WORST_CASE(?,O(1))
* Step 1: RestrictVarsProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1,P1)   -> f422(3,43690,3,Q1,0,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1 True         (1,1)
                                                                                                                       ,O1,P1)                                                                                                                       
          1.  f422(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1,P1) -> f422(A,B,Q1,R1,1 + E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1[149 >= E]   (?,1)
                                                                                                                       ,O1,P1)                                                                                                                       
          2.  f437(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1,P1) -> f441(A,B,C,D,E,F,0,0,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1   [49 >= F]    (?,1)
                                                                                                                       ,P1)                                                                                                                          
          3.  f441(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1,P1) -> f441(A,B,C,D,E,F,Q1,1 + H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1 [49 >= H]    (?,1)
                                                                                                                       ,O1,P1)                                                                                                                       
          4.  f455(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1,P1) -> f461(A,B,C,D,E,F,G,H,I,0,0,Q1,0,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1  [99 >= I]    (?,1)
                                                                                                                       ,P1)                                                                                                                          
          5.  f461(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1,P1) -> f461(A,B,C,D,E,F,G,H,I,Q1,R1,S1,2 + M,T1,U1,V1,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1  [31 >= M]    (?,1)
                                                                                                                       ,M1,N1,O1,P1)                                                                                                                 
          6.  f485(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1,P1) -> f485(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,-1 + Q,Q1,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1[Q >= 0]     (?,1)
                                                                                                                       ,O1,P1)                                                                                                                       
          7.  f501(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1,P1) -> f501(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,1 + S,Q1,R1,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1[49 >= S]    (?,1)
                                                                                                                       ,O1,P1)                                                                                                                       
          8.  f526(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1,P1) -> f526(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,1 + W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1  [V >= W]     (?,1)
                                                                                                                       ,O1,P1)                                                                                                                       
          9.  f540(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1,P1) -> f543(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,0,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1   [8 >= X]     (?,1)
                                                                                                                       ,P1)                                                                                                                          
          10. f543(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1,P1) -> f546(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,0,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1   [7 >= Y]     (?,1)
                                                                                                                       ,P1)                                                                                                                          
          11. f546(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1,P1) -> f546(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,1 + Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1  [3 >= Z]     (?,1)
                                                                                                                       ,O1,P1)                                                                                                                       
          12. f546(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1,P1) -> f543(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,1 + Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1  [Z >= 4]     (?,1)
                                                                                                                       ,O1,P1)                                                                                                                       
          13. f543(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1,P1) -> f540(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,7 + X,Y,Z,3 + A1,3 + B1,-7 + C1,D1,E1,F1,G1,H1,I1,J1 [Y >= 8]     (?,1)
                                                                                                                       ,K1,L1,M1,N1,O1,P1)                                                                                                           
          14. f540(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1,P1) -> f584(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1   [X >= 9]     (?,1)
                                                                                                                       ,P1)                                                                                                                          
          15. f526(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1,P1) -> f540(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,1,Y,Z,0,13,8,E1,E1,E1,G1,H1,I1,J1,K1,L1,M1,N1,O1,P1) [W >= 1 + V] (?,1)
          16. f501(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1,P1) -> f526(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,17,2,X,Y,Z,A1,B1,C1,D1,B,F1,B,1,Q1,A,1,R1,M1,N1,O1,P1)   [S >= 50]    (?,1)
          17. f485(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1,P1) -> f501(A,R,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,0,Q1,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,R,N1,O1   [0 >= 1 + Q] (?,1)
                                                                                                                       ,P1)                                                                                                                          
          18. f461(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1,P1) -> f455(A,B,C,D,E,F,G,H,2 + I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1  [M >= 32]    (?,1)
                                                                                                                       ,O1,P1)                                                                                                                       
          19. f455(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1,P1) -> f485(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,98,Q1,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,100,O1[I >= 100]   (?,1)
                                                                                                                       ,P1)                                                                                                                          
          20. f441(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1,P1) -> f437(A,B,C,D,E,1 + F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1  [H >= 50]    (?,1)
                                                                                                                       ,O1,P1)                                                                                                                       
          21. f437(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1,P1) -> f455(A,B,C,D,E,F,G,H,0,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1   [F >= 50]    (?,1)
                                                                                                                       ,P1)                                                                                                                          
          22. f422(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1,P1) -> f437(C,B,C,D,E,0,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,C,C) [E >= 150]   (?,1)
        Signature:
          {(f0,42)
          ;(f422,42)
          ;(f437,42)
          ;(f441,42)
          ;(f455,42)
          ;(f461,42)
          ;(f485,42)
          ;(f501,42)
          ;(f526,42)
          ;(f540,42)
          ;(f543,42)
          ;(f546,42)
          ;(f584,42)}
        Flow Graph:
          [0->{1,22},1->{1,22},2->{3,20},3->{3,20},4->{5,18},5->{5,18},6->{6,17},7->{7,16},8->{8,15},9->{10,13}
          ,10->{11,12},11->{11,12},12->{10,13},13->{9,14},14->{},15->{9,14},16->{8,15},17->{7,16},18->{4,19},19->{6
          ,17},20->{2,21},21->{4,19},22->{2,21}]
        
    + Applied Processor:
        RestrictVarsProcessor
    + Details:
        We removed the arguments [D,G,J,K,L,N,O,P,T,U,A1,B1,C1,D1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1,P1] .
* Step 2: LocalSizeboundsProc WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   -> f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   True         (1,1)
          1.  f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)  [149 >= E]   (?,1)
          2.  f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1)       [49 >= F]    (?,1)
          3.  f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1)   [49 >= H]    (?,1)
          4.  f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1)       [99 >= I]    (?,1)
          5.  f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1)   [31 >= M]    (?,1)
          6.  f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) [Q >= 0]     (?,1)
          7.  f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1)   [49 >= S]    (?,1)
          8.  f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1)   [V >= W]     (?,1)
          9.  f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1)       [8 >= X]     (?,1)
          10. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1)       [7 >= Y]     (?,1)
          11. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1)   [3 >= Z]     (?,1)
          12. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1)   [Z >= 4]     (?,1)
          13. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1)   [Y >= 8]     (?,1)
          14. f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f584(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)       [X >= 9]     (?,1)
          15. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1)       [W >= 1 + V] (?,1)
          16. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B)       [S >= 50]    (?,1)
          17. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1)       [0 >= 1 + Q] (?,1)
          18. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1)   [M >= 32]    (?,1)
          19. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1)     [I >= 100]   (?,1)
          20. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   [H >= 50]    (?,1)
          21. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1)       [F >= 50]    (?,1)
          22. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1)       [E >= 150]   (?,1)
        Signature:
          {(f0,17)
          ;(f422,17)
          ;(f437,17)
          ;(f441,17)
          ;(f455,17)
          ;(f461,17)
          ;(f485,17)
          ;(f501,17)
          ;(f526,17)
          ;(f540,17)
          ;(f543,17)
          ;(f546,17)
          ;(f584,17)}
        Flow Graph:
          [0->{1,22},1->{1,22},2->{3,20},3->{3,20},4->{5,18},5->{5,18},6->{6,17},7->{7,16},8->{8,15},9->{10,13}
          ,10->{11,12},11->{11,12},12->{10,13},13->{9,14},14->{},15->{9,14},16->{8,15},17->{7,16},18->{4,19},19->{6
          ,17},20->{2,21},21->{4,19},22->{2,21}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (< 0,0,A>, 3, .= 3) (< 0,0,B>, 43690, .= 43690) (< 0,0,C>, 3, .= 3) (< 0,0,E>,     0, .= 0) (< 0,0,F>,     F, .= 0) (< 0,0,H>,     H, .= 0) (< 0,0,I>,     I, .= 0) (< 0,0,M>,     M, .= 0) (< 0,0,Q>,     Q,  .= 0) (< 0,0,R>, R, .= 0) (< 0,0,S>,     S, .= 0) (< 0,0,V>,  V,  .= 0) (< 0,0,W>,     W, .= 0) (< 0,0,X>,     X, .= 0) (< 0,0,Y>,     Y, .= 0) (< 0,0,Z>,     Z, .= 0) (< 0,0,E1>, E1, .= 0) 
          (< 1,0,A>, A, .= 0) (< 1,0,B>,     B,     .= 0) (< 1,0,C>, ?,   .?) (< 1,0,E>, 1 + E, .+ 1) (< 1,0,F>,     F, .= 0) (< 1,0,H>,     H, .= 0) (< 1,0,I>,     I, .= 0) (< 1,0,M>,     M, .= 0) (< 1,0,Q>,     Q,  .= 0) (< 1,0,R>, R, .= 0) (< 1,0,S>,     S, .= 0) (< 1,0,V>,  V,  .= 0) (< 1,0,W>,     W, .= 0) (< 1,0,X>,     X, .= 0) (< 1,0,Y>,     Y, .= 0) (< 1,0,Z>,     Z, .= 0) (< 1,0,E1>, E1, .= 0) 
          (< 2,0,A>, A, .= 0) (< 2,0,B>,     B,     .= 0) (< 2,0,C>, C, .= 0) (< 2,0,E>,     E, .= 0) (< 2,0,F>,     F, .= 0) (< 2,0,H>,     0, .= 0) (< 2,0,I>,     I, .= 0) (< 2,0,M>,     M, .= 0) (< 2,0,Q>,     Q,  .= 0) (< 2,0,R>, R, .= 0) (< 2,0,S>,     S, .= 0) (< 2,0,V>,  V,  .= 0) (< 2,0,W>,     W, .= 0) (< 2,0,X>,     X, .= 0) (< 2,0,Y>,     Y, .= 0) (< 2,0,Z>,     Z, .= 0) (< 2,0,E1>, E1, .= 0) 
          (< 3,0,A>, A, .= 0) (< 3,0,B>,     B,     .= 0) (< 3,0,C>, C, .= 0) (< 3,0,E>,     E, .= 0) (< 3,0,F>,     F, .= 0) (< 3,0,H>, 1 + H, .+ 1) (< 3,0,I>,     I, .= 0) (< 3,0,M>,     M, .= 0) (< 3,0,Q>,     Q,  .= 0) (< 3,0,R>, R, .= 0) (< 3,0,S>,     S, .= 0) (< 3,0,V>,  V,  .= 0) (< 3,0,W>,     W, .= 0) (< 3,0,X>,     X, .= 0) (< 3,0,Y>,     Y, .= 0) (< 3,0,Z>,     Z, .= 0) (< 3,0,E1>, E1, .= 0) 
          (< 4,0,A>, A, .= 0) (< 4,0,B>,     B,     .= 0) (< 4,0,C>, C, .= 0) (< 4,0,E>,     E, .= 0) (< 4,0,F>,     F, .= 0) (< 4,0,H>,     H, .= 0) (< 4,0,I>,     I, .= 0) (< 4,0,M>,     0, .= 0) (< 4,0,Q>,     Q,  .= 0) (< 4,0,R>, R, .= 0) (< 4,0,S>,     S, .= 0) (< 4,0,V>,  V,  .= 0) (< 4,0,W>,     W, .= 0) (< 4,0,X>,     X, .= 0) (< 4,0,Y>,     Y, .= 0) (< 4,0,Z>,     Z, .= 0) (< 4,0,E1>, E1, .= 0) 
          (< 5,0,A>, A, .= 0) (< 5,0,B>,     B,     .= 0) (< 5,0,C>, C, .= 0) (< 5,0,E>,     E, .= 0) (< 5,0,F>,     F, .= 0) (< 5,0,H>,     H, .= 0) (< 5,0,I>,     I, .= 0) (< 5,0,M>, 2 + M, .+ 2) (< 5,0,Q>,     Q,  .= 0) (< 5,0,R>, R, .= 0) (< 5,0,S>,     S, .= 0) (< 5,0,V>,  V,  .= 0) (< 5,0,W>,     W, .= 0) (< 5,0,X>,     X, .= 0) (< 5,0,Y>,     Y, .= 0) (< 5,0,Z>,     Z, .= 0) (< 5,0,E1>, E1, .= 0) 
          (< 6,0,A>, A, .= 0) (< 6,0,B>,     B,     .= 0) (< 6,0,C>, C, .= 0) (< 6,0,E>,     E, .= 0) (< 6,0,F>,     F, .= 0) (< 6,0,H>,     H, .= 0) (< 6,0,I>,     I, .= 0) (< 6,0,M>,     M, .= 0) (< 6,0,Q>, 1 + Q,  .+ 1) (< 6,0,R>, ?,   .?) (< 6,0,S>,     S, .= 0) (< 6,0,V>,  V,  .= 0) (< 6,0,W>,     W, .= 0) (< 6,0,X>,     X, .= 0) (< 6,0,Y>,     Y, .= 0) (< 6,0,Z>,     Z, .= 0) (< 6,0,E1>, E1, .= 0) 
          (< 7,0,A>, A, .= 0) (< 7,0,B>,     B,     .= 0) (< 7,0,C>, C, .= 0) (< 7,0,E>,     E, .= 0) (< 7,0,F>,     F, .= 0) (< 7,0,H>,     H, .= 0) (< 7,0,I>,     I, .= 0) (< 7,0,M>,     M, .= 0) (< 7,0,Q>,     Q,  .= 0) (< 7,0,R>, R, .= 0) (< 7,0,S>, 1 + S, .+ 1) (< 7,0,V>,  V,  .= 0) (< 7,0,W>,     W, .= 0) (< 7,0,X>,     X, .= 0) (< 7,0,Y>,     Y, .= 0) (< 7,0,Z>,     Z, .= 0) (< 7,0,E1>, E1, .= 0) 
          (< 8,0,A>, A, .= 0) (< 8,0,B>,     B,     .= 0) (< 8,0,C>, C, .= 0) (< 8,0,E>,     E, .= 0) (< 8,0,F>,     F, .= 0) (< 8,0,H>,     H, .= 0) (< 8,0,I>,     I, .= 0) (< 8,0,M>,     M, .= 0) (< 8,0,Q>,     Q,  .= 0) (< 8,0,R>, R, .= 0) (< 8,0,S>,     S, .= 0) (< 8,0,V>,  V,  .= 0) (< 8,0,W>, 1 + W, .+ 1) (< 8,0,X>,     X, .= 0) (< 8,0,Y>,     Y, .= 0) (< 8,0,Z>,     Z, .= 0) (< 8,0,E1>, E1, .= 0) 
          (< 9,0,A>, A, .= 0) (< 9,0,B>,     B,     .= 0) (< 9,0,C>, C, .= 0) (< 9,0,E>,     E, .= 0) (< 9,0,F>,     F, .= 0) (< 9,0,H>,     H, .= 0) (< 9,0,I>,     I, .= 0) (< 9,0,M>,     M, .= 0) (< 9,0,Q>,     Q,  .= 0) (< 9,0,R>, R, .= 0) (< 9,0,S>,     S, .= 0) (< 9,0,V>,  V,  .= 0) (< 9,0,W>,     W, .= 0) (< 9,0,X>,     X, .= 0) (< 9,0,Y>,     0, .= 0) (< 9,0,Z>,     Z, .= 0) (< 9,0,E1>, E1, .= 0) 
          (<10,0,A>, A, .= 0) (<10,0,B>,     B,     .= 0) (<10,0,C>, C, .= 0) (<10,0,E>,     E, .= 0) (<10,0,F>,     F, .= 0) (<10,0,H>,     H, .= 0) (<10,0,I>,     I, .= 0) (<10,0,M>,     M, .= 0) (<10,0,Q>,     Q,  .= 0) (<10,0,R>, R, .= 0) (<10,0,S>,     S, .= 0) (<10,0,V>,  V,  .= 0) (<10,0,W>,     W, .= 0) (<10,0,X>,     X, .= 0) (<10,0,Y>,     Y, .= 0) (<10,0,Z>,     0, .= 0) (<10,0,E1>, E1, .= 0) 
          (<11,0,A>, A, .= 0) (<11,0,B>,     B,     .= 0) (<11,0,C>, C, .= 0) (<11,0,E>,     E, .= 0) (<11,0,F>,     F, .= 0) (<11,0,H>,     H, .= 0) (<11,0,I>,     I, .= 0) (<11,0,M>,     M, .= 0) (<11,0,Q>,     Q,  .= 0) (<11,0,R>, R, .= 0) (<11,0,S>,     S, .= 0) (<11,0,V>,  V,  .= 0) (<11,0,W>,     W, .= 0) (<11,0,X>,     X, .= 0) (<11,0,Y>,     Y, .= 0) (<11,0,Z>, 1 + Z, .+ 1) (<11,0,E1>, E1, .= 0) 
          (<12,0,A>, A, .= 0) (<12,0,B>,     B,     .= 0) (<12,0,C>, C, .= 0) (<12,0,E>,     E, .= 0) (<12,0,F>,     F, .= 0) (<12,0,H>,     H, .= 0) (<12,0,I>,     I, .= 0) (<12,0,M>,     M, .= 0) (<12,0,Q>,     Q,  .= 0) (<12,0,R>, R, .= 0) (<12,0,S>,     S, .= 0) (<12,0,V>,  V,  .= 0) (<12,0,W>,     W, .= 0) (<12,0,X>,     X, .= 0) (<12,0,Y>, 1 + Y, .+ 1) (<12,0,Z>,     Z, .= 0) (<12,0,E1>, E1, .= 0) 
          (<13,0,A>, A, .= 0) (<13,0,B>,     B,     .= 0) (<13,0,C>, C, .= 0) (<13,0,E>,     E, .= 0) (<13,0,F>,     F, .= 0) (<13,0,H>,     H, .= 0) (<13,0,I>,     I, .= 0) (<13,0,M>,     M, .= 0) (<13,0,Q>,     Q,  .= 0) (<13,0,R>, R, .= 0) (<13,0,S>,     S, .= 0) (<13,0,V>,  V,  .= 0) (<13,0,W>,     W, .= 0) (<13,0,X>, 7 + X, .+ 7) (<13,0,Y>,     Y, .= 0) (<13,0,Z>,     Z, .= 0) (<13,0,E1>, E1, .= 0) 
          (<14,0,A>, A, .= 0) (<14,0,B>,     B,     .= 0) (<14,0,C>, C, .= 0) (<14,0,E>,     E, .= 0) (<14,0,F>,     F, .= 0) (<14,0,H>,     H, .= 0) (<14,0,I>,     I, .= 0) (<14,0,M>,     M, .= 0) (<14,0,Q>,     Q,  .= 0) (<14,0,R>, R, .= 0) (<14,0,S>,     S, .= 0) (<14,0,V>,  V,  .= 0) (<14,0,W>,     W, .= 0) (<14,0,X>,     X, .= 0) (<14,0,Y>,     Y, .= 0) (<14,0,Z>,     Z, .= 0) (<14,0,E1>, E1, .= 0) 
          (<15,0,A>, A, .= 0) (<15,0,B>,     B,     .= 0) (<15,0,C>, C, .= 0) (<15,0,E>,     E, .= 0) (<15,0,F>,     F, .= 0) (<15,0,H>,     H, .= 0) (<15,0,I>,     I, .= 0) (<15,0,M>,     M, .= 0) (<15,0,Q>,     Q,  .= 0) (<15,0,R>, R, .= 0) (<15,0,S>,     S, .= 0) (<15,0,V>,  V,  .= 0) (<15,0,W>,     W, .= 0) (<15,0,X>,     1, .= 1) (<15,0,Y>,     Y, .= 0) (<15,0,Z>,     Z, .= 0) (<15,0,E1>, E1, .= 0) 
          (<16,0,A>, A, .= 0) (<16,0,B>,     B,     .= 0) (<16,0,C>, C, .= 0) (<16,0,E>,     E, .= 0) (<16,0,F>,     F, .= 0) (<16,0,H>,     H, .= 0) (<16,0,I>,     I, .= 0) (<16,0,M>,     M, .= 0) (<16,0,Q>,     Q,  .= 0) (<16,0,R>, R, .= 0) (<16,0,S>,     S, .= 0) (<16,0,V>, 17, .= 17) (<16,0,W>,     2, .= 2) (<16,0,X>,     X, .= 0) (<16,0,Y>,     Y, .= 0) (<16,0,Z>,     Z, .= 0) (<16,0,E1>,  B, .= 0) 
          (<17,0,A>, A, .= 0) (<17,0,B>,     R,     .= 0) (<17,0,C>, C, .= 0) (<17,0,E>,     E, .= 0) (<17,0,F>,     F, .= 0) (<17,0,H>,     H, .= 0) (<17,0,I>,     I, .= 0) (<17,0,M>,     M, .= 0) (<17,0,Q>,     Q,  .= 0) (<17,0,R>, R, .= 0) (<17,0,S>,     0, .= 0) (<17,0,V>,  V,  .= 0) (<17,0,W>,     W, .= 0) (<17,0,X>,     X, .= 0) (<17,0,Y>,     Y, .= 0) (<17,0,Z>,     Z, .= 0) (<17,0,E1>, E1, .= 0) 
          (<18,0,A>, A, .= 0) (<18,0,B>,     B,     .= 0) (<18,0,C>, C, .= 0) (<18,0,E>,     E, .= 0) (<18,0,F>,     F, .= 0) (<18,0,H>,     H, .= 0) (<18,0,I>, 2 + I, .+ 2) (<18,0,M>,     M, .= 0) (<18,0,Q>,     Q,  .= 0) (<18,0,R>, R, .= 0) (<18,0,S>,     S, .= 0) (<18,0,V>,  V,  .= 0) (<18,0,W>,     W, .= 0) (<18,0,X>,     X, .= 0) (<18,0,Y>,     Y, .= 0) (<18,0,Z>,     Z, .= 0) (<18,0,E1>, E1, .= 0) 
          (<19,0,A>, A, .= 0) (<19,0,B>,     B,     .= 0) (<19,0,C>, C, .= 0) (<19,0,E>,     E, .= 0) (<19,0,F>,     F, .= 0) (<19,0,H>,     H, .= 0) (<19,0,I>,     I, .= 0) (<19,0,M>,     M, .= 0) (<19,0,Q>,    98, .= 98) (<19,0,R>, ?,   .?) (<19,0,S>,     S, .= 0) (<19,0,V>,  V,  .= 0) (<19,0,W>,     W, .= 0) (<19,0,X>,     X, .= 0) (<19,0,Y>,     Y, .= 0) (<19,0,Z>,     Z, .= 0) (<19,0,E1>, E1, .= 0) 
          (<20,0,A>, A, .= 0) (<20,0,B>,     B,     .= 0) (<20,0,C>, C, .= 0) (<20,0,E>,     E, .= 0) (<20,0,F>, 1 + F, .+ 1) (<20,0,H>,     H, .= 0) (<20,0,I>,     I, .= 0) (<20,0,M>,     M, .= 0) (<20,0,Q>,     Q,  .= 0) (<20,0,R>, R, .= 0) (<20,0,S>,     S, .= 0) (<20,0,V>,  V,  .= 0) (<20,0,W>,     W, .= 0) (<20,0,X>,     X, .= 0) (<20,0,Y>,     Y, .= 0) (<20,0,Z>,     Z, .= 0) (<20,0,E1>, E1, .= 0) 
          (<21,0,A>, A, .= 0) (<21,0,B>,     B,     .= 0) (<21,0,C>, C, .= 0) (<21,0,E>,     E, .= 0) (<21,0,F>,     F, .= 0) (<21,0,H>,     H, .= 0) (<21,0,I>,     0, .= 0) (<21,0,M>,     M, .= 0) (<21,0,Q>,     Q,  .= 0) (<21,0,R>, R, .= 0) (<21,0,S>,     S, .= 0) (<21,0,V>,  V,  .= 0) (<21,0,W>,     W, .= 0) (<21,0,X>,     X, .= 0) (<21,0,Y>,     Y, .= 0) (<21,0,Z>,     Z, .= 0) (<21,0,E1>, E1, .= 0) 
          (<22,0,A>, C, .= 0) (<22,0,B>,     B,     .= 0) (<22,0,C>, C, .= 0) (<22,0,E>,     E, .= 0) (<22,0,F>,     0, .= 0) (<22,0,H>,     H, .= 0) (<22,0,I>,     I, .= 0) (<22,0,M>,     M, .= 0) (<22,0,Q>,     Q,  .= 0) (<22,0,R>, R, .= 0) (<22,0,S>,     S, .= 0) (<22,0,V>,  V,  .= 0) (<22,0,W>,     W, .= 0) (<22,0,X>,     X, .= 0) (<22,0,Y>,     Y, .= 0) (<22,0,Z>,     Z, .= 0) (<22,0,E1>, E1, .= 0) 
* Step 3: SizeboundsProc WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   -> f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   True         (1,1)
          1.  f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)  [149 >= E]   (?,1)
          2.  f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1)       [49 >= F]    (?,1)
          3.  f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1)   [49 >= H]    (?,1)
          4.  f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1)       [99 >= I]    (?,1)
          5.  f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1)   [31 >= M]    (?,1)
          6.  f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) [Q >= 0]     (?,1)
          7.  f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1)   [49 >= S]    (?,1)
          8.  f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1)   [V >= W]     (?,1)
          9.  f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1)       [8 >= X]     (?,1)
          10. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1)       [7 >= Y]     (?,1)
          11. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1)   [3 >= Z]     (?,1)
          12. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1)   [Z >= 4]     (?,1)
          13. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1)   [Y >= 8]     (?,1)
          14. f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f584(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)       [X >= 9]     (?,1)
          15. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1)       [W >= 1 + V] (?,1)
          16. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B)       [S >= 50]    (?,1)
          17. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1)       [0 >= 1 + Q] (?,1)
          18. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1)   [M >= 32]    (?,1)
          19. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1)     [I >= 100]   (?,1)
          20. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   [H >= 50]    (?,1)
          21. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1)       [F >= 50]    (?,1)
          22. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1)       [E >= 150]   (?,1)
        Signature:
          {(f0,17)
          ;(f422,17)
          ;(f437,17)
          ;(f441,17)
          ;(f455,17)
          ;(f461,17)
          ;(f485,17)
          ;(f501,17)
          ;(f526,17)
          ;(f540,17)
          ;(f543,17)
          ;(f546,17)
          ;(f584,17)}
        Flow Graph:
          [0->{1,22},1->{1,22},2->{3,20},3->{3,20},4->{5,18},5->{5,18},6->{6,17},7->{7,16},8->{8,15},9->{10,13}
          ,10->{11,12},11->{11,12},12->{10,13},13->{9,14},14->{},15->{9,14},16->{8,15},17->{7,16},18->{4,19},19->{6
          ,17},20->{2,21},21->{4,19},22->{2,21}]
        Sizebounds:
          (< 0,0,A>, ?) (< 0,0,B>, ?) (< 0,0,C>, ?) (< 0,0,E>, ?) (< 0,0,F>, ?) (< 0,0,H>, ?) (< 0,0,I>, ?) (< 0,0,M>, ?) (< 0,0,Q>, ?) (< 0,0,R>, ?) (< 0,0,S>, ?) (< 0,0,V>, ?) (< 0,0,W>, ?) (< 0,0,X>, ?) (< 0,0,Y>, ?) (< 0,0,Z>, ?) (< 0,0,E1>, ?) 
          (< 1,0,A>, ?) (< 1,0,B>, ?) (< 1,0,C>, ?) (< 1,0,E>, ?) (< 1,0,F>, ?) (< 1,0,H>, ?) (< 1,0,I>, ?) (< 1,0,M>, ?) (< 1,0,Q>, ?) (< 1,0,R>, ?) (< 1,0,S>, ?) (< 1,0,V>, ?) (< 1,0,W>, ?) (< 1,0,X>, ?) (< 1,0,Y>, ?) (< 1,0,Z>, ?) (< 1,0,E1>, ?) 
          (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,E>, ?) (< 2,0,F>, ?) (< 2,0,H>, ?) (< 2,0,I>, ?) (< 2,0,M>, ?) (< 2,0,Q>, ?) (< 2,0,R>, ?) (< 2,0,S>, ?) (< 2,0,V>, ?) (< 2,0,W>, ?) (< 2,0,X>, ?) (< 2,0,Y>, ?) (< 2,0,Z>, ?) (< 2,0,E1>, ?) 
          (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,E>, ?) (< 3,0,F>, ?) (< 3,0,H>, ?) (< 3,0,I>, ?) (< 3,0,M>, ?) (< 3,0,Q>, ?) (< 3,0,R>, ?) (< 3,0,S>, ?) (< 3,0,V>, ?) (< 3,0,W>, ?) (< 3,0,X>, ?) (< 3,0,Y>, ?) (< 3,0,Z>, ?) (< 3,0,E1>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 4,0,E>, ?) (< 4,0,F>, ?) (< 4,0,H>, ?) (< 4,0,I>, ?) (< 4,0,M>, ?) (< 4,0,Q>, ?) (< 4,0,R>, ?) (< 4,0,S>, ?) (< 4,0,V>, ?) (< 4,0,W>, ?) (< 4,0,X>, ?) (< 4,0,Y>, ?) (< 4,0,Z>, ?) (< 4,0,E1>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, ?) (< 5,0,H>, ?) (< 5,0,I>, ?) (< 5,0,M>, ?) (< 5,0,Q>, ?) (< 5,0,R>, ?) (< 5,0,S>, ?) (< 5,0,V>, ?) (< 5,0,W>, ?) (< 5,0,X>, ?) (< 5,0,Y>, ?) (< 5,0,Z>, ?) (< 5,0,E1>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, ?) (< 6,0,H>, ?) (< 6,0,I>, ?) (< 6,0,M>, ?) (< 6,0,Q>, ?) (< 6,0,R>, ?) (< 6,0,S>, ?) (< 6,0,V>, ?) (< 6,0,W>, ?) (< 6,0,X>, ?) (< 6,0,Y>, ?) (< 6,0,Z>, ?) (< 6,0,E1>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, ?) (< 7,0,H>, ?) (< 7,0,I>, ?) (< 7,0,M>, ?) (< 7,0,Q>, ?) (< 7,0,R>, ?) (< 7,0,S>, ?) (< 7,0,V>, ?) (< 7,0,W>, ?) (< 7,0,X>, ?) (< 7,0,Y>, ?) (< 7,0,Z>, ?) (< 7,0,E1>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,H>, ?) (< 8,0,I>, ?) (< 8,0,M>, ?) (< 8,0,Q>, ?) (< 8,0,R>, ?) (< 8,0,S>, ?) (< 8,0,V>, ?) (< 8,0,W>, ?) (< 8,0,X>, ?) (< 8,0,Y>, ?) (< 8,0,Z>, ?) (< 8,0,E1>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) (< 9,0,H>, ?) (< 9,0,I>, ?) (< 9,0,M>, ?) (< 9,0,Q>, ?) (< 9,0,R>, ?) (< 9,0,S>, ?) (< 9,0,V>, ?) (< 9,0,W>, ?) (< 9,0,X>, ?) (< 9,0,Y>, ?) (< 9,0,Z>, ?) (< 9,0,E1>, ?) 
          (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,H>, ?) (<10,0,I>, ?) (<10,0,M>, ?) (<10,0,Q>, ?) (<10,0,R>, ?) (<10,0,S>, ?) (<10,0,V>, ?) (<10,0,W>, ?) (<10,0,X>, ?) (<10,0,Y>, ?) (<10,0,Z>, ?) (<10,0,E1>, ?) 
          (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,H>, ?) (<11,0,I>, ?) (<11,0,M>, ?) (<11,0,Q>, ?) (<11,0,R>, ?) (<11,0,S>, ?) (<11,0,V>, ?) (<11,0,W>, ?) (<11,0,X>, ?) (<11,0,Y>, ?) (<11,0,Z>, ?) (<11,0,E1>, ?) 
          (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,H>, ?) (<12,0,I>, ?) (<12,0,M>, ?) (<12,0,Q>, ?) (<12,0,R>, ?) (<12,0,S>, ?) (<12,0,V>, ?) (<12,0,W>, ?) (<12,0,X>, ?) (<12,0,Y>, ?) (<12,0,Z>, ?) (<12,0,E1>, ?) 
          (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,H>, ?) (<13,0,I>, ?) (<13,0,M>, ?) (<13,0,Q>, ?) (<13,0,R>, ?) (<13,0,S>, ?) (<13,0,V>, ?) (<13,0,W>, ?) (<13,0,X>, ?) (<13,0,Y>, ?) (<13,0,Z>, ?) (<13,0,E1>, ?) 
          (<14,0,A>, ?) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,E>, ?) (<14,0,F>, ?) (<14,0,H>, ?) (<14,0,I>, ?) (<14,0,M>, ?) (<14,0,Q>, ?) (<14,0,R>, ?) (<14,0,S>, ?) (<14,0,V>, ?) (<14,0,W>, ?) (<14,0,X>, ?) (<14,0,Y>, ?) (<14,0,Z>, ?) (<14,0,E1>, ?) 
          (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, ?) (<15,0,H>, ?) (<15,0,I>, ?) (<15,0,M>, ?) (<15,0,Q>, ?) (<15,0,R>, ?) (<15,0,S>, ?) (<15,0,V>, ?) (<15,0,W>, ?) (<15,0,X>, ?) (<15,0,Y>, ?) (<15,0,Z>, ?) (<15,0,E1>, ?) 
          (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, ?) (<16,0,H>, ?) (<16,0,I>, ?) (<16,0,M>, ?) (<16,0,Q>, ?) (<16,0,R>, ?) (<16,0,S>, ?) (<16,0,V>, ?) (<16,0,W>, ?) (<16,0,X>, ?) (<16,0,Y>, ?) (<16,0,Z>, ?) (<16,0,E1>, ?) 
          (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,E>, ?) (<17,0,F>, ?) (<17,0,H>, ?) (<17,0,I>, ?) (<17,0,M>, ?) (<17,0,Q>, ?) (<17,0,R>, ?) (<17,0,S>, ?) (<17,0,V>, ?) (<17,0,W>, ?) (<17,0,X>, ?) (<17,0,Y>, ?) (<17,0,Z>, ?) (<17,0,E1>, ?) 
          (<18,0,A>, ?) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, ?) (<18,0,H>, ?) (<18,0,I>, ?) (<18,0,M>, ?) (<18,0,Q>, ?) (<18,0,R>, ?) (<18,0,S>, ?) (<18,0,V>, ?) (<18,0,W>, ?) (<18,0,X>, ?) (<18,0,Y>, ?) (<18,0,Z>, ?) (<18,0,E1>, ?) 
          (<19,0,A>, ?) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, ?) (<19,0,H>, ?) (<19,0,I>, ?) (<19,0,M>, ?) (<19,0,Q>, ?) (<19,0,R>, ?) (<19,0,S>, ?) (<19,0,V>, ?) (<19,0,W>, ?) (<19,0,X>, ?) (<19,0,Y>, ?) (<19,0,Z>, ?) (<19,0,E1>, ?) 
          (<20,0,A>, ?) (<20,0,B>, ?) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, ?) (<20,0,H>, ?) (<20,0,I>, ?) (<20,0,M>, ?) (<20,0,Q>, ?) (<20,0,R>, ?) (<20,0,S>, ?) (<20,0,V>, ?) (<20,0,W>, ?) (<20,0,X>, ?) (<20,0,Y>, ?) (<20,0,Z>, ?) (<20,0,E1>, ?) 
          (<21,0,A>, ?) (<21,0,B>, ?) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, ?) (<21,0,H>, ?) (<21,0,I>, ?) (<21,0,M>, ?) (<21,0,Q>, ?) (<21,0,R>, ?) (<21,0,S>, ?) (<21,0,V>, ?) (<21,0,W>, ?) (<21,0,X>, ?) (<21,0,Y>, ?) (<21,0,Z>, ?) (<21,0,E1>, ?) 
          (<22,0,A>, ?) (<22,0,B>, ?) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,F>, ?) (<22,0,H>, ?) (<22,0,I>, ?) (<22,0,M>, ?) (<22,0,Q>, ?) (<22,0,R>, ?) (<22,0,S>, ?) (<22,0,V>, ?) (<22,0,W>, ?) (<22,0,X>, ?) (<22,0,Y>, ?) (<22,0,Z>, ?) (<22,0,E1>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>,   0) (< 0,0,F>,  F) (< 0,0,H>,      H) (< 0,0,I>,  I) (< 0,0,M>,      M) (< 0,0,Q>,  Q) (< 0,0,R>, R) (< 0,0,S>,  S) (< 0,0,V>,  V) (< 0,0,W>,  W) (< 0,0,X>, X) (< 0,0,Y>,     Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) 
          (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>,  F) (< 1,0,H>,      H) (< 1,0,I>,  I) (< 1,0,M>,      M) (< 1,0,Q>,  Q) (< 1,0,R>, R) (< 1,0,S>,  S) (< 1,0,V>,  V) (< 1,0,W>,  W) (< 1,0,X>, X) (< 1,0,Y>,     Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) 
          (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>,   ?) (< 2,0,F>, 49) (< 2,0,H>,      0) (< 2,0,I>,  I) (< 2,0,M>,      M) (< 2,0,Q>,  Q) (< 2,0,R>, R) (< 2,0,S>,  S) (< 2,0,V>,  V) (< 2,0,W>,  W) (< 2,0,X>, X) (< 2,0,Y>,     Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) 
          (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>,   ?) (< 3,0,F>, 49) (< 3,0,H>,     50) (< 3,0,I>,  I) (< 3,0,M>,      M) (< 3,0,Q>,  Q) (< 3,0,R>, R) (< 3,0,S>,  S) (< 3,0,V>,  V) (< 3,0,W>,  W) (< 3,0,X>, X) (< 3,0,Y>,     Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) 
          (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>,   ?) (< 4,0,F>,  ?) (< 4,0,H>,      ?) (< 4,0,I>, 99) (< 4,0,M>,      0) (< 4,0,Q>,  Q) (< 4,0,R>, R) (< 4,0,S>,  S) (< 4,0,V>,  V) (< 4,0,W>,  W) (< 4,0,X>, X) (< 4,0,Y>,     Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) 
          (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>,   ?) (< 5,0,F>,  ?) (< 5,0,H>,      ?) (< 5,0,I>, 99) (< 5,0,M>,     33) (< 5,0,Q>,  Q) (< 5,0,R>, R) (< 5,0,S>,  S) (< 5,0,V>,  V) (< 5,0,W>,  W) (< 5,0,X>, X) (< 5,0,Y>,     Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) 
          (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>,   ?) (< 6,0,F>,  ?) (< 6,0,H>,      ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>,  ?) (< 6,0,R>, ?) (< 6,0,S>,  S) (< 6,0,V>,  V) (< 6,0,W>,  W) (< 6,0,X>, X) (< 6,0,Y>,     Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) 
          (< 7,0,A>, ?) (< 7,0,B>,     ?) (< 7,0,C>, ?) (< 7,0,E>,   ?) (< 7,0,F>,  ?) (< 7,0,H>,      ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>,  ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>,  V) (< 7,0,W>,  W) (< 7,0,X>, X) (< 7,0,Y>,     Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) 
          (< 8,0,A>, ?) (< 8,0,B>,     ?) (< 8,0,C>, ?) (< 8,0,E>,   ?) (< 8,0,F>,  ?) (< 8,0,H>,      ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>,  ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>,     Y) (< 8,0,Z>, Z) (< 8,0,E1>,  ?) 
          (< 9,0,A>, ?) (< 9,0,B>,     ?) (< 9,0,C>, ?) (< 9,0,E>,   ?) (< 9,0,F>,  ?) (< 9,0,H>,      ?) (< 9,0,I>,  ?) (< 9,0,M>,      ?) (< 9,0,Q>,  ?) (< 9,0,R>, ?) (< 9,0,S>,  ?) (< 9,0,V>, 17) (< 9,0,W>,  ?) (< 9,0,X>, 8) (< 9,0,Y>,     0) (< 9,0,Z>, ?) (< 9,0,E1>,  ?) 
          (<10,0,A>, ?) (<10,0,B>,     ?) (<10,0,C>, ?) (<10,0,E>,   ?) (<10,0,F>,  ?) (<10,0,H>,      ?) (<10,0,I>,  ?) (<10,0,M>,      ?) (<10,0,Q>,  ?) (<10,0,R>, ?) (<10,0,S>,  ?) (<10,0,V>, 17) (<10,0,W>,  ?) (<10,0,X>, ?) (<10,0,Y>,     7) (<10,0,Z>, 0) (<10,0,E1>,  ?) 
          (<11,0,A>, ?) (<11,0,B>,     ?) (<11,0,C>, ?) (<11,0,E>,   ?) (<11,0,F>,  ?) (<11,0,H>,      ?) (<11,0,I>,  ?) (<11,0,M>,      ?) (<11,0,Q>,  ?) (<11,0,R>, ?) (<11,0,S>,  ?) (<11,0,V>, 17) (<11,0,W>,  ?) (<11,0,X>, ?) (<11,0,Y>,     7) (<11,0,Z>, 4) (<11,0,E1>,  ?) 
          (<12,0,A>, ?) (<12,0,B>,     ?) (<12,0,C>, ?) (<12,0,E>,   ?) (<12,0,F>,  ?) (<12,0,H>,      ?) (<12,0,I>,  ?) (<12,0,M>,      ?) (<12,0,Q>,  ?) (<12,0,R>, ?) (<12,0,S>,  ?) (<12,0,V>, 17) (<12,0,W>,  ?) (<12,0,X>, ?) (<12,0,Y>,     7) (<12,0,Z>, 4) (<12,0,E1>,  ?) 
          (<13,0,A>, ?) (<13,0,B>,     ?) (<13,0,C>, ?) (<13,0,E>,   ?) (<13,0,F>,  ?) (<13,0,H>,      ?) (<13,0,I>,  ?) (<13,0,M>,      ?) (<13,0,Q>,  ?) (<13,0,R>, ?) (<13,0,S>,  ?) (<13,0,V>, 17) (<13,0,W>,  ?) (<13,0,X>, ?) (<13,0,Y>,     7) (<13,0,Z>, ?) (<13,0,E1>,  ?) 
          (<14,0,A>, ?) (<14,0,B>,     ?) (<14,0,C>, ?) (<14,0,E>,   ?) (<14,0,F>,  ?) (<14,0,H>,      ?) (<14,0,I>,  ?) (<14,0,M>,      ?) (<14,0,Q>,  ?) (<14,0,R>, ?) (<14,0,S>,  ?) (<14,0,V>, 17) (<14,0,W>,  ?) (<14,0,X>, ?) (<14,0,Y>, 7 + Y) (<14,0,Z>, ?) (<14,0,E1>,  ?) 
          (<15,0,A>, ?) (<15,0,B>,     ?) (<15,0,C>, ?) (<15,0,E>,   ?) (<15,0,F>,  ?) (<15,0,H>,      ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>,  ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>,     Y) (<15,0,Z>, Z) (<15,0,E1>,  ?) 
          (<16,0,A>, ?) (<16,0,B>,     ?) (<16,0,C>, ?) (<16,0,E>,   ?) (<16,0,F>,  ?) (<16,0,H>,      ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>,  ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>,  2) (<16,0,X>, X) (<16,0,Y>,     Y) (<16,0,Z>, Z) (<16,0,E1>,  ?) 
          (<17,0,A>, ?) (<17,0,B>,     ?) (<17,0,C>, ?) (<17,0,E>,   ?) (<17,0,F>,  ?) (<17,0,H>,      ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>,  ?) (<17,0,R>, ?) (<17,0,S>,  0) (<17,0,V>,  V) (<17,0,W>,  W) (<17,0,X>, X) (<17,0,Y>,     Y) (<17,0,Z>, Z) (<17,0,E1>, E1) 
          (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>,   ?) (<18,0,F>,  ?) (<18,0,H>,      ?) (<18,0,I>, 99) (<18,0,M>,     33) (<18,0,Q>,  Q) (<18,0,R>, R) (<18,0,S>,  S) (<18,0,V>,  V) (<18,0,W>,  W) (<18,0,X>, X) (<18,0,Y>,     Y) (<18,0,Z>, Z) (<18,0,E1>, E1) 
          (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>,   ?) (<19,0,F>,  ?) (<19,0,H>,      ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>,  S) (<19,0,V>,  V) (<19,0,W>,  W) (<19,0,X>, X) (<19,0,Y>,     Y) (<19,0,Z>, Z) (<19,0,E1>, E1) 
          (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>,   ?) (<20,0,F>, 49) (<20,0,H>,     50) (<20,0,I>,  I) (<20,0,M>,      M) (<20,0,Q>,  Q) (<20,0,R>, R) (<20,0,S>,  S) (<20,0,V>,  V) (<20,0,W>,  W) (<20,0,X>, X) (<20,0,Y>,     Y) (<20,0,Z>, Z) (<20,0,E1>, E1) 
          (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>,   ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>,  0) (<21,0,M>,      M) (<21,0,Q>,  Q) (<21,0,R>, R) (<21,0,S>,  S) (<21,0,V>,  V) (<21,0,W>,  W) (<21,0,X>, X) (<21,0,Y>,     Y) (<21,0,Z>, Z) (<21,0,E1>, E1) 
          (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>,  0) (<22,0,H>,      H) (<22,0,I>,  I) (<22,0,M>,      M) (<22,0,Q>,  Q) (<22,0,R>, R) (<22,0,S>,  S) (<22,0,V>,  V) (<22,0,W>,  W) (<22,0,X>, X) (<22,0,Y>,     Y) (<22,0,Z>, Z) (<22,0,E1>, E1) 
* Step 4: UnsatPaths WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   -> f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   True         (1,1)
          1.  f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)  [149 >= E]   (?,1)
          2.  f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1)       [49 >= F]    (?,1)
          3.  f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1)   [49 >= H]    (?,1)
          4.  f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1)       [99 >= I]    (?,1)
          5.  f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1)   [31 >= M]    (?,1)
          6.  f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) [Q >= 0]     (?,1)
          7.  f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1)   [49 >= S]    (?,1)
          8.  f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1)   [V >= W]     (?,1)
          9.  f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1)       [8 >= X]     (?,1)
          10. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1)       [7 >= Y]     (?,1)
          11. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1)   [3 >= Z]     (?,1)
          12. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1)   [Z >= 4]     (?,1)
          13. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1)   [Y >= 8]     (?,1)
          14. f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f584(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)       [X >= 9]     (?,1)
          15. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1)       [W >= 1 + V] (?,1)
          16. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B)       [S >= 50]    (?,1)
          17. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1)       [0 >= 1 + Q] (?,1)
          18. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1)   [M >= 32]    (?,1)
          19. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1)     [I >= 100]   (?,1)
          20. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   [H >= 50]    (?,1)
          21. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1)       [F >= 50]    (?,1)
          22. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1)       [E >= 150]   (?,1)
        Signature:
          {(f0,17)
          ;(f422,17)
          ;(f437,17)
          ;(f441,17)
          ;(f455,17)
          ;(f461,17)
          ;(f485,17)
          ;(f501,17)
          ;(f526,17)
          ;(f540,17)
          ;(f543,17)
          ;(f546,17)
          ;(f584,17)}
        Flow Graph:
          [0->{1,22},1->{1,22},2->{3,20},3->{3,20},4->{5,18},5->{5,18},6->{6,17},7->{7,16},8->{8,15},9->{10,13}
          ,10->{11,12},11->{11,12},12->{10,13},13->{9,14},14->{},15->{9,14},16->{8,15},17->{7,16},18->{4,19},19->{6
          ,17},20->{2,21},21->{4,19},22->{2,21}]
        Sizebounds:
          (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>,   0) (< 0,0,F>,  F) (< 0,0,H>,      H) (< 0,0,I>,  I) (< 0,0,M>,      M) (< 0,0,Q>,  Q) (< 0,0,R>, R) (< 0,0,S>,  S) (< 0,0,V>,  V) (< 0,0,W>,  W) (< 0,0,X>, X) (< 0,0,Y>,     Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) 
          (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>,  F) (< 1,0,H>,      H) (< 1,0,I>,  I) (< 1,0,M>,      M) (< 1,0,Q>,  Q) (< 1,0,R>, R) (< 1,0,S>,  S) (< 1,0,V>,  V) (< 1,0,W>,  W) (< 1,0,X>, X) (< 1,0,Y>,     Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) 
          (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>,   ?) (< 2,0,F>, 49) (< 2,0,H>,      0) (< 2,0,I>,  I) (< 2,0,M>,      M) (< 2,0,Q>,  Q) (< 2,0,R>, R) (< 2,0,S>,  S) (< 2,0,V>,  V) (< 2,0,W>,  W) (< 2,0,X>, X) (< 2,0,Y>,     Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) 
          (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>,   ?) (< 3,0,F>, 49) (< 3,0,H>,     50) (< 3,0,I>,  I) (< 3,0,M>,      M) (< 3,0,Q>,  Q) (< 3,0,R>, R) (< 3,0,S>,  S) (< 3,0,V>,  V) (< 3,0,W>,  W) (< 3,0,X>, X) (< 3,0,Y>,     Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) 
          (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>,   ?) (< 4,0,F>,  ?) (< 4,0,H>,      ?) (< 4,0,I>, 99) (< 4,0,M>,      0) (< 4,0,Q>,  Q) (< 4,0,R>, R) (< 4,0,S>,  S) (< 4,0,V>,  V) (< 4,0,W>,  W) (< 4,0,X>, X) (< 4,0,Y>,     Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) 
          (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>,   ?) (< 5,0,F>,  ?) (< 5,0,H>,      ?) (< 5,0,I>, 99) (< 5,0,M>,     33) (< 5,0,Q>,  Q) (< 5,0,R>, R) (< 5,0,S>,  S) (< 5,0,V>,  V) (< 5,0,W>,  W) (< 5,0,X>, X) (< 5,0,Y>,     Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) 
          (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>,   ?) (< 6,0,F>,  ?) (< 6,0,H>,      ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>,  ?) (< 6,0,R>, ?) (< 6,0,S>,  S) (< 6,0,V>,  V) (< 6,0,W>,  W) (< 6,0,X>, X) (< 6,0,Y>,     Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) 
          (< 7,0,A>, ?) (< 7,0,B>,     ?) (< 7,0,C>, ?) (< 7,0,E>,   ?) (< 7,0,F>,  ?) (< 7,0,H>,      ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>,  ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>,  V) (< 7,0,W>,  W) (< 7,0,X>, X) (< 7,0,Y>,     Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) 
          (< 8,0,A>, ?) (< 8,0,B>,     ?) (< 8,0,C>, ?) (< 8,0,E>,   ?) (< 8,0,F>,  ?) (< 8,0,H>,      ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>,  ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>,     Y) (< 8,0,Z>, Z) (< 8,0,E1>,  ?) 
          (< 9,0,A>, ?) (< 9,0,B>,     ?) (< 9,0,C>, ?) (< 9,0,E>,   ?) (< 9,0,F>,  ?) (< 9,0,H>,      ?) (< 9,0,I>,  ?) (< 9,0,M>,      ?) (< 9,0,Q>,  ?) (< 9,0,R>, ?) (< 9,0,S>,  ?) (< 9,0,V>, 17) (< 9,0,W>,  ?) (< 9,0,X>, 8) (< 9,0,Y>,     0) (< 9,0,Z>, ?) (< 9,0,E1>,  ?) 
          (<10,0,A>, ?) (<10,0,B>,     ?) (<10,0,C>, ?) (<10,0,E>,   ?) (<10,0,F>,  ?) (<10,0,H>,      ?) (<10,0,I>,  ?) (<10,0,M>,      ?) (<10,0,Q>,  ?) (<10,0,R>, ?) (<10,0,S>,  ?) (<10,0,V>, 17) (<10,0,W>,  ?) (<10,0,X>, ?) (<10,0,Y>,     7) (<10,0,Z>, 0) (<10,0,E1>,  ?) 
          (<11,0,A>, ?) (<11,0,B>,     ?) (<11,0,C>, ?) (<11,0,E>,   ?) (<11,0,F>,  ?) (<11,0,H>,      ?) (<11,0,I>,  ?) (<11,0,M>,      ?) (<11,0,Q>,  ?) (<11,0,R>, ?) (<11,0,S>,  ?) (<11,0,V>, 17) (<11,0,W>,  ?) (<11,0,X>, ?) (<11,0,Y>,     7) (<11,0,Z>, 4) (<11,0,E1>,  ?) 
          (<12,0,A>, ?) (<12,0,B>,     ?) (<12,0,C>, ?) (<12,0,E>,   ?) (<12,0,F>,  ?) (<12,0,H>,      ?) (<12,0,I>,  ?) (<12,0,M>,      ?) (<12,0,Q>,  ?) (<12,0,R>, ?) (<12,0,S>,  ?) (<12,0,V>, 17) (<12,0,W>,  ?) (<12,0,X>, ?) (<12,0,Y>,     7) (<12,0,Z>, 4) (<12,0,E1>,  ?) 
          (<13,0,A>, ?) (<13,0,B>,     ?) (<13,0,C>, ?) (<13,0,E>,   ?) (<13,0,F>,  ?) (<13,0,H>,      ?) (<13,0,I>,  ?) (<13,0,M>,      ?) (<13,0,Q>,  ?) (<13,0,R>, ?) (<13,0,S>,  ?) (<13,0,V>, 17) (<13,0,W>,  ?) (<13,0,X>, ?) (<13,0,Y>,     7) (<13,0,Z>, ?) (<13,0,E1>,  ?) 
          (<14,0,A>, ?) (<14,0,B>,     ?) (<14,0,C>, ?) (<14,0,E>,   ?) (<14,0,F>,  ?) (<14,0,H>,      ?) (<14,0,I>,  ?) (<14,0,M>,      ?) (<14,0,Q>,  ?) (<14,0,R>, ?) (<14,0,S>,  ?) (<14,0,V>, 17) (<14,0,W>,  ?) (<14,0,X>, ?) (<14,0,Y>, 7 + Y) (<14,0,Z>, ?) (<14,0,E1>,  ?) 
          (<15,0,A>, ?) (<15,0,B>,     ?) (<15,0,C>, ?) (<15,0,E>,   ?) (<15,0,F>,  ?) (<15,0,H>,      ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>,  ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>,     Y) (<15,0,Z>, Z) (<15,0,E1>,  ?) 
          (<16,0,A>, ?) (<16,0,B>,     ?) (<16,0,C>, ?) (<16,0,E>,   ?) (<16,0,F>,  ?) (<16,0,H>,      ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>,  ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>,  2) (<16,0,X>, X) (<16,0,Y>,     Y) (<16,0,Z>, Z) (<16,0,E1>,  ?) 
          (<17,0,A>, ?) (<17,0,B>,     ?) (<17,0,C>, ?) (<17,0,E>,   ?) (<17,0,F>,  ?) (<17,0,H>,      ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>,  ?) (<17,0,R>, ?) (<17,0,S>,  0) (<17,0,V>,  V) (<17,0,W>,  W) (<17,0,X>, X) (<17,0,Y>,     Y) (<17,0,Z>, Z) (<17,0,E1>, E1) 
          (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>,   ?) (<18,0,F>,  ?) (<18,0,H>,      ?) (<18,0,I>, 99) (<18,0,M>,     33) (<18,0,Q>,  Q) (<18,0,R>, R) (<18,0,S>,  S) (<18,0,V>,  V) (<18,0,W>,  W) (<18,0,X>, X) (<18,0,Y>,     Y) (<18,0,Z>, Z) (<18,0,E1>, E1) 
          (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>,   ?) (<19,0,F>,  ?) (<19,0,H>,      ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>,  S) (<19,0,V>,  V) (<19,0,W>,  W) (<19,0,X>, X) (<19,0,Y>,     Y) (<19,0,Z>, Z) (<19,0,E1>, E1) 
          (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>,   ?) (<20,0,F>, 49) (<20,0,H>,     50) (<20,0,I>,  I) (<20,0,M>,      M) (<20,0,Q>,  Q) (<20,0,R>, R) (<20,0,S>,  S) (<20,0,V>,  V) (<20,0,W>,  W) (<20,0,X>, X) (<20,0,Y>,     Y) (<20,0,Z>, Z) (<20,0,E1>, E1) 
          (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>,   ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>,  0) (<21,0,M>,      M) (<21,0,Q>,  Q) (<21,0,R>, R) (<21,0,S>,  S) (<21,0,V>,  V) (<21,0,W>,  W) (<21,0,X>, X) (<21,0,Y>,     Y) (<21,0,Z>, Z) (<21,0,E1>, E1) 
          (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>,  0) (<22,0,H>,      H) (<22,0,I>,  I) (<22,0,M>,      M) (<22,0,Q>,  Q) (<22,0,R>, R) (<22,0,S>,  S) (<22,0,V>,  V) (<22,0,W>,  W) (<22,0,X>, X) (<22,0,Y>,     Y) (<22,0,Z>, Z) (<22,0,E1>, E1) 
    + Applied Processor:
        UnsatPaths
    + Details:
        We remove following edges from the transition graph: [(0,22)
                                                             ,(2,20)
                                                             ,(4,18)
                                                             ,(9,13)
                                                             ,(10,12)
                                                             ,(15,14)
                                                             ,(16,15)
                                                             ,(17,16)
                                                             ,(19,17)
                                                             ,(21,19)
                                                             ,(22,21)]
* Step 5: LeafRules WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   -> f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   True         (1,1)
          1.  f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)  [149 >= E]   (?,1)
          2.  f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1)       [49 >= F]    (?,1)
          3.  f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1)   [49 >= H]    (?,1)
          4.  f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1)       [99 >= I]    (?,1)
          5.  f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1)   [31 >= M]    (?,1)
          6.  f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) [Q >= 0]     (?,1)
          7.  f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1)   [49 >= S]    (?,1)
          8.  f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1)   [V >= W]     (?,1)
          9.  f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1)       [8 >= X]     (?,1)
          10. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1)       [7 >= Y]     (?,1)
          11. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1)   [3 >= Z]     (?,1)
          12. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1)   [Z >= 4]     (?,1)
          13. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1)   [Y >= 8]     (?,1)
          14. f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f584(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)       [X >= 9]     (?,1)
          15. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1)       [W >= 1 + V] (?,1)
          16. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B)       [S >= 50]    (?,1)
          17. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1)       [0 >= 1 + Q] (?,1)
          18. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1)   [M >= 32]    (?,1)
          19. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1)     [I >= 100]   (?,1)
          20. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   [H >= 50]    (?,1)
          21. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1)       [F >= 50]    (?,1)
          22. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1)       [E >= 150]   (?,1)
        Signature:
          {(f0,17)
          ;(f422,17)
          ;(f437,17)
          ;(f441,17)
          ;(f455,17)
          ;(f461,17)
          ;(f485,17)
          ;(f501,17)
          ;(f526,17)
          ;(f540,17)
          ;(f543,17)
          ;(f546,17)
          ;(f584,17)}
        Flow Graph:
          [0->{1},1->{1,22},2->{3},3->{3,20},4->{5},5->{5,18},6->{6,17},7->{7,16},8->{8,15},9->{10},10->{11},11->{11
          ,12},12->{10,13},13->{9,14},14->{},15->{9},16->{8},17->{7},18->{4,19},19->{6},20->{2,21},21->{4},22->{2}]
        Sizebounds:
          (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>,   0) (< 0,0,F>,  F) (< 0,0,H>,      H) (< 0,0,I>,  I) (< 0,0,M>,      M) (< 0,0,Q>,  Q) (< 0,0,R>, R) (< 0,0,S>,  S) (< 0,0,V>,  V) (< 0,0,W>,  W) (< 0,0,X>, X) (< 0,0,Y>,     Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) 
          (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>,  F) (< 1,0,H>,      H) (< 1,0,I>,  I) (< 1,0,M>,      M) (< 1,0,Q>,  Q) (< 1,0,R>, R) (< 1,0,S>,  S) (< 1,0,V>,  V) (< 1,0,W>,  W) (< 1,0,X>, X) (< 1,0,Y>,     Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) 
          (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>,   ?) (< 2,0,F>, 49) (< 2,0,H>,      0) (< 2,0,I>,  I) (< 2,0,M>,      M) (< 2,0,Q>,  Q) (< 2,0,R>, R) (< 2,0,S>,  S) (< 2,0,V>,  V) (< 2,0,W>,  W) (< 2,0,X>, X) (< 2,0,Y>,     Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) 
          (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>,   ?) (< 3,0,F>, 49) (< 3,0,H>,     50) (< 3,0,I>,  I) (< 3,0,M>,      M) (< 3,0,Q>,  Q) (< 3,0,R>, R) (< 3,0,S>,  S) (< 3,0,V>,  V) (< 3,0,W>,  W) (< 3,0,X>, X) (< 3,0,Y>,     Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) 
          (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>,   ?) (< 4,0,F>,  ?) (< 4,0,H>,      ?) (< 4,0,I>, 99) (< 4,0,M>,      0) (< 4,0,Q>,  Q) (< 4,0,R>, R) (< 4,0,S>,  S) (< 4,0,V>,  V) (< 4,0,W>,  W) (< 4,0,X>, X) (< 4,0,Y>,     Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) 
          (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>,   ?) (< 5,0,F>,  ?) (< 5,0,H>,      ?) (< 5,0,I>, 99) (< 5,0,M>,     33) (< 5,0,Q>,  Q) (< 5,0,R>, R) (< 5,0,S>,  S) (< 5,0,V>,  V) (< 5,0,W>,  W) (< 5,0,X>, X) (< 5,0,Y>,     Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) 
          (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>,   ?) (< 6,0,F>,  ?) (< 6,0,H>,      ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>,  ?) (< 6,0,R>, ?) (< 6,0,S>,  S) (< 6,0,V>,  V) (< 6,0,W>,  W) (< 6,0,X>, X) (< 6,0,Y>,     Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) 
          (< 7,0,A>, ?) (< 7,0,B>,     ?) (< 7,0,C>, ?) (< 7,0,E>,   ?) (< 7,0,F>,  ?) (< 7,0,H>,      ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>,  ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>,  V) (< 7,0,W>,  W) (< 7,0,X>, X) (< 7,0,Y>,     Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) 
          (< 8,0,A>, ?) (< 8,0,B>,     ?) (< 8,0,C>, ?) (< 8,0,E>,   ?) (< 8,0,F>,  ?) (< 8,0,H>,      ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>,  ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>,     Y) (< 8,0,Z>, Z) (< 8,0,E1>,  ?) 
          (< 9,0,A>, ?) (< 9,0,B>,     ?) (< 9,0,C>, ?) (< 9,0,E>,   ?) (< 9,0,F>,  ?) (< 9,0,H>,      ?) (< 9,0,I>,  ?) (< 9,0,M>,      ?) (< 9,0,Q>,  ?) (< 9,0,R>, ?) (< 9,0,S>,  ?) (< 9,0,V>, 17) (< 9,0,W>,  ?) (< 9,0,X>, 8) (< 9,0,Y>,     0) (< 9,0,Z>, ?) (< 9,0,E1>,  ?) 
          (<10,0,A>, ?) (<10,0,B>,     ?) (<10,0,C>, ?) (<10,0,E>,   ?) (<10,0,F>,  ?) (<10,0,H>,      ?) (<10,0,I>,  ?) (<10,0,M>,      ?) (<10,0,Q>,  ?) (<10,0,R>, ?) (<10,0,S>,  ?) (<10,0,V>, 17) (<10,0,W>,  ?) (<10,0,X>, ?) (<10,0,Y>,     7) (<10,0,Z>, 0) (<10,0,E1>,  ?) 
          (<11,0,A>, ?) (<11,0,B>,     ?) (<11,0,C>, ?) (<11,0,E>,   ?) (<11,0,F>,  ?) (<11,0,H>,      ?) (<11,0,I>,  ?) (<11,0,M>,      ?) (<11,0,Q>,  ?) (<11,0,R>, ?) (<11,0,S>,  ?) (<11,0,V>, 17) (<11,0,W>,  ?) (<11,0,X>, ?) (<11,0,Y>,     7) (<11,0,Z>, 4) (<11,0,E1>,  ?) 
          (<12,0,A>, ?) (<12,0,B>,     ?) (<12,0,C>, ?) (<12,0,E>,   ?) (<12,0,F>,  ?) (<12,0,H>,      ?) (<12,0,I>,  ?) (<12,0,M>,      ?) (<12,0,Q>,  ?) (<12,0,R>, ?) (<12,0,S>,  ?) (<12,0,V>, 17) (<12,0,W>,  ?) (<12,0,X>, ?) (<12,0,Y>,     7) (<12,0,Z>, 4) (<12,0,E1>,  ?) 
          (<13,0,A>, ?) (<13,0,B>,     ?) (<13,0,C>, ?) (<13,0,E>,   ?) (<13,0,F>,  ?) (<13,0,H>,      ?) (<13,0,I>,  ?) (<13,0,M>,      ?) (<13,0,Q>,  ?) (<13,0,R>, ?) (<13,0,S>,  ?) (<13,0,V>, 17) (<13,0,W>,  ?) (<13,0,X>, ?) (<13,0,Y>,     7) (<13,0,Z>, ?) (<13,0,E1>,  ?) 
          (<14,0,A>, ?) (<14,0,B>,     ?) (<14,0,C>, ?) (<14,0,E>,   ?) (<14,0,F>,  ?) (<14,0,H>,      ?) (<14,0,I>,  ?) (<14,0,M>,      ?) (<14,0,Q>,  ?) (<14,0,R>, ?) (<14,0,S>,  ?) (<14,0,V>, 17) (<14,0,W>,  ?) (<14,0,X>, ?) (<14,0,Y>, 7 + Y) (<14,0,Z>, ?) (<14,0,E1>,  ?) 
          (<15,0,A>, ?) (<15,0,B>,     ?) (<15,0,C>, ?) (<15,0,E>,   ?) (<15,0,F>,  ?) (<15,0,H>,      ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>,  ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>,     Y) (<15,0,Z>, Z) (<15,0,E1>,  ?) 
          (<16,0,A>, ?) (<16,0,B>,     ?) (<16,0,C>, ?) (<16,0,E>,   ?) (<16,0,F>,  ?) (<16,0,H>,      ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>,  ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>,  2) (<16,0,X>, X) (<16,0,Y>,     Y) (<16,0,Z>, Z) (<16,0,E1>,  ?) 
          (<17,0,A>, ?) (<17,0,B>,     ?) (<17,0,C>, ?) (<17,0,E>,   ?) (<17,0,F>,  ?) (<17,0,H>,      ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>,  ?) (<17,0,R>, ?) (<17,0,S>,  0) (<17,0,V>,  V) (<17,0,W>,  W) (<17,0,X>, X) (<17,0,Y>,     Y) (<17,0,Z>, Z) (<17,0,E1>, E1) 
          (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>,   ?) (<18,0,F>,  ?) (<18,0,H>,      ?) (<18,0,I>, 99) (<18,0,M>,     33) (<18,0,Q>,  Q) (<18,0,R>, R) (<18,0,S>,  S) (<18,0,V>,  V) (<18,0,W>,  W) (<18,0,X>, X) (<18,0,Y>,     Y) (<18,0,Z>, Z) (<18,0,E1>, E1) 
          (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>,   ?) (<19,0,F>,  ?) (<19,0,H>,      ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>,  S) (<19,0,V>,  V) (<19,0,W>,  W) (<19,0,X>, X) (<19,0,Y>,     Y) (<19,0,Z>, Z) (<19,0,E1>, E1) 
          (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>,   ?) (<20,0,F>, 49) (<20,0,H>,     50) (<20,0,I>,  I) (<20,0,M>,      M) (<20,0,Q>,  Q) (<20,0,R>, R) (<20,0,S>,  S) (<20,0,V>,  V) (<20,0,W>,  W) (<20,0,X>, X) (<20,0,Y>,     Y) (<20,0,Z>, Z) (<20,0,E1>, E1) 
          (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>,   ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>,  0) (<21,0,M>,      M) (<21,0,Q>,  Q) (<21,0,R>, R) (<21,0,S>,  S) (<21,0,V>,  V) (<21,0,W>,  W) (<21,0,X>, X) (<21,0,Y>,     Y) (<21,0,Z>, Z) (<21,0,E1>, E1) 
          (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>,  0) (<22,0,H>,      H) (<22,0,I>,  I) (<22,0,M>,      M) (<22,0,Q>,  Q) (<22,0,R>, R) (<22,0,S>,  S) (<22,0,V>,  V) (<22,0,W>,  W) (<22,0,X>, X) (<22,0,Y>,     Y) (<22,0,Z>, Z) (<22,0,E1>, E1) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [14]
* Step 6: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   -> f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   True         (1,1)
          1.  f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)  [149 >= E]   (?,1)
          2.  f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1)       [49 >= F]    (?,1)
          3.  f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1)   [49 >= H]    (?,1)
          4.  f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1)       [99 >= I]    (?,1)
          5.  f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1)   [31 >= M]    (?,1)
          6.  f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) [Q >= 0]     (?,1)
          7.  f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1)   [49 >= S]    (?,1)
          8.  f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1)   [V >= W]     (?,1)
          9.  f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1)       [8 >= X]     (?,1)
          10. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1)       [7 >= Y]     (?,1)
          11. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1)   [3 >= Z]     (?,1)
          12. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1)   [Z >= 4]     (?,1)
          13. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1)   [Y >= 8]     (?,1)
          15. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1)       [W >= 1 + V] (?,1)
          16. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B)       [S >= 50]    (?,1)
          17. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1)       [0 >= 1 + Q] (?,1)
          18. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1)   [M >= 32]    (?,1)
          19. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1)     [I >= 100]   (?,1)
          20. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   [H >= 50]    (?,1)
          21. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1)       [F >= 50]    (?,1)
          22. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1)       [E >= 150]   (?,1)
        Signature:
          {(f0,17)
          ;(f422,17)
          ;(f437,17)
          ;(f441,17)
          ;(f455,17)
          ;(f461,17)
          ;(f485,17)
          ;(f501,17)
          ;(f526,17)
          ;(f540,17)
          ;(f543,17)
          ;(f546,17)
          ;(f584,17)}
        Flow Graph:
          [0->{1},1->{1,22},2->{3},3->{3,20},4->{5},5->{5,18},6->{6,17},7->{7,16},8->{8,15},9->{10},10->{11},11->{11
          ,12},12->{10,13},13->{9},15->{9},16->{8},17->{7},18->{4,19},19->{6},20->{2,21},21->{4},22->{2}]
        Sizebounds:
          (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>,   0) (< 0,0,F>,  F) (< 0,0,H>,      H) (< 0,0,I>,  I) (< 0,0,M>,      M) (< 0,0,Q>,  Q) (< 0,0,R>, R) (< 0,0,S>,  S) (< 0,0,V>,  V) (< 0,0,W>,  W) (< 0,0,X>, X) (< 0,0,Y>, Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) 
          (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>,  F) (< 1,0,H>,      H) (< 1,0,I>,  I) (< 1,0,M>,      M) (< 1,0,Q>,  Q) (< 1,0,R>, R) (< 1,0,S>,  S) (< 1,0,V>,  V) (< 1,0,W>,  W) (< 1,0,X>, X) (< 1,0,Y>, Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) 
          (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>,   ?) (< 2,0,F>, 49) (< 2,0,H>,      0) (< 2,0,I>,  I) (< 2,0,M>,      M) (< 2,0,Q>,  Q) (< 2,0,R>, R) (< 2,0,S>,  S) (< 2,0,V>,  V) (< 2,0,W>,  W) (< 2,0,X>, X) (< 2,0,Y>, Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) 
          (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>,   ?) (< 3,0,F>, 49) (< 3,0,H>,     50) (< 3,0,I>,  I) (< 3,0,M>,      M) (< 3,0,Q>,  Q) (< 3,0,R>, R) (< 3,0,S>,  S) (< 3,0,V>,  V) (< 3,0,W>,  W) (< 3,0,X>, X) (< 3,0,Y>, Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) 
          (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>,   ?) (< 4,0,F>,  ?) (< 4,0,H>,      ?) (< 4,0,I>, 99) (< 4,0,M>,      0) (< 4,0,Q>,  Q) (< 4,0,R>, R) (< 4,0,S>,  S) (< 4,0,V>,  V) (< 4,0,W>,  W) (< 4,0,X>, X) (< 4,0,Y>, Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) 
          (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>,   ?) (< 5,0,F>,  ?) (< 5,0,H>,      ?) (< 5,0,I>, 99) (< 5,0,M>,     33) (< 5,0,Q>,  Q) (< 5,0,R>, R) (< 5,0,S>,  S) (< 5,0,V>,  V) (< 5,0,W>,  W) (< 5,0,X>, X) (< 5,0,Y>, Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) 
          (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>,   ?) (< 6,0,F>,  ?) (< 6,0,H>,      ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>,  ?) (< 6,0,R>, ?) (< 6,0,S>,  S) (< 6,0,V>,  V) (< 6,0,W>,  W) (< 6,0,X>, X) (< 6,0,Y>, Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) 
          (< 7,0,A>, ?) (< 7,0,B>,     ?) (< 7,0,C>, ?) (< 7,0,E>,   ?) (< 7,0,F>,  ?) (< 7,0,H>,      ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>,  ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>,  V) (< 7,0,W>,  W) (< 7,0,X>, X) (< 7,0,Y>, Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) 
          (< 8,0,A>, ?) (< 8,0,B>,     ?) (< 8,0,C>, ?) (< 8,0,E>,   ?) (< 8,0,F>,  ?) (< 8,0,H>,      ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>,  ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>, Y) (< 8,0,Z>, Z) (< 8,0,E1>,  ?) 
          (< 9,0,A>, ?) (< 9,0,B>,     ?) (< 9,0,C>, ?) (< 9,0,E>,   ?) (< 9,0,F>,  ?) (< 9,0,H>,      ?) (< 9,0,I>,  ?) (< 9,0,M>,      ?) (< 9,0,Q>,  ?) (< 9,0,R>, ?) (< 9,0,S>,  ?) (< 9,0,V>, 17) (< 9,0,W>,  ?) (< 9,0,X>, 8) (< 9,0,Y>, 0) (< 9,0,Z>, ?) (< 9,0,E1>,  ?) 
          (<10,0,A>, ?) (<10,0,B>,     ?) (<10,0,C>, ?) (<10,0,E>,   ?) (<10,0,F>,  ?) (<10,0,H>,      ?) (<10,0,I>,  ?) (<10,0,M>,      ?) (<10,0,Q>,  ?) (<10,0,R>, ?) (<10,0,S>,  ?) (<10,0,V>, 17) (<10,0,W>,  ?) (<10,0,X>, ?) (<10,0,Y>, 7) (<10,0,Z>, 0) (<10,0,E1>,  ?) 
          (<11,0,A>, ?) (<11,0,B>,     ?) (<11,0,C>, ?) (<11,0,E>,   ?) (<11,0,F>,  ?) (<11,0,H>,      ?) (<11,0,I>,  ?) (<11,0,M>,      ?) (<11,0,Q>,  ?) (<11,0,R>, ?) (<11,0,S>,  ?) (<11,0,V>, 17) (<11,0,W>,  ?) (<11,0,X>, ?) (<11,0,Y>, 7) (<11,0,Z>, 4) (<11,0,E1>,  ?) 
          (<12,0,A>, ?) (<12,0,B>,     ?) (<12,0,C>, ?) (<12,0,E>,   ?) (<12,0,F>,  ?) (<12,0,H>,      ?) (<12,0,I>,  ?) (<12,0,M>,      ?) (<12,0,Q>,  ?) (<12,0,R>, ?) (<12,0,S>,  ?) (<12,0,V>, 17) (<12,0,W>,  ?) (<12,0,X>, ?) (<12,0,Y>, 7) (<12,0,Z>, 4) (<12,0,E1>,  ?) 
          (<13,0,A>, ?) (<13,0,B>,     ?) (<13,0,C>, ?) (<13,0,E>,   ?) (<13,0,F>,  ?) (<13,0,H>,      ?) (<13,0,I>,  ?) (<13,0,M>,      ?) (<13,0,Q>,  ?) (<13,0,R>, ?) (<13,0,S>,  ?) (<13,0,V>, 17) (<13,0,W>,  ?) (<13,0,X>, ?) (<13,0,Y>, 7) (<13,0,Z>, ?) (<13,0,E1>,  ?) 
          (<15,0,A>, ?) (<15,0,B>,     ?) (<15,0,C>, ?) (<15,0,E>,   ?) (<15,0,F>,  ?) (<15,0,H>,      ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>,  ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>, Y) (<15,0,Z>, Z) (<15,0,E1>,  ?) 
          (<16,0,A>, ?) (<16,0,B>,     ?) (<16,0,C>, ?) (<16,0,E>,   ?) (<16,0,F>,  ?) (<16,0,H>,      ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>,  ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>,  2) (<16,0,X>, X) (<16,0,Y>, Y) (<16,0,Z>, Z) (<16,0,E1>,  ?) 
          (<17,0,A>, ?) (<17,0,B>,     ?) (<17,0,C>, ?) (<17,0,E>,   ?) (<17,0,F>,  ?) (<17,0,H>,      ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>,  ?) (<17,0,R>, ?) (<17,0,S>,  0) (<17,0,V>,  V) (<17,0,W>,  W) (<17,0,X>, X) (<17,0,Y>, Y) (<17,0,Z>, Z) (<17,0,E1>, E1) 
          (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>,   ?) (<18,0,F>,  ?) (<18,0,H>,      ?) (<18,0,I>, 99) (<18,0,M>,     33) (<18,0,Q>,  Q) (<18,0,R>, R) (<18,0,S>,  S) (<18,0,V>,  V) (<18,0,W>,  W) (<18,0,X>, X) (<18,0,Y>, Y) (<18,0,Z>, Z) (<18,0,E1>, E1) 
          (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>,   ?) (<19,0,F>,  ?) (<19,0,H>,      ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>,  S) (<19,0,V>,  V) (<19,0,W>,  W) (<19,0,X>, X) (<19,0,Y>, Y) (<19,0,Z>, Z) (<19,0,E1>, E1) 
          (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>,   ?) (<20,0,F>, 49) (<20,0,H>,     50) (<20,0,I>,  I) (<20,0,M>,      M) (<20,0,Q>,  Q) (<20,0,R>, R) (<20,0,S>,  S) (<20,0,V>,  V) (<20,0,W>,  W) (<20,0,X>, X) (<20,0,Y>, Y) (<20,0,Z>, Z) (<20,0,E1>, E1) 
          (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>,   ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>,  0) (<21,0,M>,      M) (<21,0,Q>,  Q) (<21,0,R>, R) (<21,0,S>,  S) (<21,0,V>,  V) (<21,0,W>,  W) (<21,0,X>, X) (<21,0,Y>, Y) (<21,0,Z>, Z) (<21,0,E1>, E1) 
          (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>,  0) (<22,0,H>,      H) (<22,0,I>,  I) (<22,0,M>,      M) (<22,0,Q>,  Q) (<22,0,R>, R) (<22,0,S>,  S) (<22,0,V>,  V) (<22,0,W>,  W) (<22,0,X>, X) (<22,0,Y>, Y) (<22,0,Z>, Z) (<22,0,E1>, E1) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
            p(f0) = 1
          p(f422) = 1
          p(f437) = 0
          p(f441) = 0
          p(f455) = 0
          p(f461) = 0
          p(f485) = 0
          p(f501) = 0
          p(f526) = 0
          p(f540) = 0
          p(f543) = 0
          p(f546) = 0
        
