,0,E>, A + B + E) (< 30,0,F>, A + B + F) (< 30,0,G>, A + B + G) (< 30,0,H>, 1) (< 30,0,I>, I) (< 30,0,J>, J) (< 30,0,K>, A + B + K) (< 30,0,U>, U) (< 31,0,A>, A + B) (< 31,0,B>, B) (< 31,0,C>, A + B + C) (< 31,0,D>, A + B + D) (< 31,0,E>, A + B + E) (< 31,0,F>, A + B + F) (< 31,0,G>, A + B + G) (< 31,0,H>, 1) (< 31,0,I>, I) (< 31,0,J>, J) (< 31,0,K>, A + B + K) (< 31,0,U>, U) (< 32,0,A>, A + B) (< 32,0,B>, B) (< 32,0,C>, A + B + C) (< 32,0,D>, A + B + D) (< 32,0,E>, A + B + E) (< 32,0,F>, A + B + F) (< 32,0,G>, A + B + G) (< 32,0,H>, 1) (< 32,0,I>, I) (< 32,0,J>, J) (< 32,0,K>, A + B + K) (< 32,0,U>, U) (< 33,0,A>, A + B) (< 33,0,B>, B) (< 33,0,C>, A + B + C) (< 33,0,D>, A + B + D) (< 33,0,E>, A + B + E) (< 33,0,F>, A + B + F) (< 33,0,G>, A + B + G) (< 33,0,H>, 1) (< 33,0,I>, I) (< 33,0,J>, J) (< 33,0,K>, A + B + K) (< 33,0,U>, U) (< 34,0,A>, A + B) (< 34,0,B>, B) (< 34,0,C>, A + B + C) (< 34,0,D>, A + B + C + D) (< 34,0,E>, A + B + C + E) (< 34,0,F>, A + B + C + F) (< 34,0,G>, A + B + C + G) (< 34,0,H>, 1) (< 34,0,I>, I) (< 34,0,J>, J) (< 34,0,K>, A + B + C + K) (< 34,0,U>, U) (< 35,0,A>, A + B) (< 35,0,B>, B) (< 35,0,C>, A + B + C) (< 35,0,D>, A + B + C + D) (< 35,0,E>, A + B + C + E) (< 35,0,F>, A + B + C + F) (< 35,0,G>, A + B + C + G) (< 35,0,H>, 1) (< 35,0,I>, I) (< 35,0,J>, J) (< 35,0,K>, A + B + C + K) (< 35,0,U>, U) (< 36,0,A>, A + B) (< 36,0,B>, B) (< 36,0,C>, A + B + C) (< 36,0,D>, A + B + C + D) (< 36,0,E>, A + B + C + E) (< 36,0,F>, A + B + C + F) (< 36,0,G>, A + B + C + G) (< 36,0,H>, 1) (< 36,0,I>, I) (< 36,0,J>, J) (< 36,0,K>, A + B + C + K) (< 36,0,U>, U) (< 37,0,A>, A + B) (< 37,0,B>, B) (< 37,0,C>, A + B + C) (< 37,0,D>, A + B + C + D) (< 37,0,E>, A + B + C + E) (< 37,0,F>, A + B + C + F) (< 37,0,G>, A + B + C + G) (< 37,0,H>, 1) (< 37,0,I>, I) (< 37,0,J>, J) (< 37,0,K>, A + B + C + K) (< 37,0,U>, U) (< 38,0,A>, A + B) (< 38,0,B>, B) (< 38,0,C>, A + B + C) (< 38,0,D>, A + B + C + D) (< 38,0,E>, A + B + C + E) (< 38,0,F>, A + B + C + F) (< 38,0,G>, A + B + C + G) (< 38,0,H>, 1) (< 38,0,I>, I) (< 38,0,J>, J) (< 38,0,K>, A + B + C + K) (< 38,0,U>, U) (< 39,0,A>, A + B) (< 39,0,B>, B) (< 39,0,C>, A + B + C) (< 39,0,D>, A + B + C + D) (< 39,0,E>, A + B + C + E) (< 39,0,F>, A + B + C + F) (< 39,0,G>, A + B + C + G) (< 39,0,H>, 1) (< 39,0,I>, I) (< 39,0,J>, J) (< 39,0,K>, A + B + C + K) (< 39,0,U>, U) (< 40,0,A>, A + B) (< 40,0,B>, B) (< 40,0,C>, A + B + C) (< 40,0,D>, A + B + C + D) (< 40,0,E>, A + B + C + E) (< 40,0,F>, A + B + C + F) (< 40,0,G>, A + B + C + G) (< 40,0,H>, 1) (< 40,0,I>, I) (< 40,0,J>, J) (< 40,0,K>, A + B + C + K) (< 40,0,U>, U) (< 41,0,A>, A + B) (< 41,0,B>, B) (< 41,0,C>, A + B + C) (< 41,0,D>, A + B + C + D) (< 41,0,E>, A + B + C + E) (< 41,0,F>, A + B + C + F) (< 41,0,G>, A + B + C + G) (< 41,0,H>, 1) (< 41,0,I>, I) (< 41,0,J>, J) (< 41,0,K>, A + B + C + K) (< 41,0,U>, U) (< 42,0,A>, A + B) (< 42,0,B>, B) (< 42,0,C>, A + B + C) (< 42,0,D>, A + B + C + D) (< 42,0,E>, A + B + C + D + E) (< 42,0,F>, A + B + C + D + F) (< 42,0,G>, A + B + C + D + G) (< 42,0,H>, 1) (< 42,0,I>, I) (< 42,0,J>, J) (< 42,0,K>, A + B + C + D + K) (< 42,0,U>, U) (< 43,0,A>, A + B) (< 43,0,B>, B) (< 43,0,C>, A + B + C) (< 43,0,D>, A + B + C + D) (< 43,0,E>, A + B + C + D + E) (< 43,0,F>, A + B + C + D + F) (< 43,0,G>, A + B + C + D + G) (< 43,0,H>, 1) (< 43,0,I>, I) (< 43,0,J>, J) (< 43,0,K>, A + B + C + D + K) (< 43,0,U>, U) (< 44,0,A>, A + B) (< 44,0,B>, B) (< 44,0,C>, A + B + C) (< 44,0,D>, A + B + C + D) (< 44,0,E>, A + B + C + D + E) (< 44,0,F>, A + B + C + D + F) (< 44,0,G>, A + B + C + D + G) (< 44,0,H>, 1) (< 44,0,I>, I) (< 44,0,J>, J) (< 44,0,K>, A + B + C + D + K) (< 44,0,U>, U) (< 45,0,A>, A + B) (< 45,0,B>, B) (< 45,0,C>, A + B + C) (< 45,0,D>, A + B + C + D) (< 45,0,E>, A + B + C + D + E) (< 45,0,F>, A + B + C + D + F) (< 45,0,G>, A + B + C + D + G) (< 45,0,H>, 1) (< 45,0,I>, I) (< 45,0,J>, J) (< 45,0,K>, A + B + C + D + K) (< 45,0,U>, U) (< 46,0,A>, A + B) (< 46,0,B>, B) (< 46,0,C>, A + B + C) (< 46,0,D>, A + B + C + D) (< 46,0,E>, A + B + C + D + E) (< 46,0,F>, A + B + C + D + F) (< 46,0,G>, A + B + C + D + G) (< 46,0,H>, 1) (< 46,0,I>, I) (< 46,0,J>, J) (< 46,0,K>, A + B + C + D + K) (< 46,0,U>, U) (< 47,0,A>, A + B) (< 47,0,B>, B) (< 47,0,C>, A + B + C) (< 47,0,D>, A + B + C + D) (< 47,0,E>, A + B + C + D + E) (< 47,0,F>, A + B + C + D + F) (< 47,0,G>, A + B + C + D + G) (< 47,0,H>, 1) (< 47,0,I>, I) (< 47,0,J>, J) (< 47,0,K>, A + B + C + D + K) (< 47,0,U>, U) (< 48,0,A>, A + B) (< 48,0,B>, B) (< 48,0,C>, A + B + C) (< 48,0,D>, A + B + C + D) (< 48,0,E>, A + B + C + D + E) (< 48,0,F>, A + B + C + D + E + F) (< 48,0,G>, A + B + C + D + E + G) (< 48,0,H>, 1) (< 48,0,I>, I) (< 48,0,J>, J) (< 48,0,K>, A + B + C + D + E + K) (< 48,0,U>, U) (< 49,0,A>, A + B) (< 49,0,B>, B) (< 49,0,C>, A + B + C) (< 49,0,D>, A + B + C + D) (< 49,0,E>, A + B + C + D + E) (< 49,0,F>, A + B + C + D + E + F) (< 49,0,G>, A + B + C + D + E + G) (< 49,0,H>, 1) (< 49,0,I>, I) (< 49,0,J>, J) (< 49,0,K>, A + B + C + D + E + K) (< 49,0,U>, U) (< 50,0,A>, A + B) (< 50,0,B>, B) (< 50,0,C>, A + B + C) (< 50,0,D>, A + B + C + D) (< 50,0,E>, A + B + C + D + E) (< 50,0,F>, A + B + C + D + E + F) (< 50,0,G>, A + B + C + D + E + G) (< 50,0,H>, 1) (< 50,0,I>, I) (< 50,0,J>, J) (< 50,0,K>, A + B + C + D + E + K) (< 50,0,U>, U) (< 51,0,A>, A + B) (< 51,0,B>, B) (< 51,0,C>, A + B + C) (< 51,0,D>, A + B + C + D) (< 51,0,E>, A + B + C + D + E) (< 51,0,F>, A + B + C + D + E + F) (< 51,0,G>, A + B + C + D + E + G) (< 51,0,H>, 1) (< 51,0,I>, I) (< 51,0,J>, J) (< 51,0,K>, A + B + C + D + E + K) (< 51,0,U>, U) (< 52,0,A>, A + B) (< 52,0,B>, B) (< 52,0,C>, A + B + C) (< 52,0,D>, A + B + C + D) (< 52,0,E>, A + B + C + D + E) (< 52,0,F>, A + B + C + D + E + F) (< 52,0,G>, A + B + C + D + E + F + G) (< 52,0,H>, 1) (< 52,0,I>, I) (< 52,0,J>, J) (< 52,0,K>, A + B + C + D + E + F + K) (< 52,0,U>, U) (< 53,0,A>, A + B) (< 53,0,B>, B) (< 53,0,C>, A + B + C) (< 53,0,D>, A + B + C + D) (< 53,0,E>, A + B + C + D + E) (< 53,0,F>, A + B + C + D + E + F) (< 53,0,G>, A + B + C + D + E + F + G) (< 53,0,H>, 1) (< 53,0,I>, I) (< 53,0,J>, J) (< 53,0,K>, A + B + C + D + E + F + K) (< 53,0,U>, U) (< 54,0,A>, A + B) (< 54,0,B>, B) (< 54,0,C>, A + B + C) (< 54,0,D>, A + B + C + D) (< 54,0,E>, A + B + C + D + E) (< 54,0,F>, A + B + C + D + E + F) (< 54,0,G>, A + B + C + D + E + F + G) (< 54,0,H>, 1) (< 54,0,I>, 1) (< 54,0,J>, J) (< 54,0,K>, A + B + C + D + E + F + G + K) (< 54,0,U>, U) (< 55,0,A>, A + B) (< 55,0,B>, B) (< 55,0,C>, A + B + C) (< 55,0,D>, A + B + C + D) (< 55,0,E>, A + B + C + D + E) (< 55,0,F>, A + B + C + D + E + F) (< 55,0,G>, A + B + C + D + E + F + G) (< 55,0,H>, 1) (< 55,0,I>, 1) (< 55,0,J>, J) (< 55,0,K>, A + B + C + D + E + F + G + K) (< 55,0,U>, U) (< 56,0,A>, A + B) (< 56,0,B>, B) (< 56,0,C>, A + B + C) (< 56,0,D>, A + B + C + D) (< 56,0,E>, A + B + C + D + E) (< 56,0,F>, A + B + C + D + E + F) (< 56,0,G>, A + B + C + D + E + F + G) (< 56,0,H>, 1) (< 56,0,I>, 1) (< 56,0,J>, 1) (< 56,0,K>, A + B + C + D + E + F + G + K) (< 56,0,U>, ?) (< 57,0,A>, A + B) (< 57,0,B>, B) (< 57,0,C>, A + B + C) (< 57,0,D>, A + B + C + D) (< 57,0,E>, A + B + C + D + E) (< 57,0,F>, A + B + C + D + E + F) (< 57,0,G>, A + B + C + D + E + F + G) (< 57,0,H>, 1) (< 57,0,I>, 1) (< 57,0,J>, 1) (< 57,0,K>, A + B + C + D + E + F + G + K) (< 57,0,U>, ?) (< 58,0,A>, A + B) (< 58,0,B>, B) (< 58,0,C>, A + B + C) (< 58,0,D>, A + B + C + D) (< 58,0,E>, A + B + C + D + E) (< 58,0,F>, A + B + C + D + E + F) (< 58,0,G>, A + B + C + D + E + F + G) (< 58,0,H>, 1) (< 58,0,I>, 1) (< 58,0,J>, 1) (< 58,0,K>, A + B + C + D + E + F + G + K) (< 58,0,U>, ?) (< 59,0,A>, A + B) (< 59,0,B>, B) (< 59,0,C>, A + B + C) (< 59,0,D>, A + B + C + D) (< 59,0,E>, A + B + C + D + E) (< 59,0,F>, A + B + C + D + E + F) (< 59,0,G>, A + B + C + D + E + F + G) (< 59,0,H>, 1) (< 59,0,I>, 1) (< 59,0,J>, 1) (< 59,0,K>, A + B + C + D + E + F + G + K) (< 59,0,U>, ?) (< 60,0,A>, A + B) (< 60,0,B>, B) (< 60,0,C>, A + B + C) (< 60,0,D>, A + B + C + D) (< 60,0,E>, A + B + C + D + E) (< 60,0,F>, A + B + C + D + E + F) (< 60,0,G>, A + B + C + D + E + F + G) (< 60,0,H>, 1) (< 60,0,I>, 1) (< 60,0,J>, 1) (< 60,0,K>, A + B + C + D + E + F + G + K) (< 60,0,U>, ?) (< 61,0,A>, A + B) (< 61,0,B>, B) (< 61,0,C>, A + B + C) (< 61,0,D>, A + B + C + D) (< 61,0,E>, A + B + C + D + E) (< 61,0,F>, A + B + C + D + E + F) (< 61,0,G>, A + B + C + D + E + F + G) (< 61,0,H>, 1) (< 61,0,I>, 1) (< 61,0,J>, 1) (< 61,0,K>, A + B + C + D + E + F + G + K) (< 61,0,U>, ?) (< 62,0,A>, A) (< 62,0,B>, B) (< 62,0,C>, C) (< 62,0,D>, D) (< 62,0,E>, E) (< 62,0,F>, F) (< 62,0,G>, G) (< 62,0,H>, 1) (< 62,0,I>, I) (< 62,0,J>, J) (< 62,0,K>, K) (< 62,0,U>, U) (< 63,0,A>, A) (< 63,0,B>, B) (< 63,0,C>, C) (< 63,0,D>, D) (< 63,0,E>, E) (< 63,0,F>, F) (< 63,0,G>, G) (< 63,0,H>, 1) (< 63,0,I>, I) (< 63,0,J>, J) (< 63,0,K>, K) (< 63,0,U>, U) (< 64,0,A>, A) (< 64,0,B>, B) (< 64,0,C>, C) (< 64,0,D>, D) (< 64,0,E>, E) (< 64,0,F>, F) (< 64,0,G>, G) (< 64,0,H>, 0) (< 64,0,I>, I) (< 64,0,J>, J) (< 64,0,K>, B) (< 64,0,U>, U) (< 65,0,A>, A) (< 65,0,B>, B) (< 65,0,C>, C) (< 65,0,D>, D) (< 65,0,E>, E) (< 65,0,F>, F) (< 65,0,G>, B) (< 65,0,H>, 0) (< 65,0,I>, I) (< 65,0,J>, J) (< 65,0,K>, K) (< 65,0,U>, U) (< 66,0,A>, A) (< 66,0,B>, B) (< 66,0,C>, C) (< 66,0,D>, D) (< 66,0,E>, E) (< 66,0,F>, B) (< 66,0,G>, G) (< 66,0,H>, 0) (< 66,0,I>, I) (< 66,0,J>, J) (< 66,0,K>, K) (< 66,0,U>, U) (< 67,0,A>, A) (< 67,0,B>, B) (< 67,0,C>, C) (< 67,0,D>, D) (< 67,0,E>, B) (< 67,0,F>, F) (< 67,0,G>, G) (< 67,0,H>, 0) (< 67,0,I>, I) (< 67,0,J>, J) (< 67,0,K>, K) (< 67,0,U>, U) (< 68,0,A>, A) (< 68,0,B>, B) (< 68,0,C>, C) (< 68,0,D>, B) (< 68,0,E>, E) (< 68,0,F>, F) (< 68,0,G>, G) (< 68,0,H>, 0) (< 68,0,I>, I) (< 68,0,J>, J) (< 68,0,K>, K) (< 68,0,U>, U) (< 69,0,A>, A) (< 69,0,B>, B) (< 69,0,C>, B) (< 69,0,D>, D) (< 69,0,E>, E) (< 69,0,F>, F) (< 69,0,G>, G) (< 69,0,H>, 0) (< 69,0,I>, I) (< 69,0,J>, J) (< 69,0,K>, K) (< 69,0,U>, U) (< 70,0,A>, B) (< 70,0,B>, B) (< 70,0,C>, C) (< 70,0,D>, D) (< 70,0,E>, E) (< 70,0,F>, F) (< 70,0,G>, G) (< 70,0,H>, 0) (< 70,0,I>, I) (< 70,0,J>, J) (< 70,0,K>, K) (< 70,0,U>, U) (< 71,0,A>, A + B) (< 71,0,B>, B) (< 71,0,C>, B + C) (< 71,0,D>, B + D) (< 71,0,E>, B + E) (< 71,0,F>, B + F) (< 71,0,G>, B + G) (< 71,0,H>, 1) (< 71,0,I>, I) (< 71,0,J>, J) (< 71,0,K>, B + K) (< 71,0,U>, U) (< 72,0,A>, A + B) (< 72,0,B>, B) (< 72,0,C>, B + C) (< 72,0,D>, B + D) (< 72,0,E>, B + E) (< 72,0,F>, B + F) (< 72,0,G>, B + G) (< 72,0,H>, 1) (< 72,0,I>, I) (< 72,0,J>, J) (< 72,0,K>, B + K) (< 72,0,U>, U) (< 73,0,A>, A + B) (< 73,0,B>, B) (< 73,0,C>, B + C) (< 73,0,D>, B + D) (< 73,0,E>, B + E) (< 73,0,F>, B + F) (< 73,0,G>, B + G) (< 73,0,H>, 0) (< 73,0,I>, I) (< 73,0,J>, J) (< 73,0,K>, A + B) (< 73,0,U>, U) (< 74,0,A>, A + B) (< 74,0,B>, B) (< 74,0,C>, B + C) (< 74,0,D>, B + D) (< 74,0,E>, B + E) (< 74,0,F>, B + F) (< 74,0,G>, A + B) (< 74,0,H>, 0) (< 74,0,I>, I) (< 74,0,J>, J) (< 74,0,K>, B + K) (< 74,0,U>, U) (< 75,0,A>, A + B) (< 75,0,B>, B) (< 75,0,C>, B + C) (< 75,0,D>, B + D) (< 75,0,E>, B + E) (< 75,0,F>, A + B) (< 75,0,G>, B + G) (< 75,0,H>, 0) (< 75,0,I>, I) (< 75,0,J>, J) (< 75,0,K>, B + K) (< 75,0,U>, U) (< 76,0,A>, A + B) (< 76,0,B>, B) (< 76,0,C>, B + C) (< 76,0,D>, B + D) (< 76,0,E>, A + B) (< 76,0,F>, B + F) (< 76,0,G>, B + G) (< 76,0,H>, 0) (< 76,0,I>, I) (< 76,0,J>, J) (< 76,0,K>, B + K) (< 76,0,U>, U) (< 77,0,A>, A + B) (< 77,0,B>, B) (< 77,0,C>, B + C) (< 77,0,D>, A + B) (< 77,0,E>, B + E) (< 77,0,F>, B + F) (< 77,0,G>, B + G) (< 77,0,H>, 0) (< 77,0,I>, I) (< 77,0,J>, J) (< 77,0,K>, B + K) (< 77,0,U>, U) (< 78,0,A>, A + B) (< 78,0,B>, B) (< 78,0,C>, A + B) (< 78,0,D>, B + D) (< 78,0,E>, B + E) (< 78,0,F>, B + F) (< 78,0,G>, B + G) (< 78,0,H>, 0) (< 78,0,I>, I) (< 78,0,J>, J) (< 78,0,K>, B + K) (< 78,0,U>, U) (< 79,0,A>, A + B) (< 79,0,B>, B) (< 79,0,C>, B + C) (< 79,0,D>, B + D) (< 79,0,E>, B + E) (< 79,0,F>, B + F) (< 79,0,G>, B + G) (< 79,0,H>, 0) (< 79,0,I>, I) (< 79,0,J>, J) (< 79,0,K>, B + K) (< 79,0,U>, U) (< 80,0,A>, A + B) (< 80,0,B>, B) (< 80,0,C>, A + B + C) (< 80,0,D>, A + B + D) (< 80,0,E>, A + B + E) (< 80,0,F>, A + B + F) (< 80,0,G>, A + B + G) (< 80,0,H>, 1) (< 80,0,I>, I) (< 80,0,J>, J) (< 80,0,K>, A + B + K) (< 80,0,U>, U) (< 81,0,A>, A + B) (< 81,0,B>, B) (< 81,0,C>, A + B + C) (< 81,0,D>, A + B + D) (< 81,0,E>, A + B + E) (< 81,0,F>, A + B + F) (< 81,0,G>, A + B + G) (< 81,0,H>, 1) (< 81,0,I>, I) (< 81,0,J>, J) (< 81,0,K>, A + B + K) (< 81,0,U>, U) (< 82,0,A>, A + B) (< 82,0,B>, B) (< 82,0,C>, A + B + C) (< 82,0,D>, A + B + D) (< 82,0,E>, A + B + E) (< 82,0,F>, A + B + F) (< 82,0,G>, A + B + G) (< 82,0,H>, 0) (< 82,0,I>, I) (< 82,0,J>, J) (< 82,0,K>, A + B + C) (< 82,0,U>, U) (< 83,0,A>, A + B) (< 83,0,B>, B) (< 83,0,C>, A + B + C) (< 83,0,D>, A + B + D) (< 83,0,E>, A + B + E) (< 83,0,F>, A + B + F) (< 83,0,G>, A + B + C) (< 83,0,H>, 0) (< 83,0,I>, I) (< 83,0,J>, J) (< 83,0,K>, A + B + K) (< 83,0,U>, U) (< 84,0,A>, A + B) (< 84,0,B>, B) (< 84,0,C>, A + B + C) (< 84,0,D>, A + B + D) (< 84,0,E>, A + B + E) (< 84,0,F>, A + B + C) (< 84,0,G>, A + B + G) (< 84,0,H>, 0) (< 84,0,I>, I) (< 84,0,J>, J) (< 84,0,K>, A + B + K) (< 84,0,U>, U) (< 85,0,A>, A + B) (< 85,0,B>, B) (< 85,0,C>, A + B + C) (< 85,0,D>, A + B + D) (< 85,0,E>, A + B + C) (< 85,0,F>, A + B + F) (< 85,0,G>, A + B + G) (< 85,0,H>, 0) (< 85,0,I>, I) (< 85,0,J>, J) (< 85,0,K>, A + B + K) (< 85,0,U>, U) (< 86,0,A>, A + B) (< 86,0,B>, B) (< 86,0,C>, A + B + C) (< 86,0,D>, A + B + C) (< 86,0,E>, A + B + E) (< 86,0,F>, A + B + F) (< 86,0,G>, A + B + G) (< 86,0,H>, 0) (< 86,0,I>, I) (< 86,0,J>, J) (< 86,0,K>, A + B + K) (< 86,0,U>, U) (< 87,0,A>, A + B) (< 87,0,B>, B) (< 87,0,C>, A + B + C) (< 87,0,D>, A + B + D) (< 87,0,E>, A + B + E) (< 87,0,F>, A + B + F) (< 87,0,G>, A + B + G) (< 87,0,H>, 0) (< 87,0,I>, I) (< 87,0,J>, J) (< 87,0,K>, A + B + K) (< 87,0,U>, U) (< 88,0,A>, A + B) (< 88,0,B>, B) (< 88,0,C>, A + B + C) (< 88,0,D>, A + B + C + D) (< 88,0,E>, A + B + C + E) (< 88,0,F>, A + B + C + F) (< 88,0,G>, A + B + C + G) (< 88,0,H>, 1) (< 88,0,I>, I) (< 88,0,J>, J) (< 88,0,K>, A + B + C + K) (< 88,0,U>, U) (< 89,0,A>, A + B) (< 89,0,B>, B) (< 89,0,C>, A + B + C) (< 89,0,D>, A + B + C + D) (< 89,0,E>, A + B + C + E) (< 89,0,F>, A + B + C + F) (< 89,0,G>, A + B + C + G) (< 89,0,H>, 1) (< 89,0,I>, I) (< 89,0,J>, J) (< 89,0,K>, A + B + C + K) (< 89,0,U>, U) (< 