WORST_CASE(?,O(n^1))
* Step 1: RestrictVarsProcessor WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. f2(A,B) -> f3(A,1)      [0 >= A] (?,1)
          1. f0(A,B) -> f2(A,0)      True     (1,1)
          2. f2(A,B) -> f2(-1 + A,B) [A >= 1] (?,1)
        Signature:
          {(f0,2);(f2,2);(f3,2)}
        Flow Graph:
          [0->{},1->{0,2},2->{0,2}]
        
    + Applied Processor:
        RestrictVarsProcessor
    + Details:
        We removed the arguments [B] .
* Step 2: LocalSizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. f2(A) -> f3(A)      [0 >= A] (?,1)
          1. f0(A) -> f2(A)      True     (1,1)
          2. f2(A) -> f2(-1 + A) [A >= 1] (?,1)
        Signature:
          {(f0,1);(f2,1);(f3,1)}
        Flow Graph:
          [0->{},1->{0,2},2->{0,2}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (<0,0,A>,     A, .= 0) 
          (<1,0,A>,     A, .= 0) 
          (<2,0,A>, 1 + A, .+ 1) 
* Step 3: SizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. f2(A) -> f3(A)      [0 >= A] (?,1)
          1. f0(A) -> f2(A)      True     (1,1)
          2. f2(A) -> f2(-1 + A) [A >= 1] (?,1)
        Signature:
          {(f0,1);(f2,1);(f3,1)}
        Flow Graph:
          [0->{},1->{0,2},2->{0,2}]
        Sizebounds:
          (<0,0,A>, ?) 
          (<1,0,A>, ?) 
          (<2,0,A>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (<0,0,A>, ?) 
          (<1,0,A>, A) 
          (<2,0,A>, ?) 
* Step 4: LeafRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. f2(A) -> f3(A)      [0 >= A] (?,1)
          1. f0(A) -> f2(A)      True     (1,1)
          2. f2(A) -> f2(-1 + A) [A >= 1] (?,1)
        Signature:
          {(f0,1);(f2,1);(f3,1)}
        Flow Graph:
          [0->{},1->{0,2},2->{0,2}]
        Sizebounds:
          (<0,0,A>, ?) 
          (<1,0,A>, A) 
          (<2,0,A>, ?) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [0]
* Step 5: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          1. f0(A) -> f2(A)      True     (1,1)
          2. f2(A) -> f2(-1 + A) [A >= 1] (?,1)
        Signature:
          {(f0,1);(f2,1);(f3,1)}
        Flow Graph:
          [1->{2},2->{2}]
        Sizebounds:
          (<1,0,A>, A) 
          (<2,0,A>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f0) = x1
          p(f2) = x1
        
        The following rules are strictly oriented:
        [A >= 1] ==>           
           f2(A)   = A         
                   > -1 + A    
                   = f2(-1 + A)
        
        
        The following rules are weakly oriented:
           True ==>      
          f0(A)   = A    
                 >= A    
                  = f2(A)
        
        
* Step 6: KnowledgePropagation WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          1. f0(A) -> f2(A)      True     (1,1)
          2. f2(A) -> f2(-1 + A) [A >= 1] (A,1)
        Signature:
          {(f0,1);(f2,1);(f3,1)}
        Flow Graph:
          [1->{2},2->{2}]
        Sizebounds:
          (<1,0,A>, A) 
          (<2,0,A>, ?) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        The problem is already solved.

WORST_CASE(?,O(n^1))