        The following rules are strictly oriented:
                                        [E >= 150] ==>                                         
          f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 1                                       
                                                     > 0                                       
                                                     = f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1)
        
        
        The following rules are weakly oriented:
                                              True ==>                                               
            f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 1                                             
                                                    >= 1                                             
                                                     = f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)  
        
                                        [149 >= E] ==>                                               
          f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 1                                             
                                                    >= 1                                             
                                                     = f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) 
        
                                         [49 >= F] ==>                                               
          f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 0                                             
                                                    >= 0                                             
                                                     = f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1)      
        
                                         [49 >= H] ==>                                               
          f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 0                                             
                                                    >= 0                                             
                                                     = f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1)  
        
                                         [99 >= I] ==>                                               
          f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 0                                             
                                                    >= 0                                             
                                                     = f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1)      
        
                                         [31 >= M] ==>                                               
          f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 0                                             
                                                    >= 0                                             
                                                     = f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1)  
        
                                          [Q >= 0] ==>                                               
          f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 0                                             
                                                    >= 0                                             
                                                     = f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1)
        
                                         [49 >= S] ==>                                               
          f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 0                                             
                                                    >= 0                                             
                                                     = f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1)  
        
                                          [V >= W] ==>                                               
          f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 0                                             
                                                    >= 0                                             
                                                     = f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1)  
        
                                          [8 >= X] ==>                                               
          f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 0                                             
                                                    >= 0                                             
                                                     = f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1)      
        
                                          [7 >= Y] ==>                                               
          f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 0                                             
                                                    >= 0                                             
                                                     = f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1)      
        
                                          [3 >= Z] ==>                                               
          f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 0                                             
                                                    >= 0                                             
                                                     = f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1)  
        
                                          [Z >= 4] ==>                                               
          f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 0                                             
                                                    >= 0                                             
                                                     = f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1)  
        
                                          [Y >= 8] ==>                                               
          f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 0                                             
                                                    >= 0                                             
                                                     = f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1)  
        
                                      [W >= 1 + V] ==>                                               
          f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 0                                             
                                                    >= 0                                             
                                                     = f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1)      
        
                                         [S >= 50] ==>                                               
          f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 0                                             
                                                    >= 0                                             
                                                     = f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B)      
        
                                      [0 >= 1 + Q] ==>                                               
          f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 0                                             
                                                    >= 0                                             
                                                     = f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1)      
        
                                         [M >= 32] ==>                                               
          f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 0                                             
                                                    >= 0                                             
                                                     = f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1)  
        
                                        [I >= 100] ==>                                               
          f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 0                                             
                                                    >= 0                                             
                                                     = f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1)    
        
                                         [H >= 50] ==>                                               
          f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 0                                             
                                                    >= 0                                             
                                                     = f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)  
        
                                         [F >= 50] ==>                                               
          f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 0                                             
                                                    >= 0                                             
                                                     = f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1)      
        
        
* Step 7: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   -> f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   True         (1,1)
          1.  f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)  [149 >= E]   (?,1)
          2.  f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1)       [49 >= F]    (?,1)
          3.  f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1)   [49 >= H]    (?,1)
          4.  f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1)       [99 >= I]    (?,1)
          5.  f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1)   [31 >= M]    (?,1)
          6.  f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) [Q >= 0]     (?,1)
          7.  f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1)   [49 >= S]    (?,1)
          8.  f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1)   [V >= W]     (?,1)
          9.  f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1)       [8 >= X]     (?,1)
          10. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1)       [7 >= Y]     (?,1)
          11. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1)   [3 >= Z]     (?,1)
          12. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1)   [Z >= 4]     (?,1)
          13. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1)   [Y >= 8]     (?,1)
          15. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1)       [W >= 1 + V] (?,1)
          16. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B)       [S >= 50]    (?,1)
          17. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1)       [0 >= 1 + Q] (?,1)
          18. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1)   [M >= 32]    (?,1)
          19. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1)     [I >= 100]   (?,1)
          20. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   [H >= 50]    (?,1)
          21. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1)       [F >= 50]    (?,1)
          22. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1)       [E >= 150]   (1,1)
        Signature:
          {(f0,17)
          ;(f422,17)
          ;(f437,17)
          ;(f441,17)
          ;(f455,17)
          ;(f461,17)
          ;(f485,17)
          ;(f501,17)
          ;(f526,17)
          ;(f540,17)
          ;(f543,17)
          ;(f546,17)
          ;(f584,17)}
        Flow Graph:
          [0->{1},1->{1,22},2->{3},3->{3,20},4->{5},5->{5,18},6->{6,17},7->{7,16},8->{8,15},9->{10},10->{11},11->{11
          ,12},12->{10,13},13->{9},15->{9},16->{8},17->{7},18->{4,19},19->{6},20->{2,21},21->{4},22->{2}]
        Sizebounds:
          (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>,   0) (< 0,0,F>,  F) (< 0,0,H>,      H) (< 0,0,I>,  I) (< 0,0,M>,      M) (< 0,0,Q>,  Q) (< 0,0,R>, R) (< 0,0,S>,  S) (< 0,0,V>,  V) (< 0,0,W>,  W) (< 0,0,X>, X) (< 0,0,Y>, Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) 
          (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>,  F) (< 1,0,H>,      H) (< 1,0,I>,  I) (< 1,0,M>,      M) (< 1,0,Q>,  Q) (< 1,0,R>, R) (< 1,0,S>,  S) (< 1,0,V>,  V) (< 1,0,W>,  W) (< 1,0,X>, X) (< 1,0,Y>, Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) 
          (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>,   ?) (< 2,0,F>, 49) (< 2,0,H>,      0) (< 2,0,I>,  I) (< 2,0,M>,      M) (< 2,0,Q>,  Q) (< 2,0,R>, R) (< 2,0,S>,  S) (< 2,0,V>,  V) (< 2,0,W>,  W) (< 2,0,X>, X) (< 2,0,Y>, Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) 
          (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>,   ?) (< 3,0,F>, 49) (< 3,0,H>,     50) (< 3,0,I>,  I) (< 3,0,M>,      M) (< 3,0,Q>,  Q) (< 3,0,R>, R) (< 3,0,S>,  S) (< 3,0,V>,  V) (< 3,0,W>,  W) (< 3,0,X>, X) (< 3,0,Y>, Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) 
          (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>,   ?) (< 4,0,F>,  ?) (< 4,0,H>,      ?) (< 4,0,I>, 99) (< 4,0,M>,      0) (< 4,0,Q>,  Q) (< 4,0,R>, R) (< 4,0,S>,  S) (< 4,0,V>,  V) (< 4,0,W>,  W) (< 4,0,X>, X) (< 4,0,Y>, Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) 
          (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>,   ?) (< 5,0,F>,  ?) (< 5,0,H>,      ?) (< 5,0,I>, 99) (< 5,0,M>,     33) (< 5,0,Q>,  Q) (< 5,0,R>, R) (< 5,0,S>,  S) (< 5,0,V>,  V) (< 5,0,W>,  W) (< 5,0,X>, X) (< 5,0,Y>, Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) 
          (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>,   ?) (< 6,0,F>,  ?) (< 6,0,H>,      ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>,  ?) (< 6,0,R>, ?) (< 6,0,S>,  S) (< 6,0,V>,  V) (< 6,0,W>,  W) (< 6,0,X>, X) (< 6,0,Y>, Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) 
          (< 7,0,A>, ?) (< 7,0,B>,     ?) (< 7,0,C>, ?) (< 7,0,E>,   ?) (< 7,0,F>,  ?) (< 7,0,H>,      ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>,  ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>,  V) (< 7,0,W>,  W) (< 7,0,X>, X) (< 7,0,Y>, Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) 
          (< 8,0,A>, ?) (< 8,0,B>,     ?) (< 8,0,C>, ?) (< 8,0,E>,   ?) (< 8,0,F>,  ?) (< 8,0,H>,      ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>,  ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>, Y) (< 8,0,Z>, Z) (< 8,0,E1>,  ?) 
          (< 9,0,A>, ?) (< 9,0,B>,     ?) (< 9,0,C>, ?) (< 9,0,E>,   ?) (< 9,0,F>,  ?) (< 9,0,H>,      ?) (< 9,0,I>,  ?) (< 9,0,M>,      ?) (< 9,0,Q>,  ?) (< 9,0,R>, ?) (< 9,0,S>,  ?) (< 9,0,V>, 17) (< 9,0,W>,  ?) (< 9,0,X>, 8) (< 9,0,Y>, 0) (< 9,0,Z>, ?) (< 9,0,E1>,  ?) 
          (<10,0,A>, ?) (<10,0,B>,     ?) (<10,0,C>, ?) (<10,0,E>,   ?) (<10,0,F>,  ?) (<10,0,H>,      ?) (<10,0,I>,  ?) (<10,0,M>,      ?) (<10,0,Q>,  ?) (<10,0,R>, ?) (<10,0,S>,  ?) (<10,0,V>, 17) (<10,0,W>,  ?) (<10,0,X>, ?) (<10,0,Y>, 7) (<10,0,Z>, 0) (<10,0,E1>,  ?) 
          (<11,0,A>, ?) (<11,0,B>,     ?) (<11,0,C>, ?) (<11,0,E>,   ?) (<11,0,F>,  ?) (<11,0,H>,      ?) (<11,0,I>,  ?) (<11,0,M>,      ?) (<11,0,Q>,  ?) (<11,0,R>, ?) (<11,0,S>,  ?) (<11,0,V>, 17) (<11,0,W>,  ?) (<11,0,X>, ?) (<11,0,Y>, 7) (<11,0,Z>, 4) (<11,0,E1>,  ?) 
          (<12,0,A>, ?) (<12,0,B>,     ?) (<12,0,C>, ?) (<12,0,E>,   ?) (<12,0,F>,  ?) (<12,0,H>,      ?) (<12,0,I>,  ?) (<12,0,M>,      ?) (<12,0,Q>,  ?) (<12,0,R>, ?) (<12,0,S>,  ?) (<12,0,V>, 17) (<12,0,W>,  ?) (<12,0,X>, ?) (<12,0,Y>, 7) (<12,0,Z>, 4) (<12,0,E1>,  ?) 
          (<13,0,A>, ?) (<13,0,B>,     ?) (<13,0,C>, ?) (<13,0,E>,   ?) (<13,0,F>,  ?) (<13,0,H>,      ?) (<13,0,I>,  ?) (<13,0,M>,      ?) (<13,0,Q>,  ?) (<13,0,R>, ?) (<13,0,S>,  ?) (<13,0,V>, 17) (<13,0,W>,  ?) (<13,0,X>, ?) (<13,0,Y>, 7) (<13,0,Z>, ?) (<13,0,E1>,  ?) 
          (<15,0,A>, ?) (<15,0,B>,     ?) (<15,0,C>, ?) (<15,0,E>,   ?) (<15,0,F>,  ?) (<15,0,H>,      ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>,  ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>, Y) (<15,0,Z>, Z) (<15,0,E1>,  ?) 
          (<16,0,A>, ?) (<16,0,B>,     ?) (<16,0,C>, ?) (<16,0,E>,   ?) (<16,0,F>,  ?) (<16,0,H>,      ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>,  ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>,  2) (<16,0,X>, X) (<16,0,Y>, Y) (<16,0,Z>, Z) (<16,0,E1>,  ?) 
          (<17,0,A>, ?) (<17,0,B>,     ?) (<17,0,C>, ?) (<17,0,E>,   ?) (<17,0,F>,  ?) (<17,0,H>,      ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>,  ?) (<17,0,R>, ?) (<17,0,S>,  0) (<17,0,V>,  V) (<17,0,W>,  W) (<17,0,X>, X) (<17,0,Y>, Y) (<17,0,Z>, Z) (<17,0,E1>, E1) 
          (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>,   ?) (<18,0,F>,  ?) (<18,0,H>,      ?) (<18,0,I>, 99) (<18,0,M>,     33) (<18,0,Q>,  Q) (<18,0,R>, R) (<18,0,S>,  S) (<18,0,V>,  V) (<18,0,W>,  W) (<18,0,X>, X) (<18,0,Y>, Y) (<18,0,Z>, Z) (<18,0,E1>, E1) 
          (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>,   ?) (<19,0,F>,  ?) (<19,0,H>,      ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>,  S) (<19,0,V>,  V) (<19,0,W>,  W) (<19,0,X>, X) (<19,0,Y>, Y) (<19,0,Z>, Z) (<19,0,E1>, E1) 
          (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>,   ?) (<20,0,F>, 49) (<20,0,H>,     50) (<20,0,I>,  I) (<20,0,M>,      M) (<20,0,Q>,  Q) (<20,0,R>, R) (<20,0,S>,  S) (<20,0,V>,  V) (<20,0,W>,  W) (<20,0,X>, X) (<20,0,Y>, Y) (<20,0,Z>, Z) (<20,0,E1>, E1) 
          (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>,   ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>,  0) (<21,0,M>,      M) (<21,0,Q>,  Q) (<21,0,R>, R) (<21,0,S>,  S) (<21,0,V>,  V) (<21,0,W>,  W) (<21,0,X>, X) (<21,0,Y>, Y) (<21,0,Z>, Z) (<21,0,E1>, E1) 
          (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>,  0) (<22,0,H>,      H) (<22,0,I>,  I) (<22,0,M>,      M) (<22,0,Q>,  Q) (<22,0,R>, R) (<22,0,S>,  S) (<22,0,V>,  V) (<22,0,W>,  W) (<22,0,X>, X) (<22,0,Y>, Y) (<22,0,Z>, Z) (<22,0,E1>, E1) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
            p(f0) = 100   
          p(f422) = 100   
          p(f437) = 100   
          p(f441) = 100   
          p(f455) = 100   
          p(f461) = 100   
          p(f485) = 1 + x9
          p(f501) = 1 + x9
          p(f526) = 1 + x9
          p(f540) = 1 + x9
          p(f543) = 1 + x9
          p(f546) = 1 + x9
        
        The following rules are strictly oriented:
                                          [Q >= 0] ==>                                               
          f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 1 + Q                                         
                                                     > Q                                             
                                                     = f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1)
        
        
        The following rules are weakly oriented:
                                              True ==>                                              
            f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 100                                          
                                                    >= 100                                          
                                                     = f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) 
        
                                        [149 >= E] ==>                                              
          f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 100                                          
                                                    >= 100                                          
                                                     = f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)
        
                                         [49 >= F] ==>                                              
          f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 100                                          
                                                    >= 100                                          
                                                     = f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1)     
        
                                         [49 >= H] ==>                                              
          f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 100                                          
                                                    >= 100                                          
                                                     = f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1) 
        
                                         [99 >= I] ==>                                              
          f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 100                                          
                                                    >= 100                                          
                                                     = f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1)     
        
                                         [31 >= M] ==>                                              
          f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 100                                          
                                                    >= 100                                          
                                                     = f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1) 
        
                                         [49 >= S] ==>                                              
          f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 1 + Q                                        
                                                    >= 1 + Q                                        
                                                     = f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1) 
        
                                          [V >= W] ==>                                              
          f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 1 + Q                                        
                                                    >= 1 + Q                                        
                                                     = f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1) 
        
                                          [8 >= X] ==>                                              
          f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 1 + Q                                        
                                                    >= 1 + Q                                        
                                                     = f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1)     
        
                                          [7 >= Y] ==>                                              
          f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 1 + Q                                        
                                                    >= 1 + Q                                        
                                                     = f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1)     
        
                                          [3 >= Z] ==>                                              
          f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 1 + Q                                        
                                                    >= 1 + Q                                        
                                                     = f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1) 
        
                                          [Z >= 4] ==>                                              
          f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 1 + Q                                        
                                                    >= 1 + Q                                        
                                                     = f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1) 
        
                                          [Y >= 8] ==>                                              
          f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 1 + Q                                        
                                                    >= 1 + Q                                        
                                                     = f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1) 
        
                                      [W >= 1 + V] ==>                                              
          f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 1 + Q                                        
                                                    >= 1 + Q                                        
                                                     = f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1)     
        
                                         [S >= 50] ==>                                              
          f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 1 + Q                                        
                                                    >= 1 + Q                                        
                                                     = f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B)     
        
                                      [0 >= 1 + Q] ==>                                              
          f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 1 + Q                                        
                                                    >= 1 + Q                                        
                                                     = f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1)     
        
                                         [M >= 32] ==>                                              
          f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 100                                          
                                                    >= 100                                          
                                                     = f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1) 
        
                                        [I >= 100] ==>                                              
          f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 100                                          
                                                    >= 99                                           
                                                     = f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1)   
        
                                         [H >= 50] ==>                                              
          f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 100                                          
                                                    >= 100                                          
                                                     = f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) 
        
                                         [F >= 50] ==>                                              
          f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 100                                          
                                                    >= 100                                          
                                                     = f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1)     
        
                                        [E >= 150] ==>                                              
          f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 100                                          
                                                    >= 100                                          
                                                     = f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1)     
        
