WORST_CASE(?,O(n^1))
* Step 1: TrivialSCCs WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C) -> f3(-1*A,B,C)      True                   (?,1)
          1.  f3(A,B,C) -> f7(0,D,C)         [A = 0]                (?,1)
          2.  f4(A,B,C) -> f7(0,D,C)         [A = 0]                (?,1)
          3.  f6(A,B,C) -> f4(A,B,1)         [A >= 1]               (1,1)
          4.  f3(A,B,C) -> f4(-1 + -1*A,B,1) [0 >= 1 + A && 0 >= C] (?,1)
          5.  f3(A,B,C) -> f4(-1 + -1*A,B,1) [0 >= 1 + A && C >= 2] (?,1)
          6.  f3(A,B,C) -> f4(-1 + -1*A,B,1) [A >= 1 && 0 >= C]     (?,1)
          7.  f3(A,B,C) -> f4(-1 + -1*A,B,1) [A >= 1 && C >= 2]     (?,1)
          8.  f4(A,B,C) -> f3(1 + -1*A,B,0)  [0 >= 1 + A && C = 1]  (?,1)
          9.  f4(A,B,C) -> f3(1 + -1*A,B,0)  [A >= 1 && C = 1]      (?,1)
          10. f5(A,B,C) -> f3(1 + -1*A,B,0)  [0 >= 1 + A && C = 1]  (?,1)
          11. f5(A,B,C) -> f3(1 + -1*A,B,0)  [A >= 1 && C = 1]      (?,1)
        Signature:
          {(f0,3);(f3,3);(f4,3);(f5,3);(f6,3);(f7,3)}
        Flow Graph:
          [0->{1,4,5,6,7},1->{},2->{},3->{2,8,9},4->{2,8,9},5->{2,8,9},6->{2,8,9},7->{2,8,9},8->{1,4,5,6,7},9->{1,4
          ,5,6,7},10->{1,4,5,6,7},11->{1,4,5,6,7}]
        
    + Applied Processor:
        TrivialSCCs
    + Details:
        All trivial SCCs of the transition graph admit timebound 1.
* Step 2: RestrictVarsProcessor WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C) -> f3(-1*A,B,C)      True                   (1,1)
          1.  f3(A,B,C) -> f7(0,D,C)         [A = 0]                (?,1)
          2.  f4(A,B,C) -> f7(0,D,C)         [A = 0]                (?,1)
          3.  f6(A,B,C) -> f4(A,B,1)         [A >= 1]               (1,1)
          4.  f3(A,B,C) -> f4(-1 + -1*A,B,1) [0 >= 1 + A && 0 >= C] (?,1)
          5.  f3(A,B,C) -> f4(-1 + -1*A,B,1) [0 >= 1 + A && C >= 2] (?,1)
          6.  f3(A,B,C) -> f4(-1 + -1*A,B,1) [A >= 1 && 0 >= C]     (?,1)
          7.  f3(A,B,C) -> f4(-1 + -1*A,B,1) [A >= 1 && C >= 2]     (?,1)
          8.  f4(A,B,C) -> f3(1 + -1*A,B,0)  [0 >= 1 + A && C = 1]  (?,1)
          9.  f4(A,B,C) -> f3(1 + -1*A,B,0)  [A >= 1 && C = 1]      (?,1)
          10. f5(A,B,C) -> f3(1 + -1*A,B,0)  [0 >= 1 + A && C = 1]  (1,1)
          11. f5(A,B,C) -> f3(1 + -1*A,B,0)  [A >= 1 && C = 1]      (1,1)
        Signature:
          {(f0,3);(f3,3);(f4,3);(f5,3);(f6,3);(f7,3)}
        Flow Graph:
          [0->{1,4,5,6,7},1->{},2->{},3->{2,8,9},4->{2,8,9},5->{2,8,9},6->{2,8,9},7->{2,8,9},8->{1,4,5,6,7},9->{1,4
          ,5,6,7},10->{1,4,5,6,7},11->{1,4,5,6,7}]
        
    + Applied Processor:
        RestrictVarsProcessor
    + Details:
        We removed the arguments [B] .