90,0,A>, A + B) (< 90,0,B>, B) (< 90,0,C>, A + B + C) (< 90,0,D>, A + B + C + D) (< 90,0,E>, A + B + C + E) (< 90,0,F>, A + B + C + F) (< 90,0,G>, A + B + C + G) (< 90,0,H>, 0) (< 90,0,I>, I) (< 90,0,J>, J) (< 90,0,K>, A + B + C + D) (< 90,0,U>, U) (< 91,0,A>, A + B) (< 91,0,B>, B) (< 91,0,C>, A + B + C) (< 91,0,D>, A + B + C + D) (< 91,0,E>, A + B + C + E) (< 91,0,F>, A + B + C + F) (< 91,0,G>, A + B + C + D) (< 91,0,H>, 0) (< 91,0,I>, I) (< 91,0,J>, J) (< 91,0,K>, A + B + C + K) (< 91,0,U>, U) (< 92,0,A>, A + B) (< 92,0,B>, B) (< 92,0,C>, A + B + C) (< 92,0,D>, A + B + C + D) (< 92,0,E>, A + B + C + E) (< 92,0,F>, A + B + C + D) (< 92,0,G>, A + B + C + G) (< 92,0,H>, 0) (< 92,0,I>, I) (< 92,0,J>, J) (< 92,0,K>, A + B + C + K) (< 92,0,U>, U) (< 93,0,A>, A + B) (< 93,0,B>, B) (< 93,0,C>, A + B + C) (< 93,0,D>, A + B + C + D) (< 93,0,E>, A + B + C + D) (< 93,0,F>, A + B + C + F) (< 93,0,G>, A + B + C + G) (< 93,0,H>, 0) (< 93,0,I>, I) (< 93,0,J>, J) (< 93,0,K>, A + B + C + K) (< 93,0,U>, U) (< 94,0,A>, A + B) (< 94,0,B>, B) (< 94,0,C>, A + B + C) (< 94,0,D>, A + B + C + D) (< 94,0,E>, A + B + C + E) (< 94,0,F>, A + B + C + F) (< 94,0,G>, A + B + C + G) (< 94,0,H>, 0) (< 94,0,I>, I) (< 94,0,J>, J) (< 94,0,K>, A + B + C + K) (< 94,0,U>, U) (< 95,0,A>, A + B) (< 95,0,B>, B) (< 95,0,C>, A + B + C) (< 95,0,D>, A + B + C + D) (< 95,0,E>, A + B + C + D + E) (< 95,0,F>, A + B + C + D + F) (< 95,0,G>, A + B + C + D + G) (< 95,0,H>, 1) (< 95,0,I>, I) (< 95,0,J>, J) (< 95,0,K>, A + B + C + D + K) (< 95,0,U>, U) (< 96,0,A>, A + B) (< 96,0,B>, B) (< 96,0,C>, A + B + C) (< 96,0,D>, A + B + C + D) (< 96,0,E>, A + B + C + D + E) (< 96,0,F>, A + B + C + D + F) (< 96,0,G>, A + B + C + D + G) (< 96,0,H>, 1) (< 96,0,I>, I) (< 96,0,J>, J) (< 96,0,K>, A + B + C + D + K) (< 96,0,U>, U) (< 97,0,A>, A + B) (< 97,0,B>, B) (< 97,0,C>, A + B + C) (< 97,0,D>, A + B + C + D) (< 97,0,E>, A + B + C + D + E) (< 97,0,F>, A + B + C + D + F) (< 97,0,G>, A + B + C + D + G) (< 97,0,H>, 0) (< 97,0,I>, I) (< 97,0,J>, J) (< 97,0,K>, A + B + C + D + E) (< 97,0,U>, U) (< 98,0,A>, A + B) (< 98,0,B>, B) (< 98,0,C>, A + B + C) (< 98,0,D>, A + B + C + D) (< 98,0,E>, A + B + C + D + E) (< 98,0,F>, A + B + C + D + F) (< 98,0,G>, A + B + C + D + E) (< 98,0,H>, 0) (< 98,0,I>, I) (< 98,0,J>, J) (< 98,0,K>, A + B + C + D + K) (< 98,0,U>, U) (< 99,0,A>, A + B) (< 99,0,B>, B) (< 99,0,C>, A + B + C) (< 99,0,D>, A + B + C + D) (< 99,0,E>, A + B + C + D + E) (< 99,0,F>, A + B + C + D + E) (< 99,0,G>, A + B + C + D + G) (< 99,0,H>, 0) (< 99,0,I>, I) (< 99,0,J>, J) (< 99,0,K>, A + B + C + D + K) (< 99,0,U>, U) (<100,0,A>, A + B) (<100,0,B>, B) (<100,0,C>, A + B + C) (<100,0,D>, A + B + C + D) (<100,0,E>, A + B + C + D + E) (<100,0,F>, A + B + C + D + F) (<100,0,G>, A + B + C + D + G) (<100,0,H>, 0) (<100,0,I>, I) (<100,0,J>, J) (<100,0,K>, A + B + C + D + K) (<100,0,U>, U) (<101,0,A>, A + B) (<101,0,B>, B) (<101,0,C>, A + B + C) (<101,0,D>, A + B + C + D) (<101,0,E>, A + B + C + D + E) (<101,0,F>, A + B + C + D + E + F) (<101,0,G>, A + B + C + D + E + G) (<101,0,H>, 1) (<101,0,I>, I) (<101,0,J>, J) (<101,0,K>, A + B + C + D + E + K) (<101,0,U>, U) (<102,0,A>, A + B) (<102,0,B>, B) (<102,0,C>, A + B + C) (<102,0,D>, A + B + C + D) (<102,0,E>, A + B + C + D + E) (<102,0,F>, A + B + C + D + E + F) (<102,0,G>, A + B + C + D + E + G) (<102,0,H>, 1) (<102,0,I>, I) (<102,0,J>, J) (<102,0,K>, A + B + C + D + E + K) (<102,0,U>, U) (<103,0,A>, A + B) (<103,0,B>, B) (<103,0,C>, A + B + C) (<103,0,D>, A + B + C + D) (<103,0,E>, A + B + C + D + E) (<103,0,F>, A + B + C + D + E + F) (<103,0,G>, A + B + C + D + E + G) (<103,0,H>, 0) (<103,0,I>, I) (<103,0,J>, J) (<103,0,K>, A + B + C + D + E + F) (<103,0,U>, U) (<104,0,A>, A + B) (<104,0,B>, B) (<104,0,C>, A + B + C) (<104,0,D>, A + B + C + D) (<104,0,E>, A + B + C + D + E) (<104,0,F>, A + B + C + D + E + F) (<104,0,G>, A + B + C + D + E + F) (<104,0,H>, 0) (<104,0,I>, I) (<104,0,J>, J) (<104,0,K>, A + B + C + D + E + K) (<104,0,U>, U) (<105,0,A>, A + B) (<105,0,B>, B) (<105,0,C>, A + B + C) (<105,0,D>, A + B + C + D) (<105,0,E>, A + B + C + D + E) (<105,0,F>, A + B + C + D + E + F) (<105,0,G>, A + B + C + D + E + G) (<105,0,H>, 0) (<105,0,I>, I) (<105,0,J>, J) (<105,0,K>, A + B + C + D + E + K) (<105,0,U>, U) (<106,0,A>, A + B) (<106,0,B>, B) (<106,0,C>, A + B + C) (<106,0,D>, A + B + C + D) (<106,0,E>, A + B + C + D + E) (<106,0,F>, A + B + C + D + E + F) (<106,0,G>, A + B + C + D + E + F + G) (<106,0,H>, 1) (<106,0,I>, I) (<106,0,J>, J) (<106,0,K>, A + B + C + D + E + F + K) (<106,0,U>, U) (<107,0,A>, A + B) (<107,0,B>, B) (<107,0,C>, A + B + C) (<107,0,D>, A + B + C + D) (<107,0,E>, A + B + C + D + E) (<107,0,F>, A + B + C + D + E + F) (<107,0,G>, A + B + C + D + E + F + G) (<107,0,H>, 1) (<107,0,I>, I) (<107,0,J>, J) (<107,0,K>, A + B + C + D + E + F + K) (<107,0,U>, U) (<108,0,A>, A + B) (<108,0,B>, B) (<108,0,C>, A + B + C) (<108,0,D>, A + B + C + D) (<108,0,E>, A + B + C + D + E) (<108,0,F>, A + B + C + D + E + F) (<108,0,G>, A + B + C + D + E + F + G) (<108,0,H>, 0) (<108,0,I>, I) (<108,0,J>, J) (<108,0,K>, A + B + C + D + E + F + G) (<108,0,U>, U) (<109,0,A>, A + B) (<109,0,B>, B) (<109,0,C>, A + B + C) (<109,0,D>, A + B + C + D) (<109,0,E>, A + B + C + D + E) (<109,0,F>, A + B + C + D + E + F) (<109,0,G>, A + B + C + D + E + F + G) (<109,0,H>, 0) (<109,0,I>, I) (<109,0,J>, J) (<109,0,K>, A + B + C + D + E + F + K) (<109,0,U>, U) (<110,0,A>, A + B) (<110,0,B>, B) (<110,0,C>, A + B + C) (<110,0,D>, A + B + C + D) (<110,0,E>, A + B + C + D + E) (<110,0,F>, A + B + C + D + E + F) (<110,0,G>, A + B + C + D + E + F + G) (<110,0,H>, 1) (<110,0,I>, 1) (<110,0,J>, J) (<110,0,K>, A + B + C + D + E + F + G + K) (<110,0,U>, U) (<111,0,A>, A + B) (<111,0,B>, B) (<111,0,C>, A + B + C) (<111,0,D>, A + B + C + D) (<111,0,E>, A + B + C + D + E) (<111,0,F>, A + B + C + D + E + F) (<111,0,G>, A + B + C + D + E + F + G) (<111,0,H>, 1) (<111,0,I>, 0) (<111,0,J>, J) (<111,0,K>, A + B + C + D + E + F + G + K) (<111,0,U>, U) (<112,0,A>, A + B) (<112,0,B>, B) (<112,0,C>, A + B + C) (<112,0,D>, A + B + C + D) (<112,0,E>, A + B + C + D + E) (<112,0,F>, A + B + C + D + E + F) (<112,0,G>, A + B + C + D + E + F + G) (<112,0,H>, 1) (<112,0,I>, 0) (<112,0,J>, J) (<112,0,K>, A + B + C + D + E + F + G + K) (<112,0,U>, U) (<113,0,A>, A + B) (<113,0,B>, B) (<113,0,C>, A + B + C) (<113,0,D>, A + B + C + D) (<113,0,E>, A + B + C + D + E) (<113,0,F>, A + B + C + D + E + F) (<113,0,G>, A + B + C + D + E + F + G) (<113,0,H>, 1) (<113,0,I>, 0) (<113,0,J>, J) (<113,0,K>, A + B + C + D + E + F + G + K) (<113,0,U>, U) (<114,0,A>, A + B) (<114,0,B>, B) (<114,0,C>, A + B + C) (<114,0,D>, A + B + C + D) (<114,0,E>, A + B + C + D + E) (<114,0,F>, A + B + C + D + E + F) (<114,0,G>, A + B + C + D + E + F + G) (<114,0,H>, 1) (<114,0,I>, 0) (<114,0,J>, J) (<114,0,K>, A + B + C + D + E + F + G + K) (<114,0,U>, U) (<115,0,A>, A + B) (<115,0,B>, B) (<115,0,C>, A + B + C) (<115,0,D>, A + B + C + D) (<115,0,E>, A + B + C + D + E) (<115,0,F>, A + B + C + D + E + F) (<115,0,G>, A + B + C + D + E + F + G) (<115,0,H>, 1) (<115,0,I>, 0) (<115,0,J>, J) (<115,0,K>, A + B + C + D + E + F + G + K) (<115,0,U>, U) (<116,0,A>, A + B) (<116,0,B>, B) (<116,0,C>, A + B + C) (<116,0,D>, A + B + C + D) (<116,0,E>, A + B + C + D + E) (<116,0,F>, A + B + C + D + E + F) (<116,0,G>, A + B + C + D + E + F + G) (<116,0,H>, 1) (<116,0,I>, 0) (<116,0,J>, J) (<116,0,K>, A + B + C + D + E + F + G + K) (<116,0,U>, U) (<117,0,A>, A + B) (<117,0,B>, B) (<117,0,C>, A + B + C) (<117,0,D>, A + B + C + D) (<117,0,E>, A + B + C + D + E) (<117,0,F>, A + B + C + D + E + F) (<117,0,G>, A + B + C + D + E + F + G) (<117,0,H>, 1) (<117,0,I>, 0) (<117,0,J>, J) (<117,0,K>, A + B + C + D + E + F + G + K) (<117,0,U>, U) (<118,0,A>, A + B) (<118,0,B>, B) (<118,0,C>, A + B + C) (<118,0,D>, A + B + C + D) (<118,0,E>, A + B + C + D + E) (<118,0,F>, A + B + C + D + E + F) (<118,0,G>, A + B + C + D + E + F + G) (<118,0,H>, 1) (<118,0,I>, 0) (<118,0,J>, J) (<118,0,K>, A + B + C + D + E + F + G + K) (<118,0,U>, U) (<119,0,A>, A + B) (<119,0,B>, B) (<119,0,C>, A + B + C) (<119,0,D>, A + B + C + D) (<119,0,E>, A + B + C + D + E) (<119,0,F>, A + B + C + D + E + F) (<119,0,G>, A + B + C + D + E + F + G) (<119,0,H>, 1) (<119,0,I>, 1) (<119,0,J>, 1) (<119,0,K>, A + B + C + D + E + F + G + K) (<119,0,U>, ?) (<120,0,A>, A + B) (<120,0,B>, B) (<120,0,C>, A + B + C) (<120,0,D>, A + B + C + D) (<120,0,E>, A + B + C + D + E) (<120,0,F>, A + B + C + D + E + F) (<120,0,G>, A + B + C + D + E + F + G) (<120,0,H>, 1) (<120,0,I>, 1) (<120,0,J>, 1) (<120,0,K>, A + B + C + D + E + F + G + K) (<120,0,U>, ?) (<121,0,A>, A + B) (<121,0,B>, 0) (<121,0,C>, A + B + C) (<121,0,D>, A + B + C + D) (<121,0,E>, A + B + C + D + E) (<121,0,F>, A + B + C + D + E + F) (<121,0,G>, A + B + C + D + E + F + G) (<121,0,H>, 1) (<121,0,I>, 1) (<121,0,J>, 0) (<121,0,K>, A + B + C + D + E + F + G + K) (<121,0,U>, ?) (<122,0,A>, A + B) (<122,0,B>, B) (<122,0,C>, A + B + C) (<122,0,D>, A + B + C + D) (<122,0,E>, 0) (<122,0,F>, A + B + C + D + E + F) (<122,0,G>, A + B + C + D + E + F + G) (<122,0,H>, 1) (<122,0,I>, 1) (<122,0,J>, 0) (<122,0,K>, A + B + C + D + E + F + G + K) (<122,0,U>, ?) (<123,0,A>, A + B) (<123,0,B>, B) (<123,0,C>, A + B + C) (<123,0,D>, A + B + C + D) (<123,0,E>, A + B + C + D + E) (<123,0,F>, A + B + C + D + E + F) (<123,0,G>, A + B + C + D + E + F + G) (<123,0,H>, 1) (<123,0,I>, 1) (<123,0,J>, 1) (<123,0,K>, A + B + C + D + E + F + G + K) (<123,0,U>, ?) (<124,0,A>, A + B) (<124,0,B>, B) (<124,0,C>, A + B + C) (<124,0,D>, A + B + C + D) (<124,0,E>, A + B + C + D + E) (<124,0,F>, A + B + C + D + E + F) (<124,0,G>, A + B + C + D + E + F + G) (<124,0,H>, 1) (<124,0,I>, 1) (<124,0,J>, 1) (<124,0,K>, A + B + C + D + E + F + G + K) (<124,0,U>, ?) (<125,0,A>, A + B) (<125,0,B>, B) (<125,0,C>, A + B + C) (<125,0,D>, A + B + C + D) (<125,0,E>, A + B + C + D + E) (<125,0,F>, A + B + C + D + E + F) (<125,0,G>, A + B + C + D + E + F + G) (<125,0,H>, 1) (<125,0,I>, 1) (<125,0,J>, 1) (<125,0,K>, A + B + C + D + E + F + G + K) (<125,0,U>, 0) (<126,0,A>, A + B) (<126,0,B>, B) (<126,0,C>, A + B + C) (<126,0,D>, A + B + C + D) (<126,0,E>, A + B + C + D + E) (<126,0,F>, A + B + C + D + E + F) (<126,0,G>, A + B + C + D + E + F + G) (<126,0,H>, 1) (<126,0,I>, 1) (<126,0,J>, 0) (<126,0,K>, A + B + C + D + E + F + G + K) (<126,0,U>, ?) (<127,0,A>, A + B) (<127,0,B>, B) (<127,0,C>, A + B + C) (<127,0,D>, A + B + C + D) (<127,0,E>, A + B + C + D + E) (<127,0,F>, A + B + C + D + E + F) (<127,0,G>, A + B + C + D + E + F + G) (<127,0,H>, 1) (<127,0,I>, 0) (<127,0,J>, 1) (<127,0,K>, A + B + C + D + E + F + G + K) (<127,0,U>, ?) (<128,0,A>, A + B) (<128,0,B>, B) (<128,0,C>, A + B + C) (<128,0,D>, A + B + C + D) (<128,0,E>, A + B + C + D + E) (<128,0,F>, A + B + C + D + E + F) (<128,0,G>, A + B + C + D + E + F + G) (<128,0,H>, 0) (<128,0,I>, 1) (<128,0,J>, 1) (<128,0,K>, A + B + C + D + E + F + G + K) (<128,0,U>, ?) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(62,12) ,(62,79) ,(63,12) ,(63,79) ,(64,12) ,(64,13) ,(65,12) ,(65,13) ,(66,12) ,(66,13) ,(67,12) ,(67,13) ,(68,12) ,(68,13) ,(69,12) ,(69,13) ,(70,12) ,(70,13) ,(71,24) ,(71,87) ,(72,24) ,(72,87) ,(73,24) ,(73,25) ,(74,24) ,(74,25) ,(75,24) ,(75,25) ,(76,24) ,(76,25) ,(77,24) ,(77,25) ,(78,24) ,(78,25) ,(79,24) ,(79,25) ,(80,34) ,(80,94) ,(81,34) ,(81,94) ,(82,34) ,(82,35) ,(83,34) ,(83,35) ,(84,34) ,(84,35) ,(85,34) ,(85,35) ,(86,34) ,(86,35) ,(87,34) ,(87,35) ,(88,42) ,(88,100) ,(89,42) ,(89,100) ,(90,42) ,(90,43) ,(91,42) ,(91,43) ,(92,42) ,(92,43) ,(93,42) ,(93,43) ,(94,42) ,(94,43) ,(95,48) ,(95,105) ,(96,48) ,(96,105) ,(97,48) ,(97,49) ,(98,48) ,(98,49) ,(99,48) ,(99,49) ,(100,48) ,(100,49) ,(101,52) ,(101,109) ,(102,52) ,(102,109) ,(103,52) ,(103,53) ,(104,52) ,(104,53) ,(105,52) ,(105,53) ,(107,111) ,(108,111) ,(114,54) ,(114,122)] * Step 5: UnreachableRules WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,D,E,F,G,H,I,J,K,U) -> f2(A,B,C,D,E,F,G,H,I,J,K,U) [A >= 1 + B] (1,1) 1. f0(A,B,C,D,E,F,G,H,I,J,K,U) -> f2(A,B,C,D,E,F,G,H,I,J,K,U) [B >= 1 + A] (1,1) 2. f2(A,B,C,D,E,F,G,H,I,J,K,U) -> f3(A,B,C,D,E,F,G,H,I,J,K,U) [C >= 1 + B] (?,1) 3. f2(A,B,C,D,E,F,G,H,I,J,K,U) -> f3(A,B,C,D,E,F,G,H,I,J,K,U) [B >= 1 + C] (?,1) 4. f3(A,B,C,D,E,F,G,H,I,J,K,U) -> f4(A,B,C,D,E,F,G,H,I,J,K,U) [D >= 1 + B] (?,1) 5. f3(A,B,C,D,E,F,G,H,I,J,K,U) -> f4(A,B,C,D,E,F,G,H,I,J,K,U) [B >= 1 + D] (?,1) 6. f4(A,B,C,D,E,F,G,H,I,J,K,U) -> f5(A,B,C,D,E,F,G,H,I,J,K,U) [E >= 1 + B] (?,1) 7. f4(A,B,C,D,E,F,G,H,I,J,K,U) -> f5(A,B,C,D,E,F,G,H,I,J,K,U) [B >= 1 + E] (?,1) 8. f5(A,B,C,D,E,F,G,H,I,J,K,U) -> f6(A,B,C,D,E,F,G,H,I,J,K,U) [F >= 1 + B] (?,1) 9. f5(A,B,C,D,E,F,G,H,I,J,K,U) -> f6(A,B,C,D,E,F,G,H,I,J,K,U) [B >= 1 + F] (?,1) 10. f6(A,B,C,D,E,F,G,H,I,J,K,U) -> f7(A,B,C,D,E,F,G,H,I,J,K,U) [G >= 1 + B] (?,1) 11. f6(A,B,C,D,E,F,G,H,I,J,K,U) -> f7(A,B,C,D,E,F,G,H,I,J,K,U) [B >= 1 + G] (?,1) 12. f17(A,B,C,D,E,F,G,H,I,J,K,U) -> f18(A,B,C,D,E,F,G,H,I,J,K,U) [0 >= 1 + H] (?,1) 13. f17(A,B,C,D,E,F,G,H,I,J,K,U) -> f18(A,B,C,D,E,F,G,H,I,J,K,U) [H >= 1] (?,1) 14. f18(A,B,C,D,E,F,G,H,I,J,K,U) -> f19(A,B,C,D,E,F,G,H,I,J,K,U) [C >= 1 + A] (?,1) 15. f18(A,B,C,D,E,F,G,H,I,J,K,U) -> f19(A,B,C,D,E,F,G,H,I,J,K,U) [A >= 1 + C] (?,1) 16. f19(A,B,C,D,E,F,G,H,I,J,K,U) -> f20(A,B,C,D,E,F,G,H,I,J,K,U) [D >= 1 + A] (?,1) 17. f19(A,B,C,D,E,F,G,H,I,J,K,U) -> f20(A,B,C,D,E,F,G,H,I,J,K,U) [A >= 1 + D] (?,1) 18. f20(A,B,C,D,E,F,G,H,I,J,K,U) -> f21(A,B,C,D,E,F,G,H,I,J,K,U) [E >= 1 + A] (?,1) 19. f20(A,B,C,D,E,F,G,H,I,J,K,U) -> f21(A,B,C,D,E,F,G,H,I,J,K,U) [A >= 1 + E] (?,1) 20. f21(A,B,C,D,E,F,G,H,I,J,K,U) -> f22(A,B,C,D,E,F,G,H,I,J,K,U) [F >= 1 + A] (?,1) 21. f21(A,B,C,D,E,F,G,H,I,J,K,U) -> f22(A,B,C,D,E,F,G,H,I,J,K,U) [A >= 1 + F] (?,1) 22. f22(A,B,C,D,E,F,G,H,I,J,K,U) -> f23(A,B,C,D,E,F,G,H,I,J,K,U) [G >= 1 + A] (?,1) 23. f22(A,B,C,D,E,F,G,H,I,J,K,U) -> f23(A,B,C,D,E,F,G,H,I,J,K,U) [A >= 1 + G] (?,1) 24. f33(A,B,C,D,E,F,G,H,I,J,K,U) -> f34(A,B,C,D,E,F,G,H,I,J,K,U) [0 >= 1 + H] (?,1) 25. f33(A,B,C,D,E,F,G,H,I,J,K,U) -> f34(A,B,C,D,E,F,G,H,I,J,K,U) [H >= 1] (?,1) 26. f34(A,B,C,D,E,F,G,H,I,J,K,U) -> f35(A,B,C,D,E,F,G,H,I,J,K,U) [D >= 1 + C] (?,1) 27. f34(A,B,C,D,E,F,G,H,I,J,K,U) -> f35(A,B,C,D,E,F,G,H,I,J,K,U) [C >= 1 + D] (?,1) 28. f35(A,B,C,D,E,F,G,H,I,J,K,U) -> f36(A,B,C,D,E,F,G,H,I,J,K,U) [E >= 1 + C] (?,1) 29. f35(A,B,C,D,E,F,G,H,I,J,K,U) -> f36(A,B,C,D,E,F,G,H,I,J,K,U) [C >= 1 + E] (?,1) 30. f36(A,B,C,D,E,F,G,H,I,J,K,U) -> f37(A,B,C,D,E,F,G,H,I,J,K,U) [F >= 1 + C] (?,1) 31. f36(A,B,C,D,E,F,G,H,I,J,K,U) -> f37(A,B,C,D,E,F,G,H,I,J,K,U) [C >= 1 + F] (?,1) 32. f37(A,B,C,D,E,F,G,H,I,J,K,U) -> f38(A,B,C,D,E,F,G,H,I,J,K,U) [G >= 1 + C] (?,1) 33. f37(A,B,C,D,E,F,G,H,I,J,K,U) -> f38(A,B,C,D,E,F,G,H,I,J,K,U) [C >= 1 + G] (?,1) 34. f47(A,B,C,D,E,F,G,H,I,J,K,U) -> f48(A,B,C,D,E,F,G,H,I,J,K,U) [0 >= 1 + H] (?,1) 35. f47(A,B,C,D,E,F,G,H,I,J,K,U) -> f48(A,B,C,D,E,F,G,H,I,J,K,U) [H >= 1] (?,1) 36. f48(A,B,C,D,E,F,G,H,I,J,K,U) -> f49(A,B,C,D,E,F,G,H,I,J,K,U) [E >= 1 + D] (?,1) 37. f48(A,B,C,D,E,F,G,H,I,J,K,U) -> f49(A,B,C,D,E,F,G,H,I,J,K,U) [D >= 1 + E] (?,1) 38. f49(A,B,C,D,E,F,G,H,I,J,K,U) -> f50(A,B,C,D,E,F,G,H,I,J,K,U) [F >= 1 + D] (?,1) 39. f49(A,B,C,D,E,F,G,H,I,J,K,U) -> f50(A,B,C,D,E,F,G,H,I,J,K,U) [D >= 1 + F] (?,1) 40. f50(A,B,C,D,E,F,G,H,I,J,K,U) -> f51(A,B,C,D,E,F,G,H,I,J,K,U) [G >= 1 + D] (?,1) 41. f50(A,B,C,D,E,F,G,H,I,J,K,U) -> f51(A,B,C,D,E,F,G,H,I,J,K,U) [D >= 1 + G] (?,1) 42. f59(A,B,C,D,E,F,G,H,I,J,K,U) -> f60(A,B,C,D,E,F,G,H,I,J,K,U) [0 >= 1 + H] (?,1) 43. f59(A,B,C,D,E,F,G,H,I,J,K,U) -> f60(A,B,C,D,E,F,G,H,I,J,K,U) [H >= 1] (?,1) 44. f60(A,B,C,D,E,F,G,H,I,J,K,U) -> f61(A,B,C,D,E,F,G,H,I,J,K,U) [F >= 1 + E] (?,1) 45. f60(A,B,C,D,E,F,G,H,I,J,K,U) -> f61(A,B,C,D,E,F,G,H,I,J,K,U) [E >= 1 + F] (?,1) 46. f61(A,B,C,D,E,F,G,H,I,J,K,U) -> f62(A,B,C,D,E,F,G,H,I,J,K,U) [G >= 1 + E] (?,1) 47. f61(A,B,C,D,E,F,G,H,I,J,K,U) -> f62(A,B,C,D,E,F,G,H,I,J,K,U) [E >= 1 + G] (?,1) 48. f69(A,B,C,D,E,F,G,H,I,J,K,U) -> f70(A,B,C,D,E,F,G,H,I,J,K,U) [0 >= 1 + H] (?,1) 49. f69(A,B,C,D,E,F,G,H,I,J,K,U) -> f70(A,B,C,D,E,F,G,H,I,J,K,U) [H >= 1] (?,1) 50. f70(A,B,C,D,E,F,G,H,I,J,K,U) -> f71(A,B,C,D,E,F,G,H,I,J,K,U) [G >= 1 + F] (?,1) 51. f70(A,B,C,D,E,F,G,H,I,J,K,U) -> f71(A,B,C,D,E,F,G,H,I,J,K,U) [F >= 1 + G] (?,1) 52. f77(A,B,C,D,E,F,G,H,I,J,K,U) -> f78(A,B,C,D,E,F,G,H,I,J,K,U) [0 >= 1 + H] (?,1) 53. f77(A,B,C,D,E,F,G,H,I,J,K,U) -> f78(A,B,C,D,E,F,G,H,I,J,K,U) [H >= 1] (?,1) 54. f101(A,B,C,D,E,F,G,H,I,J,K,U) -> f102(A,B,C,D,E,F,G,H,I,J,K,U) [0 >= 1 + E] (?,1) 55. f101(A,B,C,D,E,F,G,H,I,J,K,U) -> f102(A,B,C,D,E,F,G,H,I,J,K,U) [E >= 1] (?,1) 56. f108(A,B,C,D,E,F,G,H,I,J,K,U) -> f109(A,B,C,D,E,F,G,H,I,J,K,U) [0 >= 1 + H] (?,1) 57. f108(A,B,C,D,E,F,G,H,I,J,K,U) -> f109(A,B,C,D,E,F,G,H,I,J,K,U) [H >= 1] (?,1) 58. f109(A,B,C,D,E,F,G,H,I,J,K,U) -> f110(A,B,C,D,E,F,G,H,I,J,K,U) [0 >= 1 + I] (?,1) 59. f109(A,B,C,D,E,F,G,H,I,J,K,U) -> f110(A,B,C,D,E,F,G,H,I,J,K,U) [I >= 1] (?,1) 60. f110(A,B,C,D,E,F,G,H,I,J,K,U) -> f111(A,B,C,D,E,F,G,H,I,J,K,U) [0 >= 1 + J] (?,1) 61. f110(A,B,C,D,E,F,G,H,I,J,K,U) -> f111(A,B,C,D,E,F,G,H,I,J,K,U) [J >= 1] (?,1) 62. f7(A,B,C,D,E,F,G,H,I,J,K,U) -> f17(A,B,C,D,E,F,G,1,I,J,K,U) [K >= 1 + B] (?,1) 63. f7(A,B,C,D,E,F,G,H,I,J,K,U) -> f17(A,B,C,D,E,F,G,1,I,J,K,U) [B >= 1 + K] (?,1) 64. f7(A,B,C,D,E,F,G,H,I,J,K,U) -> f17(A,B,C,D,E,F,G,0,I,J,B,U) [B = K] (?,1) 65. f6(A,B,C,D,E,F,G,H,I,J,K,U) -> f17(A,B,C,D,E,F,B,0,I,J,K,U) [B = G] (?,1) 66. f5(A,B,C,D,E,F,G,H,I,J,K,U) -> f17(A,B,C,D,E,B,G,0,I,J,K,U) [B = F] (?,1) 67. f4(A,B,C,D,E,F,G,H,I,J,K,U) -> f17(A,B,C,D,B,F,G,0,I,J,K,U) [B = E] (?,1) 68. f3(A,B,C,D,E,F,G,H,I,J,K,U) -> f17(A,B,C,B,E,F,G,0,I,J,K,U) [B = D] (?,1) 69. f2(A,B,C,D,E,F,G,H,I,J,K,U) -> f17(A,B,B,D,E,F,G,0,I,J,K,U) [B = C] (?,1) 70. f0(A,B,C,D,E,F,G,H,I,J,K,U) -> f17(B,B,C,D,E,F,G,0,I,J,K,U) [B = A] (1,1) 71. f23(A,B,C,D,E,F,G,H,I,J,K,U) -> f33(A,B,C,D,E,F,G,1,I,J,K,U) [K >= 1 + A] (?,1) 72. f23(A,B,C,D,E,F,G,H,I,J,K,U) -> f33(A,B,C,D,E,F,G,1,I,J,K,U) [A >= 1 + K] (?,1) 73. f23(A,B,C,D,E,F,G,H,I,J,K,U) -> f33(A,B,C,D,E,F,G,0,I,J,A,U) [A = K] (?,1) 74. f22(A,B,C,D,E,F,G,H,I,J,K,U) -> f33(A,B,C,D,E,F,A,0,I,J,K,U) [A = G] (?,1) 75. f21(A,B,C,D,E,F,G,H,I,J,K,U) -> f33(A,B,C,D,E,A,G,0,I,J,K,U) [A = F] (?,1) 76. f20(A,B,C,D,E,F,G,H,I,J,K,U) -> f33(A,B,C,D,A,F,G,0,I,J,K,U) [A = E] (?,1) 77. f19(A,B,C,D,E,F,G,H,I,J,K,U) -> f33(A,B,C,A,E,F,G,0,I,J,K,U) [A = D] (?,1) 78. f18(A,B,C,D,E,F,G,H,I,J,K,U) -> f33(A,B,A,D,E,F,G,0,I,J,K,U) [A = C] (?,1) 79. f17(A,B,C,D,E,F,G,H,I,J,K,U) -> f33(A,B,C,D,E,F,G,0,I,J,K,U) [H = 0] (?,1) 80. f38(A,B,C,D,E,F,G,H,I,J,K,U) -> f47(A,B,C,D,E,F,G,1,I,J,K,U) [K >= 1 + C] (?,1) 81. f38(A,B,C,D,E,F,G,H,I,J,K,U) -> f47(A,B,C,D,E,F,G,1,I,J,K,U) [C >= 1 + K] (?,1) 82. f38(A,B,C,D,E,F,G,H,I,J,K,U) -> f47(A,B,C,D,E,F,G,0,I,J,C,U) [C = K] (?,1) 83. f37(A,B,C,D,E,F,G,H,I,J,K,U) -> f47(A,B,C,D,E,F,C,0,I,J,K,U) [C = G] (?,1) 84. f36(A,B,C,D,E,F,G,H,I,J,K,U) -> f47(A,B,C,D,E,C,G,0,I,J,K,U) [C = F] (?,1) 85. f35(A,B,C,D,E,F,G,H,I,J,K,U) -> f47(A,B,C,D,C,F,G,0,I,J,K,U) [C = E] (?,1) 86. f34(A,B,C,D,E,F,G,H,I,J,K,U) -> f47(A,B,C,C,E,F,G,0,I,J,K,U) [C = D] (?,1) 87. f33(A,B,C,D,E,F,G,H,I,J,K,U) -> f47(A,B,C,D,E,F,G,0,I,J,K,U) [H = 0] (?,1) 88. f51(A,B,C,D,E,F,G,H,I,J,K,U) -> f59(A,B,C,D,E,F,G,1,I,J,K,U) [K >= 1 + D] (?,1) 89. f51(A,B,C,D,E,F,G,H,I,J,K,U) -> f59(A,B,C,D,E,F,G,1,I,J,K,U) [D >= 1 + K] (?,1) 90. f51(A,B,C,D,E,F,G,H,I,J,K,U) -> f59(A,B,C,D,E,F,G,0,I,J,D,U) [D = K] (?,1) 91. f50(A,B,C,D,E,F,G,H,I,J,K,U) -> f59(A,B,C,D,E,F,D,0,I,J,K,U) [D = G] (?,1) 92. f49(A,B,C,D,E,F,G,H,I,J,K,U) -> f59(A,B,C,D,E,D,G,0,I,J,K,U) [D = F] (?,1) 93. f48(A,B,C,D,E,F,G,H,I,J,K,U) -> f59(A,B,C,D,D,F,G,0,I,J,K,U) [D = E] (?,1) 94. f47(A,B,C,D,E,F,G,H,I,J,K,U) -> f59(A,B,C,D,E,F,G,0,I,J,K,U) [H = 0] (?,1) 95. f62(A,B,C,D,E,F,G,H,I,J,K,U) -> f69(A,B,C,D,E,F,G,1,I,J,K,U) [K >= 1 + E] (?,1) 96. f62(A,B,C,D,E,F,G,H,I,J,K,U) -> f69(A,B,C,D,E,F,G,1,I,J,K,U) [E >= 1 + K] (?,1) 97. f62(A,B,C,D,E,F,G,H,I,J,K,U) -> f69(A,B,C,D,E,F,G,0,I,J,E,U) [E = K] (?,1) 98. f61(A,B,C,D,E,F,G,H,I,J,K,U) -> f69(A,B,C,D,E,F,E,0,I,J,K,U) [E = G] (?,1) 99. f60(A,B,C,D,E,F,G,H,I,J,K,U) -> f69(A,B,C,D,E,E,G,0,I,J,K,U) [E = F] (?,1) 100. f59(A,B,C,D,E,F,G,H,I,J,K,U) -> f69(A,B,C,D,E,F,G,0,I,J,K,U) [H = 0] (?,1) 101. f71(A,B,C,D,E,F,G,H,I,J,K,U) -> f77(A,B,C,D,E,F,G,1,I,J,K,U) [K >= 1 + F] (?,1) 102. f71(A,B,C,D,E,F,G,H,I,J,K,U) -> f77(A,B,C,D,E,F,G,1,I,J,K,U) [F >= 1 + K] (?,1) 103. f71(A,B,C,D,E,F,G,H,I,J,K,U) -> f77(A,B,C,D,E,F,G,0,I,J,F,U) [F = K] (?,1) 104. f70(A,B,C,D,E,F,G,H,I,J,K,U) -> f77(A,B,C,D,E,F,F,0,I,J,K,U) [F = G] (?,1) 105. f69(A,B,C,D,E,F,G,H,I,J,K,U) -> f77(A,B,C,D,E,F,G,0,I,J,K,U) [H = 0] (?,1) 106. f78(A,B,C,D,E,F,G,H,I,J,K,U) -> f83(A,B,C,D,E,F,G,1,I,J,K,U) [K >= 1 + G] (?,1) 107. f78(A,B,C,D,E,F,G,H,I,J,K,U) -> f83(A,B,C,D,E,F,G,1,I,J,K,U) [G >= 1 + K] (?,1) 108. f78(A,B,C,D,E,F,G,H,I,J,K,U) -> f83(A,B,C,D,E,F,G,0,I,J,G,U) [G = K] (?,1) 109. f77(A,B,C,D,E,F,G,H,I,J,K,U) -> f83(A,B,C,D,E,F,G,0,I,J,K,U) [H = 0] (?,1) 110. f83(A,B,C,D,E,F,G,H,I,J,K,U) -> f101(A,B,C,D,E,F,G,H,1,J,K,U) [9 >= K && 9 >= G && 9 >= F && 9 >= E && 9 >= D && 9 >= C && 9 >= B && 9 >= A] (?,1) 111. f83(A,B,C,D,E,F,G,H,I,J,K,U) -> f101(A,B,C,D,E,F,G,H,0,J,K,U) [K >= 10 && 9 >= G && 9 >= F && 9 >= E && 9 >= D && 9 >= C && 9 >= B && 9 >= A] (?,1) 112. f83(A,B,C,D,E,F,G,H,I,J,K,U) -> f101(A,B,C,D,E,F,G,H,0,J,K,U) [G >= 10 && 9 >= F && 9 >= E && 9 >= D && 9 >= C && 9 >= B && 9 >= A] (?,1) 113. f83(A,B,C,D,E,F,G,H,I,J,K,U) -> f101(A,B,C,D,E,F,G,H,0,J,K,U) [F >= 10 && 9 >= E && 9 >= D && 9 >= C && 9 >= B && 9 >= A] (?,1) 114. f83(A,B,C,D,E,F,G,H,I,J,K,U) -> f101(A,B,C,D,E,F,G,H,0,J,K,U) [E >= 10 && 9 >= D && 9 >= C && 9 >= B && 9 >= A] (?,1) 115. f83(A,B,C,D,E,F,G,H,I,J,K,U) -> f101(A,B,C,D,E,F,G,H,0,J,K,U) [D >= 10 && 9 >= C && 9 >= B && 9 >= A] (?,1) 116. f83(A,B,C,D,E,F,G,H,I,J,K,U) -> f101(A,B,C,D,E,F,G,H,0,J,K,U) [C >= 10 && 9 >= B && 9 >= A] (?,1) 117. f83(A,B,C,D,E,F,G,H,I,J,K,U) -> f101(A,B,C,D,E,F,G,H,0,J,K,U) [9 >= B && A >= 10] (?,1) 118. f83(A,B,C,D,E,F,G,H,I,J,K,U) -> f101(A,B,C,D,E,F,G,H,0,J,K,U) [B >= 10] (?,1) 119. f102(A,B,C,D,E,F,G,H,I,J,K,U) -> f108(A,B,C,D,E,F,G,H,I,1,K,W) [0 >= 1 + B] (?,1) 120. f102(A,B,C,D,E,F,G,H,I,J,K,U) -> f108(A,B,C,D,E,F,G,H,I,1,K,W) [B >= 1] (?,1) 121. f102(A,B,C,D,E,F,G,H,I,J,K,U) -> f108(A,0,C,D,E,F,G,H,I,0,K,W) [B = 0] (?,1) 122. f101(A,B,C,D,E,F,G,H,I,J,K,U) -> f108(A,B,C,D,0,F,G,H,I,0,K,W) [E = 0] (?,1) 123. f111(A,B,C,D,E,F,G,H,I,J,K,U) -> f119(A,B,C,D,E,F,G,H,I,J,K,U) [0 >= 1 + U] (?,1) 124. f111(A,B,C,D,E,F,G,H,I,J,K,U) -> f119(A,B,C,D,E,F,G,H,I,J,K,U) [U >= 1] (?,1) 125. f111(A,B,C,D,E,F,G,H,I,J,K,U) -> f119(A,B,C,D,E,F,G,H,I,J,K,0) [U = 0] (?,1) 126. f110(A,B,C,D,E,F,G,H,I,J,K,U) -> f119(A,B,C,D,E,F,G,H,I,0,K,U) [J = 0] (?,1) 127. f109(A,B,C,D,E,F,G,H,I,J,K,U) -> f119(A,B,C,D,E,F,G,H,0,J,K,U) [I = 0] (?,1) 128. f108(A,B,C,D,E,F,G,H,I,J,K,U) -> f119(A,B,C,D,E,F,G,0,I,J,K,U) [H = 0] (?,1) Signature: {(f0,12) ;(f101,12) ;(f102,12) ;(f108,12) ;(f109,12) ;(f110,12) ;(f111,12) ;(f119,12) ;(f17,12) ;(f18,12) ;(f19,12) ;(f2,12) ;(f20,12) ;(f21,12) ;(f22,12) ;(f23,12) ;(f3,12) ;(f33,12) ;(f34,12) ;(f35,12) ;(f36,12) ;(f37,12) ;(f38,12) ;(f4,12) ;(f47,12) ;(f48,12) ;(f49,12) ;(f5,12) ;(f50,12) ;(f51,12) ;(f59,12) ;(f6,12) ;(f60,12) ;(f61,12) ;(f62,12) ;(f69,12) ;(f7,12) ;(f70,12) ;(f71,12) ;(f77,12) ;(f78,12) ;(f83,12)} Flow Graph: [0->{2,3,69},1->{2,3,69},2->{4,5,68},3->{4,5,68},4->{6,7,67},5->{6,7,67},6->{8,9,66},7->{8,9,66},8->{10,11 ,65},9->{10,11,65},10->{62,63,64},11->{62,63,64},12->{14,15,78},13->{14,15,78},14->{16,17,77},15->{16,17,77} ,16->{18,19,76},17->{18,19,76},18->{20,21,75},19->{20,21,75},20->{22,23,74},21->{22,23,74},22->{71,72,73} ,23->{71,72,73},24->{26,27,86},25->{26,27,86},26->{28,29,85},27->{28,29,85},28->{30,31,84},29->{30,31,84} ,30->{32,33,83},31->{32,33,83},32->{80,81,82},33->{80,81,82},34->{36,37,93},35->{36,37,93},36->{38,39,92} ,37->{38,39,92},38->{40,41,91},39->{40,41,91},40->{88,89,90},41->{88,89,90},42->{44,45,99},43->{44,45,99} ,44->{46,47,98},45->{46,47,98},46->{95,96,97},47->{95,96,97},48->{50,51,104},49->{50,51,104},50->{101,102 ,103},51->{101,102,103},52->{106,107,108},53->{106,107,108},54->{119,120,121},55->{119,120,121},56->{58,59 ,127},57->{58,59,127},58->{60,61,126},59->{60,61,126},60->{123,124,125},61->{123,124,125},62->{13},63->{13} ,64->{79},65->{79},66->{79},67->{79},68->{79},69->{79},70->{79},71->{25},72->{25},73->{87},74->{87},75->{87} ,76->{87},77->{87},78->{87},79->{87},80->{35},81->{35},82->{94},83->{94},84->{94},85->{94},86->{94},87->{94} ,88->{43},89->{43},90->{100},91->{100},92->{100},93->{100},94->{100},95->{49},96->{49},97->{105},98->{105} ,99->{105},100->{105},101->{53},102->{53},103->{109},104->{109},105->{109},106->{110,111,112,113,114,115,116 ,117,118},107->{110,112,113,114,115,116,117,118},108->{110,112,113,114,115,116,117,118},109->{110,111,112 ,113,114,115,116,117,118},110->{54,55,122},111->{54,55,122},112->{54,55,122},113->{54,55,122},114->{55} ,115->{54,55,122},116->{54,55,122},117->{54,55,122},118->{54,55,122},119->{56,57,128},120->{56,57,128} ,121->{56,57,128},122->{56,57,128},123->{},124->{},125->{},126->{},127->{},128->{}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,J>, J) (< 0,0,K>, K) (< 0,0,U>, U) (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,J>, J) (< 1,0,K>, K) (< 1,0,U>, U) (< 2,0,A>, A) (< 2,0,B>, B) (< 2,0,C>, C) (< 2,0,D>, D) (< 2,0,E>, E) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 2,0,J>, J) (< 2,0,K>, K) (< 2,0,U>, U) (< 3,0,A>, A) (< 3,0,B>, B) (< 3,0,C>, C) (< 3,0,D>, D) (< 3,0,E>, E) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,I>, I) (< 3,0,J>, J) (< 3,0,K>, K) (< 3,0,U>, U) (< 4,0,A>, A) (< 4,0,B>, B) (< 4,0,C>, C) (< 4,0,D>, D) (< 4,0,E>, E) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,I>, I) (< 4,0,J>, J) (< 4,0,K>, K) (< 4,0,U>, U) (< 5,0,A>, A) (< 5,0,B>, B) (< 5,0,C>, C) (< 5,0,D>, D) (< 5,0,E>, E) (< 5,0,F>, F) (< 5,0,G>, G) (< 5,0,H>, H) (< 5,0,I>, I) (< 5,0,J>, J) (< 5,0,K>, K) (< 5,0,U>, U) (< 6,0,A>, A) (< 6,0,B>, B) (< 6,0,C>, C) (< 6,0,D>, D) (< 6,0,E>, E) (< 6,0,F>, F) (< 6,0,G>, G) (< 6,0,H>, H) (< 6,0,I>, I) (< 6,0,J>, J) (< 6,0,K>, K) (< 6,0,U>, U) (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, C) (< 7,0,D>, D) (< 7,0,E>, E) (< 7,0,F>, F) (< 7,0,G>, G) (< 7,0,H>, H) (< 7,0,I>, I) (< 7,0,J>, J) (< 7,0,K>, K) (< 7,0,U>, U) (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, C) (< 8,0,D>, D) (< 8,0,E>, E) (< 8,0,F>, F) (< 8,0,G>, G) (< 8,0,H>, H) (< 8,0,I>, I) (< 8,0,J>, J) (< 8,0,K>, K) (< 8,0,U>, U) (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, C) (< 9,0,D>, D) (< 9,0,E>, E) (< 9,0,F>, F) (< 9,0,G>, G) (< 9,0,H>, H) (< 9,0,I>, I) (< 9,0,J>, J) (< 9,0,K>, K) (< 9,0,U>, U) (< 10,0,A>, A) (< 10,0,B>, B) (< 10,0,C>, C) (< 10,0,D>, D) (< 10,0,E>, E) (< 10,0,F>, F) (< 10,0,G>, G) (< 10,0,H>, H) (< 10,0,I>, I) (< 10,0,J>, J) (< 10,0,K>, K) (< 10,0,U>, U) (< 11,0,A>, A) (< 11,0,B>, B) (< 11,0,C>, C) (< 11,0,D>, D) (< 11,0,E>, E) (< 11,0,F>, F) (< 11,0,G>, G) (< 11,0,H>, H) (< 11,0,I>, I) (< 11,0,J>, J) (< 11,0,K>, K) (< 11,0,U>, U) (< 12,0,A>, A + B) (< 12,0,B>, B) (< 12,0,C>, B + C) (< 12,0,D>, B + D) (< 12,0,E>, B + E) (< 12,0,F>, B + F) (< 12,0,G>, B + G) (< 12,0,H>, 1) (< 12,0,I>, I) (< 12,0,J>, J) (< 12,0,K>, B + K) (< 12,0,U>, U) (< 13,0,A>, A + B) (< 13,0,B>, B) (< 13,0,C>, B + C) (< 13,0,D>, B + D) (< 13,0,E>, B + E) (< 13,0,F>, B + F) (< 13,0,G>, B + G) (< 13,0,H>, 1) (< 13,0,I>, I) (< 13,0,J>, J) (< 13,0,K>, B + K) (< 13,0,U>, U) (< 14,0,A>, A + B) (< 14,0,B>, B) (< 14,0,C>, B + C) (< 14,0,D>, B + D) (< 14,0,E>, B + E) (< 14,0,F>, B + F) (< 14,0,G>, B + G) (< 14,0,H>, 1) (< 14,0,I>, I) (< 14,0,J>, J) (< 14,0,K>, B + K) (< 14,0,U>, U) (< 15,0,A>, A + B) (< 15,0,B>, B) (< 15,0,C>, B + C) (< 15,0,D>, B + D) (< 15,0,E>, B + E) (< 15,0,F>, B + F) (< 15,0,G>, B + G) (< 15,0,H>, 1) (< 15,0,I>, I) (< 15,0,J>, J) (< 15,0,K>, B + K) (< 15,0,U>, U) (< 16,0,A>, A + B) (< 16,0,B>, B) (< 16,0,C>, B + C) (< 16,0,D>, B + D) (< 16,0,E>, B + E) (< 16,0,F>, B + F) (< 16,0,G>, B + G) (< 16,0,H>, 1) (< 16,0,I>, I) (< 16,0,J>, J) (< 16,0,K>, B + K) (< 16,0,U>, U) (< 17,0,A>, A + B) (< 17,0,B>, B) (< 17,0,C>, B + C) (< 17,0,D>, B + D) (< 17,0,E>, B + E) (< 17,0,F>, B + F) (< 17,0,G>, B + G) (< 17,0,H>, 1) (< 17,0,I>, I) (< 17,0,J>, J) (< 17,0,K>, B + K) (< 17,0,U>, U) (< 18,0,A>, A + B) (< 18,0,B>, B) (< 18,0,C>, B + C) (< 18,0,D>, B + D) (< 18,0,E>, B + E) (< 18,0,F>, B + F) (< 18,0,G>, B + G) (< 18,0,H>, 1) (< 18,0,I>, I) (< 18,0,J>, J) (< 18,0,K>, B + K) (< 18,0,U>, U) (< 19,0,A>, A + B) (< 19,0,B>, B) (< 19,0,C>, B + C) (< 19,0,D>, B + D) (< 19,0,E>, B + E) (< 19,0,F>, B + F) (< 19,0,G>, B + G) (< 19,0,H>, 1) (< 19,0,I>, I) (< 19,0,J>, J) (< 19,0,K>, B + K) (< 19,0,U>, U) (< 20,0,A>, A + B) (< 20,0,B>, B) (< 20,0,C>, B + C) (< 20,0,D>, B + D) (< 20,0,E>, B + E) (< 20,0,F>, B + F) (< 20,0,G>, B + G) (< 20,0,H>, 1) (< 20,0,I>, I) (< 20,0,J>, J) (< 20,0,K>, B + K) (< 20,0,U>, U) (< 21,0,A>, A + B) (< 21,0,B>, B) (< 21,0,C>, B + C) (< 21,0,D>, B + D) (< 21,0,E>, B + E) (< 21,0,F>, B + F) (< 21,0,G>, B + G) (< 21,0,H>, 1) (< 21,0,I>, I) (< 21,0,J>, J) (< 21,0,K>, B + K) (< 21,0,U>, U) (< 22,0,A>, A + B) (< 22,0,B>, B) (< 22,0,C>, B + C) (< 22,0,D>, B + D) (< 22,0,E>, B + E) (< 22,0,F>, B + F) (< 22,0,G>, B + G) (< 22,0,H>, 1) (< 22,0,I>, I) (< 22,0,J>, J) (< 22,0,K>, B + K) (< 22,0,U>, U) (< 23,0,A>, A + B) (< 23,0,B>, B) (< 23,0,C>, B + C) (< 23,0,D>, B + D) (< 23,0,E>, B + E) (< 23,0,F>, B + F) (< 23,0,G>, B + G) (< 23,0,H>, 1) (< 23,0,I>, I) (< 23,0,J>, J) (< 23,0,K>, B + K) (< 23,0,U>, U) (< 24,0,A>, A + B) (< 24,0,B>, B) (< 24,0,C>, A + B + C) (< 24,0,D>, A + B + D) (< 24,0,E>, A + B + E) (< 24,0,F>, A + B + F) (< 24,0,G>, A + B + G) (< 24,0,H>, 1) (< 24,0,I>, I) (< 24,0,J>, J) (< 24,0,K>, A + B + K) (< 24,0,U>, U) (< 25,0,A>, A + B) (< 25,0,B>, B) (< 25,0,C>, A + B + C) (< 25,0,D>, A + B + D) (< 25,0,E>, A + B + E) (< 25,0,F>, A + B + F) (< 25,0,G>, A + B + G) (< 25,0,H>, 1) (< 25,0,I>, I) (< 25,0,J>, J) (< 25,0,K>, A + B + K) (< 25,0,U>, U) (< 26,0,A>, A + B) (< 26,0,B>, B) (< 26,0,C>, A + B + C) (< 26,0,D>, A + B + D) (< 26,0,E>, A + B + E) (< 26,0,F>, A + B + F) (< 26,0,G>, A + B + G) (< 26,0,H>, 1) (< 26,0,I>, I) (< 26,0,J>, J) (< 26,0,K>, A + B + K) (< 26,0,U>, U) (< 27,0,A>, A + B) (< 27,0,B>, B) (< 27,0,C>, A + B + C) (< 27,0,D>, A + B + D) (< 27,0,E>, A + B + E) (< 27,0,F>, A + B + F) (< 27,0,G>, A + B + G) (< 27,0,H>, 1) (< 27,0,I>, I) (< 27,0,J>, J) (< 27,0,K>, A + B + K) (< 27,0,U>, U) (< 28,0,A>, A + B) (< 28,0,B>, B) (< 28,0,C>, A + B + C) (< 28,0,D>, A + B + D) (< 28,0,E>, A + B + E) (< 28,0,F>, A + B + F) (< 28,0,G>, A + B + G) (< 28,0,H>, 1) (< 28,0,I>, I) (< 28,0,J>, J) (< 28,0,K>, A + B + K) (< 28,0,U>, U) (< 29,0,A>, A + B) (< 29,0,B>, B) (< 29,0,C>, A + B + C) (< 29,0,D>, A + B + D) (< 29,0,E>, A + B + E) (< 29,0,F>, A + B + F) (< 29,0,G>, A + B + G) (< 29,0,H>, 1) (< 29,0,I>, I) (< 29,0,J>, J) (< 29,0,K>, A + B + K) (< 29,0,U>, U) (< 30,0,A>, A + B) (< 30,0,B>, B) (< 30,0,C>, A + B + C) (< 30,0,D>, A + B + D) (< 30,0,E>, A + B + E) (< 30,0,F>, A + B + F) (< 30,0,G>, A + B + G) (< 30,0,H>, 1) (< 30,0,I>, I) (< 30,0,J>, J) (< 30,0,K>, A + B + K) (< 30,0,U>, U) (< 31,0,A>, A + B) (< 31,0,B>, B) (< 31,0,C>, A + B + C) (< 31,0,D>, A + B + D) (< 31,0,E>, A + B + E) (< 31,0,F>, A + B + F) (< 31,0,G>, A + B + G) (< 31,0,H>, 1) (< 31,0,I>, I) (< 31,0,J>, J) (< 31,0,K>, A + B + K) (< 31,0,U>, U) (< 32,0,A>, A + B) (< 32,0,B>, B) (< 32,0,C>, A + B + C) (< 32,0,D>, A + B + D) (< 32,0,E>, A + B + E) (< 32,0,F>, A + B + F) (< 32,0,G>, A + B + G) (< 32,0,H>, 1) (< 32,0,I>, I) (< 32,0,J>, J) (< 32,0,K>, A + B + K) (< 32,0,U>, U) (< 33,0,A>, A + B) (< 33,0,B>, B) (< 33,0,C>, A + B + C) (< 33,0,D>, A + B + D) (< 33,0,E>, A + B + E) (< 33,0,F>, A + B + F) (< 33,0,G>, A + B + G) (< 33,0,H>, 1) (< 33,0,I>, I) (< 33,0,J>, J) (< 33,0,K>, A + B + K) (< 33,0,U>, U) (< 34,0,A>, A + B) (< 34,0,B>, B) (< 34,0,C>, A + B + C) (< 34,0,D>, A + B + C + D) (< 34,0,E>, A + B + C + E) (< 34,0,F>, A + B + C + F) (< 34,0,G>, A + B + C + G) (< 34,0,H>, 1) (< 34,0,I>, I) (< 34,0,J>, J) (< 34,0,K>, A + B + C + K) (< 34,0,U>, U) (< 35,0,A>, A + B) (< 35,0,B>, B) (< 35,0,C>, A + B + C) (< 35,0,D>, A + B + C + D) (< 35,0,E>, A + B + C + E) (< 35,0,F>, A + B + C + F) (< 35,0,G>, A + B + C + G) (< 35,0,H>, 1) (< 35,0,I>, I) (< 35,0,J>, J) (< 35,0,K>, A + B + C + K) (< 35,0,U>, U) (< 36,0,A>, A + B) (< 36,0,B>, B) (< 36,0,C>, A + B + C) (< 36,0,D>, A + B + C + D) (< 36,0,E>, A + B + C + E) (< 36,0,F>, A + B + C + F) (< 36,0,G>, A + B + C + G) (< 36,0,H>, 1) (< 36,0,I>, I) (< 36,0,J>, J) (< 36,0,K>, A + B + C + K) (< 36,0,U>, U) (< 37,0,A>, A + B) (< 37,0,B>, B) (< 37,0,C>, A + B + C) (< 37,0,D>, A + B + C + D) (< 37,0,E>, A + B + C + E) (< 37,0,F>, A + B + C + F) (< 37,0,G>, A + B + C + G) (< 37,0,H>, 1) (< 37,0,I>, I) (< 37,0,J>, J) (< 37,0,K>, A + B + C + K) (< 37,0,U>, U) (< 38,0,A>, A + B) (< 38,0,B>, B) (< 38,0,C>, A + B + C) (< 38,0,D>, A + B + C + D) (< 38,0,E>, A + B + C + E) (< 38,0,F>, A + B + C + F) (< 38,0,G>, A + B + C + G) (< 38,0,H>, 1) (< 38,0,I>, I) (< 38,0,J>, J) (< 38,0,K>, A + B + C + K) (< 38,0,U>, U) (< 39,0,A>, A + B) (< 39,0,B>, B) (< 39,0,C>, A + B + C) (< 39,0,D>, A + B + C + D) (< 39,0,E>, A + B + C + E) (< 39,0,F>, A + B + C + F) (< 39,0,G>, A + B + C + G) (< 39,0,H>, 1) (< 39,0,I>, I) (< 39,0,J>, J) (< 39,0,K>, A + B + C + K) (< 39,0,U>, U) (< 40,0,A>, A + B) (< 40,0,B>, B) (< 40,0,C>, A + B + C) (< 40,0,D>, A + B + C + D) (< 40,0,E>, A + B + C + E) (< 40,0,F>, A + B + C + F) (< 40,0,G>, A + B + C + G) (< 40,0,H>, 1) (< 40,0,I>, I) (< 40,0,J>, J) (< 40,0,K>, A + B + C + K) (< 40,0,U>, U) (< 41,0,A>, A + B) (< 41,0,B>, B) (< 41,0,C>, A + B + C) (< 41,0,D>, A + B + C + D) (< 41,0,E>, A + B + C + E) (< 41,0,F>, A + B + C + F) (< 41,0,G>, A + B + C + G) (< 41,0,H>, 1) (< 41,0,I>, I) (< 41,0,J>, J) (< 41,0,K>, A + B + C + K) (< 41,0,U>, U) (< 42,0,A>, A + B) (< 42,0,B>, B) (< 42,0,C>, A + B + C) (< 42,0,D>, A + B + C + D) (< 42,0,E>, A + B + C + D + E) (< 42,0,F>, A + B + C + D + F) (< 42,0,G>, A + B + C + D + G) (< 42,0,H>, 1) (< 42,0,I>, I) (< 42,0,J>, J) (< 42,0,K>, A + B + C + D + K) (< 42,0,U>, U) (< 43,0,A>, A + B) (< 43,0,B>, B) (< 43,0,C>, A + B + C) (< 43,0,D>, A + B + C + D) (< 43,0,E>, A + B + C + D + E) (< 43,0,F>, A + B + C + D + F) (< 43,0,G>, A + B + C + D + G) (< 43,0,H>, 1) (< 43,0,I>, I) (< 43,0,J>, J) (< 43,0,K>, A + B + C + D + K) (< 43,0,U>, U) (< 44,0,A>, A + B) (< 44,0,B>, B) (< 44,0,C>, A + B + C) (< 44,0,D>, A + B + C + D) (< 44,0,E>, A + B + C + D + E) (< 44,0,F>, A + B + C + D + F) (< 44,0,G>, A + B + C + D + G) (< 44,0,H>, 1) (< 44,0,I>, I) (< 44,0,J>, J) (< 44,0,K>, A + B + C + D + K) (< 44,0,U>, U) (< 45,0,A>, A + B) (< 45,0,B>, B) (< 45,0,C>, A + B + C) (< 45,0,D>, A + B + C + D) (< 45,0,E>, A + B + C + D + E) (< 45,0,F>, A + B + C + D + F) (< 45,0,G>, A + B + C + D + G) (< 45,0,H>, 1) (< 45,0,I>, I) (< 45,0,J>, J) (< 45,0,K>, A + B + C + D + K) (< 45,0,U>, U) (< 46,0,A>, A + B) (< 46,0,B>, B) (< 46,0,C>, A + B + C) (< 46,0,D>, A + B + C + D) (< 46,0,E>, A + B + C + D + E) (< 46,0,F>, A + B + C + D + F) (< 46,0,G>, A + B + C + D + G) (< 46,0,H>, 1) (< 46,0,I>, I) (< 46,0,J>, J) (< 46,0,K>, A + B + C + D + K) (< 46,0,U>, U) (< 47,0,A>, A + B) (< 47,0,B>, B) (< 47,0,C>, A + B + C) (< 47,0,D>, A + B + C + D) (< 47,0,E>, A + B + C + D + E) (< 47,0,F>, A + B + C + D + F) (< 47,0,G>, A + B + C + D + G) (< 47,0,H>, 1) (< 47,0,I>, I) (< 47,0,J>, J) (< 47,0,K>, A + B + C + D + K) (< 47,0,U>, U) (< 48,0,A>, A + B) (< 48,0,B>, B) (< 48,0,C>, A + B + C) (< 48,0,D>, A + B + C + D) (< 48,0,E>, A + B + C + D + E) (< 48,0,F>, A + B + C + D + E + F) (< 48,0,G>, A + B + C + D + E + G) (< 48,0,H>, 1) (< 48,0,I>, I) (< 48,0,J>, J) (< 48,0,K>, A + B + C + D + E + K) (< 48,0,U>, U) (< 49,0,A>, A + B) (< 49,0,B>, B) (< 49,0,C>, A + B + C) (< 49,0,D>, A + B + C + D) (< 49,0,E>, A + B + C + D + E) (< 49,0,F>, A + B + C + D + E + F) (< 49,0,G>, A + B + C + D + E + G) (< 49,0,H>, 1) (< 49,0,I>, I) (< 49,0,J>, J) (< 49,0,K>, A + B + C + D + E + K) (< 49,0,U>, U) (< 50,0,A>, A + B) (< 50,0,B>, B) (< 50,0,C>, A + B + C) (< 50,0,D>, A + B + C + D) (< 50,0,E>, A + B + C + D + E) (< 50,0,F>, A + B + C + D + E + F) (< 50,0,G>, A + B + C + D + E + G) (< 50,0,H>, 1) (< 50,0,I>, I) (< 50,0,J>, J) (< 50,0,K>, A + B + C + D + E + K) (< 50,0,U>, U) (< 51,0,A>, A + B) (< 51,0,B>, B) (< 51,0,C>, A + B + C) (< 51,0,D>, A + B + C + D) (< 51,0,E>, A + B + C + D + E) (< 51,0,F>, A + B + C + D + E + F) (< 51,0,G>, A + B + C + D + E + G) (< 51,0,H>, 1) (< 51,0,I>, I) (< 51,0,J>, J) (< 51,0,K>, A + B + C + D + E + K) (< 51,0,U>, U) (< 52,0,A>, A + B) (< 52,0,B>, B) (< 52,0,C>, A + B + C) (< 52,0,D>, A + B + C + D) (< 52,0,E>, A + B + C + D + E) (< 52,0,F>, A + B + C + D + E + F) (< 52,0,G>, A + B + C + D + E + F + G) (< 52,0,H>, 1) (< 52,0,I>, I) (< 52,0,J>, J) (< 52,0,K>, A + B + C + D + E + F + K) (< 52,0,U>, U) (< 53,0,A>, A + B) (< 53,0,B>, B) (< 53,0,C>, A + B + C) (< 53,0,D>, A + B + C + D) (< 53,0,E>, A + B + C + D + E) (< 53,0,F>, A + B + C + D + E + F) (< 53,0,G>, A + B + C + D + E + F + G) (< 53,0,H>, 1) (< 53,0,I>, I) (< 53,0,J>, J) (< 53,0,K>, A + B + C + D + E + F + K) (< 53,0,U>, U) (< 54,0,A>, A + B) (< 54,0,B>, B) (< 54,0,C>, A + B + C) (< 54,0,D>, A + B + C + D) (< 54,0,E>, A + B + C + D + E) (< 54,0,F>, A + B + C + D + E + F) (< 54,0,G>, A + B + C + D + E + F + G) (< 54,0,H>, 1) (< 54,0,I>, 1) (< 54,0,J>, J) (< 54,0,K>, A + B + C + D + E + F + G + K) (< 54,0,U>, U) (< 55,0,A>, A + B) (< 55,0,B>, B) (< 55,0,C>, A + B + C) (< 55,0,D>, A + B + C + D) (< 55,0,E>, A + B + C + D + E) (< 55,0,F>, A + B + C + D + E + F) (< 55,0,G>, A + B + C + D + E + F + G) (< 55,0,H>, 1) (< 55,0,I>, 1) (< 55,0,J>, J) (< 55,0,K>, A + B + C + D + E + F + G + K) (< 55,0,U>, U) (< 56,0,A>, A + B) (< 56,0,B>, B) (< 56,0,C>, A + B + C) (< 56,0,D>, A + B + C + D) (< 56,0,E>, A + B + C + D + E) (< 56,0,F>, A + B + C + D + E + F) (< 56,0,G>, A + B + C + D + E + F + G) (< 56,0,H>, 1) (< 56,0,I>, 1) (< 56,0,J>, 1) (< 56,0,K>, A + B + C + D + E + F + G + K) (< 56,0,U>, ?) (< 57,0,A>, A + B) (< 57,0,B>, B) (< 57,0,C>, A + B + C) (< 57,0,D>, A + B + C + D) (< 57,0,E>, A + B + C + D + E) (< 57,0,F>, A + B + C + D + E + F) (< 57,0,G>, A + B + C + D + E + F + G) (< 57,0,H>, 1) (< 57,0,I>, 1) (< 57,0,J>, 1) (< 57,0,K>, A + B + C + D + E + F + G + K) (< 57,0,U>, ?) (< 58,0,A>, A + B) (< 58,0,B>, B) (< 58,0,C>, A + B + C) (< 58,0,D>, A + B + C + D) (< 58,0,E>, A + B + C + D + E) (< 58,0,F>, A + B + C + D + E + F) (< 58,0,G>, A + B + C + D + E + F + G) (< 58,0,H>, 1) (< 58,0,I>, 1) (< 58,0,J>, 1) (< 58,0,K>, A + B + C + D + E + F + G + K) (< 58,0,U>, ?) (< 59,0,A>, A + B) (< 59,0,B>, B) (< 59,0,C>, A + B + C) (< 59,0,D>, A + B + C + D) (< 59,0,E>, A + B + C + D + E) (< 59,0,F>, A + B + C + D + E + F) (< 59,0,G>, A + B + C + D + E + F + G) (< 59,0,H>, 1) (< 59,0,I>, 1) (< 59,0,J>, 1) (< 59,0,K>, A + B + C + D + E + F + G + K) (< 59,0,U>, ?) (< 60,0,A>, A + B) (< 60,0,B>, B) (< 60,0,C>, A + B + C) (< 60,0,D>, A + B + C + D) (< 60,0,E>, A + B + C + D + E) (< 60,0,F>, A + B + C + D + E + F) (< 60,0,G>, A + B + C + D + E + F + G) (< 60,0,H>, 1) (< 60,0,I>, 1) (< 60,0,J>, 1) (< 60,0,K>, A + B + C + D + E + F + G + K) (< 60,0,U>, ?) (< 61,0,A>, A + B) (< 61,0,B>, B) (< 61,0,C>, A + B + C) (< 61,0,D>, A + B + C + D) (< 61,0,E>, A + B + C + D + E) (< 61,0,F>, A + B + C + D + E + F) (< 61,0,G>, A + B + C + D + E + F + G) (< 61,0,H>, 1) (< 61,0,I>, 1) (< 61,0,J>, 1) (< 61,0,K>, A + B + C + D + E + F + G + K) (< 61,0,U>, ?) (< 62,0,A>, A) (< 62,0,B>, B) (< 62,0,C>, C) (< 62,0,D>, D) (< 62,0,E>, E) (< 62,0,F>, F) (< 62,0,G>, G) (< 62,0,H>, 1) (< 62,0,I>, I) (< 62,0,J>, J) (< 62,0,K>, K) (< 62,0,U>, U) (< 63,0,A>, A) (< 63,0,B>, B) (< 63,0,C>, C) (< 63,0,D>, D) (< 63,0,E>, E) (< 63,0,F>, F) (< 63,0,G>, G) (< 63,0,H>, 1) (< 63,0,I>, I) (< 63,0,J>, J) (< 63,0,K>, K) (< 63,0,U>, U) (< 64,0,A>, A) (< 64,0,B>, B) (< 64,0,C>, C) (< 64,0,D>, D) (< 64,0,E>, E) (< 64,0,F>, F) (< 64,0,G>, G) (< 64,0,H>, 0) (< 64,0,I>, I) (< 64,0,J>, J) (< 64,0,K>, B) (< 64,0,U>, U) (< 65,0,A>, A) (< 65,0,B>, B) (< 65,0,C>, C) (< 65,0,D>, D) (< 65,0,E>, E) (< 65,0,F>, F) (< 65,0,G>, B) (< 65,0,H>, 0) (< 65,0,I>, I) (< 65,0,J>, J) (< 65,0,K>, K) (< 65,0,U>, U) (< 66,0,A>, A) (< 66,0,B>, B) (< 66,0,C>, C) (< 66,0,D>, D) (< 66,0,E>, E) (< 66,0,F>, B) (< 66,0,G>, G) (< 66,0,H>, 0) (< 66,0,I>, I) (< 66,0,J>, J) (< 66,0,K>, K) (< 66,0,U>, U) (< 67,0,A>, A) (< 67,0,B>, B) (< 67,0,C>, C) (< 67,0,D>, D) (< 67,0,E>, B) (< 67,0,F>, F) (< 67,0,G>, G) (< 67,0,H>, 0) (< 67,0,I>, I) (< 67,0,J>, J) (< 67,0,K>, K) (< 67,0,U>, U) (< 68,0,A>, A) (< 68,0,B>, B) (< 68,0,C>, C) (< 68,0,D>, B) (< 68,0,E>, E) (< 68,0,F>, F) (< 68,0,G>, G) (< 68,0,H>, 0) (< 68,0,I>, I) (< 68,0,J>, J) (< 68,0,K>, K) (< 68,0,U>, U) (< 69,0,A>, A) (< 69,0,B>, B) (< 69,0,C>, B) (< 69,0,D>, D) (< 69,0,E>, E) (< 69,0,F>, F) (< 69,0,G>, G) (< 69,0,H>, 0) (< 69,0,I>, I) (< 69,0,J>, J) (< 69,0,K>, K) (< 69,0,U>, U) (< 70,0,A>, B) (< 70,0,B>, B) (< 70,0,C>, C) (< 70,0,D>, D) (< 70,0,E>, E) (< 70,0,F>, F) (< 70,0,G>, G) (< 70,0,H>, 0) (< 70,0,I>, I) (< 70,0,J>, J) (< 70,0,K>, K) (< 70,0,U>, U) (< 71,0,A>, A + B) (< 71,0,B>, B) (< 71,0,C>, B + C) (< 71,0,D>, B + D) (< 71,0,E>, B + E) (< 71,0,F>, B + F) (< 71,0,G>, B + G) (< 71,0,H>, 1) (< 71,0,I>, I) (< 71,0,J>, J) (< 71,0,K>, B + K) (< 71,0,U>, U) (< 72,0,A>, A + B) (< 72,0,B>, B) (< 72,0,C>, B + C) (< 72,0,D>, B + D) (< 72,0,E>, B + E) (< 72,0,F>, B + F) (< 72,0,G>, B + G) (< 72,0,H>, 1) (< 72,0,I>, I) (< 72,0,J>, J) (< 72,0,K>, B + K) (< 72,0,U>, U) (< 73,0,A>, A + B) (< 73,0,B>, B) (< 73,0,C>, B + C) (< 73,0,D>, B + D) (< 73,0,E>, B + E) (< 73,0,F>, B + F) (< 73,0,G>, B + G) (< 73,0,H>, 0) (< 73,0,I>, I) (< 73,0,J>, J) (< 73,0,K>, A + B) (< 73,0,U>, U) (< 74,0,A>, A + B) (< 74,0,B>, B) (< 74,0,C>, B + C) (< 74,0,D>, B + D) (< 74,0,E>, B + E) (< 74,0,F>, B + F) (< 74,0,G>, A + B) (< 74,0,H>, 0) (< 74,0,I>, I) (< 74,0,J>, J) (< 74,0,K>, B + K) (< 74,0,U>, U) (< 75,0,A>, A + B) (< 75,0,B>, B) (< 75,0,C>, B + C) (< 75,0,D>, B + D) (< 75,0,E>, B + E) (< 75,0,F>, A + B) (< 75,0,G>, B + G) (< 75,0,H>, 0) (< 75,0,I>, I) (< 75,0,J>, J) (< 75,0,K>, B + K) (< 75,0,U>, U) (< 76,0,A>, A + B) (< 76,0,B>, B) (< 76,0,C>, B + C) (< 76,0,D>, B + D) (< 76,0,E>, A + B) (< 76,0,F>, B + F) (< 76,0,G>, B + G) (< 76,0,H>, 0) (< 76,0,I>, I) (< 76,0,J>, J) (< 76,0,K>, B + K) (< 76,0,U>, U) (< 77,0,A>, A + B) (< 77,0,B>, B) (< 77,0,C>, B + C) (< 77,0,D>, A + B) (< 77,0,E>, B + E) (< 77,0,F>, B + F) (< 77,0,G>, B + G) (< 77,0,H>, 0) (< 77,0,I>, I) (< 77,0,J>, J) (< 77,0,K>, B + K) (< 77,0,U>, U) (< 78,0,A>, A + B) (< 78,0,B>, B) (< 78,0,C>, A + B) (< 78,0,D>, B + D) (< 78,0,E>, B + E) (< 78,0,F>, B + F) (< 78,0,G>, B + G) (< 78,0,H>, 0) (< 78,0,I>, I) (< 78,0,J>, J) (< 78,0,K>, B + K) (< 78,0,U>, U) (< 79,0,A>, A + B) (< 79,0,B>, B) (< 79,0,C>, B + C) (< 79,0,D>, B + D) (< 79,0,E>, B + E) (< 79,0,F>, B + F) (< 79,0,G>, B + G) (< 79,0,H>, 0) (< 79,0,I>, I) (< 79,0,J>, J) (< 79,0,K>, B + K) (< 79,0,U>, U) (< 80,0,A>, A + B) (< 80,0,B>, B) (< 80,0,C>, A + B + C) (< 