WORST_CASE(?,O(1)) * Step 1: RestrictVarsProcessor WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1,P1) -> f422(3,43690,3,Q1,0,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1 True (1,1) ,O1,P1) 1. f422(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1,P1) -> f422(A,B,Q1,R1,1 + E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1[149 >= E] (?,1) ,O1,P1) 2. f437(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1,P1) -> f441(A,B,C,D,E,F,0,0,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1 [49 >= F] (?,1) ,P1) 3. f441(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1,P1) -> f441(A,B,C,D,E,F,Q1,1 + H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1 [49 >= H] (?,1) ,O1,P1) 4. f455(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1,P1) -> f461(A,B,C,D,E,F,G,H,I,0,0,Q1,0,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1 [99 >= I] (?,1) ,P1) 5. f461(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1,P1) -> f461(A,B,C,D,E,F,G,H,I,Q1,R1,S1,2 + M,T1,U1,V1,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1 [31 >= M] (?,1) ,M1,N1,O1,P1) 6. f485(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1,P1) -> f485(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,-1 + Q,Q1,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1[Q >= 0] (?,1) ,O1,P1) 7. f501(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1,P1) -> f501(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,1 + S,Q1,R1,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1[49 >= S] (?,1) ,O1,P1) 8. f526(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1,P1) -> f526(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,1 + W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1 [V >= W] (?,1) ,O1,P1) 9. f540(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1,P1) -> f543(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,0,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1 [8 >= X] (?,1) ,P1) 10. f543(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1,P1) -> f546(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,0,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1 [7 >= Y] (?,1) ,P1) 11. f546(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1,P1) -> f546(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,1 + Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1 [3 >= Z] (?,1) ,O1,P1) 12. f546(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1,P1) -> f543(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,1 + Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1 [Z >= 4] (?,1) ,O1,P1) 13. f543(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1,P1) -> f540(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,7 + X,Y,Z,3 + A1,3 + B1,-7 + C1,D1,E1,F1,G1,H1,I1,J1 [Y >= 8] (?,1) ,K1,L1,M1,N1,O1,P1) 14. f540(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1,P1) -> f584(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1 [X >= 9] (?,1) ,P1) 15. f526(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1,P1) -> f540(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,1,Y,Z,0,13,8,E1,E1,E1,G1,H1,I1,J1,K1,L1,M1,N1,O1,P1) [W >= 1 + V] (?,1) 16. f501(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1,P1) -> f526(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,17,2,X,Y,Z,A1,B1,C1,D1,B,F1,B,1,Q1,A,1,R1,M1,N1,O1,P1) [S >= 50] (?,1) 17. f485(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1,P1) -> f501(A,R,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,0,Q1,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,R,N1,O1 [0 >= 1 + Q] (?,1) ,P1) 18. f461(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1,P1) -> f455(A,B,C,D,E,F,G,H,2 + I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1 [M >= 32] (?,1) ,O1,P1) 19. f455(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1,P1) -> f485(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,98,Q1,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,100,O1[I >= 100] (?,1) ,P1) 20. f441(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1,P1) -> f437(A,B,C,D,E,1 + F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1 [H >= 50] (?,1) ,O1,P1) 21. f437(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1,P1) -> f455(A,B,C,D,E,F,G,H,0,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1 [F >= 50] (?,1) ,P1) 22. f422(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1,P1) -> f437(C,B,C,D,E,0,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1,M1,N1,C,C) [E >= 150] (?,1) Signature: {(f0,42) ;(f422,42) ;(f437,42) ;(f441,42) ;(f455,42) ;(f461,42) ;(f485,42) ;(f501,42) ;(f526,42) ;(f540,42) ;(f543,42) ;(f546,42) ;(f584,42)} Flow Graph: [0->{1,22},1->{1,22},2->{3,20},3->{3,20},4->{5,18},5->{5,18},6->{6,17},7->{7,16},8->{8,15},9->{10,13} ,10->{11,12},11->{11,12},12->{10,13},13->{9,14},14->{},15->{9,14},16->{8,15},17->{7,16},18->{4,19},19->{6 ,17},20->{2,21},21->{4,19},22->{2,21}] + Applied Processor: RestrictVarsProcessor + Details: We removed the arguments [D,G,J,K,L,N,O,P,T,U,A1,B1,C1,D1,F1,G1,H1,I1,J1,K1,L1,M1,N1,O1,P1] . * Step 2: LocalSizeboundsProc WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) True (1,1) 1. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [149 >= E] (?,1) 2. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= F] (?,1) 3. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= H] (?,1) 4. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1) [99 >= I] (?,1) 5. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1) [31 >= M] (?,1) 6. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) [Q >= 0] (?,1) 7. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1) [49 >= S] (?,1) 8. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1) [V >= W] (?,1) 9. f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1) [8 >= X] (?,1) 10. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1) [7 >= Y] (?,1) 11. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1) [3 >= Z] (?,1) 12. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1) [Z >= 4] (?,1) 13. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1) [Y >= 8] (?,1) 14. f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f584(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [X >= 9] (?,1) 15. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1) [W >= 1 + V] (?,1) 16. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B) [S >= 50] (?,1) 17. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1) [0 >= 1 + Q] (?,1) 18. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1) [M >= 32] (?,1) 19. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1) [I >= 100] (?,1) 20. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [H >= 50] (?,1) 21. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1) [F >= 50] (?,1) 22. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [E >= 150] (?,1) Signature: {(f0,17) ;(f422,17) ;(f437,17) ;(f441,17) ;(f455,17) ;(f461,17) ;(f485,17) ;(f501,17) ;(f526,17) ;(f540,17) ;(f543,17) ;(f546,17) ;(f584,17)} Flow Graph: [0->{1,22},1->{1,22},2->{3,20},3->{3,20},4->{5,18},5->{5,18},6->{6,17},7->{7,16},8->{8,15},9->{10,13} ,10->{11,12},11->{11,12},12->{10,13},13->{9,14},14->{},15->{9,14},16->{8,15},17->{7,16},18->{4,19},19->{6 ,17},20->{2,21},21->{4,19},22->{2,21}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (< 0,0,A>, 3, .= 3) (< 0,0,B>, 43690, .= 43690) (< 0,0,C>, 3, .= 3) (< 0,0,E>, 0, .= 0) (< 0,0,F>, F, .= 0) (< 0,0,H>, H, .= 0) (< 0,0,I>, I, .= 0) (< 0,0,M>, M, .= 0) (< 0,0,Q>, Q, .= 0) (< 0,0,R>, R, .= 0) (< 0,0,S>, S, .= 0) (< 0,0,V>, V, .= 0) (< 0,0,W>, W, .= 0) (< 0,0,X>, X, .= 0) (< 0,0,Y>, Y, .= 0) (< 0,0,Z>, Z, .= 0) (< 0,0,E1>, E1, .= 0) (< 1,0,A>, A, .= 0) (< 1,0,B>, B, .= 0) (< 1,0,C>, ?, .?) (< 1,0,E>, 1 + E, .+ 1) (< 1,0,F>, F, .= 0) (< 1,0,H>, H, .= 0) (< 1,0,I>, I, .= 0) (< 1,0,M>, M, .= 0) (< 1,0,Q>, Q, .= 0) (< 1,0,R>, R, .= 0) (< 1,0,S>, S, .= 0) (< 1,0,V>, V, .= 0) (< 1,0,W>, W, .= 0) (< 1,0,X>, X, .= 0) (< 1,0,Y>, Y, .= 0) (< 1,0,Z>, Z, .= 0) (< 1,0,E1>, E1, .= 0) (< 2,0,A>, A, .= 0) (< 2,0,B>, B, .= 0) (< 2,0,C>, C, .= 0) (< 2,0,E>, E, .= 0) (< 2,0,F>, F, .= 0) (< 2,0,H>, 0, .= 0) (< 2,0,I>, I, .= 0) (< 2,0,M>, M, .= 0) (< 2,0,Q>, Q, .= 0) (< 2,0,R>, R, .= 0) (< 2,0,S>, S, .= 0) (< 2,0,V>, V, .= 0) (< 2,0,W>, W, .= 0) (< 2,0,X>, X, .= 0) (< 2,0,Y>, Y, .= 0) (< 2,0,Z>, Z, .= 0) (< 2,0,E1>, E1, .= 0) (< 3,0,A>, A, .= 0) (< 3,0,B>, B, .= 0) (< 3,0,C>, C, .= 0) (< 3,0,E>, E, .= 0) (< 3,0,F>, F, .= 0) (< 3,0,H>, 1 + H, .+ 1) (< 3,0,I>, I, .= 0) (< 3,0,M>, M, .= 0) (< 3,0,Q>, Q, .= 0) (< 3,0,R>, R, .= 0) (< 3,0,S>, S, .= 0) (< 3,0,V>, V, .= 0) (< 3,0,W>, W, .= 0) (< 3,0,X>, X, .= 0) (< 3,0,Y>, Y, .= 0) (< 3,0,Z>, Z, .= 0) (< 3,0,E1>, E1, .= 0) (< 4,0,A>, A, .= 0) (< 4,0,B>, B, .= 0) (< 4,0,C>, C, .= 0) (< 4,0,E>, E, .= 0) (< 4,0,F>, F, .= 0) (< 4,0,H>, H, .= 0) (< 4,0,I>, I, .= 0) (< 4,0,M>, 0, .= 0) (< 4,0,Q>, Q, .= 0) (< 4,0,R>, R, .= 0) (< 4,0,S>, S, .= 0) (< 4,0,V>, V, .= 0) (< 4,0,W>, W, .= 0) (< 4,0,X>, X, .= 0) (< 4,0,Y>, Y, .= 0) (< 4,0,Z>, Z, .= 0) (< 4,0,E1>, E1, .= 0) (< 5,0,A>, A, .= 0) (< 5,0,B>, B, .= 0) (< 5,0,C>, C, .= 0) (< 5,0,E>, E, .= 0) (< 5,0,F>, F, .= 0) (< 5,0,H>, H, .= 0) (< 5,0,I>, I, .= 0) (< 5,0,M>, 2 + M, .+ 2) (< 5,0,Q>, Q, .= 0) (< 5,0,R>, R, .= 0) (< 5,0,S>, S, .= 0) (< 5,0,V>, V, .= 0) (< 5,0,W>, W, .= 0) (< 5,0,X>, X, .= 0) (< 5,0,Y>, Y, .= 0) (< 5,0,Z>, Z, .= 0) (< 5,0,E1>, E1, .= 0) (< 6,0,A>, A, .= 0) (< 6,0,B>, B, .= 0) (< 6,0,C>, C, .= 0) (< 6,0,E>, E, .= 0) (< 6,0,F>, F, .= 0) (< 6,0,H>, H, .= 0) (< 6,0,I>, I, .= 0) (< 6,0,M>, M, .= 0) (< 6,0,Q>, 1 + Q, .+ 1) (< 6,0,R>, ?, .?) (< 6,0,S>, S, .= 0) (< 6,0,V>, V, .= 0) (< 6,0,W>, W, .= 0) (< 6,0,X>, X, .= 0) (< 6,0,Y>, Y, .= 0) (< 6,0,Z>, Z, .= 0) (< 6,0,E1>, E1, .= 0) (< 7,0,A>, A, .= 0) (< 7,0,B>, B, .= 0) (< 7,0,C>, C, .= 0) (< 7,0,E>, E, .= 0) (< 7,0,F>, F, .= 0) (< 7,0,H>, H, .= 0) (< 7,0,I>, I, .= 0) (< 7,0,M>, M, .= 0) (< 7,0,Q>, Q, .= 0) (< 7,0,R>, R, .= 0) (< 7,0,S>, 1 + S, .+ 1) (< 7,0,V>, V, .= 0) (< 7,0,W>, W, .= 0) (< 7,0,X>, X, .= 0) (< 7,0,Y>, Y, .= 0) (< 7,0,Z>, Z, .= 0) (< 7,0,E1>, E1, .= 0) (< 8,0,A>, A, .= 0) (< 8,0,B>, B, .= 0) (< 8,0,C>, C, .= 0) (< 8,0,E>, E, .= 0) (< 8,0,F>, F, .= 0) (< 8,0,H>, H, .= 0) (< 8,0,I>, I, .= 0) (< 8,0,M>, M, .= 0) (< 8,0,Q>, Q, .= 0) (< 8,0,R>, R, .= 0) (< 8,0,S>, S, .= 0) (< 8,0,V>, V, .= 0) (< 8,0,W>, 1 + W, .+ 1) (< 8,0,X>, X, .= 0) (< 8,0,Y>, Y, .= 0) (< 8,0,Z>, Z, .= 0) (< 8,0,E1>, E1, .= 0) (< 9,0,A>, A, .= 0) (< 9,0,B>, B, .= 0) (< 9,0,C>, C, .= 0) (< 9,0,E>, E, .= 0) (< 9,0,F>, F, .= 0) (< 9,0,H>, H, .= 0) (< 9,0,I>, I, .= 0) (< 9,0,M>, M, .= 0) (< 9,0,Q>, Q, .= 0) (< 9,0,R>, R, .= 0) (< 9,0,S>, S, .= 0) (< 9,0,V>, V, .= 0) (< 9,0,W>, W, .= 0) (< 9,0,X>, X, .= 0) (< 9,0,Y>, 0, .= 0) (< 9,0,Z>, Z, .= 0) (< 9,0,E1>, E1, .= 0) (<10,0,A>, A, .= 0) (<10,0,B>, B, .= 0) (<10,0,C>, C, .= 0) (<10,0,E>, E, .= 0) (<10,0,F>, F, .= 0) (<10,0,H>, H, .= 0) (<10,0,I>, I, .= 0) (<10,0,M>, M, .= 0) (<10,0,Q>, Q, .= 0) (<10,0,R>, R, .= 0) (<10,0,S>, S, .= 0) (<10,0,V>, V, .= 0) (<10,0,W>, W, .= 0) (<10,0,X>, X, .= 0) (<10,0,Y>, Y, .= 0) (<10,0,Z>, 0, .= 0) (<10,0,E1>, E1, .= 0) (<11,0,A>, A, .= 0) (<11,0,B>, B, .= 0) (<11,0,C>, C, .= 0) (<11,0,E>, E, .= 0) (<11,0,F>, F, .= 0) (<11,0,H>, H, .= 0) (<11,0,I>, I, .= 0) (<11,0,M>, M, .= 0) (<11,0,Q>, Q, .= 0) (<11,0,R>, R, .= 0) (<11,0,S>, S, .= 0) (<11,0,V>, V, .= 0) (<11,0,W>, W, .= 0) (<11,0,X>, X, .= 0) (<11,0,Y>, Y, .= 0) (<11,0,Z>, 1 + Z, .+ 1) (<11,0,E1>, E1, .= 0) (<12,0,A>, A, .= 0) (<12,0,B>, B, .= 0) (<12,0,C>, C, .= 0) (<12,0,E>, E, .= 0) (<12,0,F>, F, .= 0) (<12,0,H>, H, .= 0) (<12,0,I>, I, .= 0) (<12,0,M>, M, .= 0) (<12,0,Q>, Q, .= 0) (<12,0,R>, R, .= 0) (<12,0,S>, S, .= 0) (<12,0,V>, V, .= 0) (<12,0,W>, W, .= 0) (<12,0,X>, X, .= 0) (<12,0,Y>, 1 + Y, .+ 1) (<12,0,Z>, Z, .= 0) (<12,0,E1>, E1, .= 0) (<13,0,A>, A, .= 0) (<13,0,B>, B, .= 0) (<13,0,C>, C, .= 0) (<13,0,E>, E, .= 0) (<13,0,F>, F, .= 0) (<13,0,H>, H, .= 0) (<13,0,I>, I, .= 0) (<13,0,M>, M, .= 0) (<13,0,Q>, Q, .= 0) (<13,0,R>, R, .= 0) (<13,0,S>, S, .= 0) (<13,0,V>, V, .= 0) (<13,0,W>, W, .= 0) (<13,0,X>, 7 + X, .+ 7) (<13,0,Y>, Y, .= 0) (<13,0,Z>, Z, .= 0) (<13,0,E1>, E1, .= 0) (<14,0,A>, A, .= 0) (<14,0,B>, B, .= 0) (<14,0,C>, C, .= 0) (<14,0,E>, E, .= 0) (<14,0,F>, F, .= 0) (<14,0,H>, H, .= 0) (<14,0,I>, I, .= 0) (<14,0,M>, M, .= 0) (<14,0,Q>, Q, .= 0) (<14,0,R>, R, .= 0) (<14,0,S>, S, .= 0) (<14,0,V>, V, .= 0) (<14,0,W>, W, .= 0) (<14,0,X>, X, .= 0) (<14,0,Y>, Y, .= 0) (<14,0,Z>, Z, .= 0) (<14,0,E1>, E1, .= 0) (<15,0,A>, A, .= 0) (<15,0,B>, B, .= 0) (<15,0,C>, C, .= 0) (<15,0,E>, E, .= 0) (<15,0,F>, F, .= 0) (<15,0,H>, H, .= 0) (<15,0,I>, I, .= 0) (<15,0,M>, M, .= 0) (<15,0,Q>, Q, .= 0) (<15,0,R>, R, .= 0) (<15,0,S>, S, .= 0) (<15,0,V>, V, .= 0) (<15,0,W>, W, .= 0) (<15,0,X>, 1, .= 1) (<15,0,Y>, Y, .= 0) (<15,0,Z>, Z, .= 0) (<15,0,E1>, E1, .= 0) (<16,0,A>, A, .= 0) (<16,0,B>, B, .= 0) (<16,0,C>, C, .= 0) (<16,0,E>, E, .= 0) (<16,0,F>, F, .= 0) (<16,0,H>, H, .= 0) (<16,0,I>, I, .= 0) (<16,0,M>, M, .= 0) (<16,0,Q>, Q, .= 0) (<16,0,R>, R, .= 0) (<16,0,S>, S, .= 0) (<16,0,V>, 17, .= 17) (<16,0,W>, 2, .= 2) (<16,0,X>, X, .= 0) (<16,0,Y>, Y, .= 0) (<16,0,Z>, Z, .= 0) (<16,0,E1>, B, .= 0) (<17,0,A>, A, .= 0) (<17,0,B>, R, .= 0) (<17,0,C>, C, .= 0) (<17,0,E>, E, .= 0) (<17,0,F>, F, .= 0) (<17,0,H>, H, .= 0) (<17,0,I>, I, .= 0) (<17,0,M>, M, .= 0) (<17,0,Q>, Q, .= 0) (<17,0,R>, R, .= 0) (<17,0,S>, 0, .= 0) (<17,0,V>, V, .= 0) (<17,0,W>, W, .= 0) (<17,0,X>, X, .= 0) (<17,0,Y>, Y, .= 0) (<17,0,Z>, Z, .= 0) (<17,0,E1>, E1, .= 0) (<18,0,A>, A, .= 0) (<18,0,B>, B, .= 0) (<18,0,C>, C, .= 0) (<18,0,E>, E, .= 0) (<18,0,F>, F, .= 0) (<18,0,H>, H, .= 0) (<18,0,I>, 2 + I, .+ 2) (<18,0,M>, M, .= 0) (<18,0,Q>, Q, .= 0) (<18,0,R>, R, .= 0) (<18,0,S>, S, .= 0) (<18,0,V>, V, .= 0) (<18,0,W>, W, .= 0) (<18,0,X>, X, .= 0) (<18,0,Y>, Y, .= 0) (<18,0,Z>, Z, .= 0) (<18,0,E1>, E1, .= 0) (<19,0,A>, A, .= 0) (<19,0,B>, B, .= 0) (<19,0,C>, C, .= 0) (<19,0,E>, E, .= 0) (<19,0,F>, F, .= 0) (<19,0,H>, H, .= 0) (<19,0,I>, I, .= 0) (<19,0,M>, M, .= 0) (<19,0,Q>, 98, .= 98) (<19,0,R>, ?, .?) (<19,0,S>, S, .= 0) (<19,0,V>, V, .= 0) (<19,0,W>, W, .= 0) (<19,0,X>, X, .= 0) (<19,0,Y>, Y, .= 0) (<19,0,Z>, Z, .= 0) (<19,0,E1>, E1, .= 0) (<20,0,A>, A, .= 0) (<20,0,B>, B, .= 0) (<20,0,C>, C, .= 0) (<20,0,E>, E, .= 0) (<20,0,F>, 1 + F, .+ 1) (<20,0,H>, H, .= 0) (<20,0,I>, I, .= 0) (<20,0,M>, M, .= 0) (<20,0,Q>, Q, .= 0) (<20,0,R>, R, .= 0) (<20,0,S>, S, .= 0) (<20,0,V>, V, .= 0) (<20,0,W>, W, .= 0) (<20,0,X>, X, .= 0) (<20,0,Y>, Y, .= 0) (<20,0,Z>, Z, .= 0) (<20,0,E1>, E1, .= 0) (<21,0,A>, A, .= 0) (<21,0,B>, B, .= 0) (<21,0,C>, C, .= 0) (<21,0,E>, E, .= 0) (<21,0,F>, F, .= 0) (<21,0,H>, H, .= 0) (<21,0,I>, 0, .= 0) (<21,0,M>, M, .= 0) (<21,0,Q>, Q, .= 0) (<21,0,R>, R, .= 0) (<21,0,S>, S, .= 0) (<21,0,V>, V, .= 0) (<21,0,W>, W, .= 0) (<21,0,X>, X, .= 0) (<21,0,Y>, Y, .= 0) (<21,0,Z>, Z, .= 0) (<21,0,E1>, E1, .= 0) (<22,0,A>, C, .= 0) (<22,0,B>, B, .= 0) (<22,0,C>, C, .= 0) (<22,0,E>, E, .= 0) (<22,0,F>, 0, .= 0) (<22,0,H>, H, .= 0) (<22,0,I>, I, .= 0) (<22,0,M>, M, .= 0) (<22,0,Q>, Q, .= 0) (<22,0,R>, R, .= 0) (<22,0,S>, S, .= 0) (<22,0,V>, V, .= 0) (<22,0,W>, W, .= 0) (<22,0,X>, X, .= 0) (<22,0,Y>, Y, .= 0) (<22,0,Z>, Z, .= 0) (<22,0,E1>, E1, .= 0) * Step 3: SizeboundsProc WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) True (1,1) 1. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [149 >= E] (?,1) 2. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= F] (?,1) 3. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= H] (?,1) 4. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1) [99 >= I] (?,1) 5. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1) [31 >= M] (?,1) 6. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) [Q >= 0] (?,1) 7. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1) [49 >= S] (?,1) 8. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1) [V >= W] (?,1) 9. f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1) [8 >= X] (?,1) 10. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1) [7 >= Y] (?,1) 11. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1) [3 >= Z] (?,1) 12. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1) [Z >= 4] (?,1) 13. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1) [Y >= 8] (?,1) 14. f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f584(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [X >= 9] (?,1) 15. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1) [W >= 1 + V] (?,1) 16. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B) [S >= 50] (?,1) 17. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1) [0 >= 1 + Q] (?,1) 18. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1) [M >= 32] (?,1) 19. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1) [I >= 100] (?,1) 20. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [H >= 50] (?,1) 21. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1) [F >= 50] (?,1) 22. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [E >= 150] (?,1) Signature: {(f0,17) ;(f422,17) ;(f437,17) ;(f441,17) ;(f455,17) ;(f461,17) ;(f485,17) ;(f501,17) ;(f526,17) ;(f540,17) ;(f543,17) ;(f546,17) ;(f584,17)} Flow Graph: [0->{1,22},1->{1,22},2->{3,20},3->{3,20},4->{5,18},5->{5,18},6->{6,17},7->{7,16},8->{8,15},9->{10,13} ,10->{11,12},11->{11,12},12->{10,13},13->{9,14},14->{},15->{9,14},16->{8,15},17->{7,16},18->{4,19},19->{6 ,17},20->{2,21},21->{4,19},22->{2,21}] Sizebounds: (< 0,0,A>, ?) (< 0,0,B>, ?) (< 0,0,C>, ?) (< 0,0,E>, ?) (< 0,0,F>, ?) (< 0,0,H>, ?) (< 0,0,I>, ?) (< 0,0,M>, ?) (< 0,0,Q>, ?) (< 0,0,R>, ?) (< 0,0,S>, ?) (< 0,0,V>, ?) (< 0,0,W>, ?) (< 0,0,X>, ?) (< 0,0,Y>, ?) (< 0,0,Z>, ?) (< 0,0,E1>, ?) (< 1,0,A>, ?) (< 1,0,B>, ?) (< 1,0,C>, ?) (< 1,0,E>, ?) (< 1,0,F>, ?) (< 1,0,H>, ?) (< 1,0,I>, ?) (< 1,0,M>, ?) (< 1,0,Q>, ?) (< 1,0,R>, ?) (< 1,0,S>, ?) (< 1,0,V>, ?) (< 1,0,W>, ?) (< 1,0,X>, ?) (< 1,0,Y>, ?) (< 1,0,Z>, ?) (< 1,0,E1>, ?) (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,E>, ?) (< 2,0,F>, ?) (< 2,0,H>, ?) (< 2,0,I>, ?) (< 2,0,M>, ?) (< 2,0,Q>, ?) (< 2,0,R>, ?) (< 2,0,S>, ?) (< 2,0,V>, ?) (< 2,0,W>, ?) (< 2,0,X>, ?) (< 2,0,Y>, ?) (< 2,0,Z>, ?) (< 2,0,E1>, ?) (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,E>, ?) (< 3,0,F>, ?) (< 3,0,H>, ?) (< 3,0,I>, ?) (< 3,0,M>, ?) (< 3,0,Q>, ?) (< 3,0,R>, ?) (< 3,0,S>, ?) (< 3,0,V>, ?) (< 3,0,W>, ?) (< 3,0,X>, ?) (< 3,0,Y>, ?) (< 3,0,Z>, ?) (< 3,0,E1>, ?) (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 4,0,E>, ?) (< 4,0,F>, ?) (< 4,0,H>, ?) (< 4,0,I>, ?) (< 4,0,M>, ?) (< 4,0,Q>, ?) (< 4,0,R>, ?) (< 4,0,S>, ?) (< 4,0,V>, ?) (< 4,0,W>, ?) (< 4,0,X>, ?) (< 4,0,Y>, ?) (< 4,0,Z>, ?) (< 4,0,E1>, ?) (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, ?) (< 5,0,H>, ?) (< 5,0,I>, ?) (< 5,0,M>, ?) (< 5,0,Q>, ?) (< 5,0,R>, ?) (< 5,0,S>, ?) (< 5,0,V>, ?) (< 5,0,W>, ?) (< 5,0,X>, ?) (< 5,0,Y>, ?) (< 5,0,Z>, ?) (< 5,0,E1>, ?) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, ?) (< 6,0,H>, ?) (< 6,0,I>, ?) (< 6,0,M>, ?) (< 6,0,Q>, ?) (< 6,0,R>, ?) (< 6,0,S>, ?) (< 6,0,V>, ?) (< 6,0,W>, ?) (< 6,0,X>, ?) (< 6,0,Y>, ?) (< 6,0,Z>, ?) (< 6,0,E1>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, ?) (< 7,0,H>, ?) (< 7,0,I>, ?) (< 7,0,M>, ?) (< 7,0,Q>, ?) (< 7,0,R>, ?) (< 7,0,S>, ?) (< 7,0,V>, ?) (< 7,0,W>, ?) (< 7,0,X>, ?) (< 7,0,Y>, ?) (< 7,0,Z>, ?) (< 7,0,E1>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,H>, ?) (< 8,0,I>, ?) (< 8,0,M>, ?) (< 8,0,Q>, ?) (< 8,0,R>, ?) (< 8,0,S>, ?) (< 8,0,V>, ?) (< 8,0,W>, ?) (< 8,0,X>, ?) (< 8,0,Y>, ?) (< 8,0,Z>, ?) (< 8,0,E1>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) (< 9,0,H>, ?) (< 9,0,I>, ?) (< 9,0,M>, ?) (< 9,0,Q>, ?) (< 9,0,R>, ?) (< 9,0,S>, ?) (< 9,0,V>, ?) (< 9,0,W>, ?) (< 9,0,X>, ?) (< 9,0,Y>, ?) (< 9,0,Z>, ?) (< 9,0,E1>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,H>, ?) (<10,0,I>, ?) (<10,0,M>, ?) (<10,0,Q>, ?) (<10,0,R>, ?) (<10,0,S>, ?) (<10,0,V>, ?) (<10,0,W>, ?) (<10,0,X>, ?) (<10,0,Y>, ?) (<10,0,Z>, ?) (<10,0,E1>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,H>, ?) (<11,0,I>, ?) (<11,0,M>, ?) (<11,0,Q>, ?) (<11,0,R>, ?) (<11,0,S>, ?) (<11,0,V>, ?) (<11,0,W>, ?) (<11,0,X>, ?) (<11,0,Y>, ?) (<11,0,Z>, ?) (<11,0,E1>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,H>, ?) (<12,0,I>, ?) (<12,0,M>, ?) (<12,0,Q>, ?) (<12,0,R>, ?) (<12,0,S>, ?) (<12,0,V>, ?) (<12,0,W>, ?) (<12,0,X>, ?) (<12,0,Y>, ?) (<12,0,Z>, ?) (<12,0,E1>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,H>, ?) (<13,0,I>, ?) (<13,0,M>, ?) (<13,0,Q>, ?) (<13,0,R>, ?) (<13,0,S>, ?) (<13,0,V>, ?) (<13,0,W>, ?) (<13,0,X>, ?) (<13,0,Y>, ?) (<13,0,Z>, ?) (<13,0,E1>, ?) (<14,0,A>, ?) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,E>, ?) (<14,0,F>, ?) (<14,0,H>, ?) (<14,0,I>, ?) (<14,0,M>, ?) (<14,0,Q>, ?) (<14,0,R>, ?) (<14,0,S>, ?) (<14,0,V>, ?) (<14,0,W>, ?) (<14,0,X>, ?) (<14,0,Y>, ?) (<14,0,Z>, ?) (<14,0,E1>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, ?) (<15,0,H>, ?) (<15,0,I>, ?) (<15,0,M>, ?) (<15,0,Q>, ?) (<15,0,R>, ?) (<15,0,S>, ?) (<15,0,V>, ?) (<15,0,W>, ?) (<15,0,X>, ?) (<15,0,Y>, ?) (<15,0,Z>, ?) (<15,0,E1>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, ?) (<16,0,H>, ?) (<16,0,I>, ?) (<16,0,M>, ?) (<16,0,Q>, ?) (<16,0,R>, ?) (<16,0,S>, ?) (<16,0,V>, ?) (<16,0,W>, ?) (<16,0,X>, ?) (<16,0,Y>, ?) (<16,0,Z>, ?) (<16,0,E1>, ?) (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,E>, ?) (<17,0,F>, ?) (<17,0,H>, ?) (<17,0,I>, ?) (<17,0,M>, ?) (<17,0,Q>, ?) (<17,0,R>, ?) (<17,0,S>, ?) (<17,0,V>, ?) (<17,0,W>, ?) (<17,0,X>, ?) (<17,0,Y>, ?) (<17,0,Z>, ?) (<17,0,E1>, ?) (<18,0,A>, ?) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, ?) (<18,0,H>, ?) (<18,0,I>, ?) (<18,0,M>, ?) (<18,0,Q>, ?) (<18,0,R>, ?) (<18,0,S>, ?) (<18,0,V>, ?) (<18,0,W>, ?) (<18,0,X>, ?) (<18,0,Y>, ?) (<18,0,Z>, ?) (<18,0,E1>, ?) (<19,0,A>, ?) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, ?) (<19,0,H>, ?) (<19,0,I>, ?) (<19,0,M>, ?) (<19,0,Q>, ?) (<19,0,R>, ?) (<19,0,S>, ?) (<19,0,V>, ?) (<19,0,W>, ?) (<19,0,X>, ?) (<19,0,Y>, ?) (<19,0,Z>, ?) (<19,0,E1>, ?) (<20,0,A>, ?) (<20,0,B>, ?) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, ?) (<20,0,H>, ?) (<20,0,I>, ?) (<20,0,M>, ?) (<20,0,Q>, ?) (<20,0,R>, ?) (<20,0,S>, ?) (<20,0,V>, ?) (<20,0,W>, ?) (<20,0,X>, ?) (<20,0,Y>, ?) (<20,0,Z>, ?) (<20,0,E1>, ?) (<21,0,A>, ?) (<21,0,B>, ?) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, ?) (<21,0,H>, ?) (<21,0,I>, ?) (<21,0,M>, ?) (<21,0,Q>, ?) (<21,0,R>, ?) (<21,0,S>, ?) (<21,0,V>, ?) (<21,0,W>, ?) (<21,0,X>, ?) (<21,0,Y>, ?) (<21,0,Z>, ?) (<21,0,E1>, ?) (<22,0,A>, ?) (<22,0,B>, ?) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,F>, ?) (<22,0,H>, ?) (<22,0,I>, ?) (<22,0,M>, ?) (<22,0,Q>, ?) (<22,0,R>, ?) (<22,0,S>, ?) (<22,0,V>, ?) (<22,0,W>, ?) (<22,0,X>, ?) (<22,0,Y>, ?) (<22,0,Z>, ?) (<22,0,E1>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>, 0) (< 0,0,F>, F) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,M>, M) (< 0,0,Q>, Q) (< 0,0,R>, R) (< 0,0,S>, S) (< 0,0,V>, V) (< 0,0,W>, W) (< 0,0,X>, X) (< 0,0,Y>, Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>, F) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,M>, M) (< 1,0,Q>, Q) (< 1,0,R>, R) (< 1,0,S>, S) (< 1,0,V>, V) (< 1,0,W>, W) (< 1,0,X>, X) (< 1,0,Y>, Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>, ?) (< 2,0,F>, 49) (< 2,0,H>, 0) (< 2,0,I>, I) (< 2,0,M>, M) (< 2,0,Q>, Q) (< 2,0,R>, R) (< 2,0,S>, S) (< 2,0,V>, V) (< 2,0,W>, W) (< 2,0,X>, X) (< 2,0,Y>, Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>, ?) (< 3,0,F>, 49) (< 3,0,H>, 50) (< 3,0,I>, I) (< 3,0,M>, M) (< 3,0,Q>, Q) (< 3,0,R>, R) (< 3,0,S>, S) (< 3,0,V>, V) (< 3,0,W>, W) (< 3,0,X>, X) (< 3,0,Y>, Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>, ?) (< 4,0,F>, ?) (< 4,0,H>, ?) (< 4,0,I>, 99) (< 4,0,M>, 0) (< 4,0,Q>, Q) (< 4,0,R>, R) (< 4,0,S>, S) (< 4,0,V>, V) (< 4,0,W>, W) (< 4,0,X>, X) (< 4,0,Y>, Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, ?) (< 5,0,H>, ?) (< 5,0,I>, 99) (< 5,0,M>, 33) (< 5,0,Q>, Q) (< 5,0,R>, R) (< 5,0,S>, S) (< 5,0,V>, V) (< 5,0,W>, W) (< 5,0,X>, X) (< 5,0,Y>, Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, ?) (< 6,0,H>, ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>, ?) (< 6,0,R>, ?) (< 6,0,S>, S) (< 6,0,V>, V) (< 6,0,W>, W) (< 6,0,X>, X) (< 6,0,Y>, Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, ?) (< 7,0,H>, ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>, ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>, V) (< 7,0,W>, W) (< 7,0,X>, X) (< 7,0,Y>, Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,H>, ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>, ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>, Y) (< 8,0,Z>, Z) (< 8,0,E1>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) (< 9,0,H>, ?) (< 9,0,I>, ?) (< 9,0,M>, ?) (< 9,0,Q>, ?) (< 9,0,R>, ?) (< 9,0,S>, ?) (< 9,0,V>, 17) (< 9,0,W>, ?) (< 9,0,X>, 8) (< 9,0,Y>, 0) (< 9,0,Z>, ?) (< 9,0,E1>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,H>, ?) (<10,0,I>, ?) (<10,0,M>, ?) (<10,0,Q>, ?) (<10,0,R>, ?) (<10,0,S>, ?) (<10,0,V>, 17) (<10,0,W>, ?) (<10,0,X>, ?) (<10,0,Y>, 7) (<10,0,Z>, 0) (<10,0,E1>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,H>, ?) (<11,0,I>, ?) (<11,0,M>, ?) (<11,0,Q>, ?) (<11,0,R>, ?) (<11,0,S>, ?) (<11,0,V>, 17) (<11,0,W>, ?) (<11,0,X>, ?) (<11,0,Y>, 7) (<11,0,Z>, 4) (<11,0,E1>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,H>, ?) (<12,0,I>, ?) (<12,0,M>, ?) (<12,0,Q>, ?) (<12,0,R>, ?) (<12,0,S>, ?) (<12,0,V>, 17) (<12,0,W>, ?) (<12,0,X>, ?) (<12,0,Y>, 7) (<12,0,Z>, 4) (<12,0,E1>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,H>, ?) (<13,0,I>, ?) (<13,0,M>, ?) (<13,0,Q>, ?) (<13,0,R>, ?) (<13,0,S>, ?) (<13,0,V>, 17) (<13,0,W>, ?) (<13,0,X>, ?) (<13,0,Y>, 7) (<13,0,Z>, ?) (<13,0,E1>, ?) (<14,0,A>, ?) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,E>, ?) (<14,0,F>, ?) (<14,0,H>, ?) (<14,0,I>, ?) (<14,0,M>, ?) (<14,0,Q>, ?) (<14,0,R>, ?) (<14,0,S>, ?) (<14,0,V>, 17) (<14,0,W>, ?) (<14,0,X>, ?) (<14,0,Y>, 7 + Y) (<14,0,Z>, ?) (<14,0,E1>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, ?) (<15,0,H>, ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>, ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>, Y) (<15,0,Z>, Z) (<15,0,E1>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, ?) (<16,0,H>, ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>, ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>, 2) (<16,0,X>, X) (<16,0,Y>, Y) (<16,0,Z>, Z) (<16,0,E1>, ?) (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,E>, ?) (<17,0,F>, ?) (<17,0,H>, ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>, ?) (<17,0,R>, ?) (<17,0,S>, 0) (<17,0,V>, V) (<17,0,W>, W) (<17,0,X>, X) (<17,0,Y>, Y) (<17,0,Z>, Z) (<17,0,E1>, E1) (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, ?) (<18,0,H>, ?) (<18,0,I>, 99) (<18,0,M>, 33) (<18,0,Q>, Q) (<18,0,R>, R) (<18,0,S>, S) (<18,0,V>, V) (<18,0,W>, W) (<18,0,X>, X) (<18,0,Y>, Y) (<18,0,Z>, Z) (<18,0,E1>, E1) (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, ?) (<19,0,H>, ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>, S) (<19,0,V>, V) (<19,0,W>, W) (<19,0,X>, X) (<19,0,Y>, Y) (<19,0,Z>, Z) (<19,0,E1>, E1) (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 49) (<20,0,H>, 50) (<20,0,I>, I) (<20,0,M>, M) (<20,0,Q>, Q) (<20,0,R>, R) (<20,0,S>, S) (<20,0,V>, V) (<20,0,W>, W) (<20,0,X>, X) (<20,0,Y>, Y) (<20,0,Z>, Z) (<20,0,E1>, E1) (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>, 0) (<21,0,M>, M) (<21,0,Q>, Q) (<21,0,R>, R) (<21,0,S>, S) (<21,0,V>, V) (<21,0,W>, W) (<21,0,X>, X) (<21,0,Y>, Y) (<21,0,Z>, Z) (<21,0,E1>, E1) (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>, 0) (<22,0,H>, H) (<22,0,I>, I) (<22,0,M>, M) (<22,0,Q>, Q) (<22,0,R>, R) (<22,0,S>, S) (<22,0,V>, V) (<22,0,W>, W) (<22,0,X>, X) (<22,0,Y>, Y) (<22,0,Z>, Z) (<22,0,E1>, E1) * Step 4: UnsatPaths WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) True (1,1) 1. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [149 >= E] (?,1) 2. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= F] (?,1) 3. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= H] (?,1) 4. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1) [99 >= I] (?,1) 5. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1) [31 >= M] (?,1) 6. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) [Q >= 0] (?,1) 7. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1) [49 >= S] (?,1) 8. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1) [V >= W] (?,1) 9. f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1) [8 >= X] (?,1) 10. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1) [7 >= Y] (?,1) 11. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1) [3 >= Z] (?,1) 12. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1) [Z >= 4] (?,1) 13. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1) [Y >= 8] (?,1) 14. f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f584(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [X >= 9] (?,1) 15. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1) [W >= 1 + V] (?,1) 16. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B) [S >= 50] (?,1) 17. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1) [0 >= 1 + Q] (?,1) 18. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1) [M >= 32] (?,1) 19. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1) [I >= 100] (?,1) 20. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [H >= 50] (?,1) 21. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1) [F >= 50] (?,1) 22. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [E >= 150] (?,1) Signature: {(f0,17) ;(f422,17) ;(f437,17) ;(f441,17) ;(f455,17) ;(f461,17) ;(f485,17) ;(f501,17) ;(f526,17) ;(f540,17) ;(f543,17) ;(f546,17) ;(f584,17)} Flow Graph: [0->{1,22},1->{1,22},2->{3,20},3->{3,20},4->{5,18},5->{5,18},6->{6,17},7->{7,16},8->{8,15},9->{10,13} ,10->{11,12},11->{11,12},12->{10,13},13->{9,14},14->{},15->{9,14},16->{8,15},17->{7,16},18->{4,19},19->{6 ,17},20->{2,21},21->{4,19},22->{2,21}] Sizebounds: (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>, 0) (< 0,0,F>, F) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,M>, M) (< 0,0,Q>, Q) (< 0,0,R>, R) (< 0,0,S>, S) (< 0,0,V>, V) (< 0,0,W>, W) (< 0,0,X>, X) (< 0,0,Y>, Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>, F) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,M>, M) (< 1,0,Q>, Q) (< 1,0,R>, R) (< 1,0,S>, S) (< 1,0,V>, V) (< 1,0,W>, W) (< 1,0,X>, X) (< 1,0,Y>, Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>, ?) (< 2,0,F>, 49) (< 2,0,H>, 0) (< 2,0,I>, I) (< 2,0,M>, M) (< 2,0,Q>, Q) (< 2,0,R>, R) (< 2,0,S>, S) (< 2,0,V>, V) (< 2,0,W>, W) (< 2,0,X>, X) (< 2,0,Y>, Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>, ?) (< 3,0,F>, 49) (< 3,0,H>, 50) (< 3,0,I>, I) (< 3,0,M>, M) (< 3,0,Q>, Q) (< 3,0,R>, R) (< 3,0,S>, S) (< 3,0,V>, V) (< 3,0,W>, W) (< 3,0,X>, X) (< 3,0,Y>, Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>, ?) (< 4,0,F>, ?) (< 4,0,H>, ?) (< 4,0,I>, 99) (< 4,0,M>, 0) (< 4,0,Q>, Q) (< 4,0,R>, R) (< 4,0,S>, S) (< 4,0,V>, V) (< 4,0,W>, W) (< 4,0,X>, X) (< 4,0,Y>, Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, ?) (< 5,0,H>, ?) (< 5,0,I>, 99) (< 5,0,M>, 33) (< 5,0,Q>, Q) (< 5,0,R>, R) (< 5,0,S>, S) (< 5,0,V>, V) (< 5,0,W>, W) (< 5,0,X>, X) (< 5,0,Y>, Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, ?) (< 6,0,H>, ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>, ?) (< 6,0,R>, ?) (< 6,0,S>, S) (< 6,0,V>, V) (< 6,0,W>, W) (< 6,0,X>, X) (< 6,0,Y>, Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, ?) (< 7,0,H>, ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>, ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>, V) (< 7,0,W>, W) (< 7,0,X>, X) (< 7,0,Y>, Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,H>, ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>, ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>, Y) (< 8,0,Z>, Z) (< 8,0,E1>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) (< 9,0,H>, ?) (< 9,0,I>, ?) (< 9,0,M>, ?) (< 9,0,Q>, ?) (< 9,0,R>, ?) (< 9,0,S>, ?) (< 9,0,V>, 17) (< 9,0,W>, ?) (< 9,0,X>, 8) (< 9,0,Y>, 0) (< 9,0,Z>, ?) (< 9,0,E1>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,H>, ?) (<10,0,I>, ?) (<10,0,M>, ?) (<10,0,Q>, ?) (<10,0,R>, ?) (<10,0,S>, ?) (<10,0,V>, 17) (<10,0,W>, ?) (<10,0,X>, ?) (<10,0,Y>, 7) (<10,0,Z>, 0) (<10,0,E1>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,H>, ?) (<11,0,I>, ?) (<11,0,M>, ?) (<11,0,Q>, ?) (<11,0,R>, ?) (<11,0,S>, ?) (<11,0,V>, 17) (<11,0,W>, ?) (<11,0,X>, ?) (<11,0,Y>, 7) (<11,0,Z>, 4) (<11,0,E1>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,H>, ?) (<12,0,I>, ?) (<12,0,M>, ?) (<12,0,Q>, ?) (<12,0,R>, ?) (<12,0,S>, ?) (<12,0,V>, 17) (<12,0,W>, ?) (<12,0,X>, ?) (<12,0,Y>, 7) (<12,0,Z>, 4) (<12,0,E1>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,H>, ?) (<13,0,I>, ?) (<13,0,M>, ?) (<13,0,Q>, ?) (<13,0,R>, ?) (<13,0,S>, ?) (<13,0,V>, 17) (<13,0,W>, ?) (<13,0,X>, ?) (<13,0,Y>, 7) (<13,0,Z>, ?) (<13,0,E1>, ?) (<14,0,A>, ?) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,E>, ?) (<14,0,F>, ?) (<14,0,H>, ?) (<14,0,I>, ?) (<14,0,M>, ?) (<14,0,Q>, ?) (<14,0,R>, ?) (<14,0,S>, ?) (<14,0,V>, 17) (<14,0,W>, ?) (<14,0,X>, ?) (<14,0,Y>, 7 + Y) (<14,0,Z>, ?) (<14,0,E1>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, ?) (<15,0,H>, ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>, ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>, Y) (<15,0,Z>, Z) (<15,0,E1>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, ?) (<16,0,H>, ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>, ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>, 2) (<16,0,X>, X) (<16,0,Y>, Y) (<16,0,Z>, Z) (<16,0,E1>, ?) (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,E>, ?) (<17,0,F>, ?) (<17,0,H>, ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>, ?) (<17,0,R>, ?) (<17,0,S>, 0) (<17,0,V>, V) (<17,0,W>, W) (<17,0,X>, X) (<17,0,Y>, Y) (<17,0,Z>, Z) (<17,0,E1>, E1) (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, ?) (<18,0,H>, ?) (<18,0,I>, 99) (<18,0,M>, 33) (<18,0,Q>, Q) (<18,0,R>, R) (<18,0,S>, S) (<18,0,V>, V) (<18,0,W>, W) (<18,0,X>, X) (<18,0,Y>, Y) (<18,0,Z>, Z) (<18,0,E1>, E1) (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, ?) (<19,0,H>, ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>, S) (<19,0,V>, V) (<19,0,W>, W) (<19,0,X>, X) (<19,0,Y>, Y) (<19,0,Z>, Z) (<19,0,E1>, E1) (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 49) (<20,0,H>, 50) (<20,0,I>, I) (<20,0,M>, M) (<20,0,Q>, Q) (<20,0,R>, R) (<20,0,S>, S) (<20,0,V>, V) (<20,0,W>, W) (<20,0,X>, X) (<20,0,Y>, Y) (<20,0,Z>, Z) (<20,0,E1>, E1) (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>, 0) (<21,0,M>, M) (<21,0,Q>, Q) (<21,0,R>, R) (<21,0,S>, S) (<21,0,V>, V) (<21,0,W>, W) (<21,0,X>, X) (<21,0,Y>, Y) (<21,0,Z>, Z) (<21,0,E1>, E1) (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>, 0) (<22,0,H>, H) (<22,0,I>, I) (<22,0,M>, M) (<22,0,Q>, Q) (<22,0,R>, R) (<22,0,S>, S) (<22,0,V>, V) (<22,0,W>, W) (<22,0,X>, X) (<22,0,Y>, Y) (<22,0,Z>, Z) (<22,0,E1>, E1) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(0,22) ,(2,20) ,(4,18) ,(9,13) ,(10,12) ,(15,14) ,(16,15) ,(17,16) ,(19,17) ,(21,19) ,(22,21)] * Step 5: LeafRules WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) True (1,1) 1. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [149 >= E] (?,1) 2. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= F] (?,1) 3. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= H] (?,1) 4. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1) [99 >= I] (?,1) 5. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1) [31 >= M] (?,1) 6. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) [Q >= 0] (?,1) 7. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1) [49 >= S] (?,1) 8. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1) [V >= W] (?,1) 9. f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1) [8 >= X] (?,1) 10. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1) [7 >= Y] (?,1) 11. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1) [3 >= Z] (?,1) 12. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1) [Z >= 4] (?,1) 13. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1) [Y >= 8] (?,1) 14. f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f584(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [X >= 9] (?,1) 15. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1) [W >= 1 + V] (?,1) 16. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B) [S >= 50] (?,1) 17. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1) [0 >= 1 + Q] (?,1) 18. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1) [M >= 32] (?,1) 19. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1) [I >= 100] (?,1) 20. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [H >= 50] (?,1) 21. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1) [F >= 50] (?,1) 22. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [E >= 150] (?,1) Signature: {(f0,17) ;(f422,17) ;(f437,17) ;(f441,17) ;(f455,17) ;(f461,17) ;(f485,17) ;(f501,17) ;(f526,17) ;(f540,17) ;(f543,17) ;(f546,17) ;(f584,17)} Flow Graph: [0->{1},1->{1,22},2->{3},3->{3,20},4->{5},5->{5,18},6->{6,17},7->{7,16},8->{8,15},9->{10},10->{11},11->{11 ,12},12->{10,13},13->{9,14},14->{},15->{9},16->{8},17->{7},18->{4,19},19->{6},20->{2,21},21->{4},22->{2}] Sizebounds: (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>, 0) (< 0,0,F>, F) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,M>, M) (< 0,0,Q>, Q) (< 0,0,R>, R) (< 0,0,S>, S) (< 0,0,V>, V) (< 0,0,W>, W) (< 0,0,X>, X) (< 0,0,Y>, Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>, F) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,M>, M) (< 1,0,Q>, Q) (< 1,0,R>, R) (< 1,0,S>, S) (< 1,0,V>, V) (< 1,0,W>, W) (< 1,0,X>, X) (< 1,0,Y>, Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>, ?) (< 2,0,F>, 49) (< 2,0,H>, 0) (< 2,0,I>, I) (< 2,0,M>, M) (< 2,0,Q>, Q) (< 2,0,R>, R) (< 2,0,S>, S) (< 2,0,V>, V) (< 2,0,W>, W) (< 2,0,X>, X) (< 2,0,Y>, Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>, ?) (< 3,0,F>, 49) (< 3,0,H>, 50) (< 3,0,I>, I) (< 3,0,M>, M) (< 3,0,Q>, Q) (< 3,0,R>, R) (< 3,0,S>, S) (< 3,0,V>, V) (< 3,0,W>, W) (< 3,0,X>, X) (< 3,0,Y>, Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>, ?) (< 4,0,F>, ?) (< 4,0,H>, ?) (< 4,0,I>, 99) (< 4,0,M>, 0) (< 4,0,Q>, Q) (< 4,0,R>, R) (< 4,0,S>, S) (< 4,0,V>, V) (< 4,0,W>, W) (< 4,0,X>, X) (< 4,0,Y>, Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, ?) (< 5,0,H>, ?) (< 5,0,I>, 99) (< 5,0,M>, 33) (< 5,0,Q>, Q) (< 5,0,R>, R) (< 5,0,S>, S) (< 5,0,V>, V) (< 5,0,W>, W) (< 5,0,X>, X) (< 5,0,Y>, Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, ?) (< 6,0,H>, ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>, ?) (< 6,0,R>, ?) (< 6,0,S>, S) (< 6,0,V>, V) (< 6,0,W>, W) (< 6,0,X>, X) (< 6,0,Y>, Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, ?) (< 7,0,H>, ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>, ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>, V) (< 7,0,W>, W) (< 7,0,X>, X) (< 7,0,Y>, Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,H>, ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>, ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>, Y) (< 8,0,Z>, Z) (< 8,0,E1>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) (< 9,0,H>, ?) (< 9,0,I>, ?) (< 9,0,M>, ?) (< 9,0,Q>, ?) (< 9,0,R>, ?) (< 9,0,S>, ?) (< 9,0,V>, 17) (< 9,0,W>, ?) (< 9,0,X>, 8) (< 9,0,Y>, 0) (< 9,0,Z>, ?) (< 9,0,E1>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,H>, ?) (<10,0,I>, ?) (<10,0,M>, ?) (<10,0,Q>, ?) (<10,0,R>, ?) (<10,0,S>, ?) (<10,0,V>, 17) (<10,0,W>, ?) (<10,0,X>, ?) (<10,0,Y>, 7) (<10,0,Z>, 0) (<10,0,E1>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,H>, ?) (<11,0,I>, ?) (<11,0,M>, ?) (<11,0,Q>, ?) (<11,0,R>, ?) (<11,0,S>, ?) (<11,0,V>, 17) (<11,0,W>, ?) (<11,0,X>, ?) (<11,0,Y>, 7) (<11,0,Z>, 4) (<11,0,E1>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,H>, ?) (<12,0,I>, ?) (<12,0,M>, ?) (<12,0,Q>, ?) (<12,0,R>, ?) (<12,0,S>, ?) (<12,0,V>, 17) (<12,0,W>, ?) (<12,0,X>, ?) (<12,0,Y>, 7) (<12,0,Z>, 4) (<12,0,E1>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,H>, ?) (<13,0,I>, ?) (<13,0,M>, ?) (<13,0,Q>, ?) (<13,0,R>, ?) (<13,0,S>, ?) (<13,0,V>, 17) (<13,0,W>, ?) (<13,0,X>, ?) (<13,0,Y>, 7) (<13,0,Z>, ?) (<13,0,E1>, ?) (<14,0,A>, ?) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,E>, ?) (<14,0,F>, ?) (<14,0,H>, ?) (<14,0,I>, ?) (<14,0,M>, ?) (<14,0,Q>, ?) (<14,0,R>, ?) (<14,0,S>, ?) (<14,0,V>, 17) (<14,0,W>, ?) (<14,0,X>, ?) (<14,0,Y>, 7 + Y) (<14,0,Z>, ?) (<14,0,E1>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, ?) (<15,0,H>, ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>, ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>, Y) (<15,0,Z>, Z) (<15,0,E1>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, ?) (<16,0,H>, ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>, ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>, 2) (<16,0,X>, X) (<16,0,Y>, Y) (<16,0,Z>, Z) (<16,0,E1>, ?) (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,E>, ?) (<17,0,F>, ?) (<17,0,H>, ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>, ?) (<17,0,R>, ?) (<17,0,S>, 0) (<17,0,V>, V) (<17,0,W>, W) (<17,0,X>, X) (<17,0,Y>, Y) (<17,0,Z>, Z) (<17,0,E1>, E1) (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, ?) (<18,0,H>, ?) (<18,0,I>, 99) (<18,0,M>, 33) (<18,0,Q>, Q) (<18,0,R>, R) (<18,0,S>, S) (<18,0,V>, V) (<18,0,W>, W) (<18,0,X>, X) (<18,0,Y>, Y) (<18,0,Z>, Z) (<18,0,E1>, E1) (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, ?) (<19,0,H>, ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>, S) (<19,0,V>, V) (<19,0,W>, W) (<19,0,X>, X) (<19,0,Y>, Y) (<19,0,Z>, Z) (<19,0,E1>, E1) (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 49) (<20,0,H>, 50) (<20,0,I>, I) (<20,0,M>, M) (<20,0,Q>, Q) (<20,0,R>, R) (<20,0,S>, S) (<20,0,V>, V) (<20,0,W>, W) (<20,0,X>, X) (<20,0,Y>, Y) (<20,0,Z>, Z) (<20,0,E1>, E1) (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>, 0) (<21,0,M>, M) (<21,0,Q>, Q) (<21,0,R>, R) (<21,0,S>, S) (<21,0,V>, V) (<21,0,W>, W) (<21,0,X>, X) (<21,0,Y>, Y) (<21,0,Z>, Z) (<21,0,E1>, E1) (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>, 0) (<22,0,H>, H) (<22,0,I>, I) (<22,0,M>, M) (<22,0,Q>, Q) (<22,0,R>, R) (<22,0,S>, S) (<22,0,V>, V) (<22,0,W>, W) (<22,0,X>, X) (<22,0,Y>, Y) (<22,0,Z>, Z) (<22,0,E1>, E1) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [14] * Step 6: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) True (1,1) 1. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [149 >= E] (?,1) 2. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= F] (?,1) 3. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= H] (?,1) 4. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1) [99 >= I] (?,1) 5. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1) [31 >= M] (?,1) 6. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) [Q >= 0] (?,1) 7. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1) [49 >= S] (?,1) 8. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1) [V >= W] (?,1) 9. f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1) [8 >= X] (?,1) 10. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1) [7 >= Y] (?,1) 11. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1) [3 >= Z] (?,1) 12. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1) [Z >= 4] (?,1) 13. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1) [Y >= 8] (?,1) 15. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1) [W >= 1 + V] (?,1) 16. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B) [S >= 50] (?,1) 17. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1) [0 >= 1 + Q] (?,1) 18. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1) [M >= 32] (?,1) 19. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1) [I >= 100] (?,1) 20. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [H >= 50] (?,1) 21. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1) [F >= 50] (?,1) 22. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [E >= 150] (?,1) Signature: {(f0,17) ;(f422,17) ;(f437,17) ;(f441,17) ;(f455,17) ;(f461,17) ;(f485,17) ;(f501,17) ;(f526,17) ;(f540,17) ;(f543,17) ;(f546,17) ;(f584,17)} Flow Graph: [0->{1},1->{1,22},2->{3},3->{3,20},4->{5},5->{5,18},6->{6,17},7->{7,16},8->{8,15},9->{10},10->{11},11->{11 ,12},12->{10,13},13->{9},15->{9},16->{8},17->{7},18->{4,19},19->{6},20->{2,21},21->{4},22->{2}] Sizebounds: (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>, 0) (< 0,0,F>, F) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,M>, M) (< 0,0,Q>, Q) (< 0,0,R>, R) (< 0,0,S>, S) (< 0,0,V>, V) (< 0,0,W>, W) (< 0,0,X>, X) (< 0,0,Y>, Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>, F) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,M>, M) (< 1,0,Q>, Q) (< 1,0,R>, R) (< 1,0,S>, S) (< 1,0,V>, V) (< 1,0,W>, W) (< 1,0,X>, X) (< 1,0,Y>, Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>, ?) (< 2,0,F>, 49) (< 2,0,H>, 0) (< 2,0,I>, I) (< 2,0,M>, M) (< 2,0,Q>, Q) (< 2,0,R>, R) (< 2,0,S>, S) (< 2,0,V>, V) (< 2,0,W>, W) (< 2,0,X>, X) (< 2,0,Y>, Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>, ?) (< 3,0,F>, 49) (< 3,0,H>, 50) (< 3,0,I>, I) (< 3,0,M>, M) (< 3,0,Q>, Q) (< 3,0,R>, R) (< 3,0,S>, S) (< 3,0,V>, V) (< 3,0,W>, W) (< 3,0,X>, X) (< 3,0,Y>, Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>, ?) (< 4,0,F>, ?) (< 4,0,H>, ?) (< 4,0,I>, 99) (< 4,0,M>, 0) (< 4,0,Q>, Q) (< 4,0,R>, R) (< 4,0,S>, S) (< 4,0,V>, V) (< 4,0,W>, W) (< 4,0,X>, X) (< 4,0,Y>, Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, ?) (< 5,0,H>, ?) (< 5,0,I>, 99) (< 5,0,M>, 33) (< 5,0,Q>, Q) (< 5,0,R>, R) (< 5,0,S>, S) (< 5,0,V>, V) (< 5,0,W>, W) (< 5,0,X>, X) (< 5,0,Y>, Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, ?) (< 6,0,H>, ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>, ?) (< 6,0,R>, ?) (< 6,0,S>, S) (< 6,0,V>, V) (< 6,0,W>, W) (< 6,0,X>, X) (< 6,0,Y>, Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, ?) (< 7,0,H>, ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>, ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>, V) (< 7,0,W>, W) (< 7,0,X>, X) (< 7,0,Y>, Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,H>, ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>, ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>, Y) (< 8,0,Z>, Z) (< 8,0,E1>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) (< 9,0,H>, ?) (< 9,0,I>, ?) (< 9,0,M>, ?) (< 9,0,Q>, ?) (< 9,0,R>, ?) (< 9,0,S>, ?) (< 9,0,V>, 17) (< 9,0,W>, ?) (< 9,0,X>, 8) (< 9,0,Y>, 0) (< 9,0,Z>, ?) (< 9,0,E1>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,H>, ?) (<10,0,I>, ?) (<10,0,M>, ?) (<10,0,Q>, ?) (<10,0,R>, ?) (<10,0,S>, ?) (<10,0,V>, 17) (<10,0,W>, ?) (<10,0,X>, ?) (<10,0,Y>, 7) (<10,0,Z>, 0) (<10,0,E1>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,H>, ?) (<11,0,I>, ?) (<11,0,M>, ?) (<11,0,Q>, ?) (<11,0,R>, ?) (<11,0,S>, ?) (<11,0,V>, 17) (<11,0,W>, ?) (<11,0,X>, ?) (<11,0,Y>, 7) (<11,0,Z>, 4) (<11,0,E1>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,H>, ?) (<12,0,I>, ?) (<12,0,M>, ?) (<12,0,Q>, ?) (<12,0,R>, ?) (<12,0,S>, ?) (<12,0,V>, 17) (<12,0,W>, ?) (<12,0,X>, ?) (<12,0,Y>, 7) (<12,0,Z>, 4) (<12,0,E1>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,H>, ?) (<13,0,I>, ?) (<13,0,M>, ?) (<13,0,Q>, ?) (<13,0,R>, ?) (<13,0,S>, ?) (<13,0,V>, 17) (<13,0,W>, ?) (<13,0,X>, ?) (<13,0,Y>, 7) (<13,0,Z>, ?) (<13,0,E1>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, ?) (<15,0,H>, ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>, ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>, Y) (<15,0,Z>, Z) (<15,0,E1>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, ?) (<16,0,H>, ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>, ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>, 2) (<16,0,X>, X) (<16,0,Y>, Y) (<16,0,Z>, Z) (<16,0,E1>, ?) (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,E>, ?) (<17,0,F>, ?) (<17,0,H>, ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>, ?) (<17,0,R>, ?) (<17,0,S>, 0) (<17,0,V>, V) (<17,0,W>, W) (<17,0,X>, X) (<17,0,Y>, Y) (<17,0,Z>, Z) (<17,0,E1>, E1) (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, ?) (<18,0,H>, ?) (<18,0,I>, 99) (<18,0,M>, 33) (<18,0,Q>, Q) (<18,0,R>, R) (<18,0,S>, S) (<18,0,V>, V) (<18,0,W>, W) (<18,0,X>, X) (<18,0,Y>, Y) (<18,0,Z>, Z) (<18,0,E1>, E1) (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, ?) (<19,0,H>, ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>, S) (<19,0,V>, V) (<19,0,W>, W) (<19,0,X>, X) (<19,0,Y>, Y) (<19,0,Z>, Z) (<19,0,E1>, E1) (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 49) (<20,0,H>, 50) (<20,0,I>, I) (<20,0,M>, M) (<20,0,Q>, Q) (<20,0,R>, R) (<20,0,S>, S) (<20,0,V>, V) (<20,0,W>, W) (<20,0,X>, X) (<20,0,Y>, Y) (<20,0,Z>, Z) (<20,0,E1>, E1) (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>, 0) (<21,0,M>, M) (<21,0,Q>, Q) (<21,0,R>, R) (<21,0,S>, S) (<21,0,V>, V) (<21,0,W>, W) (<21,0,X>, X) (<21,0,Y>, Y) (<21,0,Z>, Z) (<21,0,E1>, E1) (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>, 0) (<22,0,H>, H) (<22,0,I>, I) (<22,0,M>, M) (<22,0,Q>, Q) (<22,0,R>, R) (<22,0,S>, S) (<22,0,V>, V) (<22,0,W>, W) (<22,0,X>, X) (<22,0,Y>, Y) (<22,0,Z>, Z) (<22,0,E1>, E1) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 1 p(f422) = 1 p(f437) = 0 p(f441) = 0 p(f455) = 0 p(f461) = 0 p(f485) = 0 p(f501) = 0 p(f526) = 0 p(f540) = 0 p(f543) = 0 p(f546) = 0 The following rules are strictly oriented: [E >= 150] ==> f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 1 > 0 = f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1) The following rules are weakly oriented: True ==> f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 1 >= 1 = f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [149 >= E] ==> f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 1 >= 1 = f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= F] ==> f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 0 >= 0 = f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= H] ==> f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 0 >= 0 = f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1) [99 >= I] ==> f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 0 >= 0 = f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1) [31 >= M] ==> f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 0 >= 0 = f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1) [Q >= 0] ==> f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 0 >= 0 = f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) [49 >= S] ==> f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 0 >= 0 = f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1) [V >= W] ==> f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 0 >= 0 = f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1) [8 >= X] ==> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 0 >= 0 = f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1) [7 >= Y] ==> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 0 >= 0 = f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1) [3 >= Z] ==> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 0 >= 0 = f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1) [Z >= 4] ==> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 0 >= 0 = f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1) [Y >= 8] ==> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 0 >= 0 = f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1) [W >= 1 + V] ==> f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 0 >= 0 = f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1) [S >= 50] ==> f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 0 >= 0 = f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B) [0 >= 1 + Q] ==> f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 0 >= 0 = f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1) [M >= 32] ==> f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 0 >= 0 = f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1) [I >= 100] ==> f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 0 >= 0 = f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1) [H >= 50] ==> f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 0 >= 0 = f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [F >= 50] ==> f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 0 >= 0 = f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1) * Step 7: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) True (1,1) 1. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [149 >= E] (?,1) 2. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= F] (?,1) 3. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= H] (?,1) 4. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1) [99 >= I] (?,1) 5. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1) [31 >= M] (?,1) 6. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) [Q >= 0] (?,1) 7. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1) [49 >= S] (?,1) 8. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1) [V >= W] (?,1) 9. f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1) [8 >= X] (?,1) 10. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1) [7 >= Y] (?,1) 11. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1) [3 >= Z] (?,1) 12. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1) [Z >= 4] (?,1) 13. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1) [Y >= 8] (?,1) 15. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1) [W >= 1 + V] (?,1) 16. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B) [S >= 50] (?,1) 17. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1) [0 >= 1 + Q] (?,1) 18. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1) [M >= 32] (?,1) 19. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1) [I >= 100] (?,1) 20. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [H >= 50] (?,1) 21. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1) [F >= 50] (?,1) 22. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [E >= 150] (1,1) Signature: {(f0,17) ;(f422,17) ;(f437,17) ;(f441,17) ;(f455,17) ;(f461,17) ;(f485,17) ;(f501,17) ;(f526,17) ;(f540,17) ;(f543,17) ;(f546,17) ;(f584,17)} Flow Graph: [0->{1},1->{1,22},2->{3},3->{3,20},4->{5},5->{5,18},6->{6,17},7->{7,16},8->{8,15},9->{10},10->{11},11->{11 ,12},12->{10,13},13->{9},15->{9},16->{8},17->{7},18->{4,19},19->{6},20->{2,21},21->{4},22->{2}] Sizebounds: (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>, 0) (< 0,0,F>, F) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,M>, M) (< 0,0,Q>, Q) (< 0,0,R>, R) (< 0,0,S>, S) (< 0,0,V>, V) (< 0,0,W>, W) (< 0,0,X>, X) (< 0,0,Y>, Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>, F) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,M>, M) (< 1,0,Q>, Q) (< 1,0,R>, R) (< 1,0,S>, S) (< 1,0,V>, V) (< 1,0,W>, W) (< 1,0,X>, X) (< 1,0,Y>, Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>, ?) (< 2,0,F>, 49) (< 2,0,H>, 0) (< 2,0,I>, I) (< 2,0,M>, M) (< 2,0,Q>, Q) (< 2,0,R>, R) (< 2,0,S>, S) (< 2,0,V>, V) (< 2,0,W>, W) (< 2,0,X>, X) (< 2,0,Y>, Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>, ?) (< 3,0,F>, 49) (< 3,0,H>, 50) (< 3,0,I>, I) (< 3,0,M>, M) (< 3,0,Q>, Q) (< 3,0,R>, R) (< 3,0,S>, S) (< 3,0,V>, V) (< 3,0,W>, W) (< 3,0,X>, X) (< 3,0,Y>, Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>, ?) (< 4,0,F>, ?) (< 4,0,H>, ?) (< 4,0,I>, 99) (< 4,0,M>, 0) (< 4,0,Q>, Q) (< 4,0,R>, R) (< 4,0,S>, S) (< 4,0,V>, V) (< 4,0,W>, W) (< 4,0,X>, X) (< 4,0,Y>, Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, ?) (< 5,0,H>, ?) (< 5,0,I>, 99) (< 5,0,M>, 33) (< 5,0,Q>, Q) (< 5,0,R>, R) (< 5,0,S>, S) (< 5,0,V>, V) (< 5,0,W>, W) (< 5,0,X>, X) (< 5,0,Y>, Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, ?) (< 6,0,H>, ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>, ?) (< 6,0,R>, ?) (< 6,0,S>, S) (< 6,0,V>, V) (< 6,0,W>, W) (< 6,0,X>, X) (< 6,0,Y>, Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, ?) (< 7,0,H>, ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>, ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>, V) (< 7,0,W>, W) (< 7,0,X>, X) (< 7,0,Y>, Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,H>, ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>, ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>, Y) (< 8,0,Z>, Z) (< 8,0,E1>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) (< 9,0,H>, ?) (< 9,0,I>, ?) (< 9,0,M>, ?) (< 9,0,Q>, ?) (< 9,0,R>, ?) (< 9,0,S>, ?) (< 9,0,V>, 17) (< 9,0,W>, ?) (< 9,0,X>, 8) (< 9,0,Y>, 0) (< 9,0,Z>, ?) (< 9,0,E1>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,H>, ?) (<10,0,I>, ?) (<10,0,M>, ?) (<10,0,Q>, ?) (<10,0,R>, ?) (<10,0,S>, ?) (<10,0,V>, 17) (<10,0,W>, ?) (<10,0,X>, ?) (<10,0,Y>, 7) (<10,0,Z>, 0) (<10,0,E1>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,H>, ?) (<11,0,I>, ?) (<11,0,M>, ?) (<11,0,Q>, ?) (<11,0,R>, ?) (<11,0,S>, ?) (<11,0,V>, 17) (<11,0,W>, ?) (<11,0,X>, ?) (<11,0,Y>, 7) (<11,0,Z>, 4) (<11,0,E1>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,H>, ?) (<12,0,I>, ?) (<12,0,M>, ?) (<12,0,Q>, ?) (<12,0,R>, ?) (<12,0,S>, ?) (<12,0,V>, 17) (<12,0,W>, ?) (<12,0,X>, ?) (<12,0,Y>, 7) (<12,0,Z>, 4) (<12,0,E1>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,H>, ?) (<13,0,I>, ?) (<13,0,M>, ?) (<13,0,Q>, ?) (<13,0,R>, ?) (<13,0,S>, ?) (<13,0,V>, 17) (<13,0,W>, ?) (<13,0,X>, ?) (<13,0,Y>, 7) (<13,0,Z>, ?) (<13,0,E1>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, ?) (<15,0,H>, ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>, ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>, Y) (<15,0,Z>, Z) (<15,0,E1>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, ?) (<16,0,H>, ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>, ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>, 2) (<16,0,X>, X) (<16,0,Y>, Y) (<16,0,Z>, Z) (<16,0,E1>, ?) (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,E>, ?) (<17,0,F>, ?) (<17,0,H>, ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>, ?) (<17,0,R>, ?) (<17,0,S>, 0) (<17,0,V>, V) (<17,0,W>, W) (<17,0,X>, X) (<17,0,Y>, Y) (<17,0,Z>, Z) (<17,0,E1>, E1) (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, ?) (<18,0,H>, ?) (<18,0,I>, 99) (<18,0,M>, 33) (<18,0,Q>, Q) (<18,0,R>, R) (<18,0,S>, S) (<18,0,V>, V) (<18,0,W>, W) (<18,0,X>, X) (<18,0,Y>, Y) (<18,0,Z>, Z) (<18,0,E1>, E1) (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, ?) (<19,0,H>, ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>, S) (<19,0,V>, V) (<19,0,W>, W) (<19,0,X>, X) (<19,0,Y>, Y) (<19,0,Z>, Z) (<19,0,E1>, E1) (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 49) (<20,0,H>, 50) (<20,0,I>, I) (<20,0,M>, M) (<20,0,Q>, Q) (<20,0,R>, R) (<20,0,S>, S) (<20,0,V>, V) (<20,0,W>, W) (<20,0,X>, X) (<20,0,Y>, Y) (<20,0,Z>, Z) (<20,0,E1>, E1) (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>, 0) (<21,0,M>, M) (<21,0,Q>, Q) (<21,0,R>, R) (<21,0,S>, S) (<21,0,V>, V) (<21,0,W>, W) (<21,0,X>, X) (<21,0,Y>, Y) (<21,0,Z>, Z) (<21,0,E1>, E1) (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>, 0) (<22,0,H>, H) (<22,0,I>, I) (<22,0,M>, M) (<22,0,Q>, Q) (<22,0,R>, R) (<22,0,S>, S) (<22,0,V>, V) (<22,0,W>, W) (<22,0,X>, X) (<22,0,Y>, Y) (<22,0,Z>, Z) (<22,0,E1>, E1) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 100 p(f422) = 100 p(f437) = 100 p(f441) = 100 p(f455) = 100 p(f461) = 100 p(f485) = 1 + x9 p(f501) = 1 + x9 p(f526) = 1 + x9 p(f540) = 1 + x9 p(f543) = 1 + x9 p(f546) = 1 + x9 The following rules are strictly oriented: [Q >= 0] ==> f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 1 + Q > Q = f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) The following rules are weakly oriented: True ==> f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 100 >= 100 = f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [149 >= E] ==> f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 100 >= 100 = f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= F] ==> f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 100 >= 100 = f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= H] ==> f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 100 >= 100 = f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1) [99 >= I] ==> f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 100 >= 100 = f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1) [31 >= M] ==> f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 100 >= 100 = f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1) [49 >= S] ==> f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 1 + Q >= 1 + Q = f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1) [V >= W] ==> f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 1 + Q >= 1 + Q = f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1) [8 >= X] ==> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 1 + Q >= 1 + Q = f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1) [7 >= Y] ==> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 1 + Q >= 1 + Q = f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1) [3 >= Z] ==> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 1 + Q >= 1 + Q = f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1) [Z >= 4] ==> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 1 + Q >= 1 + Q = f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1) [Y >= 8] ==> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 1 + Q >= 1 + Q = f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1) [W >= 1 + V] ==> f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 1 + Q >= 1 + Q = f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1) [S >= 50] ==> f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 1 + Q >= 1 + Q = f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B) [0 >= 1 + Q] ==> f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 1 + Q >= 1 + Q = f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1) [M >= 32] ==> f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 100 >= 100 = f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1) [I >= 100] ==> f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 100 >= 99 = f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1) [H >= 50] ==> f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 100 >= 100 = f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [F >= 50] ==> f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 100 >= 100 = f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1) [E >= 150] ==> f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 100 >= 100 = f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1) * Step 8: KnowledgePropagation WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) True (1,1) 1. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [149 >= E] (?,1) 2. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= F] (?,1) 3. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= H] (?,1) 4. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1) [99 >= I] (?,1) 5. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1) [31 >= M] (?,1) 6. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) [Q >= 0] (100,1) 7. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1) [49 >= S] (?,1) 8. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1) [V >= W] (?,1) 9. f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1) [8 >= X] (?,1) 10. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1) [7 >= Y] (?,1) 11. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1) [3 >= Z] (?,1) 12. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1) [Z >= 4] (?,1) 13. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1) [Y >= 8] (?,1) 15. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1) [W >= 1 + V] (?,1) 16. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B) [S >= 50] (?,1) 17. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1) [0 >= 1 + Q] (?,1) 18. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1) [M >= 32] (?,1) 19. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1) [I >= 100] (?,1) 20. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [H >= 50] (?,1) 21. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1) [F >= 50] (?,1) 22. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [E >= 150] (1,1) Signature: {(f0,17) ;(f422,17) ;(f437,17) ;(f441,17) ;(f455,17) ;(f461,17) ;(f485,17) ;(f501,17) ;(f526,17) ;(f540,17) ;(f543,17) ;(f546,17) ;(f584,17)} Flow Graph: [0->{1},1->{1,22},2->{3},3->{3,20},4->{5},5->{5,18},6->{6,17},7->{7,16},8->{8,15},9->{10},10->{11},11->{11 ,12},12->{10,13},13->{9},15->{9},16->{8},17->{7},18->{4,19},19->{6},20->{2,21},21->{4},22->{2}] Sizebounds: (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>, 0) (< 0,0,F>, F) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,M>, M) (< 0,0,Q>, Q) (< 0,0,R>, R) (< 0,0,S>, S) (< 0,0,V>, V) (< 0,0,W>, W) (< 0,0,X>, X) (< 0,0,Y>, Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>, F) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,M>, M) (< 1,0,Q>, Q) (< 1,0,R>, R) (< 1,0,S>, S) (< 1,0,V>, V) (< 1,0,W>, W) (< 1,0,X>, X) (< 1,0,Y>, Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>, ?) (< 2,0,F>, 49) (< 2,0,H>, 0) (< 2,0,I>, I) (< 2,0,M>, M) (< 2,0,Q>, Q) (< 2,0,R>, R) (< 2,0,S>, S) (< 2,0,V>, V) (< 2,0,W>, W) (< 2,0,X>, X) (< 2,0,Y>, Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>, ?) (< 3,0,F>, 49) (< 3,0,H>, 50) (< 3,0,I>, I) (< 3,0,M>, M) (< 3,0,Q>, Q) (< 3,0,R>, R) (< 3,0,S>, S) (< 3,0,V>, V) (< 3,0,W>, W) (< 3,0,X>, X) (< 3,0,Y>, Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>, ?) (< 4,0,F>, ?) (< 4,0,H>, ?) (< 4,0,I>, 99) (< 4,0,M>, 0) (< 4,0,Q>, Q) (< 4,0,R>, R) (< 4,0,S>, S) (< 4,0,V>, V) (< 4,0,W>, W) (< 4,0,X>, X) (< 4,0,Y>, Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, ?) (< 5,0,H>, ?) (< 5,0,I>, 99) (< 5,0,M>, 33) (< 5,0,Q>, Q) (< 5,0,R>, R) (< 5,0,S>, S) (< 5,0,V>, V) (< 5,0,W>, W) (< 5,0,X>, X) (< 5,0,Y>, Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, ?) (< 6,0,H>, ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>, ?) (< 6,0,R>, ?) (< 6,0,S>, S) (< 6,0,V>, V) (< 6,0,W>, W) (< 6,0,X>, X) (< 6,0,Y>, Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, ?) (< 7,0,H>, ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>, ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>, V) (< 7,0,W>, W) (< 7,0,X>, X) (< 7,0,Y>, Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,H>, ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>, ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>, Y) (< 8,0,Z>, Z) (< 8,0,E1>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) (< 9,0,H>, ?) (< 9,0,I>, ?) (< 9,0,M>, ?) (< 9,0,Q>, ?) (< 9,0,R>, ?) (< 9,0,S>, ?) (< 9,0,V>, 17) (< 9,0,W>, ?) (< 9,0,X>, 8) (< 9,0,Y>, 0) (< 9,0,Z>, ?) (< 9,0,E1>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,H>, ?) (<10,0,I>, ?) (<10,0,M>, ?) (<10,0,Q>, ?) (<10,0,R>, ?) (<10,0,S>, ?) (<10,0,V>, 17) (<10,0,W>, ?) (<10,0,X>, ?) (<10,0,Y>, 7) (<10,0,Z>, 0) (<10,0,E1>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,H>, ?) (<11,0,I>, ?) (<11,0,M>, ?) (<11,0,Q>, ?) (<11,0,R>, ?) (<11,0,S>, ?) (<11,0,V>, 17) (<11,0,W>, ?) (<11,0,X>, ?) (<11,0,Y>, 7) (<11,0,Z>, 4) (<11,0,E1>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,H>, ?) (<12,0,I>, ?) (<12,0,M>, ?) (<12,0,Q>, ?) (<12,0,R>, ?) (<12,0,S>, ?) (<12,0,V>, 17) (<12,0,W>, ?) (<12,0,X>, ?) (<12,0,Y>, 7) (<12,0,Z>, 4) (<12,0,E1>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,H>, ?) (<13,0,I>, ?) (<13,0,M>, ?) (<13,0,Q>, ?) (<13,0,R>, ?) (<13,0,S>, ?) (<13,0,V>, 17) (<13,0,W>, ?) (<13,0,X>, ?) (<13,0,Y>, 7) (<13,0,Z>, ?) (<13,0,E1>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, ?) (<15,0,H>, ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>, ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>, Y) (<15,0,Z>, Z) (<15,0,E1>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, ?) (<16,0,H>, ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>, ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>, 2) (<16,0,X>, X) (<16,0,Y>, Y) (<16,0,Z>, Z) (<16,0,E1>, ?) (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,E>, ?) (<17,0,F>, ?) (<17,0,H>, ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>, ?) (<17,0,R>, ?) (<17,0,S>, 0) (<17,0,V>, V) (<17,0,W>, W) (<17,0,X>, X) (<17,0,Y>, Y) (<17,0,Z>, Z) (<17,0,E1>, E1) (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, ?) (<18,0,H>, ?) (<18,0,I>, 99) (<18,0,M>, 33) (<18,0,Q>, Q) (<18,0,R>, R) (<18,0,S>, S) (<18,0,V>, V) (<18,0,W>, W) (<18,0,X>, X) (<18,0,Y>, Y) (<18,0,Z>, Z) (<18,0,E1>, E1) (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, ?) (<19,0,H>, ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>, S) (<19,0,V>, V) (<19,0,W>, W) (<19,0,X>, X) (<19,0,Y>, Y) (<19,0,Z>, Z) (<19,0,E1>, E1) (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 49) (<20,0,H>, 50) (<20,0,I>, I) (<20,0,M>, M) (<20,0,Q>, Q) (<20,0,R>, R) (<20,0,S>, S) (<20,0,V>, V) (<20,0,W>, W) (<20,0,X>, X) (<20,0,Y>, Y) (<20,0,Z>, Z) (<20,0,E1>, E1) (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>, 0) (<21,0,M>, M) (<21,0,Q>, Q) (<21,0,R>, R) (<21,0,S>, S) (<21,0,V>, V) (<21,0,W>, W) (<21,0,X>, X) (<21,0,Y>, Y) (<21,0,Z>, Z) (<21,0,E1>, E1) (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>, 0) (<22,0,H>, H) (<22,0,I>, I) (<22,0,M>, M) (<22,0,Q>, Q) (<22,0,R>, R) (<22,0,S>, S) (<22,0,V>, V) (<22,0,W>, W) (<22,0,X>, X) (<22,0,Y>, Y) (<22,0,Z>, Z) (<22,0,E1>, E1) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 9: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) True (1,1) 1. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [149 >= E] (?,1) 2. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= F] (?,1) 3. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= H] (?,1) 4. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1) [99 >= I] (?,1) 5. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1) [31 >= M] (?,1) 6. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) [Q >= 0] (100,1) 7. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1) [49 >= S] (?,1) 8. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1) [V >= W] (?,1) 9. f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1) [8 >= X] (?,1) 10. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1) [7 >= Y] (?,1) 11. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1) [3 >= Z] (?,1) 12. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1) [Z >= 4] (?,1) 13. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1) [Y >= 8] (?,1) 15. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1) [W >= 1 + V] (?,1) 16. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B) [S >= 50] (?,1) 17. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1) [0 >= 1 + Q] (100,1) 18. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1) [M >= 32] (?,1) 19. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1) [I >= 100] (?,1) 20. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [H >= 50] (?,1) 21. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1) [F >= 50] (?,1) 22. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [E >= 150] (1,1) Signature: {(f0,17) ;(f422,17) ;(f437,17) ;(f441,17) ;(f455,17) ;(f461,17) ;(f485,17) ;(f501,17) ;(f526,17) ;(f540,17) ;(f543,17) ;(f546,17) ;(f584,17)} Flow Graph: [0->{1},1->{1,22},2->{3},3->{3,20},4->{5},5->{5,18},6->{6,17},7->{7,16},8->{8,15},9->{10},10->{11},11->{11 ,12},12->{10,13},13->{9},15->{9},16->{8},17->{7},18->{4,19},19->{6},20->{2,21},21->{4},22->{2}] Sizebounds: (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>, 0) (< 0,0,F>, F) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,M>, M) (< 0,0,Q>, Q) (< 0,0,R>, R) (< 0,0,S>, S) (< 0,0,V>, V) (< 0,0,W>, W) (< 0,0,X>, X) (< 0,0,Y>, Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>, F) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,M>, M) (< 1,0,Q>, Q) (< 1,0,R>, R) (< 1,0,S>, S) (< 1,0,V>, V) (< 1,0,W>, W) (< 1,0,X>, X) (< 1,0,Y>, Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>, ?) (< 2,0,F>, 49) (< 2,0,H>, 0) (< 2,0,I>, I) (< 2,0,M>, M) (< 2,0,Q>, Q) (< 2,0,R>, R) (< 2,0,S>, S) (< 2,0,V>, V) (< 2,0,W>, W) (< 2,0,X>, X) (< 2,0,Y>, Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>, ?) (< 3,0,F>, 49) (< 3,0,H>, 50) (< 3,0,I>, I) (< 3,0,M>, M) (< 3,0,Q>, Q) (< 3,0,R>, R) (< 3,0,S>, S) (< 3,0,V>, V) (< 3,0,W>, W) (< 3,0,X>, X) (< 3,0,Y>, Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>, ?) (< 4,0,F>, ?) (< 4,0,H>, ?) (< 4,0,I>, 99) (< 4,0,M>, 0) (< 4,0,Q>, Q) (< 4,0,R>, R) (< 4,0,S>, S) (< 4,0,V>, V) (< 4,0,W>, W) (< 4,0,X>, X) (< 4,0,Y>, Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, ?) (< 5,0,H>, ?) (< 5,0,I>, 99) (< 5,0,M>, 33) (< 5,0,Q>, Q) (< 5,0,R>, R) (< 5,0,S>, S) (< 5,0,V>, V) (< 5,0,W>, W) (< 5,0,X>, X) (< 5,0,Y>, Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, ?) (< 6,0,H>, ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>, ?) (< 6,0,R>, ?) (< 6,0,S>, S) (< 6,0,V>, V) (< 6,0,W>, W) (< 6,0,X>, X) (< 6,0,Y>, Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, ?) (< 7,0,H>, ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>, ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>, V) (< 7,0,W>, W) (< 7,0,X>, X) (< 7,0,Y>, Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,H>, ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>, ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>, Y) (< 8,0,Z>, Z) (< 8,0,E1>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) (< 9,0,H>, ?) (< 9,0,I>, ?) (< 9,0,M>, ?) (< 9,0,Q>, ?) (< 9,0,R>, ?) (< 9,0,S>, ?) (< 9,0,V>, 17) (< 9,0,W>, ?) (< 9,0,X>, 8) (< 9,0,Y>, 0) (< 9,0,Z>, ?) (< 9,0,E1>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,H>, ?) (<10,0,I>, ?) (<10,0,M>, ?) (<10,0,Q>, ?) (<10,0,R>, ?) (<10,0,S>, ?) (<10,0,V>, 17) (<10,0,W>, ?) (<10,0,X>, ?) (<10,0,Y>, 7) (<10,0,Z>, 0) (<10,0,E1>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,H>, ?) (<11,0,I>, ?) (<11,0,M>, ?) (<11,0,Q>, ?) (<11,0,R>, ?) (<11,0,S>, ?) (<11,0,V>, 17) (<11,0,W>, ?) (<11,0,X>, ?) (<11,0,Y>, 7) (<11,0,Z>, 4) (<11,0,E1>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,H>, ?) (<12,0,I>, ?) (<12,0,M>, ?) (<12,0,Q>, ?) (<12,0,R>, ?) (<12,0,S>, ?) (<12,0,V>, 17) (<12,0,W>, ?) (<12,0,X>, ?) (<12,0,Y>, 7) (<12,0,Z>, 4) (<12,0,E1>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,H>, ?) (<13,0,I>, ?) (<13,0,M>, ?) (<13,0,Q>, ?) (<13,0,R>, ?) (<13,0,S>, ?) (<13,0,V>, 17) (<13,0,W>, ?) (<13,0,X>, ?) (<13,0,Y>, 7) (<13,0,Z>, ?) (<13,0,E1>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, ?) (<15,0,H>, ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>, ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>, Y) (<15,0,Z>, Z) (<15,0,E1>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, ?) (<16,0,H>, ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>, ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>, 2) (<16,0,X>, X) (<16,0,Y>, Y) (<16,0,Z>, Z) (<16,0,E1>, ?) (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,E>, ?) (<17,0,F>, ?) (<17,0,H>, ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>, ?) (<17,0,R>, ?) (<17,0,S>, 0) (<17,0,V>, V) (<17,0,W>, W) (<17,0,X>, X) (<17,0,Y>, Y) (<17,0,Z>, Z) (<17,0,E1>, E1) (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, ?) (<18,0,H>, ?) (<18,0,I>, 99) (<18,0,M>, 33) (<18,0,Q>, Q) (<18,0,R>, R) (<18,0,S>, S) (<18,0,V>, V) (<18,0,W>, W) (<18,0,X>, X) (<18,0,Y>, Y) (<18,0,Z>, Z) (<18,0,E1>, E1) (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, ?) (<19,0,H>, ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>, S) (<19,0,V>, V) (<19,0,W>, W) (<19,0,X>, X) (<19,0,Y>, Y) (<19,0,Z>, Z) (<19,0,E1>, E1) (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 49) (<20,0,H>, 50) (<20,0,I>, I) (<20,0,M>, M) (<20,0,Q>, Q) (<20,0,R>, R) (<20,0,S>, S) (<20,0,V>, V) (<20,0,W>, W) (<20,0,X>, X) (<20,0,Y>, Y) (<20,0,Z>, Z) (<20,0,E1>, E1) (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>, 0) (<21,0,M>, M) (<21,0,Q>, Q) (<21,0,R>, R) (<21,0,S>, S) (<21,0,V>, V) (<21,0,W>, W) (<21,0,X>, X) (<21,0,Y>, Y) (<21,0,Z>, Z) (<21,0,E1>, E1) (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>, 0) (<22,0,H>, H) (<22,0,I>, I) (<22,0,M>, M) (<22,0,Q>, Q) (<22,0,R>, R) (<22,0,S>, S) (<22,0,V>, V) (<22,0,W>, W) (<22,0,X>, X) (<22,0,Y>, Y) (<22,0,Z>, Z) (<22,0,E1>, E1) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 101 p(f422) = 101 p(f437) = 101 p(f441) = 101 p(f455) = 100 p(f461) = 100 p(f485) = 50 p(f501) = 50 p(f526) = 1 + x12 + -1*x13 p(f540) = 1 + x12 + -1*x13 p(f543) = 1 + x12 + -1*x13 p(f546) = 1 + x12 + -1*x13 The following rules are strictly oriented: [V >= W] ==> f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 1 + V + -1*W > V + -1*W = f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1) [F >= 50] ==> f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 101 > 100 = f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1) The following rules are weakly oriented: True ==> f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 101 >= 101 = f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [149 >= E] ==> f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 101 >= 101 = f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= F] ==> f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 101 >= 101 = f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= H] ==> f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 101 >= 101 = f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1) [99 >= I] ==> f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 100 >= 100 = f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1) [31 >= M] ==> f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 100 >= 100 = f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1) [Q >= 0] ==> f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 50 >= 50 = f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) [49 >= S] ==> f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 50 >= 50 = f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1) [8 >= X] ==> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 1 + V + -1*W >= 1 + V + -1*W = f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1) [7 >= Y] ==> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 1 + V + -1*W >= 1 + V + -1*W = f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1) [3 >= Z] ==> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 1 + V + -1*W >= 1 + V + -1*W = f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1) [Z >= 4] ==> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 1 + V + -1*W >= 1 + V + -1*W = f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1) [Y >= 8] ==> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 1 + V + -1*W >= 1 + V + -1*W = f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1) [W >= 1 + V] ==> f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 1 + V + -1*W >= 1 + V + -1*W = f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1) [S >= 50] ==> f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 50 >= 16 = f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B) [0 >= 1 + Q] ==> f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 50 >= 50 = f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1) [M >= 32] ==> f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 100 >= 100 = f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1) [I >= 100] ==> f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 100 >= 50 = f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1) [H >= 50] ==> f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 101 >= 101 = f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [E >= 150] ==> f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 101 >= 101 = f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1) * Step 10: KnowledgePropagation WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) True (1,1) 1. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [149 >= E] (?,1) 2. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= F] (?,1) 3. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= H] (?,1) 4. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1) [99 >= I] (?,1) 5. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1) [31 >= M] (?,1) 6. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) [Q >= 0] (100,1) 7. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1) [49 >= S] (?,1) 8. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1) [V >= W] (101,1) 9. f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1) [8 >= X] (?,1) 10. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1) [7 >= Y] (?,1) 11. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1) [3 >= Z] (?,1) 12. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1) [Z >= 4] (?,1) 13. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1) [Y >= 8] (?,1) 15. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1) [W >= 1 + V] (?,1) 16. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B) [S >= 50] (?,1) 17. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1) [0 >= 1 + Q] (100,1) 18. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1) [M >= 32] (?,1) 19. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1) [I >= 100] (?,1) 20. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [H >= 50] (?,1) 21. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1) [F >= 50] (101,1) 22. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [E >= 150] (1,1) Signature: {(f0,17) ;(f422,17) ;(f437,17) ;(f441,17) ;(f455,17) ;(f461,17) ;(f485,17) ;(f501,17) ;(f526,17) ;(f540,17) ;(f543,17) ;(f546,17) ;(f584,17)} Flow Graph: [0->{1},1->{1,22},2->{3},3->{3,20},4->{5},5->{5,18},6->{6,17},7->{7,16},8->{8,15},9->{10},10->{11},11->{11 ,12},12->{10,13},13->{9},15->{9},16->{8},17->{7},18->{4,19},19->{6},20->{2,21},21->{4},22->{2}] Sizebounds: (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>, 0) (< 0,0,F>, F) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,M>, M) (< 0,0,Q>, Q) (< 0,0,R>, R) (< 0,0,S>, S) (< 0,0,V>, V) (< 0,0,W>, W) (< 0,0,X>, X) (< 0,0,Y>, Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>, F) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,M>, M) (< 1,0,Q>, Q) (< 1,0,R>, R) (< 1,0,S>, S) (< 1,0,V>, V) (< 1,0,W>, W) (< 1,0,X>, X) (< 1,0,Y>, Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>, ?) (< 2,0,F>, 49) (< 2,0,H>, 0) (< 2,0,I>, I) (< 2,0,M>, M) (< 2,0,Q>, Q) (< 2,0,R>, R) (< 2,0,S>, S) (< 2,0,V>, V) (< 2,0,W>, W) (< 2,0,X>, X) (< 2,0,Y>, Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>, ?) (< 3,0,F>, 49) (< 3,0,H>, 50) (< 3,0,I>, I) (< 3,0,M>, M) (< 3,0,Q>, Q) (< 3,0,R>, R) (< 3,0,S>, S) (< 3,0,V>, V) (< 3,0,W>, W) (< 3,0,X>, X) (< 3,0,Y>, Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>, ?) (< 4,0,F>, ?) (< 4,0,H>, ?) (< 4,0,I>, 99) (< 4,0,M>, 0) (< 4,0,Q>, Q) (< 4,0,R>, R) (< 4,0,S>, S) (< 4,0,V>, V) (< 4,0,W>, W) (< 4,0,X>, X) (< 4,0,Y>, Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, ?) (< 5,0,H>, ?) (< 5,0,I>, 99) (< 5,0,M>, 33) (< 5,0,Q>, Q) (< 5,0,R>, R) (< 5,0,S>, S) (< 5,0,V>, V) (< 5,0,W>, W) (< 5,0,X>, X) (< 5,0,Y>, Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, ?) (< 6,0,H>, ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>, ?) (< 6,0,R>, ?) (< 6,0,S>, S) (< 6,0,V>, V) (< 6,0,W>, W) (< 6,0,X>, X) (< 6,0,Y>, Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, ?) (< 7,0,H>, ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>, ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>, V) (< 7,0,W>, W) (< 7,0,X>, X) (< 7,0,Y>, Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,H>, ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>, ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>, Y) (< 8,0,Z>, Z) (< 8,0,E1>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) (< 9,0,H>, ?) (< 9,0,I>, ?) (< 9,0,M>, ?) (< 9,0,Q>, ?) (< 9,0,R>, ?) (< 9,0,S>, ?) (< 9,0,V>, 17) (< 9,0,W>, ?) (< 9,0,X>, 8) (< 9,0,Y>, 0) (< 9,0,Z>, ?) (< 9,0,E1>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,H>, ?) (<10,0,I>, ?) (<10,0,M>, ?) (<10,0,Q>, ?) (<10,0,R>, ?) (<10,0,S>, ?) (<10,0,V>, 17) (<10,0,W>, ?) (<10,0,X>, ?) (<10,0,Y>, 7) (<10,0,Z>, 0) (<10,0,E1>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,H>, ?) (<11,0,I>, ?) (<11,0,M>, ?) (<11,0,Q>, ?) (<11,0,R>, ?) (<11,0,S>, ?) (<11,0,V>, 17) (<11,0,W>, ?) (<11,0,X>, ?) (<11,0,Y>, 7) (<11,0,Z>, 4) (<11,0,E1>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,H>, ?) (<12,0,I>, ?) (<12,0,M>, ?) (<12,0,Q>, ?) (<12,0,R>, ?) (<12,0,S>, ?) (<12,0,V>, 17) (<12,0,W>, ?) (<12,0,X>, ?) (<12,0,Y>, 7) (<12,0,Z>, 4) (<12,0,E1>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,H>, ?) (<13,0,I>, ?) (<13,0,M>, ?) (<13,0,Q>, ?) (<13,0,R>, ?) (<13,0,S>, ?) (<13,0,V>, 17) (<13,0,W>, ?) (<13,0,X>, ?) (<13,0,Y>, 7) (<13,0,Z>, ?) (<13,0,E1>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, ?) (<15,0,H>, ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>, ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>, Y) (<15,0,Z>, Z) (<15,0,E1>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, ?) (<16,0,H>, ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>, ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>, 2) (<16,0,X>, X) (<16,0,Y>, Y) (<16,0,Z>, Z) (<16,0,E1>, ?) (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,E>, ?) (<17,0,F>, ?) (<17,0,H>, ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>, ?) (<17,0,R>, ?) (<17,0,S>, 0) (<17,0,V>, V) (<17,0,W>, W) (<17,0,X>, X) (<17,0,Y>, Y) (<17,0,Z>, Z) (<17,0,E1>, E1) (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, ?) (<18,0,H>, ?) (<18,0,I>, 99) (<18,0,M>, 33) (<18,0,Q>, Q) (<18,0,R>, R) (<18,0,S>, S) (<18,0,V>, V) (<18,0,W>, W) (<18,0,X>, X) (<18,0,Y>, Y) (<18,0,Z>, Z) (<18,0,E1>, E1) (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, ?) (<19,0,H>, ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>, S) (<19,0,V>, V) (<19,0,W>, W) (<19,0,X>, X) (<19,0,Y>, Y) (<19,0,Z>, Z) (<19,0,E1>, E1) (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 49) (<20,0,H>, 50) (<20,0,I>, I) (<20,0,M>, M) (<20,0,Q>, Q) (<20,0,R>, R) (<20,0,S>, S) (<20,0,V>, V) (<20,0,W>, W) (<20,0,X>, X) (<20,0,Y>, Y) (<20,0,Z>, Z) (<20,0,E1>, E1) (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>, 0) (<21,0,M>, M) (<21,0,Q>, Q) (<21,0,R>, R) (<21,0,S>, S) (<21,0,V>, V) (<21,0,W>, W) (<21,0,X>, X) (<21,0,Y>, Y) (<21,0,Z>, Z) (<21,0,E1>, E1) (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>, 0) (<22,0,H>, H) (<22,0,I>, I) (<22,0,M>, M) (<22,0,Q>, Q) (<22,0,R>, R) (<22,0,S>, S) (<22,0,V>, V) (<22,0,W>, W) (<22,0,X>, X) (<22,0,Y>, Y) (<22,0,Z>, Z) (<22,0,E1>, E1) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 11: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) True (1,1) 1. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [149 >= E] (?,1) 2. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= F] (?,1) 3. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= H] (?,1) 4. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1) [99 >= I] (?,1) 5. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1) [31 >= M] (?,1) 6. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) [Q >= 0] (100,1) 7. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1) [49 >= S] (?,1) 8. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1) [V >= W] (101,1) 9. f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1) [8 >= X] (?,1) 10. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1) [7 >= Y] (?,1) 11. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1) [3 >= Z] (?,1) 12. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1) [Z >= 4] (?,1) 13. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1) [Y >= 8] (?,1) 15. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1) [W >= 1 + V] (101,1) 16. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B) [S >= 50] (?,1) 17. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1) [0 >= 1 + Q] (100,1) 18. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1) [M >= 32] (?,1) 19. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1) [I >= 100] (?,1) 20. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [H >= 50] (?,1) 21. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1) [F >= 50] (101,1) 22. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [E >= 150] (1,1) Signature: {(f0,17) ;(f422,17) ;(f437,17) ;(f441,17) ;(f455,17) ;(f461,17) ;(f485,17) ;(f501,17) ;(f526,17) ;(f540,17) ;(f543,17) ;(f546,17) ;(f584,17)} Flow Graph: [0->{1},1->{1,22},2->{3},3->{3,20},4->{5},5->{5,18},6->{6,17},7->{7,16},8->{8,15},9->{10},10->{11},11->{11 ,12},12->{10,13},13->{9},15->{9},16->{8},17->{7},18->{4,19},19->{6},20->{2,21},21->{4},22->{2}] Sizebounds: (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>, 0) (< 0,0,F>, F) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,M>, M) (< 0,0,Q>, Q) (< 0,0,R>, R) (< 0,0,S>, S) (< 0,0,V>, V) (< 0,0,W>, W) (< 0,0,X>, X) (< 0,0,Y>, Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>, F) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,M>, M) (< 1,0,Q>, Q) (< 1,0,R>, R) (< 1,0,S>, S) (< 1,0,V>, V) (< 1,0,W>, W) (< 1,0,X>, X) (< 1,0,Y>, Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>, ?) (< 2,0,F>, 49) (< 2,0,H>, 0) (< 2,0,I>, I) (< 2,0,M>, M) (< 2,0,Q>, Q) (< 2,0,R>, R) (< 2,0,S>, S) (< 2,0,V>, V) (< 2,0,W>, W) (< 2,0,X>, X) (< 2,0,Y>, Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>, ?) (< 3,0,F>, 49) (< 3,0,H>, 50) (< 3,0,I>, I) (< 3,0,M>, M) (< 3,0,Q>, Q) (< 3,0,R>, R) (< 3,0,S>, S) (< 3,0,V>, V) (< 3,0,W>, W) (< 3,0,X>, X) (< 3,0,Y>, Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>, ?) (< 4,0,F>, ?) (< 4,0,H>, ?) (< 4,0,I>, 99) (< 4,0,M>, 0) (< 4,0,Q>, Q) (< 4,0,R>, R) (< 4,0,S>, S) (< 4,0,V>, V) (< 4,0,W>, W) (< 4,0,X>, X) (< 4,0,Y>, Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, ?) (< 5,0,H>, ?) (< 5,0,I>, 99) (< 5,0,M>, 33) (< 5,0,Q>, Q) (< 5,0,R>, R) (< 5,0,S>, S) (< 5,0,V>, V) (< 5,0,W>, W) (< 5,0,X>, X) (< 5,0,Y>, Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, ?) (< 6,0,H>, ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>, ?) (< 6,0,R>, ?) (< 6,0,S>, S) (< 6,0,V>, V) (< 6,0,W>, W) (< 6,0,X>, X) (< 6,0,Y>, Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, ?) (< 7,0,H>, ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>, ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>, V) (< 7,0,W>, W) (< 7,0,X>, X) (< 7,0,Y>, Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,H>, ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>, ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>, Y) (< 8,0,Z>, Z) (< 8,0,E1>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) (< 9,0,H>, ?) (< 9,0,I>, ?) (< 9,0,M>, ?) (< 9,0,Q>, ?) (< 9,0,R>, ?) (< 9,0,S>, ?) (< 9,0,V>, 17) (< 9,0,W>, ?) (< 9,0,X>, 8) (< 9,0,Y>, 0) (< 9,0,Z>, ?) (< 9,0,E1>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,H>, ?) (<10,0,I>, ?) (<10,0,M>, ?) (<10,0,Q>, ?) (<10,0,R>, ?) (<10,0,S>, ?) (<10,0,V>, 17) (<10,0,W>, ?) (<10,0,X>, ?) (<10,0,Y>, 7) (<10,0,Z>, 0) (<10,0,E1>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,H>, ?) (<11,0,I>, ?) (<11,0,M>, ?) (<11,0,Q>, ?) (<11,0,R>, ?) (<11,0,S>, ?) (<11,0,V>, 17) (<11,0,W>, ?) (<11,0,X>, ?) (<11,0,Y>, 7) (<11,0,Z>, 4) (<11,0,E1>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,H>, ?) (<12,0,I>, ?) (<12,0,M>, ?) (<12,0,Q>, ?) (<12,0,R>, ?) (<12,0,S>, ?) (<12,0,V>, 17) (<12,0,W>, ?) (<12,0,X>, ?) (<12,0,Y>, 7) (<12,0,Z>, 4) (<12,0,E1>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,H>, ?) (<13,0,I>, ?) (<13,0,M>, ?) (<13,0,Q>, ?) (<13,0,R>, ?) (<13,0,S>, ?) (<13,0,V>, 17) (<13,0,W>, ?) (<13,0,X>, ?) (<13,0,Y>, 7) (<13,0,Z>, ?) (<13,0,E1>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, ?) (<15,0,H>, ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>, ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>, Y) (<15,0,Z>, Z) (<15,0,E1>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, ?) (<16,0,H>, ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>, ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>, 2) (<16,0,X>, X) (<16,0,Y>, Y) (<16,0,Z>, Z) (<16,0,E1>, ?) (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,E>, ?) (<17,0,F>, ?) (<17,0,H>, ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>, ?) (<17,0,R>, ?) (<17,0,S>, 0) (<17,0,V>, V) (<17,0,W>, W) (<17,0,X>, X) (<17,0,Y>, Y) (<17,0,Z>, Z) (<17,0,E1>, E1) (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, ?) (<18,0,H>, ?) (<18,0,I>, 99) (<18,0,M>, 33) (<18,0,Q>, Q) (<18,0,R>, R) (<18,0,S>, S) (<18,0,V>, V) (<18,0,W>, W) (<18,0,X>, X) (<18,0,Y>, Y) (<18,0,Z>, Z) (<18,0,E1>, E1) (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, ?) (<19,0,H>, ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>, S) (<19,0,V>, V) (<19,0,W>, W) (<19,0,X>, X) (<19,0,Y>, Y) (<19,0,Z>, Z) (<19,0,E1>, E1) (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 49) (<20,0,H>, 50) (<20,0,I>, I) (<20,0,M>, M) (<20,0,Q>, Q) (<20,0,R>, R) (<20,0,S>, S) (<20,0,V>, V) (<20,0,W>, W) (<20,0,X>, X) (<20,0,Y>, Y) (<20,0,Z>, Z) (<20,0,E1>, E1) (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>, 0) (<21,0,M>, M) (<21,0,Q>, Q) (<21,0,R>, R) (<21,0,S>, S) (<21,0,V>, V) (<21,0,W>, W) (<21,0,X>, X) (<21,0,Y>, Y) (<21,0,Z>, Z) (<21,0,E1>, E1) (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>, 0) (<22,0,H>, H) (<22,0,I>, I) (<22,0,M>, M) (<22,0,Q>, Q) (<22,0,R>, R) (<22,0,S>, S) (<22,0,V>, V) (<22,0,W>, W) (<22,0,X>, X) (<22,0,Y>, Y) (<22,0,Z>, Z) (<22,0,E1>, E1) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 100 p(f422) = 100 p(f437) = 100 p(f441) = 100 p(f455) = 100 + -1*x7 p(f461) = 98 + -1*x7 p(f485) = 100 + -1*x7 p(f501) = 100 + -1*x7 p(f526) = 117 + -1*x7 + -1*x12 p(f540) = 117 + -1*x7 + -1*x12 p(f543) = 117 + -1*x7 + -1*x12 p(f546) = 117 + -1*x7 + -1*x12 The following rules are strictly oriented: [99 >= I] ==> f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 100 + -1*I > 98 + -1*I = f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1) The following rules are weakly oriented: True ==> f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 100 >= 100 = f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [149 >= E] ==> f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 100 >= 100 = f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= F] ==> f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 100 >= 100 = f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= H] ==> f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 100 >= 100 = f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1) [31 >= M] ==> f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 98 + -1*I >= 98 + -1*I = f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1) [Q >= 0] ==> f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 100 + -1*I >= 100 + -1*I = f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) [49 >= S] ==> f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 100 + -1*I >= 100 + -1*I = f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1) [V >= W] ==> f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 117 + -1*I + -1*V >= 117 + -1*I + -1*V = f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1) [8 >= X] ==> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 117 + -1*I + -1*V >= 117 + -1*I + -1*V = f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1) [7 >= Y] ==> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 117 + -1*I + -1*V >= 117 + -1*I + -1*V = f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1) [3 >= Z] ==> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 117 + -1*I + -1*V >= 117 + -1*I + -1*V = f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1) [Z >= 4] ==> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 117 + -1*I + -1*V >= 117 + -1*I + -1*V = f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1) [Y >= 8] ==> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 117 + -1*I + -1*V >= 117 + -1*I + -1*V = f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1) [W >= 1 + V] ==> f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 117 + -1*I + -1*V >= 117 + -1*I + -1*V = f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1) [S >= 50] ==> f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 100 + -1*I >= 100 + -1*I = f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B) [0 >= 1 + Q] ==> f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 100 + -1*I >= 100 + -1*I = f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1) [M >= 32] ==> f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 98 + -1*I >= 98 + -1*I = f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1) [I >= 100] ==> f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 100 + -1*I >= 100 + -1*I = f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1) [H >= 50] ==> f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 100 >= 100 = f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [F >= 50] ==> f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 100 >= 100 = f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1) [E >= 150] ==> f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 100 >= 100 = f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1) * Step 12: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) True (1,1) 1. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [149 >= E] (?,1) 2. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= F] (?,1) 3. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= H] (?,1) 4. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1) [99 >= I] (100,1) 5. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1) [31 >= M] (?,1) 6. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) [Q >= 0] (100,1) 7. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1) [49 >= S] (?,1) 8. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1) [V >= W] (101,1) 9. f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1) [8 >= X] (?,1) 10. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1) [7 >= Y] (?,1) 11. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1) [3 >= Z] (?,1) 12. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1) [Z >= 4] (?,1) 13. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1) [Y >= 8] (?,1) 15. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1) [W >= 1 + V] (101,1) 16. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B) [S >= 50] (?,1) 17. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1) [0 >= 1 + Q] (100,1) 18. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1) [M >= 32] (?,1) 19. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1) [I >= 100] (?,1) 20. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [H >= 50] (?,1) 21. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1) [F >= 50] (101,1) 22. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [E >= 150] (1,1) Signature: {(f0,17) ;(f422,17) ;(f437,17) ;(f441,17) ;(f455,17) ;(f461,17) ;(f485,17) ;(f501,17) ;(f526,17) ;(f540,17) ;(f543,17) ;(f546,17) ;(f584,17)} Flow Graph: [0->{1},1->{1,22},2->{3},3->{3,20},4->{5},5->{5,18},6->{6,17},7->{7,16},8->{8,15},9->{10},10->{11},11->{11 ,12},12->{10,13},13->{9},15->{9},16->{8},17->{7},18->{4,19},19->{6},20->{2,21},21->{4},22->{2}] Sizebounds: (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>, 0) (< 0,0,F>, F) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,M>, M) (< 0,0,Q>, Q) (< 0,0,R>, R) (< 0,0,S>, S) (< 0,0,V>, V) (< 0,0,W>, W) (< 0,0,X>, X) (< 0,0,Y>, Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>, F) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,M>, M) (< 1,0,Q>, Q) (< 1,0,R>, R) (< 1,0,S>, S) (< 1,0,V>, V) (< 1,0,W>, W) (< 1,0,X>, X) (< 1,0,Y>, Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>, ?) (< 2,0,F>, 49) (< 2,0,H>, 0) (< 2,0,I>, I) (< 2,0,M>, M) (< 2,0,Q>, Q) (< 2,0,R>, R) (< 2,0,S>, S) (< 2,0,V>, V) (< 2,0,W>, W) (< 2,0,X>, X) (< 2,0,Y>, Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>, ?) (< 3,0,F>, 49) (< 3,0,H>, 50) (< 3,0,I>, I) (< 3,0,M>, M) (< 3,0,Q>, Q) (< 3,0,R>, R) (< 3,0,S>, S) (< 3,0,V>, V) (< 3,0,W>, W) (< 3,0,X>, X) (< 3,0,Y>, Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>, ?) (< 4,0,F>, ?) (< 4,0,H>, ?) (< 4,0,I>, 99) (< 4,0,M>, 0) (< 4,0,Q>, Q) (< 4,0,R>, R) (< 4,0,S>, S) (< 4,0,V>, V) (< 4,0,W>, W) (< 4,0,X>, X) (< 4,0,Y>, Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, ?) (< 5,0,H>, ?) (< 5,0,I>, 99) (< 5,0,M>, 33) (< 5,0,Q>, Q) (< 5,0,R>, R) (< 5,0,S>, S) (< 5,0,V>, V) (< 5,0,W>, W) (< 5,0,X>, X) (< 5,0,Y>, Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, ?) (< 6,0,H>, ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>, ?) (< 6,0,R>, ?) (< 6,0,S>, S) (< 6,0,V>, V) (< 6,0,W>, W) (< 6,0,X>, X) (< 6,0,Y>, Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, ?) (< 7,0,H>, ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>, ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>, V) (< 7,0,W>, W) (< 7,0,X>, X) (< 7,0,Y>, Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,H>, ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>, ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>, Y) (< 8,0,Z>, Z) (< 8,0,E1>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) (< 9,0,H>, ?) (< 9,0,I>, ?) (< 9,0,M>, ?) (< 9,0,Q>, ?) (< 9,0,R>, ?) (< 9,0,S>, ?) (< 9,0,V>, 17) (< 9,0,W>, ?) (< 9,0,X>, 8) (< 9,0,Y>, 0) (< 9,0,Z>, ?) (< 9,0,E1>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,H>, ?) (<10,0,I>, ?) (<10,0,M>, ?) (<10,0,Q>, ?) (<10,0,R>, ?) (<10,0,S>, ?) (<10,0,V>, 17) (<10,0,W>, ?) (<10,0,X>, ?) (<10,0,Y>, 7) (<10,0,Z>, 0) (<10,0,E1>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,H>, ?) (<11,0,I>, ?) (<11,0,M>, ?) (<11,0,Q>, ?) (<11,0,R>, ?) (<11,0,S>, ?) (<11,0,V>, 17) (<11,0,W>, ?) (<11,0,X>, ?) (<11,0,Y>, 7) (<11,0,Z>, 4) (<11,0,E1>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,H>, ?) (<12,0,I>, ?) (<12,0,M>, ?) (<12,0,Q>, ?) (<12,0,R>, ?) (<12,0,S>, ?) (<12,0,V>, 17) (<12,0,W>, ?) (<12,0,X>, ?) (<12,0,Y>, 7) (<12,0,Z>, 4) (<12,0,E1>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,H>, ?) (<13,0,I>, ?) (<13,0,M>, ?) (<13,0,Q>, ?) (<13,0,R>, ?) (<13,0,S>, ?) (<13,0,V>, 17) (<13,0,W>, ?) (<13,0,X>, ?) (<13,0,Y>, 7) (<13,0,Z>, ?) (<13,0,E1>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, ?) (<15,0,H>, ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>, ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>, Y) (<15,0,Z>, Z) (<15,0,E1>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, ?) (<16,0,H>, ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>, ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>, 2) (<16,0,X>, X) (<16,0,Y>, Y) (<16,0,Z>, Z) (<16,0,E1>, ?) (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,E>, ?) (<17,0,F>, ?) (<17,0,H>, ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>, ?) (<17,0,R>, ?) (<17,0,S>, 0) (<17,0,V>, V) (<17,0,W>, W) (<17,0,X>, X) (<17,0,Y>, Y) (<17,0,Z>, Z) (<17,0,E1>, E1) (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, ?) (<18,0,H>, ?) (<18,0,I>, 99) (<18,0,M>, 33) (<18,0,Q>, Q) (<18,0,R>, R) (<18,0,S>, S) (<18,0,V>, V) (<18,0,W>, W) (<18,0,X>, X) (<18,0,Y>, Y) (<18,0,Z>, Z) (<18,0,E1>, E1) (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, ?) (<19,0,H>, ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>, S) (<19,0,V>, V) (<19,0,W>, W) (<19,0,X>, X) (<19,0,Y>, Y) (<19,0,Z>, Z) (<19,0,E1>, E1) (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 49) (<20,0,H>, 50) (<20,0,I>, I) (<20,0,M>, M) (<20,0,Q>, Q) (<20,0,R>, R) (<20,0,S>, S) (<20,0,V>, V) (<20,0,W>, W) (<20,0,X>, X) (<20,0,Y>, Y) (<20,0,Z>, Z) (<20,0,E1>, E1) (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>, 0) (<21,0,M>, M) (<21,0,Q>, Q) (<21,0,R>, R) (<21,0,S>, S) (<21,0,V>, V) (<21,0,W>, W) (<21,0,X>, X) (<21,0,Y>, Y) (<21,0,Z>, Z) (<21,0,E1>, E1) (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>, 0) (<22,0,H>, H) (<22,0,I>, I) (<22,0,M>, M) (<22,0,Q>, Q) (<22,0,R>, R) (<22,0,S>, S) (<22,0,V>, V) (<22,0,W>, W) (<22,0,X>, X) (<22,0,Y>, Y) (<22,0,Z>, Z) (<22,0,E1>, E1) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 50 p(f422) = 50 p(f437) = 50 p(f441) = 50 p(f455) = 1 p(f461) = 1 p(f485) = 100 + -1*x7 p(f501) = 100 + -1*x7 p(f526) = 1 + -1*x7 + 5*x12 p(f540) = 1 + -1*x7 + 5*x12 p(f543) = 1 + -1*x7 + 5*x12 p(f546) = 1 + -1*x7 + 5*x12 The following rules are strictly oriented: [I >= 100] ==> f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 1 > 100 + -1*I = f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1) The following rules are weakly oriented: True ==> f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 50 >= 50 = f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [149 >= E] ==> f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 50 >= 50 = f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= F] ==> f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 50 >= 50 = f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= H] ==> f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 50 >= 50 = f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1) [99 >= I] ==> f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 1 >= 1 = f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1) [31 >= M] ==> f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 1 >= 1 = f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1) [Q >= 0] ==> f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 100 + -1*I >= 100 + -1*I = f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) [49 >= S] ==> f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 100 + -1*I >= 100 + -1*I = f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1) [V >= W] ==> f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 1 + -1*I + 5*V >= 1 + -1*I + 5*V = f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1) [8 >= X] ==> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 1 + -1*I + 5*V >= 1 + -1*I + 5*V = f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1) [7 >= Y] ==> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 1 + -1*I + 5*V >= 1 + -1*I + 5*V = f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1) [3 >= Z] ==> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 1 + -1*I + 5*V >= 1 + -1*I + 5*V = f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1) [Z >= 4] ==> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 1 + -1*I + 5*V >= 1 + -1*I + 5*V = f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1) [Y >= 8] ==> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 1 + -1*I + 5*V >= 1 + -1*I + 5*V = f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1) [W >= 1 + V] ==> f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 1 + -1*I + 5*V >= 1 + -1*I + 5*V = f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1) [S >= 50] ==> f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 100 + -1*I >= 86 + -1*I = f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B) [0 >= 1 + Q] ==> f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 100 + -1*I >= 100 + -1*I = f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1) [M >= 32] ==> f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 1 >= 1 = f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1) [H >= 50] ==> f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 50 >= 50 = f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [F >= 50] ==> f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 50 >= 1 = f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1) [E >= 150] ==> f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 50 >= 50 = f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1) * Step 13: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) True (1,1) 1. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [149 >= E] (?,1) 2. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= F] (?,1) 3. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= H] (?,1) 4. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1) [99 >= I] (100,1) 5. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1) [31 >= M] (?,1) 6. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) [Q >= 0] (100,1) 7. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1) [49 >= S] (?,1) 8. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1) [V >= W] (101,1) 9. f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1) [8 >= X] (?,1) 10. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1) [7 >= Y] (?,1) 11. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1) [3 >= Z] (?,1) 12. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1) [Z >= 4] (?,1) 13. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1) [Y >= 8] (?,1) 15. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1) [W >= 1 + V] (101,1) 16. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B) [S >= 50] (?,1) 17. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1) [0 >= 1 + Q] (100,1) 18. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1) [M >= 32] (?,1) 19. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1) [I >= 100] (50,1) 20. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [H >= 50] (?,1) 21. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1) [F >= 50] (101,1) 22. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [E >= 150] (1,1) Signature: {(f0,17) ;(f422,17) ;(f437,17) ;(f441,17) ;(f455,17) ;(f461,17) ;(f485,17) ;(f501,17) ;(f526,17) ;(f540,17) ;(f543,17) ;(f546,17) ;(f584,17)} Flow Graph: [0->{1},1->{1,22},2->{3},3->{3,20},4->{5},5->{5,18},6->{6,17},7->{7,16},8->{8,15},9->{10},10->{11},11->{11 ,12},12->{10,13},13->{9},15->{9},16->{8},17->{7},18->{4,19},19->{6},20->{2,21},21->{4},22->{2}] Sizebounds: (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>, 0) (< 0,0,F>, F) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,M>, M) (< 0,0,Q>, Q) (< 0,0,R>, R) (< 0,0,S>, S) (< 0,0,V>, V) (< 0,0,W>, W) (< 0,0,X>, X) (< 0,0,Y>, Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>, F) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,M>, M) (< 1,0,Q>, Q) (< 1,0,R>, R) (< 1,0,S>, S) (< 1,0,V>, V) (< 1,0,W>, W) (< 1,0,X>, X) (< 1,0,Y>, Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>, ?) (< 2,0,F>, 49) (< 2,0,H>, 0) (< 2,0,I>, I) (< 2,0,M>, M) (< 2,0,Q>, Q) (< 2,0,R>, R) (< 2,0,S>, S) (< 2,0,V>, V) (< 2,0,W>, W) (< 2,0,X>, X) (< 2,0,Y>, Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>, ?) (< 3,0,F>, 49) (< 3,0,H>, 50) (< 3,0,I>, I) (< 3,0,M>, M) (< 3,0,Q>, Q) (< 3,0,R>, R) (< 3,0,S>, S) (< 3,0,V>, V) (< 3,0,W>, W) (< 3,0,X>, X) (< 3,0,Y>, Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>, ?) (< 4,0,F>, ?) (< 4,0,H>, ?) (< 4,0,I>, 99) (< 4,0,M>, 0) (< 4,0,Q>, Q) (< 4,0,R>, R) (< 4,0,S>, S) (< 4,0,V>, V) (< 4,0,W>, W) (< 4,0,X>, X) (< 4,0,Y>, Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, ?) (< 5,0,H>, ?) (< 5,0,I>, 99) (< 5,0,M>, 33) (< 5,0,Q>, Q) (< 5,0,R>, R) (< 5,0,S>, S) (< 5,0,V>, V) (< 5,0,W>, W) (< 5,0,X>, X) (< 5,0,Y>, Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, ?) (< 6,0,H>, ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>, ?) (< 6,0,R>, ?) (< 6,0,S>, S) (< 6,0,V>, V) (< 6,0,W>, W) (< 6,0,X>, X) (< 6,0,Y>, Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, ?) (< 7,0,H>, ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>, ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>, V) (< 7,0,W>, W) (< 7,0,X>, X) (< 7,0,Y>, Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,H>, ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>, ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>, Y) (< 8,0,Z>, Z) (< 8,0,E1>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) (< 9,0,H>, ?) (< 9,0,I>, ?) (< 9,0,M>, ?) (< 9,0,Q>, ?) (< 9,0,R>, ?) (< 9,0,S>, ?) (< 9,0,V>, 17) (< 9,0,W>, ?) (< 9,0,X>, 8) (< 9,0,Y>, 0) (< 9,0,Z>, ?) (< 9,0,E1>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,H>, ?) (<10,0,I>, ?) (<10,0,M>, ?) (<10,0,Q>, ?) (<10,0,R>, ?) (<10,0,S>, ?) (<10,0,V>, 17) (<10,0,W>, ?) (<10,0,X>, ?) (<10,0,Y>, 7) (<10,0,Z>, 0) (<10,0,E1>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,H>, ?) (<11,0,I>, ?) (<11,0,M>, ?) (<11,0,Q>, ?) (<11,0,R>, ?) (<11,0,S>, ?) (<11,0,V>, 17) (<11,0,W>, ?) (<11,0,X>, ?) (<11,0,Y>, 7) (<11,0,Z>, 4) (<11,0,E1>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,H>, ?) (<12,0,I>, ?) (<12,0,M>, ?) (<12,0,Q>, ?) (<12,0,R>, ?) (<12,0,S>, ?) (<12,0,V>, 17) (<12,0,W>, ?) (<12,0,X>, ?) (<12,0,Y>, 7) (<12,0,Z>, 4) (<12,0,E1>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,H>, ?) (<13,0,I>, ?) (<13,0,M>, ?) (<13,0,Q>, ?) (<13,0,R>, ?) (<13,0,S>, ?) (<13,0,V>, 17) (<13,0,W>, ?) (<13,0,X>, ?) (<13,0,Y>, 7) (<13,0,Z>, ?) (<13,0,E1>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, ?) (<15,0,H>, ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>, ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>, Y) (<15,0,Z>, Z) (<15,0,E1>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, ?) (<16,0,H>, ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>, ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>, 2) (<16,0,X>, X) (<16,0,Y>, Y) (<16,0,Z>, Z) (<16,0,E1>, ?) (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,E>, ?) (<17,0,F>, ?) (<17,0,H>, ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>, ?) (<17,0,R>, ?) (<17,0,S>, 0) (<17,0,V>, V) (<17,0,W>, W) (<17,0,X>, X) (<17,0,Y>, Y) (<17,0,Z>, Z) (<17,0,E1>, E1) (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, ?) (<18,0,H>, ?) (<18,0,I>, 99) (<18,0,M>, 33) (<18,0,Q>, Q) (<18,0,R>, R) (<18,0,S>, S) (<18,0,V>, V) (<18,0,W>, W) (<18,0,X>, X) (<18,0,Y>, Y) (<18,0,Z>, Z) (<18,0,E1>, E1) (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, ?) (<19,0,H>, ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>, S) (<19,0,V>, V) (<19,0,W>, W) (<19,0,X>, X) (<19,0,Y>, Y) (<19,0,Z>, Z) (<19,0,E1>, E1) (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 49) (<20,0,H>, 50) (<20,0,I>, I) (<20,0,M>, M) (<20,0,Q>, Q) (<20,0,R>, R) (<20,0,S>, S) (<20,0,V>, V) (<20,0,W>, W) (<20,0,X>, X) (<20,0,Y>, Y) (<20,0,Z>, Z) (<20,0,E1>, E1) (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>, 0) (<21,0,M>, M) (<21,0,Q>, Q) (<21,0,R>, R) (<21,0,S>, S) (<21,0,V>, V) (<21,0,W>, W) (<21,0,X>, X) (<21,0,Y>, Y) (<21,0,Z>, Z) (<21,0,E1>, E1) (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>, 0) (<22,0,H>, H) (<22,0,I>, I) (<22,0,M>, M) (<22,0,Q>, Q) (<22,0,R>, R) (<22,0,S>, S) (<22,0,V>, V) (<22,0,W>, W) (<22,0,X>, X) (<22,0,Y>, Y) (<22,0,Z>, Z) (<22,0,E1>, E1) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 150 p(f422) = 150 + -1*x4 p(f437) = 1 + -1*x4 p(f441) = 1 + -1*x4 p(f455) = 1 + -1*x4 p(f461) = 1 + -1*x4 p(f485) = -1*x4 p(f501) = -1*x4 p(f526) = -1*x4 p(f540) = -1*x4 p(f543) = -1*x4 p(f546) = -1*x4 The following rules are strictly oriented: [149 >= E] ==> f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 150 + -1*E > 149 + -1*E = f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) The following rules are weakly oriented: True ==> f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 150 >= 150 = f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= F] ==> f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 1 + -1*E >= 1 + -1*E = f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= H] ==> f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 1 + -1*E >= 1 + -1*E = f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1) [99 >= I] ==> f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 1 + -1*E >= 1 + -1*E = f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1) [31 >= M] ==> f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 1 + -1*E >= 1 + -1*E = f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1) [Q >= 0] ==> f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = -1*E >= -1*E = f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) [49 >= S] ==> f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = -1*E >= -1*E = f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1) [V >= W] ==> f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = -1*E >= -1*E = f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1) [8 >= X] ==> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = -1*E >= -1*E = f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1) [7 >= Y] ==> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = -1*E >= -1*E = f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1) [3 >= Z] ==> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = -1*E >= -1*E = f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1) [Z >= 4] ==> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = -1*E >= -1*E = f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1) [Y >= 8] ==> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = -1*E >= -1*E = f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1) [W >= 1 + V] ==> f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = -1*E >= -1*E = f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1) [S >= 50] ==> f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = -1*E >= -1*E = f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B) [0 >= 1 + Q] ==> f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = -1*E >= -1*E = f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1) [M >= 32] ==> f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 1 + -1*E >= 1 + -1*E = f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1) [I >= 100] ==> f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 1 + -1*E >= -1*E = f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1) [H >= 50] ==> f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 1 + -1*E >= 1 + -1*E = f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [F >= 50] ==> f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 1 + -1*E >= 1 + -1*E = f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1) [E >= 150] ==> f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 150 + -1*E >= 1 + -1*E = f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1) * Step 14: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) True (1,1) 1. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [149 >= E] (150,1) 2. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= F] (?,1) 3. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= H] (?,1) 4. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1) [99 >= I] (100,1) 5. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1) [31 >= M] (?,1) 6. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) [Q >= 0] (100,1) 7. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1) [49 >= S] (?,1) 8. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1) [V >= W] (101,1) 9. f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1) [8 >= X] (?,1) 10. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1) [7 >= Y] (?,1) 11. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1) [3 >= Z] (?,1) 12. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1) [Z >= 4] (?,1) 13. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1) [Y >= 8] (?,1) 15. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1) [W >= 1 + V] (101,1) 16. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B) [S >= 50] (?,1) 17. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1) [0 >= 1 + Q] (100,1) 18. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1) [M >= 32] (?,1) 19. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1) [I >= 100] (50,1) 20. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [H >= 50] (?,1) 21. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1) [F >= 50] (101,1) 22. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [E >= 150] (1,1) Signature: {(f0,17) ;(f422,17) ;(f437,17) ;(f441,17) ;(f455,17) ;(f461,17) ;(f485,17) ;(f501,17) ;(f526,17) ;(f540,17) ;(f543,17) ;(f546,17) ;(f584,17)} Flow Graph: [0->{1},1->{1,22},2->{3},3->{3,20},4->{5},5->{5,18},6->{6,17},7->{7,16},8->{8,15},9->{10},10->{11},11->{11 ,12},12->{10,13},13->{9},15->{9},16->{8},17->{7},18->{4,19},19->{6},20->{2,21},21->{4},22->{2}] Sizebounds: (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>, 0) (< 0,0,F>, F) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,M>, M) (< 0,0,Q>, Q) (< 0,0,R>, R) (< 0,0,S>, S) (< 0,0,V>, V) (< 0,0,W>, W) (< 0,0,X>, X) (< 0,0,Y>, Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>, F) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,M>, M) (< 1,0,Q>, Q) (< 1,0,R>, R) (< 1,0,S>, S) (< 1,0,V>, V) (< 1,0,W>, W) (< 1,0,X>, X) (< 1,0,Y>, Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>, ?) (< 2,0,F>, 49) (< 2,0,H>, 0) (< 2,0,I>, I) (< 2,0,M>, M) (< 2,0,Q>, Q) (< 2,0,R>, R) (< 2,0,S>, S) (< 2,0,V>, V) (< 2,0,W>, W) (< 2,0,X>, X) (< 2,0,Y>, Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>, ?) (< 3,0,F>, 49) (< 3,0,H>, 50) (< 3,0,I>, I) (< 3,0,M>, M) (< 3,0,Q>, Q) (< 3,0,R>, R) (< 3,0,S>, S) (< 3,0,V>, V) (< 3,0,W>, W) (< 3,0,X>, X) (< 3,0,Y>, Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>, ?) (< 4,0,F>, ?) (< 4,0,H>, ?) (< 4,0,I>, 99) (< 4,0,M>, 0) (< 4,0,Q>, Q) (< 4,0,R>, R) (< 4,0,S>, S) (< 4,0,V>, V) (< 4,0,W>, W) (< 4,0,X>, X) (< 4,0,Y>, Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, ?) (< 5,0,H>, ?) (< 5,0,I>, 99) (< 5,0,M>, 33) (< 5,0,Q>, Q) (< 5,0,R>, R) (< 5,0,S>, S) (< 5,0,V>, V) (< 5,0,W>, W) (< 5,0,X>, X) (< 5,0,Y>, Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, ?) (< 6,0,H>, ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>, ?) (< 6,0,R>, ?) (< 6,0,S>, S) (< 6,0,V>, V) (< 6,0,W>, W) (< 6,0,X>, X) (< 6,0,Y>, Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, ?) (< 7,0,H>, ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>, ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>, V) (< 7,0,W>, W) (< 7,0,X>, X) (< 7,0,Y>, Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,H>, ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>, ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>, Y) (< 8,0,Z>, Z) (< 8,0,E1>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) (< 9,0,H>, ?) (< 9,0,I>, ?) (< 9,0,M>, ?) (< 9,0,Q>, ?) (< 9,0,R>, ?) (< 9,0,S>, ?) (< 9,0,V>, 17) (< 9,0,W>, ?) (< 9,0,X>, 8) (< 9,0,Y>, 0) (< 9,0,Z>, ?) (< 9,0,E1>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,H>, ?) (<10,0,I>, ?) (<10,0,M>, ?) (<10,0,Q>, ?) (<10,0,R>, ?) (<10,0,S>, ?) (<10,0,V>, 17) (<10,0,W>, ?) (<10,0,X>, ?) (<10,0,Y>, 7) (<10,0,Z>, 0) (<10,0,E1>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,H>, ?) (<11,0,I>, ?) (<11,0,M>, ?) (<11,0,Q>, ?) (<11,0,R>, ?) (<11,0,S>, ?) (<11,0,V>, 17) (<11,0,W>, ?) (<11,0,X>, ?) (<11,0,Y>, 7) (<11,0,Z>, 4) (<11,0,E1>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,H>, ?) (<12,0,I>, ?) (<12,0,M>, ?) (<12,0,Q>, ?) (<12,0,R>, ?) (<12,0,S>, ?) (<12,0,V>, 17) (<12,0,W>, ?) (<12,0,X>, ?) (<12,0,Y>, 7) (<12,0,Z>, 4) (<12,0,E1>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,H>, ?) (<13,0,I>, ?) (<13,0,M>, ?) (<13,0,Q>, ?) (<13,0,R>, ?) (<13,0,S>, ?) (<13,0,V>, 17) (<13,0,W>, ?) (<13,0,X>, ?) (<13,0,Y>, 7) (<13,0,Z>, ?) (<13,0,E1>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, ?) (<15,0,H>, ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>, ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>, Y) (<15,0,Z>, Z) (<15,0,E1>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, ?) (<16,0,H>, ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>, ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>, 2) (<16,0,X>, X) (<16,0,Y>, Y) (<16,0,Z>, Z) (<16,0,E1>, ?) (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,E>, ?) (<17,0,F>, ?) (<17,0,H>, ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>, ?) (<17,0,R>, ?) (<17,0,S>, 0) (<17,0,V>, V) (<17,0,W>, W) (<17,0,X>, X) (<17,0,Y>, Y) (<17,0,Z>, Z) (<17,0,E1>, E1) (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, ?) (<18,0,H>, ?) (<18,0,I>, 99) (<18,0,M>, 33) (<18,0,Q>, Q) (<18,0,R>, R) (<18,0,S>, S) (<18,0,V>, V) (<18,0,W>, W) (<18,0,X>, X) (<18,0,Y>, Y) (<18,0,Z>, Z) (<18,0,E1>, E1) (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, ?) (<19,0,H>, ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>, S) (<19,0,V>, V) (<19,0,W>, W) (<19,0,X>, X) (<19,0,Y>, Y) (<19,0,Z>, Z) (<19,0,E1>, E1) (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 49) (<20,0,H>, 50) (<20,0,I>, I) (<20,0,M>, M) (<20,0,Q>, Q) (<20,0,R>, R) (<20,0,S>, S) (<20,0,V>, V) (<20,0,W>, W) (<20,0,X>, X) (<20,0,Y>, Y) (<20,0,Z>, Z) (<20,0,E1>, E1) (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>, 0) (<21,0,M>, M) (<21,0,Q>, Q) (<21,0,R>, R) (<21,0,S>, S) (<21,0,V>, V) (<21,0,W>, W) (<21,0,X>, X) (<21,0,Y>, Y) (<21,0,Z>, Z) (<21,0,E1>, E1) (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>, 0) (<22,0,H>, H) (<22,0,I>, I) (<22,0,M>, M) (<22,0,Q>, Q) (<22,0,R>, R) (<22,0,S>, S) (<22,0,V>, V) (<22,0,W>, W) (<22,0,X>, X) (<22,0,Y>, Y) (<22,0,Z>, Z) (<22,0,E1>, E1) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 50 p(f422) = 50 p(f437) = 50 + -1*x5 p(f441) = 49 + -1*x5 p(f455) = 1 + -1*x5 p(f461) = 1 + -1*x5 p(f485) = -1*x5 p(f501) = -1*x5 p(f526) = -1*x5 p(f540) = -1*x5 p(f543) = -1*x5 p(f546) = -1*x5 The following rules are strictly oriented: [49 >= F] ==> f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 50 + -1*F > 49 + -1*F = f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1) The following rules are weakly oriented: True ==> f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 50 >= 50 = f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [149 >= E] ==> f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 50 >= 50 = f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= H] ==> f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 49 + -1*F >= 49 + -1*F = f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1) [99 >= I] ==> f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 1 + -1*F >= 1 + -1*F = f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1) [31 >= M] ==> f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 1 + -1*F >= 1 + -1*F = f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1) [Q >= 0] ==> f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = -1*F >= -1*F = f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) [49 >= S] ==> f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = -1*F >= -1*F = f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1) [V >= W] ==> f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = -1*F >= -1*F = f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1) [8 >= X] ==> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = -1*F >= -1*F = f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1) [7 >= Y] ==> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = -1*F >= -1*F = f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1) [3 >= Z] ==> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = -1*F >= -1*F = f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1) [Z >= 4] ==> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = -1*F >= -1*F = f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1) [Y >= 8] ==> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = -1*F >= -1*F = f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1) [W >= 1 + V] ==> f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = -1*F >= -1*F = f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1) [S >= 50] ==> f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = -1*F >= -1*F = f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B) [0 >= 1 + Q] ==> f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = -1*F >= -1*F = f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1) [M >= 32] ==> f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 1 + -1*F >= 1 + -1*F = f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1) [I >= 100] ==> f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 1 + -1*F >= -1*F = f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1) [H >= 50] ==> f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 49 + -1*F >= 49 + -1*F = f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [F >= 50] ==> f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 50 + -1*F >= 1 + -1*F = f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1) [E >= 150] ==> f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 50 >= 50 = f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1) * Step 15: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) True (1,1) 1. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [149 >= E] (150,1) 2. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= F] (50,1) 3. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= H] (?,1) 4. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1) [99 >= I] (100,1) 5. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1) [31 >= M] (?,1) 6. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) [Q >= 0] (100,1) 7. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1) [49 >= S] (?,1) 8. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1) [V >= W] (101,1) 9. f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1) [8 >= X] (?,1) 10. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1) [7 >= Y] (?,1) 11. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1) [3 >= Z] (?,1) 12. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1) [Z >= 4] (?,1) 13. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1) [Y >= 8] (?,1) 15. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1) [W >= 1 + V] (101,1) 16. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B) [S >= 50] (?,1) 17. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1) [0 >= 1 + Q] (100,1) 18. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1) [M >= 32] (?,1) 19. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1) [I >= 100] (50,1) 20. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [H >= 50] (?,1) 21. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1) [F >= 50] (101,1) 22. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [E >= 150] (1,1) Signature: {(f0,17) ;(f422,17) ;(f437,17) ;(f441,17) ;(f455,17) ;(f461,17) ;(f485,17) ;(f501,17) ;(f526,17) ;(f540,17) ;(f543,17) ;(f546,17) ;(f584,17)} Flow Graph: [0->{1},1->{1,22},2->{3},3->{3,20},4->{5},5->{5,18},6->{6,17},7->{7,16},8->{8,15},9->{10},10->{11},11->{11 ,12},12->{10,13},13->{9},15->{9},16->{8},17->{7},18->{4,19},19->{6},20->{2,21},21->{4},22->{2}] Sizebounds: (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>, 0) (< 0,0,F>, F) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,M>, M) (< 0,0,Q>, Q) (< 0,0,R>, R) (< 0,0,S>, S) (< 0,0,V>, V) (< 0,0,W>, W) (< 0,0,X>, X) (< 0,0,Y>, Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>, F) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,M>, M) (< 1,0,Q>, Q) (< 1,0,R>, R) (< 1,0,S>, S) (< 1,0,V>, V) (< 1,0,W>, W) (< 1,0,X>, X) (< 1,0,Y>, Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>, ?) (< 2,0,F>, 49) (< 2,0,H>, 0) (< 2,0,I>, I) (< 2,0,M>, M) (< 2,0,Q>, Q) (< 2,0,R>, R) (< 2,0,S>, S) (< 2,0,V>, V) (< 2,0,W>, W) (< 2,0,X>, X) (< 2,0,Y>, Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>, ?) (< 3,0,F>, 49) (< 3,0,H>, 50) (< 3,0,I>, I) (< 3,0,M>, M) (< 3,0,Q>, Q) (< 3,0,R>, R) (< 3,0,S>, S) (< 3,0,V>, V) (< 3,0,W>, W) (< 3,0,X>, X) (< 3,0,Y>, Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>, ?) (< 4,0,F>, ?) (< 4,0,H>, ?) (< 4,0,I>, 99) (< 4,0,M>, 0) (< 4,0,Q>, Q) (< 4,0,R>, R) (< 4,0,S>, S) (< 4,0,V>, V) (< 4,0,W>, W) (< 4,0,X>, X) (< 4,0,Y>, Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, ?) (< 5,0,H>, ?) (< 5,0,I>, 99) (< 5,0,M>, 33) (< 5,0,Q>, Q) (< 5,0,R>, R) (< 5,0,S>, S) (< 5,0,V>, V) (< 5,0,W>, W) (< 5,0,X>, X) (< 5,0,Y>, Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, ?) (< 6,0,H>, ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>, ?) (< 6,0,R>, ?) (< 6,0,S>, S) (< 6,0,V>, V) (< 6,0,W>, W) (< 6,0,X>, X) (< 6,0,Y>, Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, ?) (< 7,0,H>, ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>, ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>, V) (< 7,0,W>, W) (< 7,0,X>, X) (< 7,0,Y>, Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,H>, ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>, ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>, Y) (< 8,0,Z>, Z) (< 8,0,E1>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) (< 9,0,H>, ?) (< 9,0,I>, ?) (< 9,0,M>, ?) (< 9,0,Q>, ?) (< 9,0,R>, ?) (< 9,0,S>, ?) (< 9,0,V>, 17) (< 9,0,W>, ?) (< 9,0,X>, 8) (< 9,0,Y>, 0) (< 9,0,Z>, ?) (< 9,0,E1>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,H>, ?) (<10,0,I>, ?) (<10,0,M>, ?) (<10,0,Q>, ?) (<10,0,R>, ?) (<10,0,S>, ?) (<10,0,V>, 17) (<10,0,W>, ?) (<10,0,X>, ?) (<10,0,Y>, 7) (<10,0,Z>, 0) (<10,0,E1>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,H>, ?) (<11,0,I>, ?) (<11,0,M>, ?) (<11,0,Q>, ?) (<11,0,R>, ?) (<11,0,S>, ?) (<11,0,V>, 17) (<11,0,W>, ?) (<11,0,X>, ?) (<11,0,Y>, 7) (<11,0,Z>, 4) (<11,0,E1>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,H>, ?) (<12,0,I>, ?) (<12,0,M>, ?) (<12,0,Q>, ?) (<12,0,R>, ?) (<12,0,S>, ?) (<12,0,V>, 17) (<12,0,W>, ?) (<12,0,X>, ?) (<12,0,Y>, 7) (<12,0,Z>, 4) (<12,0,E1>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,H>, ?) (<13,0,I>, ?) (<13,0,M>, ?) (<13,0,Q>, ?) (<13,0,R>, ?) (<13,0,S>, ?) (<13,0,V>, 17) (<13,0,W>, ?) (<13,0,X>, ?) (<13,0,Y>, 7) (<13,0,Z>, ?) (<13,0,E1>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, ?) (<15,0,H>, ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>, ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>, Y) (<15,0,Z>, Z) (<15,0,E1>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, ?) (<16,0,H>, ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>, ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>, 2) (<16,0,X>, X) (<16,0,Y>, Y) (<16,0,Z>, Z) (<16,0,E1>, ?) (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,E>, ?) (<17,0,F>, ?) (<17,0,H>, ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>, ?) (<17,0,R>, ?) (<17,0,S>, 0) (<17,0,V>, V) (<17,0,W>, W) (<17,0,X>, X) (<17,0,Y>, Y) (<17,0,Z>, Z) (<17,0,E1>, E1) (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, ?) (<18,0,H>, ?) (<18,0,I>, 99) (<18,0,M>, 33) (<18,0,Q>, Q) (<18,0,R>, R) (<18,0,S>, S) (<18,0,V>, V) (<18,0,W>, W) (<18,0,X>, X) (<18,0,Y>, Y) (<18,0,Z>, Z) (<18,0,E1>, E1) (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, ?) (<19,0,H>, ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>, S) (<19,0,V>, V) (<19,0,W>, W) (<19,0,X>, X) (<19,0,Y>, Y) (<19,0,Z>, Z) (<19,0,E1>, E1) (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 49) (<20,0,H>, 50) (<20,0,I>, I) (<20,0,M>, M) (<20,0,Q>, Q) (<20,0,R>, R) (<20,0,S>, S) (<20,0,V>, V) (<20,0,W>, W) (<20,0,X>, X) (<20,0,Y>, Y) (<20,0,Z>, Z) (<20,0,E1>, E1) (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>, 0) (<21,0,M>, M) (<21,0,Q>, Q) (<21,0,R>, R) (<21,0,S>, S) (<21,0,V>, V) (<21,0,W>, W) (<21,0,X>, X) (<21,0,Y>, Y) (<21,0,Z>, Z) (<21,0,E1>, E1) (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>, 0) (<22,0,H>, H) (<22,0,I>, I) (<22,0,M>, M) (<22,0,Q>, Q) (<22,0,R>, R) (<22,0,S>, S) (<22,0,V>, V) (<22,0,W>, W) (<22,0,X>, X) (<22,0,Y>, Y) (<22,0,Z>, Z) (<22,0,E1>, E1) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 50 p(f422) = 50 p(f437) = 50 p(f441) = 50 p(f455) = 50 p(f461) = 50 p(f485) = 50 p(f501) = 50 p(f526) = 2*x12 p(f540) = 2*x12 p(f543) = 2*x12 p(f546) = 2*x12 The following rules are strictly oriented: [S >= 50] ==> f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 50 > 34 = f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B) The following rules are weakly oriented: True ==> f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 50 >= 50 = f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [149 >= E] ==> f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 50 >= 50 = f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= F] ==> f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 50 >= 50 = f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= H] ==> f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 50 >= 50 = f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1) [99 >= I] ==> f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 50 >= 50 = f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1) [31 >= M] ==> f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 50 >= 50 = f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1) [Q >= 0] ==> f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 50 >= 50 = f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) [49 >= S] ==> f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 50 >= 50 = f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1) [V >= W] ==> f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 2*V >= 2*V = f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1) [8 >= X] ==> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 2*V >= 2*V = f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1) [7 >= Y] ==> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 2*V >= 2*V = f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1) [3 >= Z] ==> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 2*V >= 2*V = f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1) [Z >= 4] ==> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 2*V >= 2*V = f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1) [Y >= 8] ==> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 2*V >= 2*V = f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1) [W >= 1 + V] ==> f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 2*V >= 2*V = f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1) [0 >= 1 + Q] ==> f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 50 >= 50 = f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1) [M >= 32] ==> f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 50 >= 50 = f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1) [I >= 100] ==> f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 50 >= 50 = f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1) [H >= 50] ==> f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 50 >= 50 = f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [F >= 50] ==> f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 50 >= 50 = f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1) [E >= 150] ==> f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 50 >= 50 = f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1) * Step 16: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) True (1,1) 1. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [149 >= E] (150,1) 2. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= F] (50,1) 3. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= H] (?,1) 4. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1) [99 >= I] (100,1) 5. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1) [31 >= M] (?,1) 6. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) [Q >= 0] (100,1) 7. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1) [49 >= S] (?,1) 8. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1) [V >= W] (101,1) 9. f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1) [8 >= X] (?,1) 10. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1) [7 >= Y] (?,1) 11. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1) [3 >= Z] (?,1) 12. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1) [Z >= 4] (?,1) 13. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1) [Y >= 8] (?,1) 15. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1) [W >= 1 + V] (101,1) 16. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B) [S >= 50] (50,1) 17. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1) [0 >= 1 + Q] (100,1) 18. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1) [M >= 32] (?,1) 19. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1) [I >= 100] (50,1) 20. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [H >= 50] (?,1) 21. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1) [F >= 50] (101,1) 22. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [E >= 150] (1,1) Signature: {(f0,17) ;(f422,17) ;(f437,17) ;(f441,17) ;(f455,17) ;(f461,17) ;(f485,17) ;(f501,17) ;(f526,17) ;(f540,17) ;(f543,17) ;(f546,17) ;(f584,17)} Flow Graph: [0->{1},1->{1,22},2->{3},3->{3,20},4->{5},5->{5,18},6->{6,17},7->{7,16},8->{8,15},9->{10},10->{11},11->{11 ,12},12->{10,13},13->{9},15->{9},16->{8},17->{7},18->{4,19},19->{6},20->{2,21},21->{4},22->{2}] Sizebounds: (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>, 0) (< 0,0,F>, F) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,M>, M) (< 0,0,Q>, Q) (< 0,0,R>, R) (< 0,0,S>, S) (< 0,0,V>, V) (< 0,0,W>, W) (< 0,0,X>, X) (< 0,0,Y>, Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>, F) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,M>, M) (< 1,0,Q>, Q) (< 1,0,R>, R) (< 1,0,S>, S) (< 1,0,V>, V) (< 1,0,W>, W) (< 1,0,X>, X) (< 1,0,Y>, Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>, ?) (< 2,0,F>, 49) (< 2,0,H>, 0) (< 2,0,I>, I) (< 2,0,M>, M) (< 2,0,Q>, Q) (< 2,0,R>, R) (< 2,0,S>, S) (< 2,0,V>, V) (< 2,0,W>, W) (< 2,0,X>, X) (< 2,0,Y>, Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>, ?) (< 3,0,F>, 49) (< 3,0,H>, 50) (< 3,0,I>, I) (< 3,0,M>, M) (< 3,0,Q>, Q) (< 3,0,R>, R) (< 3,0,S>, S) (< 3,0,V>, V) (< 3,0,W>, W) (< 3,0,X>, X) (< 3,0,Y>, Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>, ?) (< 4,0,F>, ?) (< 4,0,H>, ?) (< 4,0,I>, 99) (< 4,0,M>, 0) (< 4,0,Q>, Q) (< 4,0,R>, R) (< 4,0,S>, S) (< 4,0,V>, V) (< 4,0,W>, W) (< 4,0,X>, X) (< 4,0,Y>, Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, ?) (< 5,0,H>, ?) (< 5,0,I>, 99) (< 5,0,M>, 33) (< 5,0,Q>, Q) (< 5,0,R>, R) (< 5,0,S>, S) (< 5,0,V>, V) (< 5,0,W>, W) (< 5,0,X>, X) (< 5,0,Y>, Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, ?) (< 6,0,H>, ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>, ?) (< 6,0,R>, ?) (< 6,0,S>, S) (< 6,0,V>, V) (< 6,0,W>, W) (< 6,0,X>, X) (< 6,0,Y>, Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, ?) (< 7,0,H>, ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>, ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>, V) (< 7,0,W>, W) (< 7,0,X>, X) (< 7,0,Y>, Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,H>, ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>, ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>, Y) (< 8,0,Z>, Z) (< 8,0,E1>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) (< 9,0,H>, ?) (< 9,0,I>, ?) (< 9,0,M>, ?) (< 9,0,Q>, ?) (< 9,0,R>, ?) (< 9,0,S>, ?) (< 9,0,V>, 17) (< 9,0,W>, ?) (< 9,0,X>, 8) (< 9,0,Y>, 0) (< 9,0,Z>, ?) (< 9,0,E1>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,H>, ?) (<10,0,I>, ?) (<10,0,M>, ?) (<10,0,Q>, ?) (<10,0,R>, ?) (<10,0,S>, ?) (<10,0,V>, 17) (<10,0,W>, ?) (<10,0,X>, ?) (<10,0,Y>, 7) (<10,0,Z>, 0) (<10,0,E1>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,H>, ?) (<11,0,I>, ?) (<11,0,M>, ?) (<11,0,Q>, ?) (<11,0,R>, ?) (<11,0,S>, ?) (<11,0,V>, 17) (<11,0,W>, ?) (<11,0,X>, ?) (<11,0,Y>, 7) (<11,0,Z>, 4) (<11,0,E1>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,H>, ?) (<12,0,I>, ?) (<12,0,M>, ?) (<12,0,Q>, ?) (<12,0,R>, ?) (<12,0,S>, ?) (<12,0,V>, 17) (<12,0,W>, ?) (<12,0,X>, ?) (<12,0,Y>, 7) (<12,0,Z>, 4) (<12,0,E1>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,H>, ?) (<13,0,I>, ?) (<13,0,M>, ?) (<13,0,Q>, ?) (<13,0,R>, ?) (<13,0,S>, ?) (<13,0,V>, 17) (<13,0,W>, ?) (<13,0,X>, ?) (<13,0,Y>, 7) (<13,0,Z>, ?) (<13,0,E1>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, ?) (<15,0,H>, ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>, ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>, Y) (<15,0,Z>, Z) (<15,0,E1>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, ?) (<16,0,H>, ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>, ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>, 2) (<16,0,X>, X) (<16,0,Y>, Y) (<16,0,Z>, Z) (<16,0,E1>, ?) (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,E>, ?) (<17,0,F>, ?) (<17,0,H>, ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>, ?) (<17,0,R>, ?) (<17,0,S>, 0) (<17,0,V>, V) (<17,0,W>, W) (<17,0,X>, X) (<17,0,Y>, Y) (<17,0,Z>, Z) (<17,0,E1>, E1) (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, ?) (<18,0,H>, ?) (<18,0,I>, 99) (<18,0,M>, 33) (<18,0,Q>, Q) (<18,0,R>, R) (<18,0,S>, S) (<18,0,V>, V) (<18,0,W>, W) (<18,0,X>, X) (<18,0,Y>, Y) (<18,0,Z>, Z) (<18,0,E1>, E1) (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, ?) (<19,0,H>, ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>, S) (<19,0,V>, V) (<19,0,W>, W) (<19,0,X>, X) (<19,0,Y>, Y) (<19,0,Z>, Z) (<19,0,E1>, E1) (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 49) (<20,0,H>, 50) (<20,0,I>, I) (<20,0,M>, M) (<20,0,Q>, Q) (<20,0,R>, R) (<20,0,S>, S) (<20,0,V>, V) (<20,0,W>, W) (<20,0,X>, X) (<20,0,Y>, Y) (<20,0,Z>, Z) (<20,0,E1>, E1) (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>, 0) (<21,0,M>, M) (<21,0,Q>, Q) (<21,0,R>, R) (<21,0,S>, S) (<21,0,V>, V) (<21,0,W>, W) (<21,0,X>, X) (<21,0,Y>, Y) (<21,0,Z>, Z) (<21,0,E1>, E1) (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>, 0) (<22,0,H>, H) (<22,0,I>, I) (<22,0,M>, M) (<22,0,Q>, Q) (<22,0,R>, R) (<22,0,S>, S) (<22,0,V>, V) (<22,0,W>, W) (<22,0,X>, X) (<22,0,Y>, Y) (<22,0,Z>, Z) (<22,0,E1>, E1) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 8 p(f422) = 8 p(f437) = 8 p(f441) = 8 p(f455) = 8 p(f461) = 8 p(f485) = 8 p(f501) = 8 p(f526) = 8 p(f540) = 9 + -1*x14 p(f543) = 2 + -1*x14 p(f546) = 2 + -1*x14 The following rules are strictly oriented: [8 >= X] ==> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 9 + -1*X > 2 + -1*X = f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1) The following rules are weakly oriented: True ==> f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 8 >= 8 = f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [149 >= E] ==> f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 8 >= 8 = f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= F] ==> f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 8 >= 8 = f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= H] ==> f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 8 >= 8 = f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1) [99 >= I] ==> f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 8 >= 8 = f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1) [31 >= M] ==> f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 8 >= 8 = f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1) [Q >= 0] ==> f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 8 >= 8 = f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) [49 >= S] ==> f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 8 >= 8 = f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1) [V >= W] ==> f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 8 >= 8 = f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1) [7 >= Y] ==> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 2 + -1*X >= 2 + -1*X = f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1) [3 >= Z] ==> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 2 + -1*X >= 2 + -1*X = f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1) [Z >= 4] ==> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 2 + -1*X >= 2 + -1*X = f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1) [Y >= 8] ==> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 2 + -1*X >= 2 + -1*X = f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1) [W >= 1 + V] ==> f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 8 >= 8 = f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1) [S >= 50] ==> f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 8 >= 8 = f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B) [0 >= 1 + Q] ==> f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 8 >= 8 = f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1) [M >= 32] ==> f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 8 >= 8 = f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1) [I >= 100] ==> f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 8 >= 8 = f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1) [H >= 50] ==> f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 8 >= 8 = f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [F >= 50] ==> f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 8 >= 8 = f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1) [E >= 150] ==> f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 8 >= 8 = f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1) * Step 17: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) True (1,1) 1. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [149 >= E] (150,1) 2. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= F] (50,1) 3. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= H] (?,1) 4. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1) [99 >= I] (100,1) 5. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1) [31 >= M] (?,1) 6. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) [Q >= 0] (100,1) 7. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1) [49 >= S] (?,1) 8. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1) [V >= W] (101,1) 9. f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1) [8 >= X] (8,1) 10. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1) [7 >= Y] (?,1) 11. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1) [3 >= Z] (?,1) 12. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1) [Z >= 4] (?,1) 13. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1) [Y >= 8] (?,1) 15. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1) [W >= 1 + V] (101,1) 16. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B) [S >= 50] (50,1) 17. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1) [0 >= 1 + Q] (100,1) 18. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1) [M >= 32] (?,1) 19. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1) [I >= 100] (50,1) 20. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [H >= 50] (?,1) 21. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1) [F >= 50] (101,1) 22. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [E >= 150] (1,1) Signature: {(f0,17) ;(f422,17) ;(f437,17) ;(f441,17) ;(f455,17) ;(f461,17) ;(f485,17) ;(f501,17) ;(f526,17) ;(f540,17) ;(f543,17) ;(f546,17) ;(f584,17)} Flow Graph: [0->{1},1->{1,22},2->{3},3->{3,20},4->{5},5->{5,18},6->{6,17},7->{7,16},8->{8,15},9->{10},10->{11},11->{11 ,12},12->{10,13},13->{9},15->{9},16->{8},17->{7},18->{4,19},19->{6},20->{2,21},21->{4},22->{2}] Sizebounds: (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>, 0) (< 0,0,F>, F) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,M>, M) (< 0,0,Q>, Q) (< 0,0,R>, R) (< 0,0,S>, S) (< 0,0,V>, V) (< 0,0,W>, W) (< 0,0,X>, X) (< 0,0,Y>, Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>, F) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,M>, M) (< 1,0,Q>, Q) (< 1,0,R>, R) (< 1,0,S>, S) (< 1,0,V>, V) (< 1,0,W>, W) (< 1,0,X>, X) (< 1,0,Y>, Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>, ?) (< 2,0,F>, 49) (< 2,0,H>, 0) (< 2,0,I>, I) (< 2,0,M>, M) (< 2,0,Q>, Q) (< 2,0,R>, R) (< 2,0,S>, S) (< 2,0,V>, V) (< 2,0,W>, W) (< 2,0,X>, X) (< 2,0,Y>, Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>, ?) (< 3,0,F>, 49) (< 3,0,H>, 50) (< 3,0,I>, I) (< 3,0,M>, M) (< 3,0,Q>, Q) (< 3,0,R>, R) (< 3,0,S>, S) (< 3,0,V>, V) (< 3,0,W>, W) (< 3,0,X>, X) (< 3,0,Y>, Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>, ?) (< 4,0,F>, ?) (< 4,0,H>, ?) (< 4,0,I>, 99) (< 4,0,M>, 0) (< 4,0,Q>, Q) (< 4,0,R>, R) (< 4,0,S>, S) (< 4,0,V>, V) (< 4,0,W>, W) (< 4,0,X>, X) (< 4,0,Y>, Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, ?) (< 5,0,H>, ?) (< 5,0,I>, 99) (< 5,0,M>, 33) (< 5,0,Q>, Q) (< 5,0,R>, R) (< 5,0,S>, S) (< 5,0,V>, V) (< 5,0,W>, W) (< 5,0,X>, X) (< 5,0,Y>, Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, ?) (< 6,0,H>, ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>, ?) (< 6,0,R>, ?) (< 6,0,S>, S) (< 6,0,V>, V) (< 6,0,W>, W) (< 6,0,X>, X) (< 6,0,Y>, Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, ?) (< 7,0,H>, ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>, ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>, V) (< 7,0,W>, W) (< 7,0,X>, X) (< 7,0,Y>, Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,H>, ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>, ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>, Y) (< 8,0,Z>, Z) (< 8,0,E1>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) (< 9,0,H>, ?) (< 9,0,I>, ?) (< 9,0,M>, ?) (< 9,0,Q>, ?) (< 9,0,R>, ?) (< 9,0,S>, ?) (< 9,0,V>, 17) (< 9,0,W>, ?) (< 9,0,X>, 8) (< 9,0,Y>, 0) (< 9,0,Z>, ?) (< 9,0,E1>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,H>, ?) (<10,0,I>, ?) (<10,0,M>, ?) (<10,0,Q>, ?) (<10,0,R>, ?) (<10,0,S>, ?) (<10,0,V>, 17) (<10,0,W>, ?) (<10,0,X>, ?) (<10,0,Y>, 7) (<10,0,Z>, 0) (<10,0,E1>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,H>, ?) (<11,0,I>, ?) (<11,0,M>, ?) (<11,0,Q>, ?) (<11,0,R>, ?) (<11,0,S>, ?) (<11,0,V>, 17) (<11,0,W>, ?) (<11,0,X>, ?) (<11,0,Y>, 7) (<11,0,Z>, 4) (<11,0,E1>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,H>, ?) (<12,0,I>, ?) (<12,0,M>, ?) (<12,0,Q>, ?) (<12,0,R>, ?) (<12,0,S>, ?) (<12,0,V>, 17) (<12,0,W>, ?) (<12,0,X>, ?) (<12,0,Y>, 7) (<12,0,Z>, 4) (<12,0,E1>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,H>, ?) (<13,0,I>, ?) (<13,0,M>, ?) (<13,0,Q>, ?) (<13,0,R>, ?) (<13,0,S>, ?) (<13,0,V>, 17) (<13,0,W>, ?) (<13,0,X>, ?) (<13,0,Y>, 7) (<13,0,Z>, ?) (<13,0,E1>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, ?) (<15,0,H>, ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>, ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>, Y) (<15,0,Z>, Z) (<15,0,E1>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, ?) (<16,0,H>, ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>, ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>, 2) (<16,0,X>, X) (<16,0,Y>, Y) (<16,0,Z>, Z) (<16,0,E1>, ?) (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,E>, ?) (<17,0,F>, ?) (<17,0,H>, ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>, ?) (<17,0,R>, ?) (<17,0,S>, 0) (<17,0,V>, V) (<17,0,W>, W) (<17,0,X>, X) (<17,0,Y>, Y) (<17,0,Z>, Z) (<17,0,E1>, E1) (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, ?) (<18,0,H>, ?) (<18,0,I>, 99) (<18,0,M>, 33) (<18,0,Q>, Q) (<18,0,R>, R) (<18,0,S>, S) (<18,0,V>, V) (<18,0,W>, W) (<18,0,X>, X) (<18,0,Y>, Y) (<18,0,Z>, Z) (<18,0,E1>, E1) (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, ?) (<19,0,H>, ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>, S) (<19,0,V>, V) (<19,0,W>, W) (<19,0,X>, X) (<19,0,Y>, Y) (<19,0,Z>, Z) (<19,0,E1>, E1) (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 49) (<20,0,H>, 50) (<20,0,I>, I) (<20,0,M>, M) (<20,0,Q>, Q) (<20,0,R>, R) (<20,0,S>, S) (<20,0,V>, V) (<20,0,W>, W) (<20,0,X>, X) (<20,0,Y>, Y) (<20,0,Z>, Z) (<20,0,E1>, E1) (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>, 0) (<21,0,M>, M) (<21,0,Q>, Q) (<21,0,R>, R) (<21,0,S>, S) (<21,0,V>, V) (<21,0,W>, W) (<21,0,X>, X) (<21,0,Y>, Y) (<21,0,Z>, Z) (<21,0,E1>, E1) (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>, 0) (<22,0,H>, H) (<22,0,I>, I) (<22,0,M>, M) (<22,0,Q>, Q) (<22,0,R>, R) (<22,0,S>, S) (<22,0,V>, V) (<22,0,W>, W) (<22,0,X>, X) (<22,0,Y>, Y) (<22,0,Z>, Z) (<22,0,E1>, E1) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 50 p(f422) = 50 p(f437) = 50 p(f441) = 50 p(f455) = 50 p(f461) = 50 p(f485) = 50 p(f501) = 50 + -1*x11 p(f526) = 1 + -1*x11 p(f540) = 1 + -1*x11 p(f543) = 1 + -1*x11 p(f546) = 1 + -1*x11 The following rules are strictly oriented: [49 >= S] ==> f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 50 + -1*S > 49 + -1*S = f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1) The following rules are weakly oriented: True ==> f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 50 >= 50 = f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [149 >= E] ==> f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 50 >= 50 = f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= F] ==> f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 50 >= 50 = f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= H] ==> f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 50 >= 50 = f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1) [99 >= I] ==> f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 50 >= 50 = f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1) [31 >= M] ==> f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 50 >= 50 = f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1) [Q >= 0] ==> f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 50 >= 50 = f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) [V >= W] ==> f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 1 + -1*S >= 1 + -1*S = f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1) [8 >= X] ==> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 1 + -1*S >= 1 + -1*S = f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1) [7 >= Y] ==> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 1 + -1*S >= 1 + -1*S = f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1) [3 >= Z] ==> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 1 + -1*S >= 1 + -1*S = f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1) [Z >= 4] ==> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 1 + -1*S >= 1 + -1*S = f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1) [Y >= 8] ==> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 1 + -1*S >= 1 + -1*S = f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1) [W >= 1 + V] ==> f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 1 + -1*S >= 1 + -1*S = f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1) [S >= 50] ==> f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 50 + -1*S >= 1 + -1*S = f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B) [0 >= 1 + Q] ==> f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 50 >= 50 = f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1) [M >= 32] ==> f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 50 >= 50 = f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1) [I >= 100] ==> f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 50 >= 50 = f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1) [H >= 50] ==> f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 50 >= 50 = f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [F >= 50] ==> f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 50 >= 50 = f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1) [E >= 150] ==> f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 50 >= 50 = f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1) * Step 18: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) True (1,1) 1. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [149 >= E] (150,1) 2. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= F] (50,1) 3. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= H] (?,1) 4. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1) [99 >= I] (100,1) 5. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1) [31 >= M] (?,1) 6. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) [Q >= 0] (100,1) 7. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1) [49 >= S] (50,1) 8. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1) [V >= W] (101,1) 9. f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1) [8 >= X] (8,1) 10. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1) [7 >= Y] (?,1) 11. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1) [3 >= Z] (?,1) 12. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1) [Z >= 4] (?,1) 13. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1) [Y >= 8] (?,1) 15. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1) [W >= 1 + V] (101,1) 16. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B) [S >= 50] (50,1) 17. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1) [0 >= 1 + Q] (100,1) 18. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1) [M >= 32] (?,1) 19. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1) [I >= 100] (50,1) 20. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [H >= 50] (?,1) 21. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1) [F >= 50] (101,1) 22. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [E >= 150] (1,1) Signature: {(f0,17) ;(f422,17) ;(f437,17) ;(f441,17) ;(f455,17) ;(f461,17) ;(f485,17) ;(f501,17) ;(f526,17) ;(f540,17) ;(f543,17) ;(f546,17) ;(f584,17)} Flow Graph: [0->{1},1->{1,22},2->{3},3->{3,20},4->{5},5->{5,18},6->{6,17},7->{7,16},8->{8,15},9->{10},10->{11},11->{11 ,12},12->{10,13},13->{9},15->{9},16->{8},17->{7},18->{4,19},19->{6},20->{2,21},21->{4},22->{2}] Sizebounds: (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>, 0) (< 0,0,F>, F) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,M>, M) (< 0,0,Q>, Q) (< 0,0,R>, R) (< 0,0,S>, S) (< 0,0,V>, V) (< 0,0,W>, W) (< 0,0,X>, X) (< 0,0,Y>, Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>, F) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,M>, M) (< 1,0,Q>, Q) (< 1,0,R>, R) (< 1,0,S>, S) (< 1,0,V>, V) (< 1,0,W>, W) (< 1,0,X>, X) (< 1,0,Y>, Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>, ?) (< 2,0,F>, 49) (< 2,0,H>, 0) (< 2,0,I>, I) (< 2,0,M>, M) (< 2,0,Q>, Q) (< 2,0,R>, R) (< 2,0,S>, S) (< 2,0,V>, V) (< 2,0,W>, W) (< 2,0,X>, X) (< 2,0,Y>, Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>, ?) (< 3,0,F>, 49) (< 3,0,H>, 50) (< 3,0,I>, I) (< 3,0,M>, M) (< 3,0,Q>, Q) (< 3,0,R>, R) (< 3,0,S>, S) (< 3,0,V>, V) (< 3,0,W>, W) (< 3,0,X>, X) (< 3,0,Y>, Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>, ?) (< 4,0,F>, ?) (< 4,0,H>, ?) (< 4,0,I>, 99) (< 4,0,M>, 0) (< 4,0,Q>, Q) (< 4,0,R>, R) (< 4,0,S>, S) (< 4,0,V>, V) (< 4,0,W>, W) (< 4,0,X>, X) (< 4,0,Y>, Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, ?) (< 5,0,H>, ?) (< 5,0,I>, 99) (< 5,0,M>, 33) (< 5,0,Q>, Q) (< 5,0,R>, R) (< 5,0,S>, S) (< 5,0,V>, V) (< 5,0,W>, W) (< 5,0,X>, X) (< 5,0,Y>, Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, ?) (< 6,0,H>, ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>, ?) (< 6,0,R>, ?) (< 6,0,S>, S) (< 6,0,V>, V) (< 6,0,W>, W) (< 6,0,X>, X) (< 6,0,Y>, Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, ?) (< 7,0,H>, ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>, ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>, V) (< 7,0,W>, W) (< 7,0,X>, X) (< 7,0,Y>, Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,H>, ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>, ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>, Y) (< 8,0,Z>, Z) (< 8,0,E1>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) (< 9,0,H>, ?) (< 9,0,I>, ?) (< 9,0,M>, ?) (< 9,0,Q>, ?) (< 9,0,R>, ?) (< 9,0,S>, ?) (< 9,0,V>, 17) (< 9,0,W>, ?) (< 9,0,X>, 8) (< 9,0,Y>, 0) (< 9,0,Z>, ?) (< 9,0,E1>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,H>, ?) (<10,0,I>, ?) (<10,0,M>, ?) (<10,0,Q>, ?) (<10,0,R>, ?) (<10,0,S>, ?) (<10,0,V>, 17) (<10,0,W>, ?) (<10,0,X>, ?) (<10,0,Y>, 7) (<10,0,Z>, 0) (<10,0,E1>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,H>, ?) (<11,0,I>, ?) (<11,0,M>, ?) (<11,0,Q>, ?) (<11,0,R>, ?) (<11,0,S>, ?) (<11,0,V>, 17) (<11,0,W>, ?) (<11,0,X>, ?) (<11,0,Y>, 7) (<11,0,Z>, 4) (<11,0,E1>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,H>, ?) (<12,0,I>, ?) (<12,0,M>, ?) (<12,0,Q>, ?) (<12,0,R>, ?) (<12,0,S>, ?) (<12,0,V>, 17) (<12,0,W>, ?) (<12,0,X>, ?) (<12,0,Y>, 7) (<12,0,Z>, 4) (<12,0,E1>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,H>, ?) (<13,0,I>, ?) (<13,0,M>, ?) (<13,0,Q>, ?) (<13,0,R>, ?) (<13,0,S>, ?) (<13,0,V>, 17) (<13,0,W>, ?) (<13,0,X>, ?) (<13,0,Y>, 7) (<13,0,Z>, ?) (<13,0,E1>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, ?) (<15,0,H>, ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>, ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>, Y) (<15,0,Z>, Z) (<15,0,E1>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, ?) (<16,0,H>, ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>, ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>, 2) (<16,0,X>, X) (<16,0,Y>, Y) (<16,0,Z>, Z) (<16,0,E1>, ?) (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,E>, ?) (<17,0,F>, ?) (<17,0,H>, ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>, ?) (<17,0,R>, ?) (<17,0,S>, 0) (<17,0,V>, V) (<17,0,W>, W) (<17,0,X>, X) (<17,0,Y>, Y) (<17,0,Z>, Z) (<17,0,E1>, E1) (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, ?) (<18,0,H>, ?) (<18,0,I>, 99) (<18,0,M>, 33) (<18,0,Q>, Q) (<18,0,R>, R) (<18,0,S>, S) (<18,0,V>, V) (<18,0,W>, W) (<18,0,X>, X) (<18,0,Y>, Y) (<18,0,Z>, Z) (<18,0,E1>, E1) (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, ?) (<19,0,H>, ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>, S) (<19,0,V>, V) (<19,0,W>, W) (<19,0,X>, X) (<19,0,Y>, Y) (<19,0,Z>, Z) (<19,0,E1>, E1) (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 49) (<20,0,H>, 50) (<20,0,I>, I) (<20,0,M>, M) (<20,0,Q>, Q) (<20,0,R>, R) (<20,0,S>, S) (<20,0,V>, V) (<20,0,W>, W) (<20,0,X>, X) (<20,0,Y>, Y) (<20,0,Z>, Z) (<20,0,E1>, E1) (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>, 0) (<21,0,M>, M) (<21,0,Q>, Q) (<21,0,R>, R) (<21,0,S>, S) (<21,0,V>, V) (<21,0,W>, W) (<21,0,X>, X) (<21,0,Y>, Y) (<21,0,Z>, Z) (<21,0,E1>, E1) (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>, 0) (<22,0,H>, H) (<22,0,I>, I) (<22,0,M>, M) (<22,0,Q>, Q) (<22,0,R>, R) (<22,0,S>, S) (<22,0,V>, V) (<22,0,W>, W) (<22,0,X>, X) (<22,0,Y>, Y) (<22,0,Z>, Z) (<22,0,E1>, E1) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [3], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f441) = 50 + -1*x6 The following rules are strictly oriented: [49 >= H] ==> f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 50 + -1*H > 49 + -1*H = f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1) The following rules are weakly oriented: We use the following global sizebounds: (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>, 0) (< 0,0,F>, F) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,M>, M) (< 0,0,Q>, Q) (< 0,0,R>, R) (< 0,0,S>, S) (< 0,0,V>, V) (< 0,0,W>, W) (< 0,0,X>, X) (< 0,0,Y>, Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>, F) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,M>, M) (< 1,0,Q>, Q) (< 1,0,R>, R) (< 1,0,S>, S) (< 1,0,V>, V) (< 1,0,W>, W) (< 1,0,X>, X) (< 1,0,Y>, Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>, ?) (< 2,0,F>, 49) (< 2,0,H>, 0) (< 2,0,I>, I) (< 2,0,M>, M) (< 2,0,Q>, Q) (< 2,0,R>, R) (< 2,0,S>, S) (< 2,0,V>, V) (< 2,0,W>, W) (< 2,0,X>, X) (< 2,0,Y>, Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>, ?) (< 3,0,F>, 49) (< 3,0,H>, 50) (< 3,0,I>, I) (< 3,0,M>, M) (< 3,0,Q>, Q) (< 3,0,R>, R) (< 3,0,S>, S) (< 3,0,V>, V) (< 3,0,W>, W) (< 3,0,X>, X) (< 3,0,Y>, Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>, ?) (< 4,0,F>, ?) (< 4,0,H>, ?) (< 4,0,I>, 99) (< 4,0,M>, 0) (< 4,0,Q>, Q) (< 4,0,R>, R) (< 4,0,S>, S) (< 4,0,V>, V) (< 4,0,W>, W) (< 4,0,X>, X) (< 4,0,Y>, Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, ?) (< 5,0,H>, ?) (< 5,0,I>, 99) (< 5,0,M>, 33) (< 5,0,Q>, Q) (< 5,0,R>, R) (< 5,0,S>, S) (< 5,0,V>, V) (< 5,0,W>, W) (< 5,0,X>, X) (< 5,0,Y>, Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, ?) (< 6,0,H>, ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>, ?) (< 6,0,R>, ?) (< 6,0,S>, S) (< 6,0,V>, V) (< 6,0,W>, W) (< 6,0,X>, X) (< 6,0,Y>, Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, ?) (< 7,0,H>, ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>, ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>, V) (< 7,0,W>, W) (< 7,0,X>, X) (< 7,0,Y>, Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,H>, ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>, ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>, Y) (< 8,0,Z>, Z) (< 8,0,E1>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) (< 9,0,H>, ?) (< 9,0,I>, ?) (< 9,0,M>, ?) (< 9,0,Q>, ?) (< 9,0,R>, ?) (< 9,0,S>, ?) (< 9,0,V>, 17) (< 9,0,W>, ?) (< 9,0,X>, 8) (< 9,0,Y>, 0) (< 9,0,Z>, ?) (< 9,0,E1>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,H>, ?) (<10,0,I>, ?) (<10,0,M>, ?) (<10,0,Q>, ?) (<10,0,R>, ?) (<10,0,S>, ?) (<10,0,V>, 17) (<10,0,W>, ?) (<10,0,X>, ?) (<10,0,Y>, 7) (<10,0,Z>, 0) (<10,0,E1>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,H>, ?) (<11,0,I>, ?) (<11,0,M>, ?) (<11,0,Q>, ?) (<11,0,R>, ?) (<11,0,S>, ?) (<11,0,V>, 17) (<11,0,W>, ?) (<11,0,X>, ?) (<11,0,Y>, 7) (<11,0,Z>, 4) (<11,0,E1>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,H>, ?) (<12,0,I>, ?) (<12,0,M>, ?) (<12,0,Q>, ?) (<12,0,R>, ?) (<12,0,S>, ?) (<12,0,V>, 17) (<12,0,W>, ?) (<12,0,X>, ?) (<12,0,Y>, 7) (<12,0,Z>, 4) (<12,0,E1>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,H>, ?) (<13,0,I>, ?) (<13,0,M>, ?) (<13,0,Q>, ?) (<13,0,R>, ?) (<13,0,S>, ?) (<13,0,V>, 17) (<13,0,W>, ?) (<13,0,X>, ?) (<13,0,Y>, 7) (<13,0,Z>, ?) (<13,0,E1>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, ?) (<15,0,H>, ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>, ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>, Y) (<15,0,Z>, Z) (<15,0,E1>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, ?) (<16,0,H>, ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>, ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>, 2) (<16,0,X>, X) (<16,0,Y>, Y) (<16,0,Z>, Z) (<16,0,E1>, ?) (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,E>, ?) (<17,0,F>, ?) (<17,0,H>, ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>, ?) (<17,0,R>, ?) (<17,0,S>, 0) (<17,0,V>, V) (<17,0,W>, W) (<17,0,X>, X) (<17,0,Y>, Y) (<17,0,Z>, Z) (<17,0,E1>, E1) (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, ?) (<18,0,H>, ?) (<18,0,I>, 99) (<18,0,M>, 33) (<18,0,Q>, Q) (<18,0,R>, R) (<18,0,S>, S) (<18,0,V>, V) (<18,0,W>, W) (<18,0,X>, X) (<18,0,Y>, Y) (<18,0,Z>, Z) (<18,0,E1>, E1) (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, ?) (<19,0,H>, ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>, S) (<19,0,V>, V) (<19,0,W>, W) (<19,0,X>, X) (<19,0,Y>, Y) (<19,0,Z>, Z) (<19,0,E1>, E1) (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 49) (<20,0,H>, 50) (<20,0,I>, I) (<20,0,M>, M) (<20,0,Q>, Q) (<20,0,R>, R) (<20,0,S>, S) (<20,0,V>, V) (<20,0,W>, W) (<20,0,X>, X) (<20,0,Y>, Y) (<20,0,Z>, Z) (<20,0,E1>, E1) (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>, 0) (<21,0,M>, M) (<21,0,Q>, Q) (<21,0,R>, R) (<21,0,S>, S) (<21,0,V>, V) (<21,0,W>, W) (<21,0,X>, X) (<21,0,Y>, Y) (<21,0,Z>, Z) (<21,0,E1>, E1) (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>, 0) (<22,0,H>, H) (<22,0,I>, I) (<22,0,M>, M) (<22,0,Q>, Q) (<22,0,R>, R) (<22,0,S>, S) (<22,0,V>, V) (<22,0,W>, W) (<22,0,X>, X) (<22,0,Y>, Y) (<22,0,Z>, Z) (<22,0,E1>, E1) * Step 19: KnowledgePropagation WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) True (1,1) 1. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [149 >= E] (150,1) 2. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= F] (50,1) 3. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= H] (2500,1) 4. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1) [99 >= I] (100,1) 5. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1) [31 >= M] (?,1) 6. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) [Q >= 0] (100,1) 7. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1) [49 >= S] (50,1) 8. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1) [V >= W] (101,1) 9. f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1) [8 >= X] (8,1) 10. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1) [7 >= Y] (?,1) 11. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1) [3 >= Z] (?,1) 12. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1) [Z >= 4] (?,1) 13. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1) [Y >= 8] (?,1) 15. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1) [W >= 1 + V] (101,1) 16. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B) [S >= 50] (50,1) 17. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1) [0 >= 1 + Q] (100,1) 18. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1) [M >= 32] (?,1) 19. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1) [I >= 100] (50,1) 20. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [H >= 50] (?,1) 21. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1) [F >= 50] (101,1) 22. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [E >= 150] (1,1) Signature: {(f0,17) ;(f422,17) ;(f437,17) ;(f441,17) ;(f455,17) ;(f461,17) ;(f485,17) ;(f501,17) ;(f526,17) ;(f540,17) ;(f543,17) ;(f546,17) ;(f584,17)} Flow Graph: [0->{1},1->{1,22},2->{3},3->{3,20},4->{5},5->{5,18},6->{6,17},7->{7,16},8->{8,15},9->{10},10->{11},11->{11 ,12},12->{10,13},13->{9},15->{9},16->{8},17->{7},18->{4,19},19->{6},20->{2,21},21->{4},22->{2}] Sizebounds: (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>, 0) (< 0,0,F>, F) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,M>, M) (< 0,0,Q>, Q) (< 0,0,R>, R) (< 0,0,S>, S) (< 0,0,V>, V) (< 0,0,W>, W) (< 0,0,X>, X) (< 0,0,Y>, Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>, F) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,M>, M) (< 1,0,Q>, Q) (< 1,0,R>, R) (< 1,0,S>, S) (< 1,0,V>, V) (< 1,0,W>, W) (< 1,0,X>, X) (< 1,0,Y>, Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>, ?) (< 2,0,F>, 49) (< 2,0,H>, 0) (< 2,0,I>, I) (< 2,0,M>, M) (< 2,0,Q>, Q) (< 2,0,R>, R) (< 2,0,S>, S) (< 2,0,V>, V) (< 2,0,W>, W) (< 2,0,X>, X) (< 2,0,Y>, Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>, ?) (< 3,0,F>, 49) (< 3,0,H>, 50) (< 3,0,I>, I) (< 3,0,M>, M) (< 3,0,Q>, Q) (< 3,0,R>, R) (< 3,0,S>, S) (< 3,0,V>, V) (< 3,0,W>, W) (< 3,0,X>, X) (< 3,0,Y>, Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>, ?) (< 4,0,F>, ?) (< 4,0,H>, ?) (< 4,0,I>, 99) (< 4,0,M>, 0) (< 4,0,Q>, Q) (< 4,0,R>, R) (< 4,0,S>, S) (< 4,0,V>, V) (< 4,0,W>, W) (< 4,0,X>, X) (< 4,0,Y>, Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, ?) (< 5,0,H>, ?) (< 5,0,I>, 99) (< 5,0,M>, 33) (< 5,0,Q>, Q) (< 5,0,R>, R) (< 5,0,S>, S) (< 5,0,V>, V) (< 5,0,W>, W) (< 5,0,X>, X) (< 5,0,Y>, Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, ?) (< 6,0,H>, ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>, ?) (< 6,0,R>, ?) (< 6,0,S>, S) (< 6,0,V>, V) (< 6,0,W>, W) (< 6,0,X>, X) (< 6,0,Y>, Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, ?) (< 7,0,H>, ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>, ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>, V) (< 7,0,W>, W) (< 7,0,X>, X) (< 7,0,Y>, Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,H>, ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>, ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>, Y) (< 8,0,Z>, Z) (< 8,0,E1>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) (< 9,0,H>, ?) (< 9,0,I>, ?) (< 9,0,M>, ?) (< 9,0,Q>, ?) (< 9,0,R>, ?) (< 9,0,S>, ?) (< 9,0,V>, 17) (< 9,0,W>, ?) (< 9,0,X>, 8) (< 9,0,Y>, 0) (< 9,0,Z>, ?) (< 9,0,E1>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,H>, ?) (<10,0,I>, ?) (<10,0,M>, ?) (<10,0,Q>, ?) (<10,0,R>, ?) (<10,0,S>, ?) (<10,0,V>, 17) (<10,0,W>, ?) (<10,0,X>, ?) (<10,0,Y>, 7) (<10,0,Z>, 0) (<10,0,E1>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,H>, ?) (<11,0,I>, ?) (<11,0,M>, ?) (<11,0,Q>, ?) (<11,0,R>, ?) (<11,0,S>, ?) (<11,0,V>, 17) (<11,0,W>, ?) (<11,0,X>, ?) (<11,0,Y>, 7) (<11,0,Z>, 4) (<11,0,E1>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,H>, ?) (<12,0,I>, ?) (<12,0,M>, ?) (<12,0,Q>, ?) (<12,0,R>, ?) (<12,0,S>, ?) (<12,0,V>, 17) (<12,0,W>, ?) (<12,0,X>, ?) (<12,0,Y>, 7) (<12,0,Z>, 4) (<12,0,E1>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,H>, ?) (<13,0,I>, ?) (<13,0,M>, ?) (<13,0,Q>, ?) (<13,0,R>, ?) (<13,0,S>, ?) (<13,0,V>, 17) (<13,0,W>, ?) (<13,0,X>, ?) (<13,0,Y>, 7) (<13,0,Z>, ?) (<13,0,E1>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, ?) (<15,0,H>, ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>, ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>, Y) (<15,0,Z>, Z) (<15,0,E1>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, ?) (<16,0,H>, ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>, ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>, 2) (<16,0,X>, X) (<16,0,Y>, Y) (<16,0,Z>, Z) (<16,0,E1>, ?) (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,E>, ?) (<17,0,F>, ?) (<17,0,H>, ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>, ?) (<17,0,R>, ?) (<17,0,S>, 0) (<17,0,V>, V) (<17,0,W>, W) (<17,0,X>, X) (<17,0,Y>, Y) (<17,0,Z>, Z) (<17,0,E1>, E1) (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, ?) (<18,0,H>, ?) (<18,0,I>, 99) (<18,0,M>, 33) (<18,0,Q>, Q) (<18,0,R>, R) (<18,0,S>, S) (<18,0,V>, V) (<18,0,W>, W) (<18,0,X>, X) (<18,0,Y>, Y) (<18,0,Z>, Z) (<18,0,E1>, E1) (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, ?) (<19,0,H>, ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>, S) (<19,0,V>, V) (<19,0,W>, W) (<19,0,X>, X) (<19,0,Y>, Y) (<19,0,Z>, Z) (<19,0,E1>, E1) (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 49) (<20,0,H>, 50) (<20,0,I>, I) (<20,0,M>, M) (<20,0,Q>, Q) (<20,0,R>, R) (<20,0,S>, S) (<20,0,V>, V) (<20,0,W>, W) (<20,0,X>, X) (<20,0,Y>, Y) (<20,0,Z>, Z) (<20,0,E1>, E1) (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>, 0) (<21,0,M>, M) (<21,0,Q>, Q) (<21,0,R>, R) (<21,0,S>, S) (<21,0,V>, V) (<21,0,W>, W) (<21,0,X>, X) (<21,0,Y>, Y) (<21,0,Z>, Z) (<21,0,E1>, E1) (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>, 0) (<22,0,H>, H) (<22,0,I>, I) (<22,0,M>, M) (<22,0,Q>, Q) (<22,0,R>, R) (<22,0,S>, S) (<22,0,V>, V) (<22,0,W>, W) (<22,0,X>, X) (<22,0,Y>, Y) (<22,0,Z>, Z) (<22,0,E1>, E1) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 20: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) True (1,1) 1. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [149 >= E] (150,1) 2. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= F] (50,1) 3. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= H] (2500,1) 4. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1) [99 >= I] (100,1) 5. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1) [31 >= M] (?,1) 6. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) [Q >= 0] (100,1) 7. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1) [49 >= S] (50,1) 8. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1) [V >= W] (101,1) 9. f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1) [8 >= X] (8,1) 10. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1) [7 >= Y] (?,1) 11. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1) [3 >= Z] (?,1) 12. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1) [Z >= 4] (?,1) 13. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1) [Y >= 8] (?,1) 15. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1) [W >= 1 + V] (101,1) 16. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B) [S >= 50] (50,1) 17. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1) [0 >= 1 + Q] (100,1) 18. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1) [M >= 32] (?,1) 19. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1) [I >= 100] (50,1) 20. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [H >= 50] (2500,1) 21. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1) [F >= 50] (101,1) 22. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [E >= 150] (1,1) Signature: {(f0,17) ;(f422,17) ;(f437,17) ;(f441,17) ;(f455,17) ;(f461,17) ;(f485,17) ;(f501,17) ;(f526,17) ;(f540,17) ;(f543,17) ;(f546,17) ;(f584,17)} Flow Graph: [0->{1},1->{1,22},2->{3},3->{3,20},4->{5},5->{5,18},6->{6,17},7->{7,16},8->{8,15},9->{10},10->{11},11->{11 ,12},12->{10,13},13->{9},15->{9},16->{8},17->{7},18->{4,19},19->{6},20->{2,21},21->{4},22->{2}] Sizebounds: (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>, 0) (< 0,0,F>, F) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,M>, M) (< 0,0,Q>, Q) (< 0,0,R>, R) (< 0,0,S>, S) (< 0,0,V>, V) (< 0,0,W>, W) (< 0,0,X>, X) (< 0,0,Y>, Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>, F) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,M>, M) (< 1,0,Q>, Q) (< 1,0,R>, R) (< 1,0,S>, S) (< 1,0,V>, V) (< 1,0,W>, W) (< 1,0,X>, X) (< 1,0,Y>, Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>, ?) (< 2,0,F>, 49) (< 2,0,H>, 0) (< 2,0,I>, I) (< 2,0,M>, M) (< 2,0,Q>, Q) (< 2,0,R>, R) (< 2,0,S>, S) (< 2,0,V>, V) (< 2,0,W>, W) (< 2,0,X>, X) (< 2,0,Y>, Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>, ?) (< 3,0,F>, 49) (< 3,0,H>, 50) (< 3,0,I>, I) (< 3,0,M>, M) (< 3,0,Q>, Q) (< 3,0,R>, R) (< 3,0,S>, S) (< 3,0,V>, V) (< 3,0,W>, W) (< 3,0,X>, X) (< 3,0,Y>, Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>, ?) (< 4,0,F>, ?) (< 4,0,H>, ?) (< 4,0,I>, 99) (< 4,0,M>, 0) (< 4,0,Q>, Q) (< 4,0,R>, R) (< 4,0,S>, S) (< 4,0,V>, V) (< 4,0,W>, W) (< 4,0,X>, X) (< 4,0,Y>, Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, ?) (< 5,0,H>, ?) (< 5,0,I>, 99) (< 5,0,M>, 33) (< 5,0,Q>, Q) (< 5,0,R>, R) (< 5,0,S>, S) (< 5,0,V>, V) (< 5,0,W>, W) (< 5,0,X>, X) (< 5,0,Y>, Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, ?) (< 6,0,H>, ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>, ?) (< 6,0,R>, ?) (< 6,0,S>, S) (< 6,0,V>, V) (< 6,0,W>, W) (< 6,0,X>, X) (< 6,0,Y>, Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, ?) (< 7,0,H>, ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>, ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>, V) (< 7,0,W>, W) (< 7,0,X>, X) (< 7,0,Y>, Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,H>, ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>, ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>, Y) (< 8,0,Z>, Z) (< 8,0,E1>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) (< 9,0,H>, ?) (< 9,0,I>, ?) (< 9,0,M>, ?) (< 9,0,Q>, ?) (< 9,0,R>, ?) (< 9,0,S>, ?) (< 9,0,V>, 17) (< 9,0,W>, ?) (< 9,0,X>, 8) (< 9,0,Y>, 0) (< 9,0,Z>, ?) (< 9,0,E1>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,H>, ?) (<10,0,I>, ?) (<10,0,M>, ?) (<10,0,Q>, ?) (<10,0,R>, ?) (<10,0,S>, ?) (<10,0,V>, 17) (<10,0,W>, ?) (<10,0,X>, ?) (<10,0,Y>, 7) (<10,0,Z>, 0) (<10,0,E1>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,H>, ?) (<11,0,I>, ?) (<11,0,M>, ?) (<11,0,Q>, ?) (<11,0,R>, ?) (<11,0,S>, ?) (<11,0,V>, 17) (<11,0,W>, ?) (<11,0,X>, ?) (<11,0,Y>, 7) (<11,0,Z>, 4) (<11,0,E1>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,H>, ?) (<12,0,I>, ?) (<12,0,M>, ?) (<12,0,Q>, ?) (<12,0,R>, ?) (<12,0,S>, ?) (<12,0,V>, 17) (<12,0,W>, ?) (<12,0,X>, ?) (<12,0,Y>, 7) (<12,0,Z>, 4) (<12,0,E1>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,H>, ?) (<13,0,I>, ?) (<13,0,M>, ?) (<13,0,Q>, ?) (<13,0,R>, ?) (<13,0,S>, ?) (<13,0,V>, 17) (<13,0,W>, ?) (<13,0,X>, ?) (<13,0,Y>, 7) (<13,0,Z>, ?) (<13,0,E1>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, ?) (<15,0,H>, ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>, ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>, Y) (<15,0,Z>, Z) (<15,0,E1>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, ?) (<16,0,H>, ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>, ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>, 2) (<16,0,X>, X) (<16,0,Y>, Y) (<16,0,Z>, Z) (<16,0,E1>, ?) (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,E>, ?) (<17,0,F>, ?) (<17,0,H>, ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>, ?) (<17,0,R>, ?) (<17,0,S>, 0) (<17,0,V>, V) (<17,0,W>, W) (<17,0,X>, X) (<17,0,Y>, Y) (<17,0,Z>, Z) (<17,0,E1>, E1) (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, ?) (<18,0,H>, ?) (<18,0,I>, 99) (<18,0,M>, 33) (<18,0,Q>, Q) (<18,0,R>, R) (<18,0,S>, S) (<18,0,V>, V) (<18,0,W>, W) (<18,0,X>, X) (<18,0,Y>, Y) (<18,0,Z>, Z) (<18,0,E1>, E1) (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, ?) (<19,0,H>, ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>, S) (<19,0,V>, V) (<19,0,W>, W) (<19,0,X>, X) (<19,0,Y>, Y) (<19,0,Z>, Z) (<19,0,E1>, E1) (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 49) (<20,0,H>, 50) (<20,0,I>, I) (<20,0,M>, M) (<20,0,Q>, Q) (<20,0,R>, R) (<20,0,S>, S) (<20,0,V>, V) (<20,0,W>, W) (<20,0,X>, X) (<20,0,Y>, Y) (<20,0,Z>, Z) (<20,0,E1>, E1) (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>, 0) (<21,0,M>, M) (<21,0,Q>, Q) (<21,0,R>, R) (<21,0,S>, S) (<21,0,V>, V) (<21,0,W>, W) (<21,0,X>, X) (<21,0,Y>, Y) (<21,0,Z>, Z) (<21,0,E1>, E1) (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>, 0) (<22,0,H>, H) (<22,0,I>, I) (<22,0,M>, M) (<22,0,Q>, Q) (<22,0,R>, R) (<22,0,S>, S) (<22,0,V>, V) (<22,0,W>, W) (<22,0,X>, X) (<22,0,Y>, Y) (<22,0,Z>, Z) (<22,0,E1>, E1) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [18,5], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f455) = 0 p(f461) = 1 The following rules are strictly oriented: [M >= 32] ==> f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 1 > 0 = f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1) The following rules are weakly oriented: [31 >= M] ==> f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 1 >= 1 = f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1) We use the following global sizebounds: (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>, 0) (< 0,0,F>, F) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,M>, M) (< 0,0,Q>, Q) (< 0,0,R>, R) (< 0,0,S>, S) (< 0,0,V>, V) (< 0,0,W>, W) (< 0,0,X>, X) (< 0,0,Y>, Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>, F) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,M>, M) (< 1,0,Q>, Q) (< 1,0,R>, R) (< 1,0,S>, S) (< 1,0,V>, V) (< 1,0,W>, W) (< 1,0,X>, X) (< 1,0,Y>, Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>, ?) (< 2,0,F>, 49) (< 2,0,H>, 0) (< 2,0,I>, I) (< 2,0,M>, M) (< 2,0,Q>, Q) (< 2,0,R>, R) (< 2,0,S>, S) (< 2,0,V>, V) (< 2,0,W>, W) (< 2,0,X>, X) (< 2,0,Y>, Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>, ?) (< 3,0,F>, 49) (< 3,0,H>, 50) (< 3,0,I>, I) (< 3,0,M>, M) (< 3,0,Q>, Q) (< 3,0,R>, R) (< 3,0,S>, S) (< 3,0,V>, V) (< 3,0,W>, W) (< 3,0,X>, X) (< 3,0,Y>, Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>, ?) (< 4,0,F>, ?) (< 4,0,H>, ?) (< 4,0,I>, 99) (< 4,0,M>, 0) (< 4,0,Q>, Q) (< 4,0,R>, R) (< 4,0,S>, S) (< 4,0,V>, V) (< 4,0,W>, W) (< 4,0,X>, X) (< 4,0,Y>, Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, ?) (< 5,0,H>, ?) (< 5,0,I>, 99) (< 5,0,M>, 33) (< 5,0,Q>, Q) (< 5,0,R>, R) (< 5,0,S>, S) (< 5,0,V>, V) (< 5,0,W>, W) (< 5,0,X>, X) (< 5,0,Y>, Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, ?) (< 6,0,H>, ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>, ?) (< 6,0,R>, ?) (< 6,0,S>, S) (< 6,0,V>, V) (< 6,0,W>, W) (< 6,0,X>, X) (< 6,0,Y>, Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, ?) (< 7,0,H>, ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>, ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>, V) (< 7,0,W>, W) (< 7,0,X>, X) (< 7,0,Y>, Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,H>, ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>, ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>, Y) (< 8,0,Z>, Z) (< 8,0,E1>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) (< 9,0,H>, ?) (< 9,0,I>, ?) (< 9,0,M>, ?) (< 9,0,Q>, ?) (< 9,0,R>, ?) (< 9,0,S>, ?) (< 9,0,V>, 17) (< 9,0,W>, ?) (< 9,0,X>, 8) (< 9,0,Y>, 0) (< 9,0,Z>, ?) (< 9,0,E1>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,H>, ?) (<10,0,I>, ?) (<10,0,M>, ?) (<10,0,Q>, ?) (<10,0,R>, ?) (<10,0,S>, ?) (<10,0,V>, 17) (<10,0,W>, ?) (<10,0,X>, ?) (<10,0,Y>, 7) (<10,0,Z>, 0) (<10,0,E1>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,H>, ?) (<11,0,I>, ?) (<11,0,M>, ?) (<11,0,Q>, ?) (<11,0,R>, ?) (<11,0,S>, ?) (<11,0,V>, 17) (<11,0,W>, ?) (<11,0,X>, ?) (<11,0,Y>, 7) (<11,0,Z>, 4) (<11,0,E1>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,H>, ?) (<12,0,I>, ?) (<12,0,M>, ?) (<12,0,Q>, ?) (<12,0,R>, ?) (<12,0,S>, ?) (<12,0,V>, 17) (<12,0,W>, ?) (<12,0,X>, ?) (<12,0,Y>, 7) (<12,0,Z>, 4) (<12,0,E1>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,H>, ?) (<13,0,I>, ?) (<13,0,M>, ?) (<13,0,Q>, ?) (<13,0,R>, ?) (<13,0,S>, ?) (<13,0,V>, 17) (<13,0,W>, ?) (<13,0,X>, ?) (<13,0,Y>, 7) (<13,0,Z>, ?) (<13,0,E1>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, ?) (<15,0,H>, ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>, ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>, Y) (<15,0,Z>, Z) (<15,0,E1>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, ?) (<16,0,H>, ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>, ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>, 2) (<16,0,X>, X) (<16,0,Y>, Y) (<16,0,Z>, Z) (<16,0,E1>, ?) (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,E>, ?) (<17,0,F>, ?) (<17,0,H>, ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>, ?) (<17,0,R>, ?) (<17,0,S>, 0) (<17,0,V>, V) (<17,0,W>, W) (<17,0,X>, X) (<17,0,Y>, Y) (<17,0,Z>, Z) (<17,0,E1>, E1) (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, ?) (<18,0,H>, ?) (<18,0,I>, 99) (<18,0,M>, 33) (<18,0,Q>, Q) (<18,0,R>, R) (<18,0,S>, S) (<18,0,V>, V) (<18,0,W>, W) (<18,0,X>, X) (<18,0,Y>, Y) (<18,0,Z>, Z) (<18,0,E1>, E1) (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, ?) (<19,0,H>, ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>, S) (<19,0,V>, V) (<19,0,W>, W) (<19,0,X>, X) (<19,0,Y>, Y) (<19,0,Z>, Z) (<19,0,E1>, E1) (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 49) (<20,0,H>, 50) (<20,0,I>, I) (<20,0,M>, M) (<20,0,Q>, Q) (<20,0,R>, R) (<20,0,S>, S) (<20,0,V>, V) (<20,0,W>, W) (<20,0,X>, X) (<20,0,Y>, Y) (<20,0,Z>, Z) (<20,0,E1>, E1) (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>, 0) (<21,0,M>, M) (<21,0,Q>, Q) (<21,0,R>, R) (<21,0,S>, S) (<21,0,V>, V) (<21,0,W>, W) (<21,0,X>, X) (<21,0,Y>, Y) (<21,0,Z>, Z) (<21,0,E1>, E1) (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>, 0) (<22,0,H>, H) (<22,0,I>, I) (<22,0,M>, M) (<22,0,Q>, Q) (<22,0,R>, R) (<22,0,S>, S) (<22,0,V>, V) (<22,0,W>, W) (<22,0,X>, X) (<22,0,Y>, Y) (<22,0,Z>, Z) (<22,0,E1>, E1) * Step 21: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) True (1,1) 1. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [149 >= E] (150,1) 2. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= F] (50,1) 3. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= H] (2500,1) 4. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1) [99 >= I] (100,1) 5. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1) [31 >= M] (?,1) 6. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) [Q >= 0] (100,1) 7. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1) [49 >= S] (50,1) 8. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1) [V >= W] (101,1) 9. f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1) [8 >= X] (8,1) 10. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1) [7 >= Y] (?,1) 11. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1) [3 >= Z] (?,1) 12. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1) [Z >= 4] (?,1) 13. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1) [Y >= 8] (?,1) 15. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1) [W >= 1 + V] (101,1) 16. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B) [S >= 50] (50,1) 17. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1) [0 >= 1 + Q] (100,1) 18. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1) [M >= 32] (100,1) 19. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1) [I >= 100] (50,1) 20. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [H >= 50] (2500,1) 21. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1) [F >= 50] (101,1) 22. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [E >= 150] (1,1) Signature: {(f0,17) ;(f422,17) ;(f437,17) ;(f441,17) ;(f455,17) ;(f461,17) ;(f485,17) ;(f501,17) ;(f526,17) ;(f540,17) ;(f543,17) ;(f546,17) ;(f584,17)} Flow Graph: [0->{1},1->{1,22},2->{3},3->{3,20},4->{5},5->{5,18},6->{6,17},7->{7,16},8->{8,15},9->{10},10->{11},11->{11 ,12},12->{10,13},13->{9},15->{9},16->{8},17->{7},18->{4,19},19->{6},20->{2,21},21->{4},22->{2}] Sizebounds: (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>, 0) (< 0,0,F>, F) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,M>, M) (< 0,0,Q>, Q) (< 0,0,R>, R) (< 0,0,S>, S) (< 0,0,V>, V) (< 0,0,W>, W) (< 0,0,X>, X) (< 0,0,Y>, Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>, F) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,M>, M) (< 1,0,Q>, Q) (< 1,0,R>, R) (< 1,0,S>, S) (< 1,0,V>, V) (< 1,0,W>, W) (< 1,0,X>, X) (< 1,0,Y>, Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>, ?) (< 2,0,F>, 49) (< 2,0,H>, 0) (< 2,0,I>, I) (< 2,0,M>, M) (< 2,0,Q>, Q) (< 2,0,R>, R) (< 2,0,S>, S) (< 2,0,V>, V) (< 2,0,W>, W) (< 2,0,X>, X) (< 2,0,Y>, Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>, ?) (< 3,0,F>, 49) (< 3,0,H>, 50) (< 3,0,I>, I) (< 3,0,M>, M) (< 3,0,Q>, Q) (< 3,0,R>, R) (< 3,0,S>, S) (< 3,0,V>, V) (< 3,0,W>, W) (< 3,0,X>, X) (< 3,0,Y>, Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>, ?) (< 4,0,F>, ?) (< 4,0,H>, ?) (< 4,0,I>, 99) (< 4,0,M>, 0) (< 4,0,Q>, Q) (< 4,0,R>, R) (< 4,0,S>, S) (< 4,0,V>, V) (< 4,0,W>, W) (< 4,0,X>, X) (< 4,0,Y>, Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, ?) (< 5,0,H>, ?) (< 5,0,I>, 99) (< 5,0,M>, 33) (< 5,0,Q>, Q) (< 5,0,R>, R) (< 5,0,S>, S) (< 5,0,V>, V) (< 5,0,W>, W) (< 5,0,X>, X) (< 5,0,Y>, Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, ?) (< 6,0,H>, ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>, ?) (< 6,0,R>, ?) (< 6,0,S>, S) (< 6,0,V>, V) (< 6,0,W>, W) (< 6,0,X>, X) (< 6,0,Y>, Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, ?) (< 7,0,H>, ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>, ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>, V) (< 7,0,W>, W) (< 7,0,X>, X) (< 7,0,Y>, Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,H>, ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>, ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>, Y) (< 8,0,Z>, Z) (< 8,0,E1>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) (< 9,0,H>, ?) (< 9,0,I>, ?) (< 9,0,M>, ?) (< 9,0,Q>, ?) (< 9,0,R>, ?) (< 9,0,S>, ?) (< 9,0,V>, 17) (< 9,0,W>, ?) (< 9,0,X>, 8) (< 9,0,Y>, 0) (< 9,0,Z>, ?) (< 9,0,E1>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,H>, ?) (<10,0,I>, ?) (<10,0,M>, ?) (<10,0,Q>, ?) (<10,0,R>, ?) (<10,0,S>, ?) (<10,0,V>, 17) (<10,0,W>, ?) (<10,0,X>, ?) (<10,0,Y>, 7) (<10,0,Z>, 0) (<10,0,E1>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,H>, ?) (<11,0,I>, ?) (<11,0,M>, ?) (<11,0,Q>, ?) (<11,0,R>, ?) (<11,0,S>, ?) (<11,0,V>, 17) (<11,0,W>, ?) (<11,0,X>, ?) (<11,0,Y>, 7) (<11,0,Z>, 4) (<11,0,E1>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,H>, ?) (<12,0,I>, ?) (<12,0,M>, ?) (<12,0,Q>, ?) (<12,0,R>, ?) (<12,0,S>, ?) (<12,0,V>, 17) (<12,0,W>, ?) (<12,0,X>, ?) (<12,0,Y>, 7) (<12,0,Z>, 4) (<12,0,E1>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,H>, ?) (<13,0,I>, ?) (<13,0,M>, ?) (<13,0,Q>, ?) (<13,0,R>, ?) (<13,0,S>, ?) (<13,0,V>, 17) (<13,0,W>, ?) (<13,0,X>, ?) (<13,0,Y>, 7) (<13,0,Z>, ?) (<13,0,E1>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, ?) (<15,0,H>, ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>, ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>, Y) (<15,0,Z>, Z) (<15,0,E1>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, ?) (<16,0,H>, ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>, ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>, 2) (<16,0,X>, X) (<16,0,Y>, Y) (<16,0,Z>, Z) (<16,0,E1>, ?) (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,E>, ?) (<17,0,F>, ?) (<17,0,H>, ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>, ?) (<17,0,R>, ?) (<17,0,S>, 0) (<17,0,V>, V) (<17,0,W>, W) (<17,0,X>, X) (<17,0,Y>, Y) (<17,0,Z>, Z) (<17,0,E1>, E1) (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, ?) (<18,0,H>, ?) (<18,0,I>, 99) (<18,0,M>, 33) (<18,0,Q>, Q) (<18,0,R>, R) (<18,0,S>, S) (<18,0,V>, V) (<18,0,W>, W) (<18,0,X>, X) (<18,0,Y>, Y) (<18,0,Z>, Z) (<18,0,E1>, E1) (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, ?) (<19,0,H>, ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>, S) (<19,0,V>, V) (<19,0,W>, W) (<19,0,X>, X) (<19,0,Y>, Y) (<19,0,Z>, Z) (<19,0,E1>, E1) (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 49) (<20,0,H>, 50) (<20,0,I>, I) (<20,0,M>, M) (<20,0,Q>, Q) (<20,0,R>, R) (<20,0,S>, S) (<20,0,V>, V) (<20,0,W>, W) (<20,0,X>, X) (<20,0,Y>, Y) (<20,0,Z>, Z) (<20,0,E1>, E1) (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>, 0) (<21,0,M>, M) (<21,0,Q>, Q) (<21,0,R>, R) (<21,0,S>, S) (<21,0,V>, V) (<21,0,W>, W) (<21,0,X>, X) (<21,0,Y>, Y) (<21,0,Z>, Z) (<21,0,E1>, E1) (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>, 0) (<22,0,H>, H) (<22,0,I>, I) (<22,0,M>, M) (<22,0,Q>, Q) (<22,0,R>, R) (<22,0,S>, S) (<22,0,V>, V) (<22,0,W>, W) (<22,0,X>, X) (<22,0,Y>, Y) (<22,0,Z>, Z) (<22,0,E1>, E1) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [5], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f461) = 32 + -1*x8 The following rules are strictly oriented: [31 >= M] ==> f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 32 + -1*M > 30 + -1*M = f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1) The following rules are weakly oriented: We use the following global sizebounds: (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>, 0) (< 0,0,F>, F) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,M>, M) (< 0,0,Q>, Q) (< 0,0,R>, R) (< 0,0,S>, S) (< 0,0,V>, V) (< 0,0,W>, W) (< 0,0,X>, X) (< 0,0,Y>, Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>, F) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,M>, M) (< 1,0,Q>, Q) (< 1,0,R>, R) (< 1,0,S>, S) (< 1,0,V>, V) (< 1,0,W>, W) (< 1,0,X>, X) (< 1,0,Y>, Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>, ?) (< 2,0,F>, 49) (< 2,0,H>, 0) (< 2,0,I>, I) (< 2,0,M>, M) (< 2,0,Q>, Q) (< 2,0,R>, R) (< 2,0,S>, S) (< 2,0,V>, V) (< 2,0,W>, W) (< 2,0,X>, X) (< 2,0,Y>, Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>, ?) (< 3,0,F>, 49) (< 3,0,H>, 50) (< 3,0,I>, I) (< 3,0,M>, M) (< 3,0,Q>, Q) (< 3,0,R>, R) (< 3,0,S>, S) (< 3,0,V>, V) (< 3,0,W>, W) (< 3,0,X>, X) (< 3,0,Y>, Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>, ?) (< 4,0,F>, ?) (< 4,0,H>, ?) (< 4,0,I>, 99) (< 4,0,M>, 0) (< 4,0,Q>, Q) (< 4,0,R>, R) (< 4,0,S>, S) (< 4,0,V>, V) (< 4,0,W>, W) (< 4,0,X>, X) (< 4,0,Y>, Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, ?) (< 5,0,H>, ?) (< 5,0,I>, 99) (< 5,0,M>, 33) (< 5,0,Q>, Q) (< 5,0,R>, R) (< 5,0,S>, S) (< 5,0,V>, V) (< 5,0,W>, W) (< 5,0,X>, X) (< 5,0,Y>, Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, ?) (< 6,0,H>, ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>, ?) (< 6,0,R>, ?) (< 6,0,S>, S) (< 6,0,V>, V) (< 6,0,W>, W) (< 6,0,X>, X) (< 6,0,Y>, Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, ?) (< 7,0,H>, ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>, ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>, V) (< 7,0,W>, W) (< 7,0,X>, X) (< 7,0,Y>, Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,H>, ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>, ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>, Y) (< 8,0,Z>, Z) (< 8,0,E1>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) (< 9,0,H>, ?) (< 9,0,I>, ?) (< 9,0,M>, ?) (< 9,0,Q>, ?) (< 9,0,R>, ?) (< 9,0,S>, ?) (< 9,0,V>, 17) (< 9,0,W>, ?) (< 9,0,X>, 8) (< 9,0,Y>, 0) (< 9,0,Z>, ?) (< 9,0,E1>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,H>, ?) (<10,0,I>, ?) (<10,0,M>, ?) (<10,0,Q>, ?) (<10,0,R>, ?) (<10,0,S>, ?) (<10,0,V>, 17) (<10,0,W>, ?) (<10,0,X>, ?) (<10,0,Y>, 7) (<10,0,Z>, 0) (<10,0,E1>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,H>, ?) (<11,0,I>, ?) (<11,0,M>, ?) (<11,0,Q>, ?) (<11,0,R>, ?) (<11,0,S>, ?) (<11,0,V>, 17) (<11,0,W>, ?) (<11,0,X>, ?) (<11,0,Y>, 7) (<11,0,Z>, 4) (<11,0,E1>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,H>, ?) (<12,0,I>, ?) (<12,0,M>, ?) (<12,0,Q>, ?) (<12,0,R>, ?) (<12,0,S>, ?) (<12,0,V>, 17) (<12,0,W>, ?) (<12,0,X>, ?) (<12,0,Y>, 7) (<12,0,Z>, 4) (<12,0,E1>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,H>, ?) (<13,0,I>, ?) (<13,0,M>, ?) (<13,0,Q>, ?) (<13,0,R>, ?) (<13,0,S>, ?) (<13,0,V>, 17) (<13,0,W>, ?) (<13,0,X>, ?) (<13,0,Y>, 7) (<13,0,Z>, ?) (<13,0,E1>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, ?) (<15,0,H>, ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>, ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>, Y) (<15,0,Z>, Z) (<15,0,E1>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, ?) (<16,0,H>, ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>, ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>, 2) (<16,0,X>, X) (<16,0,Y>, Y) (<16,0,Z>, Z) (<16,0,E1>, ?) (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,E>, ?) (<17,0,F>, ?) (<17,0,H>, ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>, ?) (<17,0,R>, ?) (<17,0,S>, 0) (<17,0,V>, V) (<17,0,W>, W) (<17,0,X>, X) (<17,0,Y>, Y) (<17,0,Z>, Z) (<17,0,E1>, E1) (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, ?) (<18,0,H>, ?) (<18,0,I>, 99) (<18,0,M>, 33) (<18,0,Q>, Q) (<18,0,R>, R) (<18,0,S>, S) (<18,0,V>, V) (<18,0,W>, W) (<18,0,X>, X) (<18,0,Y>, Y) (<18,0,Z>, Z) (<18,0,E1>, E1) (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, ?) (<19,0,H>, ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>, S) (<19,0,V>, V) (<19,0,W>, W) (<19,0,X>, X) (<19,0,Y>, Y) (<19,0,Z>, Z) (<19,0,E1>, E1) (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 49) (<20,0,H>, 50) (<20,0,I>, I) (<20,0,M>, M) (<20,0,Q>, Q) (<20,0,R>, R) (<20,0,S>, S) (<20,0,V>, V) (<20,0,W>, W) (<20,0,X>, X) (<20,0,Y>, Y) (<20,0,Z>, Z) (<20,0,E1>, E1) (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>, 0) (<21,0,M>, M) (<21,0,Q>, Q) (<21,0,R>, R) (<21,0,S>, S) (<21,0,V>, V) (<21,0,W>, W) (<21,0,X>, X) (<21,0,Y>, Y) (<21,0,Z>, Z) (<21,0,E1>, E1) (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>, 0) (<22,0,H>, H) (<22,0,I>, I) (<22,0,M>, M) (<22,0,Q>, Q) (<22,0,R>, R) (<22,0,S>, S) (<22,0,V>, V) (<22,0,W>, W) (<22,0,X>, X) (<22,0,Y>, Y) (<22,0,Z>, Z) (<22,0,E1>, E1) * Step 22: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) True (1,1) 1. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [149 >= E] (150,1) 2. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= F] (50,1) 3. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= H] (2500,1) 4. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1) [99 >= I] (100,1) 5. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1) [31 >= M] (3200,1) 6. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) [Q >= 0] (100,1) 7. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1) [49 >= S] (50,1) 8. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1) [V >= W] (101,1) 9. f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1) [8 >= X] (8,1) 10. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1) [7 >= Y] (?,1) 11. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1) [3 >= Z] (?,1) 12. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1) [Z >= 4] (?,1) 13. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1) [Y >= 8] (?,1) 15. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1) [W >= 1 + V] (101,1) 16. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B) [S >= 50] (50,1) 17. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1) [0 >= 1 + Q] (100,1) 18. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1) [M >= 32] (100,1) 19. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1) [I >= 100] (50,1) 20. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [H >= 50] (2500,1) 21. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1) [F >= 50] (101,1) 22. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [E >= 150] (1,1) Signature: {(f0,17) ;(f422,17) ;(f437,17) ;(f441,17) ;(f455,17) ;(f461,17) ;(f485,17) ;(f501,17) ;(f526,17) ;(f540,17) ;(f543,17) ;(f546,17) ;(f584,17)} Flow Graph: [0->{1},1->{1,22},2->{3},3->{3,20},4->{5},5->{5,18},6->{6,17},7->{7,16},8->{8,15},9->{10},10->{11},11->{11 ,12},12->{10,13},13->{9},15->{9},16->{8},17->{7},18->{4,19},19->{6},20->{2,21},21->{4},22->{2}] Sizebounds: (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>, 0) (< 0,0,F>, F) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,M>, M) (< 0,0,Q>, Q) (< 0,0,R>, R) (< 0,0,S>, S) (< 0,0,V>, V) (< 0,0,W>, W) (< 0,0,X>, X) (< 0,0,Y>, Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>, F) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,M>, M) (< 1,0,Q>, Q) (< 1,0,R>, R) (< 1,0,S>, S) (< 1,0,V>, V) (< 1,0,W>, W) (< 1,0,X>, X) (< 1,0,Y>, Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>, ?) (< 2,0,F>, 49) (< 2,0,H>, 0) (< 2,0,I>, I) (< 2,0,M>, M) (< 2,0,Q>, Q) (< 2,0,R>, R) (< 2,0,S>, S) (< 2,0,V>, V) (< 2,0,W>, W) (< 2,0,X>, X) (< 2,0,Y>, Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>, ?) (< 3,0,F>, 49) (< 3,0,H>, 50) (< 3,0,I>, I) (< 3,0,M>, M) (< 3,0,Q>, Q) (< 3,0,R>, R) (< 3,0,S>, S) (< 3,0,V>, V) (< 3,0,W>, W) (< 3,0,X>, X) (< 3,0,Y>, Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>, ?) (< 4,0,F>, ?) (< 4,0,H>, ?) (< 4,0,I>, 99) (< 4,0,M>, 0) (< 4,0,Q>, Q) (< 4,0,R>, R) (< 4,0,S>, S) (< 4,0,V>, V) (< 4,0,W>, W) (< 4,0,X>, X) (< 4,0,Y>, Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, ?) (< 5,0,H>, ?) (< 5,0,I>, 99) (< 5,0,M>, 33) (< 5,0,Q>, Q) (< 5,0,R>, R) (< 5,0,S>, S) (< 5,0,V>, V) (< 5,0,W>, W) (< 5,0,X>, X) (< 5,0,Y>, Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, ?) (< 6,0,H>, ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>, ?) (< 6,0,R>, ?) (< 6,0,S>, S) (< 6,0,V>, V) (< 6,0,W>, W) (< 6,0,X>, X) (< 6,0,Y>, Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, ?) (< 7,0,H>, ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>, ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>, V) (< 7,0,W>, W) (< 7,0,X>, X) (< 7,0,Y>, Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,H>, ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>, ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>, Y) (< 8,0,Z>, Z) (< 8,0,E1>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) (< 9,0,H>, ?) (< 9,0,I>, ?) (< 9,0,M>, ?) (< 9,0,Q>, ?) (< 9,0,R>, ?) (< 9,0,S>, ?) (< 9,0,V>, 17) (< 9,0,W>, ?) (< 9,0,X>, 8) (< 9,0,Y>, 0) (< 9,0,Z>, ?) (< 9,0,E1>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,H>, ?) (<10,0,I>, ?) (<10,0,M>, ?) (<10,0,Q>, ?) (<10,0,R>, ?) (<10,0,S>, ?) (<10,0,V>, 17) (<10,0,W>, ?) (<10,0,X>, ?) (<10,0,Y>, 7) (<10,0,Z>, 0) (<10,0,E1>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,H>, ?) (<11,0,I>, ?) (<11,0,M>, ?) (<11,0,Q>, ?) (<11,0,R>, ?) (<11,0,S>, ?) (<11,0,V>, 17) (<11,0,W>, ?) (<11,0,X>, ?) (<11,0,Y>, 7) (<11,0,Z>, 4) (<11,0,E1>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,H>, ?) (<12,0,I>, ?) (<12,0,M>, ?) (<12,0,Q>, ?) (<12,0,R>, ?) (<12,0,S>, ?) (<12,0,V>, 17) (<12,0,W>, ?) (<12,0,X>, ?) (<12,0,Y>, 7) (<12,0,Z>, 4) (<12,0,E1>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,H>, ?) (<13,0,I>, ?) (<13,0,M>, ?) (<13,0,Q>, ?) (<13,0,R>, ?) (<13,0,S>, ?) (<13,0,V>, 17) (<13,0,W>, ?) (<13,0,X>, ?) (<13,0,Y>, 7) (<13,0,Z>, ?) (<13,0,E1>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, ?) (<15,0,H>, ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>, ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>, Y) (<15,0,Z>, Z) (<15,0,E1>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, ?) (<16,0,H>, ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>, ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>, 2) (<16,0,X>, X) (<16,0,Y>, Y) (<16,0,Z>, Z) (<16,0,E1>, ?) (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,E>, ?) (<17,0,F>, ?) (<17,0,H>, ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>, ?) (<17,0,R>, ?) (<17,0,S>, 0) (<17,0,V>, V) (<17,0,W>, W) (<17,0,X>, X) (<17,0,Y>, Y) (<17,0,Z>, Z) (<17,0,E1>, E1) (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, ?) (<18,0,H>, ?) (<18,0,I>, 99) (<18,0,M>, 33) (<18,0,Q>, Q) (<18,0,R>, R) (<18,0,S>, S) (<18,0,V>, V) (<18,0,W>, W) (<18,0,X>, X) (<18,0,Y>, Y) (<18,0,Z>, Z) (<18,0,E1>, E1) (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, ?) (<19,0,H>, ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>, S) (<19,0,V>, V) (<19,0,W>, W) (<19,0,X>, X) (<19,0,Y>, Y) (<19,0,Z>, Z) (<19,0,E1>, E1) (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 49) (<20,0,H>, 50) (<20,0,I>, I) (<20,0,M>, M) (<20,0,Q>, Q) (<20,0,R>, R) (<20,0,S>, S) (<20,0,V>, V) (<20,0,W>, W) (<20,0,X>, X) (<20,0,Y>, Y) (<20,0,Z>, Z) (<20,0,E1>, E1) (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>, 0) (<21,0,M>, M) (<21,0,Q>, Q) (<21,0,R>, R) (<21,0,S>, S) (<21,0,V>, V) (<21,0,W>, W) (<21,0,X>, X) (<21,0,Y>, Y) (<21,0,Z>, Z) (<21,0,E1>, E1) (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>, 0) (<22,0,H>, H) (<22,0,I>, I) (<22,0,M>, M) (<22,0,Q>, Q) (<22,0,R>, R) (<22,0,S>, S) (<22,0,V>, V) (<22,0,W>, W) (<22,0,X>, X) (<22,0,Y>, Y) (<22,0,Z>, Z) (<22,0,E1>, E1) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [12,11,10], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f543) = 8 + -1*x15 p(f546) = 7 + -1*x15 The following rules are strictly oriented: [7 >= Y] ==> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 8 + -1*Y > 7 + -1*Y = f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1) The following rules are weakly oriented: [3 >= Z] ==> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 7 + -1*Y >= 7 + -1*Y = f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1) [Z >= 4] ==> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 7 + -1*Y >= 7 + -1*Y = f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1) We use the following global sizebounds: (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>, 0) (< 0,0,F>, F) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,M>, M) (< 0,0,Q>, Q) (< 0,0,R>, R) (< 0,0,S>, S) (< 0,0,V>, V) (< 0,0,W>, W) (< 0,0,X>, X) (< 0,0,Y>, Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>, F) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,M>, M) (< 1,0,Q>, Q) (< 1,0,R>, R) (< 1,0,S>, S) (< 1,0,V>, V) (< 1,0,W>, W) (< 1,0,X>, X) (< 1,0,Y>, Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>, ?) (< 2,0,F>, 49) (< 2,0,H>, 0) (< 2,0,I>, I) (< 2,0,M>, M) (< 2,0,Q>, Q) (< 2,0,R>, R) (< 2,0,S>, S) (< 2,0,V>, V) (< 2,0,W>, W) (< 2,0,X>, X) (< 2,0,Y>, Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>, ?) (< 3,0,F>, 49) (< 3,0,H>, 50) (< 3,0,I>, I) (< 3,0,M>, M) (< 3,0,Q>, Q) (< 3,0,R>, R) (< 3,0,S>, S) (< 3,0,V>, V) (< 3,0,W>, W) (< 3,0,X>, X) (< 3,0,Y>, Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>, ?) (< 4,0,F>, ?) (< 4,0,H>, ?) (< 4,0,I>, 99) (< 4,0,M>, 0) (< 4,0,Q>, Q) (< 4,0,R>, R) (< 4,0,S>, S) (< 4,0,V>, V) (< 4,0,W>, W) (< 4,0,X>, X) (< 4,0,Y>, Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, ?) (< 5,0,H>, ?) (< 5,0,I>, 99) (< 5,0,M>, 33) (< 5,0,Q>, Q) (< 5,0,R>, R) (< 5,0,S>, S) (< 5,0,V>, V) (< 5,0,W>, W) (< 5,0,X>, X) (< 5,0,Y>, Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, ?) (< 6,0,H>, ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>, ?) (< 6,0,R>, ?) (< 6,0,S>, S) (< 6,0,V>, V) (< 6,0,W>, W) (< 6,0,X>, X) (< 6,0,Y>, Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, ?) (< 7,0,H>, ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>, ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>, V) (< 7,0,W>, W) (< 7,0,X>, X) (< 7,0,Y>, Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,H>, ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>, ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>, Y) (< 8,0,Z>, Z) (< 8,0,E1>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) (< 9,0,H>, ?) (< 9,0,I>, ?) (< 9,0,M>, ?) (< 9,0,Q>, ?) (< 9,0,R>, ?) (< 9,0,S>, ?) (< 9,0,V>, 17) (< 9,0,W>, ?) (< 9,0,X>, 8) (< 9,0,Y>, 0) (< 9,0,Z>, ?) (< 9,0,E1>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,H>, ?) (<10,0,I>, ?) (<10,0,M>, ?) (<10,0,Q>, ?) (<10,0,R>, ?) (<10,0,S>, ?) (<10,0,V>, 17) (<10,0,W>, ?) (<10,0,X>, ?) (<10,0,Y>, 7) (<10,0,Z>, 0) (<10,0,E1>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,H>, ?) (<11,0,I>, ?) (<11,0,M>, ?) (<11,0,Q>, ?) (<11,0,R>, ?) (<11,0,S>, ?) (<11,0,V>, 17) (<11,0,W>, ?) (<11,0,X>, ?) (<11,0,Y>, 7) (<11,0,Z>, 4) (<11,0,E1>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,H>, ?) (<12,0,I>, ?) (<12,0,M>, ?) (<12,0,Q>, ?) (<12,0,R>, ?) (<12,0,S>, ?) (<12,0,V>, 17) (<12,0,W>, ?) (<12,0,X>, ?) (<12,0,Y>, 7) (<12,0,Z>, 4) (<12,0,E1>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,H>, ?) (<13,0,I>, ?) (<13,0,M>, ?) (<13,0,Q>, ?) (<13,0,R>, ?) (<13,0,S>, ?) (<13,0,V>, 17) (<13,0,W>, ?) (<13,0,X>, ?) (<13,0,Y>, 7) (<13,0,Z>, ?) (<13,0,E1>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, ?) (<15,0,H>, ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>, ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>, Y) (<15,0,Z>, Z) (<15,0,E1>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, ?) (<16,0,H>, ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>, ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>, 2) (<16,0,X>, X) (<16,0,Y>, Y) (<16,0,Z>, Z) (<16,0,E1>, ?) (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,E>, ?) (<17,0,F>, ?) (<17,0,H>, ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>, ?) (<17,0,R>, ?) (<17,0,S>, 0) (<17,0,V>, V) (<17,0,W>, W) (<17,0,X>, X) (<17,0,Y>, Y) (<17,0,Z>, Z) (<17,0,E1>, E1) (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, ?) (<18,0,H>, ?) (<18,0,I>, 99) (<18,0,M>, 33) (<18,0,Q>, Q) (<18,0,R>, R) (<18,0,S>, S) (<18,0,V>, V) (<18,0,W>, W) (<18,0,X>, X) (<18,0,Y>, Y) (<18,0,Z>, Z) (<18,0,E1>, E1) (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, ?) (<19,0,H>, ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>, S) (<19,0,V>, V) (<19,0,W>, W) (<19,0,X>, X) (<19,0,Y>, Y) (<19,0,Z>, Z) (<19,0,E1>, E1) (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 49) (<20,0,H>, 50) (<20,0,I>, I) (<20,0,M>, M) (<20,0,Q>, Q) (<20,0,R>, R) (<20,0,S>, S) (<20,0,V>, V) (<20,0,W>, W) (<20,0,X>, X) (<20,0,Y>, Y) (<20,0,Z>, Z) (<20,0,E1>, E1) (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>, 0) (<21,0,M>, M) (<21,0,Q>, Q) (<21,0,R>, R) (<21,0,S>, S) (<21,0,V>, V) (<21,0,W>, W) (<21,0,X>, X) (<21,0,Y>, Y) (<21,0,Z>, Z) (<21,0,E1>, E1) (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>, 0) (<22,0,H>, H) (<22,0,I>, I) (<22,0,M>, M) (<22,0,Q>, Q) (<22,0,R>, R) (<22,0,S>, S) (<22,0,V>, V) (<22,0,W>, W) (<22,0,X>, X) (<22,0,Y>, Y) (<22,0,Z>, Z) (<22,0,E1>, E1) * Step 23: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) True (1,1) 1. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [149 >= E] (150,1) 2. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= F] (50,1) 3. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= H] (2500,1) 4. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1) [99 >= I] (100,1) 5. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1) [31 >= M] (3200,1) 6. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) [Q >= 0] (100,1) 7. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1) [49 >= S] (50,1) 8. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1) [V >= W] (101,1) 9. f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1) [8 >= X] (8,1) 10. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1) [7 >= Y] (64,1) 11. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1) [3 >= Z] (?,1) 12. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1) [Z >= 4] (?,1) 13. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1) [Y >= 8] (?,1) 15. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1) [W >= 1 + V] (101,1) 16. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B) [S >= 50] (50,1) 17. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1) [0 >= 1 + Q] (100,1) 18. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1) [M >= 32] (100,1) 19. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1) [I >= 100] (50,1) 20. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [H >= 50] (2500,1) 21. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1) [F >= 50] (101,1) 22. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [E >= 150] (1,1) Signature: {(f0,17) ;(f422,17) ;(f437,17) ;(f441,17) ;(f455,17) ;(f461,17) ;(f485,17) ;(f501,17) ;(f526,17) ;(f540,17) ;(f543,17) ;(f546,17) ;(f584,17)} Flow Graph: [0->{1},1->{1,22},2->{3},3->{3,20},4->{5},5->{5,18},6->{6,17},7->{7,16},8->{8,15},9->{10},10->{11},11->{11 ,12},12->{10,13},13->{9},15->{9},16->{8},17->{7},18->{4,19},19->{6},20->{2,21},21->{4},22->{2}] Sizebounds: (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>, 0) (< 0,0,F>, F) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,M>, M) (< 0,0,Q>, Q) (< 0,0,R>, R) (< 0,0,S>, S) (< 0,0,V>, V) (< 0,0,W>, W) (< 0,0,X>, X) (< 0,0,Y>, Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>, F) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,M>, M) (< 1,0,Q>, Q) (< 1,0,R>, R) (< 1,0,S>, S) (< 1,0,V>, V) (< 1,0,W>, W) (< 1,0,X>, X) (< 1,0,Y>, Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>, ?) (< 2,0,F>, 49) (< 2,0,H>, 0) (< 2,0,I>, I) (< 2,0,M>, M) (< 2,0,Q>, Q) (< 2,0,R>, R) (< 2,0,S>, S) (< 2,0,V>, V) (< 2,0,W>, W) (< 2,0,X>, X) (< 2,0,Y>, Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>, ?) (< 3,0,F>, 49) (< 3,0,H>, 50) (< 3,0,I>, I) (< 3,0,M>, M) (< 3,0,Q>, Q) (< 3,0,R>, R) (< 3,0,S>, S) (< 3,0,V>, V) (< 3,0,W>, W) (< 3,0,X>, X) (< 3,0,Y>, Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>, ?) (< 4,0,F>, ?) (< 4,0,H>, ?) (< 4,0,I>, 99) (< 4,0,M>, 0) (< 4,0,Q>, Q) (< 4,0,R>, R) (< 4,0,S>, S) (< 4,0,V>, V) (< 4,0,W>, W) (< 4,0,X>, X) (< 4,0,Y>, Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, ?) (< 5,0,H>, ?) (< 5,0,I>, 99) (< 5,0,M>, 33) (< 5,0,Q>, Q) (< 5,0,R>, R) (< 5,0,S>, S) (< 5,0,V>, V) (< 5,0,W>, W) (< 5,0,X>, X) (< 5,0,Y>, Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, ?) (< 6,0,H>, ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>, ?) (< 6,0,R>, ?) (< 6,0,S>, S) (< 6,0,V>, V) (< 6,0,W>, W) (< 6,0,X>, X) (< 6,0,Y>, Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, ?) (< 7,0,H>, ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>, ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>, V) (< 7,0,W>, W) (< 7,0,X>, X) (< 7,0,Y>, Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,H>, ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>, ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>, Y) (< 8,0,Z>, Z) (< 8,0,E1>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) (< 9,0,H>, ?) (< 9,0,I>, ?) (< 9,0,M>, ?) (< 9,0,Q>, ?) (< 9,0,R>, ?) (< 9,0,S>, ?) (< 9,0,V>, 17) (< 9,0,W>, ?) (< 9,0,X>, 8) (< 9,0,Y>, 0) (< 9,0,Z>, ?) (< 9,0,E1>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,H>, ?) (<10,0,I>, ?) (<10,0,M>, ?) (<10,0,Q>, ?) (<10,0,R>, ?) (<10,0,S>, ?) (<10,0,V>, 17) (<10,0,W>, ?) (<10,0,X>, ?) (<10,0,Y>, 7) (<10,0,Z>, 0) (<10,0,E1>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,H>, ?) (<11,0,I>, ?) (<11,0,M>, ?) (<11,0,Q>, ?) (<11,0,R>, ?) (<11,0,S>, ?) (<11,0,V>, 17) (<11,0,W>, ?) (<11,0,X>, ?) (<11,0,Y>, 7) (<11,0,Z>, 4) (<11,0,E1>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,H>, ?) (<12,0,I>, ?) (<12,0,M>, ?) (<12,0,Q>, ?) (<12,0,R>, ?) (<12,0,S>, ?) (<12,0,V>, 17) (<12,0,W>, ?) (<12,0,X>, ?) (<12,0,Y>, 7) (<12,0,Z>, 4) (<12,0,E1>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,H>, ?) (<13,0,I>, ?) (<13,0,M>, ?) (<13,0,Q>, ?) (<13,0,R>, ?) (<13,0,S>, ?) (<13,0,V>, 17) (<13,0,W>, ?) (<13,0,X>, ?) (<13,0,Y>, 7) (<13,0,Z>, ?) (<13,0,E1>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, ?) (<15,0,H>, ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>, ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>, Y) (<15,0,Z>, Z) (<15,0,E1>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, ?) (<16,0,H>, ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>, ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>, 2) (<16,0,X>, X) (<16,0,Y>, Y) (<16,0,Z>, Z) (<16,0,E1>, ?) (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,E>, ?) (<17,0,F>, ?) (<17,0,H>, ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>, ?) (<17,0,R>, ?) (<17,0,S>, 0) (<17,0,V>, V) (<17,0,W>, W) (<17,0,X>, X) (<17,0,Y>, Y) (<17,0,Z>, Z) (<17,0,E1>, E1) (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, ?) (<18,0,H>, ?) (<18,0,I>, 99) (<18,0,M>, 33) (<18,0,Q>, Q) (<18,0,R>, R) (<18,0,S>, S) (<18,0,V>, V) (<18,0,W>, W) (<18,0,X>, X) (<18,0,Y>, Y) (<18,0,Z>, Z) (<18,0,E1>, E1) (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, ?) (<19,0,H>, ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>, S) (<19,0,V>, V) (<19,0,W>, W) (<19,0,X>, X) (<19,0,Y>, Y) (<19,0,Z>, Z) (<19,0,E1>, E1) (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 49) (<20,0,H>, 50) (<20,0,I>, I) (<20,0,M>, M) (<20,0,Q>, Q) (<20,0,R>, R) (<20,0,S>, S) (<20,0,V>, V) (<20,0,W>, W) (<20,0,X>, X) (<20,0,Y>, Y) (<20,0,Z>, Z) (<20,0,E1>, E1) (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>, 0) (<21,0,M>, M) (<21,0,Q>, Q) (<21,0,R>, R) (<21,0,S>, S) (<21,0,V>, V) (<21,0,W>, W) (<21,0,X>, X) (<21,0,Y>, Y) (<21,0,Z>, Z) (<21,0,E1>, E1) (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>, 0) (<22,0,H>, H) (<22,0,I>, I) (<22,0,M>, M) (<22,0,Q>, Q) (<22,0,R>, R) (<22,0,S>, S) (<22,0,V>, V) (<22,0,W>, W) (<22,0,X>, X) (<22,0,Y>, Y) (<22,0,Z>, Z) (<22,0,E1>, E1) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [13,12,11,10], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f540) = 0 p(f543) = 1 p(f546) = 1 The following rules are strictly oriented: [Y >= 8] ==> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 1 > 0 = f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1) The following rules are weakly oriented: [7 >= Y] ==> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 1 >= 1 = f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1) [3 >= Z] ==> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 1 >= 1 = f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1) [Z >= 4] ==> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 1 >= 1 = f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1) We use the following global sizebounds: (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>, 0) (< 0,0,F>, F) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,M>, M) (< 0,0,Q>, Q) (< 0,0,R>, R) (< 0,0,S>, S) (< 0,0,V>, V) (< 0,0,W>, W) (< 0,0,X>, X) (< 0,0,Y>, Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>, F) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,M>, M) (< 1,0,Q>, Q) (< 1,0,R>, R) (< 1,0,S>, S) (< 1,0,V>, V) (< 1,0,W>, W) (< 1,0,X>, X) (< 1,0,Y>, Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>, ?) (< 2,0,F>, 49) (< 2,0,H>, 0) (< 2,0,I>, I) (< 2,0,M>, M) (< 2,0,Q>, Q) (< 2,0,R>, R) (< 2,0,S>, S) (< 2,0,V>, V) (< 2,0,W>, W) (< 2,0,X>, X) (< 2,0,Y>, Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>, ?) (< 3,0,F>, 49) (< 3,0,H>, 50) (< 3,0,I>, I) (< 3,0,M>, M) (< 3,0,Q>, Q) (< 3,0,R>, R) (< 3,0,S>, S) (< 3,0,V>, V) (< 3,0,W>, W) (< 3,0,X>, X) (< 3,0,Y>, Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>, ?) (< 4,0,F>, ?) (< 4,0,H>, ?) (< 4,0,I>, 99) (< 4,0,M>, 0) (< 4,0,Q>, Q) (< 4,0,R>, R) (< 4,0,S>, S) (< 4,0,V>, V) (< 4,0,W>, W) (< 4,0,X>, X) (< 4,0,Y>, Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, ?) (< 5,0,H>, ?) (< 5,0,I>, 99) (< 5,0,M>, 33) (< 5,0,Q>, Q) (< 5,0,R>, R) (< 5,0,S>, S) (< 5,0,V>, V) (< 5,0,W>, W) (< 5,0,X>, X) (< 5,0,Y>, Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, ?) (< 6,0,H>, ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>, ?) (< 6,0,R>, ?) (< 6,0,S>, S) (< 6,0,V>, V) (< 6,0,W>, W) (< 6,0,X>, X) (< 6,0,Y>, Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, ?) (< 7,0,H>, ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>, ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>, V) (< 7,0,W>, W) (< 7,0,X>, X) (< 7,0,Y>, Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,H>, ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>, ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>, Y) (< 8,0,Z>, Z) (< 8,0,E1>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) (< 9,0,H>, ?) (< 9,0,I>, ?) (< 9,0,M>, ?) (< 9,0,Q>, ?) (< 9,0,R>, ?) (< 9,0,S>, ?) (< 9,0,V>, 17) (< 9,0,W>, ?) (< 9,0,X>, 8) (< 9,0,Y>, 0) (< 9,0,Z>, ?) (< 9,0,E1>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,H>, ?) (<10,0,I>, ?) (<10,0,M>, ?) (<10,0,Q>, ?) (<10,0,R>, ?) (<10,0,S>, ?) (<10,0,V>, 17) (<10,0,W>, ?) (<10,0,X>, ?) (<10,0,Y>, 7) (<10,0,Z>, 0) (<10,0,E1>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,H>, ?) (<11,0,I>, ?) (<11,0,M>, ?) (<11,0,Q>, ?) (<11,0,R>, ?) (<11,0,S>, ?) (<11,0,V>, 17) (<11,0,W>, ?) (<11,0,X>, ?) (<11,0,Y>, 7) (<11,0,Z>, 4) (<11,0,E1>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,H>, ?) (<12,0,I>, ?) (<12,0,M>, ?) (<12,0,Q>, ?) (<12,0,R>, ?) (<12,0,S>, ?) (<12,0,V>, 17) (<12,0,W>, ?) (<12,0,X>, ?) (<12,0,Y>, 7) (<12,0,Z>, 4) (<12,0,E1>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,H>, ?) (<13,0,I>, ?) (<13,0,M>, ?) (<13,0,Q>, ?) (<13,0,R>, ?) (<13,0,S>, ?) (<13,0,V>, 17) (<13,0,W>, ?) (<13,0,X>, ?) (<13,0,Y>, 7) (<13,0,Z>, ?) (<13,0,E1>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, ?) (<15,0,H>, ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>, ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>, Y) (<15,0,Z>, Z) (<15,0,E1>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, ?) (<16,0,H>, ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>, ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>, 2) (<16,0,X>, X) (<16,0,Y>, Y) (<16,0,Z>, Z) (<16,0,E1>, ?) (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,E>, ?) (<17,0,F>, ?) (<17,0,H>, ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>, ?) (<17,0,R>, ?) (<17,0,S>, 0) (<17,0,V>, V) (<17,0,W>, W) (<17,0,X>, X) (<17,0,Y>, Y) (<17,0,Z>, Z) (<17,0,E1>, E1) (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, ?) (<18,0,H>, ?) (<18,0,I>, 99) (<18,0,M>, 33) (<18,0,Q>, Q) (<18,0,R>, R) (<18,0,S>, S) (<18,0,V>, V) (<18,0,W>, W) (<18,0,X>, X) (<18,0,Y>, Y) (<18,0,Z>, Z) (<18,0,E1>, E1) (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, ?) (<19,0,H>, ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>, S) (<19,0,V>, V) (<19,0,W>, W) (<19,0,X>, X) (<19,0,Y>, Y) (<19,0,Z>, Z) (<19,0,E1>, E1) (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 49) (<20,0,H>, 50) (<20,0,I>, I) (<20,0,M>, M) (<20,0,Q>, Q) (<20,0,R>, R) (<20,0,S>, S) (<20,0,V>, V) (<20,0,W>, W) (<20,0,X>, X) (<20,0,Y>, Y) (<20,0,Z>, Z) (<20,0,E1>, E1) (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>, 0) (<21,0,M>, M) (<21,0,Q>, Q) (<21,0,R>, R) (<21,0,S>, S) (<21,0,V>, V) (<21,0,W>, W) (<21,0,X>, X) (<21,0,Y>, Y) (<21,0,Z>, Z) (<21,0,E1>, E1) (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>, 0) (<22,0,H>, H) (<22,0,I>, I) (<22,0,M>, M) (<22,0,Q>, Q) (<22,0,R>, R) (<22,0,S>, S) (<22,0,V>, V) (<22,0,W>, W) (<22,0,X>, X) (<22,0,Y>, Y) (<22,0,Z>, Z) (<22,0,E1>, E1) * Step 24: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) True (1,1) 1. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [149 >= E] (150,1) 2. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= F] (50,1) 3. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= H] (2500,1) 4. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1) [99 >= I] (100,1) 5. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1) [31 >= M] (3200,1) 6. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) [Q >= 0] (100,1) 7. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1) [49 >= S] (50,1) 8. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1) [V >= W] (101,1) 9. f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1) [8 >= X] (8,1) 10. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1) [7 >= Y] (64,1) 11. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1) [3 >= Z] (?,1) 12. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1) [Z >= 4] (?,1) 13. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1) [Y >= 8] (8,1) 15. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1) [W >= 1 + V] (101,1) 16. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B) [S >= 50] (50,1) 17. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1) [0 >= 1 + Q] (100,1) 18. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1) [M >= 32] (100,1) 19. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1) [I >= 100] (50,1) 20. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [H >= 50] (2500,1) 21. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1) [F >= 50] (101,1) 22. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [E >= 150] (1,1) Signature: {(f0,17) ;(f422,17) ;(f437,17) ;(f441,17) ;(f455,17) ;(f461,17) ;(f485,17) ;(f501,17) ;(f526,17) ;(f540,17) ;(f543,17) ;(f546,17) ;(f584,17)} Flow Graph: [0->{1},1->{1,22},2->{3},3->{3,20},4->{5},5->{5,18},6->{6,17},7->{7,16},8->{8,15},9->{10},10->{11},11->{11 ,12},12->{10,13},13->{9},15->{9},16->{8},17->{7},18->{4,19},19->{6},20->{2,21},21->{4},22->{2}] Sizebounds: (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>, 0) (< 0,0,F>, F) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,M>, M) (< 0,0,Q>, Q) (< 0,0,R>, R) (< 0,0,S>, S) (< 0,0,V>, V) (< 0,0,W>, W) (< 0,0,X>, X) (< 0,0,Y>, Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>, F) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,M>, M) (< 1,0,Q>, Q) (< 1,0,R>, R) (< 1,0,S>, S) (< 1,0,V>, V) (< 1,0,W>, W) (< 1,0,X>, X) (< 1,0,Y>, Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>, ?) (< 2,0,F>, 49) (< 2,0,H>, 0) (< 2,0,I>, I) (< 2,0,M>, M) (< 2,0,Q>, Q) (< 2,0,R>, R) (< 2,0,S>, S) (< 2,0,V>, V) (< 2,0,W>, W) (< 2,0,X>, X) (< 2,0,Y>, Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>, ?) (< 3,0,F>, 49) (< 3,0,H>, 50) (< 3,0,I>, I) (< 3,0,M>, M) (< 3,0,Q>, Q) (< 3,0,R>, R) (< 3,0,S>, S) (< 3,0,V>, V) (< 3,0,W>, W) (< 3,0,X>, X) (< 3,0,Y>, Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>, ?) (< 4,0,F>, ?) (< 4,0,H>, ?) (< 4,0,I>, 99) (< 4,0,M>, 0) (< 4,0,Q>, Q) (< 4,0,R>, R) (< 4,0,S>, S) (< 4,0,V>, V) (< 4,0,W>, W) (< 4,0,X>, X) (< 4,0,Y>, Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, ?) (< 5,0,H>, ?) (< 5,0,I>, 99) (< 5,0,M>, 33) (< 5,0,Q>, Q) (< 5,0,R>, R) (< 5,0,S>, S) (< 5,0,V>, V) (< 5,0,W>, W) (< 5,0,X>, X) (< 5,0,Y>, Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, ?) (< 6,0,H>, ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>, ?) (< 6,0,R>, ?) (< 6,0,S>, S) (< 6,0,V>, V) (< 6,0,W>, W) (< 6,0,X>, X) (< 6,0,Y>, Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, ?) (< 7,0,H>, ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>, ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>, V) (< 7,0,W>, W) (< 7,0,X>, X) (< 7,0,Y>, Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,H>, ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>, ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>, Y) (< 8,0,Z>, Z) (< 8,0,E1>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) (< 9,0,H>, ?) (< 9,0,I>, ?) (< 9,0,M>, ?) (< 9,0,Q>, ?) (< 9,0,R>, ?) (< 9,0,S>, ?) (< 9,0,V>, 17) (< 9,0,W>, ?) (< 9,0,X>, 8) (< 9,0,Y>, 0) (< 9,0,Z>, ?) (< 9,0,E1>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,H>, ?) (<10,0,I>, ?) (<10,0,M>, ?) (<10,0,Q>, ?) (<10,0,R>, ?) (<10,0,S>, ?) (<10,0,V>, 17) (<10,0,W>, ?) (<10,0,X>, ?) (<10,0,Y>, 7) (<10,0,Z>, 0) (<10,0,E1>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,H>, ?) (<11,0,I>, ?) (<11,0,M>, ?) (<11,0,Q>, ?) (<11,0,R>, ?) (<11,0,S>, ?) (<11,0,V>, 17) (<11,0,W>, ?) (<11,0,X>, ?) (<11,0,Y>, 7) (<11,0,Z>, 4) (<11,0,E1>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,H>, ?) (<12,0,I>, ?) (<12,0,M>, ?) (<12,0,Q>, ?) (<12,0,R>, ?) (<12,0,S>, ?) (<12,0,V>, 17) (<12,0,W>, ?) (<12,0,X>, ?) (<12,0,Y>, 7) (<12,0,Z>, 4) (<12,0,E1>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,H>, ?) (<13,0,I>, ?) (<13,0,M>, ?) (<13,0,Q>, ?) (<13,0,R>, ?) (<13,0,S>, ?) (<13,0,V>, 17) (<13,0,W>, ?) (<13,0,X>, ?) (<13,0,Y>, 7) (<13,0,Z>, ?) (<13,0,E1>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, ?) (<15,0,H>, ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>, ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>, Y) (<15,0,Z>, Z) (<15,0,E1>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, ?) (<16,0,H>, ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>, ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>, 2) (<16,0,X>, X) (<16,0,Y>, Y) (<16,0,Z>, Z) (<16,0,E1>, ?) (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,E>, ?) (<17,0,F>, ?) (<17,0,H>, ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>, ?) (<17,0,R>, ?) (<17,0,S>, 0) (<17,0,V>, V) (<17,0,W>, W) (<17,0,X>, X) (<17,0,Y>, Y) (<17,0,Z>, Z) (<17,0,E1>, E1) (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, ?) (<18,0,H>, ?) (<18,0,I>, 99) (<18,0,M>, 33) (<18,0,Q>, Q) (<18,0,R>, R) (<18,0,S>, S) (<18,0,V>, V) (<18,0,W>, W) (<18,0,X>, X) (<18,0,Y>, Y) (<18,0,Z>, Z) (<18,0,E1>, E1) (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, ?) (<19,0,H>, ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>, S) (<19,0,V>, V) (<19,0,W>, W) (<19,0,X>, X) (<19,0,Y>, Y) (<19,0,Z>, Z) (<19,0,E1>, E1) (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 49) (<20,0,H>, 50) (<20,0,I>, I) (<20,0,M>, M) (<20,0,Q>, Q) (<20,0,R>, R) (<20,0,S>, S) (<20,0,V>, V) (<20,0,W>, W) (<20,0,X>, X) (<20,0,Y>, Y) (<20,0,Z>, Z) (<20,0,E1>, E1) (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>, 0) (<21,0,M>, M) (<21,0,Q>, Q) (<21,0,R>, R) (<21,0,S>, S) (<21,0,V>, V) (<21,0,W>, W) (<21,0,X>, X) (<21,0,Y>, Y) (<21,0,Z>, Z) (<21,0,E1>, E1) (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>, 0) (<22,0,H>, H) (<22,0,I>, I) (<22,0,M>, M) (<22,0,Q>, Q) (<22,0,R>, R) (<22,0,S>, S) (<22,0,V>, V) (<22,0,W>, W) (<22,0,X>, X) (<22,0,Y>, Y) (<22,0,Z>, Z) (<22,0,E1>, E1) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [9,13,12,11], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f540) = 0 p(f543) = 0 p(f546) = 1 The following rules are strictly oriented: [Z >= 4] ==> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 1 > 0 = f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1) The following rules are weakly oriented: [8 >= X] ==> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 0 >= 0 = f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1) [3 >= Z] ==> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 1 >= 1 = f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1) [Y >= 8] ==> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 0 >= 0 = f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1) We use the following global sizebounds: (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>, 0) (< 0,0,F>, F) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,M>, M) (< 0,0,Q>, Q) (< 0,0,R>, R) (< 0,0,S>, S) (< 0,0,V>, V) (< 0,0,W>, W) (< 0,0,X>, X) (< 0,0,Y>, Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>, F) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,M>, M) (< 1,0,Q>, Q) (< 1,0,R>, R) (< 1,0,S>, S) (< 1,0,V>, V) (< 1,0,W>, W) (< 1,0,X>, X) (< 1,0,Y>, Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>, ?) (< 2,0,F>, 49) (< 2,0,H>, 0) (< 2,0,I>, I) (< 2,0,M>, M) (< 2,0,Q>, Q) (< 2,0,R>, R) (< 2,0,S>, S) (< 2,0,V>, V) (< 2,0,W>, W) (< 2,0,X>, X) (< 2,0,Y>, Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>, ?) (< 3,0,F>, 49) (< 3,0,H>, 50) (< 3,0,I>, I) (< 3,0,M>, M) (< 3,0,Q>, Q) (< 3,0,R>, R) (< 3,0,S>, S) (< 3,0,V>, V) (< 3,0,W>, W) (< 3,0,X>, X) (< 3,0,Y>, Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>, ?) (< 4,0,F>, ?) (< 4,0,H>, ?) (< 4,0,I>, 99) (< 4,0,M>, 0) (< 4,0,Q>, Q) (< 4,0,R>, R) (< 4,0,S>, S) (< 4,0,V>, V) (< 4,0,W>, W) (< 4,0,X>, X) (< 4,0,Y>, Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, ?) (< 5,0,H>, ?) (< 5,0,I>, 99) (< 5,0,M>, 33) (< 5,0,Q>, Q) (< 5,0,R>, R) (< 5,0,S>, S) (< 5,0,V>, V) (< 5,0,W>, W) (< 5,0,X>, X) (< 5,0,Y>, Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, ?) (< 6,0,H>, ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>, ?) (< 6,0,R>, ?) (< 6,0,S>, S) (< 6,0,V>, V) (< 6,0,W>, W) (< 6,0,X>, X) (< 6,0,Y>, Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, ?) (< 7,0,H>, ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>, ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>, V) (< 7,0,W>, W) (< 7,0,X>, X) (< 7,0,Y>, Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,H>, ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>, ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>, Y) (< 8,0,Z>, Z) (< 8,0,E1>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) (< 9,0,H>, ?) (< 9,0,I>, ?) (< 9,0,M>, ?) (< 9,0,Q>, ?) (< 9,0,R>, ?) (< 9,0,S>, ?) (< 9,0,V>, 17) (< 9,0,W>, ?) (< 9,0,X>, 8) (< 9,0,Y>, 0) (< 9,0,Z>, ?) (< 9,0,E1>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,H>, ?) (<10,0,I>, ?) (<10,0,M>, ?) (<10,0,Q>, ?) (<10,0,R>, ?) (<10,0,S>, ?) (<10,0,V>, 17) (<10,0,W>, ?) (<10,0,X>, ?) (<10,0,Y>, 7) (<10,0,Z>, 0) (<10,0,E1>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,H>, ?) (<11,0,I>, ?) (<11,0,M>, ?) (<11,0,Q>, ?) (<11,0,R>, ?) (<11,0,S>, ?) (<11,0,V>, 17) (<11,0,W>, ?) (<11,0,X>, ?) (<11,0,Y>, 7) (<11,0,Z>, 4) (<11,0,E1>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,H>, ?) (<12,0,I>, ?) (<12,0,M>, ?) (<12,0,Q>, ?) (<12,0,R>, ?) (<12,0,S>, ?) (<12,0,V>, 17) (<12,0,W>, ?) (<12,0,X>, ?) (<12,0,Y>, 7) (<12,0,Z>, 4) (<12,0,E1>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,H>, ?) (<13,0,I>, ?) (<13,0,M>, ?) (<13,0,Q>, ?) (<13,0,R>, ?) (<13,0,S>, ?) (<13,0,V>, 17) (<13,0,W>, ?) (<13,0,X>, ?) (<13,0,Y>, 7) (<13,0,Z>, ?) (<13,0,E1>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, ?) (<15,0,H>, ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>, ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>, Y) (<15,0,Z>, Z) (<15,0,E1>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, ?) (<16,0,H>, ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>, ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>, 2) (<16,0,X>, X) (<16,0,Y>, Y) (<16,0,Z>, Z) (<16,0,E1>, ?) (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,E>, ?) (<17,0,F>, ?) (<17,0,H>, ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>, ?) (<17,0,R>, ?) (<17,0,S>, 0) (<17,0,V>, V) (<17,0,W>, W) (<17,0,X>, X) (<17,0,Y>, Y) (<17,0,Z>, Z) (<17,0,E1>, E1) (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, ?) (<18,0,H>, ?) (<18,0,I>, 99) (<18,0,M>, 33) (<18,0,Q>, Q) (<18,0,R>, R) (<18,0,S>, S) (<18,0,V>, V) (<18,0,W>, W) (<18,0,X>, X) (<18,0,Y>, Y) (<18,0,Z>, Z) (<18,0,E1>, E1) (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, ?) (<19,0,H>, ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>, S) (<19,0,V>, V) (<19,0,W>, W) (<19,0,X>, X) (<19,0,Y>, Y) (<19,0,Z>, Z) (<19,0,E1>, E1) (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 49) (<20,0,H>, 50) (<20,0,I>, I) (<20,0,M>, M) (<20,0,Q>, Q) (<20,0,R>, R) (<20,0,S>, S) (<20,0,V>, V) (<20,0,W>, W) (<20,0,X>, X) (<20,0,Y>, Y) (<20,0,Z>, Z) (<20,0,E1>, E1) (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>, 0) (<21,0,M>, M) (<21,0,Q>, Q) (<21,0,R>, R) (<21,0,S>, S) (<21,0,V>, V) (<21,0,W>, W) (<21,0,X>, X) (<21,0,Y>, Y) (<21,0,Z>, Z) (<21,0,E1>, E1) (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>, 0) (<22,0,H>, H) (<22,0,I>, I) (<22,0,M>, M) (<22,0,Q>, Q) (<22,0,R>, R) (<22,0,S>, S) (<22,0,V>, V) (<22,0,W>, W) (<22,0,X>, X) (<22,0,Y>, Y) (<22,0,Z>, Z) (<22,0,E1>, E1) * Step 25: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) True (1,1) 1. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [149 >= E] (150,1) 2. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= F] (50,1) 3. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= H] (2500,1) 4. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1) [99 >= I] (100,1) 5. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1) [31 >= M] (3200,1) 6. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) [Q >= 0] (100,1) 7. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1) [49 >= S] (50,1) 8. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1) [V >= W] (101,1) 9. f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1) [8 >= X] (8,1) 10. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1) [7 >= Y] (64,1) 11. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1) [3 >= Z] (?,1) 12. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1) [Z >= 4] (64,1) 13. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1) [Y >= 8] (8,1) 15. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1) [W >= 1 + V] (101,1) 16. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B) [S >= 50] (50,1) 17. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1) [0 >= 1 + Q] (100,1) 18. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1) [M >= 32] (100,1) 19. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1) [I >= 100] (50,1) 20. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [H >= 50] (2500,1) 21. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1) [F >= 50] (101,1) 22. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [E >= 150] (1,1) Signature: {(f0,17) ;(f422,17) ;(f437,17) ;(f441,17) ;(f455,17) ;(f461,17) ;(f485,17) ;(f501,17) ;(f526,17) ;(f540,17) ;(f543,17) ;(f546,17) ;(f584,17)} Flow Graph: [0->{1},1->{1,22},2->{3},3->{3,20},4->{5},5->{5,18},6->{6,17},7->{7,16},8->{8,15},9->{10},10->{11},11->{11 ,12},12->{10,13},13->{9},15->{9},16->{8},17->{7},18->{4,19},19->{6},20->{2,21},21->{4},22->{2}] Sizebounds: (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>, 0) (< 0,0,F>, F) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,M>, M) (< 0,0,Q>, Q) (< 0,0,R>, R) (< 0,0,S>, S) (< 0,0,V>, V) (< 0,0,W>, W) (< 0,0,X>, X) (< 0,0,Y>, Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>, F) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,M>, M) (< 1,0,Q>, Q) (< 1,0,R>, R) (< 1,0,S>, S) (< 1,0,V>, V) (< 1,0,W>, W) (< 1,0,X>, X) (< 1,0,Y>, Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>, ?) (< 2,0,F>, 49) (< 2,0,H>, 0) (< 2,0,I>, I) (< 2,0,M>, M) (< 2,0,Q>, Q) (< 2,0,R>, R) (< 2,0,S>, S) (< 2,0,V>, V) (< 2,0,W>, W) (< 2,0,X>, X) (< 2,0,Y>, Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>, ?) (< 3,0,F>, 49) (< 3,0,H>, 50) (< 3,0,I>, I) (< 3,0,M>, M) (< 3,0,Q>, Q) (< 3,0,R>, R) (< 3,0,S>, S) (< 3,0,V>, V) (< 3,0,W>, W) (< 3,0,X>, X) (< 3,0,Y>, Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>, ?) (< 4,0,F>, ?) (< 4,0,H>, ?) (< 4,0,I>, 99) (< 4,0,M>, 0) (< 4,0,Q>, Q) (< 4,0,R>, R) (< 4,0,S>, S) (< 4,0,V>, V) (< 4,0,W>, W) (< 4,0,X>, X) (< 4,0,Y>, Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, ?) (< 5,0,H>, ?) (< 5,0,I>, 99) (< 5,0,M>, 33) (< 5,0,Q>, Q) (< 5,0,R>, R) (< 5,0,S>, S) (< 5,0,V>, V) (< 5,0,W>, W) (< 5,0,X>, X) (< 5,0,Y>, Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, ?) (< 6,0,H>, ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>, ?) (< 6,0,R>, ?) (< 6,0,S>, S) (< 6,0,V>, V) (< 6,0,W>, W) (< 6,0,X>, X) (< 6,0,Y>, Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, ?) (< 7,0,H>, ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>, ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>, V) (< 7,0,W>, W) (< 7,0,X>, X) (< 7,0,Y>, Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,H>, ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>, ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>, Y) (< 8,0,Z>, Z) (< 8,0,E1>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) (< 9,0,H>, ?) (< 9,0,I>, ?) (< 9,0,M>, ?) (< 9,0,Q>, ?) (< 9,0,R>, ?) (< 9,0,S>, ?) (< 9,0,V>, 17) (< 9,0,W>, ?) (< 9,0,X>, 8) (< 9,0,Y>, 0) (< 9,0,Z>, ?) (< 9,0,E1>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,H>, ?) (<10,0,I>, ?) (<10,0,M>, ?) (<10,0,Q>, ?) (<10,0,R>, ?) (<10,0,S>, ?) (<10,0,V>, 17) (<10,0,W>, ?) (<10,0,X>, ?) (<10,0,Y>, 7) (<10,0,Z>, 0) (<10,0,E1>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,H>, ?) (<11,0,I>, ?) (<11,0,M>, ?) (<11,0,Q>, ?) (<11,0,R>, ?) (<11,0,S>, ?) (<11,0,V>, 17) (<11,0,W>, ?) (<11,0,X>, ?) (<11,0,Y>, 7) (<11,0,Z>, 4) (<11,0,E1>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,H>, ?) (<12,0,I>, ?) (<12,0,M>, ?) (<12,0,Q>, ?) (<12,0,R>, ?) (<12,0,S>, ?) (<12,0,V>, 17) (<12,0,W>, ?) (<12,0,X>, ?) (<12,0,Y>, 7) (<12,0,Z>, 4) (<12,0,E1>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,H>, ?) (<13,0,I>, ?) (<13,0,M>, ?) (<13,0,Q>, ?) (<13,0,R>, ?) (<13,0,S>, ?) (<13,0,V>, 17) (<13,0,W>, ?) (<13,0,X>, ?) (<13,0,Y>, 7) (<13,0,Z>, ?) (<13,0,E1>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, ?) (<15,0,H>, ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>, ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>, Y) (<15,0,Z>, Z) (<15,0,E1>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, ?) (<16,0,H>, ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>, ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>, 2) (<16,0,X>, X) (<16,0,Y>, Y) (<16,0,Z>, Z) (<16,0,E1>, ?) (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,E>, ?) (<17,0,F>, ?) (<17,0,H>, ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>, ?) (<17,0,R>, ?) (<17,0,S>, 0) (<17,0,V>, V) (<17,0,W>, W) (<17,0,X>, X) (<17,0,Y>, Y) (<17,0,Z>, Z) (<17,0,E1>, E1) (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, ?) (<18,0,H>, ?) (<18,0,I>, 99) (<18,0,M>, 33) (<18,0,Q>, Q) (<18,0,R>, R) (<18,0,S>, S) (<18,0,V>, V) (<18,0,W>, W) (<18,0,X>, X) (<18,0,Y>, Y) (<18,0,Z>, Z) (<18,0,E1>, E1) (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, ?) (<19,0,H>, ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>, S) (<19,0,V>, V) (<19,0,W>, W) (<19,0,X>, X) (<19,0,Y>, Y) (<19,0,Z>, Z) (<19,0,E1>, E1) (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 49) (<20,0,H>, 50) (<20,0,I>, I) (<20,0,M>, M) (<20,0,Q>, Q) (<20,0,R>, R) (<20,0,S>, S) (<20,0,V>, V) (<20,0,W>, W) (<20,0,X>, X) (<20,0,Y>, Y) (<20,0,Z>, Z) (<20,0,E1>, E1) (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>, 0) (<21,0,M>, M) (<21,0,Q>, Q) (<21,0,R>, R) (<21,0,S>, S) (<21,0,V>, V) (<21,0,W>, W) (<21,0,X>, X) (<21,0,Y>, Y) (<21,0,Z>, Z) (<21,0,E1>, E1) (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>, 0) (<22,0,H>, H) (<22,0,I>, I) (<22,0,M>, M) (<22,0,Q>, Q) (<22,0,R>, R) (<22,0,S>, S) (<22,0,V>, V) (<22,0,W>, W) (<22,0,X>, X) (<22,0,Y>, Y) (<22,0,Z>, Z) (<22,0,E1>, E1) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [13,11,10], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f540) = 4 p(f543) = 4 p(f546) = 4 + -1*x16 The following rules are strictly oriented: [3 >= Z] ==> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 4 + -1*Z > 3 + -1*Z = f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1) The following rules are weakly oriented: [7 >= Y] ==> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 4 >= 4 = f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1) [Y >= 8] ==> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) = 4 >= 4 = f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1) We use the following global sizebounds: (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>, 0) (< 0,0,F>, F) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,M>, M) (< 0,0,Q>, Q) (< 0,0,R>, R) (< 0,0,S>, S) (< 0,0,V>, V) (< 0,0,W>, W) (< 0,0,X>, X) (< 0,0,Y>, Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>, F) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,M>, M) (< 1,0,Q>, Q) (< 1,0,R>, R) (< 1,0,S>, S) (< 1,0,V>, V) (< 1,0,W>, W) (< 1,0,X>, X) (< 1,0,Y>, Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>, ?) (< 2,0,F>, 49) (< 2,0,H>, 0) (< 2,0,I>, I) (< 2,0,M>, M) (< 2,0,Q>, Q) (< 2,0,R>, R) (< 2,0,S>, S) (< 2,0,V>, V) (< 2,0,W>, W) (< 2,0,X>, X) (< 2,0,Y>, Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>, ?) (< 3,0,F>, 49) (< 3,0,H>, 50) (< 3,0,I>, I) (< 3,0,M>, M) (< 3,0,Q>, Q) (< 3,0,R>, R) (< 3,0,S>, S) (< 3,0,V>, V) (< 3,0,W>, W) (< 3,0,X>, X) (< 3,0,Y>, Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>, ?) (< 4,0,F>, ?) (< 4,0,H>, ?) (< 4,0,I>, 99) (< 4,0,M>, 0) (< 4,0,Q>, Q) (< 4,0,R>, R) (< 4,0,S>, S) (< 4,0,V>, V) (< 4,0,W>, W) (< 4,0,X>, X) (< 4,0,Y>, Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, ?) (< 5,0,H>, ?) (< 5,0,I>, 99) (< 5,0,M>, 33) (< 5,0,Q>, Q) (< 5,0,R>, R) (< 5,0,S>, S) (< 5,0,V>, V) (< 5,0,W>, W) (< 5,0,X>, X) (< 5,0,Y>, Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, ?) (< 6,0,H>, ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>, ?) (< 6,0,R>, ?) (< 6,0,S>, S) (< 6,0,V>, V) (< 6,0,W>, W) (< 6,0,X>, X) (< 6,0,Y>, Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, ?) (< 7,0,H>, ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>, ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>, V) (< 7,0,W>, W) (< 7,0,X>, X) (< 7,0,Y>, Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,H>, ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>, ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>, Y) (< 8,0,Z>, Z) (< 8,0,E1>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) (< 9,0,H>, ?) (< 9,0,I>, ?) (< 9,0,M>, ?) (< 9,0,Q>, ?) (< 9,0,R>, ?) (< 9,0,S>, ?) (< 9,0,V>, 17) (< 9,0,W>, ?) (< 9,0,X>, 8) (< 9,0,Y>, 0) (< 9,0,Z>, ?) (< 9,0,E1>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,H>, ?) (<10,0,I>, ?) (<10,0,M>, ?) (<10,0,Q>, ?) (<10,0,R>, ?) (<10,0,S>, ?) (<10,0,V>, 17) (<10,0,W>, ?) (<10,0,X>, ?) (<10,0,Y>, 7) (<10,0,Z>, 0) (<10,0,E1>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,H>, ?) (<11,0,I>, ?) (<11,0,M>, ?) (<11,0,Q>, ?) (<11,0,R>, ?) (<11,0,S>, ?) (<11,0,V>, 17) (<11,0,W>, ?) (<11,0,X>, ?) (<11,0,Y>, 7) (<11,0,Z>, 4) (<11,0,E1>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,H>, ?) (<12,0,I>, ?) (<12,0,M>, ?) (<12,0,Q>, ?) (<12,0,R>, ?) (<12,0,S>, ?) (<12,0,V>, 17) (<12,0,W>, ?) (<12,0,X>, ?) (<12,0,Y>, 7) (<12,0,Z>, 4) (<12,0,E1>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,H>, ?) (<13,0,I>, ?) (<13,0,M>, ?) (<13,0,Q>, ?) (<13,0,R>, ?) (<13,0,S>, ?) (<13,0,V>, 17) (<13,0,W>, ?) (<13,0,X>, ?) (<13,0,Y>, 7) (<13,0,Z>, ?) (<13,0,E1>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, ?) (<15,0,H>, ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>, ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>, Y) (<15,0,Z>, Z) (<15,0,E1>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, ?) (<16,0,H>, ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>, ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>, 2) (<16,0,X>, X) (<16,0,Y>, Y) (<16,0,Z>, Z) (<16,0,E1>, ?) (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,E>, ?) (<17,0,F>, ?) (<17,0,H>, ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>, ?) (<17,0,R>, ?) (<17,0,S>, 0) (<17,0,V>, V) (<17,0,W>, W) (<17,0,X>, X) (<17,0,Y>, Y) (<17,0,Z>, Z) (<17,0,E1>, E1) (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, ?) (<18,0,H>, ?) (<18,0,I>, 99) (<18,0,M>, 33) (<18,0,Q>, Q) (<18,0,R>, R) (<18,0,S>, S) (<18,0,V>, V) (<18,0,W>, W) (<18,0,X>, X) (<18,0,Y>, Y) (<18,0,Z>, Z) (<18,0,E1>, E1) (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, ?) (<19,0,H>, ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>, S) (<19,0,V>, V) (<19,0,W>, W) (<19,0,X>, X) (<19,0,Y>, Y) (<19,0,Z>, Z) (<19,0,E1>, E1) (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 49) (<20,0,H>, 50) (<20,0,I>, I) (<20,0,M>, M) (<20,0,Q>, Q) (<20,0,R>, R) (<20,0,S>, S) (<20,0,V>, V) (<20,0,W>, W) (<20,0,X>, X) (<20,0,Y>, Y) (<20,0,Z>, Z) (<20,0,E1>, E1) (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>, 0) (<21,0,M>, M) (<21,0,Q>, Q) (<21,0,R>, R) (<21,0,S>, S) (<21,0,V>, V) (<21,0,W>, W) (<21,0,X>, X) (<21,0,Y>, Y) (<21,0,Z>, Z) (<21,0,E1>, E1) (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>, 0) (<22,0,H>, H) (<22,0,I>, I) (<22,0,M>, M) (<22,0,Q>, Q) (<22,0,R>, R) (<22,0,S>, S) (<22,0,V>, V) (<22,0,W>, W) (<22,0,X>, X) (<22,0,Y>, Y) (<22,0,Z>, Z) (<22,0,E1>, E1) * Step 26: KnowledgePropagation WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(3,43690,3,0,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) True (1,1) 1. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f422(A,B,Q1,1 + E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [149 >= E] (150,1) 2. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,0,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= F] (50,1) 3. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f441(A,B,C,E,F,1 + H,I,M,Q,R,S,V,W,X,Y,Z,E1) [49 >= H] (2500,1) 4. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,0,Q,R,S,V,W,X,Y,Z,E1) [99 >= I] (100,1) 5. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f461(A,B,C,E,F,H,I,2 + M,Q,R,S,V,W,X,Y,Z,E1) [31 >= M] (3200,1) 6. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,-1 + Q,Q1,S,V,W,X,Y,Z,E1) [Q >= 0] (100,1) 7. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,B,C,E,F,H,I,M,Q,R,1 + S,V,W,X,Y,Z,E1) [49 >= S] (50,1) 8. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,V,1 + W,X,Y,Z,E1) [V >= W] (101,1) 9. f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,0,Z,E1) [8 >= X] (8,1) 10. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,0,E1) [7 >= Y] (64,1) 11. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,1 + Z,E1) [3 >= Z] (288,1) 12. f546(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,1 + Y,Z,E1) [Z >= 4] (64,1) 13. f543(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,7 + X,Y,Z,E1) [Y >= 8] (8,1) 15. f526(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f540(A,B,C,E,F,H,I,M,Q,R,S,V,W,1,Y,Z,E1) [W >= 1 + V] (101,1) 16. f501(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f526(A,B,C,E,F,H,I,M,Q,R,S,17,2,X,Y,Z,B) [S >= 50] (50,1) 17. f485(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f501(A,R,C,E,F,H,I,M,Q,R,0,V,W,X,Y,Z,E1) [0 >= 1 + Q] (100,1) 18. f461(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,2 + I,M,Q,R,S,V,W,X,Y,Z,E1) [M >= 32] (100,1) 19. f455(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f485(A,B,C,E,F,H,I,M,98,Q1,S,V,W,X,Y,Z,E1) [I >= 100] (50,1) 20. f441(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(A,B,C,E,1 + F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [H >= 50] (2500,1) 21. f437(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f455(A,B,C,E,F,H,0,M,Q,R,S,V,W,X,Y,Z,E1) [F >= 50] (101,1) 22. f422(A,B,C,E,F,H,I,M,Q,R,S,V,W,X,Y,Z,E1) -> f437(C,B,C,E,0,H,I,M,Q,R,S,V,W,X,Y,Z,E1) [E >= 150] (1,1) Signature: {(f0,17) ;(f422,17) ;(f437,17) ;(f441,17) ;(f455,17) ;(f461,17) ;(f485,17) ;(f501,17) ;(f526,17) ;(f540,17) ;(f543,17) ;(f546,17) ;(f584,17)} Flow Graph: [0->{1},1->{1,22},2->{3},3->{3,20},4->{5},5->{5,18},6->{6,17},7->{7,16},8->{8,15},9->{10},10->{11},11->{11 ,12},12->{10,13},13->{9},15->{9},16->{8},17->{7},18->{4,19},19->{6},20->{2,21},21->{4},22->{2}] Sizebounds: (< 0,0,A>, 3) (< 0,0,B>, 43690) (< 0,0,C>, 3) (< 0,0,E>, 0) (< 0,0,F>, F) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,M>, M) (< 0,0,Q>, Q) (< 0,0,R>, R) (< 0,0,S>, S) (< 0,0,V>, V) (< 0,0,W>, W) (< 0,0,X>, X) (< 0,0,Y>, Y) (< 0,0,Z>, Z) (< 0,0,E1>, E1) (< 1,0,A>, 3) (< 1,0,B>, 43690) (< 1,0,C>, ?) (< 1,0,E>, 150) (< 1,0,F>, F) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,M>, M) (< 1,0,Q>, Q) (< 1,0,R>, R) (< 1,0,S>, S) (< 1,0,V>, V) (< 1,0,W>, W) (< 1,0,X>, X) (< 1,0,Y>, Y) (< 1,0,Z>, Z) (< 1,0,E1>, E1) (< 2,0,A>, ?) (< 2,0,B>, 43690) (< 2,0,C>, ?) (< 2,0,E>, ?) (< 2,0,F>, 49) (< 2,0,H>, 0) (< 2,0,I>, I) (< 2,0,M>, M) (< 2,0,Q>, Q) (< 2,0,R>, R) (< 2,0,S>, S) (< 2,0,V>, V) (< 2,0,W>, W) (< 2,0,X>, X) (< 2,0,Y>, Y) (< 2,0,Z>, Z) (< 2,0,E1>, E1) (< 3,0,A>, ?) (< 3,0,B>, 43690) (< 3,0,C>, ?) (< 3,0,E>, ?) (< 3,0,F>, 49) (< 3,0,H>, 50) (< 3,0,I>, I) (< 3,0,M>, M) (< 3,0,Q>, Q) (< 3,0,R>, R) (< 3,0,S>, S) (< 3,0,V>, V) (< 3,0,W>, W) (< 3,0,X>, X) (< 3,0,Y>, Y) (< 3,0,Z>, Z) (< 3,0,E1>, E1) (< 4,0,A>, ?) (< 4,0,B>, 43690) (< 4,0,C>, ?) (< 4,0,E>, ?) (< 4,0,F>, ?) (< 4,0,H>, ?) (< 4,0,I>, 99) (< 4,0,M>, 0) (< 4,0,Q>, Q) (< 4,0,R>, R) (< 4,0,S>, S) (< 4,0,V>, V) (< 4,0,W>, W) (< 4,0,X>, X) (< 4,0,Y>, Y) (< 4,0,Z>, Z) (< 4,0,E1>, E1) (< 5,0,A>, ?) (< 5,0,B>, 43690) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,F>, ?) (< 5,0,H>, ?) (< 5,0,I>, 99) (< 5,0,M>, 33) (< 5,0,Q>, Q) (< 5,0,R>, R) (< 5,0,S>, S) (< 5,0,V>, V) (< 5,0,W>, W) (< 5,0,X>, X) (< 5,0,Y>, Y) (< 5,0,Z>, Z) (< 5,0,E1>, E1) (< 6,0,A>, ?) (< 6,0,B>, 43690) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,F>, ?) (< 6,0,H>, ?) (< 6,0,I>, 99) (< 6,0,M>, 33 + M) (< 6,0,Q>, ?) (< 6,0,R>, ?) (< 6,0,S>, S) (< 6,0,V>, V) (< 6,0,W>, W) (< 6,0,X>, X) (< 6,0,Y>, Y) (< 6,0,Z>, Z) (< 6,0,E1>, E1) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,F>, ?) (< 7,0,H>, ?) (< 7,0,I>, 99) (< 7,0,M>, 33 + M) (< 7,0,Q>, ?) (< 7,0,R>, ?) (< 7,0,S>, 50) (< 7,0,V>, V) (< 7,0,W>, W) (< 7,0,X>, X) (< 7,0,Y>, Y) (< 7,0,Z>, Z) (< 7,0,E1>, E1) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,H>, ?) (< 8,0,I>, 99) (< 8,0,M>, 33 + M) (< 8,0,Q>, ?) (< 8,0,R>, ?) (< 8,0,S>, 50) (< 8,0,V>, 17) (< 8,0,W>, 18) (< 8,0,X>, X) (< 8,0,Y>, Y) (< 8,0,Z>, Z) (< 8,0,E1>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) (< 9,0,H>, ?) (< 9,0,I>, ?) (< 9,0,M>, ?) (< 9,0,Q>, ?) (< 9,0,R>, ?) (< 9,0,S>, ?) (< 9,0,V>, 17) (< 9,0,W>, ?) (< 9,0,X>, 8) (< 9,0,Y>, 0) (< 9,0,Z>, ?) (< 9,0,E1>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,H>, ?) (<10,0,I>, ?) (<10,0,M>, ?) (<10,0,Q>, ?) (<10,0,R>, ?) (<10,0,S>, ?) (<10,0,V>, 17) (<10,0,W>, ?) (<10,0,X>, ?) (<10,0,Y>, 7) (<10,0,Z>, 0) (<10,0,E1>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,H>, ?) (<11,0,I>, ?) (<11,0,M>, ?) (<11,0,Q>, ?) (<11,0,R>, ?) (<11,0,S>, ?) (<11,0,V>, 17) (<11,0,W>, ?) (<11,0,X>, ?) (<11,0,Y>, 7) (<11,0,Z>, 4) (<11,0,E1>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,H>, ?) (<12,0,I>, ?) (<12,0,M>, ?) (<12,0,Q>, ?) (<12,0,R>, ?) (<12,0,S>, ?) (<12,0,V>, 17) (<12,0,W>, ?) (<12,0,X>, ?) (<12,0,Y>, 7) (<12,0,Z>, 4) (<12,0,E1>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,H>, ?) (<13,0,I>, ?) (<13,0,M>, ?) (<13,0,Q>, ?) (<13,0,R>, ?) (<13,0,S>, ?) (<13,0,V>, 17) (<13,0,W>, ?) (<13,0,X>, ?) (<13,0,Y>, 7) (<13,0,Z>, ?) (<13,0,E1>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,F>, ?) (<15,0,H>, ?) (<15,0,I>, 99) (<15,0,M>, 33 + M) (<15,0,Q>, ?) (<15,0,R>, ?) (<15,0,S>, 50) (<15,0,V>, 17) (<15,0,W>, 18) (<15,0,X>, 1) (<15,0,Y>, Y) (<15,0,Z>, Z) (<15,0,E1>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,F>, ?) (<16,0,H>, ?) (<16,0,I>, 99) (<16,0,M>, 33 + M) (<16,0,Q>, ?) (<16,0,R>, ?) (<16,0,S>, 50) (<16,0,V>, 17) (<16,0,W>, 2) (<16,0,X>, X) (<16,0,Y>, Y) (<16,0,Z>, Z) (<16,0,E1>, ?) (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,E>, ?) (<17,0,F>, ?) (<17,0,H>, ?) (<17,0,I>, 99) (<17,0,M>, 33 + M) (<17,0,Q>, ?) (<17,0,R>, ?) (<17,0,S>, 0) (<17,0,V>, V) (<17,0,W>, W) (<17,0,X>, X) (<17,0,Y>, Y) (<17,0,Z>, Z) (<17,0,E1>, E1) (<18,0,A>, ?) (<18,0,B>, 43690) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,F>, ?) (<18,0,H>, ?) (<18,0,I>, 99) (<18,0,M>, 33) (<18,0,Q>, Q) (<18,0,R>, R) (<18,0,S>, S) (<18,0,V>, V) (<18,0,W>, W) (<18,0,X>, X) (<18,0,Y>, Y) (<18,0,Z>, Z) (<18,0,E1>, E1) (<19,0,A>, ?) (<19,0,B>, 43690) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,F>, ?) (<19,0,H>, ?) (<19,0,I>, 99) (<19,0,M>, 33 + M) (<19,0,Q>, 98) (<19,0,R>, ?) (<19,0,S>, S) (<19,0,V>, V) (<19,0,W>, W) (<19,0,X>, X) (<19,0,Y>, Y) (<19,0,Z>, Z) (<19,0,E1>, E1) (<20,0,A>, ?) (<20,0,B>, 43690) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,F>, 49) (<20,0,H>, 50) (<20,0,I>, I) (<20,0,M>, M) (<20,0,Q>, Q) (<20,0,R>, R) (<20,0,S>, S) (<20,0,V>, V) (<20,0,W>, W) (<20,0,X>, X) (<20,0,Y>, Y) (<20,0,Z>, Z) (<20,0,E1>, E1) (<21,0,A>, ?) (<21,0,B>, 43690) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,F>, 49) (<21,0,H>, 50 + H) (<21,0,I>, 0) (<21,0,M>, M) (<21,0,Q>, Q) (<21,0,R>, R) (<21,0,S>, S) (<21,0,V>, V) (<21,0,W>, W) (<21,0,X>, X) (<21,0,Y>, Y) (<21,0,Z>, Z) (<21,0,E1>, E1) (<22,0,A>, ?) (<22,0,B>, 43690) (<22,0,C>, ?) (<22,0,E>, 150) (<22,0,F>, 0) (<22,0,H>, H) (<22,0,I>, I) (<22,0,M>, M) (<22,0,Q>, Q) (<22,0,R>, R) (<22,0,S>, S) (<22,0,V>, V) (<22,0,W>, W) (<22,0,X>, X) (<22,0,Y>, Y) (<22,0,Z>, Z) (<22,0,E1>, E1) + Applied Processor: KnowledgePropagation + Details: The problem is already solved. WORST_CASE(?,O(1))