* Step 3: UnreachableRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  f0(A,C) -> f3(-1*A,C)      True                   (?,1)
          1.  f3(A,C) -> f7(0,C)         [A = 0]                (?,1)
          2.  f4(A,C) -> f7(0,C)         [A = 0]                (?,1)
          3.  f6(A,C) -> f4(A,1)         [A >= 1]               (1,1)
          4.  f3(A,C) -> f4(-1 + -1*A,1) [0 >= 1 + A && 0 >= C] (?,1)
          5.  f3(A,C) -> f4(-1 + -1*A,1) [0 >= 1 + A && C >= 2] (?,1)
          6.  f3(A,C) -> f4(-1 + -1*A,1) [A >= 1 && 0 >= C]     (?,1)
          7.  f3(A,C) -> f4(-1 + -1*A,1) [A >= 1 && C >= 2]     (?,1)
          8.  f4(A,C) -> f3(1 + -1*A,0)  [0 >= 1 + A && C = 1]  (?,1)
          9.  f4(A,C) -> f3(1 + -1*A,0)  [A >= 1 && C = 1]      (?,1)
          10. f5(A,C) -> f3(1 + -1*A,0)  [0 >= 1 + A && C = 1]  (?,1)
          11. f5(A,C) -> f3(1 + -1*A,0)  [A >= 1 && C = 1]      (?,1)
        Signature:
          {(f0,2);(f3,2);(f4,2);(f5,2);(f6,2);(f7,2)}
        Flow Graph:
          [0->{1,4,5,6,7},1->{},2->{},3->{2,8,9},4->{2,8,9},5->{2,8,9},6->{2,8,9},7->{2,8,9},8->{1,4,5,6,7},9->{1,4
          ,5,6,7},10->{1,4,5,6,7},11->{1,4,5,6,7}]
        
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [0,10,11]
* Step 4: LocalSizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          1. f3(A,C) -> f7(0,C)         [A = 0]                (?,1)
          2. f4(A,C) -> f7(0,C)         [A = 0]                (?,1)
          3. f6(A,C) -> f4(A,1)         [A >= 1]               (1,1)
          4. f3(A,C) -> f4(-1 + -1*A,1) [0 >= 1 + A && 0 >= C] (?,1)
          5. f3(A,C) -> f4(-1 + -1*A,1) [0 >= 1 + A && C >= 2] (?,1)
          6. f3(A,C) -> f4(-1 + -1*A,1) [A >= 1 && 0 >= C]     (?,1)
          7. f3(A,C) -> f4(-1 + -1*A,1) [A >= 1 && C >= 2]     (?,1)
          8. f4(A,C) -> f3(1 + -1*A,0)  [0 >= 1 + A && C = 1]  (?,1)
          9. f4(A,C) -> f3(1 + -1*A,0)  [A >= 1 && C = 1]      (?,1)
        Signature:
          {(f0,2);(f3,2);(f4,2);(f5,2);(f6,2);(f7,2)}
        Flow Graph:
          [1->{},2->{},3->{2,8,9},4->{2,8,9},5->{2,8,9},6->{2,8,9},7->{2,8,9},8->{1,4,5,6,7},9->{1,4,5,6,7}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (<1,0,A>,     0, .= 0) (<1,0,C>, C, .= 0) 
          (<2,0,A>,     0, .= 0) (<2,0,C>, C, .= 0) 
          (<3,0,A>,     A, .= 0) (<3,0,C>, 1, .= 1) 
          (<4,0,A>, 1 + A, .+ 1) (<4,0,C>, 1, .= 1) 
          (<5,0,A>, 1 + A, .+ 1) (<5,0,C>, 1, .= 1) 
          (<6,0,A>, 1 + A, .+ 1) (<6,0,C>, 1, .= 1) 
          (<7,0,A>, 1 + A, .+ 1) (<7,0,C>, 1, .= 1) 
          (<8,0,A>, 1 + A, .+ 1) (<8,0,C>, 0, .= 0) 
          (<9,0,A>, 1 + A, .+ 1) (<9,0,C>, 0, .= 0) 
* Step 5: SizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          1. f3(A,C) -> f7(0,C)         [A = 0]                (?,1)
          2. f4(A,C) -> f7(0,C)         [A = 0]                (?,1)