80,0,D>, A + B + D) (< 80,0,E>, A + B + E) (< 80,0,F>, A + B + F) (< 80,0,G>, A + B + G) (< 80,0,H>, 1) (< 80,0,I>, I) (< 80,0,J>, J) (< 80,0,K>, A + B + K) (< 80,0,U>, U) (< 81,0,A>, A + B) (< 81,0,B>, B) (< 81,0,C>, A + B + C) (< 81,0,D>, A + B + D) (< 81,0,E>, A + B + E) (< 81,0,F>, A + B + F) (< 81,0,G>, A + B + G) (< 81,0,H>, 1) (< 81,0,I>, I) (< 81,0,J>, J) (< 81,0,K>, A + B + K) (< 81,0,U>, U) (< 82,0,A>, A + B) (< 82,0,B>, B) (< 82,0,C>, A + B + C) (< 82,0,D>, A + B + D) (< 82,0,E>, A + B + E) (< 82,0,F>, A + B + F) (< 82,0,G>, A + B + G) (< 82,0,H>, 0) (< 82,0,I>, I) (< 82,0,J>, J) (< 82,0,K>, A + B + C) (< 82,0,U>, U) (< 83,0,A>, A + B) (< 83,0,B>, B) (< 83,0,C>, A + B + C) (< 83,0,D>, A + B + D) (< 83,0,E>, A + B + E) (< 83,0,F>, A + B + F) (< 83,0,G>, A + B + C) (< 83,0,H>, 0) (< 83,0,I>, I) (< 83,0,J>, J) (< 83,0,K>, A + B + K) (< 83,0,U>, U) (< 84,0,A>, A + B) (< 84,0,B>, B) (< 84,0,C>, A + B + C) (< 84,0,D>, A + B + D) (< 84,0,E>, A + B + E) (< 84,0,F>, A + B + C) (< 84,0,G>, A + B + G) (< 84,0,H>, 0) (< 84,0,I>, I) (< 84,0,J>, J) (< 84,0,K>, A + B + K) (< 84,0,U>, U) (< 85,0,A>, A + B) (< 85,0,B>, B) (< 85,0,C>, A + B + C) (< 85,0,D>, A + B + D) (< 85,0,E>, A + B + C) (< 85,0,F>, A + B + F) (< 85,0,G>, A + B + G) (< 85,0,H>, 0) (< 85,0,I>, I) (< 85,0,J>, J) (< 85,0,K>, A + B + K) (< 85,0,U>, U) (< 86,0,A>, A + B) (< 86,0,B>, B) (< 86,0,C>, A + B + C) (< 86,0,D>, A + B + C) (< 86,0,E>, A + B + E) (< 86,0,F>, A + B + F) (< 86,0,G>, A + B + G) (< 86,0,H>, 0) (< 86,0,I>, I) (< 86,0,J>, J) (< 86,0,K>, A + B + K) (< 86,0,U>, U) (< 87,0,A>, A + B) (< 87,0,B>, B) (< 87,0,C>, A + B + C) (< 87,0,D>, A + B + D) (< 87,0,E>, A + B + E) (< 87,0,F>, A + B + F) (< 87,0,G>, A + B + G) (< 87,0,H>, 0) (< 87,0,I>, I) (< 87,0,J>, J) (< 87,0,K>, A + B + K) (< 87,0,U>, U) (< 88,0,A>, A + B) (< 88,0,B>, B) (< 88,0,C>, A + B + C) (< 88,0,D>, A + B + C + D) (< 88,0,E>, A + B + C + E) (< 88,0,F>, A + B + C + F) (< 88,0,G>, A + B + C + G) (< 88,0,H>, 1) (< 88,0,I>, I) (< 88,0,J>, J) (< 88,0,K>, A + B + C + K) (< 88,0,U>, U) (< 89,0,A>, A + B) (< 89,0,B>, B) (< 89,0,C>, A + B + C) (< 89,0,D>, A + B + C + D) (< 89,0,E>, A + B + C + E) (< 89,0,F>, A + B + C + F) (< 89,0,G>, A + B + C + G) (< 89,0,H>, 1) (< 89,0,I>, I) (< 89,0,J>, J) (< 89,0,K>, A + B + C + K) (< 89,0,U>, U) (< 90,0,A>, A + B) (< 90,0,B>, B) (< 90,0,C>, A + B + C) (< 90,0,D>, A + B + C + D) (< 90,0,E>, A + B + C + E) (< 90,0,F>, A + B + C + F) (< 90,0,G>, A + B + C + G) (< 90,0,H>, 0) (< 90,0,I>, I) (< 90,0,J>, J) (< 90,0,K>, A + B + C + D) (< 90,0,U>, U) (< 91,0,A>, A + B) (< 91,0,B>, B) (< 91,0,C>, A + B + C) (< 91,0,D>, A + B + C + D) (< 91,0,E>, A + B + C + E) (< 91,0,F>, A + B + C + F) (< 91,0,G>, A + B + C + D) (< 91,0,H>, 0) (< 91,0,I>, I) (< 91,0,J>, J) (< 91,0,K>, A + B + C + K) (< 91,0,U>, U) (< 92,0,A>, A + B) (< 92,0,B>, B) (< 92,0,C>, A + B + C) (< 92,0,D>, A + B + C + D) (< 92,0,E>, A + B + C + E) (< 92,0,F>, A + B + C + D) (< 92,0,G>, A + B + C + G) (< 92,0,H>, 0) (< 92,0,I>, I) (< 92,0,J>, J) (< 92,0,K>, A + B + C + K) (< 92,0,U>, U) (< 93,0,A>, A + B) (< 93,0,B>, B) (< 93,0,C>, A + B + C) (< 93,0,D>, A + B + C + D) (< 93,0,E>, A + B + C + D) (< 93,0,F>, A + B + C + F) (< 93,0,G>, A + B + C + G) (< 93,0,H>, 0) (< 93,0,I>, I) (< 93,0,J>, J) (< 93,0,K>, A + B + C + K) (< 93,0,U>, U) (< 94,0,A>, A + B) (< 94,0,B>, B) (< 94,0,C>, A + B + C) (< 94,0,D>, A + B + C + D) (< 94,0,E>, A + B + C + E) (< 94,0,F>, A + B + C + F) (< 94,0,G>, A + B + C + G) (< 94,0,H>, 0) (< 94,0,I>, I) (< 94,0,J>, J) (< 94,0,K>, A + B + C + K) (< 94,0,U>, U) (< 95,0,A>, A + B) (< 95,0,B>, B) (< 95,0,C>, A + B + C) (< 95,0,D>, A + B + C + D) (< 95,0,E>, A + B + C + D + E) (< 95,0,F>, A + B + C + D + F) (< 95,0,G>, A + B + C + D + G) (< 95,0,H>, 1) (< 95,0,I>, I) (< 95,0,J>, J) (< 95,0,K>, A + B + C + D + K) (< 95,0,U>, U) (< 96,0,A>, A + B) (< 96,0,B>, B) (< 96,0,C>, A + B + C) (< 96,0,D>, A + B + C + D) (< 96,0,E>, A + B + C + D + E) (< 96,0,F>, A + B + C + D + F) (< 96,0,G>, A + B + C + D + G) (< 96,0,H>, 1) (< 96,0,I>, I) (< 96,0,J>, J) (< 96,0,K>, A + B + C + D + K) (< 96,0,U>, U) (< 97,0,A>, A + B) (< 97,0,B>, B) (< 97,0,C>, A + B + C) (< 97,0,D>, A + B + C + D) (< 97,0,E>, A + B + C + D + E) (< 97,0,F>, A + B + C + D + F) (< 97,0,G>, A + B + C + D + G) (< 97,0,H>, 0) (< 97,0,I>, I) (< 97,0,J>, J) (< 97,0,K>, A + B + C + D + E) (< 97,0,U>, U) (< 98,0,A>, A + B) (< 98,0,B>, B) (< 98,0,C>, A + B + C) (< 98,0,D>, A + B + C + D) (< 98,0,E>, A + B + C + D + E) (< 98,0,F>, A + B + C + D + F) (< 98,0,G>, A + B + C + D + E) (< 98,0,H>, 0) (< 98,0,I>, I) (< 98,0,J>, J) (< 98,0,K>, A + B + C + D + K) (< 98,0,U>, U) (< 99,0,A>, A + B) (< 99,0,B>, B) (< 99,0,C>, A + B + C) (< 99,0,D>, A + B + C + D) (< 99,0,E>, A + B + C + D + E) (< 99,0,F>, A + B + C + D + E) (< 99,0,G>, A + B + C + D + G) (< 99,0,H>, 0) (< 99,0,I>, I) (< 99,0,J>, J) (< 99,0,K>, A + B + C + D + K) (< 99,0,U>, U) (<100,0,A>, A + B) (<100,0,B>, B) (<100,0,C>, A + B + C) (<100,0,D>, A + B + C + D) (<100,0,E>, A + B + C + D + E) (<100,0,F>, A + B + C + D + F) (<100,0,G>, A + B + C + D + G) (<100,0,H>, 0) (<100,0,I>, I) (<100,0,J>, J) (<100,0,K>, A + B + C + D + K) (<100,0,U>, U) (<101,0,A>, A + B) (<101,0,B>, B) (<101,0,C>, A + B + C) (<101,0,D>, A + B + C + D) (<101,0,E>, A + B + C + D + E) (<101,0,F>, A + B + C + D + E + F) (<101,0,G>, A + B + C + D + E + G) (<101,0,H>, 1) (<101,0,I>, I) (<101,0,J>, J) (<101,0,K>, A + B + C + D + E + K) (<101,0,U>, U) (<102,0,A>, A + B) (<102,0,B>, B) (<102,0,C>, A + B + C) (<102,0,D>, A + B + C + D) (<102,0,E>, A + B + C + D + E) (<102,0,F>, A + B + C + D + E + F) (<102,0,G>, A + B + C + D + E + G) (<102,0,H>, 1) (<102,0,I>, I) (<102,0,J>, J) (<102,0,K>, A + B + C + D + E + K) (<102,0,U>, U) (<103,0,A>, A + B) (<103,0,B>, B) (<103,0,C>, A + B + C) (<103,0,D>, A + B + C + D) (<103,0,E>, A + B + C + D + E) (<103,0,F>, A + B + C + D + E + F) (<103,0,G>, A + B + C + D + E + G) (<103,0,H>, 0) (<103,0,I>, I) (<103,0,J>, J) (<103,0,K>, A + B + C + D + E + F) (<103,0,U>, U) (<104,0,A>, A + B) (<104,0,B>, B) (<104,0,C>, A + B + C) (<104,0,D>, A + B + C + D) (<104,0,E>, A + B + C + D + E) (<104,0,F>, A + B + C + D + E + F) (<104,0,G>, A + B + C + D + E + F) (<104,0,H>, 0) (<104,0,I>, I) (<104,0,J>, J) (<104,0,K>, A + B + C + D + E + K) (<104,0,U>, U) (<105,0,A>, A + B) (<105,0,B>, B) (<105,0,C>, A + B + C) (<105,0,D>, A + B + C + D) (<105,0,E>, A + B + C + D + E) (<105,0,F>, A + B + C + D + E + F) (<105,0,G>, A + B + C + D + E + G) (<105,0,H>, 0) (<105,0,I>, I) (<105,0,J>, J) (<105,0,K>, A + B + C + D + E + K) (<105,0,U>, U) (<106,0,A>, A + B) (<106,0,B>, B) (<106,0,C>, A + B + C) (<106,0,D>, A + B + C + D) (<106,0,E>, A + B + C + D + E) (<106,0,F>, A + B + C + D + E + F) (<106,0,G>, A + B + C + D + E + F + G) (<106,0,H>, 1) (<106,0,I>, I) (<106,0,J>, J) (<106,0,K>, A + B + C + D + E + F + K) (<106,0,U>, U) (<107,0,A>, A + B) (<107,0,B>, B) (<107,0,C>, A + B + C) (<107,0,D>, A + B + C + D) (<107,0,E>, A + B + C + D + E) (<107,0,F>, A + B + C + D + E + F) (<107,0,G>, A + B + C + D + E + F + G) (<107,0,H>, 1) (<107,0,I>, I) (<107,0,J>, J) (<107,0,K>, A + B + C + D + E + F + K) (<107,0,U>, U) (<108,0,A>, A + B) (<108,0,B>, B) (<108,0,C>, A + B + C) (<108,0,D>, A + B + C + D) (<108,0,E>, A + B + C + D + E) (<108,0,F>, A + B + C + D + E + F) (<108,0,G>, A + B + C + D + E + F + G) (<108,0,H>, 0) (<108,0,I>, I) (<108,0,J>, J) (<108,0,K>, A + B + C + D + E + F + G) (<108,0,U>, U) (<109,0,A>, A + B) (<109,0,B>, B) (<109,0,C>, A + B + C) (<109,0,D>, A + B + C + D) (<109,0,E>, A + B + C + D + E) (<109,0,F>, A + B + C + D + E + F) (<109,0,G>, A + B + C + D + E + F + G) (<109,0,H>, 0) (<109,0,I>, I) (<109,0,J>, J) (<109,0,K>, A + B + C + D + E + F + K) (<109,0,U>, U) (<110,0,A>, A + B) (<110,0,B>, B) (<110,0,C>, A + B + C) (<110,0,D>, A + B + C + D) (<110,0,E>, A + B + C + D + E) (<110,0,F>, A + B + C + D + E + F) (<110,0,G>, A + B + C + D + E + F + G) (<110,0,H>, 1) (<110,0,I>, 1) (<110,0,J>, J) (<110,0,K>, A + B + C + D + E + F + G + K) (<110,0,U>, U) (<111,0,A>, A + B) (<111,0,B>, B) (<111,0,C>, A + B + C) (<111,0,D>, A + B + C + D) (<111,0,E>, A + B + C + D + E) (<111,0,F>, A + B + C + D + E + F) (<111,0,G>, A + B + C + D + E + F + G) (<111,0,H>, 1) (<111,0,I>, 0) (<111,0,J>, J) (<111,0,K>, A + B + C + D + E + F + G + K) (<111,0,U>, U) (<112,0,A>, A + B) (<112,0,B>, B) (<112,0,C>, A + B + C) (<112,0,D>, A + B + C + D) (<112,0,E>, A + B + C + D + E) (<112,0,F>, A + B + C + D + E + F) (<112,0,G>, A + B + C + D + E + F + G) (<112,0,H>, 1) (<112,0,I>, 0) (<112,0,J>, J) (<112,0,K>, A + B + C + D + E + F + G + K) (<112,0,U>, U) (<113,0,A>, A + B) (<113,0,B>, B) (<113,0,C>, A + B + C) (<113,0,D>, A + B + C + D) (<113,0,E>, A + B + C + D + E) (<113,0,F>, A + B + C + D + E + F) (<113,0,G>, A + B + C + D + E + F + G) (<113,0,H>, 1) (<113,0,I>, 0) (<113,0,J>, J) (<113,0,K>, A + B + C + D + E + F + G + K) (<113,0,U>, U) (<114,0,A>, A + B) (<114,0,B>, B) (<114,0,C>, A + B + C) (<114,0,D>, A + B + C + D) (<114,0,E>, A + B + C + D + E) (<114,0,F>, A + B + C + D + E + F) (<114,0,G>, A + B + C + D + E + F + G) (<114,0,H>, 1) (<114,0,I>, 0) (<114,0,J>, J) (<114,0,K>, A + B + C + D + E + F + G + K) (<114,0,U>, U) (<115,0,A>, A + B) (<115,0,B>, B) (<115,0,C>, A + B + C) (<115,0,D>, A + B + C + D) (<115,0,E>, A + B + C + D + E) (<115,0,F>, A + B + C + D + E + F) (<115,0,G>, A + B + C + D + E + F + G) (<115,0,H>, 1) (<115,0,I>, 0) (<115,0,J>, J) (<115,0,K>, A + B + C + D + E + F + G + K) (<115,0,U>, U) (<116,0,A>, A + B) (<116,0,B>, B) (<116,0,C>, A + B + C) (<116,0,D>, A + B + C + D) (<116,0,E>, A + B + C + D + E) (<116,0,F>, A + B + C + D + E + F) (<116,0,G>, A + B + C + D + E + F + G) (<116,0,H>, 1) (<116,0,I>, 0) (<116,0,J>, J) (<116,0,K>, A + B + C + D + E + F + G + K) (<116,0,U>, U) (<117,0,A>, A + B) (<117,0,B>, B) (<117,0,C>, A + B + C) (<117,0,D>, A + B + C + D) (<117,0,E>, A + B + C + D + E) (<117,0,F>, A + B + C + D + E + F) (<117,0,G>, A + B + C + D + E + F + G) (<117,0,H>, 1) (<117,0,I>, 0) (<117,0,J>, J) (<117,0,K>, A + B + C + D + E + F + G + K) (<117,0,U>, U) (<118,0,A>, A + B) (<118,0,B>, B) (<118,0,C>, A + B + C) (<118,0,D>, A + B + C + D) (<118,0,E>, A + B + C + D + E) (<118,0,F>, A + B + C + D + E + F) (<118,0,G>, A + B + C + D + E + F + G) (<118,0,H>, 1) (<118,0,I>, 0) (<118,0,J>, J) (<118,0,K>, A + B + C + D + E + F + G + K) (<118,0,U>, U) (<119,0,A>, A + B) (<119,0,B>, B) (<119,0,C>, A + B + C) (<119,0,D>, A + B + C + D) (<119,0,E>, A + B + C + D + E) (<119,0,F>, A + B + C + D + E + F) (<119,0,G>, A + B + C + D + E + F + G) (<119,0,H>, 1) (<119,0,I>, 1) (<119,0,J>, 1) (<119,0,K>, A + B + C + D + E + F + G + K) (<119,0,U>, ?) (<120,0,A>, A + B) (<120,0,B>, B) (<120,0,C>, A + B + C) (<120,0,D>, A + B + C + D) (<120,0,E>, A + B + C + D + E) (<120,0,F>, A + B + C + D + E + F) (<120,0,G>, A + B + C + D + E + F + G) (<120,0,H>, 1) (<120,0,I>, 1) (<120,0,J>, 1) (<120,0,K>, A + B + C + D + E + F + G + K) (<120,0,U>, ?) (<121,0,A>, A + B) (<121,0,B>, 0) (<121,0,C>, A + B + C) (<121,0,D>, A + B + C + D) (<121,0,E>, A + B + C + D + E) (<121,0,F>, A + B + C + D + E + F) (<121,0,G>, A + B + C + D + E + F + G) (<121,0,H>, 1) (<121,0,I>, 1) (<121,0,J>, 0) (<121,0,K>, A + B + C + D + E + F + G + K) (<121,0,U>, ?) (<122,0,A>, A + B) (<122,0,B>, B) (<122,0,C>, A + B + C) (<122,0,D>, A + B + C + D) (<122,0,E>, 0) (<122,0,F>, A + B + C + D + E + F) (<122,0,G>, A + B + C + D + E + F + G) (<122,0,H>, 1) (<122,0,I>, 1) (<122,0,J>, 0) (<122,0,K>, A + B + C + D + E + F + G + K) (<122,0,U>, ?) (<123,0,A>, A + B) (<123,0,B>, B) (<123,0,C>, A + B + C) (<123,0,D>, A + B + C + D) (<123,0,E>, A + B + C + D + E) (<123,0,F>, A + B + C + D + E + F) (<123,0,G>, A + B + C + D + E + F + G) (<123,0,H>, 1) (<123,0,I>, 1) (<123,0,J>, 1) (<123,0,K>, A + B + C + D + E + F + G + K) (<123,0,U>, ?) (<124,0,A>, A + B) (<124,0,B>, B) (<124,0,C>, A + B + C) (<124,0,D>, A + B + C + D) (<124,0,E>, A + B + C + D + E) (<124,0,F>, A + B + C + D + E + F) (<124,0,G>, A + B + C + D + E + F + G) (<124,0,H>, 1) (<124,0,I>, 1) (<124,0,J>, 1) (<124,0,K>, A + B + C + D + E + F + G + K) (<124,0,U>, ?) (<125,0,A>, A + B) (<125,0,B>, B) (<125,0,C>, A + B + C) (<125,0,D>, A + B + C + D) (<125,0,E>, A + B + C + D + E) (<125,0,F>, A + B + C + D + E + F) (<125,0,G>, A + B + C + D + E + F + G) (<125,0,H>, 1) (<125,0,I>, 1) (<125,0,J>, 1) (<125,0,K>, A + B + C + D + E + F + G + K) (<125,0,U>, 0) (<126,0,A>, A + B) (<126,0,B>, B) (<126,0,C>, A + B + C) (<126,0,D>, A + B + C + D) (<126,0,E>, A + B + C + D + E) (<126,0,F>, A + B + C + D + E + F) (<126,0,G>, A + B + C + D + E + F + G) (<126,0,H>, 1) (<126,0,I>, 1) (<126,0,J>, 0) (<126,0,K>, A + B + C + D + E + F + G + K) (<126,0,U>, ?) (<127,0,A>, A + B) (<127,0,B>, B) (<127,0,C>, A + B + C) (<127,0,D>, A + B + C + D) (<127,0,E>, A + B + C + D + E) (<127,0,F>, A + B + C + D + E + F) (<127,0,G>, A + B + C + D + E + F + G) (<127,0,H>, 1) (<127,0,I>, 0) (<127,0,J>, 1) (<127,0,K>, A + B + C + D + E + F + G + K) (<127,0,U>, ?) (<128,0,A>, A + B) (<128,0,B>, B) (<128,0,C>, A + B + C) (<128,0,D>, A + B + C + D) (<128,0,E>, A + B + C + D + E) (<128,0,F>, A + B + C + D + E + F) (<128,0,G>, A + B + C + D + E + F + G) (<128,0,H>, 0) (<128,0,I>, 1) (<128,0,J>, 1) (<128,0,K>, A + B + C + D + E + F + G + K) (<128,0,U>, ?) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [12,24,34,42,48,52] * Step 6: LeafRules WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,D,E,F,G,H,I,J,K,U) -> f2(A,B,C,D,E,F,G,H,I,J,K,U) [A >= 1 + B] (1,1) 1. f0(A,B,C,D,E,F,G,H,I,J,K,U) -> f2(A,B,C,D,E,F,G,H,I,J,K,U) [B >= 1 + A] (1,1) 2. f2(A,B,C,D,E,F,G,H,I,J,K,U) -> f3(A,B,C,D,E,F,G,H,I,J,K,U) [C >= 1 + B] (?,1) 3. f2(A,B,C,D,E,F,G,H,I,J,K,U) -> f3(A,B,C,D,E,F,G,H,I,J,K,U) [B >= 1 + C] (?,1) 4. f3(A,B,C,D,E,F,G,H,I,J,K,U) -> f4(A,B,C,D,E,F,G,H,I,J,K,U) [D >= 1 + B] (?,1) 5. f3(A,B,C,D,E,F,G,H,I,J,K,U) -> f4(A,B,C,D,E,F,G,H,I,J,K,U) [B >= 1 + D] (?,1) 6. f4(A,B,C,D,E,F,G,H,I,J,K,U) -> f5(A,B,C,D,E,F,G,H,I,J,K,U) [E >= 1 + B] (?,1) 7. f4(A,B,C,D,E,F,G,H,I,J,K,U) -> f5(A,B,C,D,E,F,G,H,I,J,K,U) [B >= 1 + E] (?,1) 8. f5(A,B,C,D,E,F,G,H,I,J,K,U) -> f6(A,B,C,D,E,F,G,H,I,J,K,U) [F >= 1 + B] (?,1) 9. f5(A,B,C,D,E,F,G,H,I,J,K,U) -> f6(A,B,C,D,E,F,G,H,I,J,K,U) [B >= 1 + F] (?,1) 10. f6(A,B,C,D,E,F,G,H,I,J,K,U) -> f7(A,B,C,D,E,F,G,H,I,J,K,U) [G >= 1 + B] (?,1) 11. f6(A,B,C,D,E,F,G,H,I,J,K,U) -> f7(A,B,C,D,E,F,G,H,I,J,K,U) [B >= 1 + G] (?,1) 13. f17(A,B,C,D,E,F,G,H,I,J,K,U) -> f18(A,B,C,D,E,F,G,H,I,J,K,U) [H >= 1] (?,1) 14. f18(A,B,C,D,E,F,G,H,I,J,K,U) -> f19(A,B,C,D,E,F,G,H,I,J,K,U) [C >= 1 + A] (?,1) 15. f18(A,B,C,D,E,F,G,H,I,J,K,U) -> f19(A,B,C,D,E,F,G,H,I,J,K,U) [A >= 1 + C] (?,1) 16. f19(A,B,C,D,E,F,G,H,I,J,K,U) -> f20(A,B,C,D,E,F,G,H,I,J,K,U) [D >= 1 + A] (?,1) 17. f19(A,B,C,D,E,F,G,H,I,J,K,U) -> f20(A,B,C,D,E,F,G,H,I,J,K,U) [A >= 1 + D] (?,1) 18. f20(A,B,C,D,E,F,G,H,I,J,K,U) -> f21(A,B,C,D,E,F,G,H,I,J,K,U) [E >= 1 + A] (?,1) 19. f20(A,B,C,D,E,F,G,H,I,J,K,U) -> f21(A,B,C,D,E,F,G,H,I,J,K,U) [A >= 1 + E] (?,1) 20. f21(A,B,C,D,E,F,G,H,I,J,K,U) -> f22(A,B,C,D,E,F,G,H,I,J,K,U) [F >= 1 + A] (?,1) 21. f21(A,B,C,D,E,F,G,H,I,J,K,U) -> f22(A,B,C,D,E,F,G,H,I,J,K,U) [A >= 1 + F] (?,1) 22. f22(A,B,C,D,E,F,G,H,I,J,K,U) -> f23(A,B,C,D,E,F,G,H,I,J,K,U) [G >= 1 + A] (?,1) 23. f22(A,B,C,D,E,F,G,H,I,J,K,U) -> f23(A,B,C,D,E,F,G,H,I,J,K,U) [A >= 1 + G] (?,1) 25. f33(A,B,C,D,E,F,G,H,I,J,K,U) -> f34(A,B,C,D,E,F,G,H,I,J,K,U) [H >= 1] (?,1) 26. f34(A,B,C,D,E,F,G,H,I,J,K,U) -> f35(A,B,C,D,E,F,G,H,I,J,K,U) [D >= 1 + C] (?,1) 27. f34(A,B,C,D,E,F,G,H,I,J,K,U) -> f35(A,B,C,D,E,F,G,H,I,J,K,U) [C >= 1 + D] (?,1) 28. f35(A,B,C,D,E,F,G,H,I,J,K,U) -> f36(A,B,C,D,E,F,G,H,I,J,K,U) [E >= 1 + C] (?,1) 29. f35(A,B,C,D,E,F,G,H,I,J,K,U) -> f36(A,B,C,D,E,F,G,H,I,J,K,U) [C >= 1 + E] (?,1) 30. f36(A,B,C,D,E,F,G,H,I,J,K,U) -> f37(A,B,C,D,E,F,G,H,I,J,K,U) [F >= 1 + C] (?,1) 31. f36(A,B,C,D,E,F,G,H,I,J,K,U) -> f37(A,B,C,D,E,F,G,H,I,J,K,U) [C >= 1 + F] (?,1) 32. f37(A,B,C,D,E,F,G,H,I,J,K,U) -> f38(A,B,C,D,E,F,G,H,I,J,K,U) [G >= 1 + C] (?,1) 33. f37(A,B,C,D,E,F,G,H,I,J,K,U) -> f38(A,B,C,D,E,F,G,H,I,J,K,U) [C >= 1 + G] (?,1) 35. f47(A,B,C,D,E,F,G,H,I,J,K,U) -> f48(A,B,C,D,E,F,G,H,I,J,K,U) [H >= 1] (?,1) 36. f48(A,B,C,D,E,F,G,H,I,J,K,U) -> f49(A,B,C,D,E,F,G,H,I,J,K,U) [E >= 1 + D] (?,1) 37. f48(A,B,C,D,E,F,G,H,I,J,K,U) -> f49(A,B,C,D,E,F,G,H,I,J,K,U) [D >= 1 + E] (?,1) 38. f49(A,B,C,D,E,F,G,H,I,J,K,U) -> f50(A,B,C,D,E,F,G,H,I,J,K,U) [F >= 1 + D] (?,1) 39. f49(A,B,C,D,E,F,G,H,I,J,K,U) -> f50(A,B,C,D,E,F,G,H,I,J,K,U) [D >= 1 + F] (?,1) 40. f50(A,B,C,D,E,F,G,H,I,J,K,U) -> f51(A,B,C,D,E,F,G,H,I,J,K,U) [G >= 1 + D] (?,1) 41. f50(A,B,C,D,E,F,G,H,I,J,K,U) -> f51(A,B,C,D,E,F,G,H,I,J,K,U) [D >= 1 + G] (?,1) 43. f59(A,B,C,D,E,F,G,H,I,J,K,U) -> f60(A,B,C,D,E,F,G,H,I,J,K,U) [H >= 1] (?,1) 44. f60(A,B,C,D,E,F,G,H,I,J,K,U) -> f61(A,B,C,D,E,F,G,H,I,J,K,U) [F >= 1 + E] (?,1) 45. f60(A,B,C,D,E,F,G,H,I,J,K,U) -> f61(A,B,C,D,E,F,G,H,I,J,K,U) [E >= 1 + F] (?,1) 46. f61(A,B,C,D,E,F,G,H,I,J,K,U) -> f62(A,B,C,D,E,F,G,H,I,J,K,U) [G >= 1 + E] (?,1) 47. f61(A,B,C,D,E,F,G,H,I,J,K,U) -> f62(A,B,C,D,E,F,G,H,I,J,K,U) [E >= 1 + G] (?,1) 49. f69(A,B,C,D,E,F,G,H,I,J,K,U) -> f70(A,B,C,D,E,F,G,H,I,J,K,U) [H >= 1] (?,1) 50. f70(A,B,C,D,E,F,G,H,I,J,K,U) -> f71(A,B,C,D,E,F,G,H,I,J,K,U) [G >= 1 + F] (?,1) 51. f70(A,B,C,D,E,F,G,H,I,J,K,U) -> f71(A,B,C,D,E,F,G,H,I,J,K,U) [F >= 1 + G] (?,1) 53. f77(A,B,C,D,E,F,G,H,I,J,K,U) -> f78(A,B,C,D,E,F,G,H,I,J,K,U) [H >= 1] (?,1) 54. f101(A,B,C,D,E,F,G,H,I,J,K,U) -> f102(A,B,C,D,E,F,G,H,I,J,K,U) [0 >= 1 + E] (?,1) 55. f101(A,B,C,D,E,F,G,H,I,J,K,U) -> f102(A,B,C,D,E,F,G,H,I,J,K,U) [E >= 1] (?,1) 56. f108(A,B,C,D,E,F,G,H,I,J,K,U) -> f109(A,B,C,D,E,F,G,H,I,J,K,U) [0 >= 1 + H] (?,1) 57. f108(A,B,C,D,E,F,G,H,I,J,K,U) -> f109(A,B,C,D,E,F,G,H,I,J,K,U) [H >= 1] (?,1) 58. f109(A,B,C,D,E,F,G,H,I,J,K,U) -> f110(A,B,C,D,E,F,G,H,I,J,K,U) [0 >= 1 + I] (?,1) 59. f109(A,B,C,D,E,F,G,H,I,J,K,U) -> f110(A,B,C,D,E,F,G,H,I,J,K,U) [I >= 1] (?,1) 60. f110(A,B,C,D,E,F,G,H,I,J,K,U) -> f111(A,B,C,D,E,F,G,H,I,J,K,U) [0 >= 1 + J] (?,1) 61. f110(A,B,C,D,E,F,G,H,I,J,K,U) -> f111(A,B,C,D,E,F,G,H,I,J,K,U) [J >= 1] (?,1) 62. f7(A,B,C,D,E,F,G,H,I,J,K,U) -> f17(A,B,C,D,E,F,G,1,I,J,K,U) [K >= 1 + B] (?,1) 63. f7(A,B,C,D,E,F,G,H,I,J,K,U) -> f17(A,B,C,D,E,F,G,1,I,J,K,U) [B >= 1 + K] (?,1) 64. f7(A,B,C,D,E,F,G,H,I,J,K,U) -> f17(A,B,C,D,E,F,G,0,I,J,B,U) [B = K] (?,1) 65. f6(A,B,C,D,E,F,G,H,I,J,K,U) -> f17(A,B,C,D,E,F,B,0,I,J,K,U) [B = G] (?,1) 66. f5(A,B,C,D,E,F,G,H,I,J,K,U) -> f17(A,B,C,D,E,B,G,0,I,J,K,U) [B = F] (?,1) 67. f4(A,B,C,D,E,F,G,H,I,J,K,U) -> f17(A,B,C,D,B,F,G,0,I,J,K,U) [B = E] (?,1) 68. f3(A,B,C,D,E,F,G,H,I,J,K,U) -> f17(A,B,C,B,E,F,G,0,I,J,K,U) [B = D] (?,1) 69. f2(A,B,C,D,E,F,G,H,I,J,K,U) -> f17(A,B,B,D,E,F,G,0,I,J,K,U) [B = C] (?,1) 70. f0(A,B,C,D,E,F,G,H,I,J,K,U) -> f17(B,B,C,D,E,F,G,0,I,J,K,U) [B = A] (1,1) 71. f23(A,B,C,D,E,F,G,H,I,J,K,U) -> f33(A,B,C,D,E,F,G,1,I,J,K,U) [K >= 1 + A] (?,1) 72. f23(A,B,C,D,E,F,G,H,I,J,K,U) -> f33(A,B,C,D,E,F,G,1,I,J,K,U) [A >= 1 + K] (?,1) 73. f23(A,B,C,D,E,F,G,H,I,J,K,U) -> f33(A,B,C,D,E,F,G,0,I,J,A,U) [A = K] (?,1) 74. f22(A,B,C,D,E,F,G,H,I,J,K,U) -> f33(A,B,C,D,E,F,A,0,I,J,K,U) [A = G] (?,1) 75. f21(A,B,C,D,E,F,G,H,I,J,K,U) -> f33(A,B,C,D,E,A,G,0,I,J,K,U) [A = F] (?,1) 76. f20(A,B,C,D,E,F,G,H,I,J,K,U) -> f33(A,B,C,D,A,F,G,0,I,J,K,U) [A = E] (?,1) 77. f19(A,B,C,D,E,F,G,H,I,J,K,U) -> f33(A,B,C,A,E,F,G,0,I,J,K,U) [A = D] (?,1) 78. f18(A,B,C,D,E,F,G,H,I,J,K,U) -> f33(A,B,A,D,E,F,G,0,I,J,K,U) [A = C] (?,1) 79. f17(A,B,C,D,E,F,G,H,I,J,K,U) -> f33(A,B,C,D,E,F,G,0,I,J,K,U) [H = 0] (?,1) 80. f38(A,B,C,D,E,F,G,H,I,J,K,U) -> f47(A,B,C,D,E,F,G,1,I,J,K,U) [K >= 1 + C] (?,1) 81. f38(A,B,C,D,E,F,G,H,I,J,K,U) -> f47(A,B,C,D,E,F,G,1,I,J,K,U) [C >= 1 + K] (?,1) 82. f38(A,B,C,D,E,F,G,H,I,J,K,U) -> f47(A,B,C,D,E,F,G,0,I,J,C,U) [C = K] (?,1) 83. f37(A,B,C,D,E,F,G,H,I,J,K,U) -> f47(A,B,C,D,E,F,C,0,I,J,K,U) [C = G] (?,1) 84. f36(A,B,C,D,E,F,G,H,I,J,K,U) -> f47(A,B,C,D,E,C,G,0,I,J,K,U) [C = F] (?,1) 85. f35(A,B,C,D,E,F,G,H,I,J,K,U) -> f47(A,B,C,D,C,F,G,0,I,J,K,U) [C = E] (?,1) 86. f34(A,B,C,D,E,F,G,H,I,J,K,U) -> f47(A,B,C,C,E,F,G,0,I,J,K,U) [C = D] (?,1) 87. f33(A,B,C,D,E,F,G,H,I,J,K,U) -> f47(A,B,C,D,E,F,G,0,I,J,K,U) [H = 0] (?,1) 88. f51(A,B,C,D,E,F,G,H,I,J,K,U) -> f59(A,B,C,D,E,F,G,1,I,J,K,U) [K >= 1 + D] (?,1) 89. f51(A,B,C,D,E,F,G,H,I,J,K,U) -> f59(A,B,C,D,E,F,G,1,I,J,K,U) [D >= 1 + K] (?,1) 90. f51(A,B,C,D,E,F,G,H,I,J,K,U) -> f59(A,B,C,D,E,F,G,0,I,J,D,U) [D = K] (?,1) 91. f50(A,B,C,D,E,F,G,H,I,J,K,U) -> f59(A,B,C,D,E,F,D,0,I,J,K,U) [D = G] (?,1) 92. f49(A,B,C,D,E,F,G,H,I,J,K,U) -> f59(A,B,C,D,E,D,G,0,I,J,K,U) [D = F] (?,1) 93. f48(A,B,C,D,E,F,G,H,I,J,K,U) -> f59(A,B,C,D,D,F,G,0,I,J,K,U) [D = E] (?,1) 94. f47(A,B,C,D,E,F,G,H,I,J,K,U) -> f59(A,B,C,D,E,F,G,0,I,J,K,U) [H = 0] (?,1) 95. f62(A,B,C,D,E,F,G,H,I,J,K,U) -> f69(A,B,C,D,E,F,G,1,I,J,K,U) [K >= 1 + E] (?,1) 96. f62(A,B,C,D,E,F,G,H,I,J,K,U) -> f69(A,B,C,D,E,F,G,1,I,J,K,U) [E >= 1 + K] (?,1) 97. f62(A,B,C,D,E,F,G,H,I,J,K,U) -> f69(A,B,C,D,E,F,G,0,I,J,E,U) [E = K] (?,1) 98. f61(A,B,C,D,E,F,G,H,I,J,K,U) -> f69(A,B,C,D,E,F,E,0,I,J,K,U) [E = G] (?,1) 99. f60(A,B,C,D,E,F,G,H,I,J,K,U) -> f69(A,B,C,D,E,E,G,0,I,J,K,U) [E = F] (?,1) 100. f59(A,B,C,D,E,F,G,H,I,J,K,U) -> f69(A,B,C,D,E,F,G,0,I,J,K,U) [H = 0] (?,1) 101. f71(A,B,C,D,E,F,G,H,I,J,K,U) -> f77(A,B,C,D,E,F,G,1,I,J,K,U) [K >= 1 + F] (?,1) 102. f71(A,B,C,D,E,F,G,H,I,J,K,U) -> f77(A,B,C,D,E,F,G,1,I,J,K,U) [F >= 1 + K] (?,1) 103. f71(A,B,C,D,E,F,G,H,I,J,K,U) -> f77(A,B,C,D,E,F,G,0,I,J,F,U) [F = K] (?,1) 104. f70(A,B,C,D,E,F,G,H,I,J,K,U) -> f77(A,B,C,D,E,F,F,0,I,J,K,U) [F = G] (?,1) 105. f69(A,B,C,D,E,F,G,H,I,J,K,U) -> f77(A,B,C,D,E,F,G,0,I,J,K,U) [H = 0] (?,1) 106. f78(A,B,C,D,E,F,G,H,I,J,K,U) -> f83(A,B,C,D,E,F,G,1,I,J,K,U) [K >= 1 + G] (?,1) 107. f78(A,B,C,D,E,F,G,H,I,J,K,U) -> f83(A,B,C,D,E,F,G,1,I,J,K,U) [G >= 1 + K] (?,1) 108. f78(A,B,C,D,E,F,G,H,I,J,K,U) -> f83(A,B,C,D,E,F,G,0,I,J,G,U) [G = K] (?,1) 109. f77(A,B,C,D,E,F,G,H,I,J,K,U) -> f83(A,B,C,D,E,F,G,0,I,J,K,U) [H = 0] (?,1) 110. f83(A,B,C,D,E,F,G,H,I,J,K,U) -> f101(A,B,C,D,E,F,G,H,1,J,K,U) [9 >= K && 9 >= G && 9 >= F && 9 >= E && 9 >= D && 9 >= C && 9 >= B && 9 >= A] (?,1) 111. f83(A,B,C,D,E,F,G,H,I,J,K,U) -> f101(A,B,C,D,E,F,G,H,0,J,K,U) [K >= 10 && 9 >= G && 9 >= F && 9 >= E && 9 >= D && 9 >= C && 9 >= B && 9 >= A] (?,1) 112. f83(A,B,C,D,E,F,G,H,I,J,K,U) -> f101(A,B,C,D,E,F,G,H,0,J,K,U) [G >= 10 && 9 >= F && 9 >= E && 9 >= D && 9 >= C && 9 >= B && 9 >= A] (?,1) 113. f83(A,B,C,D,E,F,G,H,I,J,K,U) -> f101(A,B,C,D,E,F,G,H,0,J,K,U) [F >= 10 && 9 >= E && 9 >= D && 9 >= C && 9 >= B && 9 >= A] (?,1) 114. f83(A,B,C,D,E,F,G,H,I,J,K,U) -> f101(A,B,C,D,E,F,G,H,0,J,K,U) [E >= 10 && 9 >= D && 9 >= C && 9 >= B && 9 >= A] (?,1) 115. f83(A,B,C,D,E,F,G,H,I,J,K,U) -> f101(A,B,C,D,E,F,G,H,0,J,K,U) [D >= 10 && 9 >= C && 9 >= B && 9 >= A] (?,1) 116. f83(A,B,C,D,E,F,G,H,I,J,K,U) -> f101(A,B,C,D,E,F,G,H,0,J,K,U) [C >= 10 && 9 >= B && 9 >= A] (?,1) 117. f83(A,B,C,D,E,F,G,H,I,J,K,U) -> f101(A,B,C,D,E,F,G,H,0,J,K,U) [9 >= B && A >= 10] (?,1) 118. f83(A,B,C,D,E,F,G,H,I,J,K,U) -> f101(A,B,C,D,E,F,G,H,0,J,K,U) [B >= 10] (?,1) 119. f102(A,B,C,D,E,F,G,H,I,J,K,U) -> f108(A,B,C,D,E,F,G,H,I,1,K,W) [0 >= 1 + B] (?,1) 120. f102(A,B,C,D,E,F,G,H,I,J,K,U) -> f108(A,B,C,D,E,F,G,H,I,1,K,W) [B >= 1] (?,1) 121. f102(A,B,C,D,E,F,G,H,I,J,K,U) -> f108(A,0,C,D,E,F,G,H,I,0,K,W) [B = 0] (?,1) 122. f101(A,B,C,D,E,F,G,H,I,J,K,U) -> f108(A,B,C,D,0,F,G,H,I,0,K,W) [E = 0] (?,1) 123. f111(A,B,C,D,E,F,G,H,I,J,K,U) -> f119(A,B,C,D,E,F,G,H,I,J,K,U) [0 >= 1 + U] (?,1) 124. f111(A,B,C,D,E,F,G,H,I,J,K,U) -> f119(A,B,C,D,E,F,G,H,I,J,K,U) [U >= 1] (?,1) 125. f111(A,B,C,D,E,F,G,H,I,J,K,U) -> f119(A,B,C,D,E,F,G,H,I,J,K,0) [U = 0] (?,1) 126. f110(A,B,C,D,E,F,G,H,I,J,K,U) -> f119(A,B,C,D,E,F,G,H,I,0,K,U) [J = 0] (?,1) 127. f109(A,B,C,D,E,F,G,H,I,J,K,U) -> f119(A,B,C,D,E,F,G,H,0,J,K,U) [I = 0] (?,1) 128. f108(A,B,C,D,E,F,G,H,I,J,K,U) -> f119(A,B,C,D,E,F,G,0,I,J,K,U) [H = 0] (?,1) Signature: {(f0,12) ;(f101,12) ;(f102,12) ;(f108,12) ;(f109,12) ;(f110,12) ;(f111,12) ;(f119,12) ;(f17,12) ;(f18,12) ;(f19,12) ;(f2,12) ;(f20,12) ;(f21,12) ;(f22,12) ;(f23,12) ;(f3,12) ;(f33,12) ;(f34,12) ;(f35,12) ;(f36,12) ;(f37,12) ;(f38,12) ;(f4,12) ;(f47,12) ;(f48,12) ;(f49,12) ;(f5,12) ;(f50,12) ;(f51,12) ;(f59,12) ;(f6,12) ;(f60,12) ;(f61,12) ;(f62,12) ;(f69,12) ;(f7,12) ;(f70,12) ;(f71,12) ;(f77,12) ;(f78,12) ;(f83,12)} Flow Graph: [0->{2,3,69},1->{2,3,69},2->{4,5,68},3->{4,5,68},4->{6,7,67},5->{6,7,67},6->{8,9,66},7->{8,9,66},8->{10,11 ,65},9->{10,11,65},10->{62,63,64},11->{62,63,64},13->{14,15,78},14->{16,17,77},15->{16,17,77},16->{18,19,76} ,17->{18,19,76},18->{20,21,75},19->{20,21,75},20->{22,23,74},21->{22,23,74},22->{71,72,73},23->{71,72,73} ,25->{26,27,86},26->{28,29,85},27->{28,29,85},28->{30,31,84},29->{30,31,84},30->{32,33,83},31->{32,33,83} ,32->{80,81,82},33->{80,81,82},35->{36,37,93},36->{38,39,92},37->{38,39,92},38->{40,41,91},39->{40,41,91} ,40->{88,89,90},41->{88,89,90},43->{44,45,99},44->{46,47,98},45->{46,47,98},46->{95,96,97},47->{95,96,97} ,49->{50,51,104},50->{101,102,103},51->{101,102,103},53->{106,107,108},54->{119,120,121},55->{119,120,121} ,56->{58,59,127},57->{58,59,127},58->{60,61,126},59->{60,61,126},60->{123,124,125},61->{123,124,125} ,62->{13},63->{13},64->{79},65->{79},66->{79},67->{79},68->{79},69->{79},70->{79},71->{25},72->{25},73->{87} ,74->{87},75->{87},76->{87},77->{87},78->{87},79->{87},80->{35},81->{35},82->{94},83->{94},84->{94},85->{94} ,86->{94},87->{94},88->{43},89->{43},90->{100},91->{100},92->{100},93->{100},94->{100},95->{49},96->{49} ,97->{105},98->{105},99->{105},100->{105},101->{53},102->{53},103->{109},104->{109},105->{109},106->{110,111 ,112,113,114,115,116,117,118},107->{110,112,113,114,115,116,117,118},108->{110,112,113,114,115,116,117,118} ,109->{110,111,112,113,114,115,116,117,118},110->{54,55,122},111->{54,55,122},112->{54,55,122},113->{54,55 ,122},114->{55},115->{54,55,122},116->{54,55,122},117->{54,55,122},118->{54,55,122},119->{56,57,128} ,120->{56,57,128},121->{56,57,128},122->{56,57,128},123->{},124->{},125->{},126->{},127->{},128->{}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,J>, J) (< 0,0,K>, K) (< 0,0,U>, U) (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,J>, J) (< 1,0,K>, K) (< 1,0,U>, U) (< 2,0,A>, A) (< 2,0,B>, B) (< 2,0,C>, C) (< 2,0,D>, D) (< 2,0,E>, E) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 2,0,J>, J) (< 2,0,K>, K) (< 2,0,U>, U) (< 3,0,A>, A) (< 3,0,B>, B) (< 3,0,C>, C) (< 3,0,D>, D) (< 3,0,E>, E) (< 3,0,F>, F) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,I>, I) (< 3,0,J>, J) (< 3,0,K>, K) (< 3,0,U>, U) (< 4,0,A>, A) (< 4,0,B>, B) (< 4,0,C>, C) (< 4,0,D>, D) (< 4,0,E>, E) (< 4,0,F>, F) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,I>, I) (< 4,0,J>, J) (< 4,0,K>, K) (< 4,0,U>, U) (< 5,0,A>, A) (< 5,0,B>, B) (< 5,0,C>, C) (< 5,0,D>, D) (< 5,0,E>, E) (< 5,0,F>, F) (< 5,0,G>, G) (< 5,0,H>, H) (< 5,0,I>, I) (< 5,0,J>, J) (< 5,0,K>, K) (< 5,0,U>, U) (< 6,0,A>, A) (< 6,0,B>, B) (< 6,0,C>, C) (< 6,0,D>, D) (< 6,0,E>, E) (< 6,0,F>, F) (< 6,0,G>, G) (< 6,0,H>, H) (< 6,0,I>, I) (< 6,0,J>, J) (< 6,0,K>, K) (< 6,0,U>, U) (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, C) (< 7,0,D>, D) (< 7,0,E>, E) (< 7,0,F>, F) (< 7,0,G>, G) (< 7,0,H>, H) (< 7,0,I>, I) (< 7,0,J>, J) (< 7,0,K>, K) (< 7,0,U>, U) (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, C) (< 8,0,D>, D) (< 8,0,E>, E) (< 8,0,F>, F) (< 8,0,G>, G) (< 8,0,H>, H) (< 8,0,I>, I) (< 8,0,J>, J) (< 8,0,K>, K) (< 8,0,U>, U) (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, C) (< 9,0,D>, D) (< 9,0,E>, E) (< 9,0,F>, F) (< 9,0,G>, G) (< 9,0,H>, H) (< 9,0,I>, I) (< 9,0,J>, J) (< 9,0,K>, K) (< 9,0,U>, U) (< 10,0,A>, A) (< 10,0,B>, B) (< 10,0,C>, C) (< 10,0,D>, D) (< 10,0,E>, E) (< 10,0,F>, F) (< 10,0,G>, G) (< 10,0,H>, H) (< 10,0,I>, I) (< 10,0,J>, J) (< 10,0,K>, K) (< 10,0,U>, U) (< 11,0,A>, A) (< 11,0,B>, B) (< 11,0,C>, C) (< 11,0,D>, D) (< 11,0,E>, E) (< 11,0,F>, F) (< 11,0,G>, G) (< 11,0,H>, H) (< 11,0,I>, I) (< 11,0,J>, J) (< 11,0,K>, K) (< 11,0,U>, U) (< 13,0,A>, A + B) (< 13,0,B>, B) (< 13,0,C>, B + C) (< 13,0,D>, B + D) (< 13,0,E>, B + E) (< 13,0,F>, B + F) (< 13,0,G>, B + G) (< 13,0,H>, 1) (< 13,0,I>, I) (< 13,0,J>, J) (< 13,0,K>, B + K) (< 13,0,U>, U) (< 14,0,A>, A + B) (< 14,0,B>, B) (< 14,0,C>, B + C) (< 14,0,D>, B + D) (< 14,0,E>, B + E) (< 14,0,F>, B + F) (< 14,0,G>, B + G) (< 14,0,H>, 1) (< 14,0,I>, I) (< 14,0,J>, J) (< 14,0,K>, B + K) (< 14,0,U>, U) (< 15,0,A>, A + B) (< 15,0,B>, B) (< 15,0,C>, B + C) (< 15,0,D>, B + D) (< 15,0,E>, B + E) (< 15,0,F>, B + F) (< 15,0,G>, B + G) (< 15,0,H>, 1) (< 15,0,I>, I) (< 15,0,J>, J) (< 15,0,K>, B + K) (< 15,0,U>, U) (< 16,0,A>, A + B) (< 16,0,B>, B) (< 16,0,C>, B + C) (< 16,0,D>, B + D) (< 16,0,E>, B + E) (< 16,0,F>, B + F) (< 16,0,G>, B + G) (< 16,0,H>, 1) (< 16,0,I>, I) (< 