WORST_CASE(?,O(n^2)) * Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalspeedpldi3start(A,B,C,D) -> evalspeedpldi3entryin(A,B,C,D) True (1,1) 1. evalspeedpldi3entryin(A,B,C,D) -> evalspeedpldi3returnin(A,B,C,D) [0 >= A] (?,1) 2. evalspeedpldi3entryin(A,B,C,D) -> evalspeedpldi3returnin(A,B,C,D) [A >= B] (?,1) 3. evalspeedpldi3entryin(A,B,C,D) -> evalspeedpldi3bb5in(A,B,0,0) [A >= 1 && B >= 1 + A] (?,1) 4. evalspeedpldi3bb5in(A,B,C,D) -> evalspeedpldi3bb2in(A,B,C,D) [B >= 1 + D] (?,1) 5. evalspeedpldi3bb5in(A,B,C,D) -> evalspeedpldi3returnin(A,B,C,D) [D >= B] (?,1) 6. evalspeedpldi3bb2in(A,B,C,D) -> evalspeedpldi3bb3in(A,B,C,D) [A >= 1 + C] (?,1) 7. evalspeedpldi3bb2in(A,B,C,D) -> evalspeedpldi3bb4in(A,B,C,D) [C >= A] (?,1) 8. evalspeedpldi3bb3in(A,B,C,D) -> evalspeedpldi3bb5in(A,B,1 + C,D) True (?,1) 9. evalspeedpldi3bb4in(A,B,C,D) -> evalspeedpldi3bb5in(A,B,0,1 + D) True (?,1) 10. evalspeedpldi3returnin(A,B,C,D) -> evalspeedpldi3stop(A,B,C,D) True (?,1) Signature: {(evalspeedpldi3bb2in,4) ;(evalspeedpldi3bb3in,4) ;(evalspeedpldi3bb4in,4) ;(evalspeedpldi3bb5in,4) ;(evalspeedpldi3entryin,4) ;(evalspeedpldi3returnin,4) ;(evalspeedpldi3start,4) ;(evalspeedpldi3stop,4)} Flow Graph: [0->{1,2,3},1->{10},2->{10},3->{4,5},4->{6,7},5->{10},6->{8},7->{9},8->{4,5},9->{4,5},10->{}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (< 0,0,A>, A, .= 0) (< 0,0,B>, B, .= 0) (< 0,0,C>, C, .= 0) (< 0,0,D>, D, .= 0) (< 1,0,A>, A, .= 0) (< 1,0,B>, B, .= 0) (< 1,0,C>, C, .= 0) (< 1,0,D>, D, .= 0) (< 2,0,A>, A, .= 0) (< 2,0,B>, B, .= 0) (< 2,0,C>, C, .= 0) (< 2,0,D>, D, .= 0) (< 3,0,A>, A, .= 0) (< 3,0,B>, B, .= 0) (< 3,0,C>, 0, .= 0) (< 3,0,D>, 0, .= 0) (< 4,0,A>, A, .= 0) (< 4,0,B>, B, .= 0) (< 4,0,C>, C, .= 0) (< 4,0,D>, D, .= 0) (< 5,0,A>, A, .= 0) (< 5,0,B>, B, .= 0) (< 5,0,C>, C, .= 0) (< 5,0,D>, D, .= 0) (< 6,0,A>, A, .= 0) (< 6,0,B>, B, .= 0) (< 6,0,C>, C, .= 0) (< 6,0,D>, D, .= 0) (< 7,0,A>, A, .= 0) (< 7,0,B>, B, .= 0) (< 7,0,C>, C, .= 0) (< 7,0,D>, D, .= 0) (< 8,0,A>, A, .= 0) (< 8,0,B>, B, .= 0) (< 8,0,C>, 1 + C, .+ 1) (< 8,0,D>, D, .= 0) (< 9,0,A>, A, .= 0) (< 9,0,B>, B, .= 0) (< 9,0,C>, 0, .= 0) (< 9,0,D>, 1 + D, .+ 1) (<10,0,A>, A, .= 0) (<10,0,B>, B, .= 0) (<10,0,C>, C, .= 0) (<10,0,D>, D, .= 0) * Step 2: SizeboundsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalspeedpldi3start(A,B,C,D) -> evalspeedpldi3entryin(A,B,C,D) True (1,1) 1. evalspeedpldi3entryin(A,B,C,D) -> evalspeedpldi3returnin(A,B,C,D) [0 >= A] (?,1) 2. evalspeedpldi3entryin(A,B,C,D) -> evalspeedpldi3returnin(A,B,C,D) [A >= B] (?,1) 3. evalspeedpldi3entryin(A,B,C,D) -> evalspeedpldi3bb5in(A,B,0,0) [A >= 1 && B >= 1 + A] (?,1) 4. evalspeedpldi3bb5in(A,B,C,D) -> evalspeedpldi3bb2in(A,B,C,D) [B >= 1 + D] (?,1) 5. evalspeedpldi3bb5in(A,B,C,D) -> evalspeedpldi3returnin(A,B,C,D) [D >= B] (?,1) 6. evalspeedpldi3bb2in(A,B,C,D) -> evalspeedpldi3bb3in(A,B,C,D) [A >= 1 + C] (?,1) 7. evalspeedpldi3bb2in(A,B,C,D) -> evalspeedpldi3bb4in(A,B,C,D) [C >= A] (?,1) 8. evalspeedpldi3bb3in(A,B,C,D) -> evalspeedpldi3bb5in(A,B,1 + C,D) True (?,1) 9. evalspeedpldi3bb4in(A,B,C,D) -> evalspeedpldi3bb5in(A,B,0,1 + D) True (?,1) 10. evalspeedpldi3returnin(A,B,C,D) -> evalspeedpldi3stop(A,B,C,D) True (?,1) Signature: {(evalspeedpldi3bb2in,4) ;(evalspeedpldi3bb3in,4) ;(evalspeedpldi3bb4in,4) ;(evalspeedpldi3bb5in,4) ;(evalspeedpldi3entryin,4) ;(evalspeedpldi3returnin,4) ;(evalspeedpldi3start,4) ;(evalspeedpldi3stop,4)} Flow Graph: [0->{1,2,3},1->{10},2->{10},3->{4,5},4->{6,7},5->{10},6->{8},7->{9},8->{4,5},9->{4,5},10->{}] Sizebounds: (< 0,0,A>, ?) (< 0,0,B>, ?) (< 0,0,C>, ?) (< 0,0,D>, ?) (< 1,0,A>, ?) (< 1,0,B>, ?) (< 1,0,C>, ?) (< 1,0,D>, ?) (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, ?) (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, ?) (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, D) (< 2,0,A>, A) (< 2,0,B>, B) (< 2,0,C>, C) (< 2,0,D>, D) (< 3,0,A>, A) (< 3,0,B>, B) (< 3,0,C>, 0) (< 3,0,D>, 0) (< 4,0,A>, A) (< 4,0,B>, B) (< 4,0,C>, A) (< 4,0,D>, B) (< 5,0,A>, A) (< 5,0,B>, B) (< 5,0,C>, A) (< 5,0,D>, B) (< 6,0,A>, A) (< 6,0,B>, B) (< 6,0,C>, A) (< 6,0,D>, B) (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, A) (< 7,0,D>, B) (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, A) (< 8,0,D>, B) (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, 0) (< 9,0,D>, B) (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, A + C) (<10,0,D>, B + D) * Step 3: UnsatPaths WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalspeedpldi3start(A,B,C,D) -> evalspeedpldi3entryin(A,B,C,D) True (1,1) 1. evalspeedpldi3entryin(A,B,C,D) -> evalspeedpldi3returnin(A,B,C,D) [0 >= A] (?,1) 2. evalspeedpldi3entryin(A,B,C,D) -> evalspeedpldi3returnin(A,B,C,D) [A >= B] (?,1) 3. evalspeedpldi3entryin(A,B,C,D) -> evalspeedpldi3bb5in(A,B,0,0) [A >= 1 && B >= 1 + A] (?,1) 4. evalspeedpldi3bb5in(A,B,C,D) -> evalspeedpldi3bb2in(A,B,C,D) [B >= 1 + D] (?,1) 5. evalspeedpldi3bb5in(A,B,C,D) -> evalspeedpldi3returnin(A,B,C,D) [D >= B] (?,1) 6. evalspeedpldi3bb2in(A,B,C,D) -> evalspeedpldi3bb3in(A,B,C,D) [A >= 1 + C] (?,1) 7. evalspeedpldi3bb2in(A,B,C,D) -> evalspeedpldi3bb4in(A,B,C,D) [C >= A] (?,1) 8. evalspeedpldi3bb3in(A,B,C,D) -> evalspeedpldi3bb5in(A,B,1 + C,D) True (?,1) 9. evalspeedpldi3bb4in(A,B,C,D) -> evalspeedpldi3bb5in(A,B,0,1 + D) True (?,1) 10. evalspeedpldi3returnin(A,B,C,D) -> evalspeedpldi3stop(A,B,C,D) True (?,1) Signature: {(evalspeedpldi3bb2in,4) ;(evalspeedpldi3bb3in,4) ;(evalspeedpldi3bb4in,4) ;(evalspeedpldi3bb5in,4) ;(evalspeedpldi3entryin,4) ;(evalspeedpldi3returnin,4) ;(evalspeedpldi3start,4) ;(evalspeedpldi3stop,4)} Flow Graph: [0->{1,2,3},1->{10},2->{10},3->{4,5},4->{6,7},5->{10},6->{8},7->{9},8->{4,5},9->{4,5},10->{}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, D) (< 2,0,A>, A) (< 2,0,B>, B) (< 2,0,C>, C) (< 2,0,D>, D) (< 3,0,A>, A) (< 3,0,B>, B) (< 3,0,C>, 0) (< 3,0,D>, 0) (< 4,0,A>, A) (< 4,0,B>, B) (< 4,0,C>, A) (< 4,0,D>, B) (< 5,0,A>, A) (< 5,0,B>, B) (< 5,0,C>, A) (< 5,0,D>, B) (< 6,0,A>, A) (< 6,0,B>, B) (< 6,0,C>, A) (< 6,0,D>, B) (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, A) (< 7,0,D>, B) (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, A) (< 8,0,D>, B) (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, 0) (< 9,0,D>, B) (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, A + C) (<10,0,D>, B + D) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(3,5)] * Step 4: LeafRules WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalspeedpldi3start(A,B,C,D) -> evalspeedpldi3entryin(A,B,C,D) True (1,1) 1. evalspeedpldi3entryin(A,B,C,D) -> evalspeedpldi3returnin(A,B,C,D) [0 >= A] (?,1) 2. evalspeedpldi3entryin(A,B,C,D) -> evalspeedpldi3returnin(A,B,C,D) [A >= B] (?,1) 3. evalspeedpldi3entryin(A,B,C,D) -> evalspeedpldi3bb5in(A,B,0,0) [A >= 1 && B >= 1 + A] (?,1) 4. evalspeedpldi3bb5in(A,B,C,D) -> evalspeedpldi3bb2in(A,B,C,D) [B >= 1 + D] (?,1) 5. evalspeedpldi3bb5in(A,B,C,D) -> evalspeedpldi3returnin(A,B,C,D) [D >= B] (?,1) 6. evalspeedpldi3bb2in(A,B,C,D) -> evalspeedpldi3bb3in(A,B,C,D) [A >= 1 + C] (?,1) 7. evalspeedpldi3bb2in(A,B,C,D) -> evalspeedpldi3bb4in(A,B,C,D) [C >= A] (?,1) 8. evalspeedpldi3bb3in(A,B,C,D) -> evalspeedpldi3bb5in(A,B,1 + C,D) True (?,1) 9. evalspeedpldi3bb4in(A,B,C,D) -> evalspeedpldi3bb5in(A,B,0,1 + D) True (?,1) 10. evalspeedpldi3returnin(A,B,C,D) -> evalspeedpldi3stop(A,B,C,D) True (?,1) Signature: {(evalspeedpldi3bb2in,4) ;(evalspeedpldi3bb3in,4) ;(evalspeedpldi3bb4in,4) ;(evalspeedpldi3bb5in,4) ;(evalspeedpldi3entryin,4) ;(evalspeedpldi3returnin,4) ;(evalspeedpldi3start,4) ;(evalspeedpldi3stop,4)} Flow Graph: [0->{1,2,3},1->{10},2->{10},3->{4},4->{6,7},5->{10},6->{8},7->{9},8->{4,5},9->{4,5},10->{}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, D) (< 2,0,A>, A) (< 2,0,B>, B) (< 2,0,C>, C) (< 2,0,D>, D) (< 3,0,A>, A) (< 3,0,B>, B) (< 3,0,C>, 0) (< 3,0,D>, 0) (< 4,0,A>, A) (< 4,0,B>, B) (< 4,0,C>, A) (< 4,0,D>, B) (< 5,0,A>, A) (< 5,0,B>, B) (< 5,0,C>, A) (< 5,0,D>, B) (< 6,0,A>, A) (< 6,0,B>, B) (< 6,0,C>, A) (< 6,0,D>, B) (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, A) (< 7,0,D>, B) (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, A) (< 8,0,D>, B) (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, 0) (< 9,0,D>, B) (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, A + C) (<10,0,D>, B + D) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [1,2,5,10] * Step 5: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalspeedpldi3start(A,B,C,D) -> evalspeedpldi3entryin(A,B,C,D) True (1,1) 3. evalspeedpldi3entryin(A,B,C,D) -> evalspeedpldi3bb5in(A,B,0,0) [A >= 1 && B >= 1 + A] (?,1) 4. evalspeedpldi3bb5in(A,B,C,D) -> evalspeedpldi3bb2in(A,B,C,D) [B >= 1 + D] (?,1) 6. evalspeedpldi3bb2in(A,B,C,D) -> evalspeedpldi3bb3in(A,B,C,D) [A >= 1 + C] (?,1) 7. evalspeedpldi3bb2in(A,B,C,D) -> evalspeedpldi3bb4in(A,B,C,D) [C >= A] (?,1) 8. evalspeedpldi3bb3in(A,B,C,D) -> evalspeedpldi3bb5in(A,B,1 + C,D) True (?,1) 9. evalspeedpldi3bb4in(A,B,C,D) -> evalspeedpldi3bb5in(A,B,0,1 + D) True (?,1) Signature: {(evalspeedpldi3bb2in,4) ;(evalspeedpldi3bb3in,4) ;(evalspeedpldi3bb4in,4) ;(evalspeedpldi3bb5in,4) ;(evalspeedpldi3entryin,4) ;(evalspeedpldi3returnin,4) ;(evalspeedpldi3start,4) ;(evalspeedpldi3stop,4)} Flow Graph: [0->{3},3->{4},4->{6,7},6->{8},7->{9},8->{4},9->{4}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<0,0,D>, D) (<3,0,A>, A) (<3,0,B>, B) (<3,0,C>, 0) (<3,0,D>, 0) (<4,0,A>, A) (<4,0,B>, B) (<4,0,C>, A) (<4,0,D>, B) (<6,0,A>, A) (<6,0,B>, B) (<6,0,C>, A) (<6,0,D>, B) (<7,0,A>, A) (<7,0,B>, B) (<7,0,C>, A) (<7,0,D>, B) (<8,0,A>, A) (<8,0,B>, B) (<8,0,C>, A) (<8,0,D>, B) (<9,0,A>, A) (<9,0,B>, B) (<9,0,C>, 0) (<9,0,D>, B) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalspeedpldi3bb2in) = 1 p(evalspeedpldi3bb3in) = 1 p(evalspeedpldi3bb4in) = 1 p(evalspeedpldi3bb5in) = 1 p(evalspeedpldi3entryin) = 2 p(evalspeedpldi3start) = 2 The following rules are strictly oriented: [A >= 1 && B >= 1 + A] ==> evalspeedpldi3entryin(A,B,C,D) = 2 > 1 = evalspeedpldi3bb5in(A,B,0,0) The following rules are weakly oriented: True ==> evalspeedpldi3start(A,B,C,D) = 2 >= 2 = evalspeedpldi3entryin(A,B,C,D) [B >= 1 + D] ==> evalspeedpldi3bb5in(A,B,C,D) = 1 >= 1 = evalspeedpldi3bb2in(A,B,C,D) [A >= 1 + C] ==> evalspeedpldi3bb2in(A,B,C,D) = 1 >= 1 = evalspeedpldi3bb3in(A,B,C,D) [C >= A] ==> evalspeedpldi3bb2in(A,B,C,D) = 1 >= 1 = evalspeedpldi3bb4in(A,B,C,D) True ==> evalspeedpldi3bb3in(A,B,C,D) = 1 >= 1 = evalspeedpldi3bb5in(A,B,1 + C,D) True ==> evalspeedpldi3bb4in(A,B,C,D) = 1 >= 1 = evalspeedpldi3bb5in(A,B,0,1 + D) * Step 6: ChainProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalspeedpldi3start(A,B,C,D) -> evalspeedpldi3entryin(A,B,C,D) True (1,1) 3. evalspeedpldi3entryin(A,B,C,D) -> evalspeedpldi3bb5in(A,B,0,0) [A >= 1 && B >= 1 + A] (2,1) 4. evalspeedpldi3bb5in(A,B,C,D) -> evalspeedpldi3bb2in(A,B,C,D) [B >= 1 + D] (?,1) 6. evalspeedpldi3bb2in(A,B,C,D) -> evalspeedpldi3bb3in(A,B,C,D) [A >= 1 + C] (?,1) 7. evalspeedpldi3bb2in(A,B,C,D) -> evalspeedpldi3bb4in(A,B,C,D) [C >= A] (?,1) 8. evalspeedpldi3bb3in(A,B,C,D) -> evalspeedpldi3bb5in(A,B,1 + C,D) True (?,1) 9. evalspeedpldi3bb4in(A,B,C,D) -> evalspeedpldi3bb5in(A,B,0,1 + D) True (?,1) Signature: {(evalspeedpldi3bb2in,4) ;(evalspeedpldi3bb3in,4) ;(evalspeedpldi3bb4in,4) ;(evalspeedpldi3bb5in,4) ;(evalspeedpldi3entryin,4) ;(evalspeedpldi3returnin,4) ;(evalspeedpldi3start,4) ;(evalspeedpldi3stop,4)} Flow Graph: [0->{3},3->{4},4->{6,7},6->{8},7->{9},8->{4},9->{4}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<0,0,D>, D) (<3,0,A>, A) (<3,0,B>, B) (<3,0,C>, 0) (<3,0,D>, 0) (<4,0,A>, A) (<4,0,B>, B) (<4,0,C>, A) (<4,0,D>, B) (<6,0,A>, A) (<6,0,B>, B) (<6,0,C>, A) (<6,0,D>, B) (<7,0,A>, A) (<7,0,B>, B) (<7,0,C>, A) (<7,0,D>, B) (<8,0,A>, A) (<8,0,B>, B) (<8,0,C>, A) (<8,0,D>, B) (<9,0,A>, A) (<9,0,B>, B) (<9,0,C>, 0) (<9,0,D>, B) + Applied Processor: ChainProcessor False [0,3,4,6,7,8,9] + Details: We chained rule 0 to obtain the rules [10] . * Step 7: UnreachableRules WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 3. evalspeedpldi3entryin(A,B,C,D) -> evalspeedpldi3bb5in(A,B,0,0) [A >= 1 && B >= 1 + A] (2,1) 4. evalspeedpldi3bb5in(A,B,C,D) -> evalspeedpldi3bb2in(A,B,C,D) [B >= 1 + D] (?,1) 6. evalspeedpldi3bb2in(A,B,C,D) -> evalspeedpldi3bb3in(A,B,C,D) [A >= 1 + C] (?,1) 7. evalspeedpldi3bb2in(A,B,C,D) -> evalspeedpldi3bb4in(A,B,C,D) [C >= A] (?,1) 8. evalspeedpldi3bb3in(A,B,C,D) -> evalspeedpldi3bb5in(A,B,1 + C,D) True (?,1) 9. evalspeedpldi3bb4in(A,B,C,D) -> evalspeedpldi3bb5in(A,B,0,1 + D) True (?,1) 10. evalspeedpldi3start(A,B,C,D) -> evalspeedpldi3bb5in(A,B,0,0) [A >= 1 && B >= 1 + A] (1,2) Signature: {(evalspeedpldi3bb2in,4) ;(evalspeedpldi3bb3in,4) ;(evalspeedpldi3bb4in,4) ;(evalspeedpldi3bb5in,4) ;(evalspeedpldi3entryin,4) ;(evalspeedpldi3returnin,4) ;(evalspeedpldi3start,4) ;(evalspeedpldi3stop,4)} Flow Graph: [3->{4},4->{6,7},6->{8},7->{9},8->{4},9->{4},10->{4}] Sizebounds: (< 3,0,A>, A) (< 3,0,B>, B) (< 3,0,C>, 0) (< 3,0,D>, 0) (< 4,0,A>, A) (< 4,0,B>, B) (< 4,0,C>, A) (< 4,0,D>, B) (< 6,0,A>, A) (< 6,0,B>, B) (< 6,0,C>, A) (< 6,0,D>, B) (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, A) (< 7,0,D>, B) (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, A) (< 8,0,D>, B) (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, 0) (< 9,0,D>, B) (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, 0) (<10,0,D>, 0) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [3] * Step 8: ChainProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 4. evalspeedpldi3bb5in(A,B,C,D) -> evalspeedpldi3bb2in(A,B,C,D) [B >= 1 + D] (?,1) 6. evalspeedpldi3bb2in(A,B,C,D) -> evalspeedpldi3bb3in(A,B,C,D) [A >= 1 + C] (?,1) 7. evalspeedpldi3bb2in(A,B,C,D) -> evalspeedpldi3bb4in(A,B,C,D) [C >= A] (?,1) 8. evalspeedpldi3bb3in(A,B,C,D) -> evalspeedpldi3bb5in(A,B,1 + C,D) True (?,1) 9. evalspeedpldi3bb4in(A,B,C,D) -> evalspeedpldi3bb5in(A,B,0,1 + D) True (?,1) 10. evalspeedpldi3start(A,B,C,D) -> evalspeedpldi3bb5in(A,B,0,0) [A >= 1 && B >= 1 + A] (1,2) Signature: {(evalspeedpldi3bb2in,4) ;(evalspeedpldi3bb3in,4) ;(evalspeedpldi3bb4in,4) ;(evalspeedpldi3bb5in,4) ;(evalspeedpldi3entryin,4) ;(evalspeedpldi3returnin,4) ;(evalspeedpldi3start,4) ;(evalspeedpldi3stop,4)} Flow Graph: [4->{6,7},6->{8},7->{9},8->{4},9->{4},10->{4}] Sizebounds: (< 4,0,A>, A) (< 4,0,B>, B) (< 4,0,C>, A) (< 4,0,D>, B) (< 6,0,A>, A) (< 6,0,B>, B) (< 6,0,C>, A) (< 6,0,D>, B) (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, A) (< 7,0,D>, B) (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, A) (< 8,0,D>, B) (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, 0) (< 9,0,D>, B) (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, 0) (<10,0,D>, 0) + Applied Processor: ChainProcessor False [4,6,7,8,9,10] + Details: We chained rule 4 to obtain the rules [11,12] . * Step 9: UnreachableRules WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 6. evalspeedpldi3bb2in(A,B,C,D) -> evalspeedpldi3bb3in(A,B,C,D) [A >= 1 + C] (?,1) 7. evalspeedpldi3bb2in(A,B,C,D) -> evalspeedpldi3bb4in(A,B,C,D) [C >= A] (?,1) 8. evalspeedpldi3bb3in(A,B,C,D) -> evalspeedpldi3bb5in(A,B,1 + C,D) True (?,1) 9. evalspeedpldi3bb4in(A,B,C,D) -> evalspeedpldi3bb5in(A,B,0,1 + D) True (?,1) 10. evalspeedpldi3start(A,B,C,D) -> evalspeedpldi3bb5in(A,B,0,0) [A >= 1 && B >= 1 + A] (1,2) 