        
* Step 8: KnowledgePropagation WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   -> f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   True         (1,1)  
          1.  f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)  [149 >= E]   (?,1)  
          2.  f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1)       [49 >= F]    (?,1)  
          3.  f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1)   [49 >= H]    (?,1)  
          4.  f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1)       [99 >= I]    (?,1)  
          5.  f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1)   [31 >= M]    (?,1)  
          6.  f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) [Q >= 0]     (100,1)
          7.  f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1)   [49 >= S]    (?,1)  
          8.  f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1)   [V >= W]     (?,1)  
          9.  f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1)       [8 >= X]     (?,1)  
          10. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1)       [7 >= Y]     (?,1)  
          11. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1)   [3 >= Z]     (?,1)  
          12. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1)   [Z >= 4]     (?,1)  
          13. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1)   [Y >= 8]     (?,1)  
          15. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1)       [W >= 1 + V] (?,1)  
          16. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B)       [S >= 50]    (?,1)  
          17. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1)       [0 >= 1 + Q] (?,1)  
          18. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1)   [M >= 32]    (?,1)  
          19. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1)     [I >= 100]   (?,1)  
          20. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   [H >= 50]    (?,1)  
          21. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1)       [F >= 50]    (?,1)  
          22. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1)       [E >= 150]   (1,1)  
        Signature:
          {(f0,17)
          ;(f422,17)
          ;(f437,17)
          ;(f441,17)
          ;(f455,17)
          ;(f461,17)
          ;(f485,17)
          ;(f501,17)
          ;(f526,17)
          ;(f540,17)
          ;(f543,17)
          ;(f546,17)
          ;(f584,17)}
        Flow Graph:
          [0->{1},1->{1,22},2->{3},3->{3,20},4->{5},5->{5,18},6->{6,17},7->{7,16},8->{8,15},9->{10},10->{11},11->{11
          ,12},12->{10,13},13->{9},15->{9},16->{8},17->{7},18->{4,19},19->{6},20->{2,21},21->{4},22->{2}]
        Sizebounds:
          (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>,   0) (< 0,0,F>,  F) (< 0,0,H>,      H) (< 0,0,I>,  I) (< 0,0,M>,      M) (< 0,0,Q>,  Q) (< 0,0,R>, R) (< 0,0,S>,  S) (< 0,0,V>,  V) (< 0,0,W>,  W) (< 0,0,X>, X) (< 0,0,Y>, Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) 
          (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>,  F) (< 1,0,H>,      H) (< 1,0,I>,  I) (< 1,0,M>,      M) (< 1,0,Q>,  Q) (< 1,0,R>, R) (< 1,0,S>,  S) (< 1,0,V>,  V) (< 1,0,W>,  W) (< 1,0,X>, X) (< 1,0,Y>, Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) 
          (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>,   ?) (< 2,0,F>, 49) (< 2,0,H>,      0) (< 2,0,I>,  I) (< 2,0,M>,      M) (< 2,0,Q>,  Q) (< 2,0,R>, R) (< 2,0,S>,  S) (< 2,0,V>,  V) (< 2,0,W>,  W) (< 2,0,X>, X) (< 2,0,Y>, Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) 
          (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>,   ?) (< 3,0,F>, 49) (< 3,0,H>,     50) (< 3,0,I>,  I) (< 3,0,M>,      M) (< 3,0,Q>,  Q) (< 3,0,R>, R) (< 3,0,S>,  S) (< 3,0,V>,  V) (< 3,0,W>,  W) (< 3,0,X>, X) (< 3,0,Y>, Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) 
          (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>,   ?) (< 4,0,F>,  ?) (< 4,0,H>,      ?) (< 4,0,I>, 99) (< 4,0,M>,      0) (< 4,0,Q>,  Q) (< 4,0,R>, R) (< 4,0,S>,  S) (< 4,0,V>,  V) (< 4,0,W>,  W) (< 4,0,X>, X) (< 4,0,Y>, Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) 
          (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>,   ?) (< 5,0,F>,  ?) (< 5,0,H>,      ?) (< 5,0,I>, 99) (< 5,0,M>,     33) (< 5,0,Q>,  Q) (< 5,0,R>, R) (< 5,0,S>,  S) (< 5,0,V>,  V) (< 5,0,W>,  W) (< 5,0,X>, X) (< 5,0,Y>, Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) 
          (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>,   ?) (< 6,0,F>,  ?) (< 6,0,H>,      ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>,  ?) (< 6,0,R>, ?) (< 6,0,S>,  S) (< 6,0,V>,  V) (< 6,0,W>,  W) (< 6,0,X>, X) (< 6,0,Y>, Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) 
          (< 7,0,A>, ?) (< 7,0,B>,     ?) (< 7,0,C>, ?) (< 7,0,E>,   ?) (< 7,0,F>,  ?) (< 7,0,H>,      ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>,  ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>,  V) (< 7,0,W>,  W) (< 7,0,X>, X) (< 7,0,Y>, Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) 
          (< 8,0,A>, ?) (< 8,0,B>,     ?) (< 8,0,C>, ?) (< 8,0,E>,   ?) (< 8,0,F>,  ?) (< 8,0,H>,      ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>,  ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>, Y) (< 8,0,Z>, Z) (< 8,0,E1>,  ?) 
          (< 9,0,A>, ?) (< 9,0,B>,     ?) (< 9,0,C>, ?) (< 9,0,E>,   ?) (< 9,0,F>,  ?) (< 9,0,H>,      ?) (< 9,0,I>,  ?) (< 9,0,M>,      ?) (< 9,0,Q>,  ?) (< 9,0,R>, ?) (< 9,0,S>,  ?) (< 9,0,V>, 17) (< 9,0,W>,  ?) (< 9,0,X>, 8) (< 9,0,Y>, 0) (< 9,0,Z>, ?) (< 9,0,E1>,  ?) 
          (<10,0,A>, ?) (<10,0,B>,     ?) (<10,0,C>, ?) (<10,0,E>,   ?) (<10,0,F>,  ?) (<10,0,H>,      ?) (<10,0,I>,  ?) (<10,0,M>,      ?) (<10,0,Q>,  ?) (<10,0,R>, ?) (<10,0,S>,  ?) (<10,0,V>, 17) (<10,0,W>,  ?) (<10,0,X>, ?) (<10,0,Y>, 7) (<10,0,Z>, 0) (<10,0,E1>,  ?) 
          (<11,0,A>, ?) (<11,0,B>,     ?) (<11,0,C>, ?) (<11,0,E>,   ?) (<11,0,F>,  ?) (<11,0,H>,      ?) (<11,0,I>,  ?) (<11,0,M>,      ?) (<11,0,Q>,  ?) (<11,0,R>, ?) (<11,0,S>,  ?) (<11,0,V>, 17) (<11,0,W>,  ?) (<11,0,X>, ?) (<11,0,Y>, 7) (<11,0,Z>, 4) (<11,0,E1>,  ?) 
          (<12,0,A>, ?) (<12,0,B>,     ?) (<12,0,C>, ?) (<12,0,E>,   ?) (<12,0,F>,  ?) (<12,0,H>,      ?) (<12,0,I>,  ?) (<12,0,M>,      ?) (<12,0,Q>,  ?) (<12,0,R>, ?) (<12,0,S>,  ?) (<12,0,V>, 17) (<12,0,W>,  ?) (<12,0,X>, ?) (<12,0,Y>, 7) (<12,0,Z>, 4) (<12,0,E1>,  ?) 
          (<13,0,A>, ?) (<13,0,B>,     ?) (<13,0,C>, ?) (<13,0,E>,   ?) (<13,0,F>,  ?) (<13,0,H>,      ?) (<13,0,I>,  ?) (<13,0,M>,      ?) (<13,0,Q>,  ?) (<13,0,R>, ?) (<13,0,S>,  ?) (<13,0,V>, 17) (<13,0,W>,  ?) (<13,0,X>, ?) (<13,0,Y>, 7) (<13,0,Z>, ?) (<13,0,E1>,  ?) 
          (<15,0,A>, ?) (<15,0,B>,     ?) (<15,0,C>, ?) (<15,0,E>,   ?) (<15,0,F>,  ?) (<15,0,H>,      ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>,  ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>, Y) (<15,0,Z>, Z) (<15,0,E1>,  ?) 
          (<16,0,A>, ?) (<16,0,B>,     ?) (<16,0,C>, ?) (<16,0,E>,   ?) (<16,0,F>,  ?) (<16,0,H>,      ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>,  ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>,  2) (<16,0,X>, X) (<16,0,Y>, Y) (<16,0,Z>, Z) (<16,0,E1>,  ?) 
          (<17,0,A>, ?) (<17,0,B>,     ?) (<17,0,C>, ?) (<17,0,E>,   ?) (<17,0,F>,  ?) (<17,0,H>,      ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>,  ?) (<17,0,R>, ?) (<17,0,S>,  0) (<17,0,V>,  V) (<17,0,W>,  W) (<17,0,X>, X) (<17,0,Y>, Y) (<17,0,Z>, Z) (<17,0,E1>, E1) 
          (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>,   ?) (<18,0,F>,  ?) (<18,0,H>,      ?) (<18,0,I>, 99) (<18,0,M>,     33) (<18,0,Q>,  Q) (<18,0,R>, R) (<18,0,S>,  S) (<18,0,V>,  V) (<18,0,W>,  W) (<18,0,X>, X) (<18,0,Y>, Y) (<18,0,Z>, Z) (<18,0,E1>, E1) 
          (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>,   ?) (<19,0,F>,  ?) (<19,0,H>,      ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>,  S) (<19,0,V>,  V) (<19,0,W>,  W) (<19,0,X>, X) (<19,0,Y>, Y) (<19,0,Z>, Z) (<19,0,E1>, E1) 
          (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>,   ?) (<20,0,F>, 49) (<20,0,H>,     50) (<20,0,I>,  I) (<20,0,M>,      M) (<20,0,Q>,  Q) (<20,0,R>, R) (<20,0,S>,  S) (<20,0,V>,  V) (<20,0,W>,  W) (<20,0,X>, X) (<20,0,Y>, Y) (<20,0,Z>, Z) (<20,0,E1>, E1) 
          (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>,   ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>,  0) (<21,0,M>,      M) (<21,0,Q>,  Q) (<21,0,R>, R) (<21,0,S>,  S) (<21,0,V>,  V) (<21,0,W>,  W) (<21,0,X>, X) (<21,0,Y>, Y) (<21,0,Z>, Z) (<21,0,E1>, E1) 
          (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>,  0) (<22,0,H>,      H) (<22,0,I>,  I) (<22,0,M>,      M) (<22,0,Q>,  Q) (<22,0,R>, R) (<22,0,S>,  S) (<22,0,V>,  V) (<22,0,W>,  W) (<22,0,X>, X) (<22,0,Y>, Y) (<22,0,Z>, Z) (<22,0,E1>, E1) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 9: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   -> f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   True         (1,1)  
          1.  f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)  [149 >= E]   (?,1)  
          2.  f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1)       [49 >= F]    (?,1)  
          3.  f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1)   [49 >= H]    (?,1)  
          4.  f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1)       [99 >= I]    (?,1)  
          5.  f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1)   [31 >= M]    (?,1)  
          6.  f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) [Q >= 0]     (100,1)
          7.  f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1)   [49 >= S]    (?,1)  
          8.  f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1)   [V >= W]     (?,1)  
          9.  f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1)       [8 >= X]     (?,1)  
          10. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1)       [7 >= Y]     (?,1)  
          11. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1)   [3 >= Z]     (?,1)  
          12. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1)   [Z >= 4]     (?,1)  
          13. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1)   [Y >= 8]     (?,1)  
          15. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1)       [W >= 1 + V] (?,1)  
          16. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B)       [S >= 50]    (?,1)  
          17. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1)       [0 >= 1 + Q] (100,1)
          18. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1)   [M >= 32]    (?,1)  
          19. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1)     [I >= 100]   (?,1)  
          20. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   [H >= 50]    (?,1)  
          21. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1)       [F >= 50]    (?,1)  
          22. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1)       [E >= 150]   (1,1)  
        Signature:
          {(f0,17)
          ;(f422,17)
          ;(f437,17)
          ;(f441,17)
          ;(f455,17)
          ;(f461,17)
          ;(f485,17)
          ;(f501,17)
          ;(f526,17)
          ;(f540,17)
          ;(f543,17)
          ;(f546,17)
          ;(f584,17)}
        Flow Graph:
          [0->{1},1->{1,22},2->{3},3->{3,20},4->{5},5->{5,18},6->{6,17},7->{7,16},8->{8,15},9->{10},10->{11},11->{11
          ,12},12->{10,13},13->{9},15->{9},16->{8},17->{7},18->{4,19},19->{6},20->{2,21},21->{4},22->{2}]
        Sizebounds:
          (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>,   0) (< 0,0,F>,  F) (< 0,0,H>,      H) (< 0,0,I>,  I) (< 0,0,M>,      M) (< 0,0,Q>,  Q) (< 0,0,R>, R) (< 0,0,S>,  S) (< 0,0,V>,  V) (< 0,0,W>,  W) (< 0,0,X>, X) (< 0,0,Y>, Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) 
          (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>,  F) (< 1,0,H>,      H) (< 1,0,I>,  I) (< 1,0,M>,      M) (< 1,0,Q>,  Q) (< 1,0,R>, R) (< 1,0,S>,  S) (< 1,0,V>,  V) (< 1,0,W>,  W) (< 1,0,X>, X) (< 1,0,Y>, Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) 
          (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>,   ?) (< 2,0,F>, 49) (< 2,0,H>,      0) (< 2,0,I>,  I) (< 2,0,M>,      M) (< 2,0,Q>,  Q) (< 2,0,R>, R) (< 2,0,S>,  S) (< 2,0,V>,  V) (< 2,0,W>,  W) (< 2,0,X>, X) (< 2,0,Y>, Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) 
          (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>,   ?) (< 3,0,F>, 49) (< 3,0,H>,     50) (< 3,0,I>,  I) (< 3,0,M>,      M) (< 3,0,Q>,  Q) (< 3,0,R>, R) (< 3,0,S>,  S) (< 3,0,V>,  V) (< 3,0,W>,  W) (< 3,0,X>, X) (< 3,0,Y>, Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) 
          (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>,   ?) (< 4,0,F>,  ?) (< 4,0,H>,      ?) (< 4,0,I>, 99) (< 4,0,M>,      0) (< 4,0,Q>,  Q) (< 4,0,R>, R) (< 4,0,S>,  S) (< 4,0,V>,  V) (< 4,0,W>,  W) (< 4,0,X>, X) (< 4,0,Y>, Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) 
          (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>,   ?) (< 5,0,F>,  ?) (< 5,0,H>,      ?) (< 5,0,I>, 99) (< 5,0,M>,     33) (< 5,0,Q>,  Q) (< 5,0,R>, R) (< 5,0,S>,  S) (< 5,0,V>,  V) (< 5,0,W>,  W) (< 5,0,X>, X) (< 5,0,Y>, Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) 
          (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>,   ?) (< 6,0,F>,  ?) (< 6,0,H>,      ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>,  ?) (< 6,0,R>, ?) (< 6,0,S>,  S) (< 6,0,V>,  V) (< 6,0,W>,  W) (< 6,0,X>, X) (< 6,0,Y>, Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) 
          (< 7,0,A>, ?) (< 7,0,B>,     ?) (< 7,0,C>, ?) (< 7,0,E>,   ?) (< 7,0,F>,  ?) (< 7,0,H>,      ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>,  ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>,  V) (< 7,0,W>,  W) (< 7,0,X>, X) (< 7,0,Y>, Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) 
          (< 8,0,A>, ?) (< 8,0,B>,     ?) (< 8,0,C>, ?) (< 8,0,E>,   ?) (< 8,0,F>,  ?) (< 8,0,H>,      ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>,  ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>, Y) (< 8,0,Z>, Z) (< 8,0,E1>,  ?) 
          (< 9,0,A>, ?) (< 9,0,B>,     ?) (< 9,0,C>, ?) (< 9,0,E>,   ?) (< 9,0,F>,  ?) (< 9,0,H>,      ?) (< 9,0,I>,  ?) (< 9,0,M>,      ?) (< 9,0,Q>,  ?) (< 9,0,R>, ?) (< 9,0,S>,  ?) (< 9,0,V>, 17) (< 9,0,W>,  ?) (< 9,0,X>, 8) (< 9,0,Y>, 0) (< 9,0,Z>, ?) (< 9,0,E1>,  ?) 
          (<10,0,A>, ?) (<10,0,B>,     ?) (<10,0,C>, ?) (<10,0,E>,   ?) (<10,0,F>,  ?) (<10,0,H>,      ?) (<10,0,I>,  ?) (<10,0,M>,      ?) (<10,0,Q>,  ?) (<10,0,R>, ?) (<10,0,S>,  ?) (<10,0,V>, 17) (<10,0,W>,  ?) (<10,0,X>, ?) (<10,0,Y>, 7) (<10,0,Z>, 0) (<10,0,E1>,  ?) 
          (<11,0,A>, ?) (<11,0,B>,     ?) (<11,0,C>, ?) (<11,0,E>,   ?) (<11,0,F>,  ?) (<11,0,H>,      ?) (<11,0,I>,  ?) (<11,0,M>,      ?) (<11,0,Q>,  ?) (<11,0,R>, ?) (<11,0,S>,  ?) (<11,0,V>, 17) (<11,0,W>,  ?) (<11,0,X>, ?) (<11,0,Y>, 7) (<11,0,Z>, 4) (<11,0,E1>,  ?) 
          (<12,0,A>, ?) (<12,0,B>,     ?) (<12,0,C>, ?) (<12,0,E>,   ?) (<12,0,F>,  ?) (<12,0,H>,      ?) (<12,0,I>,  ?) (<12,0,M>,      ?) (<12,0,Q>,  ?) (<12,0,R>, ?) (<12,0,S>,  ?) (<12,0,V>, 17) (<12,0,W>,  ?) (<12,0,X>, ?) (<12,0,Y>, 7) (<12,0,Z>, 4) (<12,0,E1>,  ?) 
          (<13,0,A>, ?) (<13,0,B>,     ?) (<13,0,C>, ?) (<13,0,E>,   ?) (<13,0,F>,  ?) (<13,0,H>,      ?) (<13,0,I>,  ?) (<13,0,M>,      ?) (<13,0,Q>,  ?) (<13,0,R>, ?) (<13,0,S>,  ?) (<13,0,V>, 17) (<13,0,W>,  ?) (<13,0,X>, ?) (<13,0,Y>, 7) (<13,0,Z>, ?) (<13,0,E1>,  ?) 
          (<15,0,A>, ?) (<15,0,B>,     ?) (<15,0,C>, ?) (<15,0,E>,   ?) (<15,0,F>,  ?) (<15,0,H>,      ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>,  ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>, Y) (<15,0,Z>, Z) (<15,0,E1>,  ?) 
          (<16,0,A>, ?) (<16,0,B>,     ?) (<16,0,C>, ?) (<16,0,E>,   ?) (<16,0,F>,  ?) (<16,0,H>,      ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>,  ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>,  2) (<16,0,X>, X) (<16,0,Y>, Y) (<16,0,Z>, Z) (<16,0,E1>,  ?) 
          (<17,0,A>, ?) (<17,0,B>,     ?) (<17,0,C>, ?) (<17,0,E>,   ?) (<17,0,F>,  ?) (<17,0,H>,      ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>,  ?) (<17,0,R>, ?) (<17,0,S>,  0) (<17,0,V>,  V) (<17,0,W>,  W) (<17,0,X>, X) (<17,0,Y>, Y) (<17,0,Z>, Z) (<17,0,E1>, E1) 
          (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>,   ?) (<18,0,F>,  ?) (<18,0,H>,      ?) (<18,0,I>, 99) (<18,0,M>,     33) (<18,0,Q>,  Q) (<18,0,R>, R) (<18,0,S>,  S) (<18,0,V>,  V) (<18,0,W>,  W) (<18,0,X>, X) (<18,0,Y>, Y) (<18,0,Z>, Z) (<18,0,E1>, E1) 
          (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>,   ?) (<19,0,F>,  ?) (<19,0,H>,      ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>,  S) (<19,0,V>,  V) (<19,0,W>,  W) (<19,0,X>, X) (<19,0,Y>, Y) (<19,0,Z>, Z) (<19,0,E1>, E1) 
          (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>,   ?) (<20,0,F>, 49) (<20,0,H>,     50) (<20,0,I>,  I) (<20,0,M>,      M) (<20,0,Q>,  Q) (<20,0,R>, R) (<20,0,S>,  S) (<20,0,V>,  V) (<20,0,W>,  W) (<20,0,X>, X) (<20,0,Y>, Y) (<20,0,Z>, Z) (<20,0,E1>, E1) 
          (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>,   ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>,  0) (<21,0,M>,      M) (<21,0,Q>,  Q) (<21,0,R>, R) (<21,0,S>,  S) (<21,0,V>,  V) (<21,0,W>,  W) (<21,0,X>, X) (<21,0,Y>, Y) (<21,0,Z>, Z) (<21,0,E1>, E1) 
          (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>,  0) (<22,0,H>,      H) (<22,0,I>,  I) (<22,0,M>,      M) (<22,0,Q>,  Q) (<22,0,R>, R) (<22,0,S>,  S) (<22,0,V>,  V) (<22,0,W>,  W) (<22,0,X>, X) (<22,0,Y>, Y) (<22,0,Z>, Z) (<22,0,E1>, E1) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
            p(f0) = 101             
          p(f422) = 101             
          p(f437) = 101             
          p(f441) = 101             
          p(f455) = 100             
          p(f461) = 100             
          p(f485) = 50              
          p(f501) = 50              
          p(f526) = 1 + x12 + -1*x13
          p(f540) = 1 + x12 + -1*x13
          p(f543) = 1 + x12 + -1*x13
          p(f546) = 1 + x12 + -1*x13
        
        The following rules are strictly oriented:
                                          [V >= W] ==>                                             
          f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 1 + V + -1*W                                
                                                     > V + -1*W                                    
                                                     = f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1)
        
                                         [F >= 50] ==>                                             
          f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 101                                         
                                                     > 100                                         
                                                     = f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1)    
        
        
        The following rules are weakly oriented:
                                              True ==>                                               
            f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 101                                           
                                                    >= 101                                           
                                                     = f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)  
        
                                        [149 >= E] ==>                                               
          f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 101                                           
                                                    >= 101                                           
                                                     = f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) 
        
                                         [49 >= F] ==>                                               
          f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 101                                           
                                                    >= 101                                           
                                                     = f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1)      
        
                                         [49 >= H] ==>                                               
          f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 101                                           
                                                    >= 101                                           
                                                     = f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1)  
        
                                         [99 >= I] ==>                                               
          f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 100                                           
                                                    >= 100                                           
                                                     = f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1)      
        
                                         [31 >= M] ==>                                               
          f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 100                                           
                                                    >= 100                                           
                                                     = f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1)  
        
                                          [Q >= 0] ==>                                               
          f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 50                                            
                                                    >= 50                                            
                                                     = f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1)
        
                                         [49 >= S] ==>                                               
          f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 50                                            
                                                    >= 50                                            
                                                     = f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1)  
        
                                          [8 >= X] ==>                                               
          f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 1 + V + -1*W                                  
                                                    >= 1 + V + -1*W                                  
                                                     = f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1)      
        
                                          [7 >= Y] ==>                                               
          f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 1 + V + -1*W                                  
                                                    >= 1 + V + -1*W                                  
                                                     = f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1)      
        
                                          [3 >= Z] ==>                                               
          f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 1 + V + -1*W                                  
                                                    >= 1 + V + -1*W                                  
                                                     = f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1)  
        
                                          [Z >= 4] ==>                                               
          f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 1 + V + -1*W                                  
                                                    >= 1 + V + -1*W                                  
                                                     = f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1)  
        
                                          [Y >= 8] ==>                                               
          f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 1 + V + -1*W                                  
                                                    >= 1 + V + -1*W                                  
                                                     = f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1)  
        
                                      [W >= 1 + V] ==>                                               
          f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 1 + V + -1*W                                  
                                                    >= 1 + V + -1*W                                  
                                                     = f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1)      
        
                                         [S >= 50] ==>                                               
          f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 50                                            
                                                    >= 16                                            
                                                     = f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B)      
        
                                      [0 >= 1 + Q] ==>                                               
          f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 50                                            
                                                    >= 50                                            
                                                     = f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1)      
        
                                         [M >= 32] ==>                                               
          f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 100                                           
                                                    >= 100                                           
                                                     = f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1)  
        
                                        [I >= 100] ==>                                               
          f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 100                                           
                                                    >= 50                                            
                                                     = f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1)    
        
                                         [H >= 50] ==>                                               
          f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 101                                           
                                                    >= 101                                           
                                                     = f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)  
        
                                        [E >= 150] ==>                                               
          f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 101                                           
                                                    >= 101                                           
                                                     = f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1)      
        
        
* Step 10: KnowledgePropagation WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   -> f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   True         (1,1)  
          1.  f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)  [149 >= E]   (?,1)  
          2.  f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1)       [49 >= F]    (?,1)  
          3.  f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1)   [49 >= H]    (?,1)  
          4.  f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1)       [99 >= I]    (?,1)  
          5.  f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1)   [31 >= M]    (?,1)  
          6.  f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) [Q >= 0]     (100,1)
          7.  f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1)   [49 >= S]    (?,1)  
          8.  f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1)   [V >= W]     (101,1)
          9.  f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1)       [8 >= X]     (?,1)  
          10. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1)       [7 >= Y]     (?,1)  
          11. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1)   [3 >= Z]     (?,1)  
          12. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1)   [Z >= 4]     (?,1)  
          13. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1)   [Y >= 8]     (?,1)  
          15. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1)       [W >= 1 + V] (?,1)  
          16. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B)       [S >= 50]    (?,1)  
          17. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1)       [0 >= 1 + Q] (100,1)
          18. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1)   [M >= 32]    (?,1)  
          19. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1)     [I >= 100]   (?,1)  
          20. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   [H >= 50]    (?,1)  
          21. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1)       [F >= 50]    (101,1)
          22. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1)       [E >= 150]   (1,1)  
        Signature:
          {(f0,17)
          ;(f422,17)
          ;(f437,17)
          ;(f441,17)
          ;(f455,17)
          ;(f461,17)
          ;(f485,17)
          ;(f501,17)
          ;(f526,17)
          ;(f540,17)
          ;(f543,17)
          ;(f546,17)
          ;(f584,17)}
        Flow Graph:
          [0->{1},1->{1,22},2->{3},3->{3,20},4->{5},5->{5,18},6->{6,17},7->{7,16},8->{8,15},9->{10},10->{11},11->{11
          ,12},12->{10,13},13->{9},15->{9},16->{8},17->{7},18->{4,19},19->{6},20->{2,21},21->{4},22->{2}]
        Sizebounds:
          (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>,   0) (< 0,0,F>,  F) (< 0,0,H>,      H) (< 0,0,I>,  I) (< 0,0,M>,      M) (< 0,0,Q>,  Q) (< 0,0,R>, R) (< 0,0,S>,  S) (< 0,0,V>,  V) (< 0,0,W>,  W) (< 0,0,X>, X) (< 0,0,Y>, Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) 
          (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>,  F) (< 1,0,H>,      H) (< 1,0,I>,  I) (< 1,0,M>,      M) (< 1,0,Q>,  Q) (< 1,0,R>, R) (< 1,0,S>,  S) (< 1,0,V>,  V) (< 1,0,W>,  W) (< 1,0,X>, X) (< 1,0,Y>, Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) 
          (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>,   ?) (< 2,0,F>, 49) (< 2,0,H>,      0) (< 2,0,I>,  I) (< 2,0,M>,      M) (< 2,0,Q>,  Q) (< 2,0,R>, R) (< 2,0,S>,  S) (< 2,0,V>,  V) (< 2,0,W>,  W) (< 2,0,X>, X) (< 2,0,Y>, Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) 
          (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>,   ?) (< 3,0,F>, 49) (< 3,0,H>,     50) (< 3,0,I>,  I) (< 3,0,M>,      M) (< 3,0,Q>,  Q) (< 3,0,R>, R) (< 3,0,S>,  S) (< 3,0,V>,  V) (< 3,0,W>,  W) (< 3,0,X>, X) (< 3,0,Y>, Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) 
          (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>,   ?) (< 4,0,F>,  ?) (< 4,0,H>,      ?) (< 4,0,I>, 99) (< 4,0,M>,      0) (< 4,0,Q>,  Q) (< 4,0,R>, R) (< 4,0,S>,  S) (< 4,0,V>,  V) (< 4,0,W>,  W) (< 4,0,X>, X) (< 4,0,Y>, Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) 
          (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>,   ?) (< 5,0,F>,  ?) (< 5,0,H>,      ?) (< 5,0,I>, 99) (< 5,0,M>,     33) (< 5,0,Q>,  Q) (< 5,0,R>, R) (< 5,0,S>,  S) (< 5,0,V>,  V) (< 5,0,W>,  W) (< 5,0,X>, X) (< 5,0,Y>, Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) 
          (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>,   ?) (< 6,0,F>,  ?) (< 6,0,H>,      ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>,  ?) (< 6,0,R>, ?) (< 6,0,S>,  S) (< 6,0,V>,  V) (< 6,0,W>,  W) (< 6,0,X>, X) (< 6,0,Y>, Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) 
          (< 7,0,A>, ?) (< 7,0,B>,     ?) (< 7,0,C>, ?) (< 7,0,E>,   ?) (< 7,0,F>,  ?) (< 7,0,H>,      ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>,  ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>,  V) (< 7,0,W>,  W) (< 7,0,X>, X) (< 7,0,Y>, Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) 
          (< 8,0,A>, ?) (< 8,0,B>,     ?) (< 8,0,C>, ?) (< 8,0,E>,   ?) (< 8,0,F>,  ?) (< 8,0,H>,      ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>,  ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>, Y) (< 8,0,Z>, Z) (< 8,0,E1>,  ?) 
          (< 9,0,A>, ?) (< 9,0,B>,     ?) (< 9,0,C>, ?) (< 9,0,E>,   ?) (< 9,0,F>,  ?) (< 9,0,H>,      ?) (< 9,0,I>,  ?) (< 9,0,M>,      ?) (< 9,0,Q>,  ?) (< 9,0,R>, ?) (< 9,0,S>,  ?) (< 9,0,V>, 17) (< 9,0,W>,  ?) (< 9,0,X>, 8) (< 9,0,Y>, 0) (< 9,0,Z>, ?) (< 9,0,E1>,  ?) 
          (<10,0,A>, ?) (<10,0,B>,     ?) (<10,0,C>, ?) (<10,0,E>,   ?) (<10,0,F>,  ?) (<10,0,H>,      ?) (<10,0,I>,  ?) (<10,0,M>,      ?) (<10,0,Q>,  ?) (<10,0,R>, ?) (<10,0,S>,  ?) (<10,0,V>, 17) (<10,0,W>,  ?) (<10,0,X>, ?) (<10,0,Y>, 7) (<10,0,Z>, 0) (<10,0,E1>,  ?) 
          (<11,0,A>, ?) (<11,0,B>,     ?) (<11,0,C>, ?) (<11,0,E>,   ?) (<11,0,F>,  ?) (<11,0,H>,      ?) (<11,0,I>,  ?) (<11,0,M>,      ?) (<11,0,Q>,  ?) (<11,0,R>, ?) (<11,0,S>,  ?) (<11,0,V>, 17) (<11,0,W>,  ?) (<11,0,X>, ?) (<11,0,Y>, 7) (<11,0,Z>, 4) (<11,0,E1>,  ?) 
          (<12,0,A>, ?) (<12,0,B>,     ?) (<12,0,C>, ?) (<12,0,E>,   ?) (<12,0,F>,  ?) (<12,0,H>,      ?) (<12,0,I>,  ?) (<12,0,M>,      ?) (<12,0,Q>,  ?) (<12,0,R>, ?) (<12,0,S>,  ?) (<12,0,V>, 17) (<12,0,W>,  ?) (<12,0,X>, ?) (<12,0,Y>, 7) (<12,0,Z>, 4) (<12,0,E1>,  ?) 
          (<13,0,A>, ?) (<13,0,B>,     ?) (<13,0,C>, ?) (<13,0,E>,   ?) (<13,0,F>,  ?) (<13,0,H>,      ?) (<13,0,I>,  ?) (<13,0,M>,      ?) (<13,0,Q>,  ?) (<13,0,R>, ?) (<13,0,S>,  ?) (<13,0,V>, 17) (<13,0,W>,  ?) (<13,0,X>, ?) (<13,0,Y>, 7) (<13,0,Z>, ?) (<13,0,E1>,  ?) 
          (<15,0,A>, ?) (<15,0,B>,     ?) (<15,0,C>, ?) (<15,0,E>,   ?) (<15,0,F>,  ?) (<15,0,H>,      ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>,  ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>, Y) (<15,0,Z>, Z) (<15,0,E1>,  ?) 
          (<16,0,A>, ?) (<16,0,B>,     ?) (<16,0,C>, ?) (<16,0,E>,   ?) (<16,0,F>,  ?) (<16,0,H>,      ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>,  ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>,  2) (<16,0,X>, X) (<16,0,Y>, Y) (<16,0,Z>, Z) (<16,0,E1>,  ?) 
          (<17,0,A>, ?) (<17,0,B>,     ?) (<17,0,C>, ?) (<17,0,E>,   ?) (<17,0,F>,  ?) (<17,0,H>,      ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>,  ?) (<17,0,R>, ?) (<17,0,S>,  0) (<17,0,V>,  V) (<17,0,W>,  W) (<17,0,X>, X) (<17,0,Y>, Y) (<17,0,Z>, Z) (<17,0,E1>, E1) 
          (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>,   ?) (<18,0,F>,  ?) (<18,0,H>,      ?) (<18,0,I>, 99) (<18,0,M>,     33) (<18,0,Q>,  Q) (<18,0,R>, R) (<18,0,S>,  S) (<18,0,V>,  V) (<18,0,W>,  W) (<18,0,X>, X) (<18,0,Y>, Y) (<18,0,Z>, Z) (<18,0,E1>, E1) 
          (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>,   ?) (<19,0,F>,  ?) (<19,0,H>,      ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>,  S) (<19,0,V>,  V) (<19,0,W>,  W) (<19,0,X>, X) (<19,0,Y>, Y) (<19,0,Z>, Z) (<19,0,E1>, E1) 
          (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>,   ?) (<20,0,F>, 49) (<20,0,H>,     50) (<20,0,I>,  I) (<20,0,M>,      M) (<20,0,Q>,  Q) (<20,0,R>, R) (<20,0,S>,  S) (<20,0,V>,  V) (<20,0,W>,  W) (<20,0,X>, X) (<20,0,Y>, Y) (<20,0,Z>, Z) (<20,0,E1>, E1) 
          (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>,   ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>,  0) (<21,0,M>,      M) (<21,0,Q>,  Q) (<21,0,R>, R) (<21,0,S>,  S) (<21,0,V>,  V) (<21,0,W>,  W) (<21,0,X>, X) (<21,0,Y>, Y) (<21,0,Z>, Z) (<21,0,E1>, E1) 
          (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>,  0) (<22,0,H>,      H) (<22,0,I>,  I) (<22,0,M>,      M) (<22,0,Q>,  Q) (<22,0,R>, R) (<22,0,S>,  S) (<22,0,V>,  V) (<22,0,W>,  W) (<22,0,X>, X) (<22,0,Y>, Y) (<22,0,Z>, Z) (<22,0,E1>, E1) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 11: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   -> f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   True         (1,1)  
          1.  f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)  [149 >= E]   (?,1)  
          2.  f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1)       [49 >= F]    (?,1)  
          3.  f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1)   [49 >= H]    (?,1)  
          4.  f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1)       [99 >= I]    (?,1)  
          5.  f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1)   [31 >= M]    (?,1)  
          6.  f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) [Q >= 0]     (100,1)
          7.  f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1)   [49 >= S]    (?,1)  
          8.  f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1)   [V >= W]     (101,1)
          9.  f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1)       [8 >= X]     (?,1)  
          10. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1)       [7 >= Y]     (?,1)  
          11. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1)   [3 >= Z]     (?,1)  
          12. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1)   [Z >= 4]     (?,1)  
          13. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1)   [Y >= 8]     (?,1)  
          15. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1)       [W >= 1 + V] (101,1)
          16. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B)       [S >= 50]    (?,1)  
          17. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1)       [0 >= 1 + Q] (100,1)
          18. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1)   [M >= 32]    (?,1)  
          19. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1)     [I >= 100]   (?,1)  
          20. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   [H >= 50]    (?,1)  
          21. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1)       [F >= 50]    (101,1)
          22. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1)       [E >= 150]   (1,1)  
        Signature:
          {(f0,17)
          ;(f422,17)
          ;(f437,17)
          ;(f441,17)
          ;(f455,17)
          ;(f461,17)
          ;(f485,17)
          ;(f501,17)
          ;(f526,17)
          ;(f540,17)
          ;(f543,17)
          ;(f546,17)
          ;(f584,17)}
        Flow Graph:
          [0->{1},1->{1,22},2->{3},3->{3,20},4->{5},5->{5,18},6->{6,17},7->{7,16},8->{8,15},9->{10},10->{11},11->{11
          ,12},12->{10,13},13->{9},15->{9},16->{8},17->{7},18->{4,19},19->{6},20->{2,21},21->{4},22->{2}]
        Sizebounds:
          (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>,   0) (< 0,0,F>,  F) (< 0,0,H>,      H) (< 0,0,I>,  I) (< 0,0,M>,      M) (< 0,0,Q>,  Q) (< 0,0,R>, R) (< 0,0,S>,  S) (< 0,0,V>,  V) (< 0,0,W>,  W) (< 0,0,X>, X) (< 0,0,Y>, Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) 
          (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>,  F) (< 1,0,H>,      H) (< 1,0,I>,  I) (< 1,0,M>,      M) (< 1,0,Q>,  Q) (< 1,0,R>, R) (< 1,0,S>,  S) (< 1,0,V>,  V) (< 1,0,W>,  W) (< 1,0,X>, X) (< 1,0,Y>, Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) 
          (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>,   ?) (< 2,0,F>, 49) (< 2,0,H>,      0) (< 2,0,I>,  I) (< 2,0,M>,      M) (< 2,0,Q>,  Q) (< 2,0,R>, R) (< 2,0,S>,  S) (< 2,0,V>,  V) (< 2,0,W>,  W) (< 2,0,X>, X) (< 2,0,Y>, Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) 
          (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>,   ?) (< 3,0,F>, 49) (< 3,0,H>,     50) (< 3,0,I>,  I) (< 3,0,M>,      M) (< 3,0,Q>,  Q) (< 3,0,R>, R) (< 3,0,S>,  S) (< 3,0,V>,  V) (< 3,0,W>,  W) (< 3,0,X>, X) (< 3,0,Y>, Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) 
          (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>,   ?) (< 4,0,F>,  ?) (< 4,0,H>,      ?) (< 4,0,I>, 99) (< 4,0,M>,      0) (< 4,0,Q>,  Q) (< 4,0,R>, R) (< 4,0,S>,  S) (< 4,0,V>,  V) (< 4,0,W>,  W) (< 4,0,X>, X) (< 4,0,Y>, Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) 
          (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>,   ?) (< 5,0,F>,  ?) (< 5,0,H>,      ?) (< 5,0,I>, 99) (< 5,0,M>,     33) (< 5,0,Q>,  Q) (< 5,0,R>, R) (< 5,0,S>,  S) (< 5,0,V>,  V) (< 5,0,W>,  W) (< 5,0,X>, X) (< 5,0,Y>, Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) 
          (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>,   ?) (< 6,0,F>,  ?) (< 6,0,H>,      ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>,  ?) (< 6,0,R>, ?) (< 6,0,S>,  S) (< 6,0,V>,  V) (< 6,0,W>,  W) (< 6,0,X>, X) (< 6,0,Y>, Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) 
          (< 7,0,A>, ?) (< 7,0,B>,     ?) (< 7,0,C>, ?) (< 7,0,E>,   ?) (< 7,0,F>,  ?) (< 7,0,H>,      ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>,  ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>,  V) (< 7,0,W>,  W) (< 7,0,X>, X) (< 7,0,Y>, Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) 
          (< 8,0,A>, ?) (< 8,0,B>,     ?) (< 8,0,C>, ?) (< 8,0,E>,   ?) (< 8,0,F>,  ?) (< 8,0,H>,      ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>,  ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>, Y) (< 8,0,Z>, Z) (< 8,0,E1>,  ?) 
          (< 9,0,A>, ?) (< 9,0,B>,     ?) (< 9,0,C>, ?) (< 9,0,E>,   ?) (< 9,0,F>,  ?) (< 9,0,H>,      ?) (< 9,0,I>,  ?) (< 9,0,M>,      ?) (< 9,0,Q>,  ?) (< 9,0,R>, ?) (< 9,0,S>,  ?) (< 9,0,V>, 17) (< 9,0,W>,  ?) (< 9,0,X>, 8) (< 9,0,Y>, 0) (< 9,0,Z>, ?) (< 9,0,E1>,  ?) 
          (<10,0,A>, ?) (<10,0,B>,     ?) (<10,0,C>, ?) (<10,0,E>,   ?) (<10,0,F>,  ?) (<10,0,H>,      ?) (<10,0,I>,  ?) (<10,0,M>,      ?) (<10,0,Q>,  ?) (<10,0,R>, ?) (<10,0,S>,  ?) (<10,0,V>, 17) (<10,0,W>,  ?) (<10,0,X>, ?) (<10,0,Y>, 7) (<10,0,Z>, 0) (<10,0,E1>,  ?) 
          (<11,0,A>, ?) (<11,0,B>,     ?) (<11,0,C>, ?) (<11,0,E>,   ?) (<11,0,F>,  ?) (<11,0,H>,      ?) (<11,0,I>,  ?) (<11,0,M>,      ?) (<11,0,Q>,  ?) (<11,0,R>, ?) (<11,0,S>,  ?) (<11,0,V>, 17) (<11,0,W>,  ?) (<11,0,X>, ?) (<11,0,Y>, 7) (<11,0,Z>, 4) (<11,0,E1>,  ?) 
          (<12,0,A>, ?) (<12,0,B>,     ?) (<12,0,C>, ?) (<12,0,E>,   ?) (<12,0,F>,  ?) (<12,0,H>,      ?) (<12,0,I>,  ?) (<12,0,M>,      ?) (<12,0,Q>,  ?) (<12,0,R>, ?) (<12,0,S>,  ?) (<12,0,V>, 17) (<12,0,W>,  ?) (<12,0,X>, ?) (<12,0,Y>, 7) (<12,0,Z>, 4) (<12,0,E1>,  ?) 
          (<13,0,A>, ?) (<13,0,B>,     ?) (<13,0,C>, ?) (<13,0,E>,   ?) (<13,0,F>,  ?) (<13,0,H>,      ?) (<13,0,I>,  ?) (<13,0,M>,      ?) (<13,0,Q>,  ?) (<13,0,R>, ?) (<13,0,S>,  ?) (<13,0,V>, 17) (<13,0,W>,  ?) (<13,0,X>, ?) (<13,0,Y>, 7) (<13,0,Z>, ?) (<13,0,E1>,  ?) 
          (<15,0,A>, ?) (<15,0,B>,     ?) (<15,0,C>, ?) (<15,0,E>,   ?) (<15,0,F>,  ?) (<15,0,H>,      ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>,  ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>, Y) (<15,0,Z>, Z) (<15,0,E1>,  ?) 
          (<16,0,A>, ?) (<16,0,B>,     ?) (<16,0,C>, ?) (<16,0,E>,   ?) (<16,0,F>,  ?) (<16,0,H>,      ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>,  ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>,  2) (<16,0,X>, X) (<16,0,Y>, Y) (<16,0,Z>, Z) (<16,0,E1>,  ?) 
          (<17,0,A>, ?) (<17,0,B>,     ?) (<17,0,C>, ?) (<17,0,E>,   ?) (<17,0,F>,  ?) (<17,0,H>,      ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>,  ?) (<17,0,R>, ?) (<17,0,S>,  0) (<17,0,V>,  V) (<17,0,W>,  W) (<17,0,X>, X) (<17,0,Y>, Y) (<17,0,Z>, Z) (<17,0,E1>, E1) 
          (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>,   ?) (<18,0,F>,  ?) (<18,0,H>,      ?) (<18,0,I>, 99) (<18,0,M>,     33) (<18,0,Q>,  Q) (<18,0,R>, R) (<18,0,S>,  S) (<18,0,V>,  V) (<18,0,W>,  W) (<18,0,X>, X) (<18,0,Y>, Y) (<18,0,Z>, Z) (<18,0,E1>, E1) 
          (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>,   ?) (<19,0,F>,  ?) (<19,0,H>,      ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>,  S) (<19,0,V>,  V) (<19,0,W>,  W) (<19,0,X>, X) (<19,0,Y>, Y) (<19,0,Z>, Z) (<19,0,E1>, E1) 
          (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>,   ?) (<20,0,F>, 49) (<20,0,H>,     50) (<20,0,I>,  I) (<20,0,M>,      M) (<20,0,Q>,  Q) (<20,0,R>, R) (<20,0,S>,  S) (<20,0,V>,  V) (<20,0,W>,  W) (<20,0,X>, X) (<20,0,Y>, Y) (<20,0,Z>, Z) (<20,0,E1>, E1) 
          (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>,   ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>,  0) (<21,0,M>,      M) (<21,0,Q>,  Q) (<21,0,R>, R) (<21,0,S>,  S) (<21,0,V>,  V) (<21,0,W>,  W) (<21,0,X>, X) (<21,0,Y>, Y) (<21,0,Z>, Z) (<21,0,E1>, E1) 
          (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>,  0) (<22,0,H>,      H) (<22,0,I>,  I) (<22,0,M>,      M) (<22,0,Q>,  Q) (<22,0,R>, R) (<22,0,S>,  S) (<22,0,V>,  V) (<22,0,W>,  W) (<22,0,X>, X) (<22,0,Y>, Y) (<22,0,Z>, Z) (<22,0,E1>, E1) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
            p(f0) = 100                 
          p(f422) = 100                 
          p(f437) = 100                 
          p(f441) = 100                 
          p(f455) = 100 + -1*x7         
          p(f461) = 98 + -1*x7          
          p(f485) = 100 + -1*x7         
          p(f501) = 100 + -1*x7         
          p(f526) = 117 + -1*x7 + -1*x12
          p(f540) = 117 + -1*x7 + -1*x12
          p(f543) = 117 + -1*x7 + -1*x12
          p(f546) = 117 + -1*x7 + -1*x12
        
        The following rules are strictly oriented:
                                         [99 >= I] ==>                                         
          f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 100 + -1*I                              
                                                     > 98 + -1*I                               
                                                     = f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1)
        
        
        The following rules are weakly oriented:
                                              True ==>                                               
            f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 100                                           
                                                    >= 100                                           
                                                     = f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)  
        
                                        [149 >= E] ==>                                               
          f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 100                                           
                                                    >= 100                                           
                                                     = f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) 
        
                                         [49 >= F] ==>                                               
          f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 100                                           
                                                    >= 100                                           
                                                     = f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1)      
        
                                         [49 >= H] ==>                                               
          f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 100                                           
                                                    >= 100                                           
                                                     = f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1)  
        
                                         [31 >= M] ==>                                               
          f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 98 + -1*I                                     
                                                    >= 98 + -1*I                                     
                                                     = f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1)  
        
                                          [Q >= 0] ==>                                               
          f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 100 + -1*I                                    
                                                    >= 100 + -1*I                                    
                                                     = f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1)
        
                                         [49 >= S] ==>                                               
          f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 100 + -1*I                                    
                                                    >= 100 + -1*I                                    
                                                     = f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1)  
        
                                          [V >= W] ==>                                               
          f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 117 + -1*I + -1*V                             
                                                    >= 117 + -1*I + -1*V                             
                                                     = f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1)  
        
                                          [8 >= X] ==>                                               
          f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 117 + -1*I + -1*V                             
                                                    >= 117 + -1*I + -1*V                             
                                                     = f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1)      
        
                                          [7 >= Y] ==>                                               
          f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 117 + -1*I + -1*V                             
                                                    >= 117 + -1*I + -1*V                             
                                                     = f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1)      
        
                                          [3 >= Z] ==>                                               
          f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 117 + -1*I + -1*V                             
                                                    >= 117 + -1*I + -1*V                             
                                                     = f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1)  
        
                                          [Z >= 4] ==>                                               
          f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 117 + -1*I + -1*V                             
                                                    >= 117 + -1*I + -1*V                             
                                                     = f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1)  
        
                                          [Y >= 8] ==>                                               
          f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 117 + -1*I + -1*V                             
                                                    >= 117 + -1*I + -1*V                             
                                                     = f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1)  
        
                                      [W >= 1 + V] ==>                                               
          f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 117 + -1*I + -1*V                             
                                                    >= 117 + -1*I + -1*V                             
                                                     = f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1)      
        
                                         [S >= 50] ==>                                               
          f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 100 + -1*I                                    
                                                    >= 100 + -1*I                                    
                                                     = f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B)      
        
                                      [0 >= 1 + Q] ==>                                               
          f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 100 + -1*I                                    
                                                    >= 100 + -1*I                                    
                                                     = f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1)      
        
                                         [M >= 32] ==>                                               
          f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 98 + -1*I                                     
                                                    >= 98 + -1*I                                     
                                                     = f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1)  
        
                                        [I >= 100] ==>                                               
          f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 100 + -1*I                                    
                                                    >= 100 + -1*I                                    
                                                     = f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1)    
        
                                         [H >= 50] ==>                                               
          f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 100                                           
                                                    >= 100                                           
                                                     = f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)  
        
                                         [F >= 50] ==>                                               
          f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 100                                           
                                                    >= 100                                           
                                                     = f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1)      
        
                                        [E >= 150] ==>                                               
          f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 100                                           
                                                    >= 100                                           
                                                     = f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1)      
        