16,0,J>, J) (< 16,0,K>, B + K) (< 16,0,U>, U) (< 17,0,A>, A + B) (< 17,0,B>, B) (< 17,0,C>, B + C) (< 17,0,D>, B + D) (< 17,0,E>, B + E) (< 17,0,F>, B + F) (< 17,0,G>, B + G) (< 17,0,H>, 1) (< 17,0,I>, I) (< 17,0,J>, J) (< 17,0,K>, B + K) (< 17,0,U>, U) (< 18,0,A>, A + B) (< 18,0,B>, B) (< 18,0,C>, B + C) (< 18,0,D>, B + D) (< 18,0,E>, B + E) (< 18,0,F>, B + F) (< 18,0,G>, B + G) (< 18,0,H>, 1) (< 18,0,I>, I) (< 18,0,J>, J) (< 18,0,K>, B + K) (< 18,0,U>, U) (< 19,0,A>, A + B) (< 19,0,B>, B) (< 19,0,C>, B + C) (< 19,0,D>, B + D) (< 19,0,E>, B + E) (< 19,0,F>, B + F) (< 19,0,G>, B + G) (< 19,0,H>, 1) (< 19,0,I>, I) (< 19,0,J>, J) (< 19,0,K>, B + K) (< 19,0,U>, U) (< 20,0,A>, A + B) (< 20,0,B>, B) (< 20,0,C>, B + C) (< 20,0,D>, B + D) (< 20,0,E>, B + E) (< 20,0,F>, B + F) (< 20,0,G>, B + G) (< 20,0,H>, 1) (< 20,0,I>, I) (< 20,0,J>, J) (< 20,0,K>, B + K) (< 20,0,U>, U) (< 21,0,A>, A + B) (< 21,0,B>, B) (< 21,0,C>, B + C) (< 21,0,D>, B + D) (< 21,0,E>, B + E) (< 21,0,F>, B + F) (< 21,0,G>, B + G) (< 21,0,H>, 1) (< 21,0,I>, I) (< 21,0,J>, J) (< 21,0,K>, B + K) (< 21,0,U>, U) (< 22,0,A>, A + B) (< 22,0,B>, B) (< 22,0,C>, B + C) (< 22,0,D>, B + D) (< 22,0,E>, B + E) (< 22,0,F>, B + F) (< 22,0,G>, B + G) (< 22,0,H>, 1) (< 22,0,I>, I) (< 22,0,J>, J) (< 22,0,K>, B + K) (< 22,0,U>, U) (< 23,0,A>, A + B) (< 23,0,B>, B) (< 23,0,C>, B + C) (< 23,0,D>, B + D) (< 23,0,E>, B + E) (< 23,0,F>, B + F) (< 23,0,G>, B + G) (< 23,0,H>, 1) (< 23,0,I>, I) (< 23,0,J>, J) (< 23,0,K>, B + K) (< 23,0,U>, U) (< 25,0,A>, A + B) (< 25,0,B>, B) (< 25,0,C>, A + B + C) (< 25,0,D>, A + B + D) (< 25,0,E>, A + B + E) (< 25,0,F>, A + B + F) (< 25,0,G>, A + B + G) (< 25,0,H>, 1) (< 25,0,I>, I) (< 25,0,J>, J) (< 25,0,K>, A + B + K) (< 25,0,U>, U) (< 26,0,A>, A + B) (< 26,0,B>, B) (< 26,0,C>, A + B + C) (< 26,0,D>, A + B + D) (< 26,0,E>, A + B + E) (< 26,0,F>, A + B + F) (< 26,0,G>, A + B + G) (< 26,0,H>, 1) (< 26,0,I>, I) (< 26,0,J>, J) (< 26,0,K>, A + B + K) (< 26,0,U>, U) (< 27,0,A>, A + B) (< 27,0,B>, B) (< 27,0,C>, A + B + C) (< 27,0,D>, A + B + D) (< 27,0,E>, A + B + E) (< 27,0,F>, A + B + F) (< 27,0,G>, A + B + G) (< 27,0,H>, 1) (< 27,0,I>, I) (< 27,0,J>, J) (< 27,0,K>, A + B + K) (< 27,0,U>, U) (< 28,0,A>, A + B) (< 28,0,B>, B) (< 28,0,C>, A + B + C) (< 28,0,D>, A + B + D) (< 28,0,E>, A + B + E) (< 28,0,F>, A + B + F) (< 28,0,G>, A + B + G) (< 28,0,H>, 1) (< 28,0,I>, I) (< 28,0,J>, J) (< 28,0,K>, A + B + K) (< 28,0,U>, U) (< 29,0,A>, A + B) (< 29,0,B>, B) (< 29,0,C>, A + B + C) (< 29,0,D>, A + B + D) (< 29,0,E>, A + B + E) (< 29,0,F>, A + B + F) (< 29,0,G>, A + B + G) (< 29,0,H>, 1) (< 29,0,I>, I) (< 29,0,J>, J) (< 29,0,K>, A + B + K) (< 29,0,U>, U) (< 30,0,A>, A + B) (< 30,0,B>, B) (< 30,0,C>, A + B + C) (< 30,0,D>, A + B + D) (< 30,0,E>, A + B + E) (< 30,0,F>, A + B + F) (< 30,0,G>, A + B + G) (< 30,0,H>, 1) (< 30,0,I>, I) (< 30,0,J>, J) (< 30,0,K>, A + B + K) (< 30,0,U>, U) (< 31,0,A>, A + B) (< 31,0,B>, B) (< 31,0,C>, A + B + C) (< 31,0,D>, A + B + D) (< 31,0,E>, A + B + E) (< 31,0,F>, A + B + F) (< 31,0,G>, A + B + G) (< 31,0,H>, 1) (< 31,0,I>, I) (< 31,0,J>, J) (< 31,0,K>, A + B + K) (< 31,0,U>, U) (< 32,0,A>, A + B) (< 32,0,B>, B) (< 32,0,C>, A + B + C) (< 32,0,D>, A + B + D) (< 32,0,E>, A + B + E) (< 32,0,F>, A + B + F) (< 32,0,G>, A + B + G) (< 32,0,H>, 1) (< 32,0,I>, I) (< 32,0,J>, J) (< 32,0,K>, A + B + K) (< 32,0,U>, U) (< 33,0,A>, A + B) (< 33,0,B>, B) (< 33,0,C>, A + B + C) (< 33,0,D>, A + B + D) (< 33,0,E>, A + B + E) (< 33,0,F>, A + B + F) (< 33,0,G>, A + B + G) (< 33,0,H>, 1) (< 33,0,I>, I) (< 33,0,J>, J) (< 33,0,K>, A + B + K) (< 33,0,U>, U) (< 35,0,A>, A + B) (< 35,0,B>, B) (< 35,0,C>, A + B + C) (< 35,0,D>, A + B + C + D) (< 35,0,E>, A + B + C + E) (< 35,0,F>, A + B + C + F) (< 35,0,G>, A + B + C + G) (< 35,0,H>, 1) (< 35,0,I>, I) (< 35,0,J>, J) (< 35,0,K>, A + B + C + K) (< 35,0,U>, U) (< 36,0,A>, A + B) (< 36,0,B>, B) (< 36,0,C>, A + B + C) (< 36,0,D>, A + B + C + D) (< 36,0,E>, A + B + C + E) (< 36,0,F>, A + B + C + F) (< 36,0,G>, A + B + C + G) (< 36,0,H>, 1) (< 36,0,I>, I) (< 36,0,J>, J) (< 36,0,K>, A + B + C + K) (< 36,0,U>, U) (< 37,0,A>, A + B) (< 37,0,B>, B) (< 37,0,C>, A + B + C) (< 37,0,D>, A + B + C + D) (< 37,0,E>, A + B + C + E) (< 37,0,F>, A + B + C + F) (< 37,0,G>, A + B + C + G) (< 37,0,H>, 1) (< 37,0,I>, I) (< 37,0,J>, J) (< 37,0,K>, A + B + C + K) (< 37,0,U>, U) (< 38,0,A>, A + B) (< 38,0,B>, B) (< 38,0,C>, A + B + C) (< 38,0,D>, A + B + C + D) (< 38,0,E>, A + B + C + E) (< 38,0,F>, A + B + C + F) (< 38,0,G>, A + B + C + G) (< 38,0,H>, 1) (< 38,0,I>, I) (< 38,0,J>, J) (< 38,0,K>, A + B + C + K) (< 38,0,U>, U) (< 39,0,A>, A + B) (< 39,0,B>, B) (< 39,0,C>, A + B + C) (< 39,0,D>, A + B + C + D) (< 39,0,E>, A + B + C + E) (< 39,0,F>, A + B + C + F) (< 39,0,G>, A + B + C + G) (< 39,0,H>, 1) (< 39,0,I>, I) (< 39,0,J>, J) (< 39,0,K>, A + B + C + K) (< 39,0,U>, U) (< 40,0,A>, A + B) (< 40,0,B>, B) (< 40,0,C>, A + B + C) (< 40,0,D>, A + B + C + D) (< 40,0,E>, A + B + C + E) (< 40,0,F>, A + B + C + F) (< 40,0,G>, A + B + C + G) (< 40,0,H>, 1) (< 40,0,I>, I) (< 40,0,J>, J) (< 40,0,K>, A + B + C + K) (< 40,0,U>, U) (< 41,0,A>, A + B) (< 41,0,B>, B) (< 41,0,C>, A + B + C) (< 41,0,D>, A + B + C + D) (< 41,0,E>, A + B + C + E) (< 41,0,F>, A + B + C + F) (< 41,0,G>, A + B + C + G) (< 41,0,H>, 1) (< 41,0,I>, I) (< 41,0,J>, J) (< 41,0,K>, A + B + C + K) (< 41,0,U>, U) (< 43,0,A>, A + B) (< 43,0,B>, B) (< 43,0,C>, A + B + C) (< 43,0,D>, A + B + C + D) (< 43,0,E>, A + B + C + D + E) (< 43,0,F>, A + B + C + D + F) (< 43,0,G>, A + B + C + D + G) (< 43,0,H>, 1) (< 43,0,I>, I) (< 43,0,J>, J) (< 43,0,K>, A + B + C + D + K) (< 43,0,U>, U) (< 44,0,A>, A + B) (< 44,0,B>, B) (< 44,0,C>, A + B + C) (< 44,0,D>, A + B + C + D) (< 44,0,E>, A + B + C + D + E) (< 44,0,F>, A + B + C + D + F) (< 44,0,G>, A + B + C + D + G) (< 44,0,H>, 1) (< 44,0,I>, I) (< 44,0,J>, J) (< 44,0,K>, A + B + C + D + K) (< 44,0,U>, U) (< 45,0,A>, A + B) (< 45,0,B>, B) (< 45,0,C>, A + B + C) (< 45,0,D>, A + B + C + D) (< 45,0,E>, A + B + C + D + E) (< 45,0,F>, A + B + C + D + F) (< 45,0,G>, A + B + C + D + G) (< 45,0,H>, 1) (< 45,0,I>, I) (< 45,0,J>, J) (< 45,0,K>, A + B + C + D + K) (< 45,0,U>, U) (< 46,0,A>, A + B) (< 46,0,B>, B) (< 46,0,C>, A + B + C) (< 46,0,D>, A + B + C + D) (< 46,0,E>, A + B + C + D + E) (< 46,0,F>, A + B + C + D + F) (< 46,0,G>, A + B + C + D + G) (< 46,0,H>, 1) (< 46,0,I>, I) (< 46,0,J>, J) (< 46,0,K>, A + B + C + D + K) (< 46,0,U>, U) (< 47,0,A>, A + B) (< 47,0,B>, B) (< 47,0,C>, A + B + C) (< 47,0,D>, A + B + C + D) (< 47,0,E>, A + B + C + D + E) (< 47,0,F>, A + B + C + D + F) (< 47,0,G>, A + B + C + D + G) (< 47,0,H>, 1) (< 47,0,I>, I) (< 47,0,J>, J) (< 47,0,K>, A + B + C + D + K) (< 47,0,U>, U) (< 49,0,A>, A + B) (< 49,0,B>, B) (< 49,0,C>, A + B + C) (< 49,0,D>, A + B + C + D) (< 49,0,E>, A + B + C + D + E) (< 49,0,F>, A + B + C + D + E + F) (< 49,0,G>, A + B + C + D + E + G) (< 49,0,H>, 1) (< 49,0,I>, I) (< 49,0,J>, J) (< 49,0,K>, A + B + C + D + E + K) (< 49,0,U>, U) (< 50,0,A>, A + B) (< 50,0,B>, B) (< 50,0,C>, A + B + C) (< 50,0,D>, A + B + C + D) (< 50,0,E>, A + B + C + D + E) (< 50,0,F>, A + B + C + D + E + F) (< 50,0,G>, A + B + C + D + E + G) (< 50,0,H>, 1) (< 50,0,I>, I) (< 50,0,J>, J) (< 50,0,K>, A + B + C + D + E + K) (< 50,0,U>, U) (< 51,0,A>, A + B) (< 51,0,B>, B) (< 51,0,C>, A + B + C) (< 51,0,D>, A + B + C + D) (< 51,0,E>, A + B + C + D + E) (< 51,0,F>, A + B + C + D + E + F) (< 51,0,G>, A + B + C + D + E + G) (< 51,0,H>, 1) (< 51,0,I>, I) (< 51,0,J>, J) (< 51,0,K>, A + B + C + D + E + K) (< 51,0,U>, U) (< 53,0,A>, A + B) (< 53,0,B>, B) (< 53,0,C>, A + B + C) (< 53,0,D>, A + B + C + D) (< 53,0,E>, A + B + C + D + E) (< 53,0,F>, A + B + C + D + E + F) (< 53,0,G>, A + B + C + D + E + F + G) (< 53,0,H>, 1) (< 53,0,I>, I) (< 53,0,J>, J) (< 53,0,K>, A + B + C + D + E + F + K) (< 53,0,U>, U) (< 54,0,A>, A + B) (< 54,0,B>, B) (< 54,0,C>, A + B + C) (< 54,0,D>, A + B + C + D) (< 54,0,E>, A + B + C + D + E) (< 54,0,F>, A + B + C + D + E + F) (< 54,0,G>, A + B + C + D + E + F + G) (< 54,0,H>, 1) (< 54,0,I>, 1) (< 54,0,J>, J) (< 54,0,K>, A + B + C + D + E + F + G + K) (< 54,0,U>, U) (< 55,0,A>, A + B) (< 55,0,B>, B) (< 55,0,C>, A + B + C) (< 55,0,D>, A + B + C + D) (< 55,0,E>, A + B + C + D + E) (< 55,0,F>, A + B + C + D + E + F) (< 55,0,G>, A + B + C + D + E + F + G) (< 55,0,H>, 1) (< 55,0,I>, 1) (< 55,0,J>, J) (< 55,0,K>, A + B + C + D + E + F + G + K) (< 55,0,U>, U) (< 56,0,A>, A + B) (< 56,0,B>, B) (< 56,0,C>, A + B + C) (< 56,0,D>, A + B + C + D) (< 56,0,E>, A + B + C + D + E) (< 56,0,F>, A + B + C + D + E + F) (< 56,0,G>, A + B + C + D + E + F + G) (< 56,0,H>, 1) (< 56,0,I>, 1) (< 56,0,J>, 1) (< 56,0,K>, A + B + C + D + E + F + G + K) (< 56,0,U>, ?) (< 57,0,A>, A + B) (< 57,0,B>, B) (< 57,0,C>, A + B + C) (< 57,0,D>, A + B + C + D) (< 57,0,E>, A + B + C + D + E) (< 57,0,F>, A + B + C + D + E + F) (< 57,0,G>, A + B + C + D + E + F + G) (< 57,0,H>, 1) (< 57,0,I>, 1) (< 57,0,J>, 1) (< 57,0,K>, A + B + C + D + E + F + G + K) (< 57,0,U>, ?) (< 58,0,A>, A + B) (< 58,0,B>, B) (< 58,0,C>, A + B + C) (< 58,0,D>, A + B + C + D) (< 58,0,E>, A + B + C + D + E) (< 58,0,F>, A + B + C + D + E + F) (< 58,0,G>, A + B + C + D + E + F + G) (< 58,0,H>, 1) (< 58,0,I>, 1) (< 58,0,J>, 1) (< 58,0,K>, A + B + C + D + E + F + G + K) (< 58,0,U>, ?) (< 59,0,A>, A + B) (< 59,0,B>, B) (< 59,0,C>, A + B + C) (< 59,0,D>, A + B + C + D) (< 59,0,E>, A + B + C + D + E) (< 59,0,F>, A + B + C + D + E + F) (< 59,0,G>, A + B + C + D + E + F + G) (< 59,0,H>, 1) (< 59,0,I>, 1) (< 59,0,J>, 1) (< 59,0,K>, A + B + C + D + E + F + G + K) (< 59,0,U>, ?) (< 60,0,A>, A + B) (< 60,0,B>, B) (< 60,0,C>, A + B + C) (< 60,0,D>, A + B + C + D) (< 60,0,E>, A + B + C + D + E) (< 60,0,F>, A + B + C + D + E + F) (< 60,0,G>, A + B + C + D + E + F + G) (< 60,0,H>, 1) (< 60,0,I>, 1) (< 60,0,J>, 1) (< 60,0,K>, A + B + C + D + E + F + G + K) (< 60,0,U>, ?) (< 61,0,A>, A + B) (< 61,0,B>, B) (< 61,0,C>, A + B + C) (< 61,0,D>, A + B + C + D) (< 61,0,E>, A + B + C + D + E) (< 61,0,F>, A + B + C + D + E + F) (< 61,0,G>, A + B + C + D + E + F + G) (< 61,0,H>, 1) (< 61,0,I>, 1) (< 61,0,J>, 1) (< 61,0,K>, A + B + C + D + E + F + G + K) (< 61,0,U>, ?) (< 62,0,A>, A) (< 62,0,B>, B) (< 62,0,C>, C) (< 62,0,D>, D) (< 62,0,E>, E) (< 62,0,F>, F) (< 62,0,G>, G) (< 62,0,H>, 1) (< 62,0,I>, I) (< 62,0,J>, J) (< 62,0,K>, K) (< 62,0,U>, U) (< 63,0,A>, A) (< 63,0,B>, B) (< 63,0,C>, C) (< 63,0,D>, D) (< 63,0,E>, E) (< 63,0,F>, F) (< 63,0,G>, G) (< 63,0,H>, 1) (< 63,0,I>, I) (< 63,0,J>, J) (< 63,0,K>, K) (< 63,0,U>, U) (< 64,0,A>, A) (< 64,0,B>, B) (< 64,0,C>, C) (< 64,0,D>, D) (< 64,0,E>, E) (< 64,0,F>, F) (< 64,0,G>, G) (< 64,0,H>, 0) (< 64,0,I>, I) (< 64,0,J>, J) (< 64,0,K>, B) (< 64,0,U>, U) (< 65,0,A>, A) (< 65,0,B>, B) (< 65,0,C>, C) (< 65,0,D>, D) (< 65,0,E>, E) (< 65,0,F>, F) (< 65,0,G>, B) (< 65,0,H>, 0) (< 65,0,I>, I) (< 65,0,J>, J) (< 65,0,K>, K) (< 65,0,U>, U) (< 66,0,A>, A) (< 66,0,B>, B) (< 66,0,C>, C) (< 66,0,D>, D) (< 66,0,E>, E) (< 66,0,F>, B) (< 66,0,G>, G) (< 66,0,H>, 0) (< 66,0,I>, I) (< 66,0,J>, J) (< 66,0,K>, K) (< 66,0,U>, U) (< 67,0,A>, A) (< 67,0,B>, B) (< 67,0,C>, C) (< 67,0,D>, D) (< 67,0,E>, B) (< 67,0,F>, F) (< 67,0,G>, G) (< 67,0,H>, 0) (< 67,0,I>, I) (< 67,0,J>, J) (< 67,0,K>, K) (< 67,0,U>, U) (< 68,0,A>, A) (< 68,0,B>, B) (< 68,0,C>, C) (< 68,0,D>, B) (< 68,0,E>, E) (< 68,0,F>, F) (< 68,0,G>, G) (< 68,0,H>, 0) (< 68,0,I>, I) (< 68,0,J>, J) (< 68,0,K>, K) (< 68,0,U>, U) (< 69,0,A>, A) (< 69,0,B>, B) (< 69,0,C>, B) (< 69,0,D>, D) (< 69,0,E>, E) (< 69,0,F>, F) (< 69,0,G>, G) (< 69,0,H>, 0) (< 69,0,I>, I) (< 69,0,J>, J) (< 69,0,K>, K) (< 69,0,U>, U) (< 70,0,A>, B) (< 70,0,B>, B) (< 70,0,C>, C) (< 70,0,D>, D) (< 70,0,E>, E) (< 70,0,F>, F) (< 70,0,G>, G) (< 70,0,H>, 0) (< 70,0,I>, I) (< 70,0,J>, J) (< 70,0,K>, K) (< 70,0,U>, U) (< 71,0,A>, A + B) (< 71,0,B>, B) (< 71,0,C>, B + C) (< 71,0,D>, B + D) (< 71,0,E>, B + E) (< 71,0,F>, B + F) (< 71,0,G>, B + G) (< 71,0,H>, 1) (< 71,0,I>, I) (< 71,0,J>, J) (< 71,0,K>, B + K) (< 71,0,U>, U) (< 72,0,A>, A + B) (< 72,0,B>, B) (< 72,0,C>, B + C) (< 72,0,D>, B + D) (< 72,0,E>, B + E) (< 72,0,F>, B + F) (< 72,0,G>, B + G) (< 72,0,H>, 1) (< 72,0,I>, I) (< 72,0,J>, J) (< 72,0,K>, B + K) (< 72,0,U>, U) (< 73,0,A>, A + B) (< 73,0,B>, B) (< 73,0,C>, B + C) (< 73,0,D>, B + D) (< 73,0,E>, B + E) (< 73,0,F>, B + F) (< 73,0,G>, B + G) (< 73,0,H>, 0) (< 73,0,I>, I) (< 73,0,J>, J) (< 73,0,K>, A + B) (< 73,0,U>, U) (< 74,0,A>, A + B) (< 74,0,B>, B) (< 74,0,C>, B + C) (< 74,0,D>, B + D) (< 74,0,E>, B + E) (< 74,0,F>, B + F) (< 74,0,G>, A + B) (< 74,0,H>, 0) (< 74,0,I>, I) (< 74,0,J>, J) (< 74,0,K>, B + K) (< 74,0,U>, U) (< 75,0,A>, A + B) (< 75,0,B>, B) (< 75,0,C>, B + C) (< 75,0,D>, B + D) (< 75,0,E>, B + E) (< 75,0,F>, A + B) (< 75,0,G>, B + G) (< 75,0,H>, 0) (< 75,0,I>, I) (< 75,0,J>, J) (< 75,0,K>, B + K) (< 75,0,U>, U) (< 76,0,A>, A + B) (< 76,0,B>, B) (< 76,0,C>, B + C) (< 76,0,D>, B + D) (< 76,0,E>, A + B) (< 76,0,F>, B + F) (< 76,0,G>, B + G) (< 76,0,H>, 0) (< 76,0,I>, I) (< 76,0,J>, J) (< 76,0,K>, B + K) (< 76,0,U>, U) (< 77,0,A>, A + B) (< 77,0,B>, B) (< 77,0,C>, B + C) (< 77,0,D>, A + B) (< 77,0,E>, B + E) (< 77,0,F>, B + F) (< 77,0,G>, B + G) (< 77,0,H>, 0) (< 77,0,I>, I) (< 77,0,J>, J) (< 77,0,K>, B + K) (< 77,0,U>, U) (< 78,0,A>, A + B) (< 78,0,B>, B) (< 78,0,C>, A + B) (< 78,0,D>, B + D) (< 78,0,E>, B + E) (< 78,0,F>, B + F) (< 78,0,G>, B + G) (< 78,0,H>, 0) (< 78,0,I>, I) (< 78,0,J>, J) (< 78,0,K>, B + K) (< 78,0,U>, U) (< 79,0,A>, A + B) (< 79,0,B>, B) (< 79,0,C>, B + C) (< 79,0,D>, B + D) (< 79,0,E>, B + E) (< 79,0,F>, B + F) (< 79,0,G>, B + G) (< 79,0,H>, 0) (< 79,0,I>, I) (< 79,0,J>, J) (< 79,0,K>, B + K) (< 79,0,U>, U) (< 80,0,A>, A + B) (< 80,0,B>, B) (< 80,0,C>, A + B + C) (< 80,0,D>, A + B + D) (< 80,0,E>, A + B + E) (< 80,0,F>, A + B + F) (< 80,0,G>, A + B + G) (< 80,0,H>, 1) (< 80,0,I>, I) (< 80,0,J>, J) (< 80,0,K>, A + B + K) (< 80,0,U>, U) (< 81,0,A>, A + B) (< 81,0,B>, B) (< 81,0,C>, A + B + C) (< 81,0,D>, A + B + D) (< 81,0,E>, A + B + E) (< 81,0,F>, A + B + F) (< 81,0,G>, A + B + G) (< 81,0,H>, 1) (< 81,0,I>, I) (< 81,0,J>, J) (< 81,0,K>, A + B + K) (< 81,0,U>, U) (< 82,0,A>, A + B) (< 82,0,B>, B) (< 82,0,C>, A + B + C) (< 82,0,D>, A + B + D) (< 82,0,E>, A + B + E) (< 82,0,F>, A + B + F) (< 82,0,G>, A + B + G) (< 82,0,H>, 0) (< 82,0,I>, I) (< 82,0,J>, J) (< 82,0,K>, A + B + C) (< 82,0,U>, U) (< 