11. evalspeedpldi3bb5in(A,B,C,D) -> evalspeedpldi3bb3in(A,B,C,D) [B >= 1 + D && A >= 1 + C] (?,2) 12. evalspeedpldi3bb5in(A,B,C,D) -> evalspeedpldi3bb4in(A,B,C,D) [B >= 1 + D && C >= A] (?,2) Signature: {(evalspeedpldi3bb2in,4) ;(evalspeedpldi3bb3in,4) ;(evalspeedpldi3bb4in,4) ;(evalspeedpldi3bb5in,4) ;(evalspeedpldi3entryin,4) ;(evalspeedpldi3returnin,4) ;(evalspeedpldi3start,4) ;(evalspeedpldi3stop,4)} Flow Graph: [6->{8},7->{9},8->{11,12},9->{11,12},10->{11,12},11->{8},12->{9}] Sizebounds: (< 6,0,A>, A) (< 6,0,B>, B) (< 6,0,C>, A) (< 6,0,D>, B) (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, A) (< 7,0,D>, B) (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, A) (< 8,0,D>, B) (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, 0) (< 9,0,D>, B) (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, 0) (<10,0,D>, 0) (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, A) (<11,0,D>, B) (<12,0,A>, A) (<12,0,B>, B) (<12,0,C>, A) (<12,0,D>, B) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [6,7] * Step 10: ChainProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 8. evalspeedpldi3bb3in(A,B,C,D) -> evalspeedpldi3bb5in(A,B,1 + C,D) True (?,1) 9. evalspeedpldi3bb4in(A,B,C,D) -> evalspeedpldi3bb5in(A,B,0,1 + D) True (?,1) 10. evalspeedpldi3start(A,B,C,D) -> evalspeedpldi3bb5in(A,B,0,0) [A >= 1 && B >= 1 + A] (1,2) 11. evalspeedpldi3bb5in(A,B,C,D) -> evalspeedpldi3bb3in(A,B,C,D) [B >= 1 + D && A >= 1 + C] (?,2) 12. evalspeedpldi3bb5in(A,B,C,D) -> evalspeedpldi3bb4in(A,B,C,D) [B >= 1 + D && C >= A] (?,2) Signature: {(evalspeedpldi3bb2in,4) ;(evalspeedpldi3bb3in,4) ;(evalspeedpldi3bb4in,4) ;(evalspeedpldi3bb5in,4) ;(evalspeedpldi3entryin,4) ;(evalspeedpldi3returnin,4) ;(evalspeedpldi3start,4) ;(evalspeedpldi3stop,4)} Flow Graph: [8->{11,12},9->{11,12},10->{11,12},11->{8},12->{9}] Sizebounds: (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, A) (< 8,0,D>, B) (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, 0) (< 9,0,D>, B) (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, 0) (<10,0,D>, 0) (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, A) (<11,0,D>, B) (<12,0,A>, A) (<12,0,B>, B) (<12,0,C>, A) (<12,0,D>, B) + Applied Processor: ChainProcessor False [8,9,10,11,12] + Details: We chained rule 8 to obtain the rules [13,14] . * Step 11: ChainProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 9. evalspeedpldi3bb4in(A,B,C,D) -> evalspeedpldi3bb5in(A,B,0,1 + D) True (?,1) 10. evalspeedpldi3start(A,B,C,D) -> evalspeedpldi3bb5in(A,B,0,0) [A >= 1 && B >= 1 + A] (1,2) 11. evalspeedpldi3bb5in(A,B,C,D) -> evalspeedpldi3bb3in(A,B,C,D) [B >= 1 + D && A >= 1 + C] (?,2) 12. evalspeedpldi3bb5in(A,B,C,D) -> evalspeedpldi3bb4in(A,B,C,D) [B >= 1 + D && C >= A] (?,2) 13. evalspeedpldi3bb3in(A,B,C,D) -> evalspeedpldi3bb3in(A,B,1 + C,D) [B >= 1 + D && A >= 2 + C] (?,3) 14. evalspeedpldi3bb3in(A,B,C,D) -> evalspeedpldi3bb4in(A,B,1 + C,D) [B >= 1 + D && 1 + C >= A] (?,3) Signature: {(evalspeedpldi3bb2in,4) ;(evalspeedpldi3bb3in,4) ;(evalspeedpldi3bb4in,4) ;(evalspeedpldi3bb5in,4) ;(evalspeedpldi3entryin,4) ;(evalspeedpldi3returnin,4) ;(evalspeedpldi3start,4) ;(evalspeedpldi3stop,4)} Flow Graph: [9->{11,12},10->{11,12},11->{13,14},12->{9},13->{13,14},14->{9}] Sizebounds: (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, 0) (< 9,0,D>, B) (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, 0) (<10,0,D>, 0) (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, A) (<11,0,D>, B) (<12,0,A>, A) (<12,0,B>, B) (<12,0,C>, A) (<12,0,D>, B) (<13,0,A>, A) (<13,0,B>, B) (<13,0,C>, A) (<13,0,D>, B) (<14,0,A>, A) (<14,0,B>, B) (<14,0,C>, A) (<14,0,D>, B) + Applied Processor: ChainProcessor False [9,10,11,12,13,14] + Details: We chained rule 9 to obtain the rules [15,16] . * Step 12: ChainProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 10. evalspeedpldi3start(A,B,C,D) -> evalspeedpldi3bb5in(A,B,0,0) [A >= 1 && B >= 1 + A] (1,2) 11. evalspeedpldi3bb5in(A,B,C,D) -> evalspeedpldi3bb3in(A,B,C,D) [B >= 1 + D && A >= 1 + C] (?,2) 12. evalspeedpldi3bb5in(A,B,C,D) -> evalspeedpldi3bb4in(A,B,C,D) [B >= 1 + D && C >= A] (?,2) 13. evalspeedpldi3bb3in(A,B,C,D) -> evalspeedpldi3bb3in(A,B,1 + C,D) [B >= 1 + D && A >= 2 + C] (?,3) 14. evalspeedpldi3bb3in(A,B,C,D) -> evalspeedpldi3bb4in(A,B,1 + C,D) [B >= 1 + D && 1 + C >= A] (?,3) 15. evalspeedpldi3bb4in(A,B,C,D) -> evalspeedpldi3bb3in(A,B,0,1 + D) [B >= 2 + D && A >= 1] (?,3) 16. evalspeedpldi3bb4in(A,B,C,D) -> evalspeedpldi3bb4in(A,B,0,1 + D) [B >= 2 + D && 0 >= A] (?,3) Signature: {(evalspeedpldi3bb2in,4) ;(evalspeedpldi3bb3in,4) ;(evalspeedpldi3bb4in,4) ;(evalspeedpldi3bb5in,4) ;(evalspeedpldi3entryin,4) ;(evalspeedpldi3returnin,4) ;(evalspeedpldi3start,4) ;(evalspeedpldi3stop,4)} Flow Graph: [10->{11,12},11->{13,14},12->{15,16},13->{13,14},14->{15,16},15->{13,14},16->{15,16}] Sizebounds: (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, 0) (<10,0,D>, 0) (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, A) (<11,0,D>, B) (<12,0,A>, A) (<12,0,B>, B) (<12,0,C>, A) (<12,0,D>, B) (<13,0,A>, A) (<13,0,B>, B) (<13,0,C>, A) (<13,0,D>, B) (<14,0,A>, A) (<14,0,B>, B) (<14,0,C>, A) (<14,0,D>, B) (<15,0,A>, A) (<15,0,B>, B) (<15,0,C>, A) (<15,0,D>, B) (<16,0,A>, A) (<16,0,B>, B) (<16,0,C>, A) (<16,0,D>, B) + Applied