        
* Step 12: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   -> f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   True         (1,1)  
          1.  f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)  [149 >= E]   (?,1)  
          2.  f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1)       [49 >= F]    (?,1)  
          3.  f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1)   [49 >= H]    (?,1)  
          4.  f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1)       [99 >= I]    (100,1)
          5.  f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1)   [31 >= M]    (?,1)  
          6.  f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) [Q >= 0]     (100,1)
          7.  f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1)   [49 >= S]    (?,1)  
          8.  f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1)   [V >= W]     (101,1)
          9.  f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1)       [8 >= X]     (?,1)  
          10. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1)       [7 >= Y]     (?,1)  
          11. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1)   [3 >= Z]     (?,1)  
          12. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1)   [Z >= 4]     (?,1)  
          13. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1)   [Y >= 8]     (?,1)  
          15. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1)       [W >= 1 + V] (101,1)
          16. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B)       [S >= 50]    (?,1)  
          17. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1)       [0 >= 1 + Q] (100,1)
          18. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1)   [M >= 32]    (?,1)  
          19. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1)     [I >= 100]   (?,1)  
          20. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   [H >= 50]    (?,1)  
          21. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1)       [F >= 50]    (101,1)
          22. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1)       [E >= 150]   (1,1)  
        Signature:
          {(f0,17)
          ;(f422,17)
          ;(f437,17)
          ;(f441,17)
          ;(f455,17)
          ;(f461,17)
          ;(f485,17)
          ;(f501,17)
          ;(f526,17)
          ;(f540,17)
          ;(f543,17)
          ;(f546,17)
          ;(f584,17)}
        Flow Graph:
          [0->{1},1->{1,22},2->{3},3->{3,20},4->{5},5->{5,18},6->{6,17},7->{7,16},8->{8,15},9->{10},10->{11},11->{11
          ,12},12->{10,13},13->{9},15->{9},16->{8},17->{7},18->{4,19},19->{6},20->{2,21},21->{4},22->{2}]
        Sizebounds:
          (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>,   0) (< 0,0,F>,  F) (< 0,0,H>,      H) (< 0,0,I>,  I) (< 0,0,M>,      M) (< 0,0,Q>,  Q) (< 0,0,R>, R) (< 0,0,S>,  S) (< 0,0,V>,  V) (< 0,0,W>,  W) (< 0,0,X>, X) (< 0,0,Y>, Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) 
          (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>,  F) (< 1,0,H>,      H) (< 1,0,I>,  I) (< 1,0,M>,      M) (< 1,0,Q>,  Q) (< 1,0,R>, R) (< 1,0,S>,  S) (< 1,0,V>,  V) (< 1,0,W>,  W) (< 1,0,X>, X) (< 1,0,Y>, Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) 
          (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>,   ?) (< 2,0,F>, 49) (< 2,0,H>,      0) (< 2,0,I>,  I) (< 2,0,M>,      M) (< 2,0,Q>,  Q) (< 2,0,R>, R) (< 2,0,S>,  S) (< 2,0,V>,  V) (< 2,0,W>,  W) (< 2,0,X>, X) (< 2,0,Y>, Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) 
          (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>,   ?) (< 3,0,F>, 49) (< 3,0,H>,     50) (< 3,0,I>,  I) (< 3,0,M>,      M) (< 3,0,Q>,  Q) (< 3,0,R>, R) (< 3,0,S>,  S) (< 3,0,V>,  V) (< 3,0,W>,  W) (< 3,0,X>, X) (< 3,0,Y>, Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) 
          (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>,   ?) (< 4,0,F>,  ?) (< 4,0,H>,      ?) (< 4,0,I>, 99) (< 4,0,M>,      0) (< 4,0,Q>,  Q) (< 4,0,R>, R) (< 4,0,S>,  S) (< 4,0,V>,  V) (< 4,0,W>,  W) (< 4,0,X>, X) (< 4,0,Y>, Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) 
          (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>,   ?) (< 5,0,F>,  ?) (< 5,0,H>,      ?) (< 5,0,I>, 99) (< 5,0,M>,     33) (< 5,0,Q>,  Q) (< 5,0,R>, R) (< 5,0,S>,  S) (< 5,0,V>,  V) (< 5,0,W>,  W) (< 5,0,X>, X) (< 5,0,Y>, Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) 
          (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>,   ?) (< 6,0,F>,  ?) (< 6,0,H>,      ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>,  ?) (< 6,0,R>, ?) (< 6,0,S>,  S) (< 6,0,V>,  V) (< 6,0,W>,  W) (< 6,0,X>, X) (< 6,0,Y>, Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) 
          (< 7,0,A>, ?) (< 7,0,B>,     ?) (< 7,0,C>, ?) (< 7,0,E>,   ?) (< 7,0,F>,  ?) (< 7,0,H>,      ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>,  ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>,  V) (< 7,0,W>,  W) (< 7,0,X>, X) (< 7,0,Y>, Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) 
          (< 8,0,A>, ?) (< 8,0,B>,     ?) (< 8,0,C>, ?) (< 8,0,E>,   ?) (< 8,0,F>,  ?) (< 8,0,H>,      ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>,  ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>, Y) (< 8,0,Z>, Z) (< 8,0,E1>,  ?) 
          (< 9,0,A>, ?) (< 9,0,B>,     ?) (< 9,0,C>, ?) (< 9,0,E>,   ?) (< 9,0,F>,  ?) (< 9,0,H>,      ?) (< 9,0,I>,  ?) (< 9,0,M>,      ?) (< 9,0,Q>,  ?) (< 9,0,R>, ?) (< 9,0,S>,  ?) (< 9,0,V>, 17) (< 9,0,W>,  ?) (< 9,0,X>, 8) (< 9,0,Y>, 0) (< 9,0,Z>, ?) (< 9,0,E1>,  ?) 
          (<10,0,A>, ?) (<10,0,B>,     ?) (<10,0,C>, ?) (<10,0,E>,   ?) (<10,0,F>,  ?) (<10,0,H>,      ?) (<10,0,I>,  ?) (<10,0,M>,      ?) (<10,0,Q>,  ?) (<10,0,R>, ?) (<10,0,S>,  ?) (<10,0,V>, 17) (<10,0,W>,  ?) (<10,0,X>, ?) (<10,0,Y>, 7) (<10,0,Z>, 0) (<10,0,E1>,  ?) 
          (<11,0,A>, ?) (<11,0,B>,     ?) (<11,0,C>, ?) (<11,0,E>,   ?) (<11,0,F>,  ?) (<11,0,H>,      ?) (<11,0,I>,  ?) (<11,0,M>,      ?) (<11,0,Q>,  ?) (<11,0,R>, ?) (<11,0,S>,  ?) (<11,0,V>, 17) (<11,0,W>,  ?) (<11,0,X>, ?) (<11,0,Y>, 7) (<11,0,Z>, 4) (<11,0,E1>,  ?) 
          (<12,0,A>, ?) (<12,0,B>,     ?) (<12,0,C>, ?) (<12,0,E>,   ?) (<12,0,F>,  ?) (<12,0,H>,      ?) (<12,0,I>,  ?) (<12,0,M>,      ?) (<12,0,Q>,  ?) (<12,0,R>, ?) (<12,0,S>,  ?) (<12,0,V>, 17) (<12,0,W>,  ?) (<12,0,X>, ?) (<12,0,Y>, 7) (<12,0,Z>, 4) (<12,0,E1>,  ?) 
          (<13,0,A>, ?) (<13,0,B>,     ?) (<13,0,C>, ?) (<13,0,E>,   ?) (<13,0,F>,  ?) (<13,0,H>,      ?) (<13,0,I>,  ?) (<13,0,M>,      ?) (<13,0,Q>,  ?) (<13,0,R>, ?) (<13,0,S>,  ?) (<13,0,V>, 17) (<13,0,W>,  ?) (<13,0,X>, ?) (<13,0,Y>, 7) (<13,0,Z>, ?) (<13,0,E1>,  ?) 
          (<15,0,A>, ?) (<15,0,B>,     ?) (<15,0,C>, ?) (<15,0,E>,   ?) (<15,0,F>,  ?) (<15,0,H>,      ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>,  ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>, Y) (<15,0,Z>, Z) (<15,0,E1>,  ?) 
          (<16,0,A>, ?) (<16,0,B>,     ?) (<16,0,C>, ?) (<16,0,E>,   ?) (<16,0,F>,  ?) (<16,0,H>,      ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>,  ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>,  2) (<16,0,X>, X) (<16,0,Y>, Y) (<16,0,Z>, Z) (<16,0,E1>,  ?) 
          (<17,0,A>, ?) (<17,0,B>,     ?) (<17,0,C>, ?) (<17,0,E>,   ?) (<17,0,F>,  ?) (<17,0,H>,      ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>,  ?) (<17,0,R>, ?) (<17,0,S>,  0) (<17,0,V>,  V) (<17,0,W>,  W) (<17,0,X>, X) (<17,0,Y>, Y) (<17,0,Z>, Z) (<17,0,E1>, E1) 
          (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>,   ?) (<18,0,F>,  ?) (<18,0,H>,      ?) (<18,0,I>, 99) (<18,0,M>,     33) (<18,0,Q>,  Q) (<18,0,R>, R) (<18,0,S>,  S) (<18,0,V>,  V) (<18,0,W>,  W) (<18,0,X>, X) (<18,0,Y>, Y) (<18,0,Z>, Z) (<18,0,E1>, E1) 
          (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>,   ?) (<19,0,F>,  ?) (<19,0,H>,      ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>,  S) (<19,0,V>,  V) (<19,0,W>,  W) (<19,0,X>, X) (<19,0,Y>, Y) (<19,0,Z>, Z) (<19,0,E1>, E1) 
          (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>,   ?) (<20,0,F>, 49) (<20,0,H>,     50) (<20,0,I>,  I) (<20,0,M>,      M) (<20,0,Q>,  Q) (<20,0,R>, R) (<20,0,S>,  S) (<20,0,V>,  V) (<20,0,W>,  W) (<20,0,X>, X) (<20,0,Y>, Y) (<20,0,Z>, Z) (<20,0,E1>, E1) 
          (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>,   ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>,  0) (<21,0,M>,      M) (<21,0,Q>,  Q) (<21,0,R>, R) (<21,0,S>,  S) (<21,0,V>,  V) (<21,0,W>,  W) (<21,0,X>, X) (<21,0,Y>, Y) (<21,0,Z>, Z) (<21,0,E1>, E1) 
          (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>,  0) (<22,0,H>,      H) (<22,0,I>,  I) (<22,0,M>,      M) (<22,0,Q>,  Q) (<22,0,R>, R) (<22,0,S>,  S) (<22,0,V>,  V) (<22,0,W>,  W) (<22,0,X>, X) (<22,0,Y>, Y) (<22,0,Z>, Z) (<22,0,E1>, E1) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
            p(f0) = 50               
          p(f422) = 50               
          p(f437) = 50               
          p(f441) = 50               
          p(f455) = 1                
          p(f461) = 1                
          p(f485) = 100 + -1*x7      
          p(f501) = 100 + -1*x7      
          p(f526) = 1 + -1*x7 + 5*x12
          p(f540) = 1 + -1*x7 + 5*x12
          p(f543) = 1 + -1*x7 + 5*x12
          p(f546) = 1 + -1*x7 + 5*x12
        
        The following rules are strictly oriented:
                                        [I >= 100] ==>                                           
          f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 1                                         
                                                     > 100 + -1*I                                
                                                     = f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1)
        
        
        The following rules are weakly oriented:
                                              True ==>                                               
            f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 50                                            
                                                    >= 50                                            
                                                     = f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)  
        
                                        [149 >= E] ==>                                               
          f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 50                                            
                                                    >= 50                                            
                                                     = f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) 
        
                                         [49 >= F] ==>                                               
          f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 50                                            
                                                    >= 50                                            
                                                     = f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1)      
        
                                         [49 >= H] ==>                                               
          f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 50                                            
                                                    >= 50                                            
                                                     = f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1)  
        
                                         [99 >= I] ==>                                               
          f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 1                                             
                                                    >= 1                                             
                                                     = f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1)      
        
                                         [31 >= M] ==>                                               
          f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 1                                             
                                                    >= 1                                             
                                                     = f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1)  
        
                                          [Q >= 0] ==>                                               
          f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 100 + -1*I                                    
                                                    >= 100 + -1*I                                    
                                                     = f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1)
        
                                         [49 >= S] ==>                                               
          f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 100 + -1*I                                    
                                                    >= 100 + -1*I                                    
                                                     = f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1)  
        
                                          [V >= W] ==>                                               
          f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 1 + -1*I + 5*V                                
                                                    >= 1 + -1*I + 5*V                                
                                                     = f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1)  
        
                                          [8 >= X] ==>                                               
          f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 1 + -1*I + 5*V                                
                                                    >= 1 + -1*I + 5*V                                
                                                     = f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1)      
        
                                          [7 >= Y] ==>                                               
          f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 1 + -1*I + 5*V                                
                                                    >= 1 + -1*I + 5*V                                
                                                     = f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1)      
        
                                          [3 >= Z] ==>                                               
          f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 1 + -1*I + 5*V                                
                                                    >= 1 + -1*I + 5*V                                
                                                     = f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1)  
        
                                          [Z >= 4] ==>                                               
          f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 1 + -1*I + 5*V                                
                                                    >= 1 + -1*I + 5*V                                
                                                     = f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1)  
        
                                          [Y >= 8] ==>                                               
          f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 1 + -1*I + 5*V                                
                                                    >= 1 + -1*I + 5*V                                
                                                     = f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1)  
        
                                      [W >= 1 + V] ==>                                               
          f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 1 + -1*I + 5*V                                
                                                    >= 1 + -1*I + 5*V                                
                                                     = f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1)      
        
                                         [S >= 50] ==>                                               
          f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 100 + -1*I                                    
                                                    >= 86 + -1*I                                     
                                                     = f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B)      
        
                                      [0 >= 1 + Q] ==>                                               
          f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 100 + -1*I                                    
                                                    >= 100 + -1*I                                    
                                                     = f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1)      
        
                                         [M >= 32] ==>                                               
          f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 1                                             
                                                    >= 1                                             
                                                     = f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1)  
        
                                         [H >= 50] ==>                                               
          f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 50                                            
                                                    >= 50                                            
                                                     = f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)  
        
                                         [F >= 50] ==>                                               
          f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 50                                            
                                                    >= 1                                             
                                                     = f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1)      
        
                                        [E >= 150] ==>                                               
          f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 50                                            
                                                    >= 50                                            
                                                     = f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1)      
        
        
* Step 13: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   -> f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   True         (1,1)  
          1.  f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)  [149 >= E]   (?,1)  
          2.  f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1)       [49 >= F]    (?,1)  
          3.  f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1)   [49 >= H]    (?,1)  
          4.  f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1)       [99 >= I]    (100,1)
          5.  f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1)   [31 >= M]    (?,1)  
          6.  f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) [Q >= 0]     (100,1)
          7.  f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1)   [49 >= S]    (?,1)  
          8.  f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1)   [V >= W]     (101,1)
          9.  f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1)       [8 >= X]     (?,1)  
          10. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1)       [7 >= Y]     (?,1)  
          11. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1)   [3 >= Z]     (?,1)  
          12. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1)   [Z >= 4]     (?,1)  
          13. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1)   [Y >= 8]     (?,1)  
          15. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1)       [W >= 1 + V] (101,1)
          16. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B)       [S >= 50]    (?,1)  
          17. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1)       [0 >= 1 + Q] (100,1)
          18. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1)   [M >= 32]    (?,1)  
          19. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1)     [I >= 100]   (50,1) 
          20. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   [H >= 50]    (?,1)  
          21. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1)       [F >= 50]    (101,1)
          22. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1)       [E >= 150]   (1,1)  
        Signature:
          {(f0,17)
          ;(f422,17)
          ;(f437,17)
          ;(f441,17)
          ;(f455,17)
          ;(f461,17)
          ;(f485,17)
          ;(f501,17)
          ;(f526,17)
          ;(f540,17)
          ;(f543,17)
          ;(f546,17)
          ;(f584,17)}
        Flow Graph:
          [0->{1},1->{1,22},2->{3},3->{3,20},4->{5},5->{5,18},6->{6,17},7->{7,16},8->{8,15},9->{10},10->{11},11->{11
          ,12},12->{10,13},13->{9},15->{9},16->{8},17->{7},18->{4,19},19->{6},20->{2,21},21->{4},22->{2}]
        Sizebounds:
          (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>,   0) (< 0,0,F>,  F) (< 0,0,H>,      H) (< 0,0,I>,  I) (< 0,0,M>,      M) (< 0,0,Q>,  Q) (< 0,0,R>, R) (< 0,0,S>,  S) (< 0,0,V>,  V) (< 0,0,W>,  W) (< 0,0,X>, X) (< 0,0,Y>, Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) 
          (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>,  F) (< 1,0,H>,      H) (< 1,0,I>,  I) (< 1,0,M>,      M) (< 1,0,Q>,  Q) (< 1,0,R>, R) (< 1,0,S>,  S) (< 1,0,V>,  V) (< 1,0,W>,  W) (< 1,0,X>, X) (< 1,0,Y>, Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) 
          (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>,   ?) (< 2,0,F>, 49) (< 2,0,H>,      0) (< 2,0,I>,  I) (< 2,0,M>,      M) (< 2,0,Q>,  Q) (< 2,0,R>, R) (< 2,0,S>,  S) (< 2,0,V>,  V) (< 2,0,W>,  W) (< 2,0,X>, X) (< 2,0,Y>, Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) 
          (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>,   ?) (< 3,0,F>, 49) (< 3,0,H>,     50) (< 3,0,I>,  I) (< 3,0,M>,      M) (< 3,0,Q>,  Q) (< 3,0,R>, R) (< 3,0,S>,  S) (< 3,0,V>,  V) (< 3,0,W>,  W) (< 3,0,X>, X) (< 3,0,Y>, Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) 
          (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>,   ?) (< 4,0,F>,  ?) (< 4,0,H>,      ?) (< 4,0,I>, 99) (< 4,0,M>,      0) (< 4,0,Q>,  Q) (< 4,0,R>, R) (< 4,0,S>,  S) (< 4,0,V>,  V) (< 4,0,W>,  W) (< 4,0,X>, X) (< 4,0,Y>, Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) 
          (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>,   ?) (< 5,0,F>,  ?) (< 5,0,H>,      ?) (< 5,0,I>, 99) (< 5,0,M>,     33) (< 5,0,Q>,  Q) (< 5,0,R>, R) (< 5,0,S>,  S) (< 5,0,V>,  V) (< 5,0,W>,  W) (< 5,0,X>, X) (< 5,0,Y>, Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) 
          (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>,   ?) (< 6,0,F>,  ?) (< 6,0,H>,      ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>,  ?) (< 6,0,R>, ?) (< 6,0,S>,  S) (< 6,0,V>,  V) (< 6,0,W>,  W) (< 6,0,X>, X) (< 6,0,Y>, Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) 
          (< 7,0,A>, ?) (< 7,0,B>,     ?) (< 7,0,C>, ?) (< 7,0,E>,   ?) (< 7,0,F>,  ?) (< 7,0,H>,      ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>,  ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>,  V) (< 7,0,W>,  W) (< 7,0,X>, X) (< 7,0,Y>, Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) 
          (< 8,0,A>, ?) (< 8,0,B>,     ?) (< 8,0,C>, ?) (< 8,0,E>,   ?) (< 8,0,F>,  ?) (< 8,0,H>,      ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>,  ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>, Y) (< 8,0,Z>, Z) (< 8,0,E1>,  ?) 
          (< 9,0,A>, ?) (< 9,0,B>,     ?) (< 9,0,C>, ?) (< 9,0,E>,   ?) (< 9,0,F>,  ?) (< 9,0,H>,      ?) (< 9,0,I>,  ?) (< 9,0,M>,      ?) (< 9,0,Q>,  ?) (< 9,0,R>, ?) (< 9,0,S>,  ?) (< 9,0,V>, 17) (< 9,0,W>,  ?) (< 9,0,X>, 8) (< 9,0,Y>, 0) (< 9,0,Z>, ?) (< 9,0,E1>,  ?) 
          (<10,0,A>, ?) (<10,0,B>,     ?) (<10,0,C>, ?) (<10,0,E>,   ?) (<10,0,F>,  ?) (<10,0,H>,      ?) (<10,0,I>,  ?) (<10,0,M>,      ?) (<10,0,Q>,  ?) (<10,0,R>, ?) (<10,0,S>,  ?) (<10,0,V>, 17) (<10,0,W>,  ?) (<10,0,X>, ?) (<10,0,Y>, 7) (<10,0,Z>, 0) (<10,0,E1>,  ?) 
          (<11,0,A>, ?) (<11,0,B>,     ?) (<11,0,C>, ?) (<11,0,E>,   ?) (<11,0,F>,  ?) (<11,0,H>,      ?) (<11,0,I>,  ?) (<11,0,M>,      ?) (<11,0,Q>,  ?) (<11,0,R>, ?) (<11,0,S>,  ?) (<11,0,V>, 17) (<11,0,W>,  ?) (<11,0,X>, ?) (<11,0,Y>, 7) (<11,0,Z>, 4) (<11,0,E1>,  ?) 
          (<12,0,A>, ?) (<12,0,B>,     ?) (<12,0,C>, ?) (<12,0,E>,   ?) (<12,0,F>,  ?) (<12,0,H>,      ?) (<12,0,I>,  ?) (<12,0,M>,      ?) (<12,0,Q>,  ?) (<12,0,R>, ?) (<12,0,S>,  ?) (<12,0,V>, 17) (<12,0,W>,  ?) (<12,0,X>, ?) (<12,0,Y>, 7) (<12,0,Z>, 4) (<12,0,E1>,  ?) 
          (<13,0,A>, ?) (<13,0,B>,     ?) (<13,0,C>, ?) (<13,0,E>,   ?) (<13,0,F>,  ?) (<13,0,H>,      ?) (<13,0,I>,  ?) (<13,0,M>,      ?) (<13,0,Q>,  ?) (<13,0,R>, ?) (<13,0,S>,  ?) (<13,0,V>, 17) (<13,0,W>,  ?) (<13,0,X>, ?) (<13,0,Y>, 7) (<13,0,Z>, ?) (<13,0,E1>,  ?) 
          (<15,0,A>, ?) (<15,0,B>,     ?) (<15,0,C>, ?) (<15,0,E>,   ?) (<15,0,F>,  ?) (<15,0,H>,      ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>,  ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>, Y) (<15,0,Z>, Z) (<15,0,E1>,  ?) 
          (<16,0,A>, ?) (<16,0,B>,     ?) (<16,0,C>, ?) (<16,0,E>,   ?) (<16,0,F>,  ?) (<16,0,H>,      ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>,  ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>,  2) (<16,0,X>, X) (<16,0,Y>, Y) (<16,0,Z>, Z) (<16,0,E1>,  ?) 
          (<17,0,A>, ?) (<17,0,B>,     ?) (<17,0,C>, ?) (<17,0,E>,   ?) (<17,0,F>,  ?) (<17,0,H>,      ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>,  ?) (<17,0,R>, ?) (<17,0,S>,  0) (<17,0,V>,  V) (<17,0,W>,  W) (<17,0,X>, X) (<17,0,Y>, Y) (<17,0,Z>, Z) (<17,0,E1>, E1) 
          (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>,   ?) (<18,0,F>,  ?) (<18,0,H>,      ?) (<18,0,I>, 99) (<18,0,M>,     33) (<18,0,Q>,  Q) (<18,0,R>, R) (<18,0,S>,  S) (<18,0,V>,  V) (<18,0,W>,  W) (<18,0,X>, X) (<18,0,Y>, Y) (<18,0,Z>, Z) (<18,0,E1>, E1) 
          (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>,   ?) (<19,0,F>,  ?) (<19,0,H>,      ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>,  S) (<19,0,V>,  V) (<19,0,W>,  W) (<19,0,X>, X) (<19,0,Y>, Y) (<19,0,Z>, Z) (<19,0,E1>, E1) 
          (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>,   ?) (<20,0,F>, 49) (<20,0,H>,     50) (<20,0,I>,  I) (<20,0,M>,      M) (<20,0,Q>,  Q) (<20,0,R>, R) (<20,0,S>,  S) (<20,0,V>,  V) (<20,0,W>,  W) (<20,0,X>, X) (<20,0,Y>, Y) (<20,0,Z>, Z) (<20,0,E1>, E1) 
          (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>,   ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>,  0) (<21,0,M>,      M) (<21,0,Q>,  Q) (<21,0,R>, R) (<21,0,S>,  S) (<21,0,V>,  V) (<21,0,W>,  W) (<21,0,X>, X) (<21,0,Y>, Y) (<21,0,Z>, Z) (<21,0,E1>, E1) 
          (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>,  0) (<22,0,H>,      H) (<22,0,I>,  I) (<22,0,M>,      M) (<22,0,Q>,  Q) (<22,0,R>, R) (<22,0,S>,  S) (<22,0,V>,  V) (<22,0,W>,  W) (<22,0,X>, X) (<22,0,Y>, Y) (<22,0,Z>, Z) (<22,0,E1>, E1) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
            p(f0) = 150        
          p(f422) = 150 + -1*x4
          p(f437) = 1 + -1*x4  
          p(f441) = 1 + -1*x4  
          p(f455) = 1 + -1*x4  
          p(f461) = 1 + -1*x4  
          p(f485) = -1*x4      
          p(f501) = -1*x4      
          p(f526) = -1*x4      
          p(f540) = -1*x4      
          p(f543) = -1*x4      
          p(f546) = -1*x4      
        
        The following rules are strictly oriented:
                                        [149 >= E] ==>                                              
          f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 150 + -1*E                                   
                                                     > 149 + -1*E                                   
                                                     = f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)
        
        
        The following rules are weakly oriented:
                                              True ==>                                               
            f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 150                                           
                                                    >= 150                                           
                                                     = f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)  
        
                                         [49 >= F] ==>                                               
          f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 1 + -1*E                                      
                                                    >= 1 + -1*E                                      
                                                     = f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1)      
        
                                         [49 >= H] ==>                                               
          f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 1 + -1*E                                      
                                                    >= 1 + -1*E                                      
                                                     = f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1)  
        
                                         [99 >= I] ==>                                               
          f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 1 + -1*E                                      
                                                    >= 1 + -1*E                                      
                                                     = f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1)      
        
                                         [31 >= M] ==>                                               
          f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 1 + -1*E                                      
                                                    >= 1 + -1*E                                      
                                                     = f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1)  
        
                                          [Q >= 0] ==>                                               
          f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = -1*E                                          
                                                    >= -1*E                                          
                                                     = f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1)
        
                                         [49 >= S] ==>                                               
          f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = -1*E                                          
                                                    >= -1*E                                          
                                                     = f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1)  
        
                                          [V >= W] ==>                                               
          f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = -1*E                                          
                                                    >= -1*E                                          
                                                     = f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1)  
        
                                          [8 >= X] ==>                                               
          f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = -1*E                                          
                                                    >= -1*E                                          
                                                     = f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1)      
        
                                          [7 >= Y] ==>                                               
          f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = -1*E                                          
                                                    >= -1*E                                          
                                                     = f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1)      
        
                                          [3 >= Z] ==>                                               
          f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = -1*E                                          
                                                    >= -1*E                                          
                                                     = f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1)  
        
                                          [Z >= 4] ==>                                               
          f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = -1*E                                          
                                                    >= -1*E                                          
                                                     = f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1)  
        
                                          [Y >= 8] ==>                                               
          f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = -1*E                                          
                                                    >= -1*E                                          
                                                     = f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1)  
        
                                      [W >= 1 + V] ==>                                               
          f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = -1*E                                          
                                                    >= -1*E                                          
                                                     = f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1)      
        
                                         [S >= 50] ==>                                               
          f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = -1*E                                          
                                                    >= -1*E                                          
                                                     = f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B)      
        
                                      [0 >= 1 + Q] ==>                                               
          f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = -1*E                                          
                                                    >= -1*E                                          
                                                     = f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1)      
        
                                         [M >= 32] ==>                                               
          f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 1 + -1*E                                      
                                                    >= 1 + -1*E                                      
                                                     = f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1)  
        
                                        [I >= 100] ==>                                               
          f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 1 + -1*E                                      
                                                    >= -1*E                                          
                                                     = f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1)    
        
                                         [H >= 50] ==>                                               
          f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 1 + -1*E                                      
                                                    >= 1 + -1*E                                      
                                                     = f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)  
        
                                         [F >= 50] ==>                                               
          f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 1 + -1*E                                      
                                                    >= 1 + -1*E                                      
                                                     = f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1)      
        
                                        [E >= 150] ==>                                               
          f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 150 + -1*E                                    
                                                    >= 1 + -1*E                                      
                                                     = f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1)      
        
        
* Step 14: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   -> f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   True         (1,1)  
          1.  f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)  [149 >= E]   (150,1)
          2.  f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1)       [49 >= F]    (?,1)  
          3.  f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1)   [49 >= H]    (?,1)  
          4.  f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1)       [99 >= I]    (100,1)
          5.  f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1)   [31 >= M]    (?,1)  
          6.  f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) [Q >= 0]     (100,1)
          7.  f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1)   [49 >= S]    (?,1)  
          8.  f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1)   [V >= W]     (101,1)
          9.  f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1)       [8 >= X]     (?,1)  
          10. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1)       [7 >= Y]     (?,1)  
          11. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1)   [3 >= Z]     (?,1)  
          12. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1)   [Z >= 4]     (?,1)  
          13. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1)   [Y >= 8]     (?,1)  
          15. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1)       [W >= 1 + V] (101,1)
          16. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B)       [S >= 50]    (?,1)  
          17. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1)       [0 >= 1 + Q] (100,1)
          18. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1)   [M >= 32]    (?,1)  
          19. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1)     [I >= 100]   (50,1) 
          20. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   [H >= 50]    (?,1)  
          21. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1)       [F >= 50]    (101,1)
          22. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1)       [E >= 150]   (1,1)  
        Signature:
          {(f0,17)
          ;(f422,17)
          ;(f437,17)
          ;(f441,17)
          ;(f455,17)
          ;(f461,17)
          ;(f485,17)
          ;(f501,17)
          ;(f526,17)
          ;(f540,17)
          ;(f543,17)
          ;(f546,17)
          ;(f584,17)}
        Flow Graph:
          [0->{1},1->{1,22},2->{3},3->{3,20},4->{5},5->{5,18},6->{6,17},7->{7,16},8->{8,15},9->{10},10->{11},11->{11
          ,12},12->{10,13},13->{9},15->{9},16->{8},17->{7},18->{4,19},19->{6},20->{2,21},21->{4},22->{2}]
        Sizebounds:
          (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>,   0) (< 0,0,F>,  F) (< 0,0,H>,      H) (< 0,0,I>,  I) (< 0,0,M>,      M) (< 0,0,Q>,  Q) (< 0,0,R>, R) (< 0,0,S>,  S) (< 0,0,V>,  V) (< 0,0,W>,  W) (< 0,0,X>, X) (< 0,0,Y>, Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) 
          (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>,  F) (< 1,0,H>,      H) (< 1,0,I>,  I) (< 1,0,M>,      M) (< 1,0,Q>,  Q) (< 1,0,R>, R) (< 1,0,S>,  S) (< 1,0,V>,  V) (< 1,0,W>,  W) (< 1,0,X>, X) (< 1,0,Y>, Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) 
          (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>,   ?) (< 2,0,F>, 49) (< 2,0,H>,      0) (< 2,0,I>,  I) (< 2,0,M>,      M) (< 2,0,Q>,  Q) (< 2,0,R>, R) (< 2,0,S>,  S) (< 2,0,V>,  V) (< 2,0,W>,  W) (< 2,0,X>, X) (< 2,0,Y>, Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) 
          (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>,   ?) (< 3,0,F>, 49) (< 3,0,H>,     50) (< 3,0,I>,  I) (< 3,0,M>,      M) (< 3,0,Q>,  Q) (< 3,0,R>, R) (< 3,0,S>,  S) (< 3,0,V>,  V) (< 3,0,W>,  W) (< 3,0,X>, X) (< 3,0,Y>, Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) 
          (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>,   ?) (< 4,0,F>,  ?) (< 4,0,H>,      ?) (< 4,0,I>, 99) (< 4,0,M>,      0) (< 4,0,Q>,  Q) (< 4,0,R>, R) (< 4,0,S>,  S) (< 4,0,V>,  V) (< 4,0,W>,  W) (< 4,0,X>, X) (< 4,0,Y>, Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) 
          (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>,   ?) (< 5,0,F>,  ?) (< 5,0,H>,      ?) (< 5,0,I>, 99) (< 5,0,M>,     33) (< 5,0,Q>,  Q) (< 5,0,R>, R) (< 5,0,S>,  S) (< 5,0,V>,  V) (< 5,0,W>,  W) (< 5,0,X>, X) (< 5,0,Y>, Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) 
          (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>,   ?) (< 6,0,F>,  ?) (< 6,0,H>,      ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>,  ?) (< 6,0,R>, ?) (< 6,0,S>,  S) (< 6,0,V>,  V) (< 6,0,W>,  W) (< 6,0,X>, X) (< 6,0,Y>, Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) 
          (< 7,0,A>, ?) (< 7,0,B>,     ?) (< 7,0,C>, ?) (< 7,0,E>,   ?) (< 7,0,F>,  ?) (< 7,0,H>,      ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>,  ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>,  V) (< 7,0,W>,  W) (< 7,0,X>, X) (< 7,0,Y>, Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) 
          (< 8,0,A>, ?) (< 8,0,B>,     ?) (< 8,0,C>, ?) (< 8,0,E>,   ?) (< 8,0,F>,  ?) (< 8,0,H>,      ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>,  ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>, Y) (< 8,0,Z>, Z) (< 8,0,E1>,  ?) 
          (< 9,0,A>, ?) (< 9,0,B>,     ?) (< 9,0,C>, ?) (< 9,0,E>,   ?) (< 9,0,F>,  ?) (< 9,0,H>,      ?) (< 9,0,I>,  ?) (< 9,0,M>,      ?) (< 9,0,Q>,  ?) (< 9,0,R>, ?) (< 9,0,S>,  ?) (< 9,0,V>, 17) (< 9,0,W>,  ?) (< 9,0,X>, 8) (< 9,0,Y>, 0) (< 9,0,Z>, ?) (< 9,0,E1>,  ?) 
          (<10,0,A>, ?) (<10,0,B>,     ?) (<10,0,C>, ?) (<10,0,E>,   ?) (<10,0,F>,  ?) (<10,0,H>,      ?) (<10,0,I>,  ?) (<10,0,M>,      ?) (<10,0,Q>,  ?) (<10,0,R>, ?) (<10,0,S>,  ?) (<10,0,V>, 17) (<10,0,W>,  ?) (<10,0,X>, ?) (<10,0,Y>, 7) (<10,0,Z>, 0) (<10,0,E1>,  ?) 
          (<11,0,A>, ?) (<11,0,B>,     ?) (<11,0,C>, ?) (<11,0,E>,   ?) (<11,0,F>,  ?) (<11,0,H>,      ?) (<11,0,I>,  ?) (<11,0,M>,      ?) (<11,0,Q>,  ?) (<11,0,R>, ?) (<11,0,S>,  ?) (<11,0,V>, 17) (<11,0,W>,  ?) (<11,0,X>, ?) (<11,0,Y>, 7) (<11,0,Z>, 4) (<11,0,E1>,  ?) 
          (<12,0,A>, ?) (<12,0,B>,     ?) (<12,0,C>, ?) (<12,0,E>,   ?) (<12,0,F>,  ?) (<12,0,H>,      ?) (<12,0,I>,  ?) (<12,0,M>,      ?) (<12,0,Q>,  ?) (<12,0,R>, ?) (<12,0,S>,  ?) (<12,0,V>, 17) (<12,0,W>,  ?) (<12,0,X>, ?) (<12,0,Y>, 7) (<12,0,Z>, 4) (<12,0,E1>,  ?) 
          (<13,0,A>, ?) (<13,0,B>,     ?) (<13,0,C>, ?) (<13,0,E>,   ?) (<13,0,F>,  ?) (<13,0,H>,      ?) (<13,0,I>,  ?) (<13,0,M>,      ?) (<13,0,Q>,  ?) (<13,0,R>, ?) (<13,0,S>,  ?) (<13,0,V>, 17) (<13,0,W>,  ?) (<13,0,X>, ?) (<13,0,Y>, 7) (<13,0,Z>, ?) (<13,0,E1>,  ?) 
          (<15,0,A>, ?) (<15,0,B>,     ?) (<15,0,C>, ?) (<15,0,E>,   ?) (<15,0,F>,  ?) (<15,0,H>,      ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>,  ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>, Y) (<15,0,Z>, Z) (<15,0,E1>,  ?) 
          (<16,0,A>, ?) (<16,0,B>,     ?) (<16,0,C>, ?) (<16,0,E>,   ?) (<16,0,F>,  ?) (<16,0,H>,      ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>,  ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>,  2) (<16,0,X>, X) (<16,0,Y>, Y) (<16,0,Z>, Z) (<16,0,E1>,  ?) 
          (<17,0,A>, ?) (<17,0,B>,     ?) (<17,0,C>, ?) (<17,0,E>,   ?) (<17,0,F>,  ?) (<17,0,H>,      ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>,  ?) (<17,0,R>, ?) (<17,0,S>,  0) (<17,0,V>,  V) (<17,0,W>,  W) (<17,0,X>, X) (<17,0,Y>, Y) (<17,0,Z>, Z) (<17,0,E1>, E1) 
          (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>,   ?) (<18,0,F>,  ?) (<18,0,H>,      ?) (<18,0,I>, 99) (<18,0,M>,     33) (<18,0,Q>,  Q) (<18,0,R>, R) (<18,0,S>,  S) (<18,0,V>,  V) (<18,0,W>,  W) (<18,0,X>, X) (<18,0,Y>, Y) (<18,0,Z>, Z) (<18,0,E1>, E1) 
          (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>,   ?) (<19,0,F>,  ?) (<19,0,H>,      ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>,  S) (<19,0,V>,  V) (<19,0,W>,  W) (<19,0,X>, X) (<19,0,Y>, Y) (<19,0,Z>, Z) (<19,0,E1>, E1) 
          (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>,   ?) (<20,0,F>, 49) (<20,0,H>,     50) (<20,0,I>,  I) (<20,0,M>,      M) (<20,0,Q>,  Q) (<20,0,R>, R) (<20,0,S>,  S) (<20,0,V>,  V) (<20,0,W>,  W) (<20,0,X>, X) (<20,0,Y>, Y) (<20,0,Z>, Z) (<20,0,E1>, E1) 
          (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>,   ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>,  0) (<21,0,M>,      M) (<21,0,Q>,  Q) (<21,0,R>, R) (<21,0,S>,  S) (<21,0,V>,  V) (<21,0,W>,  W) (<21,0,X>, X) (<21,0,Y>, Y) (<21,0,Z>, Z) (<21,0,E1>, E1) 
          (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>,  0) (<22,0,H>,      H) (<22,0,I>,  I) (<22,0,M>,      M) (<22,0,Q>,  Q) (<22,0,R>, R) (<22,0,S>,  S) (<22,0,V>,  V) (<22,0,W>,  W) (<22,0,X>, X) (<22,0,Y>, Y) (<22,0,Z>, Z) (<22,0,E1>, E1) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
            p(f0) = 50        
          p(f422) = 50        
          p(f437) = 50 + -1*x5
          p(f441) = 49 + -1*x5
          p(f455) = 1 + -1*x5 
          p(f461) = 1 + -1*x5 
          p(f485) = -1*x5     
          p(f501) = -1*x5     
          p(f526) = -1*x5     
          p(f540) = -1*x5     
          p(f543) = -1*x5     
          p(f546) = -1*x5     
        
        The following rules are strictly oriented:
                                         [49 >= F] ==>                                         
          f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 50 + -1*F                               
                                                     > 49 + -1*F                               
                                                     = f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1)
        
        
        The following rules are weakly oriented:
                                              True ==>                                               
            f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 50                                            
                                                    >= 50                                            
                                                     = f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)  
        
                                        [149 >= E] ==>                                               
          f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 50                                            
                                                    >= 50                                            
                                                     = f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) 
        
                                         [49 >= H] ==>                                               
          f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 49 + -1*F                                     
                                                    >= 49 + -1*F                                     
                                                     = f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1)  
        
                                         [99 >= I] ==>                                               
          f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 1 + -1*F                                      
                                                    >= 1 + -1*F                                      
                                                     = f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1)      
        
                                         [31 >= M] ==>                                               
          f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 1 + -1*F                                      
                                                    >= 1 + -1*F                                      
                                                     = f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1)  
        
                                          [Q >= 0] ==>                                               
          f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = -1*F                                          
                                                    >= -1*F                                          
                                                     = f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1)
        
                                         [49 >= S] ==>                                               
          f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = -1*F                                          
                                                    >= -1*F                                          
                                                     = f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1)  
        
                                          [V >= W] ==>                                               
          f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = -1*F                                          
                                                    >= -1*F                                          
                                                     = f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1)  
        
                                          [8 >= X] ==>                                               
          f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = -1*F                                          
                                                    >= -1*F                                          
                                                     = f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1)      
        
                                          [7 >= Y] ==>                                               
          f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = -1*F                                          
                                                    >= -1*F                                          
                                                     = f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1)      
        
                                          [3 >= Z] ==>                                               
          f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = -1*F                                          
                                                    >= -1*F                                          
                                                     = f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1)  
        
                                          [Z >= 4] ==>                                               
          f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = -1*F                                          
                                                    >= -1*F                                          
                                                     = f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1)  
        
                                          [Y >= 8] ==>                                               
          f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = -1*F                                          
                                                    >= -1*F                                          
                                                     = f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1)  
        
                                      [W >= 1 + V] ==>                                               
          f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = -1*F                                          
                                                    >= -1*F                                          
                                                     = f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1)      
        
                                         [S >= 50] ==>                                               
          f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = -1*F                                          
                                                    >= -1*F                                          
                                                     = f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B)      
        
                                      [0 >= 1 + Q] ==>                                               
          f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = -1*F                                          
                                                    >= -1*F                                          
                                                     = f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1)      
        
                                         [M >= 32] ==>                                               
          f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 1 + -1*F                                      
                                                    >= 1 + -1*F                                      
                                                     = f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1)  
        
                                        [I >= 100] ==>                                               
          f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 1 + -1*F                                      
                                                    >= -1*F                                          
                                                     = f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1)    
        
                                         [H >= 50] ==>                                               
          f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 49 + -1*F                                     
                                                    >= 49 + -1*F                                     
                                                     = f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)  
        
                                         [F >= 50] ==>                                               
          f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 50 + -1*F                                     
                                                    >= 1 + -1*F                                      
                                                     = f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1)      
        
                                        [E >= 150] ==>                                               
          f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 50                                            
                                                    >= 50                                            
                                                     = f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1)      
        
        
* Step 15: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   -> f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   True         (1,1)  
          1.  f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)  [149 >= E]   (150,1)
          2.  f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1)       [49 >= F]    (50,1) 
          3.  f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1)   [49 >= H]    (?,1)  
          4.  f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1)       [99 >= I]    (100,1)
          5.  f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1)   [31 >= M]    (?,1)  
          6.  f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) [Q >= 0]     (100,1)
          7.  f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1)   [49 >= S]    (?,1)  
          8.  f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1)   [V >= W]     (101,1)
          9.  f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1)       [8 >= X]     (?,1)  
          10. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1)       [7 >= Y]     (?,1)  
          11. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1)   [3 >= Z]     (?,1)  
          12. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1)   [Z >= 4]     (?,1)  
          13. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1)   [Y >= 8]     (?,1)  
          15. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1)       [W >= 1 + V] (101,1)
          16. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B)       [S >= 50]    (?,1)  
          17. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1)       [0 >= 1 + Q] (100,1)
          18. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1)   [M >= 32]    (?,1)  
          19. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1)     [I >= 100]   (50,1) 
          20. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   [H >= 50]    (?,1)  
          21. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1)       [F >= 50]    (101,1)
          22. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1)       [E >= 150]   (1,1)  
        Signature:
          {(f0,17)
          ;(f422,17)
          ;(f437,17)
          ;(f441,17)
          ;(f455,17)
          ;(f461,17)
          ;(f485,17)
          ;(f501,17)
          ;(f526,17)
          ;(f540,17)
          ;(f543,17)
          ;(f546,17)
          ;(f584,17)}
        Flow Graph:
          [0->{1},1->{1,22},2->{3},3->{3,20},4->{5},5->{5,18},6->{6,17},7->{7,16},8->{8,15},9->{10},10->{11},11->{11
          ,12},12->{10,13},13->{9},15->{9},16->{8},17->{7},18->{4,19},19->{6},20->{2,21},21->{4},22->{2}]
        Sizebounds:
          (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>,   0) (< 0,0,F>,  F) (< 0,0,H>,      H) (< 0,0,I>,  I) (< 0,0,M>,      M) (< 0,0,Q>,  Q) (< 0,0,R>, R) (< 0,0,S>,  S) (< 0,0,V>,  V) (< 0,0,W>,  W) (< 0,0,X>, X) (< 0,0,Y>, Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) 
          (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>,  F) (< 1,0,H>,      H) (< 1,0,I>,  I) (< 1,0,M>,      M) (< 1,0,Q>,  Q) (< 1,0,R>, R) (< 1,0,S>,  S) (< 1,0,V>,  V) (< 1,0,W>,  W) (< 1,0,X>, X) (< 1,0,Y>, Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) 
          (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>,   ?) (< 2,0,F>, 49) (< 2,0,H>,      0) (< 2,0,I>,  I) (< 2,0,M>,      M) (< 2,0,Q>,  Q) (< 2,0,R>, R) (< 2,0,S>,  S) (< 2,0,V>,  V) (< 2,0,W>,  W) (< 2,0,X>, X) (< 2,0,Y>, Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) 
          (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>,   ?) (< 3,0,F>, 49) (< 3,0,H>,     50) (< 3,0,I>,  I) (< 3,0,M>,      M) (< 3,0,Q>,  Q) (< 3,0,R>, R) (< 3,0,S>,  S) (< 3,0,V>,  V) (< 3,0,W>,  W) (< 3,0,X>, X) (< 3,0,Y>, Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) 
          (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>,   ?) (< 4,0,F>,  ?) (< 4,0,H>,      ?) (< 4,0,I>, 99) (< 4,0,M>,      0) (< 4,0,Q>,  Q) (< 4,0,R>, R) (< 4,0,S>,  S) (< 4,0,V>,  V) (< 4,0,W>,  W) (< 4,0,X>, X) (< 4,0,Y>, Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) 
          (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>,   ?) (< 5,0,F>,  ?) (< 5,0,H>,      ?) (< 5,0,I>, 99) (< 5,0,M>,     33) (< 5,0,Q>,  Q) (< 5,0,R>, R) (< 5,0,S>,  S) (< 5,0,V>,  V) (< 5,0,W>,  W) (< 5,0,X>, X) (< 5,0,Y>, Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) 
          (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>,   ?) (< 6,0,F>,  ?) (< 6,0,H>,      ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>,  ?) (< 6,0,R>, ?) (< 6,0,S>,  S) (< 6,0,V>,  V) (< 6,0,W>,  W) (< 6,0,X>, X) (< 6,0,Y>, Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) 
          (< 7,0,A>, ?) (< 7,0,B>,     ?) (< 7,0,C>, ?) (< 7,0,E>,   ?) (< 7,0,F>,  ?) (< 7,0,H>,      ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>,  ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>,  V) (< 7,0,W>,  W) (< 7,0,X>, X) (< 7,0,Y>, Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) 
          (< 8,0,A>, ?) (< 8,0,B>,     ?) (< 8,0,C>, ?) (< 8,0,E>,   ?) (< 8,0,F>,  ?) (< 8,0,H>,      ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>,  ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>, Y) (< 8,0,Z>, Z) (< 8,0,E1>,  ?) 
          (< 9,0,A>, ?) (< 9,0,B>,     ?) (< 9,0,C>, ?) (< 9,0,E>,   ?) (< 9,0,F>,  ?) (< 9,0,H>,      ?) (< 9,0,I>,  ?) (< 9,0,M>,      ?) (< 9,0,Q>,  ?) (< 9,0,R>, ?) (< 9,0,S>,  ?) (< 9,0,V>, 17) (< 9,0,W>,  ?) (< 9,0,X>, 8) (< 9,0,Y>, 0) (< 9,0,Z>, ?) (< 9,0,E1>,  ?) 
          (<10,0,A>, ?) (<10,0,B>,     ?) (<10,0,C>, ?) (<10,0,E>,   ?) (<10,0,F>,  ?) (<10,0,H>,      ?) (<10,0,I>,  ?) (<10,0,M>,      ?) (<10,0,Q>,  ?) (<10,0,R>, ?) (<10,0,S>,  ?) (<10,0,V>, 17) (<10,0,W>,  ?) (<10,0,X>, ?) (<10,0,Y>, 7) (<10,0,Z>, 0) (<10,0,E1>,  ?) 
          (<11,0,A>, ?) (<11,0,B>,     ?) (<11,0,C>, ?) (<11,0,E>,   ?) (<11,0,F>,  ?) (<11,0,H>,      ?) (<11,0,I>,  ?) (<11,0,M>,      ?) (<11,0,Q>,  ?) (<11,0,R>, ?) (<11,0,S>,  ?) (<11,0,V>, 17) (<11,0,W>,  ?) (<11,0,X>, ?) (<11,0,Y>, 7) (<11,0,Z>, 4) (<11,0,E1>,  ?) 
          (<12,0,A>, ?) (<12,0,B>,     ?) (<12,0,C>, ?) (<12,0,E>,   ?) (<12,0,F>,  ?) (<12,0,H>,      ?) (<12,0,I>,  ?) (<12,0,M>,      ?) (<12,0,Q>,  ?) (<12,0,R>, ?) (<12,0,S>,  ?) (<12,0,V>, 17) (<12,0,W>,  ?) (<12,0,X>, ?) (<12,0,Y>, 7) (<12,0,Z>, 4) (<12,0,E1>,  ?) 
          (<13,0,A>, ?) (<13,0,B>,     ?) (<13,0,C>, ?) (<13,0,E>,   ?) (<13,0,F>,  ?) (<13,0,H>,      ?) (<13,0,I>,  ?) (<13,0,M>,      ?) (<13,0,Q>,  ?) (<13,0,R>, ?) (<13,0,S>,  ?) (<13,0,V>, 17) (<13,0,W>,  ?) (<13,0,X>, ?) (<13,0,Y>, 7) (<13,0,Z>, ?) (<13,0,E1>,  ?) 
          (<15,0,A>, ?) (<15,0,B>,     ?) (<15,0,C>, ?) (<15,0,E>,   ?) (<15,0,F>,  ?) (<15,0,H>,      ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>,  ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>, Y) (<15,0,Z>, Z) (<15,0,E1>,  ?) 
          (<16,0,A>, ?) (<16,0,B>,     ?) (<16,0,C>, ?) (<16,0,E>,   ?) (<16,0,F>,  ?) (<16,0,H>,      ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>,  ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>,  2) (<16,0,X>, X) (<16,0,Y>, Y) (<16,0,Z>, Z) (<16,0,E1>,  ?) 
          (<17,0,A>, ?) (<17,0,B>,     ?) (<17,0,C>, ?) (<17,0,E>,   ?) (<17,0,F>,  ?) (<17,0,H>,      ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>,  ?) (<17,0,R>, ?) (<17,0,S>,  0) (<17,0,V>,  V) (<17,0,W>,  W) (<17,0,X>, X) (<17,0,Y>, Y) (<17,0,Z>, Z) (<17,0,E1>, E1) 
          (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>,   ?) (<18,0,F>,  ?) (<18,0,H>,      ?) (<18,0,I>, 99) (<18,0,M>,     33) (<18,0,Q>,  Q) (<18,0,R>, R) (<18,0,S>,  S) (<18,0,V>,  V) (<18,0,W>,  W) (<18,0,X>, X) (<18,0,Y>, Y) (<18,0,Z>, Z) (<18,0,E1>, E1) 
          (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>,   ?) (<19,0,F>,  ?) (<19,0,H>,      ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>,  S) (<19,0,V>,  V) (<19,0,W>,  W) (<19,0,X>, X) (<19,0,Y>, Y) (<19,0,Z>, Z) (<19,0,E1>, E1) 
          (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>,   ?) (<20,0,F>, 49) (<20,0,H>,     50) (<20,0,I>,  I) (<20,0,M>,      M) (<20,0,Q>,  Q) (<20,0,R>, R) (<20,0,S>,  S) (<20,0,V>,  V) (<20,0,W>,  W) (<20,0,X>, X) (<20,0,Y>, Y) (<20,0,Z>, Z) (<20,0,E1>, E1) 
          (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>,   ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>,  0) (<21,0,M>,      M) (<21,0,Q>,  Q) (<21,0,R>, R) (<21,0,S>,  S) (<21,0,V>,  V) (<21,0,W>,  W) (<21,0,X>, X) (<21,0,Y>, Y) (<21,0,Z>, Z) (<21,0,E1>, E1) 
          (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>,  0) (<22,0,H>,      H) (<22,0,I>,  I) (<22,0,M>,      M) (<22,0,Q>,  Q) (<22,0,R>, R) (<22,0,S>,  S) (<22,0,V>,  V) (<22,0,W>,  W) (<22,0,X>, X) (<22,0,Y>, Y) (<22,0,Z>, Z) (<22,0,E1>, E1) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
            p(f0) = 50   
          p(f422) = 50   
          p(f437) = 50   
          p(f441) = 50   
          p(f455) = 50   
          p(f461) = 50   
          p(f485) = 50   
          p(f501) = 50   
          p(f526) = 2*x12
          p(f540) = 2*x12
          p(f543) = 2*x12
          p(f546) = 2*x12
        