          3. f6(A,C) -> f4(A,1)         [A >= 1]               (1,1)
          4. f3(A,C) -> f4(-1 + -1*A,1) [0 >= 1 + A && 0 >= C] (?,1)
          5. f3(A,C) -> f4(-1 + -1*A,1) [0 >= 1 + A && C >= 2] (?,1)
          6. f3(A,C) -> f4(-1 + -1*A,1) [A >= 1 && 0 >= C]     (?,1)
          7. f3(A,C) -> f4(-1 + -1*A,1) [A >= 1 && C >= 2]     (?,1)
          8. f4(A,C) -> f3(1 + -1*A,0)  [0 >= 1 + A && C = 1]  (?,1)
          9. f4(A,C) -> f3(1 + -1*A,0)  [A >= 1 && C = 1]      (?,1)
        Signature:
          {(f0,2);(f3,2);(f4,2);(f5,2);(f6,2);(f7,2)}
        Flow Graph:
          [1->{},2->{},3->{2,8,9},4->{2,8,9},5->{2,8,9},6->{2,8,9},7->{2,8,9},8->{1,4,5,6,7},9->{1,4,5,6,7}]
        Sizebounds:
          (<1,0,A>, ?) (<1,0,C>, ?) 
          (<2,0,A>, ?) (<2,0,C>, ?) 
          (<3,0,A>, ?) (<3,0,C>, ?) 
          (<4,0,A>, ?) (<4,0,C>, ?) 
          (<5,0,A>, ?) (<5,0,C>, ?) 
          (<6,0,A>, ?) (<6,0,C>, ?) 
          (<7,0,A>, ?) (<7,0,C>, ?) 
          (<8,0,A>, ?) (<8,0,C>, ?) 
          (<9,0,A>, ?) (<9,0,C>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (<1,0,A>, 0) (<1,0,C>, 0) 
          (<2,0,A>, 0) (<2,0,C>, 1) 
          (<3,0,A>, A) (<3,0,C>, 1) 
          (<4,0,A>, 0) (<4,0,C>, 1) 
          (<5,0,A>, 0) (<5,0,C>, 1) 
          (<6,0,A>, ?) (<6,0,C>, 1) 
          (<7,0,A>, ?) (<7,0,C>, 1) 
          (<8,0,A>, 2) (<8,0,C>, 0) 
          (<9,0,A>, ?) (<9,0,C>, 0) 
* Step 6: UnsatPaths WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          1. f3(A,C) -> f7(0,C)         [A = 0]                (?,1)
          2. f4(A,C) -> f7(0,C)         [A = 0]                (?,1)
          3. f6(A,C) -> f4(A,1)         [A >= 1]               (1,1)
          4. f3(A,C) -> f4(-1 + -1*A,1) [0 >= 1 + A && 0 >= C] (?,1)
          5. f3(A,C) -> f4(-1 + -1*A,1) [0 >= 1 + A && C >= 2] (?,1)
          6. f3(A,C) -> f4(-1 + -1*A,1) [A >= 1 && 0 >= C]     (?,1)
          7. f3(A,C) -> f4(-1 + -1*A,1) [A >= 1 && C >= 2]     (?,1)
          8. f4(A,C) -> f3(1 + -1*A,0)  [0 >= 1 + A && C = 1]  (?,1)
          9. f4(A,C) -> f3(1 + -1*A,0)  [A >= 1 && C = 1]      (?,1)
        Signature:
          {(f0,2);(f3,2);(f4,2);(f5,2);(f6,2);(f7,2)}
        Flow Graph:
          [1->{},2->{},3->{2,8,9},4->{2,8,9},5->{2,8,9},6->{2,8,9},7->{2,8,9},8->{1,4,5,6,7},9->{1,4,5,6,7}]
        Sizebounds:
          (<1,0,A>, 0) (<1,0,C>, 0) 
          (<2,0,A>, 0) (<2,0,C>, 1) 
          (<3,0,A>, A) (<3,0,C>, 1) 
          (<4,0,A>, 0) (<4,0,C>, 1) 
          (<5,0,A>, 0) (<5,0,C>, 1) 
          (<6,0,A>, ?) (<6,0,C>, 1) 
          (<7,0,A>, ?) (<7,0,C>, 1) 
          (<8,0,A>, 2) (<8,0,C>, 0) 
          (<9,0,A>, ?) (<9,0,C>, 0) 
    + Applied Processor:
        UnsatPaths
    + Details:
        We remove following edges from the transition graph: [(3,2)