Processor: ChainProcessor False [10,11,12,13,14,15,16] + Details: We chained rule 10 to obtain the rules [17,18] . * Step 13: UnreachableRules WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 11. evalspeedpldi3bb5in(A,B,C,D) -> evalspeedpldi3bb3in(A,B,C,D) [B >= 1 + D && A >= 1 + C] (?,2) 12. evalspeedpldi3bb5in(A,B,C,D) -> evalspeedpldi3bb4in(A,B,C,D) [B >= 1 + D && C >= A] (?,2) 13. evalspeedpldi3bb3in(A,B,C,D) -> evalspeedpldi3bb3in(A,B,1 + C,D) [B >= 1 + D && A >= 2 + C] (?,3) 14. evalspeedpldi3bb3in(A,B,C,D) -> evalspeedpldi3bb4in(A,B,1 + C,D) [B >= 1 + D && 1 + C >= A] (?,3) 15. evalspeedpldi3bb4in(A,B,C,D) -> evalspeedpldi3bb3in(A,B,0,1 + D) [B >= 2 + D && A >= 1] (?,3) 16. evalspeedpldi3bb4in(A,B,C,D) -> evalspeedpldi3bb4in(A,B,0,1 + D) [B >= 2 + D && 0 >= A] (?,3) 17. evalspeedpldi3start(A,B,C,D) -> evalspeedpldi3bb3in(A,B,0,0) [A >= 1 && B >= 1 + A && B >= 1 && A >= 1] (1,4) 18. evalspeedpldi3start(A,B,C,D) -> evalspeedpldi3bb4in(A,B,0,0) [A >= 1 && B >= 1 + A && B >= 1 && 0 >= A] (1,4) Signature: {(evalspeedpldi3bb2in,4) ;(evalspeedpldi3bb3in,4) ;(evalspeedpldi3bb4in,4) ;(evalspeedpldi3bb5in,4) ;(evalspeedpldi3entryin,4) ;(evalspeedpldi3returnin,4) ;(evalspeedpldi3start,4) ;(evalspeedpldi3stop,4)} Flow Graph: [11->{13,14},12->{15,16},13->{13,14},14->{15,16},15->{13,14},16->{15,16},17->{13,14},18->{15,16}] Sizebounds: (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, A) (<11,0,D>, B) (<12,0,A>, A) (<12,0,B>, B) (<12,0,C>, A) (<12,0,D>, B) (<13,0,A>, A) (<13,0,B>, B) (<13,0,C>, A) (<13,0,D>, B) (<14,0,A>, A) (<14,0,B>, B) (<14,0,C>, A) (<14,0,D>, B) (<15,0,A>, A) (<15,0,B>, B) (<15,0,C>, A) (<15,0,D>, B) (<16,0,A>, A) (<16,0,B>, B) (<16,0,C>, A) (<16,0,D>, B) (<17,0,A>, A) (<17,0,B>, B) (<17,0,C>, A) (<17,0,D>, B) (<18,0,A>, A) (<18,0,B>, B) (<18,0,C>, A) (<18,0,D>, B) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [11,12] * Step 14: UnsatPaths WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 13. evalspeedpldi3bb3in(A,B,C,D) -> evalspeedpldi3bb3in(A,B,1 + C,D) [B >= 1 + D && A >= 2 + C] (?,3) 14. evalspeedpldi3bb3in(A,B,C,D) -> evalspeedpldi3bb4in(A,B,1 + C,D) [B >= 1 + D && 1 + C >= A] (?,3) 15. evalspeedpldi3bb4in(A,B,C,D) -> evalspeedpldi3bb3in(A,B,0,1 + D) [B >= 2 + D && A >= 1] (?,3) 16. evalspeedpldi3bb4in(A,B,C,D) -> evalspeedpldi3bb4in(A,B,0,1 + D) [B >= 2 + D && 0 >= A] (?,3) 17. evalspeedpldi3start(A,B,C,D) -> evalspeedpldi3bb3in(A,B,0,0) [A >= 1 && B >= 1 + A && B >= 1 && A >= 1] (1,4) 18. evalspeedpldi3start(A,B,C,D) -> evalspeedpldi3bb4in(A,B,0,0) [A >= 1 && B >= 1 + A && B >= 1 && 0 >= A] (1,4) Signature: {(evalspeedpldi3bb2in,4) ;(evalspeedpldi3bb3in,4) ;(evalspeedpldi3bb4in,4) ;(evalspeedpldi3bb5in,4) ;(evalspeedpldi3entryin,4) ;(evalspeedpldi3returnin,4) ;(evalspeedpldi3start,4) ;(evalspeedpldi3stop,4)} Flow Graph: [13->{13,14},14->{15,16},15->{13,14},16->{15,16},17->{13,14},18->{15,16}] Sizebounds: (<13,0,A>, A) (<13,0,B>, B) (<13,0,C>, A) (<13,0,D>, B) (<14,0,A>, A) (<14,0,B>, B) (<14,0,C>, A) (<14,0,D>, B) (<15,0,A>, A) (<15,0,B>, B) (<15,0,C>, A) (<15,0,D>, B) (<16,0,A>, A) (<16,0,B>, B) (<16,0,C>, A) (<16,0,D>, B) (<17,0,A>, A) (<17,0,B>, B) (<17,0,C>, A) (<17,0,D>, B) (<18,0,A>, A) (<18,0,B>, B) (<18,0,C>, A) (<18,0,D>, B) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(16,15),(18,15),(18,16)] * Step 15: LocalSizeboundsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 13. evalspeedpldi3bb3in(A,B,C,D) -> evalspeedpldi3bb3in(A,B,1 + C,D) [B >= 1 + D && A >= 2 + C] (?,3) 14. evalspeedpldi3bb3in(A,B,C,D) -> evalspeedpldi3bb4in(A,B,1 + C,D) [B >= 1 + D && 1 + C >= A] (?,3) 15. evalspeedpldi3bb4in(A,B,C,D) -> evalspeedpldi3bb3in(A,B,0,1 + D) [B >= 2 + D && A >= 1] (?,3) 16. evalspeedpldi3bb4in(A,B,C,D) -> evalspeedpldi3bb4in(A,B,0,1 + D) [B >= 2 + D && 0 >= A] (?,3) 17. evalspeedpldi3start(A,B,C,D) -> evalspeedpldi3bb3in(A,B,0,0) [A >= 1 && B >= 1 + A && B >= 1 && A >= 1] (1,4) 18. evalspeedpldi3start(A,B,C,D) -> evalspeedpldi3bb4in(A,B,0,0) [A >= 1 && B >= 1 + A && B >= 1 && 0 >= A] (1,4) Signature: {(evalspeedpldi3bb2in,4) ;(evalspeedpldi3bb3in,4) ;(evalspeedpldi3bb4in,4) ;(evalspeedpldi3bb5in,4) ;(evalspeedpldi3entryin,4) ;(evalspeedpldi3returnin,4) ;(evalspeedpldi3start,4) ;(evalspeedpldi3stop,4)} Flow Graph: [13->{13,14},14->{15,16},15->{13,14},16->{16},17->{13,14},18->{}] Sizebounds: (<13,0,A>, A) (<13,0,B>, B) (<13,0,C>, A) (<13,0,D>, B) (<14,0,A>, A) (<14,0,B>, B) (<14,0,C>, A) (<14,0,D>, B) (<15,0,A>, A) (<15,0,B>, B) (<15,0,C>, A) (<15,0,D>, B) (<16,0,A>, A) (<16,0,B>, B) (<16,0,C>, A) (<16,0,D>, B) (<17,0,A>, A) (<17,0,B>, B) (<17,0,C>, A) (<17,0,D>, B) (<18,0,A>, A) (<18,0,B>, B) (<18,0,C>, A) (<18,0,D>, B) + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<13,0,A>, A, .= 0) (<13,0,B>, B, .= 0) (<13,0,C>, 1 + C, .+ 1) (<13,0,D>, D, .= 0) (<14,0,A>, A, .= 0) (<14,0,B>, B, .= 0) (<14,0,C>, 1 + C, .+ 1) (<14,0,D>, D, .= 0) (<15,0,A>, A, .= 0) (<15,0,B>, B, .= 0) (<15,0,C>, 0, .