        The following rules are strictly oriented:
                                         [S >= 50] ==>                                         
          f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 50                                      
                                                     > 34                                      
                                                     = f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B)
        
        
        The following rules are weakly oriented:
                                              True ==>                                               
            f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 50                                            
                                                    >= 50                                            
                                                     = f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)  
        
                                        [149 >= E] ==>                                               
          f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 50                                            
                                                    >= 50                                            
                                                     = f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) 
        
                                         [49 >= F] ==>                                               
          f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 50                                            
                                                    >= 50                                            
                                                     = f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1)      
        
                                         [49 >= H] ==>                                               
          f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 50                                            
                                                    >= 50                                            
                                                     = f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1)  
        
                                         [99 >= I] ==>                                               
          f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 50                                            
                                                    >= 50                                            
                                                     = f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1)      
        
                                         [31 >= M] ==>                                               
          f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 50                                            
                                                    >= 50                                            
                                                     = f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1)  
        
                                          [Q >= 0] ==>                                               
          f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 50                                            
                                                    >= 50                                            
                                                     = f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1)
        
                                         [49 >= S] ==>                                               
          f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 50                                            
                                                    >= 50                                            
                                                     = f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1)  
        
                                          [V >= W] ==>                                               
          f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 2*V                                           
                                                    >= 2*V                                           
                                                     = f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1)  
        
                                          [8 >= X] ==>                                               
          f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 2*V                                           
                                                    >= 2*V                                           
                                                     = f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1)      
        
                                          [7 >= Y] ==>                                               
          f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 2*V                                           
                                                    >= 2*V                                           
                                                     = f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1)      
        
                                          [3 >= Z] ==>                                               
          f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 2*V                                           
                                                    >= 2*V                                           
                                                     = f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1)  
        
                                          [Z >= 4] ==>                                               
          f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 2*V                                           
                                                    >= 2*V                                           
                                                     = f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1)  
        
                                          [Y >= 8] ==>                                               
          f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 2*V                                           
                                                    >= 2*V                                           
                                                     = f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1)  
        
                                      [W >= 1 + V] ==>                                               
          f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 2*V                                           
                                                    >= 2*V                                           
                                                     = f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1)      
        
                                      [0 >= 1 + Q] ==>                                               
          f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 50                                            
                                                    >= 50                                            
                                                     = f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1)      
        
                                         [M >= 32] ==>                                               
          f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 50                                            
                                                    >= 50                                            
                                                     = f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1)  
        
                                        [I >= 100] ==>                                               
          f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 50                                            
                                                    >= 50                                            
                                                     = f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1)    
        
                                         [H >= 50] ==>                                               
          f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 50                                            
                                                    >= 50                                            
                                                     = f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)  
        
                                         [F >= 50] ==>                                               
          f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 50                                            
                                                    >= 50                                            
                                                     = f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1)      
        
                                        [E >= 150] ==>                                               
          f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 50                                            
                                                    >= 50                                            
                                                     = f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1)      
        
        
* Step 16: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   -> f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   True         (1,1)  
          1.  f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)  [149 >= E]   (150,1)
          2.  f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1)       [49 >= F]    (50,1) 
          3.  f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1)   [49 >= H]    (?,1)  
          4.  f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1)       [99 >= I]    (100,1)
          5.  f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1)   [31 >= M]    (?,1)  
          6.  f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) [Q >= 0]     (100,1)
          7.  f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1)   [49 >= S]    (?,1)  
          8.  f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1)   [V >= W]     (101,1)
          9.  f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1)       [8 >= X]     (?,1)  
          10. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1)       [7 >= Y]     (?,1)  
          11. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1)   [3 >= Z]     (?,1)  
          12. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1)   [Z >= 4]     (?,1)  
          13. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1)   [Y >= 8]     (?,1)  
          15. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1)       [W >= 1 + V] (101,1)
          16. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B)       [S >= 50]    (50,1) 
          17. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1)       [0 >= 1 + Q] (100,1)
          18. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1)   [M >= 32]    (?,1)  
          19. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1)     [I >= 100]   (50,1) 
          20. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   [H >= 50]    (?,1)  
          21. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1)       [F >= 50]    (101,1)
          22. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1)       [E >= 150]   (1,1)  
        Signature:
          {(f0,17)
          ;(f422,17)
          ;(f437,17)
          ;(f441,17)
          ;(f455,17)
          ;(f461,17)
          ;(f485,17)
          ;(f501,17)
          ;(f526,17)
          ;(f540,17)
          ;(f543,17)
          ;(f546,17)
          ;(f584,17)}
        Flow Graph:
          [0->{1},1->{1,22},2->{3},3->{3,20},4->{5},5->{5,18},6->{6,17},7->{7,16},8->{8,15},9->{10},10->{11},11->{11
          ,12},12->{10,13},13->{9},15->{9},16->{8},17->{7},18->{4,19},19->{6},20->{2,21},21->{4},22->{2}]
        Sizebounds:
          (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>,   0) (< 0,0,F>,  F) (< 0,0,H>,      H) (< 0,0,I>,  I) (< 0,0,M>,      M) (< 0,0,Q>,  Q) (< 0,0,R>, R) (< 0,0,S>,  S) (< 0,0,V>,  V) (< 0,0,W>,  W) (< 0,0,X>, X) (< 0,0,Y>, Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) 
          (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>,  F) (< 1,0,H>,      H) (< 1,0,I>,  I) (< 1,0,M>,      M) (< 1,0,Q>,  Q) (< 1,0,R>, R) (< 1,0,S>,  S) (< 1,0,V>,  V) (< 1,0,W>,  W) (< 1,0,X>, X) (< 1,0,Y>, Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) 
          (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>,   ?) (< 2,0,F>, 49) (< 2,0,H>,      0) (< 2,0,I>,  I) (< 2,0,M>,      M) (< 2,0,Q>,  Q) (< 2,0,R>, R) (< 2,0,S>,  S) (< 2,0,V>,  V) (< 2,0,W>,  W) (< 2,0,X>, X) (< 2,0,Y>, Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) 
          (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>,   ?) (< 3,0,F>, 49) (< 3,0,H>,     50) (< 3,0,I>,  I) (< 3,0,M>,      M) (< 3,0,Q>,  Q) (< 3,0,R>, R) (< 3,0,S>,  S) (< 3,0,V>,  V) (< 3,0,W>,  W) (< 3,0,X>, X) (< 3,0,Y>, Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) 
          (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>,   ?) (< 4,0,F>,  ?) (< 4,0,H>,      ?) (< 4,0,I>, 99) (< 4,0,M>,      0) (< 4,0,Q>,  Q) (< 4,0,R>, R) (< 4,0,S>,  S) (< 4,0,V>,  V) (< 4,0,W>,  W) (< 4,0,X>, X) (< 4,0,Y>, Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) 
          (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>,   ?) (< 5,0,F>,  ?) (< 5,0,H>,      ?) (< 5,0,I>, 99) (< 5,0,M>,     33) (< 5,0,Q>,  Q) (< 5,0,R>, R) (< 5,0,S>,  S) (< 5,0,V>,  V) (< 5,0,W>,  W) (< 5,0,X>, X) (< 5,0,Y>, Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) 
          (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>,   ?) (< 6,0,F>,  ?) (< 6,0,H>,      ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>,  ?) (< 6,0,R>, ?) (< 6,0,S>,  S) (< 6,0,V>,  V) (< 6,0,W>,  W) (< 6,0,X>, X) (< 6,0,Y>, Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) 
          (< 7,0,A>, ?) (< 7,0,B>,     ?) (< 7,0,C>, ?) (< 7,0,E>,   ?) (< 7,0,F>,  ?) (< 7,0,H>,      ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>,  ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>,  V) (< 7,0,W>,  W) (< 7,0,X>, X) (< 7,0,Y>, Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) 
          (< 8,0,A>, ?) (< 8,0,B>,     ?) (< 8,0,C>, ?) (< 8,0,E>,   ?) (< 8,0,F>,  ?) (< 8,0,H>,      ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>,  ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>, Y) (< 8,0,Z>, Z) (< 8,0,E1>,  ?) 
          (< 9,0,A>, ?) (< 9,0,B>,     ?) (< 9,0,C>, ?) (< 9,0,E>,   ?) (< 9,0,F>,  ?) (< 9,0,H>,      ?) (< 9,0,I>,  ?) (< 9,0,M>,      ?) (< 9,0,Q>,  ?) (< 9,0,R>, ?) (< 9,0,S>,  ?) (< 9,0,V>, 17) (< 9,0,W>,  ?) (< 9,0,X>, 8) (< 9,0,Y>, 0) (< 9,0,Z>, ?) (< 9,0,E1>,  ?) 
          (<10,0,A>, ?) (<10,0,B>,     ?) (<10,0,C>, ?) (<10,0,E>,   ?) (<10,0,F>,  ?) (<10,0,H>,      ?) (<10,0,I>,  ?) (<10,0,M>,      ?) (<10,0,Q>,  ?) (<10,0,R>, ?) (<10,0,S>,  ?) (<10,0,V>, 17) (<10,0,W>,  ?) (<10,0,X>, ?) (<10,0,Y>, 7) (<10,0,Z>, 0) (<10,0,E1>,  ?) 
          (<11,0,A>, ?) (<11,0,B>,     ?) (<11,0,C>, ?) (<11,0,E>,   ?) (<11,0,F>,  ?) (<11,0,H>,      ?) (<11,0,I>,  ?) (<11,0,M>,      ?) (<11,0,Q>,  ?) (<11,0,R>, ?) (<11,0,S>,  ?) (<11,0,V>, 17) (<11,0,W>,  ?) (<11,0,X>, ?) (<11,0,Y>, 7) (<11,0,Z>, 4) (<11,0,E1>,  ?) 
          (<12,0,A>, ?) (<12,0,B>,     ?) (<12,0,C>, ?) (<12,0,E>,   ?) (<12,0,F>,  ?) (<12,0,H>,      ?) (<12,0,I>,  ?) (<12,0,M>,      ?) (<12,0,Q>,  ?) (<12,0,R>, ?) (<12,0,S>,  ?) (<12,0,V>, 17) (<12,0,W>,  ?) (<12,0,X>, ?) (<12,0,Y>, 7) (<12,0,Z>, 4) (<12,0,E1>,  ?) 
          (<13,0,A>, ?) (<13,0,B>,     ?) (<13,0,C>, ?) (<13,0,E>,   ?) (<13,0,F>,  ?) (<13,0,H>,      ?) (<13,0,I>,  ?) (<13,0,M>,      ?) (<13,0,Q>,  ?) (<13,0,R>, ?) (<13,0,S>,  ?) (<13,0,V>, 17) (<13,0,W>,  ?) (<13,0,X>, ?) (<13,0,Y>, 7) (<13,0,Z>, ?) (<13,0,E1>,  ?) 
          (<15,0,A>, ?) (<15,0,B>,     ?) (<15,0,C>, ?) (<15,0,E>,   ?) (<15,0,F>,  ?) (<15,0,H>,      ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>,  ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>, Y) (<15,0,Z>, Z) (<15,0,E1>,  ?) 
          (<16,0,A>, ?) (<16,0,B>,     ?) (<16,0,C>, ?) (<16,0,E>,   ?) (<16,0,F>,  ?) (<16,0,H>,      ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>,  ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>,  2) (<16,0,X>, X) (<16,0,Y>, Y) (<16,0,Z>, Z) (<16,0,E1>,  ?) 
          (<17,0,A>, ?) (<17,0,B>,     ?) (<17,0,C>, ?) (<17,0,E>,   ?) (<17,0,F>,  ?) (<17,0,H>,      ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>,  ?) (<17,0,R>, ?) (<17,0,S>,  0) (<17,0,V>,  V) (<17,0,W>,  W) (<17,0,X>, X) (<17,0,Y>, Y) (<17,0,Z>, Z) (<17,0,E1>, E1) 
          (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>,   ?) (<18,0,F>,  ?) (<18,0,H>,      ?) (<18,0,I>, 99) (<18,0,M>,     33) (<18,0,Q>,  Q) (<18,0,R>, R) (<18,0,S>,  S) (<18,0,V>,  V) (<18,0,W>,  W) (<18,0,X>, X) (<18,0,Y>, Y) (<18,0,Z>, Z) (<18,0,E1>, E1) 
          (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>,   ?) (<19,0,F>,  ?) (<19,0,H>,      ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>,  S) (<19,0,V>,  V) (<19,0,W>,  W) (<19,0,X>, X) (<19,0,Y>, Y) (<19,0,Z>, Z) (<19,0,E1>, E1) 
          (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>,   ?) (<20,0,F>, 49) (<20,0,H>,     50) (<20,0,I>,  I) (<20,0,M>,      M) (<20,0,Q>,  Q) (<20,0,R>, R) (<20,0,S>,  S) (<20,0,V>,  V) (<20,0,W>,  W) (<20,0,X>, X) (<20,0,Y>, Y) (<20,0,Z>, Z) (<20,0,E1>, E1) 
          (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>,   ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>,  0) (<21,0,M>,      M) (<21,0,Q>,  Q) (<21,0,R>, R) (<21,0,S>,  S) (<21,0,V>,  V) (<21,0,W>,  W) (<21,0,X>, X) (<21,0,Y>, Y) (<21,0,Z>, Z) (<21,0,E1>, E1) 
          (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>,  0) (<22,0,H>,      H) (<22,0,I>,  I) (<22,0,M>,      M) (<22,0,Q>,  Q) (<22,0,R>, R) (<22,0,S>,  S) (<22,0,V>,  V) (<22,0,W>,  W) (<22,0,X>, X) (<22,0,Y>, Y) (<22,0,Z>, Z) (<22,0,E1>, E1) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
            p(f0) = 8         
          p(f422) = 8         
          p(f437) = 8         
          p(f441) = 8         
          p(f455) = 8         
          p(f461) = 8         
          p(f485) = 8         
          p(f501) = 8         
          p(f526) = 8         
          p(f540) = 9 + -1*x14
          p(f543) = 2 + -1*x14
          p(f546) = 2 + -1*x14
        
        The following rules are strictly oriented:
                                          [8 >= X] ==>                                         
          f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 9 + -1*X                                
                                                     > 2 + -1*X                                
                                                     = f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1)
        
        
        The following rules are weakly oriented:
                                              True ==>                                               
            f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 8                                             
                                                    >= 8                                             
                                                     = f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)  
        
                                        [149 >= E] ==>                                               
          f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 8                                             
                                                    >= 8                                             
                                                     = f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) 
        
                                         [49 >= F] ==>                                               
          f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 8                                             
                                                    >= 8                                             
                                                     = f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1)      
        
                                         [49 >= H] ==>                                               
          f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 8                                             
                                                    >= 8                                             
                                                     = f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1)  
        
                                         [99 >= I] ==>                                               
          f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 8                                             
                                                    >= 8                                             
                                                     = f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1)      
        
                                         [31 >= M] ==>                                               
          f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 8                                             
                                                    >= 8                                             
                                                     = f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1)  
        
                                          [Q >= 0] ==>                                               
          f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 8                                             
                                                    >= 8                                             
                                                     = f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1)
        
                                         [49 >= S] ==>                                               
          f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 8                                             
                                                    >= 8                                             
                                                     = f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1)  
        
                                          [V >= W] ==>                                               
          f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 8                                             
                                                    >= 8                                             
                                                     = f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1)  
        
                                          [7 >= Y] ==>                                               
          f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 2 + -1*X                                      
                                                    >= 2 + -1*X                                      
                                                     = f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1)      
        
                                          [3 >= Z] ==>                                               
          f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 2 + -1*X                                      
                                                    >= 2 + -1*X                                      
                                                     = f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1)  
        
                                          [Z >= 4] ==>                                               
          f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 2 + -1*X                                      
                                                    >= 2 + -1*X                                      
                                                     = f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1)  
        
                                          [Y >= 8] ==>                                               
          f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 2 + -1*X                                      
                                                    >= 2 + -1*X                                      
                                                     = f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1)  
        
                                      [W >= 1 + V] ==>                                               
          f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 8                                             
                                                    >= 8                                             
                                                     = f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1)      
        
                                         [S >= 50] ==>                                               
          f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 8                                             
                                                    >= 8                                             
                                                     = f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B)      
        
                                      [0 >= 1 + Q] ==>                                               
          f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 8                                             
                                                    >= 8                                             
                                                     = f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1)      
        
                                         [M >= 32] ==>                                               
          f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 8                                             
                                                    >= 8                                             
                                                     = f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1)  
        
                                        [I >= 100] ==>                                               
          f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 8                                             
                                                    >= 8                                             
                                                     = f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1)    
        
                                         [H >= 50] ==>                                               
          f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 8                                             
                                                    >= 8                                             
                                                     = f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)  
        
                                         [F >= 50] ==>                                               
          f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 8                                             
                                                    >= 8                                             
                                                     = f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1)      
        
                                        [E >= 150] ==>                                               
          f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 8                                             
                                                    >= 8                                             
                                                     = f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1)      
        
        
* Step 17: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   -> f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   True         (1,1)  
          1.  f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)  [149 >= E]   (150,1)
          2.  f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1)       [49 >= F]    (50,1) 
          3.  f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1)   [49 >= H]    (?,1)  
          4.  f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1)       [99 >= I]    (100,1)
          5.  f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1)   [31 >= M]    (?,1)  
          6.  f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) [Q >= 0]     (100,1)
          7.  f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1)   [49 >= S]    (?,1)  
          8.  f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1)   [V >= W]     (101,1)
          9.  f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1)       [8 >= X]     (8,1)  
          10. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1)       [7 >= Y]     (?,1)  
          11. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1)   [3 >= Z]     (?,1)  
          12. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1)   [Z >= 4]     (?,1)  
          13. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1)   [Y >= 8]     (?,1)  
          15. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1)       [W >= 1 + V] (101,1)
          16. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B)       [S >= 50]    (50,1) 
          17. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1)       [0 >= 1 + Q] (100,1)
          18. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1)   [M >= 32]    (?,1)  
          19. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1)     [I >= 100]   (50,1) 
          20. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   [H >= 50]    (?,1)  
          21. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1)       [F >= 50]    (101,1)
          22. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1)       [E >= 150]   (1,1)  
        Signature:
          {(f0,17)
          ;(f422,17)
          ;(f437,17)
          ;(f441,17)
          ;(f455,17)
          ;(f461,17)
          ;(f485,17)
          ;(f501,17)
          ;(f526,17)
          ;(f540,17)
          ;(f543,17)
          ;(f546,17)
          ;(f584,17)}
        Flow Graph:
          [0->{1},1->{1,22},2->{3},3->{3,20},4->{5},5->{5,18},6->{6,17},7->{7,16},8->{8,15},9->{10},10->{11},11->{11
          ,12},12->{10,13},13->{9},15->{9},16->{8},17->{7},18->{4,19},19->{6},20->{2,21},21->{4},22->{2}]
        Sizebounds:
          (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>,   0) (< 0,0,F>,  F) (< 0,0,H>,      H) (< 0,0,I>,  I) (< 0,0,M>,      M) (< 0,0,Q>,  Q) (< 0,0,R>, R) (< 0,0,S>,  S) (< 0,0,V>,  V) (< 0,0,W>,  W) (< 0,0,X>, X) (< 0,0,Y>, Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) 
          (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>,  F) (< 1,0,H>,      H) (< 1,0,I>,  I) (< 1,0,M>,      M) (< 1,0,Q>,  Q) (< 1,0,R>, R) (< 1,0,S>,  S) (< 1,0,V>,  V) (< 1,0,W>,  W) (< 1,0,X>, X) (< 1,0,Y>, Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) 
          (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>,   ?) (< 2,0,F>, 49) (< 2,0,H>,      0) (< 2,0,I>,  I) (< 2,0,M>,      M) (< 2,0,Q>,  Q) (< 2,0,R>, R) (< 2,0,S>,  S) (< 2,0,V>,  V) (< 2,0,W>,  W) (< 2,0,X>, X) (< 2,0,Y>, Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) 
          (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>,   ?) (< 3,0,F>, 49) (< 3,0,H>,     50) (< 3,0,I>,  I) (< 3,0,M>,      M) (< 3,0,Q>,  Q) (< 3,0,R>, R) (< 3,0,S>,  S) (< 3,0,V>,  V) (< 3,0,W>,  W) (< 3,0,X>, X) (< 3,0,Y>, Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) 
          (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>,   ?) (< 4,0,F>,  ?) (< 4,0,H>,      ?) (< 4,0,I>, 99) (< 4,0,M>,      0) (< 4,0,Q>,  Q) (< 4,0,R>, R) (< 4,0,S>,  S) (< 4,0,V>,  V) (< 4,0,W>,  W) (< 4,0,X>, X) (< 4,0,Y>, Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) 
          (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>,   ?) (< 5,0,F>,  ?) (< 5,0,H>,      ?) (< 5,0,I>, 99) (< 5,0,M>,     33) (< 5,0,Q>,  Q) (< 5,0,R>, R) (< 5,0,S>,  S) (< 5,0,V>,  V) (< 5,0,W>,  W) (< 5,0,X>, X) (< 5,0,Y>, Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) 
          (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>,   ?) (< 6,0,F>,  ?) (< 6,0,H>,      ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>,  ?) (< 6,0,R>, ?) (< 6,0,S>,  S) (< 6,0,V>,  V) (< 6,0,W>,  W) (< 6,0,X>, X) (< 6,0,Y>, Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) 
          (< 7,0,A>, ?) (< 7,0,B>,     ?) (< 7,0,C>, ?) (< 7,0,E>,   ?) (< 7,0,F>,  ?) (< 7,0,H>,      ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>,  ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>,  V) (< 7,0,W>,  W) (< 7,0,X>, X) (< 7,0,Y>, Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) 
          (< 8,0,A>, ?) (< 8,0,B>,     ?) (< 8,0,C>, ?) (< 8,0,E>,   ?) (< 8,0,F>,  ?) (< 8,0,H>,      ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>,  ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>, Y) (< 8,0,Z>, Z) (< 8,0,E1>,  ?) 
          (< 9,0,A>, ?) (< 9,0,B>,     ?) (< 9,0,C>, ?) (< 9,0,E>,   ?) (< 9,0,F>,  ?) (< 9,0,H>,      ?) (< 9,0,I>,  ?) (< 9,0,M>,      ?) (< 9,0,Q>,  ?) (< 9,0,R>, ?) (< 9,0,S>,  ?) (< 9,0,V>, 17) (< 9,0,W>,  ?) (< 9,0,X>, 8) (< 9,0,Y>, 0) (< 9,0,Z>, ?) (< 9,0,E1>,  ?) 
          (<10,0,A>, ?) (<10,0,B>,     ?) (<10,0,C>, ?) (<10,0,E>,   ?) (<10,0,F>,  ?) (<10,0,H>,      ?) (<10,0,I>,  ?) (<10,0,M>,      ?) (<10,0,Q>,  ?) (<10,0,R>, ?) (<10,0,S>,  ?) (<10,0,V>, 17) (<10,0,W>,  ?) (<10,0,X>, ?) (<10,0,Y>, 7) (<10,0,Z>, 0) (<10,0,E1>,  ?) 
          (<11,0,A>, ?) (<11,0,B>,     ?) (<11,0,C>, ?) (<11,0,E>,   ?) (<11,0,F>,  ?) (<11,0,H>,      ?) (<11,0,I>,  ?) (<11,0,M>,      ?) (<11,0,Q>,  ?) (<11,0,R>, ?) (<11,0,S>,  ?) (<11,0,V>, 17) (<11,0,W>,  ?) (<11,0,X>, ?) (<11,0,Y>, 7) (<11,0,Z>, 4) (<11,0,E1>,  ?) 
          (<12,0,A>, ?) (<12,0,B>,     ?) (<12,0,C>, ?) (<12,0,E>,   ?) (<12,0,F>,  ?) (<12,0,H>,      ?) (<12,0,I>,  ?) (<12,0,M>,      ?) (<12,0,Q>,  ?) (<12,0,R>, ?) (<12,0,S>,  ?) (<12,0,V>, 17) (<12,0,W>,  ?) (<12,0,X>, ?) (<12,0,Y>, 7) (<12,0,Z>, 4) (<12,0,E1>,  ?) 
          (<13,0,A>, ?) (<13,0,B>,     ?) (<13,0,C>, ?) (<13,0,E>,   ?) (<13,0,F>,  ?) (<13,0,H>,      ?) (<13,0,I>,  ?) (<13,0,M>,      ?) (<13,0,Q>,  ?) (<13,0,R>, ?) (<13,0,S>,  ?) (<13,0,V>, 17) (<13,0,W>,  ?) (<13,0,X>, ?) (<13,0,Y>, 7) (<13,0,Z>, ?) (<13,0,E1>,  ?) 
          (<15,0,A>, ?) (<15,0,B>,     ?) (<15,0,C>, ?) (<15,0,E>,   ?) (<15,0,F>,  ?) (<15,0,H>,      ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>,  ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>, Y) (<15,0,Z>, Z) (<15,0,E1>,  ?) 
          (<16,0,A>, ?) (<16,0,B>,     ?) (<16,0,C>, ?) (<16,0,E>,   ?) (<16,0,F>,  ?) (<16,0,H>,      ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>,  ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>,  2) (<16,0,X>, X) (<16,0,Y>, Y) (<16,0,Z>, Z) (<16,0,E1>,  ?) 
          (<17,0,A>, ?) (<17,0,B>,     ?) (<17,0,C>, ?) (<17,0,E>,   ?) (<17,0,F>,  ?) (<17,0,H>,      ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>,  ?) (<17,0,R>, ?) (<17,0,S>,  0) (<17,0,V>,  V) (<17,0,W>,  W) (<17,0,X>, X) (<17,0,Y>, Y) (<17,0,Z>, Z) (<17,0,E1>, E1) 
          (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>,   ?) (<18,0,F>,  ?) (<18,0,H>,      ?) (<18,0,I>, 99) (<18,0,M>,     33) (<18,0,Q>,  Q) (<18,0,R>, R) (<18,0,S>,  S) (<18,0,V>,  V) (<18,0,W>,  W) (<18,0,X>, X) (<18,0,Y>, Y) (<18,0,Z>, Z) (<18,0,E1>, E1) 
          (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>,   ?) (<19,0,F>,  ?) (<19,0,H>,      ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>,  S) (<19,0,V>,  V) (<19,0,W>,  W) (<19,0,X>, X) (<19,0,Y>, Y) (<19,0,Z>, Z) (<19,0,E1>, E1) 
          (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>,   ?) (<20,0,F>, 49) (<20,0,H>,     50) (<20,0,I>,  I) (<20,0,M>,      M) (<20,0,Q>,  Q) (<20,0,R>, R) (<20,0,S>,  S) (<20,0,V>,  V) (<20,0,W>,  W) (<20,0,X>, X) (<20,0,Y>, Y) (<20,0,Z>, Z) (<20,0,E1>, E1) 
          (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>,   ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>,  0) (<21,0,M>,      M) (<21,0,Q>,  Q) (<21,0,R>, R) (<21,0,S>,  S) (<21,0,V>,  V) (<21,0,W>,  W) (<21,0,X>, X) (<21,0,Y>, Y) (<21,0,Z>, Z) (<21,0,E1>, E1) 
          (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>,  0) (<22,0,H>,      H) (<22,0,I>,  I) (<22,0,M>,      M) (<22,0,Q>,  Q) (<22,0,R>, R) (<22,0,S>,  S) (<22,0,V>,  V) (<22,0,W>,  W) (<22,0,X>, X) (<22,0,Y>, Y) (<22,0,Z>, Z) (<22,0,E1>, E1) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
            p(f0) = 50         
          p(f422) = 50         
          p(f437) = 50         
          p(f441) = 50         
          p(f455) = 50         
          p(f461) = 50         
          p(f485) = 50         
          p(f501) = 50 + -1*x11
          p(f526) = 1 + -1*x11 
          p(f540) = 1 + -1*x11 
          p(f543) = 1 + -1*x11 
          p(f546) = 1 + -1*x11 
        
        The following rules are strictly oriented:
                                         [49 >= S] ==>                                             
          f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 50 + -1*S                                   
                                                     > 49 + -1*S                                   
                                                     = f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1)
        
        
        The following rules are weakly oriented:
                                              True ==>                                               
            f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 50                                            
                                                    >= 50                                            
                                                     = f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)  
        
                                        [149 >= E] ==>                                               
          f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 50                                            
                                                    >= 50                                            
                                                     = f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) 
        
                                         [49 >= F] ==>                                               
          f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 50                                            
                                                    >= 50                                            
                                                     = f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1)      
        
                                         [49 >= H] ==>                                               
          f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 50                                            
                                                    >= 50                                            
                                                     = f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1)  
        
                                         [99 >= I] ==>                                               
          f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 50                                            
                                                    >= 50                                            
                                                     = f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1)      
        
                                         [31 >= M] ==>                                               
          f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 50                                            
                                                    >= 50                                            
                                                     = f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1)  
        
                                          [Q >= 0] ==>                                               
          f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 50                                            
                                                    >= 50                                            
                                                     = f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1)
        
                                          [V >= W] ==>                                               
          f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 1 + -1*S                                      
                                                    >= 1 + -1*S                                      
                                                     = f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1)  
        
                                          [8 >= X] ==>                                               
          f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 1 + -1*S                                      
                                                    >= 1 + -1*S                                      
                                                     = f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1)      
        
                                          [7 >= Y] ==>                                               
          f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 1 + -1*S                                      
                                                    >= 1 + -1*S                                      
                                                     = f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1)      
        
                                          [3 >= Z] ==>                                               
          f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 1 + -1*S                                      
                                                    >= 1 + -1*S                                      
                                                     = f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1)  
        
                                          [Z >= 4] ==>                                               
          f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 1 + -1*S                                      
                                                    >= 1 + -1*S                                      
                                                     = f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1)  
        
                                          [Y >= 8] ==>                                               
          f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 1 + -1*S                                      
                                                    >= 1 + -1*S                                      
                                                     = f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1)  
        
                                      [W >= 1 + V] ==>                                               
          f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 1 + -1*S                                      
                                                    >= 1 + -1*S                                      
                                                     = f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1)      
        
                                         [S >= 50] ==>                                               
          f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 50 + -1*S                                     
                                                    >= 1 + -1*S                                      
                                                     = f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B)      
        
                                      [0 >= 1 + Q] ==>                                               
          f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 50                                            
                                                    >= 50                                            
                                                     = f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1)      
        
                                         [M >= 32] ==>                                               
          f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 50                                            
                                                    >= 50                                            
                                                     = f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1)  
        
                                        [I >= 100] ==>                                               
          f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 50                                            
                                                    >= 50                                            
                                                     = f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1)    
        
                                         [H >= 50] ==>                                               
          f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 50                                            
                                                    >= 50                                            
                                                     = f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)  
        
                                         [F >= 50] ==>                                               
          f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 50                                            
                                                    >= 50                                            
                                                     = f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1)      
        
                                        [E >= 150] ==>                                               
          f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 50                                            
                                                    >= 50                                            
                                                     = f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1)      
        
        
* Step 18: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   -> f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   True         (1,1)  
          1.  f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)  [149 >= E]   (150,1)
          2.  f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1)       [49 >= F]    (50,1) 
          3.  f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1)   [49 >= H]    (?,1)  
          4.  f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1)       [99 >= I]    (100,1)
          5.  f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1)   [31 >= M]    (?,1)  
          6.  f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) [Q >= 0]     (100,1)
          7.  f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1)   [49 >= S]    (50,1) 
          8.  f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1)   [V >= W]     (101,1)
          9.  f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1)       [8 >= X]     (8,1)  
          10. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1)       [7 >= Y]     (?,1)  
          11. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1)   [3 >= Z]     (?,1)  
          12. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1)   [Z >= 4]     (?,1)  
          13. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1)   [Y >= 8]     (?,1)  
          15. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1)       [W >= 1 + V] (101,1)
          16. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B)       [S >= 50]    (50,1) 
          17. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1)       [0 >= 1 + Q] (100,1)
          18. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1)   [M >= 32]    (?,1)  
          19. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1)     [I >= 100]   (50,1) 
          20. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   [H >= 50]    (?,1)  
          21. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1)       [F >= 50]    (101,1)
          22. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1)       [E >= 150]   (1,1)  
        Signature:
          {(f0,17)
          ;(f422,17)
          ;(f437,17)
          ;(f441,17)
          ;(f455,17)
          ;(f461,17)
          ;(f485,17)
          ;(f501,17)
          ;(f526,17)
          ;(f540,17)
          ;(f543,17)
          ;(f546,17)
          ;(f584,17)}
        Flow Graph:
          [0->{1},1->{1,22},2->{3},3->{3,20},4->{5},5->{5,18},6->{6,17},7->{7,16},8->{8,15},9->{10},10->{11},11->{11
          ,12},12->{10,13},13->{9},15->{9},16->{8},17->{7},18->{4,19},19->{6},20->{2,21},21->{4},22->{2}]
        Sizebounds:
          (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>,   0) (< 0,0,F>,  F) (< 0,0,H>,      H) (< 0,0,I>,  I) (< 0,0,M>,      M) (< 0,0,Q>,  Q) (< 0,0,R>, R) (< 0,0,S>,  S) (< 0,0,V>,  V) (< 0,0,W>,  W) (< 0,0,X>, X) (< 0,0,Y>, Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) 
          (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>,  F) (< 1,0,H>,      H) (< 1,0,I>,  I) (< 1,0,M>,      M) (< 1,0,Q>,  Q) (< 1,0,R>, R) (< 1,0,S>,  S) (< 1,0,V>,  V) (< 1,0,W>,  W) (< 1,0,X>, X) (< 1,0,Y>, Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) 
          (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>,   ?) (< 2,0,F>, 49) (< 2,0,H>,      0) (< 2,0,I>,  I) (< 2,0,M>,      M) (< 2,0,Q>,  Q) (< 2,0,R>, R) (< 2,0,S>,  S) (< 2,0,V>,  V) (< 2,0,W>,  W) (< 2,0,X>, X) (< 2,0,Y>, Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) 
          (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>,   ?) (< 3,0,F>, 49) (< 3,0,H>,     50) (< 3,0,I>,  I) (< 3,0,M>,      M) (< 3,0,Q>,  Q) (< 3,0,R>, R) (< 3,0,S>,  S) (< 3,0,V>,  V) (< 3,0,W>,  W) (< 3,0,X>, X) (< 3,0,Y>, Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) 
          (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>,   ?) (< 4,0,F>,  ?) (< 4,0,H>,      ?) (< 4,0,I>, 99) (< 4,0,M>,      0) (< 4,0,Q>,  Q) (< 4,0,R>, R) (< 4,0,S>,  S) (< 4,0,V>,  V) (< 4,0,W>,  W) (< 4,0,X>, X) (< 4,0,Y>, Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) 
          (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>,   ?) (< 5,0,F>,  ?) (< 5,0,H>,      ?) (< 5,0,I>, 99) (< 5,0,M>,     33) (< 5,0,Q>,  Q) (< 5,0,R>, R) (< 5,0,S>,  S) (< 5,0,V>,  V) (< 5,0,W>,  W) (< 5,0,X>, X) (< 5,0,Y>, Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) 
          (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>,   ?) (< 6,0,F>,  ?) (< 6,0,H>,      ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>,  ?) (< 6,0,R>, ?) (< 6,0,S>,  S) (< 6,0,V>,  V) (< 6,0,W>,  W) (< 6,0,X>, X) (< 6,0,Y>, Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) 
          (< 7,0,A>, ?) (< 7,0,B>,     ?) (< 7,0,C>, ?) (< 7,0,E>,   ?) (< 7,0,F>,  ?) (< 7,0,H>,      ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>,  ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>,  V) (< 7,0,W>,  W) (< 7,0,X>, X) (< 7,0,Y>, Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) 
          (< 8,0,A>, ?) (< 8,0,B>,     ?) (< 8,0,C>, ?) (< 8,0,E>,   ?) (< 8,0,F>,  ?) (< 8,0,H>,      ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>,  ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>, Y) (< 8,0,Z>, Z) (< 8,0,E1>,  ?) 
          (< 9,0,A>, ?) (< 9,0,B>,     ?) (< 9,0,C>, ?) (< 9,0,E>,   ?) (< 9,0,F>,  ?) (< 9,0,H>,      ?) (< 9,0,I>,  ?) (< 9,0,M>,      ?) (< 9,0,Q>,  ?) (< 9,0,R>, ?) (< 9,0,S>,  ?) (< 9,0,V>, 17) (< 9,0,W>,  ?) (< 9,0,X>, 8) (< 9,0,Y>, 0) (< 9,0,Z>, ?) (< 9,0,E1>,  ?) 
          (<10,0,A>, ?) (<10,0,B>,     ?) (<10,0,C>, ?) (<10,0,E>,   ?) (<10,0,F>,  ?) (<10,0,H>,      ?) (<10,0,I>,  ?) (<10,0,M>,      ?) (<10,0,Q>,  ?) (<10,0,R>, ?) (<10,0,S>,  ?) (<10,0,V>, 17) (<10,0,W>,  ?) (<10,0,X>, ?) (<10,0,Y>, 7) (<10,0,Z>, 0) (<10,0,E1>,  ?) 
          (<11,0,A>, ?) (<11,0,B>,     ?) (<11,0,C>, ?) (<11,0,E>,   ?) (<11,0,F>,  ?) (<11,0,H>,      ?) (<11,0,I>,  ?) (<11,0,M>,      ?) (<11,0,Q>,  ?) (<11,0,R>, ?) (<11,0,S>,  ?) (<11,0,V>, 17) (<11,0,W>,  ?) (<11,0,X>, ?) (<11,0,Y>, 7) (<11,0,Z>, 4) (<11,0,E1>,  ?) 
          (<12,0,A>, ?) (<12,0,B>,     ?) (<12,0,C>, ?) (<12,0,E>,   ?) (<12,0,F>,  ?) (<12,0,H>,      ?) (<12,0,I>,  ?) (<12,0,M>,      ?) (<12,0,Q>,  ?) (<12,0,R>, ?) (<12,0,S>,  ?) (<12,0,V>, 17) (<12,0,W>,  ?) (<12,0,X>, ?) (<12,0,Y>, 7) (<12,0,Z>, 4) (<12,0,E1>,  ?) 
          (<13,0,A>, ?) (<13,0,B>,     ?) (<13,0,C>, ?) (<13,0,E>,   ?) (<13,0,F>,  ?) (<13,0,H>,      ?) (<13,0,I>,  ?) (<13,0,M>,      ?) (<13,0,Q>,  ?) (<13,0,R>, ?) (<13,0,S>,  ?) (<13,0,V>, 17) (<13,0,W>,  ?) (<13,0,X>, ?) (<13,0,Y>, 7) (<13,0,Z>, ?) (<13,0,E1>,  ?) 
          (<15,0,A>, ?) (<15,0,B>,     ?) (<15,0,C>, ?) (<15,0,E>,   ?) (<15,0,F>,  ?) (<15,0,H>,      ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>,  ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>, Y) (<15,0,Z>, Z) (<15,0,E1>,  ?) 
          (<16,0,A>, ?) (<16,0,B>,     ?) (<16,0,C>, ?) (<16,0,E>,   ?) (<16,0,F>,  ?) (<16,0,H>,      ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>,  ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>,  2) (<16,0,X>, X) (<16,0,Y>, Y) (<16,0,Z>, Z) (<16,0,E1>,  ?) 
          (<17,0,A>, ?) (<17,0,B>,     ?) (<17,0,C>, ?) (<17,0,E>,   ?) (<17,0,F>,  ?) (<17,0,H>,      ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>,  ?) (<17,0,R>, ?) (<17,0,S>,  0) (<17,0,V>,  V) (<17,0,W>,  W) (<17,0,X>, X) (<17,0,Y>, Y) (<17,0,Z>, Z) (<17,0,E1>, E1) 
          (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>,   ?) (<18,0,F>,  ?) (<18,0,H>,      ?) (<18,0,I>, 99) (<18,0,M>,     33) (<18,0,Q>,  Q) (<18,0,R>, R) (<18,0,S>,  S) (<18,0,V>,  V) (<18,0,W>,  W) (<18,0,X>, X) (<18,0,Y>, Y) (<18,0,Z>, Z) (<18,0,E1>, E1) 
          (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>,   ?) (<19,0,F>,  ?) (<19,0,H>,      ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>,  S) (<19,0,V>,  V) (<19,0,W>,  W) (<19,0,X>, X) (<19,0,Y>, Y) (<19,0,Z>, Z) (<19,0,E1>, E1) 
          (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>,   ?) (<20,0,F>, 49) (<20,0,H>,     50) (<20,0,I>,  I) (<20,0,M>,      M) (<20,0,Q>,  Q) (<20,0,R>, R) (<20,0,S>,  S) (<20,0,V>,  V) (<20,0,W>,  W) (<20,0,X>, X) (<20,0,Y>, Y) (<20,0,Z>, Z) (<20,0,E1>, E1) 
          (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>,   ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>,  0) (<21,0,M>,      M) (<21,0,Q>,  Q) (<21,0,R>, R) (<21,0,S>,  S) (<21,0,V>,  V) (<21,0,W>,  W) (<21,0,X>, X) (<21,0,Y>, Y) (<21,0,Z>, Z) (<21,0,E1>, E1) 
          (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>,  0) (<22,0,H>,      H) (<22,0,I>,  I) (<22,0,M>,      M) (<22,0,Q>,  Q) (<22,0,R>, R) (<22,0,S>,  S) (<22,0,V>,  V) (<22,0,W>,  W) (<22,0,X>, X) (<22,0,Y>, Y) (<22,0,Z>, Z) (<22,0,E1>, E1) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [3], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f441) = 50 + -1*x6
        
        The following rules are strictly oriented:
                                         [49 >= H] ==>                                             
          f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 50 + -1*H                                   
                                                     > 49 + -1*H                                   
                                                     = f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1)
        
        
        The following rules are weakly oriented:
        