83,0,A>, A + B) (< 83,0,B>, B) (< 83,0,C>, A + B + C) (< 83,0,D>, A + B + D) (< 83,0,E>, A + B + E) (< 83,0,F>, A + B + F) (< 83,0,G>, A + B + C) (< 83,0,H>, 0) (< 83,0,I>, I) (< 83,0,J>, J) (< 83,0,K>, A + B + K) (< 83,0,U>, U) (< 84,0,A>, A + B) (< 84,0,B>, B) (< 84,0,C>, A + B + C) (< 84,0,D>, A + B + D) (< 84,0,E>, A + B + E) (< 84,0,F>, A + B + C) (< 84,0,G>, A + B + G) (< 84,0,H>, 0) (< 84,0,I>, I) (< 84,0,J>, J) (< 84,0,K>, A + B + K) (< 84,0,U>, U) (< 85,0,A>, A + B) (< 85,0,B>, B) (< 85,0,C>, A + B + C) (< 85,0,D>, A + B + D) (< 85,0,E>, A + B + C) (< 85,0,F>, A + B + F) (< 85,0,G>, A + B + G) (< 85,0,H>, 0) (< 85,0,I>, I) (< 85,0,J>, J) (< 85,0,K>, A + B + K) (< 85,0,U>, U) (< 86,0,A>, A + B) (< 86,0,B>, B) (< 86,0,C>, A + B + C) (< 86,0,D>, A + B + C) (< 86,0,E>, A + B + E) (< 86,0,F>, A + B + F) (< 86,0,G>, A + B + G) (< 86,0,H>, 0) (< 86,0,I>, I) (< 86,0,J>, J) (< 86,0,K>, A + B + K) (< 86,0,U>, U) (< 87,0,A>, A + B) (< 87,0,B>, B) (< 87,0,C>, A + B + C) (< 87,0,D>, A + B + D) (< 87,0,E>, A + B + E) (< 87,0,F>, A + B + F) (< 87,0,G>, A + B + G) (< 87,0,H>, 0) (< 87,0,I>, I) (< 87,0,J>, J) (< 87,0,K>, A + B + K) (< 87,0,U>, U) (< 88,0,A>, A + B) (< 88,0,B>, B) (< 88,0,C>, A + B + C) (< 88,0,D>, A + B + C + D) (< 88,0,E>, A + B + C + E) (< 88,0,F>, A + B + C + F) (< 88,0,G>, A + B + C + G) (< 88,0,H>, 1) (< 88,0,I>, I) (< 88,0,J>, J) (< 88,0,K>, A + B + C + K) (< 88,0,U>, U) (< 89,0,A>, A + B) (< 89,0,B>, B) (< 89,0,C>, A + B + C) (< 89,0,D>, A + B + C + D) (< 89,0,E>, A + B + C + E) (< 89,0,F>, A + B + C + F) (< 89,0,G>, A + B + C + G) (< 89,0,H>, 1) (< 89,0,I>, I) (< 89,0,J>, J) (< 89,0,K>, A + B + C + K) (< 89,0,U>, U) (< 90,0,A>, A + B) (< 90,0,B>, B) (< 90,0,C>, A + B + C) (< 90,0,D>, A + B + C + D) (< 90,0,E>, A + B + C + E) (< 90,0,F>, A + B + C + F) (< 90,0,G>, A + B + C + G) (< 90,0,H>, 0) (< 90,0,I>, I) (< 90,0,J>, J) (< 90,0,K>, A + B + C + D) (< 90,0,U>, U) (< 91,0,A>, A + B) (< 91,0,B>, B) (< 91,0,C>, A + B + C) (< 91,0,D>, A + B + C + D) (< 91,0,E>, A + B + C + E) (< 91,0,F>, A + B + C + F) (< 91,0,G>, A + B + C + D) (< 91,0,H>, 0) (< 91,0,I>, I) (< 91,0,J>, J) (< 91,0,K>, A + B + C + K) (< 91,0,U>, U) (< 92,0,A>, A + B) (< 92,0,B>, B) (< 92,0,C>, A + B + C) (< 92,0,D>, A + B + C + D) (< 92,0,E>, A + B + C + E) (< 92,0,F>, A + B + C + D) (< 92,0,G>, A + B + C + G) (< 92,0,H>, 0) (< 92,0,I>, I) (< 92,0,J>, J) (< 92,0,K>, A + B + C + K) (< 92,0,U>, U) (< 93,0,A>, A + B) (< 93,0,B>, B) (< 93,0,C>, A + B + C) (< 93,0,D>, A + B + C + D) (< 93,0,E>, A + B + C + D) (< 93,0,F>, A + B + C + F) (< 93,0,G>, A + B + C + G) (< 93,0,H>, 0) (< 93,0,I>, I) (< 93,0,J>, J) (< 93,0,K>, A + B + C + K) (< 93,0,U>, U) (< 94,0,A>, A + B) (< 94,0,B>, B) (< 94,0,C>, A + B + C) (< 94,0,D>, A + B + C + D) (< 94,0,E>, A + B + C + E) (< 94,0,F>, A + B + C + F) (< 94,0,G>, A + B + C + G) (< 94,0,H>, 0) (< 94,0,I>, I) (< 94,0,J>, J) (< 94,0,K>, A + B + C + K) (< 94,0,U>, U) (< 95,0,A>, A + B) (< 95,0,B>, B) (< 95,0,C>, A + B + C) (< 95,0,D>, A + B + C + D) (< 95,0,E>, A + B + C + D + E) (< 95,0,F>, A + B + C + D + F) (< 95,0,G>, A + B + C + D + G) (< 95,0,H>, 1) (< 95,0,I>, I) (< 95,0,J>, J) (< 95,0,K>, A + B + C + D + K) (< 95,0,U>, U) (< 96,0,A>, A + B) (< 96,0,B>, B) (< 96,0,C>, A + B + C) (< 96,0,D>, A + B + C + D) (< 96,0,E>, A + B + C + D + E) (< 96,0,F>, A + B + C + D + F) (< 96,0,G>, A + B + C + D + G) (< 96,0,H>, 1) (< 96,0,I>, I) (< 96,0,J>, J) (< 96,0,K>, A + B + C + D + K) (< 96,0,U>, U) (< 97,0,A>, A + B) (< 97,0,B>, B) (< 97,0,C>, A + B + C) (< 97,0,D>, A + B + C + D) (< 97,0,E>, A + B + C + D + E) (< 97,0,F>, A + B + C + D + F) (< 97,0,G>, A + B + C + D + G) (< 97,0,H>, 0) (< 97,0,I>, I) (< 97,0,J>, J) (< 97,0,K>, A + B + C + D + E) (< 97,0,U>, U) (< 98,0,A>, A + B) (< 98,0,B>, B) (< 98,0,C>, A + B + C) (< 98,0,D>, A + B + C + D) (< 98,0,E>, A + B + C + D + E) (< 98,0,F>, A + B + C + D + F) (< 98,0,G>, A + B + C + D + E) (< 98,0,H>, 0) (< 98,0,I>, I) (< 98,0,J>, J) (< 98,0,K>, A + B + C + D + K) (< 98,0,U>, U) (< 99,0,A>, A + B) (< 99,0,B>, B) (< 99,0,C>, A + B + C) (< 99,0,D>, A + B + C + D) (< 99,0,E>, A + B + C + D + E) (< 99,0,F>, A + B + C + D + E) (< 99,0,G>, A + B + C + D + G) (< 99,0,H>, 0) (< 99,0,I>, I) (< 99,0,J>, J) (< 99,0,K>, A + B + C + D + K) (< 99,0,U>, U) (<100,0,A>, A + B) (<100,0,B>, B) (<100,0,C>, A + B + C) (<100,0,D>, A + B + C + D) (<100,0,E>, A + B + C + D + E) (<100,0,F>, A + B + C + D + F) (<100,0,G>, A + B + C + D + G) (<100,0,H>, 0) (<100,0,I>, I) (<100,0,J>, J) (<100,0,K>, A + B + C + D + K) (<100,0,U>, U) (<101,0,A>, A + B) (<101,0,B>, B) (<101,0,C>, A + B + C) (<101,0,D>, A + B + C + D) (<101,0,E>, A + B + C + D + E) (<101,0,F>, A + B + C + D + E + F) (<101,0,G>, A + B + C + D + E + G) (<101,0,H>, 1) (<101,0,I>, I) (<101,0,J>, J) (<101,0,K>, A + B + C + D + E + K) (<101,0,U>, U) (<102,0,A>, A + B) (<102,0,B>, B) (<102,0,C>, A + B + C) (<102,0,D>, A + B + C + D) (<102,0,E>, A + B + C + D + E) (<102,0,F>, A + B + C + D + E + F) (<102,0,G>, A + B + C + D + E + G) (<102,0,H>, 1) (<102,0,I>, I) (<102,0,J>, J) (<102,0,K>, A + B + C + D + E + K) (<102,0,U>, U) (<103,0,A>, A + B) (<103,0,B>, B) (<103,0,C>, A + B + C) (<103,0,D>, A + B + C + D) (<103,0,E>, A + B + C + D + E) (<103,0,F>, A + B + C + D + E + F) (<103,0,G>, A + B + C + D + E + G) (<103,0,H>, 0) (<103,0,I>, I) (<103,0,J>, J) (<103,0,K>, A + B + C + D + E + F) (<103,0,U>, U) (<104,0,A>, A + B) (<104,0,B>, B) (<104,0,C>, A + B + C) (<104,0,D>, A + B + C + D) (<104,0,E>, A + B + C + D + E) (<104,0,F>, A + B + C + D + E + F) (<104,0,G>, A + B + C + D + E + F) (<104,0,H>, 0) (<104,0,I>, I) (<104,0,J>, J) (<104,0,K>, A + B + C + D + E + K) (<104,0,U>, U) (<105,0,A>, A + B) (<105,0,B>, B) (<105,0,C>, A + B + C) (<105,0,D>, A + B + C + D) (<105,0,E>, A + B + C + D + E) (<105,0,F>, A + B + C + D + E + F) (<105,0,G>, A + B + C + D + E + G) (<105,0,H>, 0) (<105,0,I>, I) (<105,0,J>, J) (<105,0,K>, A + B + C + D + E + K) (<105,0,U>, U) (<106,0,A>, A + B) (<106,0,B>, B) (<106,0,C>, A + B + C) (<106,0,D>, A + B + C + D) (<106,0,E>, A + B + C + D + E) (<106,0,F>, A + B + C + D + E + F) (<106,0,G>, A + B + C + D + E + F + G) (<106,0,H>, 1) (<106,0,I>, I) (<106,0,J>, J) (<106,0,K>, A + B + C + D + E + F + K) (<106,0,U>, U) (<107,0,A>, A + B) (<107,0,B>, B) (<107,0,C>, A + B + C) (<107,0,D>, A + B + C + D) (<107,0,E>, A + B + C + D + E) (<107,0,F>, A + B + C + D + E + F) (<107,0,G>, A + B + C + D + E + F + G) (<107,0,H>, 1) (<107,0,I>, I) (<107,0,J>, J) (<107,0,K>, A + B + C + D + E + F + K) (<107,0,U>, U) (<108,0,A>, A + B) (<108,0,B>, B) (<108,0,C>, A + B + C) (<108,0,D>, A + B + C + D) (<108,0,E>, A + B + C + D + E) (<108,0,F>, A + B + C + D + E + F) (<108,0,G>, A + B + C + D + E + F + G) (<108,0,H>, 0) (<108,0,I>, I) (<108,0,J>, J) (<108,0,K>, A + B + C + D + E + F + G) (<108,0,U>, U) (<109,0,A>, A + B) (<109,0,B>, B) (<109,0,C>, A + B + C) (<109,0,D>, A + B + C + D) (<109,0,E>, A + B + C + D + E) (<109,0,F>, A + B + C + D + E + F) (<109,0,G>, A + B + C + D + E + F + G) (<109,0,H>, 0) (<109,0,I>, I) (<109,0,J>, J) (<109,0,K>, A + B + C + D + E + F + K) (<109,0,U>, U) (<110,0,A>, A + B) (<110,0,B>, B) (<110,0,C>, A + B + C) (<110,0,D>, A + B + C + D) (<110,0,E>, A + B + C + D + E) (<110,0,F>, A + B + C + D + E + F) (<110,0,G>, A + B + C + D + E + F + G) (<110,0,H>, 1) (<110,0,I>, 1) (<110,0,J>, J) (<110,0,K>, A + B + C + D + E + F + G + K) (<110,0,U>, U) (<111,0,A>, A + B) (<111,0,B>, B) (<111,0,C>, A + B + C) (<111,0,D>, A + B + C + D) (<111,0,E>, A + B + C + D + E) (<111,0,F>, A + B + C + D + E + F) (<111,0,G>, A + B + C + D + E + F + G) (<111,0,H>, 1) (<111,0,I>, 0) (<111,0,J>, J) (<111,0,K>, A + B + C + D + E + F + G + K) (<111,0,U>, U) (<112,0,A>, A + B) (<112,0,B>, B) (<112,0,C>, A + B + C) (<112,0,D>, A + B + C + D) (<112,0,E>, A + B + C + D + E) (<112,0,F>, A + B + C + D + E + F) (<112,0,G>, A + B + C + D + E + F + G) (<112,0,H>, 1) (<112,0,I>, 0) (<112,0,J>, J) (<112,0,K>, A + B + C + D + E + F + G + K) (<112,0,U>, U) (<113,0,A>, A + B) (<113,0,B>, B) (<113,0,C>, A + B + C) (<113,0,D>, A + B + C + D) (<113,0,E>, A + B + C + D + E) (<113,0,F>, A + B + C + D + E + F) (<113,0,G>, A + B + C + D + E + F + G) (<113,0,H>, 1) (<113,0,I>, 0) (<113,0,J>, J) (<113,0,K>, A + B + C + D + E + F + G + K) (<113,0,U>, U) (<114,0,A>, A + B) (<114,0,B>, B) (<114,0,C>, A + B + C) (<114,0,D>, A + B + C + D) (<114,0,E>, A + B + C + D + E) (<114,0,F>, A + B + C + D + E + F) (<114,0,G>, A + B + C + D + E + F + G) (<114,0,H>, 1) (<114,0,I>, 0) (<114,0,J>, J) (<114,0,K>, A + B + C + D + E + F + G + K) (<114,0,U>, U) (<115,0,A>, A + B) (<115,0,B>, B) (<115,0,C>, A + B + C) (<115,0,D>, A + B + C + D) (<115,0,E>, A + B + C + D + E) (<115,0,F>, A + B + C + D + E + F) (<115,0,G>, A + B + C + D + E + F + G) (<115,0,H>, 1) (<115,0,I>, 0) (<115,0,J>, J) (<115,0,K>, A + B + C + D + E + F + G + K) (<115,0,U>, U) (<116,0,A>, A + B) (<116,0,B>, B) (<116,0,C>, A + B + C) (<116,0,D>, A + B + C + D) (<116,0,E>, A + B + C + D + E) (<116,0,F>, A + B + C + D + E + F) (<116,0,G>, A + B + C + D + E + F + G) (<116,0,H>, 1) (<116,0,I>, 0) (<116,0,J>, J) (<116,0,K>, A + B + C + D + E + F + G + K) (<116,0,U>, U) (<117,0,A>, A + B) (<117,0,B>, B) (<117,0,C>, A + B + C) (<117,0,D>, A + B + C + D) (<117,0,E>, A + B + C + D + E) (<117,0,F>, A + B + C + D + E + F) (<117,0,G>, A + B + C + D + E + F + G) (<117,0,H>, 1) (<117,0,I>, 0) (<117,0,J>, J) (<117,0,K>, A + B + C + D + E + F + G + K) (<117,0,U>, U) (<118,0,A>, A + B) (<118,0,B>, B) (<118,0,C>, A + B + C) (<118,0,D>, A + B + C + D) (<118,0,E>, A + B + C + D + E) (<118,0,F>, A + B + C + D + E + F) (<118,0,G>, A + B + C + D + E + F + G) (<118,0,H>, 1) (<118,0,I>, 0) (<118,0,J>, J) (<118,0,K>, A + B + C + D + E + F + G + K) (<118,0,U>, U) (<119,0,A>, A + B) (<119,0,B>, B) (<119,0,C>, A + B + C) (<119,0,D>, A + B + C + D) (<119,0,E>, A + B + C + D + E) (<119,0,F>, A + B + C + D + E + F) (<119,0,G>, A + B + C + D + E + F + G) (<119,0,H>, 1) (<119,0,I>, 1) (<119,0,J>, 1) (<119,0,K>, A + B + C + D + E + F + G + K) (<119,0,U>, ?) (<120,0,A>, A + B) (<120,0,B>, B) (<120,0,C>, A + B + C) (<120,0,D>, A + B + C + D) (<120,0,E>, A + B + C + D + E) (<120,0,F>, A + B + C + D + E + F) (<120,0,G>, A + B + C + D + E + F + G) (<120,0,H>, 1) (<120,0,I>, 1) (<120,0,J>, 1) (<120,0,K>, A + B + C + D + E + F + G + K) (<120,0,U>, ?) (<121,0,A>, A + B) (<121,0,B>, 0) (<121,0,C>, A + B + C) (<121,0,D>, A + B + C + D) (<121,0,E>, A + B + C + D + E) (<121,0,F>, A + B + C + D + E + F) (<121,0,G>, A + B + C + D + E + F + G) (<121,0,H>, 1) (<121,0,I>, 1) (<121,0,J>, 0) (<121,0,K>, A + B + C + D + E + F + G + K) (<121,0,U>, ?) (<122,0,A>, A + B) (<122,0,B>, B) (<122,0,C>, A + B + C) (<122,0,D>, A + B + C + D) (<122,0,E>, 0) (<122,0,F>, A + B + C + D + E + F) (<122,0,G>, A + B + C + D + E + F + G) (<122,0,H>, 1) (<122,0,I>, 1) (<122,0,J>, 0) (<122,0,K>, A + B + C + D + E + F + G + K) (<122,0,U>, ?) (<123,0,A>, A + B) (<123,0,B>, B) (<123,0,C>, A + B + C) (<123,0,D>, A + B + C + D) (<123,0,E>, A + B + C + D + E) (<123,0,F>, A + B + C + D + E + F) (<123,0,G>, A + B + C + D + E + F + G) (<123,0,H>, 1) (<123,0,I>, 1) (<123,0,J>, 1) (<123,0,K>, A + B + C + D + E + F + G + K) (<123,0,U>, ?) (<124,0,A>, A + B) (<124,0,B>, B) (<124,0,C>, A + B + C) (<124,0,D>, A + B + C + D) (<124,0,E>, A + B + C + D + E) (<124,0,F>, A + B + C + D + E + F) (<124,0,G>, A + B + C + D + E + F + G) (<124,0,H>, 1) (<124,0,I>, 1) (<124,0,J>, 1) (<124,0,K>, A + B + C + D + E + F + G + K) (<124,0,U>, ?) (<125,0,A>, A + B) (<125,0,B>, B) (<125,0,C>, A + B + C) (<125,0,D>, A + B + C + D) (<125,0,E>, A + B + C + D + E) (<125,0,F>, A + B + C + D + E + F) (<125,0,G>, A + B + C + D + E + F + G) (<125,0,H>, 1) (<125,0,I>, 1) (<125,0,J>, 1) (<125,0,K>, A + B + C + D + E + F + G + K) (<125,0,U>, 0) (<126,0,A>, A + B) (<126,0,B>, B) (<126,0,C>, A + B + C) (<126,0,D>, A + B + C + D) (<126,0,E>, A + B + C + D + E) (<126,0,F>, A + B + C + D + E + F) (<126,0,G>, A + B + C + D + E + F + G) (<126,0,H>, 1) (<126,0,I>, 1) (<126,0,J>, 0) (<126,0,K>, A + B + C + D + E + F + G + K) (<126,0,U>, ?) (<127,0,A>, A + B) (<127,0,B>, B) (<127,0,C>, A + B + C) (<127,0,D>, A + B + C + D) (<127,0,E>, A + B + C + D + E) (<127,0,F>, A + B + C + D + E + F) (<127,0,G>, A + B + C + D + E + F + G) (<127,0,H>, 1) (<127,0,I>, 0) (<127,0,J>, 1) (<127,0,K>, A + B + C + D + E + F + G + K) (<127,0,U>, ?) (<128,0,A>, A + B) (<128,0,B>, B) (<128,0,C>, A + B + C) (<128,0,D>, A + B + C + D) (<128,0,E>, A + B + C + D + E) (<128,0,F>, A + B + C + D + E + F) (<128,0,G>, A + B + C + D + E + F + G) (<128,0,H>, 0) (<128,0,I>, 1) (<128,0,J>, 1) (<128,0,K>, A + B + C + D + E + F + G + K) (<128,0,U>, ?) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,62 ,63 ,13 ,14 ,15 ,16 ,17 ,18 ,19 ,20 ,21 ,22 ,23 ,71 ,72 ,25 ,26 ,27 ,28 ,29 ,30 ,31 ,32 ,33 ,80 ,81 ,35 ,36 ,37 ,38 ,39 ,40 ,41 ,88 ,89 ,43 ,44 ,45 ,46 ,47 ,64 ,65 ,66 ,67 ,68 ,69 ,73 ,74 ,75 ,76 ,77 ,78 ,79 ,95 ,96 ,49 ,82 ,83 ,84 ,85 ,86 ,87 ,50 ,51 ,90 ,91 ,92 ,93 ,94 ,97 ,98 ,99 ,100 ,101 ,102 ,53 ,103 ,104 ,105 ,106 ,107 ,108 ,109 ,110 ,111 ,112 ,113 ,114 ,115 ,116 ,117 ,118 ,54 ,55 ,119 ,120 ,121 ,122 ,56 ,57 ,58 ,59 ,60 ,61 ,123 ,124 ,125 ,126 ,127 ,128] * Step 7: LocalSizeboundsProc WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,D,E,F,G,H,I,J,K,U) -> f2(A,B,C,D,E,F,G,H,I,J,K,U) [A >= 1 + B] (1,1) 1. f0(A,B,C,D,E,F,G,H,I,J,K,U) -> f2(A,B,C,D,E,F,G,H,I,J,K,U) [B >= 1 + A] (1,1) 70. f0(A,B,C,D,E,F,G,H,I,J,K,U) -> f17(B,B,C,D,E,F,G,0,I,J,K,U) [B = A] (1,1) Signature: {(f0,12) ;(f101,12) ;(f102,12) ;(f108,12) ;(f109,12) ;(f110,12) ;(f111,12) ;(f119,12) ;(f17,12) ;(f18,12) ;(f19,12) ;(f2,12) ;(f20,12) ;(f21,12) ;(f22,12) ;(f23,12) ;(f3,12) ;(f33,12) ;(f34,12) ;(f35,12) ;(f36,12) ;(f37,12) ;(f38,12) ;(f4,12) ;(f47,12) ;(f48,12) ;(f49,12) ;(f5,12) ;(f50,12) ;(f51,12) ;(f59,12) ;(f6,12) ;(f60,12) ;(f61,12) ;(f62,12) ;(f69,12) ;(f7,12) ;(f70,12) ;(f71,12) ;(f77,12) ;(f78,12) ;(f83,12)} Flow Graph: [0->{},1->{},70->{}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,J>, J) (< 0,0,K>, K) (< 0,0,U>, U) (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,J>, J) (< 1,0,K>, K) (< 1,0,U>, U) (<70,0,A>, B) (<70,0,B>, B) (<70,0,C>, C) (<70,0,D>, D) (<70,0,E>, E) (<70,0,F>, F) (<70,0,G>, G) (<70,0,H>, 0) (<70,0,I>, I) (<70,0,J>, J) (<70,0,K>, K) (<70,0,U>, U) + Applied Processor: LocalSizeboundsProc + Details: The problem is already solved. WORST_CASE(?,O(1))