= 0) (<15,0,D>, 1 + D, .+ 1) (<16,0,A>, A, .= 0) (<16,0,B>, B, .= 0) (<16,0,C>, 0, .= 0) (<16,0,D>, 1 + D, .+ 1) (<17,0,A>, A, .= 0) (<17,0,B>, B, .= 0) (<17,0,C>, 0, .= 0) (<17,0,D>, 0, .= 0) (<18,0,A>, A, .= 0) (<18,0,B>, B, .= 0) (<18,0,C>, 0, .= 0) (<18,0,D>, 0, .= 0) * Step 16: SizeboundsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 13. evalspeedpldi3bb3in(A,B,C,D) -> evalspeedpldi3bb3in(A,B,1 + C,D) [B >= 1 + D && A >= 2 + C] (?,3) 14. evalspeedpldi3bb3in(A,B,C,D) -> evalspeedpldi3bb4in(A,B,1 + C,D) [B >= 1 + D && 1 + C >= A] (?,3) 15. evalspeedpldi3bb4in(A,B,C,D) -> evalspeedpldi3bb3in(A,B,0,1 + D) [B >= 2 + D && A >= 1] (?,3) 16. evalspeedpldi3bb4in(A,B,C,D) -> evalspeedpldi3bb4in(A,B,0,1 + D) [B >= 2 + D && 0 >= A] (?,3) 17. evalspeedpldi3start(A,B,C,D) -> evalspeedpldi3bb3in(A,B,0,0) [A >= 1 && B >= 1 + A && B >= 1 && A >= 1] (1,4) 18. evalspeedpldi3start(A,B,C,D) -> evalspeedpldi3bb4in(A,B,0,0) [A >= 1 && B >= 1 + A && B >= 1 && 0 >= A] (1,4) Signature: {(evalspeedpldi3bb2in,4) ;(evalspeedpldi3bb3in,4) ;(evalspeedpldi3bb4in,4) ;(evalspeedpldi3bb5in,4) ;(evalspeedpldi3entryin,4) ;(evalspeedpldi3returnin,4) ;(evalspeedpldi3start,4) ;(evalspeedpldi3stop,4)} Flow Graph: [13->{13,14},14->{15,16},15->{13,14},16->{16},17->{13,14},18->{}] Sizebounds: (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<14,0,A>, ?) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,D>, ?) (<18,0,A>, ?) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<13,0,A>, A) (<13,0,B>, B) (<13,0,C>, A) (<13,0,D>, B) (<14,0,A>, A) (<14,0,B>, B) (<14,0,C>, 1 + A) (<14,0,D>, B) (<15,0,A>, A) (<15,0,B>, B) (<15,0,C>, 0) (<15,0,D>, B) (<16,0,A>, A) (<16,0,B>, B) (<16,0,C>, 0) (<16,0,D>, B) (<17,0,A>, A) (<17,0,B>, B) (<17,0,C>, 0) (<17,0,D>, 0) (<18,0,A>, A) (<18,0,B>, B) (<18,0,C>, 0) (<18,0,D>, 0) * Step 17: LocationConstraintsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 13. evalspeedpldi3bb3in(A,B,C,D) -> evalspeedpldi3bb3in(A,B,1 + C,D) [B >= 1 + D && A >= 2 + C] (?,3) 14. evalspeedpldi3bb3in(A,B,C,D) -> evalspeedpldi3bb4in(A,B,1 + C,D) [B >= 1 + D && 1 + C >= A] (?,3) 15. evalspeedpldi3bb4in(A,B,C,D) -> evalspeedpldi3bb3in(A,B,0,1 + D) [B >= 2 + D && A >= 1] (?,3) 16. evalspeedpldi3bb4in(A,B,C,D) -> evalspeedpldi3bb4in(A,B,0,1 + D) [B >= 2 + D && 0 >= A] (?,3) 17. evalspeedpldi3start(A,B,C,D) -> evalspeedpldi3bb3in(A,B,0,0) [A >= 1 && B >= 1 + A && B >= 1 && A >= 1] (1,4) 18. evalspeedpldi3start(A,B,C,D) -> evalspeedpldi3bb4in(A,B,0,0) [A >= 1 && B >= 1 + A && B >= 1 && 0 >= A] (1,4) Signature: {(evalspeedpldi3bb2in,4) ;(evalspeedpldi3bb3in,4) ;(evalspeedpldi3bb4in,4) ;(evalspeedpldi3bb5in,4) ;(evalspeedpldi3entryin,4) ;(evalspeedpldi3returnin,4) ;(evalspeedpldi3start,4) ;(evalspeedpldi3stop,4)} Flow Graph: [13->{13,14},14->{15,16},15->{13,14},16->{16},17->{13,14},18->{}] Sizebounds: (<13,0,A>, A) (<13,0,B>, B) (<13,0,C>, A) (<13,0,D>, B) (<14,0,A>, A) (<14,0,B>, B) (<14,0,C>, 1 + A) (<14,0,D>, B) (<15,0,A>, A) (<15,0,B>, B) (<15,0,C>, 0) (<15,0,D>, B) (<16,0,A>, A) (<16,0,B>, B) (<16,0,C>, 0) (<16,0,D>, B) (<17,0,A>, A) (<17,0,B>, B) (<17,0,C>, 0) (<17,0,D>, 0) (<18,0,A>, A) (<18,0,B>, B) (<18,0,C>, 0) (<18,0,D>, 0) + Applied Processor: LocationConstraintsProc + Details: We computed the location constraints 13 : [B >= 1 && A >= 1] 14 : [B >= 1] 15 : [B >= 1 && B >= 1 + D] 16 : [B >= 1 && B >= 1 + D] 17 : True 18 : True . * Step 18: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 13. evalspeedpldi3bb3in(A,B,C,D) -> evalspeedpldi3bb3in(A,B,1 + C,D) [B >= 1 + D && A >= 2 + C] (?,3) 14. evalspeedpldi3bb3in(A,B,C,D) -> evalspeedpldi3bb4in(A,B,1 + C,D) [B >= 1 + D && 1 + C >= A] (?,3) 15. evalspeedpldi3bb4in(A,B,C,D) -> evalspeedpldi3bb3in(A,B,0,1 + D) [B >= 2 + D && A >= 1] (?,3) 16. evalspeedpldi3bb4in(A,B,C,D) -> evalspeedpldi3bb4in(A,B,0,1 + D) [B >= 2 + D && 0 >= A] (?,3) 17. evalspeedpldi3start(A,B,C,D) -> evalspeedpldi3bb3in(A,B,0,0) [A >= 1 && B >= 1 + A && B >= 1 && A >= 1] (1,4) 18. evalspeedpldi3start(A,B,C,D) -> evalspeedpldi3bb4in(A,B,0,0) [A >= 1 && B >= 1 + A && B >= 1 && 0 >= A] (1,4) Signature: {(evalspeedpldi3bb2in,4) ;(evalspeedpldi3bb3in,4) ;(evalspeedpldi3bb4in,4) ;(evalspeedpldi3bb5in,4) ;(evalspeedpldi3entryin,4) ;(evalspeedpldi3returnin,4) ;(evalspeedpldi3start,4) ;(evalspeedpldi3stop,4)} Flow Graph: [13->{13,14},14->{15,16},15->{13,14},16->{16},17->{13,14},18->{}] Sizebounds: (<13,0,A>, A) (<13,0,B>, B) (<13,0,C>, A) (<13,0,D>, B) (<14,0,A>, A) (<14,0,B>, B) (<14,0,C>, 1 + A) (<14,0,D>, B) (<15,0,A>, A) (<15,0,B>, B) (<15,0,C>, 0) (<15,0,D>, B) (<16,0,A>, A) (<16,0,B>, B) (<16,0,C>, 0) (<16,0,D>, B) (<17,0,A>, A) (<17,0,B>, B) (<17,0,C>, 0) (<17,0,D>, 0) (<18,0,A>, A) (<18,0,B>, B) (<18,0,C>, 0) (<18,0,D>, 0) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalspeedpldi3bb3in) = -1 + x2 + -1*x4 p(evalspeedpldi3bb4in) = -1 + x2 + -1*x4 p(evalspeedpldi3start) = x2 The following rules are strictly oriented: [B >= 2 + D && 0 >= A] ==> evalspeedpldi3bb4in(A,B,C,D) = -1 + B + -1*D > -2 + B + -1*D = evalspeedpldi3bb4in(A,B,0,1 + D) [A >= 1 && B >= 1 + A && B >= 1 && A >= 1] ==> evalspeedpldi3start(A,B,C,D) = B > -1 + B = evalspeedpldi3bb3in(A,B,0,0) [A >= 1 && B >= 1 + A && B >= 1 && 0 >= A] ==> evalspeedpldi3start(A,B,C,D) = B > -1 + B = evalspeedpldi3bb4in(A,B,0,0) The following rules are weakly oriented: [B >= 1 + D && A >= 2 + C] ==> evalspeedpldi3bb3in(A,B,C,D) = -1 + B + -1*D >= -1 + B + -1*D = evalspeedpldi3bb3in(A,B,1 + C,D) [B >= 1 + D && 1 + C >= A] ==> evalspeedpldi3bb3in(A,B,C,D) = -1 + B + -1*D >= -1 + B + -1*D = evalspeedpldi3bb4in(A,B,1 + C,D) [B >= 2 + D && A >= 1] ==> evalspeedpldi3bb4in(A,B,C,D) = -1 + B + -1*D >= -2 + B + -1*D = evalspeedpldi3bb3in(A,B,0,1 + D) * Step 19: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 13. evalspeedpldi3bb3in(A,B,C,D) -> evalspeedpldi3bb3in(A,B,1 + C,D) [B >= 1 + D && A >= 2 + C] (?,3) 14. evalspeedpldi3bb3in(A,B,C,D) -> evalspeedpldi3bb4in(A,B,1 + C,D) [B >= 1 + D && 1 + C >= A] (?,3) 15. evalspeedpldi3bb4in(A,B,C,D) -> evalspeedpldi3bb3in(A,B,0,1 + D) [B >= 2 + D && A >= 1] (?,3) 16. evalspeedpldi3bb4in(A,B,C,D) -> evalspeedpldi3bb4in(A,B,0,1 + D) [B >= 2 + D && 0 >= A] (B,3) 17. evalspeedpldi3start(A,B,C,D) -> evalspeedpldi3bb3in(A,B,0,0) [A >= 1 && B >= 1 + A && B >= 1 && A >= 1] (1,4) 18. evalspeedpldi3start(A,B,C,D) -> evalspeedpldi3bb4in(A,B,0,0) [A >= 1 && B >= 1 + A && B >= 1 && 0 >= A] (1,4) Signature: {(evalspeedpldi3bb2in,4) ;(evalspeedpldi3bb3in,4) ;(evalspeedpldi3bb4in,4) ;(evalspeedpldi3bb5in,4) ;(evalspeedpldi3entryin,4) ;(evalspeedpldi3returnin,4) ;(evalspeedpldi3start,4) ;(evalspeedpldi3stop,4)} Flow Graph: [13->{13,14},14->{15,16},15->{13,14},16->{16},17->{13,14},18->{}] Sizebounds: (<13,0,A>, A) (<13,0,B>, B) (<13,0,C>, A) (<13,0,D>, B) (<14,0,A>, A) (<14,0,B>, B) (<14,0,C>, 1 + A) (<14,0,D>, B) (<15,0,A>, A) (<15,0,B>, B) (<15,0,C>, 0) (<15,0,D>, B) (<16,0,A>, A) (<16,0,B>, B) (<16,0,C>, 0) (<16,0,D>, B) (<17,0,A>, A) (<17,0,B>, B) (<17,0,C>, 0) (<17,0,D>, 0) (<18,0,A>, A) (<18,0,B>, B) (<18,0,C>, 0) (<18,0,D>, 0) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalspeedpldi3bb3in) = x2 + -1*x4 p(evalspeedpldi3bb4in) = x2 + -1*x4 p(evalspeedpldi3start) = x2 The following rules are strictly oriented: [B >= 2 + D && A >= 1] ==> evalspeedpldi3bb4in(A,B,C,D) = B + -1*D > -1 + B + -1*D = evalspeedpldi3bb3in(A,B,0,1 + D) [B >= 2 + D && 0 >= A] ==> evalspeedpldi3bb4in(A,B,C,D) = B + -1*D > -1 + B + -1*D = evalspeedpldi3bb4in(A,B,0,1 + D) The following rules are weakly oriented: [B >= 1 + D && A >= 2 + C] ==> evalspeedpldi3bb3in(A,B,C,D) = B + -1*D >= B + -1*D = evalspeedpldi3bb3in(A,B,1 + C,D) [B >= 1 + D && 1 + C >= A] ==> evalspeedpldi3bb3in(A,B,C,D) = B + -1*D >= B + -1*D = evalspeedpldi3bb4in(A,B,1 + C,D) [A >= 1 && B >= 1 + A && B >= 1 && A >= 1] ==> evalspeedpldi3start(A,B,C,D) = B >= B = evalspeedpldi3bb3in(A,B,0,0) [A >= 1 && B >= 1 + A && B >= 1 && 0 >= A] ==> evalspeedpldi3start(A,B,C,D) = B >= B = evalspeedpldi3bb4in(A,B,0,0) * Step 20: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 13. evalspeedpldi3bb3in(A,B,C,D) -> evalspeedpldi3bb3in(A,B,1 + C,D) [B >= 1 + D && A >= 2 + C] (?,3) 14. evalspeedpldi3bb3in(A,B,C,D) -> evalspeedpldi3bb4in(A,B,1 + C,D) [B >= 1 + D && 1 + C >= A] (?,3) 15. evalspeedpldi3bb4in(A,B,C,D) -> evalspeedpldi3bb3in(A,B,0,1 + D) [B >= 2 + D && A >= 1] (B,3) 16. evalspeedpldi3bb4in(A,B,C,D) -> evalspeedpldi3bb4in(A,B,0,1 + D) [B >= 2 + D && 0 >= A] (B,3) 17. evalspeedpldi3start(A,B,C,D) -> evalspeedpldi3bb3in(A,B,0,0) [A >= 1 && B >= 1 + A && B >= 1 && A >= 1] (1,4) 18. evalspeedpldi3start(A,B,C,D) -> evalspeedpldi3bb4in(A,B,0,0) [A >= 1 && B >= 1 + A && B >= 1 && 0 >= A] (1,4) Signature: {(evalspeedpldi3bb2in,4) ;(evalspeedpldi3bb3in,4) ;(evalspeedpldi3bb4in,4) ;(evalspeedpldi3bb5in,4) ;(evalspeedpldi3entryin,4) ;(evalspeedpldi3returnin,4) ;(evalspeedpldi3start,4) ;(evalspeedpldi3stop,4)} Flow Graph: [13->{13,14},14->{15,16},15->{13,14},16->{16},17->{13,14},18->{}] Sizebounds: (<13,0,A>, A) (<13,0,B>, B) (<13,0,C>, A) (<13,0,D>, B) (<14,0,A>, A) (<14,0,B>, B) (<14,0,C>, 1 + A) (<14,0,D>, B) (<15,0,A>, A) (<15,0,B>, B) (<15,0,C>, 0) (<15,0,D>, B) (<16,0,A>, A) (<16,0,B>, B) (<16,0,C>, 0) (<16,0,D>, B) (<17,0,A>, A) (<17,0,B>, B) (<17,0,C>, 0) (<17,0,D>, 0) (<18,0,A>, A) (<18,0,B>, B) (<18,0,C>, 0) (<18,0,D>, 0) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalspeedpldi3bb3in) = x2 + -1*x4 p(evalspeedpldi3bb4in) = -1 + x2 + -1*x4 p(evalspeedpldi3start) = x2 The following rules are strictly oriented: [B >= 1 + D && 1 + C >= A] ==> evalspeedpldi3bb3in(A,B,C,D) = B + -1*D > -1 + B + -1*D = evalspeedpldi3bb4in(A,B,1 + C,D) [B >= 2 + D && 0 >= A] ==> evalspeedpldi3bb4in(A,B,C,D) = -1 + B + -1*D > -2 + B + -1*D = evalspeedpldi3bb4in(A,B,0,1 + D) [A >= 1 && B >= 1 + A && B >= 1 && 0 >= A] ==> evalspeedpldi3start(A,B,C,D) = B > -1 + B = evalspeedpldi3bb4in(A,B,0,0) The following rules are weakly oriented: [B >= 1 + D && A >= 2 + C] ==> evalspeedpldi3bb3in(A,B,C,D) = B + -1*D >= B + -1*D = evalspeedpldi3bb3in(A,B,1 + C,D) [B >= 2 + D && A >= 1] ==> evalspeedpldi3bb4in(A,B,C,D) = -1 + B + -1*D >= -1 + B + -1*D = evalspeedpldi3bb3in(A,B,0,1 + D) [A >= 1 && B >= 1 + A && B >= 1 && A >= 1] ==> evalspeedpldi3start(A,B,C,D) = B >= B = evalspeedpldi3bb3in(A,B,0,0) * Step 21: LoopRecurrenceProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 13. evalspeedpldi3bb3in(A,B,C,D) -> evalspeedpldi3bb3in(A,B,1 + C,D) [B >= 1 + D && A >= 2 + C] (?,3) 14. evalspeedpldi3bb3in(A,B,C,D) -> evalspeedpldi3bb4in(A,B,1 + C,D) [B >= 1 + D && 1 + C >= A] (B,3) 15. evalspeedpldi3bb4in(A,B,C,D) -> evalspeedpldi3bb3in(A,B,0,1 + D) [B >= 2 + D && A >= 1] (B,3) 16. evalspeedpldi3bb4in(A,B,C,D) -> evalspeedpldi3bb4in(A,B,0,1 + D) [B >= 2 + D && 0 >= A] (B,3) 17. evalspeedpldi3start(A,B,C,D) -> evalspeedpldi3bb3in(A,B,0,0) [A >= 1 && B >= 1 + A && B >= 1 && A >= 1] (1,4) 18. evalspeedpldi3start(A,B,C,D) -> evalspeedpldi3bb4in(A,B,0,0) [A >= 1 && B >= 1 + A && B >= 1 && 0 >= A] (1,4) Signature: {(evalspeedpldi3bb2in,4) ;(evalspeedpldi3bb3in,4) ;(evalspeedpldi3bb4in,4) ;(evalspeedpldi3bb5in,4) ;(evalspeedpldi3entryin,4) ;(evalspeedpldi3returnin,4) ;(evalspeedpldi3start,4) ;(evalspeedpldi3stop,4)} Flow Graph: [13->{13,14},14->{15,16},15->{13,14},16->{16},17->{13,14},18->{}] Sizebounds: (<13,0,A>, A) (<13,0,B>, B) (<13,0,C>, A) (<13,0,D>, B) (<14,0,A>, A) (<14,0,B>, B) (<14,0,C>, 1 + A) (<14,0,D>, B) (<15,0,A>, A) (<15,0,B>, B) (<15,0,C>, 0) (<15,0,D>, B) (<16,0,A>, A) (<16,0,B>, B) (<16,0,C>, 0) (<16,0,D>, B) (<17,0,A>, A) (<17,0,B>, B) (<17,0,C>, 0) (<17,0,D>, 0) (<18,0,A>, A) (<18,0,B>, B) (<18,0,C>, 0) (<18,0,D>, 0) + Applied Processor: LoopRecurrenceProcessor [16] + Details: Applying the recurrence pattern linear * f to the expression B-D yields the solution B + -1*D . * Step 22: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 13. evalspeedpldi3bb3in(A,B,C,D) -> evalspeedpldi3bb3in(A,B,1 + C,D) [B >= 1 + D && A >= 2 + C] (?,3) 14. evalspeedpldi3bb3in(A,B,C,D) -> evalspeedpldi3bb4in(A,B,1 + C,D) [B >= 1 + D && 1 + C >= A] (B,3) 15. evalspeedpldi3bb4in(A,B,C,D) -> evalspeedpldi3bb3in(A,B,0,1 + D) [B >= 2 + D && A >= 1] (B,3) 16. evalspeedpldi3bb4in(A,B,C,D) -> evalspeedpldi3bb4in(A,B,0,1 + D) [B >= 2 + D && 0 >= A] (0,3) 17. evalspeedpldi3start(A,B,C,D) -> evalspeedpldi3bb3in(A,B,0,0) [A >= 1 && B >= 1 + A && B >= 1 && A >= 1] (1,4) 18. evalspeedpldi3start(A,B,C,D) -> evalspeedpldi3bb4in(A,B,0,0) [A >= 1 && B >= 1 + A && B >= 1 && 0 >= A] (1,4) Signature: {(evalspeedpldi3bb2in,4) ;(evalspeedpldi3bb3in,4) ;(evalspeedpldi3bb4in,4) ;(evalspeedpldi3bb5in,4) ;(evalspeedpldi3entryin,4) ;(evalspeedpldi3returnin,4) ;(evalspeedpldi3start,4) ;(evalspeedpldi3stop,4)} Flow Graph: [13->{13,14},14->{15,16},15->{13,14},16->{16},17->{13,14},18->{}] Sizebounds: (<13,0,A>, A) (<13,0,B>, B) (<13,0,C>, A) (<13,0,D>, B) (<14,0,A>, A) (<14,0,B>, B) (<14,0,C>, 1 + A) (<14,0,D>, B) (<15,0,A>, A) (<15,0,B>, B) (<15,0,C>, 0) (<15,0,D>, B) (<16,0,A>, A) (<16,0,B>, B) (<16,0,C>, 0) (<16,0,D>, B) (<17,0,A>, A) (<17,0,B>, B) (<17,0,C>, 0) (<17,0,D>, 0) (<18,0,A>, A) (<18,0,B>, B) (<18,0,C>, 0) (<18,0,D>, 0) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [13], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalspeedpldi3bb3in) = -1 + x1 + -1*x3 The following rules are strictly oriented: [B >= 1 + D && A >= 2 + C] ==> evalspeedpldi3bb3in(A,B,C,D) = -1 + A + -1*C > -2 + A + -1*C = evalspeedpldi3bb3in(A,B,1 + C,D) The following rules are weakly oriented: We use the following global sizebounds: (<13,0,A>, A) (<13,0,B>, B) (<13,0,C>, A) (<13,0,D>, B) (<14,0,A>, A) (<14,0,B>, B) (<14,0,C>, 1 + A) (<14,0,D>, B) (<15,0,A>, A) (<15,0,B>, B) (<15,0,C>, 0) (<15,0,D>, B) (<16,0,A>, A) (<16,0,B>, B) (<16,0,C>, 0) (<16,0,D>, B) (<17,0,A>, A) (<17,0,B>, B) (<17,0,C>, 0) (<17,0,D>, 0) (<18,0,A>, A) (<18,0,B>, B) (<18,0,C>, 0) (<18,0,D>, 0) * Step 23: KnowledgePropagation WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 13. evalspeedpldi3bb3in(A,B,C,D) -> evalspeedpldi3bb3in(A,B,1 + C,D) [B >= 1 + D && A >= 2 + C] (1 + A + A*B + B,3) 14. evalspeedpldi3bb3in(A,B,C,D) -> evalspeedpldi3bb4in(A,B,1 + C,D) [B >= 1 + D && 1 + C >= A] (B,3) 15. evalspeedpldi3bb4in(A,B,C,D) -> evalspeedpldi3bb3in(A,B,0,1 + D) [B >= 2 + D && A >= 1] (B,3) 16. evalspeedpldi3bb4in(A,B,C,D) -> evalspeedpldi3bb4in(A,B,0,1 + D) [B >= 2 + D && 0 >= A] (0,3) 17. evalspeedpldi3start(A,B,C,D) -> evalspeedpldi3bb3in(A,B,0,0) [A >= 1 && B >= 1 + A && B >= 1 && A >= 1] (1,4) 18. evalspeedpldi3start(A,B,C,D) -> evalspeedpldi3bb4in(A,B,0,0) [A >= 1 && B >= 1 + A && B >= 1 && 0 >= A] (1,4) Signature: {(evalspeedpldi3bb2in,4) ;(evalspeedpldi3bb3in,4) ;(evalspeedpldi3bb4in,4) ;(evalspeedpldi3bb5in,4) ;(evalspeedpldi3entryin,4) ;(evalspeedpldi3returnin,4) ;(evalspeedpldi3start,4) ;(evalspeedpldi3stop,4)} Flow Graph: [13->{13,14},14->{15,16},15->{13,14},16->{16},17->{13,14},18->{}] Sizebounds: (<13,0,A>, A) (<13,0,B>, B) (<13,0,C>, A) (<13,0,D>, B) (<14,0,A>, A) (<14,0,B>, B) (<14,0,C>, 1 + A) (<14,0,D>, B) (<15,0,A>, A) (<15,0,B>, B) (<15,0,C>, 0) (<15,0,D>, B) (<16,0,A>, A) (<16,0,B>, B) (<16,0,C>, 0) (<16,0,D>, B) (<17,0,A>, A) (<17,0,B>, B) (<17,0,C>, 0) (<17,0,D>, 0) (<18,0,A>, A) (<18,0,B>, B) (<18,0,C>, 0) (<18,0,D>, 0) + Applied Processor: KnowledgePropagation + Details: The problem is already solved. WORST_CASE(?,O(n^2))