        We use the following global sizebounds:
        (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>,   0) (< 0,0,F>,  F) (< 0,0,H>,      H) (< 0,0,I>,  I) (< 0,0,M>,      M) (< 0,0,Q>,  Q) (< 0,0,R>, R) (< 0,0,S>,  S) (< 0,0,V>,  V) (< 0,0,W>,  W) (< 0,0,X>, X) (< 0,0,Y>, Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) 
        (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>,  F) (< 1,0,H>,      H) (< 1,0,I>,  I) (< 1,0,M>,      M) (< 1,0,Q>,  Q) (< 1,0,R>, R) (< 1,0,S>,  S) (< 1,0,V>,  V) (< 1,0,W>,  W) (< 1,0,X>, X) (< 1,0,Y>, Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) 
        (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>,   ?) (< 2,0,F>, 49) (< 2,0,H>,      0) (< 2,0,I>,  I) (< 2,0,M>,      M) (< 2,0,Q>,  Q) (< 2,0,R>, R) (< 2,0,S>,  S) (< 2,0,V>,  V) (< 2,0,W>,  W) (< 2,0,X>, X) (< 2,0,Y>, Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) 
        (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>,   ?) (< 3,0,F>, 49) (< 3,0,H>,     50) (< 3,0,I>,  I) (< 3,0,M>,      M) (< 3,0,Q>,  Q) (< 3,0,R>, R) (< 3,0,S>,  S) (< 3,0,V>,  V) (< 3,0,W>,  W) (< 3,0,X>, X) (< 3,0,Y>, Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) 
        (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>,   ?) (< 4,0,F>,  ?) (< 4,0,H>,      ?) (< 4,0,I>, 99) (< 4,0,M>,      0) (< 4,0,Q>,  Q) (< 4,0,R>, R) (< 4,0,S>,  S) (< 4,0,V>,  V) (< 4,0,W>,  W) (< 4,0,X>, X) (< 4,0,Y>, Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) 
        (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>,   ?) (< 5,0,F>,  ?) (< 5,0,H>,      ?) (< 5,0,I>, 99) (< 5,0,M>,     33) (< 5,0,Q>,  Q) (< 5,0,R>, R) (< 5,0,S>,  S) (< 5,0,V>,  V) (< 5,0,W>,  W) (< 5,0,X>, X) (< 5,0,Y>, Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) 
        (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>,   ?) (< 6,0,F>,  ?) (< 6,0,H>,      ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>,  ?) (< 6,0,R>, ?) (< 6,0,S>,  S) (< 6,0,V>,  V) (< 6,0,W>,  W) (< 6,0,X>, X) (< 6,0,Y>, Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) 
        (< 7,0,A>, ?) (< 7,0,B>,     ?) (< 7,0,C>, ?) (< 7,0,E>,   ?) (< 7,0,F>,  ?) (< 7,0,H>,      ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>,  ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>,  V) (< 7,0,W>,  W) (< 7,0,X>, X) (< 7,0,Y>, Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) 
        (< 8,0,A>, ?) (< 8,0,B>,     ?) (< 8,0,C>, ?) (< 8,0,E>,   ?) (< 8,0,F>,  ?) (< 8,0,H>,      ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>,  ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>, Y) (< 8,0,Z>, Z) (< 8,0,E1>,  ?) 
        (< 9,0,A>, ?) (< 9,0,B>,     ?) (< 9,0,C>, ?) (< 9,0,E>,   ?) (< 9,0,F>,  ?) (< 9,0,H>,      ?) (< 9,0,I>,  ?) (< 9,0,M>,      ?) (< 9,0,Q>,  ?) (< 9,0,R>, ?) (< 9,0,S>,  ?) (< 9,0,V>, 17) (< 9,0,W>,  ?) (< 9,0,X>, 8) (< 9,0,Y>, 0) (< 9,0,Z>, ?) (< 9,0,E1>,  ?) 
        (<10,0,A>, ?) (<10,0,B>,     ?) (<10,0,C>, ?) (<10,0,E>,   ?) (<10,0,F>,  ?) (<10,0,H>,      ?) (<10,0,I>,  ?) (<10,0,M>,      ?) (<10,0,Q>,  ?) (<10,0,R>, ?) (<10,0,S>,  ?) (<10,0,V>, 17) (<10,0,W>,  ?) (<10,0,X>, ?) (<10,0,Y>, 7) (<10,0,Z>, 0) (<10,0,E1>,  ?) 
        (<11,0,A>, ?) (<11,0,B>,     ?) (<11,0,C>, ?) (<11,0,E>,   ?) (<11,0,F>,  ?) (<11,0,H>,      ?) (<11,0,I>,  ?) (<11,0,M>,      ?) (<11,0,Q>,  ?) (<11,0,R>, ?) (<11,0,S>,  ?) (<11,0,V>, 17) (<11,0,W>,  ?) (<11,0,X>, ?) (<11,0,Y>, 7) (<11,0,Z>, 4) (<11,0,E1>,  ?) 
        (<12,0,A>, ?) (<12,0,B>,     ?) (<12,0,C>, ?) (<12,0,E>,   ?) (<12,0,F>,  ?) (<12,0,H>,      ?) (<12,0,I>,  ?) (<12,0,M>,      ?) (<12,0,Q>,  ?) (<12,0,R>, ?) (<12,0,S>,  ?) (<12,0,V>, 17) (<12,0,W>,  ?) (<12,0,X>, ?) (<12,0,Y>, 7) (<12,0,Z>, 4) (<12,0,E1>,  ?) 
        (<13,0,A>, ?) (<13,0,B>,     ?) (<13,0,C>, ?) (<13,0,E>,   ?) (<13,0,F>,  ?) (<13,0,H>,      ?) (<13,0,I>,  ?) (<13,0,M>,      ?) (<13,0,Q>,  ?) (<13,0,R>, ?) (<13,0,S>,  ?) (<13,0,V>, 17) (<13,0,W>,  ?) (<13,0,X>, ?) (<13,0,Y>, 7) (<13,0,Z>, ?) (<13,0,E1>,  ?) 
        (<15,0,A>, ?) (<15,0,B>,     ?) (<15,0,C>, ?) (<15,0,E>,   ?) (<15,0,F>,  ?) (<15,0,H>,      ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>,  ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>, Y) (<15,0,Z>, Z) (<15,0,E1>,  ?) 
        (<16,0,A>, ?) (<16,0,B>,     ?) (<16,0,C>, ?) (<16,0,E>,   ?) (<16,0,F>,  ?) (<16,0,H>,      ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>,  ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>,  2) (<16,0,X>, X) (<16,0,Y>, Y) (<16,0,Z>, Z) (<16,0,E1>,  ?) 
        (<17,0,A>, ?) (<17,0,B>,     ?) (<17,0,C>, ?) (<17,0,E>,   ?) (<17,0,F>,  ?) (<17,0,H>,      ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>,  ?) (<17,0,R>, ?) (<17,0,S>,  0) (<17,0,V>,  V) (<17,0,W>,  W) (<17,0,X>, X) (<17,0,Y>, Y) (<17,0,Z>, Z) (<17,0,E1>, E1) 
        (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>,   ?) (<18,0,F>,  ?) (<18,0,H>,      ?) (<18,0,I>, 99) (<18,0,M>,     33) (<18,0,Q>,  Q) (<18,0,R>, R) (<18,0,S>,  S) (<18,0,V>,  V) (<18,0,W>,  W) (<18,0,X>, X) (<18,0,Y>, Y) (<18,0,Z>, Z) (<18,0,E1>, E1) 
        (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>,   ?) (<19,0,F>,  ?) (<19,0,H>,      ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>,  S) (<19,0,V>,  V) (<19,0,W>,  W) (<19,0,X>, X) (<19,0,Y>, Y) (<19,0,Z>, Z) (<19,0,E1>, E1) 
        (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>,   ?) (<20,0,F>, 49) (<20,0,H>,     50) (<20,0,I>,  I) (<20,0,M>,      M) (<20,0,Q>,  Q) (<20,0,R>, R) (<20,0,S>,  S) (<20,0,V>,  V) (<20,0,W>,  W) (<20,0,X>, X) (<20,0,Y>, Y) (<20,0,Z>, Z) (<20,0,E1>, E1) 
        (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>,   ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>,  0) (<21,0,M>,      M) (<21,0,Q>,  Q) (<21,0,R>, R) (<21,0,S>,  S) (<21,0,V>,  V) (<21,0,W>,  W) (<21,0,X>, X) (<21,0,Y>, Y) (<21,0,Z>, Z) (<21,0,E1>, E1) 
        (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>,  0) (<22,0,H>,      H) (<22,0,I>,  I) (<22,0,M>,      M) (<22,0,Q>,  Q) (<22,0,R>, R) (<22,0,S>,  S) (<22,0,V>,  V) (<22,0,W>,  W) (<22,0,X>, X) (<22,0,Y>, Y) (<22,0,Z>, Z) (<22,0,E1>, E1) 
* Step 19: KnowledgePropagation WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   -> f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   True         (1,1)   
          1.  f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)  [149 >= E]   (150,1) 
          2.  f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1)       [49 >= F]    (50,1)  
          3.  f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1)   [49 >= H]    (2500,1)
          4.  f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1)       [99 >= I]    (100,1) 
          5.  f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1)   [31 >= M]    (?,1)   
          6.  f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) [Q >= 0]     (100,1) 
          7.  f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1)   [49 >= S]    (50,1)  
          8.  f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1)   [V >= W]     (101,1) 
          9.  f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1)       [8 >= X]     (8,1)   
          10. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1)       [7 >= Y]     (?,1)   
          11. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1)   [3 >= Z]     (?,1)   
          12. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1)   [Z >= 4]     (?,1)   
          13. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1)   [Y >= 8]     (?,1)   
          15. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1)       [W >= 1 + V] (101,1) 
          16. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B)       [S >= 50]    (50,1)  
          17. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1)       [0 >= 1 + Q] (100,1) 
          18. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1)   [M >= 32]    (?,1)   
          19. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1)     [I >= 100]   (50,1)  
          20. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   [H >= 50]    (?,1)   
          21. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1)       [F >= 50]    (101,1) 
          22. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1)       [E >= 150]   (1,1)   
        Signature:
          {(f0,17)
          ;(f422,17)
          ;(f437,17)
          ;(f441,17)
          ;(f455,17)
          ;(f461,17)
          ;(f485,17)
          ;(f501,17)
          ;(f526,17)
          ;(f540,17)
          ;(f543,17)
          ;(f546,17)
          ;(f584,17)}
        Flow Graph:
          [0->{1},1->{1,22},2->{3},3->{3,20},4->{5},5->{5,18},6->{6,17},7->{7,16},8->{8,15},9->{10},10->{11},11->{11
          ,12},12->{10,13},13->{9},15->{9},16->{8},17->{7},18->{4,19},19->{6},20->{2,21},21->{4},22->{2}]
        Sizebounds:
          (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>,   0) (< 0,0,F>,  F) (< 0,0,H>,      H) (< 0,0,I>,  I) (< 0,0,M>,      M) (< 0,0,Q>,  Q) (< 0,0,R>, R) (< 0,0,S>,  S) (< 0,0,V>,  V) (< 0,0,W>,  W) (< 0,0,X>, X) (< 0,0,Y>, Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) 
          (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>,  F) (< 1,0,H>,      H) (< 1,0,I>,  I) (< 1,0,M>,      M) (< 1,0,Q>,  Q) (< 1,0,R>, R) (< 1,0,S>,  S) (< 1,0,V>,  V) (< 1,0,W>,  W) (< 1,0,X>, X) (< 1,0,Y>, Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) 
          (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>,   ?) (< 2,0,F>, 49) (< 2,0,H>,      0) (< 2,0,I>,  I) (< 2,0,M>,      M) (< 2,0,Q>,  Q) (< 2,0,R>, R) (< 2,0,S>,  S) (< 2,0,V>,  V) (< 2,0,W>,  W) (< 2,0,X>, X) (< 2,0,Y>, Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) 
          (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>,   ?) (< 3,0,F>, 49) (< 3,0,H>,     50) (< 3,0,I>,  I) (< 3,0,M>,      M) (< 3,0,Q>,  Q) (< 3,0,R>, R) (< 3,0,S>,  S) (< 3,0,V>,  V) (< 3,0,W>,  W) (< 3,0,X>, X) (< 3,0,Y>, Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) 
          (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>,   ?) (< 4,0,F>,  ?) (< 4,0,H>,      ?) (< 4,0,I>, 99) (< 4,0,M>,      0) (< 4,0,Q>,  Q) (< 4,0,R>, R) (< 4,0,S>,  S) (< 4,0,V>,  V) (< 4,0,W>,  W) (< 4,0,X>, X) (< 4,0,Y>, Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) 
          (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>,   ?) (< 5,0,F>,  ?) (< 5,0,H>,      ?) (< 5,0,I>, 99) (< 5,0,M>,     33) (< 5,0,Q>,  Q) (< 5,0,R>, R) (< 5,0,S>,  S) (< 5,0,V>,  V) (< 5,0,W>,  W) (< 5,0,X>, X) (< 5,0,Y>, Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) 
          (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>,   ?) (< 6,0,F>,  ?) (< 6,0,H>,      ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>,  ?) (< 6,0,R>, ?) (< 6,0,S>,  S) (< 6,0,V>,  V) (< 6,0,W>,  W) (< 6,0,X>, X) (< 6,0,Y>, Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) 
          (< 7,0,A>, ?) (< 7,0,B>,     ?) (< 7,0,C>, ?) (< 7,0,E>,   ?) (< 7,0,F>,  ?) (< 7,0,H>,      ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>,  ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>,  V) (< 7,0,W>,  W) (< 7,0,X>, X) (< 7,0,Y>, Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) 
          (< 8,0,A>, ?) (< 8,0,B>,     ?) (< 8,0,C>, ?) (< 8,0,E>,   ?) (< 8,0,F>,  ?) (< 8,0,H>,      ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>,  ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>, Y) (< 8,0,Z>, Z) (< 8,0,E1>,  ?) 
          (< 9,0,A>, ?) (< 9,0,B>,     ?) (< 9,0,C>, ?) (< 9,0,E>,   ?) (< 9,0,F>,  ?) (< 9,0,H>,      ?) (< 9,0,I>,  ?) (< 9,0,M>,      ?) (< 9,0,Q>,  ?) (< 9,0,R>, ?) (< 9,0,S>,  ?) (< 9,0,V>, 17) (< 9,0,W>,  ?) (< 9,0,X>, 8) (< 9,0,Y>, 0) (< 9,0,Z>, ?) (< 9,0,E1>,  ?) 
          (<10,0,A>, ?) (<10,0,B>,     ?) (<10,0,C>, ?) (<10,0,E>,   ?) (<10,0,F>,  ?) (<10,0,H>,      ?) (<10,0,I>,  ?) (<10,0,M>,      ?) (<10,0,Q>,  ?) (<10,0,R>, ?) (<10,0,S>,  ?) (<10,0,V>, 17) (<10,0,W>,  ?) (<10,0,X>, ?) (<10,0,Y>, 7) (<10,0,Z>, 0) (<10,0,E1>,  ?) 
          (<11,0,A>, ?) (<11,0,B>,     ?) (<11,0,C>, ?) (<11,0,E>,   ?) (<11,0,F>,  ?) (<11,0,H>,      ?) (<11,0,I>,  ?) (<11,0,M>,      ?) (<11,0,Q>,  ?) (<11,0,R>, ?) (<11,0,S>,  ?) (<11,0,V>, 17) (<11,0,W>,  ?) (<11,0,X>, ?) (<11,0,Y>, 7) (<11,0,Z>, 4) (<11,0,E1>,  ?) 
          (<12,0,A>, ?) (<12,0,B>,     ?) (<12,0,C>, ?) (<12,0,E>,   ?) (<12,0,F>,  ?) (<12,0,H>,      ?) (<12,0,I>,  ?) (<12,0,M>,      ?) (<12,0,Q>,  ?) (<12,0,R>, ?) (<12,0,S>,  ?) (<12,0,V>, 17) (<12,0,W>,  ?) (<12,0,X>, ?) (<12,0,Y>, 7) (<12,0,Z>, 4) (<12,0,E1>,  ?) 
          (<13,0,A>, ?) (<13,0,B>,     ?) (<13,0,C>, ?) (<13,0,E>,   ?) (<13,0,F>,  ?) (<13,0,H>,      ?) (<13,0,I>,  ?) (<13,0,M>,      ?) (<13,0,Q>,  ?) (<13,0,R>, ?) (<13,0,S>,  ?) (<13,0,V>, 17) (<13,0,W>,  ?) (<13,0,X>, ?) (<13,0,Y>, 7) (<13,0,Z>, ?) (<13,0,E1>,  ?) 
          (<15,0,A>, ?) (<15,0,B>,     ?) (<15,0,C>, ?) (<15,0,E>,   ?) (<15,0,F>,  ?) (<15,0,H>,      ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>,  ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>, Y) (<15,0,Z>, Z) (<15,0,E1>,  ?) 
          (<16,0,A>, ?) (<16,0,B>,     ?) (<16,0,C>, ?) (<16,0,E>,   ?) (<16,0,F>,  ?) (<16,0,H>,      ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>,  ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>,  2) (<16,0,X>, X) (<16,0,Y>, Y) (<16,0,Z>, Z) (<16,0,E1>,  ?) 
          (<17,0,A>, ?) (<17,0,B>,     ?) (<17,0,C>, ?) (<17,0,E>,   ?) (<17,0,F>,  ?) (<17,0,H>,      ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>,  ?) (<17,0,R>, ?) (<17,0,S>,  0) (<17,0,V>,  V) (<17,0,W>,  W) (<17,0,X>, X) (<17,0,Y>, Y) (<17,0,Z>, Z) (<17,0,E1>, E1) 
          (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>,   ?) (<18,0,F>,  ?) (<18,0,H>,      ?) (<18,0,I>, 99) (<18,0,M>,     33) (<18,0,Q>,  Q) (<18,0,R>, R) (<18,0,S>,  S) (<18,0,V>,  V) (<18,0,W>,  W) (<18,0,X>, X) (<18,0,Y>, Y) (<18,0,Z>, Z) (<18,0,E1>, E1) 
          (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>,   ?) (<19,0,F>,  ?) (<19,0,H>,      ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>,  S) (<19,0,V>,  V) (<19,0,W>,  W) (<19,0,X>, X) (<19,0,Y>, Y) (<19,0,Z>, Z) (<19,0,E1>, E1) 
          (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>,   ?) (<20,0,F>, 49) (<20,0,H>,     50) (<20,0,I>,  I) (<20,0,M>,      M) (<20,0,Q>,  Q) (<20,0,R>, R) (<20,0,S>,  S) (<20,0,V>,  V) (<20,0,W>,  W) (<20,0,X>, X) (<20,0,Y>, Y) (<20,0,Z>, Z) (<20,0,E1>, E1) 
          (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>,   ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>,  0) (<21,0,M>,      M) (<21,0,Q>,  Q) (<21,0,R>, R) (<21,0,S>,  S) (<21,0,V>,  V) (<21,0,W>,  W) (<21,0,X>, X) (<21,0,Y>, Y) (<21,0,Z>, Z) (<21,0,E1>, E1) 
          (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>,  0) (<22,0,H>,      H) (<22,0,I>,  I) (<22,0,M>,      M) (<22,0,Q>,  Q) (<22,0,R>, R) (<22,0,S>,  S) (<22,0,V>,  V) (<22,0,W>,  W) (<22,0,X>, X) (<22,0,Y>, Y) (<22,0,Z>, Z) (<22,0,E1>, E1) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 20: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   -> f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   True         (1,1)   
          1.  f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)  [149 >= E]   (150,1) 
          2.  f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1)       [49 >= F]    (50,1)  
          3.  f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1)   [49 >= H]    (2500,1)
          4.  f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1)       [99 >= I]    (100,1) 
          5.  f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1)   [31 >= M]    (?,1)   
          6.  f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) [Q >= 0]     (100,1) 
          7.  f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1)   [49 >= S]    (50,1)  
          8.  f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1)   [V >= W]     (101,1) 
          9.  f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1)       [8 >= X]     (8,1)   
          10. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1)       [7 >= Y]     (?,1)   
          11. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1)   [3 >= Z]     (?,1)   
          12. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1)   [Z >= 4]     (?,1)   
          13. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1)   [Y >= 8]     (?,1)   
          15. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1)       [W >= 1 + V] (101,1) 
          16. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B)       [S >= 50]    (50,1)  
          17. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1)       [0 >= 1 + Q] (100,1) 
          18. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1)   [M >= 32]    (?,1)   
          19. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1)     [I >= 100]   (50,1)  
          20. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   [H >= 50]    (2500,1)
          21. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1)       [F >= 50]    (101,1) 
          22. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1)       [E >= 150]   (1,1)   
        Signature:
          {(f0,17)
          ;(f422,17)
          ;(f437,17)
          ;(f441,17)
          ;(f455,17)
          ;(f461,17)
          ;(f485,17)
          ;(f501,17)
          ;(f526,17)
          ;(f540,17)
          ;(f543,17)
          ;(f546,17)
          ;(f584,17)}
        Flow Graph:
          [0->{1},1->{1,22},2->{3},3->{3,20},4->{5},5->{5,18},6->{6,17},7->{7,16},8->{8,15},9->{10},10->{11},11->{11
          ,12},12->{10,13},13->{9},15->{9},16->{8},17->{7},18->{4,19},19->{6},20->{2,21},21->{4},22->{2}]
        Sizebounds:
          (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>,   0) (< 0,0,F>,  F) (< 0,0,H>,      H) (< 0,0,I>,  I) (< 0,0,M>,      M) (< 0,0,Q>,  Q) (< 0,0,R>, R) (< 0,0,S>,  S) (< 0,0,V>,  V) (< 0,0,W>,  W) (< 0,0,X>, X) (< 0,0,Y>, Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) 
          (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>,  F) (< 1,0,H>,      H) (< 1,0,I>,  I) (< 1,0,M>,      M) (< 1,0,Q>,  Q) (< 1,0,R>, R) (< 1,0,S>,  S) (< 1,0,V>,  V) (< 1,0,W>,  W) (< 1,0,X>, X) (< 1,0,Y>, Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) 
          (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>,   ?) (< 2,0,F>, 49) (< 2,0,H>,      0) (< 2,0,I>,  I) (< 2,0,M>,      M) (< 2,0,Q>,  Q) (< 2,0,R>, R) (< 2,0,S>,  S) (< 2,0,V>,  V) (< 2,0,W>,  W) (< 2,0,X>, X) (< 2,0,Y>, Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) 
          (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>,   ?) (< 3,0,F>, 49) (< 3,0,H>,     50) (< 3,0,I>,  I) (< 3,0,M>,      M) (< 3,0,Q>,  Q) (< 3,0,R>, R) (< 3,0,S>,  S) (< 3,0,V>,  V) (< 3,0,W>,  W) (< 3,0,X>, X) (< 3,0,Y>, Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) 
          (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>,   ?) (< 4,0,F>,  ?) (< 4,0,H>,      ?) (< 4,0,I>, 99) (< 4,0,M>,      0) (< 4,0,Q>,  Q) (< 4,0,R>, R) (< 4,0,S>,  S) (< 4,0,V>,  V) (< 4,0,W>,  W) (< 4,0,X>, X) (< 4,0,Y>, Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) 
          (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>,   ?) (< 5,0,F>,  ?) (< 5,0,H>,      ?) (< 5,0,I>, 99) (< 5,0,M>,     33) (< 5,0,Q>,  Q) (< 5,0,R>, R) (< 5,0,S>,  S) (< 5,0,V>,  V) (< 5,0,W>,  W) (< 5,0,X>, X) (< 5,0,Y>, Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) 
          (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>,   ?) (< 6,0,F>,  ?) (< 6,0,H>,      ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>,  ?) (< 6,0,R>, ?) (< 6,0,S>,  S) (< 6,0,V>,  V) (< 6,0,W>,  W) (< 6,0,X>, X) (< 6,0,Y>, Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) 
          (< 7,0,A>, ?) (< 7,0,B>,     ?) (< 7,0,C>, ?) (< 7,0,E>,   ?) (< 7,0,F>,  ?) (< 7,0,H>,      ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>,  ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>,  V) (< 7,0,W>,  W) (< 7,0,X>, X) (< 7,0,Y>, Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) 
          (< 8,0,A>, ?) (< 8,0,B>,     ?) (< 8,0,C>, ?) (< 8,0,E>,   ?) (< 8,0,F>,  ?) (< 8,0,H>,      ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>,  ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>, Y) (< 8,0,Z>, Z) (< 8,0,E1>,  ?) 
          (< 9,0,A>, ?) (< 9,0,B>,     ?) (< 9,0,C>, ?) (< 9,0,E>,   ?) (< 9,0,F>,  ?) (< 9,0,H>,      ?) (< 9,0,I>,  ?) (< 9,0,M>,      ?) (< 9,0,Q>,  ?) (< 9,0,R>, ?) (< 9,0,S>,  ?) (< 9,0,V>, 17) (< 9,0,W>,  ?) (< 9,0,X>, 8) (< 9,0,Y>, 0) (< 9,0,Z>, ?) (< 9,0,E1>,  ?) 
          (<10,0,A>, ?) (<10,0,B>,     ?) (<10,0,C>, ?) (<10,0,E>,   ?) (<10,0,F>,  ?) (<10,0,H>,      ?) (<10,0,I>,  ?) (<10,0,M>,      ?) (<10,0,Q>,  ?) (<10,0,R>, ?) (<10,0,S>,  ?) (<10,0,V>, 17) (<10,0,W>,  ?) (<10,0,X>, ?) (<10,0,Y>, 7) (<10,0,Z>, 0) (<10,0,E1>,  ?) 
          (<11,0,A>, ?) (<11,0,B>,     ?) (<11,0,C>, ?) (<11,0,E>,   ?) (<11,0,F>,  ?) (<11,0,H>,      ?) (<11,0,I>,  ?) (<11,0,M>,      ?) (<11,0,Q>,  ?) (<11,0,R>, ?) (<11,0,S>,  ?) (<11,0,V>, 17) (<11,0,W>,  ?) (<11,0,X>, ?) (<11,0,Y>, 7) (<11,0,Z>, 4) (<11,0,E1>,  ?) 
          (<12,0,A>, ?) (<12,0,B>,     ?) (<12,0,C>, ?) (<12,0,E>,   ?) (<12,0,F>,  ?) (<12,0,H>,      ?) (<12,0,I>,  ?) (<12,0,M>,      ?) (<12,0,Q>,  ?) (<12,0,R>, ?) (<12,0,S>,  ?) (<12,0,V>, 17) (<12,0,W>,  ?) (<12,0,X>, ?) (<12,0,Y>, 7) (<12,0,Z>, 4) (<12,0,E1>,  ?) 
          (<13,0,A>, ?) (<13,0,B>,     ?) (<13,0,C>, ?) (<13,0,E>,   ?) (<13,0,F>,  ?) (<13,0,H>,      ?) (<13,0,I>,  ?) (<13,0,M>,      ?) (<13,0,Q>,  ?) (<13,0,R>, ?) (<13,0,S>,  ?) (<13,0,V>, 17) (<13,0,W>,  ?) (<13,0,X>, ?) (<13,0,Y>, 7) (<13,0,Z>, ?) (<13,0,E1>,  ?) 
          (<15,0,A>, ?) (<15,0,B>,     ?) (<15,0,C>, ?) (<15,0,E>,   ?) (<15,0,F>,  ?) (<15,0,H>,      ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>,  ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>, Y) (<15,0,Z>, Z) (<15,0,E1>,  ?) 
          (<16,0,A>, ?) (<16,0,B>,     ?) (<16,0,C>, ?) (<16,0,E>,   ?) (<16,0,F>,  ?) (<16,0,H>,      ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>,  ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>,  2) (<16,0,X>, X) (<16,0,Y>, Y) (<16,0,Z>, Z) (<16,0,E1>,  ?) 
          (<17,0,A>, ?) (<17,0,B>,     ?) (<17,0,C>, ?) (<17,0,E>,   ?) (<17,0,F>,  ?) (<17,0,H>,      ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>,  ?) (<17,0,R>, ?) (<17,0,S>,  0) (<17,0,V>,  V) (<17,0,W>,  W) (<17,0,X>, X) (<17,0,Y>, Y) (<17,0,Z>, Z) (<17,0,E1>, E1) 
          (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>,   ?) (<18,0,F>,  ?) (<18,0,H>,      ?) (<18,0,I>, 99) (<18,0,M>,     33) (<18,0,Q>,  Q) (<18,0,R>, R) (<18,0,S>,  S) (<18,0,V>,  V) (<18,0,W>,  W) (<18,0,X>, X) (<18,0,Y>, Y) (<18,0,Z>, Z) (<18,0,E1>, E1) 
          (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>,   ?) (<19,0,F>,  ?) (<19,0,H>,      ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>,  S) (<19,0,V>,  V) (<19,0,W>,  W) (<19,0,X>, X) (<19,0,Y>, Y) (<19,0,Z>, Z) (<19,0,E1>, E1) 
          (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>,   ?) (<20,0,F>, 49) (<20,0,H>,     50) (<20,0,I>,  I) (<20,0,M>,      M) (<20,0,Q>,  Q) (<20,0,R>, R) (<20,0,S>,  S) (<20,0,V>,  V) (<20,0,W>,  W) (<20,0,X>, X) (<20,0,Y>, Y) (<20,0,Z>, Z) (<20,0,E1>, E1) 
          (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>,   ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>,  0) (<21,0,M>,      M) (<21,0,Q>,  Q) (<21,0,R>, R) (<21,0,S>,  S) (<21,0,V>,  V) (<21,0,W>,  W) (<21,0,X>, X) (<21,0,Y>, Y) (<21,0,Z>, Z) (<21,0,E1>, E1) 
          (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>,  0) (<22,0,H>,      H) (<22,0,I>,  I) (<22,0,M>,      M) (<22,0,Q>,  Q) (<22,0,R>, R) (<22,0,S>,  S) (<22,0,V>,  V) (<22,0,W>,  W) (<22,0,X>, X) (<22,0,Y>, Y) (<22,0,Z>, Z) (<22,0,E1>, E1) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [18,5], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f455) = 0
          p(f461) = 1
        
        The following rules are strictly oriented:
                                         [M >= 32] ==>                                             
          f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 1                                           
                                                     > 0                                           
                                                     = f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1)
        
        
        The following rules are weakly oriented:
                                         [31 >= M] ==>                                             
          f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 1                                           
                                                    >= 1                                           
                                                     = f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1)
        
        We use the following global sizebounds:
        (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>,   0) (< 0,0,F>,  F) (< 0,0,H>,      H) (< 0,0,I>,  I) (< 0,0,M>,      M) (< 0,0,Q>,  Q) (< 0,0,R>, R) (< 0,0,S>,  S) (< 0,0,V>,  V) (< 0,0,W>,  W) (< 0,0,X>, X) (< 0,0,Y>, Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) 
        (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>,  F) (< 1,0,H>,      H) (< 1,0,I>,  I) (< 1,0,M>,      M) (< 1,0,Q>,  Q) (< 1,0,R>, R) (< 1,0,S>,  S) (< 1,0,V>,  V) (< 1,0,W>,  W) (< 1,0,X>, X) (< 1,0,Y>, Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) 
        (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>,   ?) (< 2,0,F>, 49) (< 2,0,H>,      0) (< 2,0,I>,  I) (< 2,0,M>,      M) (< 2,0,Q>,  Q) (< 2,0,R>, R) (< 2,0,S>,  S) (< 2,0,V>,  V) (< 2,0,W>,  W) (< 2,0,X>, X) (< 2,0,Y>, Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) 
        (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>,   ?) (< 3,0,F>, 49) (< 3,0,H>,     50) (< 3,0,I>,  I) (< 3,0,M>,      M) (< 3,0,Q>,  Q) (< 3,0,R>, R) (< 3,0,S>,  S) (< 3,0,V>,  V) (< 3,0,W>,  W) (< 3,0,X>, X) (< 3,0,Y>, Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) 
        (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>,   ?) (< 4,0,F>,  ?) (< 4,0,H>,      ?) (< 4,0,I>, 99) (< 4,0,M>,      0) (< 4,0,Q>,  Q) (< 4,0,R>, R) (< 4,0,S>,  S) (< 4,0,V>,  V) (< 4,0,W>,  W) (< 4,0,X>, X) (< 4,0,Y>, Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) 
        (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>,   ?) (< 5,0,F>,  ?) (< 5,0,H>,      ?) (< 5,0,I>, 99) (< 5,0,M>,     33) (< 5,0,Q>,  Q) (< 5,0,R>, R) (< 5,0,S>,  S) (< 5,0,V>,  V) (< 5,0,W>,  W) (< 5,0,X>, X) (< 5,0,Y>, Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) 
        (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>,   ?) (< 6,0,F>,  ?) (< 6,0,H>,      ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>,  ?) (< 6,0,R>, ?) (< 6,0,S>,  S) (< 6,0,V>,  V) (< 6,0,W>,  W) (< 6,0,X>, X) (< 6,0,Y>, Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) 
        (< 7,0,A>, ?) (< 7,0,B>,     ?) (< 7,0,C>, ?) (< 7,0,E>,   ?) (< 7,0,F>,  ?) (< 7,0,H>,      ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>,  ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>,  V) (< 7,0,W>,  W) (< 7,0,X>, X) (< 7,0,Y>, Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) 
        (< 8,0,A>, ?) (< 8,0,B>,     ?) (< 8,0,C>, ?) (< 8,0,E>,   ?) (< 8,0,F>,  ?) (< 8,0,H>,      ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>,  ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>, Y) (< 8,0,Z>, Z) (< 8,0,E1>,  ?) 
        (< 9,0,A>, ?) (< 9,0,B>,     ?) (< 9,0,C>, ?) (< 9,0,E>,   ?) (< 9,0,F>,  ?) (< 9,0,H>,      ?) (< 9,0,I>,  ?) (< 9,0,M>,      ?) (< 9,0,Q>,  ?) (< 9,0,R>, ?) (< 9,0,S>,  ?) (< 9,0,V>, 17) (< 9,0,W>,  ?) (< 9,0,X>, 8) (< 9,0,Y>, 0) (< 9,0,Z>, ?) (< 9,0,E1>,  ?) 
        (<10,0,A>, ?) (<10,0,B>,     ?) (<10,0,C>, ?) (<10,0,E>,   ?) (<10,0,F>,  ?) (<10,0,H>,      ?) (<10,0,I>,  ?) (<10,0,M>,      ?) (<10,0,Q>,  ?) (<10,0,R>, ?) (<10,0,S>,  ?) (<10,0,V>, 17) (<10,0,W>,  ?) (<10,0,X>, ?) (<10,0,Y>, 7) (<10,0,Z>, 0) (<10,0,E1>,  ?) 
        (<11,0,A>, ?) (<11,0,B>,     ?) (<11,0,C>, ?) (<11,0,E>,   ?) (<11,0,F>,  ?) (<11,0,H>,      ?) (<11,0,I>,  ?) (<11,0,M>,      ?) (<11,0,Q>,  ?) (<11,0,R>, ?) (<11,0,S>,  ?) (<11,0,V>, 17) (<11,0,W>,  ?) (<11,0,X>, ?) (<11,0,Y>, 7) (<11,0,Z>, 4) (<11,0,E1>,  ?) 
        (<12,0,A>, ?) (<12,0,B>,     ?) (<12,0,C>, ?) (<12,0,E>,   ?) (<12,0,F>,  ?) (<12,0,H>,      ?) (<12,0,I>,  ?) (<12,0,M>,      ?) (<12,0,Q>,  ?) (<12,0,R>, ?) (<12,0,S>,  ?) (<12,0,V>, 17) (<12,0,W>,  ?) (<12,0,X>, ?) (<12,0,Y>, 7) (<12,0,Z>, 4) (<12,0,E1>,  ?) 
        (<13,0,A>, ?) (<13,0,B>,     ?) (<13,0,C>, ?) (<13,0,E>,   ?) (<13,0,F>,  ?) (<13,0,H>,      ?) (<13,0,I>,  ?) (<13,0,M>,      ?) (<13,0,Q>,  ?) (<13,0,R>, ?) (<13,0,S>,  ?) (<13,0,V>, 17) (<13,0,W>,  ?) (<13,0,X>, ?) (<13,0,Y>, 7) (<13,0,Z>, ?) (<13,0,E1>,  ?) 
        (<15,0,A>, ?) (<15,0,B>,     ?) (<15,0,C>, ?) (<15,0,E>,   ?) (<15,0,F>,  ?) (<15,0,H>,      ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>,  ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>, Y) (<15,0,Z>, Z) (<15,0,E1>,  ?) 
        (<16,0,A>, ?) (<16,0,B>,     ?) (<16,0,C>, ?) (<16,0,E>,   ?) (<16,0,F>,  ?) (<16,0,H>,      ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>,  ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>,  2) (<16,0,X>, X) (<16,0,Y>, Y) (<16,0,Z>, Z) (<16,0,E1>,  ?) 
        (<17,0,A>, ?) (<17,0,B>,     ?) (<17,0,C>, ?) (<17,0,E>,   ?) (<17,0,F>,  ?) (<17,0,H>,      ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>,  ?) (<17,0,R>, ?) (<17,0,S>,  0) (<17,0,V>,  V) (<17,0,W>,  W) (<17,0,X>, X) (<17,0,Y>, Y) (<17,0,Z>, Z) (<17,0,E1>, E1) 
        (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>,   ?) (<18,0,F>,  ?) (<18,0,H>,      ?) (<18,0,I>, 99) (<18,0,M>,     33) (<18,0,Q>,  Q) (<18,0,R>, R) (<18,0,S>,  S) (<18,0,V>,  V) (<18,0,W>,  W) (<18,0,X>, X) (<18,0,Y>, Y) (<18,0,Z>, Z) (<18,0,E1>, E1) 
        (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>,   ?) (<19,0,F>,  ?) (<19,0,H>,      ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>,  S) (<19,0,V>,  V) (<19,0,W>,  W) (<19,0,X>, X) (<19,0,Y>, Y) (<19,0,Z>, Z) (<19,0,E1>, E1) 
        (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>,   ?) (<20,0,F>, 49) (<20,0,H>,     50) (<20,0,I>,  I) (<20,0,M>,      M) (<20,0,Q>,  Q) (<20,0,R>, R) (<20,0,S>,  S) (<20,0,V>,  V) (<20,0,W>,  W) (<20,0,X>, X) (<20,0,Y>, Y) (<20,0,Z>, Z) (<20,0,E1>, E1) 
        (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>,   ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>,  0) (<21,0,M>,      M) (<21,0,Q>,  Q) (<21,0,R>, R) (<21,0,S>,  S) (<21,0,V>,  V) (<21,0,W>,  W) (<21,0,X>, X) (<21,0,Y>, Y) (<21,0,Z>, Z) (<21,0,E1>, E1) 
        (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>,  0) (<22,0,H>,      H) (<22,0,I>,  I) (<22,0,M>,      M) (<22,0,Q>,  Q) (<22,0,R>, R) (<22,0,S>,  S) (<22,0,V>,  V) (<22,0,W>,  W) (<22,0,X>, X) (<22,0,Y>, Y) (<22,0,Z>, Z) (<22,0,E1>, E1) 
* Step 21: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   -> f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   True         (1,1)   
          1.  f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)  [149 >= E]   (150,1) 
          2.  f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1)       [49 >= F]    (50,1)  
          3.  f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1)   [49 >= H]    (2500,1)
          4.  f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1)       [99 >= I]    (100,1) 
          5.  f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1)   [31 >= M]    (?,1)   
          6.  f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) [Q >= 0]     (100,1) 
          7.  f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1)   [49 >= S]    (50,1)  
          8.  f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1)   [V >= W]     (101,1) 
          9.  f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1)       [8 >= X]     (8,1)   
          10. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1)       [7 >= Y]     (?,1)   
          11. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1)   [3 >= Z]     (?,1)   
          12. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1)   [Z >= 4]     (?,1)   
          13. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1)   [Y >= 8]     (?,1)   
          15. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1)       [W >= 1 + V] (101,1) 
          16. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B)       [S >= 50]    (50,1)  
          17. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1)       [0 >= 1 + Q] (100,1) 
          18. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1)   [M >= 32]    (100,1) 
          19. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1)     [I >= 100]   (50,1)  
          20. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   [H >= 50]    (2500,1)
          21. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1)       [F >= 50]    (101,1) 
          22. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1)       [E >= 150]   (1,1)   
        Signature:
          {(f0,17)
          ;(f422,17)
          ;(f437,17)
          ;(f441,17)
          ;(f455,17)
          ;(f461,17)
          ;(f485,17)
          ;(f501,17)
          ;(f526,17)
          ;(f540,17)
          ;(f543,17)
          ;(f546,17)
          ;(f584,17)}
        Flow Graph:
          [0->{1},1->{1,22},2->{3},3->{3,20},4->{5},5->{5,18},6->{6,17},7->{7,16},8->{8,15},9->{10},10->{11},11->{11
          ,12},12->{10,13},13->{9},15->{9},16->{8},17->{7},18->{4,19},19->{6},20->{2,21},21->{4},22->{2}]
        Sizebounds:
          (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>,   0) (< 0,0,F>,  F) (< 0,0,H>,      H) (< 0,0,I>,  I) (< 0,0,M>,      M) (< 0,0,Q>,  Q) (< 0,0,R>, R) (< 0,0,S>,  S) (< 0,0,V>,  V) (< 0,0,W>,  W) (< 0,0,X>, X) (< 0,0,Y>, Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) 
          (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>,  F) (< 1,0,H>,      H) (< 1,0,I>,  I) (< 1,0,M>,      M) (< 1,0,Q>,  Q) (< 1,0,R>, R) (< 1,0,S>,  S) (< 1,0,V>,  V) (< 1,0,W>,  W) (< 1,0,X>, X) (< 1,0,Y>, Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) 
          (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>,   ?) (< 2,0,F>, 49) (< 2,0,H>,      0) (< 2,0,I>,  I) (< 2,0,M>,      M) (< 2,0,Q>,  Q) (< 2,0,R>, R) (< 2,0,S>,  S) (< 2,0,V>,  V) (< 2,0,W>,  W) (< 2,0,X>, X) (< 2,0,Y>, Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) 
          (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>,   ?) (< 3,0,F>, 49) (< 3,0,H>,     50) (< 3,0,I>,  I) (< 3,0,M>,      M) (< 3,0,Q>,  Q) (< 3,0,R>, R) (< 3,0,S>,  S) (< 3,0,V>,  V) (< 3,0,W>,  W) (< 3,0,X>, X) (< 3,0,Y>, Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) 
          (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>,   ?) (< 4,0,F>,  ?) (< 4,0,H>,      ?) (< 4,0,I>, 99) (< 4,0,M>,      0) (< 4,0,Q>,  Q) (< 4,0,R>, R) (< 4,0,S>,  S) (< 4,0,V>,  V) (< 4,0,W>,  W) (< 4,0,X>, X) (< 4,0,Y>, Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) 
          (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>,   ?) (< 5,0,F>,  ?) (< 5,0,H>,      ?) (< 5,0,I>, 99) (< 5,0,M>,     33) (< 5,0,Q>,  Q) (< 5,0,R>, R) (< 5,0,S>,  S) (< 5,0,V>,  V) (< 5,0,W>,  W) (< 5,0,X>, X) (< 5,0,Y>, Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) 
          (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>,   ?) (< 6,0,F>,  ?) (< 6,0,H>,      ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>,  ?) (< 6,0,R>, ?) (< 6,0,S>,  S) (< 6,0,V>,  V) (< 6,0,W>,  W) (< 6,0,X>, X) (< 6,0,Y>, Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) 
          (< 7,0,A>, ?) (< 7,0,B>,     ?) (< 7,0,C>, ?) (< 7,0,E>,   ?) (< 7,0,F>,  ?) (< 7,0,H>,      ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>,  ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>,  V) (< 7,0,W>,  W) (< 7,0,X>, X) (< 7,0,Y>, Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) 
          (< 8,0,A>, ?) (< 8,0,B>,     ?) (< 8,0,C>, ?) (< 8,0,E>,   ?) (< 8,0,F>,  ?) (< 8,0,H>,      ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>,  ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>, Y) (< 8,0,Z>, Z) (< 8,0,E1>,  ?) 
          (< 9,0,A>, ?) (< 9,0,B>,     ?) (< 9,0,C>, ?) (< 9,0,E>,   ?) (< 9,0,F>,  ?) (< 9,0,H>,      ?) (< 9,0,I>,  ?) (< 9,0,M>,      ?) (< 9,0,Q>,  ?) (< 9,0,R>, ?) (< 9,0,S>,  ?) (< 9,0,V>, 17) (< 9,0,W>,  ?) (< 9,0,X>, 8) (< 9,0,Y>, 0) (< 9,0,Z>, ?) (< 9,0,E1>,  ?) 
          (<10,0,A>, ?) (<10,0,B>,     ?) (<10,0,C>, ?) (<10,0,E>,   ?) (<10,0,F>,  ?) (<10,0,H>,      ?) (<10,0,I>,  ?) (<10,0,M>,      ?) (<10,0,Q>,  ?) (<10,0,R>, ?) (<10,0,S>,  ?) (<10,0,V>, 17) (<10,0,W>,  ?) (<10,0,X>, ?) (<10,0,Y>, 7) (<10,0,Z>, 0) (<10,0,E1>,  ?) 
          (<11,0,A>, ?) (<11,0,B>,     ?) (<11,0,C>, ?) (<11,0,E>,   ?) (<11,0,F>,  ?) (<11,0,H>,      ?) (<11,0,I>,  ?) (<11,0,M>,      ?) (<11,0,Q>,  ?) (<11,0,R>, ?) (<11,0,S>,  ?) (<11,0,V>, 17) (<11,0,W>,  ?) (<11,0,X>, ?) (<11,0,Y>, 7) (<11,0,Z>, 4) (<11,0,E1>,  ?) 
          (<12,0,A>, ?) (<12,0,B>,     ?) (<12,0,C>, ?) (<12,0,E>,   ?) (<12,0,F>,  ?) (<12,0,H>,      ?) (<12,0,I>,  ?) (<12,0,M>,      ?) (<12,0,Q>,  ?) (<12,0,R>, ?) (<12,0,S>,  ?) (<12,0,V>, 17) (<12,0,W>,  ?) (<12,0,X>, ?) (<12,0,Y>, 7) (<12,0,Z>, 4) (<12,0,E1>,  ?) 
          (<13,0,A>, ?) (<13,0,B>,     ?) (<13,0,C>, ?) (<13,0,E>,   ?) (<13,0,F>,  ?) (<13,0,H>,      ?) (<13,0,I>,  ?) (<13,0,M>,      ?) (<13,0,Q>,  ?) (<13,0,R>, ?) (<13,0,S>,  ?) (<13,0,V>, 17) (<13,0,W>,  ?) (<13,0,X>, ?) (<13,0,Y>, 7) (<13,0,Z>, ?) (<13,0,E1>,  ?) 
          (<15,0,A>, ?) (<15,0,B>,     ?) (<15,0,C>, ?) (<15,0,E>,   ?) (<15,0,F>,  ?) (<15,0,H>,      ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>,  ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>, Y) (<15,0,Z>, Z) (<15,0,E1>,  ?) 
          (<16,0,A>, ?) (<16,0,B>,     ?) (<16,0,C>, ?) (<16,0,E>,   ?) (<16,0,F>,  ?) (<16,0,H>,      ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>,  ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>,  2) (<16,0,X>, X) (<16,0,Y>, Y) (<16,0,Z>, Z) (<16,0,E1>,  ?) 
          (<17,0,A>, ?) (<17,0,B>,     ?) (<17,0,C>, ?) (<17,0,E>,   ?) (<17,0,F>,  ?) (<17,0,H>,      ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>,  ?) (<17,0,R>, ?) (<17,0,S>,  0) (<17,0,V>,  V) (<17,0,W>,  W) (<17,0,X>, X) (<17,0,Y>, Y) (<17,0,Z>, Z) (<17,0,E1>, E1) 
          (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>,   ?) (<18,0,F>,  ?) (<18,0,H>,      ?) (<18,0,I>, 99) (<18,0,M>,     33) (<18,0,Q>,  Q) (<18,0,R>, R) (<18,0,S>,  S) (<18,0,V>,  V) (<18,0,W>,  W) (<18,0,X>, X) (<18,0,Y>, Y) (<18,0,Z>, Z) (<18,0,E1>, E1) 
          (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>,   ?) (<19,0,F>,  ?) (<19,0,H>,      ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>,  S) (<19,0,V>,  V) (<19,0,W>,  W) (<19,0,X>, X) (<19,0,Y>, Y) (<19,0,Z>, Z) (<19,0,E1>, E1) 
          (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>,   ?) (<20,0,F>, 49) (<20,0,H>,     50) (<20,0,I>,  I) (<20,0,M>,      M) (<20,0,Q>,  Q) (<20,0,R>, R) (<20,0,S>,  S) (<20,0,V>,  V) (<20,0,W>,  W) (<20,0,X>, X) (<20,0,Y>, Y) (<20,0,Z>, Z) (<20,0,E1>, E1) 
          (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>,   ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>,  0) (<21,0,M>,      M) (<21,0,Q>,  Q) (<21,0,R>, R) (<21,0,S>,  S) (<21,0,V>,  V) (<21,0,W>,  W) (<21,0,X>, X) (<21,0,Y>, Y) (<21,0,Z>, Z) (<21,0,E1>, E1) 
          (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>,  0) (<22,0,H>,      H) (<22,0,I>,  I) (<22,0,M>,      M) (<22,0,Q>,  Q) (<22,0,R>, R) (<22,0,S>,  S) (<22,0,V>,  V) (<22,0,W>,  W) (<22,0,X>, X) (<22,0,Y>, Y) (<22,0,Z>, Z) (<22,0,E1>, E1) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [5], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f461) = 32 + -1*x8
        
        The following rules are strictly oriented:
                                         [31 >= M] ==>                                             
          f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 32 + -1*M                                   
                                                     > 30 + -1*M                                   
                                                     = f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1)
        
        
        The following rules are weakly oriented:
        