                                                             ,(3,8)
                                                             ,(4,8)
                                                             ,(5,8)
                                                             ,(6,2)
                                                             ,(6,9)
                                                             ,(7,2)
                                                             ,(7,9)
                                                             ,(8,1)
                                                             ,(8,4)
                                                             ,(8,5)
                                                             ,(8,7)
                                                             ,(9,5)
                                                             ,(9,6)
                                                             ,(9,7)]
* Step 7: UnreachableRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          1. f3(A,C) -> f7(0,C)         [A = 0]                (?,1)
          2. f4(A,C) -> f7(0,C)         [A = 0]                (?,1)
          3. f6(A,C) -> f4(A,1)         [A >= 1]               (1,1)
          4. f3(A,C) -> f4(-1 + -1*A,1) [0 >= 1 + A && 0 >= C] (?,1)
          5. f3(A,C) -> f4(-1 + -1*A,1) [0 >= 1 + A && C >= 2] (?,1)
          6. f3(A,C) -> f4(-1 + -1*A,1) [A >= 1 && 0 >= C]     (?,1)
          7. f3(A,C) -> f4(-1 + -1*A,1) [A >= 1 && C >= 2]     (?,1)
          8. f4(A,C) -> f3(1 + -1*A,0)  [0 >= 1 + A && C = 1]  (?,1)
          9. f4(A,C) -> f3(1 + -1*A,0)  [A >= 1 && C = 1]      (?,1)
        Signature:
          {(f0,2);(f3,2);(f4,2);(f5,2);(f6,2);(f7,2)}
        Flow Graph:
          [1->{},2->{},3->{9},4->{2,9},5->{2,9},6->{8},7->{8},8->{6},9->{1,4}]
        Sizebounds:
          (<1,0,A>, 0) (<1,0,C>, 0) 
          (<2,0,A>, 0) (<2,0,C>, 1) 
          (<3,0,A>, A) (<3,0,C>, 1) 
          (<4,0,A>, 0) (<4,0,C>, 1) 
          (<5,0,A>, 0) (<5,0,C>, 1) 
          (<6,0,A>, ?) (<6,0,C>, 1) 
          (<7,0,A>, ?) (<7,0,C>, 1) 
          (<8,0,A>, 2) (<8,0,C>, 0) 
          (<9,0,A>, ?) (<9,0,C>, 0) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [5,6,7,8]
* Step 8: LeafRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          1. f3(A,C) -> f7(0,C)         [A = 0]                (?,1)
          2. f4(A,C) -> f7(0,C)         [A = 0]                (?,1)
          3. f6(A,C) -> f4(A,1)         [A >= 1]               (1,1)
          4. f3(A,C) -> f4(-1 + -1*A,1) [0 >= 1 + A && 0 >= C] (?,1)
          9. f4(A,C) -> f3(1 + -1*A,0)  [A >= 1 && C = 1]      (?,1)
        Signature:
          {(f0,2);(f3,2);(f4,2);(f5,2);(f6,2);(f7,2)}
        Flow Graph:
          [1->{},2->{},3->{9},4->{2,9},9->{1,4}]
        Sizebounds:
          (<1,0,A>, 0) (<1,0,C>, 0) 