        We use the following global sizebounds:
        (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>,   0) (< 0,0,F>,  F) (< 0,0,H>,      H) (< 0,0,I>,  I) (< 0,0,M>,      M) (< 0,0,Q>,  Q) (< 0,0,R>, R) (< 0,0,S>,  S) (< 0,0,V>,  V) (< 0,0,W>,  W) (< 0,0,X>, X) (< 0,0,Y>, Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) 
        (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>,  F) (< 1,0,H>,      H) (< 1,0,I>,  I) (< 1,0,M>,      M) (< 1,0,Q>,  Q) (< 1,0,R>, R) (< 1,0,S>,  S) (< 1,0,V>,  V) (< 1,0,W>,  W) (< 1,0,X>, X) (< 1,0,Y>, Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) 
        (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>,   ?) (< 2,0,F>, 49) (< 2,0,H>,      0) (< 2,0,I>,  I) (< 2,0,M>,      M) (< 2,0,Q>,  Q) (< 2,0,R>, R) (< 2,0,S>,  S) (< 2,0,V>,  V) (< 2,0,W>,  W) (< 2,0,X>, X) (< 2,0,Y>, Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) 
        (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>,   ?) (< 3,0,F>, 49) (< 3,0,H>,     50) (< 3,0,I>,  I) (< 3,0,M>,      M) (< 3,0,Q>,  Q) (< 3,0,R>, R) (< 3,0,S>,  S) (< 3,0,V>,  V) (< 3,0,W>,  W) (< 3,0,X>, X) (< 3,0,Y>, Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) 
        (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>,   ?) (< 4,0,F>,  ?) (< 4,0,H>,      ?) (< 4,0,I>, 99) (< 4,0,M>,      0) (< 4,0,Q>,  Q) (< 4,0,R>, R) (< 4,0,S>,  S) (< 4,0,V>,  V) (< 4,0,W>,  W) (< 4,0,X>, X) (< 4,0,Y>, Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) 
        (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>,   ?) (< 5,0,F>,  ?) (< 5,0,H>,      ?) (< 5,0,I>, 99) (< 5,0,M>,     33) (< 5,0,Q>,  Q) (< 5,0,R>, R) (< 5,0,S>,  S) (< 5,0,V>,  V) (< 5,0,W>,  W) (< 5,0,X>, X) (< 5,0,Y>, Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) 
        (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>,   ?) (< 6,0,F>,  ?) (< 6,0,H>,      ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>,  ?) (< 6,0,R>, ?) (< 6,0,S>,  S) (< 6,0,V>,  V) (< 6,0,W>,  W) (< 6,0,X>, X) (< 6,0,Y>, Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) 
        (< 7,0,A>, ?) (< 7,0,B>,     ?) (< 7,0,C>, ?) (< 7,0,E>,   ?) (< 7,0,F>,  ?) (< 7,0,H>,      ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>,  ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>,  V) (< 7,0,W>,  W) (< 7,0,X>, X) (< 7,0,Y>, Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) 
        (< 8,0,A>, ?) (< 8,0,B>,     ?) (< 8,0,C>, ?) (< 8,0,E>,   ?) (< 8,0,F>,  ?) (< 8,0,H>,      ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>,  ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>, Y) (< 8,0,Z>, Z) (< 8,0,E1>,  ?) 
        (< 9,0,A>, ?) (< 9,0,B>,     ?) (< 9,0,C>, ?) (< 9,0,E>,   ?) (< 9,0,F>,  ?) (< 9,0,H>,      ?) (< 9,0,I>,  ?) (< 9,0,M>,      ?) (< 9,0,Q>,  ?) (< 9,0,R>, ?) (< 9,0,S>,  ?) (< 9,0,V>, 17) (< 9,0,W>,  ?) (< 9,0,X>, 8) (< 9,0,Y>, 0) (< 9,0,Z>, ?) (< 9,0,E1>,  ?) 
        (<10,0,A>, ?) (<10,0,B>,     ?) (<10,0,C>, ?) (<10,0,E>,   ?) (<10,0,F>,  ?) (<10,0,H>,      ?) (<10,0,I>,  ?) (<10,0,M>,      ?) (<10,0,Q>,  ?) (<10,0,R>, ?) (<10,0,S>,  ?) (<10,0,V>, 17) (<10,0,W>,  ?) (<10,0,X>, ?) (<10,0,Y>, 7) (<10,0,Z>, 0) (<10,0,E1>,  ?) 
        (<11,0,A>, ?) (<11,0,B>,     ?) (<11,0,C>, ?) (<11,0,E>,   ?) (<11,0,F>,  ?) (<11,0,H>,      ?) (<11,0,I>,  ?) (<11,0,M>,      ?) (<11,0,Q>,  ?) (<11,0,R>, ?) (<11,0,S>,  ?) (<11,0,V>, 17) (<11,0,W>,  ?) (<11,0,X>, ?) (<11,0,Y>, 7) (<11,0,Z>, 4) (<11,0,E1>,  ?) 
        (<12,0,A>, ?) (<12,0,B>,     ?) (<12,0,C>, ?) (<12,0,E>,   ?) (<12,0,F>,  ?) (<12,0,H>,      ?) (<12,0,I>,  ?) (<12,0,M>,      ?) (<12,0,Q>,  ?) (<12,0,R>, ?) (<12,0,S>,  ?) (<12,0,V>, 17) (<12,0,W>,  ?) (<12,0,X>, ?) (<12,0,Y>, 7) (<12,0,Z>, 4) (<12,0,E1>,  ?) 
        (<13,0,A>, ?) (<13,0,B>,     ?) (<13,0,C>, ?) (<13,0,E>,   ?) (<13,0,F>,  ?) (<13,0,H>,      ?) (<13,0,I>,  ?) (<13,0,M>,      ?) (<13,0,Q>,  ?) (<13,0,R>, ?) (<13,0,S>,  ?) (<13,0,V>, 17) (<13,0,W>,  ?) (<13,0,X>, ?) (<13,0,Y>, 7) (<13,0,Z>, ?) (<13,0,E1>,  ?) 
        (<15,0,A>, ?) (<15,0,B>,     ?) (<15,0,C>, ?) (<15,0,E>,   ?) (<15,0,F>,  ?) (<15,0,H>,      ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>,  ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>, Y) (<15,0,Z>, Z) (<15,0,E1>,  ?) 
        (<16,0,A>, ?) (<16,0,B>,     ?) (<16,0,C>, ?) (<16,0,E>,   ?) (<16,0,F>,  ?) (<16,0,H>,      ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>,  ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>,  2) (<16,0,X>, X) (<16,0,Y>, Y) (<16,0,Z>, Z) (<16,0,E1>,  ?) 
        (<17,0,A>, ?) (<17,0,B>,     ?) (<17,0,C>, ?) (<17,0,E>,   ?) (<17,0,F>,  ?) (<17,0,H>,      ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>,  ?) (<17,0,R>, ?) (<17,0,S>,  0) (<17,0,V>,  V) (<17,0,W>,  W) (<17,0,X>, X) (<17,0,Y>, Y) (<17,0,Z>, Z) (<17,0,E1>, E1) 
        (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>,   ?) (<18,0,F>,  ?) (<18,0,H>,      ?) (<18,0,I>, 99) (<18,0,M>,     33) (<18,0,Q>,  Q) (<18,0,R>, R) (<18,0,S>,  S) (<18,0,V>,  V) (<18,0,W>,  W) (<18,0,X>, X) (<18,0,Y>, Y) (<18,0,Z>, Z) (<18,0,E1>, E1) 
        (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>,   ?) (<19,0,F>,  ?) (<19,0,H>,      ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>,  S) (<19,0,V>,  V) (<19,0,W>,  W) (<19,0,X>, X) (<19,0,Y>, Y) (<19,0,Z>, Z) (<19,0,E1>, E1) 
        (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>,   ?) (<20,0,F>, 49) (<20,0,H>,     50) (<20,0,I>,  I) (<20,0,M>,      M) (<20,0,Q>,  Q) (<20,0,R>, R) (<20,0,S>,  S) (<20,0,V>,  V) (<20,0,W>,  W) (<20,0,X>, X) (<20,0,Y>, Y) (<20,0,Z>, Z) (<20,0,E1>, E1) 
        (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>,   ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>,  0) (<21,0,M>,      M) (<21,0,Q>,  Q) (<21,0,R>, R) (<21,0,S>,  S) (<21,0,V>,  V) (<21,0,W>,  W) (<21,0,X>, X) (<21,0,Y>, Y) (<21,0,Z>, Z) (<21,0,E1>, E1) 
        (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>,  0) (<22,0,H>,      H) (<22,0,I>,  I) (<22,0,M>,      M) (<22,0,Q>,  Q) (<22,0,R>, R) (<22,0,S>,  S) (<22,0,V>,  V) (<22,0,W>,  W) (<22,0,X>, X) (<22,0,Y>, Y) (<22,0,Z>, Z) (<22,0,E1>, E1) 
* Step 22: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   -> f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   True         (1,1)   
          1.  f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)  [149 >= E]   (150,1) 
          2.  f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1)       [49 >= F]    (50,1)  
          3.  f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1)   [49 >= H]    (2500,1)
          4.  f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1)       [99 >= I]    (100,1) 
          5.  f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1)   [31 >= M]    (3200,1)
          6.  f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) [Q >= 0]     (100,1) 
          7.  f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1)   [49 >= S]    (50,1)  
          8.  f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1)   [V >= W]     (101,1) 
          9.  f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1)       [8 >= X]     (8,1)   
          10. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1)       [7 >= Y]     (?,1)   
          11. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1)   [3 >= Z]     (?,1)   
          12. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1)   [Z >= 4]     (?,1)   
          13. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1)   [Y >= 8]     (?,1)   
          15. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1)       [W >= 1 + V] (101,1) 
          16. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B)       [S >= 50]    (50,1)  
          17. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1)       [0 >= 1 + Q] (100,1) 
          18. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1)   [M >= 32]    (100,1) 
          19. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1)     [I >= 100]   (50,1)  
          20. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   [H >= 50]    (2500,1)
          21. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1)       [F >= 50]    (101,1) 
          22. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1)       [E >= 150]   (1,1)   
        Signature:
          {(f0,17)
          ;(f422,17)
          ;(f437,17)
          ;(f441,17)
          ;(f455,17)
          ;(f461,17)
          ;(f485,17)
          ;(f501,17)
          ;(f526,17)
          ;(f540,17)
          ;(f543,17)
          ;(f546,17)
          ;(f584,17)}
        Flow Graph:
          [0->{1},1->{1,22},2->{3},3->{3,20},4->{5},5->{5,18},6->{6,17},7->{7,16},8->{8,15},9->{10},10->{11},11->{11
          ,12},12->{10,13},13->{9},15->{9},16->{8},17->{7},18->{4,19},19->{6},20->{2,21},21->{4},22->{2}]
        Sizebounds:
          (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>,   0) (< 0,0,F>,  F) (< 0,0,H>,      H) (< 0,0,I>,  I) (< 0,0,M>,      M) (< 0,0,Q>,  Q) (< 0,0,R>, R) (< 0,0,S>,  S) (< 0,0,V>,  V) (< 0,0,W>,  W) (< 0,0,X>, X) (< 0,0,Y>, Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) 
          (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>,  F) (< 1,0,H>,      H) (< 1,0,I>,  I) (< 1,0,M>,      M) (< 1,0,Q>,  Q) (< 1,0,R>, R) (< 1,0,S>,  S) (< 1,0,V>,  V) (< 1,0,W>,  W) (< 1,0,X>, X) (< 1,0,Y>, Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) 
          (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>,   ?) (< 2,0,F>, 49) (< 2,0,H>,      0) (< 2,0,I>,  I) (< 2,0,M>,      M) (< 2,0,Q>,  Q) (< 2,0,R>, R) (< 2,0,S>,  S) (< 2,0,V>,  V) (< 2,0,W>,  W) (< 2,0,X>, X) (< 2,0,Y>, Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) 
          (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>,   ?) (< 3,0,F>, 49) (< 3,0,H>,     50) (< 3,0,I>,  I) (< 3,0,M>,      M) (< 3,0,Q>,  Q) (< 3,0,R>, R) (< 3,0,S>,  S) (< 3,0,V>,  V) (< 3,0,W>,  W) (< 3,0,X>, X) (< 3,0,Y>, Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) 
          (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>,   ?) (< 4,0,F>,  ?) (< 4,0,H>,      ?) (< 4,0,I>, 99) (< 4,0,M>,      0) (< 4,0,Q>,  Q) (< 4,0,R>, R) (< 4,0,S>,  S) (< 4,0,V>,  V) (< 4,0,W>,  W) (< 4,0,X>, X) (< 4,0,Y>, Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) 
          (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>,   ?) (< 5,0,F>,  ?) (< 5,0,H>,      ?) (< 5,0,I>, 99) (< 5,0,M>,     33) (< 5,0,Q>,  Q) (< 5,0,R>, R) (< 5,0,S>,  S) (< 5,0,V>,  V) (< 5,0,W>,  W) (< 5,0,X>, X) (< 5,0,Y>, Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) 
          (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>,   ?) (< 6,0,F>,  ?) (< 6,0,H>,      ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>,  ?) (< 6,0,R>, ?) (< 6,0,S>,  S) (< 6,0,V>,  V) (< 6,0,W>,  W) (< 6,0,X>, X) (< 6,0,Y>, Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) 
          (< 7,0,A>, ?) (< 7,0,B>,     ?) (< 7,0,C>, ?) (< 7,0,E>,   ?) (< 7,0,F>,  ?) (< 7,0,H>,      ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>,  ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>,  V) (< 7,0,W>,  W) (< 7,0,X>, X) (< 7,0,Y>, Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) 
          (< 8,0,A>, ?) (< 8,0,B>,     ?) (< 8,0,C>, ?) (< 8,0,E>,   ?) (< 8,0,F>,  ?) (< 8,0,H>,      ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>,  ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>, Y) (< 8,0,Z>, Z) (< 8,0,E1>,  ?) 
          (< 9,0,A>, ?) (< 9,0,B>,     ?) (< 9,0,C>, ?) (< 9,0,E>,   ?) (< 9,0,F>,  ?) (< 9,0,H>,      ?) (< 9,0,I>,  ?) (< 9,0,M>,      ?) (< 9,0,Q>,  ?) (< 9,0,R>, ?) (< 9,0,S>,  ?) (< 9,0,V>, 17) (< 9,0,W>,  ?) (< 9,0,X>, 8) (< 9,0,Y>, 0) (< 9,0,Z>, ?) (< 9,0,E1>,  ?) 
          (<10,0,A>, ?) (<10,0,B>,     ?) (<10,0,C>, ?) (<10,0,E>,   ?) (<10,0,F>,  ?) (<10,0,H>,      ?) (<10,0,I>,  ?) (<10,0,M>,      ?) (<10,0,Q>,  ?) (<10,0,R>, ?) (<10,0,S>,  ?) (<10,0,V>, 17) (<10,0,W>,  ?) (<10,0,X>, ?) (<10,0,Y>, 7) (<10,0,Z>, 0) (<10,0,E1>,  ?) 
          (<11,0,A>, ?) (<11,0,B>,     ?) (<11,0,C>, ?) (<11,0,E>,   ?) (<11,0,F>,  ?) (<11,0,H>,      ?) (<11,0,I>,  ?) (<11,0,M>,      ?) (<11,0,Q>,  ?) (<11,0,R>, ?) (<11,0,S>,  ?) (<11,0,V>, 17) (<11,0,W>,  ?) (<11,0,X>, ?) (<11,0,Y>, 7) (<11,0,Z>, 4) (<11,0,E1>,  ?) 
          (<12,0,A>, ?) (<12,0,B>,     ?) (<12,0,C>, ?) (<12,0,E>,   ?) (<12,0,F>,  ?) (<12,0,H>,      ?) (<12,0,I>,  ?) (<12,0,M>,      ?) (<12,0,Q>,  ?) (<12,0,R>, ?) (<12,0,S>,  ?) (<12,0,V>, 17) (<12,0,W>,  ?) (<12,0,X>, ?) (<12,0,Y>, 7) (<12,0,Z>, 4) (<12,0,E1>,  ?) 
          (<13,0,A>, ?) (<13,0,B>,     ?) (<13,0,C>, ?) (<13,0,E>,   ?) (<13,0,F>,  ?) (<13,0,H>,      ?) (<13,0,I>,  ?) (<13,0,M>,      ?) (<13,0,Q>,  ?) (<13,0,R>, ?) (<13,0,S>,  ?) (<13,0,V>, 17) (<13,0,W>,  ?) (<13,0,X>, ?) (<13,0,Y>, 7) (<13,0,Z>, ?) (<13,0,E1>,  ?) 
          (<15,0,A>, ?) (<15,0,B>,     ?) (<15,0,C>, ?) (<15,0,E>,   ?) (<15,0,F>,  ?) (<15,0,H>,      ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>,  ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>, Y) (<15,0,Z>, Z) (<15,0,E1>,  ?) 
          (<16,0,A>, ?) (<16,0,B>,     ?) (<16,0,C>, ?) (<16,0,E>,   ?) (<16,0,F>,  ?) (<16,0,H>,      ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>,  ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>,  2) (<16,0,X>, X) (<16,0,Y>, Y) (<16,0,Z>, Z) (<16,0,E1>,  ?) 
          (<17,0,A>, ?) (<17,0,B>,     ?) (<17,0,C>, ?) (<17,0,E>,   ?) (<17,0,F>,  ?) (<17,0,H>,      ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>,  ?) (<17,0,R>, ?) (<17,0,S>,  0) (<17,0,V>,  V) (<17,0,W>,  W) (<17,0,X>, X) (<17,0,Y>, Y) (<17,0,Z>, Z) (<17,0,E1>, E1) 
          (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>,   ?) (<18,0,F>,  ?) (<18,0,H>,      ?) (<18,0,I>, 99) (<18,0,M>,     33) (<18,0,Q>,  Q) (<18,0,R>, R) (<18,0,S>,  S) (<18,0,V>,  V) (<18,0,W>,  W) (<18,0,X>, X) (<18,0,Y>, Y) (<18,0,Z>, Z) (<18,0,E1>, E1) 
          (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>,   ?) (<19,0,F>,  ?) (<19,0,H>,      ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>,  S) (<19,0,V>,  V) (<19,0,W>,  W) (<19,0,X>, X) (<19,0,Y>, Y) (<19,0,Z>, Z) (<19,0,E1>, E1) 
          (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>,   ?) (<20,0,F>, 49) (<20,0,H>,     50) (<20,0,I>,  I) (<20,0,M>,      M) (<20,0,Q>,  Q) (<20,0,R>, R) (<20,0,S>,  S) (<20,0,V>,  V) (<20,0,W>,  W) (<20,0,X>, X) (<20,0,Y>, Y) (<20,0,Z>, Z) (<20,0,E1>, E1) 
          (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>,   ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>,  0) (<21,0,M>,      M) (<21,0,Q>,  Q) (<21,0,R>, R) (<21,0,S>,  S) (<21,0,V>,  V) (<21,0,W>,  W) (<21,0,X>, X) (<21,0,Y>, Y) (<21,0,Z>, Z) (<21,0,E1>, E1) 
          (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>,  0) (<22,0,H>,      H) (<22,0,I>,  I) (<22,0,M>,      M) (<22,0,Q>,  Q) (<22,0,R>, R) (<22,0,S>,  S) (<22,0,V>,  V) (<22,0,W>,  W) (<22,0,X>, X) (<22,0,Y>, Y) (<22,0,Z>, Z) (<22,0,E1>, E1) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [12,11,10], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f543) = 8 + -1*x15
          p(f546) = 7 + -1*x15
        
        The following rules are strictly oriented:
                                          [7 >= Y] ==>                                         
          f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 8 + -1*Y                                
                                                     > 7 + -1*Y                                
                                                     = f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1)
        
        
        The following rules are weakly oriented:
                                          [3 >= Z] ==>                                             
          f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 7 + -1*Y                                    
                                                    >= 7 + -1*Y                                    
                                                     = f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1)
        
                                          [Z >= 4] ==>                                             
          f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 7 + -1*Y                                    
                                                    >= 7 + -1*Y                                    
                                                     = f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1)
        
        We use the following global sizebounds:
        (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>,   0) (< 0,0,F>,  F) (< 0,0,H>,      H) (< 0,0,I>,  I) (< 0,0,M>,      M) (< 0,0,Q>,  Q) (< 0,0,R>, R) (< 0,0,S>,  S) (< 0,0,V>,  V) (< 0,0,W>,  W) (< 0,0,X>, X) (< 0,0,Y>, Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) 
        (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>,  F) (< 1,0,H>,      H) (< 1,0,I>,  I) (< 1,0,M>,      M) (< 1,0,Q>,  Q) (< 1,0,R>, R) (< 1,0,S>,  S) (< 1,0,V>,  V) (< 1,0,W>,  W) (< 1,0,X>, X) (< 1,0,Y>, Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) 
        (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>,   ?) (< 2,0,F>, 49) (< 2,0,H>,      0) (< 2,0,I>,  I) (< 2,0,M>,      M) (< 2,0,Q>,  Q) (< 2,0,R>, R) (< 2,0,S>,  S) (< 2,0,V>,  V) (< 2,0,W>,  W) (< 2,0,X>, X) (< 2,0,Y>, Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) 
        (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>,   ?) (< 3,0,F>, 49) (< 3,0,H>,     50) (< 3,0,I>,  I) (< 3,0,M>,      M) (< 3,0,Q>,  Q) (< 3,0,R>, R) (< 3,0,S>,  S) (< 3,0,V>,  V) (< 3,0,W>,  W) (< 3,0,X>, X) (< 3,0,Y>, Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) 
        (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>,   ?) (< 4,0,F>,  ?) (< 4,0,H>,      ?) (< 4,0,I>, 99) (< 4,0,M>,      0) (< 4,0,Q>,  Q) (< 4,0,R>, R) (< 4,0,S>,  S) (< 4,0,V>,  V) (< 4,0,W>,  W) (< 4,0,X>, X) (< 4,0,Y>, Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) 
        (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>,   ?) (< 5,0,F>,  ?) (< 5,0,H>,      ?) (< 5,0,I>, 99) (< 5,0,M>,     33) (< 5,0,Q>,  Q) (< 5,0,R>, R) (< 5,0,S>,  S) (< 5,0,V>,  V) (< 5,0,W>,  W) (< 5,0,X>, X) (< 5,0,Y>, Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) 
        (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>,   ?) (< 6,0,F>,  ?) (< 6,0,H>,      ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>,  ?) (< 6,0,R>, ?) (< 6,0,S>,  S) (< 6,0,V>,  V) (< 6,0,W>,  W) (< 6,0,X>, X) (< 6,0,Y>, Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) 
        (< 7,0,A>, ?) (< 7,0,B>,     ?) (< 7,0,C>, ?) (< 7,0,E>,   ?) (< 7,0,F>,  ?) (< 7,0,H>,      ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>,  ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>,  V) (< 7,0,W>,  W) (< 7,0,X>, X) (< 7,0,Y>, Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) 
        (< 8,0,A>, ?) (< 8,0,B>,     ?) (< 8,0,C>, ?) (< 8,0,E>,   ?) (< 8,0,F>,  ?) (< 8,0,H>,      ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>,  ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>, Y) (< 8,0,Z>, Z) (< 8,0,E1>,  ?) 
        (< 9,0,A>, ?) (< 9,0,B>,     ?) (< 9,0,C>, ?) (< 9,0,E>,   ?) (< 9,0,F>,  ?) (< 9,0,H>,      ?) (< 9,0,I>,  ?) (< 9,0,M>,      ?) (< 9,0,Q>,  ?) (< 9,0,R>, ?) (< 9,0,S>,  ?) (< 9,0,V>, 17) (< 9,0,W>,  ?) (< 9,0,X>, 8) (< 9,0,Y>, 0) (< 9,0,Z>, ?) (< 9,0,E1>,  ?) 
        (<10,0,A>, ?) (<10,0,B>,     ?) (<10,0,C>, ?) (<10,0,E>,   ?) (<10,0,F>,  ?) (<10,0,H>,      ?) (<10,0,I>,  ?) (<10,0,M>,      ?) (<10,0,Q>,  ?) (<10,0,R>, ?) (<10,0,S>,  ?) (<10,0,V>, 17) (<10,0,W>,  ?) (<10,0,X>, ?) (<10,0,Y>, 7) (<10,0,Z>, 0) (<10,0,E1>,  ?) 
        (<11,0,A>, ?) (<11,0,B>,     ?) (<11,0,C>, ?) (<11,0,E>,   ?) (<11,0,F>,  ?) (<11,0,H>,      ?) (<11,0,I>,  ?) (<11,0,M>,      ?) (<11,0,Q>,  ?) (<11,0,R>, ?) (<11,0,S>,  ?) (<11,0,V>, 17) (<11,0,W>,  ?) (<11,0,X>, ?) (<11,0,Y>, 7) (<11,0,Z>, 4) (<11,0,E1>,  ?) 
        (<12,0,A>, ?) (<12,0,B>,     ?) (<12,0,C>, ?) (<12,0,E>,   ?) (<12,0,F>,  ?) (<12,0,H>,      ?) (<12,0,I>,  ?) (<12,0,M>,      ?) (<12,0,Q>,  ?) (<12,0,R>, ?) (<12,0,S>,  ?) (<12,0,V>, 17) (<12,0,W>,  ?) (<12,0,X>, ?) (<12,0,Y>, 7) (<12,0,Z>, 4) (<12,0,E1>,  ?) 
        (<13,0,A>, ?) (<13,0,B>,     ?) (<13,0,C>, ?) (<13,0,E>,   ?) (<13,0,F>,  ?) (<13,0,H>,      ?) (<13,0,I>,  ?) (<13,0,M>,      ?) (<13,0,Q>,  ?) (<13,0,R>, ?) (<13,0,S>,  ?) (<13,0,V>, 17) (<13,0,W>,  ?) (<13,0,X>, ?) (<13,0,Y>, 7) (<13,0,Z>, ?) (<13,0,E1>,  ?) 
        (<15,0,A>, ?) (<15,0,B>,     ?) (<15,0,C>, ?) (<15,0,E>,   ?) (<15,0,F>,  ?) (<15,0,H>,      ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>,  ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>, Y) (<15,0,Z>, Z) (<15,0,E1>,  ?) 
        (<16,0,A>, ?) (<16,0,B>,     ?) (<16,0,C>, ?) (<16,0,E>,   ?) (<16,0,F>,  ?) (<16,0,H>,      ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>,  ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>,  2) (<16,0,X>, X) (<16,0,Y>, Y) (<16,0,Z>, Z) (<16,0,E1>,  ?) 
        (<17,0,A>, ?) (<17,0,B>,     ?) (<17,0,C>, ?) (<17,0,E>,   ?) (<17,0,F>,  ?) (<17,0,H>,      ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>,  ?) (<17,0,R>, ?) (<17,0,S>,  0) (<17,0,V>,  V) (<17,0,W>,  W) (<17,0,X>, X) (<17,0,Y>, Y) (<17,0,Z>, Z) (<17,0,E1>, E1) 
        (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>,   ?) (<18,0,F>,  ?) (<18,0,H>,      ?) (<18,0,I>, 99) (<18,0,M>,     33) (<18,0,Q>,  Q) (<18,0,R>, R) (<18,0,S>,  S) (<18,0,V>,  V) (<18,0,W>,  W) (<18,0,X>, X) (<18,0,Y>, Y) (<18,0,Z>, Z) (<18,0,E1>, E1) 
        (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>,   ?) (<19,0,F>,  ?) (<19,0,H>,      ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>,  S) (<19,0,V>,  V) (<19,0,W>,  W) (<19,0,X>, X) (<19,0,Y>, Y) (<19,0,Z>, Z) (<19,0,E1>, E1) 
        (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>,   ?) (<20,0,F>, 49) (<20,0,H>,     50) (<20,0,I>,  I) (<20,0,M>,      M) (<20,0,Q>,  Q) (<20,0,R>, R) (<20,0,S>,  S) (<20,0,V>,  V) (<20,0,W>,  W) (<20,0,X>, X) (<20,0,Y>, Y) (<20,0,Z>, Z) (<20,0,E1>, E1) 
        (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>,   ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>,  0) (<21,0,M>,      M) (<21,0,Q>,  Q) (<21,0,R>, R) (<21,0,S>,  S) (<21,0,V>,  V) (<21,0,W>,  W) (<21,0,X>, X) (<21,0,Y>, Y) (<21,0,Z>, Z) (<21,0,E1>, E1) 
        (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>,  0) (<22,0,H>,      H) (<22,0,I>,  I) (<22,0,M>,      M) (<22,0,Q>,  Q) (<22,0,R>, R) (<22,0,S>,  S) (<22,0,V>,  V) (<22,0,W>,  W) (<22,0,X>, X) (<22,0,Y>, Y) (<22,0,Z>, Z) (<22,0,E1>, E1) 
* Step 23: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   -> f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   True         (1,1)   
          1.  f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)  [149 >= E]   (150,1) 
          2.  f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1)       [49 >= F]    (50,1)  
          3.  f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1)   [49 >= H]    (2500,1)
          4.  f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1)       [99 >= I]    (100,1) 
          5.  f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1)   [31 >= M]    (3200,1)
          6.  f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) [Q >= 0]     (100,1) 
          7.  f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1)   [49 >= S]    (50,1)  
          8.  f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1)   [V >= W]     (101,1) 
          9.  f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1)       [8 >= X]     (8,1)   
          10. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1)       [7 >= Y]     (64,1)  
          11. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1)   [3 >= Z]     (?,1)   
          12. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1)   [Z >= 4]     (?,1)   
          13. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1)   [Y >= 8]     (?,1)   
          15. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1)       [W >= 1 + V] (101,1) 
          16. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B)       [S >= 50]    (50,1)  
          17. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1)       [0 >= 1 + Q] (100,1) 
          18. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1)   [M >= 32]    (100,1) 
          19. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1)     [I >= 100]   (50,1)  
          20. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   [H >= 50]    (2500,1)
          21. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1)       [F >= 50]    (101,1) 
          22. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1)       [E >= 150]   (1,1)   
        Signature:
          {(f0,17)
          ;(f422,17)
          ;(f437,17)
          ;(f441,17)
          ;(f455,17)
          ;(f461,17)
          ;(f485,17)
          ;(f501,17)
          ;(f526,17)
          ;(f540,17)
          ;(f543,17)
          ;(f546,17)
          ;(f584,17)}
        Flow Graph:
          [0->{1},1->{1,22},2->{3},3->{3,20},4->{5},5->{5,18},6->{6,17},7->{7,16},8->{8,15},9->{10},10->{11},11->{11
          ,12},12->{10,13},13->{9},15->{9},16->{8},17->{7},18->{4,19},19->{6},20->{2,21},21->{4},22->{2}]
        Sizebounds:
          (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>,   0) (< 0,0,F>,  F) (< 0,0,H>,      H) (< 0,0,I>,  I) (< 0,0,M>,      M) (< 0,0,Q>,  Q) (< 0,0,R>, R) (< 0,0,S>,  S) (< 0,0,V>,  V) (< 0,0,W>,  W) (< 0,0,X>, X) (< 0,0,Y>, Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) 
          (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>,  F) (< 1,0,H>,      H) (< 1,0,I>,  I) (< 1,0,M>,      M) (< 1,0,Q>,  Q) (< 1,0,R>, R) (< 1,0,S>,  S) (< 1,0,V>,  V) (< 1,0,W>,  W) (< 1,0,X>, X) (< 1,0,Y>, Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) 
          (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>,   ?) (< 2,0,F>, 49) (< 2,0,H>,      0) (< 2,0,I>,  I) (< 2,0,M>,      M) (< 2,0,Q>,  Q) (< 2,0,R>, R) (< 2,0,S>,  S) (< 2,0,V>,  V) (< 2,0,W>,  W) (< 2,0,X>, X) (< 2,0,Y>, Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) 
          (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>,   ?) (< 3,0,F>, 49) (< 3,0,H>,     50) (< 3,0,I>,  I) (< 3,0,M>,      M) (< 3,0,Q>,  Q) (< 3,0,R>, R) (< 3,0,S>,  S) (< 3,0,V>,  V) (< 3,0,W>,  W) (< 3,0,X>, X) (< 3,0,Y>, Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) 
          (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>,   ?) (< 4,0,F>,  ?) (< 4,0,H>,      ?) (< 4,0,I>, 99) (< 4,0,M>,      0) (< 4,0,Q>,  Q) (< 4,0,R>, R) (< 4,0,S>,  S) (< 4,0,V>,  V) (< 4,0,W>,  W) (< 4,0,X>, X) (< 4,0,Y>, Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) 
          (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>,   ?) (< 5,0,F>,  ?) (< 5,0,H>,      ?) (< 5,0,I>, 99) (< 5,0,M>,     33) (< 5,0,Q>,  Q) (< 5,0,R>, R) (< 5,0,S>,  S) (< 5,0,V>,  V) (< 5,0,W>,  W) (< 5,0,X>, X) (< 5,0,Y>, Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) 
          (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>,   ?) (< 6,0,F>,  ?) (< 6,0,H>,      ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>,  ?) (< 6,0,R>, ?) (< 6,0,S>,  S) (< 6,0,V>,  V) (< 6,0,W>,  W) (< 6,0,X>, X) (< 6,0,Y>, Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) 
          (< 7,0,A>, ?) (< 7,0,B>,     ?) (< 7,0,C>, ?) (< 7,0,E>,   ?) (< 7,0,F>,  ?) (< 7,0,H>,      ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>,  ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>,  V) (< 7,0,W>,  W) (< 7,0,X>, X) (< 7,0,Y>, Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) 
          (< 8,0,A>, ?) (< 8,0,B>,     ?) (< 8,0,C>, ?) (< 8,0,E>,   ?) (< 8,0,F>,  ?) (< 8,0,H>,      ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>,  ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>, Y) (< 8,0,Z>, Z) (< 8,0,E1>,  ?) 
          (< 9,0,A>, ?) (< 9,0,B>,     ?) (< 9,0,C>, ?) (< 9,0,E>,   ?) (< 9,0,F>,  ?) (< 9,0,H>,      ?) (< 9,0,I>,  ?) (< 9,0,M>,      ?) (< 9,0,Q>,  ?) (< 9,0,R>, ?) (< 9,0,S>,  ?) (< 9,0,V>, 17) (< 9,0,W>,  ?) (< 9,0,X>, 8) (< 9,0,Y>, 0) (< 9,0,Z>, ?) (< 9,0,E1>,  ?) 
          (<10,0,A>, ?) (<10,0,B>,     ?) (<10,0,C>, ?) (<10,0,E>,   ?) (<10,0,F>,  ?) (<10,0,H>,      ?) (<10,0,I>,  ?) (<10,0,M>,      ?) (<10,0,Q>,  ?) (<10,0,R>, ?) (<10,0,S>,  ?) (<10,0,V>, 17) (<10,0,W>,  ?) (<10,0,X>, ?) (<10,0,Y>, 7) (<10,0,Z>, 0) (<10,0,E1>,  ?) 
          (<11,0,A>, ?) (<11,0,B>,     ?) (<11,0,C>, ?) (<11,0,E>,   ?) (<11,0,F>,  ?) (<11,0,H>,      ?) (<11,0,I>,  ?) (<11,0,M>,      ?) (<11,0,Q>,  ?) (<11,0,R>, ?) (<11,0,S>,  ?) (<11,0,V>, 17) (<11,0,W>,  ?) (<11,0,X>, ?) (<11,0,Y>, 7) (<11,0,Z>, 4) (<11,0,E1>,  ?) 
          (<12,0,A>, ?) (<12,0,B>,     ?) (<12,0,C>, ?) (<12,0,E>,   ?) (<12,0,F>,  ?) (<12,0,H>,      ?) (<12,0,I>,  ?) (<12,0,M>,      ?) (<12,0,Q>,  ?) (<12,0,R>, ?) (<12,0,S>,  ?) (<12,0,V>, 17) (<12,0,W>,  ?) (<12,0,X>, ?) (<12,0,Y>, 7) (<12,0,Z>, 4) (<12,0,E1>,  ?) 
          (<13,0,A>, ?) (<13,0,B>,     ?) (<13,0,C>, ?) (<13,0,E>,   ?) (<13,0,F>,  ?) (<13,0,H>,      ?) (<13,0,I>,  ?) (<13,0,M>,      ?) (<13,0,Q>,  ?) (<13,0,R>, ?) (<13,0,S>,  ?) (<13,0,V>, 17) (<13,0,W>,  ?) (<13,0,X>, ?) (<13,0,Y>, 7) (<13,0,Z>, ?) (<13,0,E1>,  ?) 
          (<15,0,A>, ?) (<15,0,B>,     ?) (<15,0,C>, ?) (<15,0,E>,   ?) (<15,0,F>,  ?) (<15,0,H>,      ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>,  ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>, Y) (<15,0,Z>, Z) (<15,0,E1>,  ?) 
          (<16,0,A>, ?) (<16,0,B>,     ?) (<16,0,C>, ?) (<16,0,E>,   ?) (<16,0,F>,  ?) (<16,0,H>,      ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>,  ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>,  2) (<16,0,X>, X) (<16,0,Y>, Y) (<16,0,Z>, Z) (<16,0,E1>,  ?) 
          (<17,0,A>, ?) (<17,0,B>,     ?) (<17,0,C>, ?) (<17,0,E>,   ?) (<17,0,F>,  ?) (<17,0,H>,      ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>,  ?) (<17,0,R>, ?) (<17,0,S>,  0) (<17,0,V>,  V) (<17,0,W>,  W) (<17,0,X>, X) (<17,0,Y>, Y) (<17,0,Z>, Z) (<17,0,E1>, E1) 
          (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>,   ?) (<18,0,F>,  ?) (<18,0,H>,      ?) (<18,0,I>, 99) (<18,0,M>,     33) (<18,0,Q>,  Q) (<18,0,R>, R) (<18,0,S>,  S) (<18,0,V>,  V) (<18,0,W>,  W) (<18,0,X>, X) (<18,0,Y>, Y) (<18,0,Z>, Z) (<18,0,E1>, E1) 
          (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>,   ?) (<19,0,F>,  ?) (<19,0,H>,      ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>,  S) (<19,0,V>,  V) (<19,0,W>,  W) (<19,0,X>, X) (<19,0,Y>, Y) (<19,0,Z>, Z) (<19,0,E1>, E1) 
          (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>,   ?) (<20,0,F>, 49) (<20,0,H>,     50) (<20,0,I>,  I) (<20,0,M>,      M) (<20,0,Q>,  Q) (<20,0,R>, R) (<20,0,S>,  S) (<20,0,V>,  V) (<20,0,W>,  W) (<20,0,X>, X) (<20,0,Y>, Y) (<20,0,Z>, Z) (<20,0,E1>, E1) 
          (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>,   ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>,  0) (<21,0,M>,      M) (<21,0,Q>,  Q) (<21,0,R>, R) (<21,0,S>,  S) (<21,0,V>,  V) (<21,0,W>,  W) (<21,0,X>, X) (<21,0,Y>, Y) (<21,0,Z>, Z) (<21,0,E1>, E1) 
          (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>,  0) (<22,0,H>,      H) (<22,0,I>,  I) (<22,0,M>,      M) (<22,0,Q>,  Q) (<22,0,R>, R) (<22,0,S>,  S) (<22,0,V>,  V) (<22,0,W>,  W) (<22,0,X>, X) (<22,0,Y>, Y) (<22,0,Z>, Z) (<22,0,E1>, E1) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [13,12,11,10], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f540) = 0
          p(f543) = 1
          p(f546) = 1
        
        The following rules are strictly oriented:
                                          [Y >= 8] ==>                                             
          f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 1                                           
                                                     > 0                                           
                                                     = f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1)
        
        
        The following rules are weakly oriented:
                                          [7 >= Y] ==>                                             
          f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 1                                           
                                                    >= 1                                           
                                                     = f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1)    
        
                                          [3 >= Z] ==>                                             
          f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 1                                           
                                                    >= 1                                           
                                                     = f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1)
        
                                          [Z >= 4] ==>                                             
          f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 1                                           
                                                    >= 1                                           
                                                     = f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1)
        
        We use the following global sizebounds:
        (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>,   0) (< 0,0,F>,  F) (< 0,0,H>,      H) (< 0,0,I>,  I) (< 0,0,M>,      M) (< 0,0,Q>,  Q) (< 0,0,R>, R) (< 0,0,S>,  S) (< 0,0,V>,  V) (< 0,0,W>,  W) (< 0,0,X>, X) (< 0,0,Y>, Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) 
        (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>,  F) (< 1,0,H>,      H) (< 1,0,I>,  I) (< 1,0,M>,      M) (< 1,0,Q>,  Q) (< 1,0,R>, R) (< 1,0,S>,  S) (< 1,0,V>,  V) (< 1,0,W>,  W) (< 1,0,X>, X) (< 1,0,Y>, Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) 
        (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>,   ?) (< 2,0,F>, 49) (< 2,0,H>,      0) (< 2,0,I>,  I) (< 2,0,M>,      M) (< 2,0,Q>,  Q) (< 2,0,R>, R) (< 2,0,S>,  S) (< 2,0,V>,  V) (< 2,0,W>,  W) (< 2,0,X>, X) (< 2,0,Y>, Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) 
        (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>,   ?) (< 3,0,F>, 49) (< 3,0,H>,     50) (< 3,0,I>,  I) (< 3,0,M>,      M) (< 3,0,Q>,  Q) (< 3,0,R>, R) (< 3,0,S>,  S) (< 3,0,V>,  V) (< 3,0,W>,  W) (< 3,0,X>, X) (< 3,0,Y>, Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) 
        (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>,   ?) (< 4,0,F>,  ?) (< 4,0,H>,      ?) (< 4,0,I>, 99) (< 4,0,M>,      0) (< 4,0,Q>,  Q) (< 4,0,R>, R) (< 4,0,S>,  S) (< 4,0,V>,  V) (< 4,0,W>,  W) (< 4,0,X>, X) (< 4,0,Y>, Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) 
        (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>,   ?) (< 5,0,F>,  ?) (< 5,0,H>,      ?) (< 5,0,I>, 99) (< 5,0,M>,     33) (< 5,0,Q>,  Q) (< 5,0,R>, R) (< 5,0,S>,  S) (< 5,0,V>,  V) (< 5,0,W>,  W) (< 5,0,X>, X) (< 5,0,Y>, Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) 
        (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>,   ?) (< 6,0,F>,  ?) (< 6,0,H>,      ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>,  ?) (< 6,0,R>, ?) (< 6,0,S>,  S) (< 6,0,V>,  V) (< 6,0,W>,  W) (< 6,0,X>, X) (< 6,0,Y>, Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) 
        (< 7,0,A>, ?) (< 7,0,B>,     ?) (< 7,0,C>, ?) (< 7,0,E>,   ?) (< 7,0,F>,  ?) (< 7,0,H>,      ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>,  ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>,  V) (< 7,0,W>,  W) (< 7,0,X>, X) (< 7,0,Y>, Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) 
        (< 8,0,A>, ?) (< 8,0,B>,     ?) (< 8,0,C>, ?) (< 8,0,E>,   ?) (< 8,0,F>,  ?) (< 8,0,H>,      ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>,  ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>, Y) (< 8,0,Z>, Z) (< 8,0,E1>,  ?) 
        (< 9,0,A>, ?) (< 9,0,B>,     ?) (< 9,0,C>, ?) (< 9,0,E>,   ?) (< 9,0,F>,  ?) (< 9,0,H>,      ?) (< 9,0,I>,  ?) (< 9,0,M>,      ?) (< 9,0,Q>,  ?) (< 9,0,R>, ?) (< 9,0,S>,  ?) (< 9,0,V>, 17) (< 9,0,W>,  ?) (< 9,0,X>, 8) (< 9,0,Y>, 0) (< 9,0,Z>, ?) (< 9,0,E1>,  ?) 
        (<10,0,A>, ?) (<10,0,B>,     ?) (<10,0,C>, ?) (<10,0,E>,   ?) (<10,0,F>,  ?) (<10,0,H>,      ?) (<10,0,I>,  ?) (<10,0,M>,      ?) (<10,0,Q>,  ?) (<10,0,R>, ?) (<10,0,S>,  ?) (<10,0,V>, 17) (<10,0,W>,  ?) (<10,0,X>, ?) (<10,0,Y>, 7) (<10,0,Z>, 0) (<10,0,E1>,  ?) 
        (<11,0,A>, ?) (<11,0,B>,     ?) (<11,0,C>, ?) (<11,0,E>,   ?) (<11,0,F>,  ?) (<11,0,H>,      ?) (<11,0,I>,  ?) (<11,0,M>,      ?) (<11,0,Q>,  ?) (<11,0,R>, ?) (<11,0,S>,  ?) (<11,0,V>, 17) (<11,0,W>,  ?) (<11,0,X>, ?) (<11,0,Y>, 7) (<11,0,Z>, 4) (<11,0,E1>,  ?) 
        (<12,0,A>, ?) (<12,0,B>,     ?) (<12,0,C>, ?) (<12,0,E>,   ?) (<12,0,F>,  ?) (<12,0,H>,      ?) (<12,0,I>,  ?) (<12,0,M>,      ?) (<12,0,Q>,  ?) (<12,0,R>, ?) (<12,0,S>,  ?) (<12,0,V>, 17) (<12,0,W>,  ?) (<12,0,X>, ?) (<12,0,Y>, 7) (<12,0,Z>, 4) (<12,0,E1>,  ?) 
        (<13,0,A>, ?) (<13,0,B>,     ?) (<13,0,C>, ?) (<13,0,E>,   ?) (<13,0,F>,  ?) (<13,0,H>,      ?) (<13,0,I>,  ?) (<13,0,M>,      ?) (<13,0,Q>,  ?) (<13,0,R>, ?) (<13,0,S>,  ?) (<13,0,V>, 17) (<13,0,W>,  ?) (<13,0,X>, ?) (<13,0,Y>, 7) (<13,0,Z>, ?) (<13,0,E1>,  ?) 
        (<15,0,A>, ?) (<15,0,B>,     ?) (<15,0,C>, ?) (<15,0,E>,   ?) (<15,0,F>,  ?) (<15,0,H>,      ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>,  ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>, Y) (<15,0,Z>, Z) (<15,0,E1>,  ?) 
        (<16,0,A>, ?) (<16,0,B>,     ?) (<16,0,C>, ?) (<16,0,E>,   ?) (<16,0,F>,  ?) (<16,0,H>,      ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>,  ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>,  2) (<16,0,X>, X) (<16,0,Y>, Y) (<16,0,Z>, Z) (<16,0,E1>,  ?) 
        (<17,0,A>, ?) (<17,0,B>,     ?) (<17,0,C>, ?) (<17,0,E>,   ?) (<17,0,F>,  ?) (<17,0,H>,      ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>,  ?) (<17,0,R>, ?) (<17,0,S>,  0) (<17,0,V>,  V) (<17,0,W>,  W) (<17,0,X>, X) (<17,0,Y>, Y) (<17,0,Z>, Z) (<17,0,E1>, E1) 
        (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>,   ?) (<18,0,F>,  ?) (<18,0,H>,      ?) (<18,0,I>, 99) (<18,0,M>,     33) (<18,0,Q>,  Q) (<18,0,R>, R) (<18,0,S>,  S) (<18,0,V>,  V) (<18,0,W>,  W) (<18,0,X>, X) (<18,0,Y>, Y) (<18,0,Z>, Z) (<18,0,E1>, E1) 
        (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>,   ?) (<19,0,F>,  ?) (<19,0,H>,      ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>,  S) (<19,0,V>,  V) (<19,0,W>,  W) (<19,0,X>, X) (<19,0,Y>, Y) (<19,0,Z>, Z) (<19,0,E1>, E1) 
        (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>,   ?) (<20,0,F>, 49) (<20,0,H>,     50) (<20,0,I>,  I) (<20,0,M>,      M) (<20,0,Q>,  Q) (<20,0,R>, R) (<20,0,S>,  S) (<20,0,V>,  V) (<20,0,W>,  W) (<20,0,X>, X) (<20,0,Y>, Y) (<20,0,Z>, Z) (<20,0,E1>, E1) 
        (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>,   ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>,  0) (<21,0,M>,      M) (<21,0,Q>,  Q) (<21,0,R>, R) (<21,0,S>,  S) (<21,0,V>,  V) (<21,0,W>,  W) (<21,0,X>, X) (<21,0,Y>, Y) (<21,0,Z>, Z) (<21,0,E1>, E1) 
        (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>,  0) (<22,0,H>,      H) (<22,0,I>,  I) (<22,0,M>,      M) (<22,0,Q>,  Q) (<22,0,R>, R) (<22,0,S>,  S) (<22,0,V>,  V) (<22,0,W>,  W) (<22,0,X>, X) (<22,0,Y>, Y) (<22,0,Z>, Z) (<22,0,E1>, E1) 
* Step 24: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   -> f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   True         (1,1)   
          1.  f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)  [149 >= E]   (150,1) 
          2.  f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1)       [49 >= F]    (50,1)  
          3.  f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1)   [49 >= H]    (2500,1)
          4.  f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1)       [99 >= I]    (100,1) 
          5.  f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1)   [31 >= M]    (3200,1)
          6.  f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) [Q >= 0]     (100,1) 
          7.  f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1)   [49 >= S]    (50,1)  
          8.  f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1)   [V >= W]     (101,1) 
          9.  f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1)       [8 >= X]     (8,1)   
          10. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1)       [7 >= Y]     (64,1)  
          11. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1)   [3 >= Z]     (?,1)   
          12. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1)   [Z >= 4]     (?,1)   
          13. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1)   [Y >= 8]     (8,1)   
          15. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1)       [W >= 1 + V] (101,1) 
          16. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B)       [S >= 50]    (50,1)  
          17. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1)       [0 >= 1 + Q] (100,1) 
          18. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1)   [M >= 32]    (100,1) 
          19. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1)     [I >= 100]   (50,1)  
          20. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   [H >= 50]    (2500,1)
          21. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1)       [F >= 50]    (101,1) 
          22. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1)       [E >= 150]   (1,1)   
        Signature:
          {(f0,17)
          ;(f422,17)
          ;(f437,17)
          ;(f441,17)
          ;(f455,17)
          ;(f461,17)
          ;(f485,17)
          ;(f501,17)
          ;(f526,17)
          ;(f540,17)
          ;(f543,17)
          ;(f546,17)
          ;(f584,17)}
        Flow Graph:
          [0->{1},1->{1,22},2->{3},3->{3,20},4->{5},5->{5,18},6->{6,17},7->{7,16},8->{8,15},9->{10},10->{11},11->{11
          ,12},12->{10,13},13->{9},15->{9},16->{8},17->{7},18->{4,19},19->{6},20->{2,21},21->{4},22->{2}]
        Sizebounds:
          (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>,   0) (< 0,0,F>,  F) (< 0,0,H>,      H) (< 0,0,I>,  I) (< 0,0,M>,      M) (< 0,0,Q>,  Q) (< 0,0,R>, R) (< 0,0,S>,  S) (< 0,0,V>,  V) (< 0,0,W>,  W) (< 0,0,X>, X) (< 0,0,Y>, Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) 
          (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>,  F) (< 1,0,H>,      H) (< 1,0,I>,  I) (< 1,0,M>,      M) (< 1,0,Q>,  Q) (< 1,0,R>, R) (< 1,0,S>,  S) (< 1,0,V>,  V) (< 1,0,W>,  W) (< 1,0,X>, X) (< 1,0,Y>, Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) 
          (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>,   ?) (< 2,0,F>, 49) (< 2,0,H>,      0) (< 2,0,I>,  I) (< 2,0,M>,      M) (< 2,0,Q>,  Q) (< 2,0,R>, R) (< 2,0,S>,  S) (< 2,0,V>,  V) (< 2,0,W>,  W) (< 2,0,X>, X) (< 2,0,Y>, Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) 
          (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>,   ?) (< 3,0,F>, 49) (< 3,0,H>,     50) (< 3,0,I>,  I) (< 3,0,M>,      M) (< 3,0,Q>,  Q) (< 3,0,R>, R) (< 3,0,S>,  S) (< 3,0,V>,  V) (< 3,0,W>,  W) (< 3,0,X>, X) (< 3,0,Y>, Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) 
          (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>,   ?) (< 4,0,F>,  ?) (< 4,0,H>,      ?) (< 4,0,I>, 99) (< 4,0,M>,      0) (< 4,0,Q>,  Q) (< 4,0,R>, R) (< 4,0,S>,  S) (< 4,0,V>,  V) (< 4,0,W>,  W) (< 4,0,X>, X) (< 4,0,Y>, Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) 
          (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>,   ?) (< 5,0,F>,  ?) (< 5,0,H>,      ?) (< 5,0,I>, 99) (< 5,0,M>,     33) (< 5,0,Q>,  Q) (< 5,0,R>, R) (< 5,0,S>,  S) (< 5,0,V>,  V) (< 5,0,W>,  W) (< 5,0,X>, X) (< 5,0,Y>, Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) 
          (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>,   ?) (< 6,0,F>,  ?) (< 6,0,H>,      ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>,  ?) (< 6,0,R>, ?) (< 6,0,S>,  S) (< 6,0,V>,  V) (< 6,0,W>,  W) (< 6,0,X>, X) (< 6,0,Y>, Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) 
          (< 7,0,A>, ?) (< 7,0,B>,     ?) (< 7,0,C>, ?) (< 7,0,E>,   ?) (< 7,0,F>,  ?) (< 7,0,H>,      ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>,  ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>,  V) (< 7,0,W>,  W) (< 7,0,X>, X) (< 7,0,Y>, Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) 
          (< 8,0,A>, ?) (< 8,0,B>,     ?) (< 8,0,C>, ?) (< 8,0,E>,   ?) (< 8,0,F>,  ?) (< 8,0,H>,      ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>,  ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>, Y) (< 8,0,Z>, Z) (< 8,0,E1>,  ?) 
          (< 9,0,A>, ?) (< 9,0,B>,     ?) (< 9,0,C>, ?) (< 9,0,E>,   ?) (< 9,0,F>,  ?) (< 9,0,H>,      ?) (< 9,0,I>,  ?) (< 9,0,M>,      ?) (< 9,0,Q>,  ?) (< 9,0,R>, ?) (< 9,0,S>,  ?) (< 9,0,V>, 17) (< 9,0,W>,  ?) (< 9,0,X>, 8) (< 9,0,Y>, 0) (< 9,0,Z>, ?) (< 9,0,E1>,  ?) 
          (<10,0,A>, ?) (<10,0,B>,     ?) (<10,0,C>, ?) (<10,0,E>,   ?) (<10,0,F>,  ?) (<10,0,H>,      ?) (<10,0,I>,  ?) (<10,0,M>,      ?) (<10,0,Q>,  ?) (<10,0,R>, ?) (<10,0,S>,  ?) (<10,0,V>, 17) (<10,0,W>,  ?) (<10,0,X>, ?) (<10,0,Y>, 7) (<10,0,Z>, 0) (<10,0,E1>,  ?) 
          (<11,0,A>, ?) (<11,0,B>,     ?) (<11,0,C>, ?) (<11,0,E>,   ?) (<11,0,F>,  ?) (<11,0,H>,      ?) (<11,0,I>,  ?) (<11,0,M>,      ?) (<11,0,Q>,  ?) (<11,0,R>, ?) (<11,0,S>,  ?) (<11,0,V>, 17) (<11,0,W>,  ?) (<11,0,X>, ?) (<11,0,Y>, 7) (<11,0,Z>, 4) (<11,0,E1>,  ?) 
          (<12,0,A>, ?) (<12,0,B>,     ?) (<12,0,C>, ?) (<12,0,E>,   ?) (<12,0,F>,  ?) (<12,0,H>,      ?) (<12,0,I>,  ?) (<12,0,M>,      ?) (<12,0,Q>,  ?) (<12,0,R>, ?) (<12,0,S>,  ?) (<12,0,V>, 17) (<12,0,W>,  ?) (<12,0,X>, ?) (<12,0,Y>, 7) (<12,0,Z>, 4) (<12,0,E1>,  ?) 
          (<13,0,A>, ?) (<13,0,B>,     ?) (<13,0,C>, ?) (<13,0,E>,   ?) (<13,0,F>,  ?) (<13,0,H>,      ?) (<13,0,I>,  ?) (<13,0,M>,      ?) (<13,0,Q>,  ?) (<13,0,R>, ?) (<13,0,S>,  ?) (<13,0,V>, 17) (<13,0,W>,  ?) (<13,0,X>, ?) (<13,0,Y>, 7) (<13,0,Z>, ?) (<13,0,E1>,  ?) 
          (<15,0,A>, ?) (<15,0,B>,     ?) (<15,0,C>, ?) (<15,0,E>,   ?) (<15,0,F>,  ?) (<15,0,H>,      ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>,  ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>, Y) (<15,0,Z>, Z) (<15,0,E1>,  ?) 
          (<16,0,A>, ?) (<16,0,B>,     ?) (<16,0,C>, ?) (<16,0,E>,   ?) (<16,0,F>,  ?) (<16,0,H>,      ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>,  ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>,  2) (<16,0,X>, X) (<16,0,Y>, Y) (<16,0,Z>, Z) (<16,0,E1>,  ?) 
          (<17,0,A>, ?) (<17,0,B>,     ?) (<17,0,C>, ?) (<17,0,E>,   ?) (<17,0,F>,  ?) (<17,0,H>,      ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>,  ?) (<17,0,R>, ?) (<17,0,S>,  0) (<17,0,V>,  V) (<17,0,W>,  W) (<17,0,X>, X) (<17,0,Y>, Y) (<17,0,Z>, Z) (<17,0,E1>, E1) 
          (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>,   ?) (<18,0,F>,  ?) (<18,0,H>,      ?) (<18,0,I>, 99) (<18,0,M>,     33) (<18,0,Q>,  Q) (<18,0,R>, R) (<18,0,S>,  S) (<18,0,V>,  V) (<18,0,W>,  W) (<18,0,X>, X) (<18,0,Y>, Y) (<18,0,Z>, Z) (<18,0,E1>, E1) 
          (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>,   ?) (<19,0,F>,  ?) (<19,0,H>,      ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>,  S) (<19,0,V>,  V) (<19,0,W>,  W) (<19,0,X>, X) (<19,0,Y>, Y) (<19,0,Z>, Z) (<19,0,E1>, E1) 
          (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>,   ?) (<20,0,F>, 49) (<20,0,H>,     50) (<20,0,I>,  I) (<20,0,M>,      M) (<20,0,Q>,  Q) (<20,0,R>, R) (<20,0,S>,  S) (<20,0,V>,  V) (<20,0,W>,  W) (<20,0,X>, X) (<20,0,Y>, Y) (<20,0,Z>, Z) (<20,0,E1>, E1) 
          (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>,   ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>,  0) (<21,0,M>,      M) (<21,0,Q>,  Q) (<21,0,R>, R) (<21,0,S>,  S) (<21,0,V>,  V) (<21,0,W>,  W) (<21,0,X>, X) (<21,0,Y>, Y) (<21,0,Z>, Z) (<21,0,E1>, E1) 
          (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>,  0) (<22,0,H>,      H) (<22,0,I>,  I) (<22,0,M>,      M) (<22,0,Q>,  Q) (<22,0,R>, R) (<22,0,S>,  S) (<22,0,V>,  V) (<22,0,W>,  W) (<22,0,X>, X) (<22,0,Y>, Y) (<22,0,Z>, Z) (<22,0,E1>, E1) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [9,13,12,11], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f540) = 0
          p(f543) = 0
          p(f546) = 1
        
        The following rules are strictly oriented:
                                          [Z >= 4] ==>                                             
          f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 1                                           
                                                     > 0                                           
                                                     = f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1)
        
        
        The following rules are weakly oriented:
                                          [8 >= X] ==>                                             
          f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 0                                           
                                                    >= 0                                           
                                                     = f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1)    
        
                                          [3 >= Z] ==>                                             
          f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 1                                           
                                                    >= 1                                           
                                                     = f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1)
        
                                          [Y >= 8] ==>                                             
          f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 0                                           
                                                    >= 0                                           
                                                     = f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1)
        
        We use the following global sizebounds:
        (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>,   0) (< 0,0,F>,  F) (< 0,0,H>,      H) (< 0,0,I>,  I) (< 0,0,M>,      M) (< 0,0,Q>,  Q) (< 0,0,R>, R) (< 0,0,S>,  S) (< 0,0,V>,  V) (< 0,0,W>,  W) (< 0,0,X>, X) (< 0,0,Y>, Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) 
        (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>,  F) (< 1,0,H>,      H) (< 1,0,I>,  I) (< 1,0,M>,      M) (< 1,0,Q>,  Q) (< 1,0,R>, R) (< 1,0,S>,  S) (< 1,0,V>,  V) (< 1,0,W>,  W) (< 1,0,X>, X) (< 1,0,Y>, Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) 
        (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>,   ?) (< 2,0,F>, 49) (< 2,0,H>,      0) (< 2,0,I>,  I) (< 2,0,M>,      M) (< 2,0,Q>,  Q) (< 2,0,R>, R) (< 2,0,S>,  S) (< 2,0,V>,  V) (< 2,0,W>,  W) (< 2,0,X>, X) (< 2,0,Y>, Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) 
        (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>,   ?) (< 3,0,F>, 49) (< 3,0,H>,     50) (< 3,0,I>,  I) (< 3,0,M>,      M) (< 3,0,Q>,  Q) (< 3,0,R>, R) (< 3,0,S>,  S) (< 3,0,V>,  V) (< 3,0,W>,  W) (< 3,0,X>, X) (< 3,0,Y>, Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) 
        (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>,   ?) (< 4,0,F>,  ?) (< 4,0,H>,      ?) (< 4,0,I>, 99) (< 4,0,M>,      0) (< 4,0,Q>,  Q) (< 4,0,R>, R) (< 4,0,S>,  S) (< 4,0,V>,  V) (< 4,0,W>,  W) (< 4,0,X>, X) (< 4,0,Y>, Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) 
        (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>,   ?) (< 5,0,F>,  ?) (< 5,0,H>,      ?) (< 5,0,I>, 99) (< 5,0,M>,     33) (< 5,0,Q>,  Q) (< 5,0,R>, R) (< 5,0,S>,  S) (< 5,0,V>,  V) (< 5,0,W>,  W) (< 5,0,X>, X) (< 5,0,Y>, Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) 
        (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>,   ?) (< 6,0,F>,  ?) (< 6,0,H>,      ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>,  ?) (< 6,0,R>, ?) (< 6,0,S>,  S) (< 6,0,V>,  V) (< 6,0,W>,  W) (< 6,0,X>, X) (< 6,0,Y>, Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) 
        (< 7,0,A>, ?) (< 7,0,B>,     ?) (< 7,0,C>, ?) (< 7,0,E>,   ?) (< 7,0,F>,  ?) (< 7,0,H>,      ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>,  ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>,  V) (< 7,0,W>,  W) (< 7,0,X>, X) (< 7,0,Y>, Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) 
        (< 8,0,A>, ?) (< 8,0,B>,     ?) (< 8,0,C>, ?) (< 8,0,E>,   ?) (< 8,0,F>,  ?) (< 8,0,H>,      ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>,  ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>, Y) (< 8,0,Z>, Z) (< 8,0,E1>,  ?) 
        (< 9,0,A>, ?) (< 9,0,B>,     ?) (< 9,0,C>, ?) (< 9,0,E>,   ?) (< 9,0,F>,  ?) (< 9,0,H>,      ?) (< 9,0,I>,  ?) (< 9,0,M>,      ?) (< 9,0,Q>,  ?) (< 9,0,R>, ?) (< 9,0,S>,  ?) (< 9,0,V>, 17) (< 9,0,W>,  ?) (< 9,0,X>, 8) (< 9,0,Y>, 0) (< 9,0,Z>, ?) (< 9,0,E1>,  ?) 
        (<10,0,A>, ?) (<10,0,B>,     ?) (<10,0,C>, ?) (<10,0,E>,   ?) (<10,0,F>,  ?) (<10,0,H>,      ?) (<10,0,I>,  ?) (<10,0,M>,      ?) (<10,0,Q>,  ?) (<10,0,R>, ?) (<10,0,S>,  ?) (<10,0,V>, 17) (<10,0,W>,  ?) (<10,0,X>, ?) (<10,0,Y>, 7) (<10,0,Z>, 0) (<10,0,E1>,  ?) 
        (<11,0,A>, ?) (<11,0,B>,     ?) (<11,0,C>, ?) (<11,0,E>,   ?) (<11,0,F>,  ?) (<11,0,H>,      ?) (<11,0,I>,  ?) (<11,0,M>,      ?) (<11,0,Q>,  ?) (<11,0,R>, ?) (<11,0,S>,  ?) (<11,0,V>, 17) (<11,0,W>,  ?) (<11,0,X>, ?) (<11,0,Y>, 7) (<11,0,Z>, 4) (<11,0,E1>,  ?) 
        (<12,0,A>, ?) (<12,0,B>,     ?) (<12,0,C>, ?) (<12,0,E>,   ?) (<12,0,F>,  ?) (<12,0,H>,      ?) (<12,0,I>,  ?) (<12,0,M>,      ?) (<12,0,Q>,  ?) (<12,0,R>, ?) (<12,0,S>,  ?) (<12,0,V>, 17) (<12,0,W>,  ?) (<12,0,X>, ?) (<12,0,Y>, 7) (<12,0,Z>, 4) (<12,0,E1>,  ?) 
        (<13,0,A>, ?) (<13,0,B>,     ?) (<13,0,C>, ?) (<13,0,E>,   ?) (<13,0,F>,  ?) (<13,0,H>,      ?) (<13,0,I>,  ?) (<13,0,M>,      ?) (<13,0,Q>,  ?) (<13,0,R>, ?) (<13,0,S>,  ?) (<13,0,V>, 17) (<13,0,W>,  ?) (<13,0,X>, ?) (<13,0,Y>, 7) (<13,0,Z>, ?) (<13,0,E1>,  ?) 
        (<15,0,A>, ?) (<15,0,B>,     ?) (<15,0,C>, ?) (<15,0,E>,   ?) (<15,0,F>,  ?) (<15,0,H>,      ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>,  ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>, Y) (<15,0,Z>, Z) (<15,0,E1>,  ?) 
        (<16,0,A>, ?) (<16,0,B>,     ?) (<16,0,C>, ?) (<16,0,E>,   ?) (<16,0,F>,  ?) (<16,0,H>,      ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>,  ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>,  2) (<16,0,X>, X) (<16,0,Y>, Y) (<16,0,Z>, Z) (<16,0,E1>,  ?) 
        (<17,0,A>, ?) (<17,0,B>,     ?) (<17,0,C>, ?) (<17,0,E>,   ?) (<17,0,F>,  ?) (<17,0,H>,      ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>,  ?) (<17,0,R>, ?) (<17,0,S>,  0) (<17,0,V>,  V) (<17,0,W>,  W) (<17,0,X>, X) (<17,0,Y>, Y) (<17,0,Z>, Z) (<17,0,E1>, E1) 
        (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>,   ?) (<18,0,F>,  ?) (<18,0,H>,      ?) (<18,0,I>, 99) (<18,0,M>,     33) (<18,0,Q>,  Q) (<18,0,R>, R) (<18,0,S>,  S) (<18,0,V>,  V) (<18,0,W>,  W) (<18,0,X>, X) (<18,0,Y>, Y) (<18,0,Z>, Z) (<18,0,E1>, E1) 
        (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>,   ?) (<19,0,F>,  ?) (<19,0,H>,      ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>,  S) (<19,0,V>,  V) (<19,0,W>,  W) (<19,0,X>, X) (<19,0,Y>, Y) (<19,0,Z>, Z) (<19,0,E1>, E1) 
        (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>,   ?) (<20,0,F>, 49) (<20,0,H>,     50) (<20,0,I>,  I) (<20,0,M>,      M) (<20,0,Q>,  Q) (<20,0,R>, R) (<20,0,S>,  S) (<20,0,V>,  V) (<20,0,W>,  W) (<20,0,X>, X) (<20,0,Y>, Y) (<20,0,Z>, Z) (<20,0,E1>, E1) 
        (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>,   ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>,  0) (<21,0,M>,      M) (<21,0,Q>,  Q) (<21,0,R>, R) (<21,0,S>,  S) (<21,0,V>,  V) (<21,0,W>,  W) (<21,0,X>, X) (<21,0,Y>, Y) (<21,0,Z>, Z) (<21,0,E1>, E1) 
        (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>,  0) (<22,0,H>,      H) (<22,0,I>,  I) (<22,0,M>,      M) (<22,0,Q>,  Q) (<22,0,R>, R) (<22,0,S>,  S) (<22,0,V>,  V) (<22,0,W>,  W) (<22,0,X>, X) (<22,0,Y>, Y) (<22,0,Z>, Z) (<22,0,E1>, E1) 
* Step 25: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   -> f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   True         (1,1)   
          1.  f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)  [149 >= E]   (150,1) 
          2.  f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1)       [49 >= F]    (50,1)  
          3.  f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1)   [49 >= H]    (2500,1)
          4.  f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1)       [99 >= I]    (100,1) 
          5.  f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1)   [31 >= M]    (3200,1)
          6.  f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) [Q >= 0]     (100,1) 
          7.  f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1)   [49 >= S]    (50,1)  
          8.  f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1)   [V >= W]     (101,1) 
          9.  f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1)       [8 >= X]     (8,1)   
          10. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1)       [7 >= Y]     (64,1)  
          11. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1)   [3 >= Z]     (?,1)   
          12. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1)   [Z >= 4]     (64,1)  
          13. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1)   [Y >= 8]     (8,1)   
          15. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1)       [W >= 1 + V] (101,1) 
          16. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B)       [S >= 50]    (50,1)  
          17. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1)       [0 >= 1 + Q] (100,1) 
          18. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1)   [M >= 32]    (100,1) 
          19. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1)     [I >= 100]   (50,1)  
          20. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   [H >= 50]    (2500,1)
          21. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1)       [F >= 50]    (101,1) 
          22. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1)       [E >= 150]   (1,1)   
        Signature:
          {(f0,17)
          ;(f422,17)
          ;(f437,17)
          ;(f441,17)
          ;(f455,17)
          ;(f461,17)
          ;(f485,17)
          ;(f501,17)
          ;(f526,17)
          ;(f540,17)
          ;(f543,17)
          ;(f546,17)
          ;(f584,17)}
        Flow Graph:
          [0->{1},1->{1,22},2->{3},3->{3,20},4->{5},5->{5,18},6->{6,17},7->{7,16},8->{8,15},9->{10},10->{11},11->{11
          ,12},12->{10,13},13->{9},15->{9},16->{8},17->{7},18->{4,19},19->{6},20->{2,21},21->{4},22->{2}]
        Sizebounds:
          (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>,   0) (< 0,0,F>,  F) (< 0,0,H>,      H) (< 0,0,I>,  I) (< 0,0,M>,      M) (< 0,0,Q>,  Q) (< 0,0,R>, R) (< 0,0,S>,  S) (< 0,0,V>,  V) (< 0,0,W>,  W) (< 0,0,X>, X) (< 0,0,Y>, Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) 
          (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>,  F) (< 1,0,H>,      H) (< 1,0,I>,  I) (< 1,0,M>,      M) (< 1,0,Q>,  Q) (< 1,0,R>, R) (< 1,0,S>,  S) (< 1,0,V>,  V) (< 1,0,W>,  W) (< 1,0,X>, X) (< 1,0,Y>, Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) 
          (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>,   ?) (< 2,0,F>, 49) (< 2,0,H>,      0) (< 2,0,I>,  I) (< 2,0,M>,      M) (< 2,0,Q>,  Q) (< 2,0,R>, R) (< 2,0,S>,  S) (< 2,0,V>,  V) (< 2,0,W>,  W) (< 2,0,X>, X) (< 2,0,Y>, Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) 
          (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>,   ?) (< 3,0,F>, 49) (< 3,0,H>,     50) (< 3,0,I>,  I) (< 3,0,M>,      M) (< 3,0,Q>,  Q) (< 3,0,R>, R) (< 3,0,S>,  S) (< 3,0,V>,  V) (< 3,0,W>,  W) (< 3,0,X>, X) (< 3,0,Y>, Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) 
          (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>,   ?) (< 4,0,F>,  ?) (< 4,0,H>,      ?) (< 4,0,I>, 99) (< 4,0,M>,      0) (< 4,0,Q>,  Q) (< 4,0,R>, R) (< 4,0,S>,  S) (< 4,0,V>,  V) (< 4,0,W>,  W) (< 4,0,X>, X) (< 4,0,Y>, Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) 
          (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>,   ?) (< 5,0,F>,  ?) (< 5,0,H>,      ?) (< 5,0,I>, 99) (< 5,0,M>,     33) (< 5,0,Q>,  Q) (< 5,0,R>, R) (< 5,0,S>,  S) (< 5,0,V>,  V) (< 5,0,W>,  W) (< 5,0,X>, X) (< 5,0,Y>, Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) 
          (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>,   ?) (< 6,0,F>,  ?) (< 6,0,H>,      ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>,  ?) (< 6,0,R>, ?) (< 6,0,S>,  S) (< 6,0,V>,  V) (< 6,0,W>,  W) (< 6,0,X>, X) (< 6,0,Y>, Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) 
          (< 7,0,A>, ?) (< 7,0,B>,     ?) (< 7,0,C>, ?) (< 7,0,E>,   ?) (< 7,0,F>,  ?) (< 7,0,H>,      ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>,  ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>,  V) (< 7,0,W>,  W) (< 7,0,X>, X) (< 7,0,Y>, Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) 
          (< 8,0,A>, ?) (< 8,0,B>,     ?) (< 8,0,C>, ?) (< 8,0,E>,   ?) (< 8,0,F>,  ?) (< 8,0,H>,      ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>,  ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>, Y) (< 8,0,Z>, Z) (< 8,0,E1>,  ?) 
          (< 9,0,A>, ?) (< 9,0,B>,     ?) (< 9,0,C>, ?) (< 9,0,E>,   ?) (< 9,0,F>,  ?) (< 9,0,H>,      ?) (< 9,0,I>,  ?) (< 9,0,M>,      ?) (< 9,0,Q>,  ?) (< 9,0,R>, ?) (< 9,0,S>,  ?) (< 9,0,V>, 17) (< 9,0,W>,  ?) (< 9,0,X>, 8) (< 9,0,Y>, 0) (< 9,0,Z>, ?) (< 9,0,E1>,  ?) 
          (<10,0,A>, ?) (<10,0,B>,     ?) (<10,0,C>, ?) (<10,0,E>,   ?) (<10,0,F>,  ?) (<10,0,H>,      ?) (<10,0,I>,  ?) (<10,0,M>,      ?) (<10,0,Q>,  ?) (<10,0,R>, ?) (<10,0,S>,  ?) (<10,0,V>, 17) (<10,0,W>,  ?) (<10,0,X>, ?) (<10,0,Y>, 7) (<10,0,Z>, 0) (<10,0,E1>,  ?) 
          (<11,0,A>, ?) (<11,0,B>,     ?) (<11,0,C>, ?) (<11,0,E>,   ?) (<11,0,F>,  ?) (<11,0,H>,      ?) (<11,0,I>,  ?) (<11,0,M>,      ?) (<11,0,Q>,  ?) (<11,0,R>, ?) (<11,0,S>,  ?) (<11,0,V>, 17) (<11,0,W>,  ?) (<11,0,X>, ?) (<11,0,Y>, 7) (<11,0,Z>, 4) (<11,0,E1>,  ?) 
          (<12,0,A>, ?) (<12,0,B>,     ?) (<12,0,C>, ?) (<12,0,E>,   ?) (<12,0,F>,  ?) (<12,0,H>,      ?) (<12,0,I>,  ?) (<12,0,M>,      ?) (<12,0,Q>,  ?) (<12,0,R>, ?) (<12,0,S>,  ?) (<12,0,V>, 17) (<12,0,W>,  ?) (<12,0,X>, ?) (<12,0,Y>, 7) (<12,0,Z>, 4) (<12,0,E1>,  ?) 
          (<13,0,A>, ?) (<13,0,B>,     ?) (<13,0,C>, ?) (<13,0,E>,   ?) (<13,0,F>,  ?) (<13,0,H>,      ?) (<13,0,I>,  ?) (<13,0,M>,      ?) (<13,0,Q>,  ?) (<13,0,R>, ?) (<13,0,S>,  ?) (<13,0,V>, 17) (<13,0,W>,  ?) (<13,0,X>, ?) (<13,0,Y>, 7) (<13,0,Z>, ?) (<13,0,E1>,  ?) 
          (<15,0,A>, ?) (<15,0,B>,     ?) (<15,0,C>, ?) (<15,0,E>,   ?) (<15,0,F>,  ?) (<15,0,H>,      ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>,  ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>, Y) (<15,0,Z>, Z) (<15,0,E1>,  ?) 
          (<16,0,A>, ?) (<16,0,B>,     ?) (<16,0,C>, ?) (<16,0,E>,   ?) (<16,0,F>,  ?) (<16,0,H>,      ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>,  ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>,  2) (<16,0,X>, X) (<16,0,Y>, Y) (<16,0,Z>, Z) (<16,0,E1>,  ?) 
          (<17,0,A>, ?) (<17,0,B>,     ?) (<17,0,C>, ?) (<17,0,E>,   ?) (<17,0,F>,  ?) (<17,0,H>,      ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>,  ?) (<17,0,R>, ?) (<17,0,S>,  0) (<17,0,V>,  V) (<17,0,W>,  W) (<17,0,X>, X) (<17,0,Y>, Y) (<17,0,Z>, Z) (<17,0,E1>, E1) 
          (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>,   ?) (<18,0,F>,  ?) (<18,0,H>,      ?) (<18,0,I>, 99) (<18,0,M>,     33) (<18,0,Q>,  Q) (<18,0,R>, R) (<18,0,S>,  S) (<18,0,V>,  V) (<18,0,W>,  W) (<18,0,X>, X) (<18,0,Y>, Y) (<18,0,Z>, Z) (<18,0,E1>, E1) 
          (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>,   ?) (<19,0,F>,  ?) (<19,0,H>,      ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>,  S) (<19,0,V>,  V) (<19,0,W>,  W) (<19,0,X>, X) (<19,0,Y>, Y) (<19,0,Z>, Z) (<19,0,E1>, E1) 
          (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>,   ?) (<20,0,F>, 49) (<20,0,H>,     50) (<20,0,I>,  I) (<20,0,M>,      M) (<20,0,Q>,  Q) (<20,0,R>, R) (<20,0,S>,  S) (<20,0,V>,  V) (<20,0,W>,  W) (<20,0,X>, X) (<20,0,Y>, Y) (<20,0,Z>, Z) (<20,0,E1>, E1) 
          (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>,   ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>,  0) (<21,0,M>,      M) (<21,0,Q>,  Q) (<21,0,R>, R) (<21,0,S>,  S) (<21,0,V>,  V) (<21,0,W>,  W) (<21,0,X>, X) (<21,0,Y>, Y) (<21,0,Z>, Z) (<21,0,E1>, E1) 
          (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>,  0) (<22,0,H>,      H) (<22,0,I>,  I) (<22,0,M>,      M) (<22,0,Q>,  Q) (<22,0,R>, R) (<22,0,S>,  S) (<22,0,V>,  V) (<22,0,W>,  W) (<22,0,X>, X) (<22,0,Y>, Y) (<22,0,Z>, Z) (<22,0,E1>, E1) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [13,11,10], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f540) = 4         
          p(f543) = 4         
          p(f546) = 4 + -1*x16
        
        The following rules are strictly oriented:
                                          [3 >= Z] ==>                                             
          f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 4 + -1*Z                                    
                                                     > 3 + -1*Z                                    
                                                     = f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1)
        
        
        The following rules are weakly oriented:
                                          [7 >= Y] ==>                                             
          f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 4                                           
                                                    >= 4                                           
                                                     = f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1)    
        
                                          [Y >= 8] ==>                                             
          f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   = 4                                           
                                                    >= 4                                           
                                                     = f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1)
        
        We use the following global sizebounds:
        (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>,   0) (< 0,0,F>,  F) (< 0,0,H>,      H) (< 0,0,I>,  I) (< 0,0,M>,      M) (< 0,0,Q>,  Q) (< 0,0,R>, R) (< 0,0,S>,  S) (< 0,0,V>,  V) (< 0,0,W>,  W) (< 0,0,X>, X) (< 0,0,Y>, Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) 
        (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>,  F) (< 1,0,H>,      H) (< 1,0,I>,  I) (< 1,0,M>,      M) (< 1,0,Q>,  Q) (< 1,0,R>, R) (< 1,0,S>,  S) (< 1,0,V>,  V) (< 1,0,W>,  W) (< 1,0,X>, X) (< 1,0,Y>, Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) 
        (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>,   ?) (< 2,0,F>, 49) (< 2,0,H>,      0) (< 2,0,I>,  I) (< 2,0,M>,      M) (< 2,0,Q>,  Q) (< 2,0,R>, R) (< 2,0,S>,  S) (< 2,0,V>,  V) (< 2,0,W>,  W) (< 2,0,X>, X) (< 2,0,Y>, Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) 
        (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>,   ?) (< 3,0,F>, 49) (< 3,0,H>,     50) (< 3,0,I>,  I) (< 3,0,M>,      M) (< 3,0,Q>,  Q) (< 3,0,R>, R) (< 3,0,S>,  S) (< 3,0,V>,  V) (< 3,0,W>,  W) (< 3,0,X>, X) (< 3,0,Y>, Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) 
        (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>,   ?) (< 4,0,F>,  ?) (< 4,0,H>,      ?) (< 4,0,I>, 99) (< 4,0,M>,      0) (< 4,0,Q>,  Q) (< 4,0,R>, R) (< 4,0,S>,  S) (< 4,0,V>,  V) (< 4,0,W>,  W) (< 4,0,X>, X) (< 4,0,Y>, Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) 
        (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>,   ?) (< 5,0,F>,  ?) (< 5,0,H>,      ?) (< 5,0,I>, 99) (< 5,0,M>,     33) (< 5,0,Q>,  Q) (< 5,0,R>, R) (< 5,0,S>,  S) (< 5,0,V>,  V) (< 5,0,W>,  W) (< 5,0,X>, X) (< 5,0,Y>, Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) 
        (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>,   ?) (< 6,0,F>,  ?) (< 6,0,H>,      ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>,  ?) (< 6,0,R>, ?) (< 6,0,S>,  S) (< 6,0,V>,  V) (< 6,0,W>,  W) (< 6,0,X>, X) (< 6,0,Y>, Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) 
        (< 7,0,A>, ?) (< 7,0,B>,     ?) (< 7,0,C>, ?) (< 7,0,E>,   ?) (< 7,0,F>,  ?) (< 7,0,H>,      ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>,  ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>,  V) (< 7,0,W>,  W) (< 7,0,X>, X) (< 7,0,Y>, Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) 
        (< 8,0,A>, ?) (< 8,0,B>,     ?) (< 8,0,C>, ?) (< 8,0,E>,   ?) (< 8,0,F>,  ?) (< 8,0,H>,      ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>,  ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>, Y) (< 8,0,Z>, Z) (< 8,0,E1>,  ?) 
        (< 9,0,A>, ?) (< 9,0,B>,     ?) (< 9,0,C>, ?) (< 9,0,E>,   ?) (< 9,0,F>,  ?) (< 9,0,H>,      ?) (< 9,0,I>,  ?) (< 9,0,M>,      ?) (< 9,0,Q>,  ?) (< 9,0,R>, ?) (< 9,0,S>,  ?) (< 9,0,V>, 17) (< 9,0,W>,  ?) (< 9,0,X>, 8) (< 9,0,Y>, 0) (< 9,0,Z>, ?) (< 9,0,E1>,  ?) 
        (<10,0,A>, ?) (<10,0,B>,     ?) (<10,0,C>, ?) (<10,0,E>,   ?) (<10,0,F>,  ?) (<10,0,H>,      ?) (<10,0,I>,  ?) (<10,0,M>,      ?) (<10,0,Q>,  ?) (<10,0,R>, ?) (<10,0,S>,  ?) (<10,0,V>, 17) (<10,0,W>,  ?) (<10,0,X>, ?) (<10,0,Y>, 7) (<10,0,Z>, 0) (<10,0,E1>,  ?) 
        (<11,0,A>, ?) (<11,0,B>,     ?) (<11,0,C>, ?) (<11,0,E>,   ?) (<11,0,F>,  ?) (<11,0,H>,      ?) (<11,0,I>,  ?) (<11,0,M>,      ?) (<11,0,Q>,  ?) (<11,0,R>, ?) (<11,0,S>,  ?) (<11,0,V>, 17) (<11,0,W>,  ?) (<11,0,X>, ?) (<11,0,Y>, 7) (<11,0,Z>, 4) (<11,0,E1>,  ?) 
        (<12,0,A>, ?) (<12,0,B>,     ?) (<12,0,C>, ?) (<12,0,E>,   ?) (<12,0,F>,  ?) (<12,0,H>,      ?) (<12,0,I>,  ?) (<12,0,M>,      ?) (<12,0,Q>,  ?) (<12,0,R>, ?) (<12,0,S>,  ?) (<12,0,V>, 17) (<12,0,W>,  ?) (<12,0,X>, ?) (<12,0,Y>, 7) (<12,0,Z>, 4) (<12,0,E1>,  ?) 
        (<13,0,A>, ?) (<13,0,B>,     ?) (<13,0,C>, ?) (<13,0,E>,   ?) (<13,0,F>,  ?) (<13,0,H>,      ?) (<13,0,I>,  ?) (<13,0,M>,      ?) (<13,0,Q>,  ?) (<13,0,R>, ?) (<13,0,S>,  ?) (<13,0,V>, 17) (<13,0,W>,  ?) (<13,0,X>, ?) (<13,0,Y>, 7) (<13,0,Z>, ?) (<13,0,E1>,  ?) 
        (<15,0,A>, ?) (<15,0,B>,     ?) (<15,0,C>, ?) (<15,0,E>,   ?) (<15,0,F>,  ?) (<15,0,H>,      ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>,  ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>, Y) (<15,0,Z>, Z) (<15,0,E1>,  ?) 
        (<16,0,A>, ?) (<16,0,B>,     ?) (<16,0,C>, ?) (<16,0,E>,   ?) (<16,0,F>,  ?) (<16,0,H>,      ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>,  ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>,  2) (<16,0,X>, X) (<16,0,Y>, Y) (<16,0,Z>, Z) (<16,0,E1>,  ?) 
        (<17,0,A>, ?) (<17,0,B>,     ?) (<17,0,C>, ?) (<17,0,E>,   ?) (<17,0,F>,  ?) (<17,0,H>,      ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>,  ?) (<17,0,R>, ?) (<17,0,S>,  0) (<17,0,V>,  V) (<17,0,W>,  W) (<17,0,X>, X) (<17,0,Y>, Y) (<17,0,Z>, Z) (<17,0,E1>, E1) 
        (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>,   ?) (<18,0,F>,  ?) (<18,0,H>,      ?) (<18,0,I>, 99) (<18,0,M>,     33) (<18,0,Q>,  Q) (<18,0,R>, R) (<18,0,S>,  S) (<18,0,V>,  V) (<18,0,W>,  W) (<18,0,X>, X) (<18,0,Y>, Y) (<18,0,Z>, Z) (<18,0,E1>, E1) 
        (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>,   ?) (<19,0,F>,  ?) (<19,0,H>,      ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>,  S) (<19,0,V>,  V) (<19,0,W>,  W) (<19,0,X>, X) (<19,0,Y>, Y) (<19,0,Z>, Z) (<19,0,E1>, E1) 
        (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>,   ?) (<20,0,F>, 49) (<20,0,H>,     50) (<20,0,I>,  I) (<20,0,M>,      M) (<20,0,Q>,  Q) (<20,0,R>, R) (<20,0,S>,  S) (<20,0,V>,  V) (<20,0,W>,  W) (<20,0,X>, X) (<20,0,Y>, Y) (<20,0,Z>, Z) (<20,0,E1>, E1) 
        (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>,   ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>,  0) (<21,0,M>,      M) (<21,0,Q>,  Q) (<21,0,R>, R) (<21,0,S>,  S) (<21,0,V>,  V) (<21,0,W>,  W) (<21,0,X>, X) (<21,0,Y>, Y) (<21,0,Z>, Z) (<21,0,E1>, E1) 
        (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>,  0) (<22,0,H>,      H) (<22,0,I>,  I) (<22,0,M>,      M) (<22,0,Q>,  Q) (<22,0,R>, R) (<22,0,S>,  S) (<22,0,V>,  V) (<22,0,W>,  W) (<22,0,X>, X) (<22,0,Y>, Y) (<22,0,Z>, Z) (<22,0,E1>, E1) 
* Step 26: KnowledgePropagation WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   -> f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   True         (1,1)   
          1.  f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)  [149 >= E]   (150,1) 
          2.  f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1)       [49 >= F]    (50,1)  
          3.  f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1)   [49 >= H]    (2500,1)
          4.  f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1)       [99 >= I]    (100,1) 
          5.  f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1)   [31 >= M]    (3200,1)
          6.  f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) [Q >= 0]     (100,1) 
          7.  f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1)   [49 >= S]    (50,1)  
          8.  f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1)   [V >= W]     (101,1) 
          9.  f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1)       [8 >= X]     (8,1)   
          10. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1)       [7 >= Y]     (64,1)  
          11. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1)   [3 >= Z]     (288,1) 
          12. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1)   [Z >= 4]     (64,1)  
          13. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1)   [Y >= 8]     (8,1)   
          15. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1)       [W >= 1 + V] (101,1) 
          16. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B)       [S >= 50]    (50,1)  
          17. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1)       [0 >= 1 + Q] (100,1) 
          18. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1)   [M >= 32]    (100,1) 
          19. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1)     [I >= 100]   (50,1)  
          20. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1)   [H >= 50]    (2500,1)
          21. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1)       [F >= 50]    (101,1) 
          22. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1)       [E >= 150]   (1,1)   
        Signature:
          {(f0,17)
          ;(f422,17)
          ;(f437,17)
          ;(f441,17)
          ;(f455,17)
          ;(f461,17)
          ;(f485,17)
          ;(f501,17)
          ;(f526,17)
          ;(f540,17)
          ;(f543,17)
          ;(f546,17)
          ;(f584,17)}
        Flow Graph:
          [0->{1},1->{1,22},2->{3},3->{3,20},4->{5},5->{5,18},6->{6,17},7->{7,16},8->{8,15},9->{10},10->{11},11->{11
          ,12},12->{10,13},13->{9},15->{9},16->{8},17->{7},18->{4,19},19->{6},20->{2,21},21->{4},22->{2}]
        Sizebounds:
          (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>,   0) (< 0,0,F>,  F) (< 0,0,H>,      H) (< 0,0,I>,  I) (< 0,0,M>,      M) (< 0,0,Q>,  Q) (< 0,0,R>, R) (< 0,0,S>,  S) (< 0,0,V>,  V) (< 0,0,W>,  W) (< 0,0,X>, X) (< 0,0,Y>, Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) 
          (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>,  F) (< 1,0,H>,      H) (< 1,0,I>,  I) (< 1,0,M>,      M) (< 1,0,Q>,  Q) (< 1,0,R>, R) (< 1,0,S>,  S) (< 1,0,V>,  V) (< 1,0,W>,  W) (< 1,0,X>, X) (< 1,0,Y>, Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) 
          (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>,   ?) (< 2,0,F>, 49) (< 2,0,H>,      0) (< 2,0,I>,  I) (< 2,0,M>,      M) (< 2,0,Q>,  Q) (< 2,0,R>, R) (< 2,0,S>,  S) (< 2,0,V>,  V) (< 2,0,W>,  W) (< 2,0,X>, X) (< 2,0,Y>, Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) 
          (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>,   ?) (< 3,0,F>, 49) (< 3,0,H>,     50) (< 3,0,I>,  I) (< 3,0,M>,      M) (< 3,0,Q>,  Q) (< 3,0,R>, R) (< 3,0,S>,  S) (< 3,0,V>,  V) (< 3,0,W>,  W) (< 3,0,X>, X) (< 3,0,Y>, Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) 
          (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>,   ?) (< 4,0,F>,  ?) (< 4,0,H>,      ?) (< 4,0,I>, 99) (< 4,0,M>,      0) (< 4,0,Q>,  Q) (< 4,0,R>, R) (< 4,0,S>,  S) (< 4,0,V>,  V) (< 4,0,W>,  W) (< 4,0,X>, X) (< 4,0,Y>, Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) 
          (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>,   ?) (< 5,0,F>,  ?) (< 5,0,H>,      ?) (< 5,0,I>, 99) (< 5,0,M>,     33) (< 5,0,Q>,  Q) (< 5,0,R>, R) (< 5,0,S>,  S) (< 5,0,V>,  V) (< 5,0,W>,  W) (< 5,0,X>, X) (< 5,0,Y>, Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) 
          (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>,   ?) (< 6,0,F>,  ?) (< 6,0,H>,      ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>,  ?) (< 6,0,R>, ?) (< 6,0,S>,  S) (< 6,0,V>,  V) (< 6,0,W>,  W) (< 6,0,X>, X) (< 6,0,Y>, Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) 
          (< 7,0,A>, ?) (< 7,0,B>,     ?) (< 7,0,C>, ?) (< 7,0,E>,   ?) (< 7,0,F>,  ?) (< 7,0,H>,      ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>,  ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>,  V) (< 7,0,W>,  W) (< 7,0,X>, X) (< 7,0,Y>, Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) 
          (< 8,0,A>, ?) (< 8,0,B>,     ?) (< 8,0,C>, ?) (< 8,0,E>,   ?) (< 8,0,F>,  ?) (< 8,0,H>,      ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>,  ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>, Y) (< 8,0,Z>, Z) (< 8,0,E1>,  ?) 
          (< 9,0,A>, ?) (< 9,0,B>,     ?) (< 9,0,C>, ?) (< 9,0,E>,   ?) (< 9,0,F>,  ?) (< 9,0,H>,      ?) (< 9,0,I>,  ?) (< 9,0,M>,      ?) (< 9,0,Q>,  ?) (< 9,0,R>, ?) (< 9,0,S>,  ?) (< 9,0,V>, 17) (< 9,0,W>,  ?) (< 9,0,X>, 8) (< 9,0,Y>, 0) (< 9,0,Z>, ?) (< 9,0,E1>,  ?) 
          (<10,0,A>, ?) (<10,0,B>,     ?) (<10,0,C>, ?) (<10,0,E>,   ?) (<10,0,F>,  ?) (<10,0,H>,      ?) (<10,0,I>,  ?) (<10,0,M>,      ?) (<10,0,Q>,  ?) (<10,0,R>, ?) (<10,0,S>,  ?) (<10,0,V>, 17) (<10,0,W>,  ?) (<10,0,X>, ?) (<10,0,Y>, 7) (<10,0,Z>, 0) (<10,0,E1>,  ?) 
          (<11,0,A>, ?) (<11,0,B>,     ?) (<11,0,C>, ?) (<11,0,E>,   ?) (<11,0,F>,  ?) (<11,0,H>,      ?) (<11,0,I>,  ?) (<11,0,M>,      ?) (<11,0,Q>,  ?) (<11,0,R>, ?) (<11,0,S>,  ?) (<11,0,V>, 17) (<11,0,W>,  ?) (<11,0,X>, ?) (<11,0,Y>, 7) (<11,0,Z>, 4) (<11,0,E1>,  ?) 
          (<12,0,A>, ?) (<12,0,B>,     ?) (<12,0,C>, ?) (<12,0,E>,   ?) (<12,0,F>,  ?) (<12,0,H>,      ?) (<12,0,I>,  ?) (<12,0,M>,      ?) (<12,0,Q>,  ?) (<12,0,R>, ?) (<12,0,S>,  ?) (<12,0,V>, 17) (<12,0,W>,  ?) (<12,0,X>, ?) (<12,0,Y>, 7) (<12,0,Z>, 4) (<12,0,E1>,  ?) 
          (<13,0,A>, ?) (<13,0,B>,     ?) (<13,0,C>, ?) (<13,0,E>,   ?) (<13,0,F>,  ?) (<13,0,H>,      ?) (<13,0,I>,  ?) (<13,0,M>,      ?) (<13,0,Q>,  ?) (<13,0,R>, ?) (<13,0,S>,  ?) (<13,0,V>, 17) (<13,0,W>,  ?) (<13,0,X>, ?) (<13,0,Y>, 7) (<13,0,Z>, ?) (<13,0,E1>,  ?) 
          (<15,0,A>, ?) (<15,0,B>,     ?) (<15,0,C>, ?) (<15,0,E>,   ?) (<15,0,F>,  ?) (<15,0,H>,      ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>,  ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>, Y) (<15,0,Z>, Z) (<15,0,E1>,  ?) 
          (<16,0,A>, ?) (<16,0,B>,     ?) (<16,0,C>, ?) (<16,0,E>,   ?) (<16,0,F>,  ?) (<16,0,H>,      ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>,  ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>,  2) (<16,0,X>, X) (<16,0,Y>, Y) (<16,0,Z>, Z) (<16,0,E1>,  ?) 
          (<17,0,A>, ?) (<17,0,B>,     ?) (<17,0,C>, ?) (<17,0,E>,   ?) (<17,0,F>,  ?) (<17,0,H>,      ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>,  ?) (<17,0,R>, ?) (<17,0,S>,  0) (<17,0,V>,  V) (<17,0,W>,  W) (<17,0,X>, X) (<17,0,Y>, Y) (<17,0,Z>, Z) (<17,0,E1>, E1) 
          (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>,   ?) (<18,0,F>,  ?) (<18,0,H>,      ?) (<18,0,I>, 99) (<18,0,M>,     33) (<18,0,Q>,  Q) (<18,0,R>, R) (<18,0,S>,  S) (<18,0,V>,  V) (<18,0,W>,  W) (<18,0,X>, X) (<18,0,Y>, Y) (<18,0,Z>, Z) (<18,0,E1>, E1) 
          (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>,   ?) (<19,0,F>,  ?) (<19,0,H>,      ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>,  S) (<19,0,V>,  V) (<19,0,W>,  W) (<19,0,X>, X) (<19,0,Y>, Y) (<19,0,Z>, Z) (<19,0,E1>, E1) 
          (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>,   ?) (<20,0,F>, 49) (<20,0,H>,     50) (<20,0,I>,  I) (<20,0,M>,      M) (<20,0,Q>,  Q) (<20,0,R>, R) (<20,0,S>,  S) (<20,0,V>,  V) (<20,0,W>,  W) (<20,0,X>, X) (<20,0,Y>, Y) (<20,0,Z>, Z) (<20,0,E1>, E1) 
          (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>,   ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>,  0) (<21,0,M>,      M) (<21,0,Q>,  Q) (<21,0,R>, R) (<21,0,S>,  S) (<21,0,V>,  V) (<21,0,W>,  W) (<21,0,X>, X) (<21,0,Y>, Y) (<21,0,Z>, Z) (<21,0,E1>, E1) 
          (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>,  0) (<22,0,H>,      H) (<22,0,I>,  I) (<22,0,M>,      M) (<22,0,Q>,  Q) (<22,0,R>, R) (<22,0,S>,  S) (<22,0,V>,  V) (<22,0,W>,  W) (<22,0,X>, X) (<22,0,Y>, Y) (<22,0,Z>, Z) (<22,0,E1>, E1) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        The problem is already solved.

WORST_CASE(?,O(1))