          (<2,0,A>, 0) (<2,0,C>, 1) 
          (<3,0,A>, A) (<3,0,C>, 1) 
          (<4,0,A>, 0) (<4,0,C>, 1) 
          (<9,0,A>, ?) (<9,0,C>, 0) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [1,2]
* Step 9: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          3. f6(A,C) -> f4(A,1)         [A >= 1]               (1,1)
          4. f3(A,C) -> f4(-1 + -1*A,1) [0 >= 1 + A && 0 >= C] (?,1)
          9. f4(A,C) -> f3(1 + -1*A,0)  [A >= 1 && C = 1]      (?,1)
        Signature:
          {(f0,2);(f3,2);(f4,2);(f5,2);(f6,2);(f7,2)}
        Flow Graph:
          [3->{9},4->{9},9->{4}]
        Sizebounds:
          (<3,0,A>, A) (<3,0,C>, 1) 
          (<4,0,A>, 0) (<4,0,C>, 1) 
          (<9,0,A>, ?) (<9,0,C>, 0) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f3) = -1 + -1*x1
          p(f4) = x1        
          p(f6) = x1        
        
        The following rules are strictly oriented:
        [A >= 1 && C = 1] ==>               
                  f4(A,C)   = A             
                            > -2 + A        
                            = f3(1 + -1*A,0)
        
        
        The following rules are weakly oriented:
                      [A >= 1] ==>                
                       f6(A,C)   = A              
                                >= A              
                                 = f4(A,1)        
        
        [0 >= 1 + A && 0 >= C] ==>                
                       f3(A,C)   = -1 + -1*A      
                                >= -1 + -1*A      
                                 = f4(-1 + -1*A,1)
        
        
* Step 10: KnowledgePropagation WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          3. f6(A,C) -> f4(A,1)         [A >= 1]               (1,1)
          4. f3(A,C) -> f4(-1 + -1*A,1) [0 >= 1 + A && 0 >= C] (?,1)
          9. f4(A,C) -> f3(1 + -1*A,0)  [A >= 1 && C = 1]      (A,1)
        Signature:
          {(f0,2);(f3,2);(f4,2);(f5,2);(f6,2);(f7,2)}
        Flow Graph:
          [3->{9},4->{9},9->{4}]
        Sizebounds:
          (<3,0,A>, A) (<3,0,C>, 1) 
          (<4,0,A>, 0) (<4,0,C>, 1) 
          (<9,0,A>, ?) (<9,0,C>, 0) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 11: LocalSizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          3. f6(A,C) -> f4(A,1)         [A >= 1]               (1,1)
          4. f3(A,C) -> f4(-1 + -1*A,1) [0 >= 1 + A && 0 >= C] (A,1)
          9. f4(A,C) -> f3(1 + -1*A,0)  [A >= 1 && C = 1]      (A,1)
        Signature:
          {(f0,2);(f3,2);(f4,2);(f5,2);(f6,2);(f7,2)}
        Flow Graph:
          [3->{9},4->{9},9->{4}]
        Sizebounds:
          (<3,0,A>, A) (<3,0,C>, 1) 
          (<4,0,A>, 0) (<4,0,C>, 1) 
          (<9,0,A>, ?) (<9,0,C>, 0) 
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        The problem is already solved.

WORST_CASE(?,O(n^1))