WORST_CASE(?,O(n^1)) * Step 1: TrivialSCCs WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f0(A,B,C) -> f3(-1*A,B,C) True (?,1) 1. f3(A,B,C) -> f7(0,D,C) [A = 0] (?,1) 2. f4(A,B,C) -> f7(0,D,C) [A = 0] (?,1) 3. f6(A,B,C) -> f4(A,B,1) [A >= 1] (1,1) 4. f3(A,B,C) -> f4(-1 + -1*A,B,1) [0 >= 1 + A && 0 >= C] (?,1) 5. f3(A,B,C) -> f4(-1 + -1*A,B,1) [0 >= 1 + A && C >= 2] (?,1) 6. f3(A,B,C) -> f4(-1 + -1*A,B,1) [A >= 1 && 0 >= C] (?,1) 7. f3(A,B,C) -> f4(-1 + -1*A,B,1) [A >= 1 && C >= 2] (?,1) 8. f4(A,B,C) -> f3(1 + -1*A,B,0) [0 >= 1 + A && C = 1] (?,1) 9. f4(A,B,C) -> f3(1 + -1*A,B,0) [A >= 1 && C = 1] (?,1) 10. f5(A,B,C) -> f3(1 + -1*A,B,0) [0 >= 1 + A && C = 1] (?,1) 11. f5(A,B,C) -> f3(1 + -1*A,B,0) [A >= 1 && C = 1] (?,1) Signature: {(f0,3);(f3,3);(f4,3);(f5,3);(f6,3);(f7,3)} Flow Graph: [0->{1,4,5,6,7},1->{},2->{},3->{2,8,9},4->{2,8,9},5->{2,8,9},6->{2,8,9},7->{2,8,9},8->{1,4,5,6,7},9->{1,4 ,5,6,7},10->{1,4,5,6,7},11->{1,4,5,6,7}] + Applied Processor: TrivialSCCs + Details: All trivial SCCs of the transition graph admit timebound 1. * Step 2: RestrictVarsProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f0(A,B,C) -> f3(-1*A,B,C) True (1,1) 1. f3(A,B,C) -> f7(0,D,C) [A = 0] (?,1) 2. f4(A,B,C) -> f7(0,D,C) [A = 0] (?,1) 3. f6(A,B,C) -> f4(A,B,1) [A >= 1] (1,1) 4. f3(A,B,C) -> f4(-1 + -1*A,B,1) [0 >= 1 + A && 0 >= C] (?,1) 5. f3(A,B,C) -> f4(-1 + -1*A,B,1) [0 >= 1 + A && C >= 2] (?,1) 6. f3(A,B,C) -> f4(-1 + -1*A,B,1) [A >= 1 && 0 >= C] (?,1) 7. f3(A,B,C) -> f4(-1 + -1*A,B,1) [A >= 1 && C >= 2] (?,1) 8. f4(A,B,C) -> f3(1 + -1*A,B,0) [0 >= 1 + A && C = 1] (?,1) 9. f4(A,B,C) -> f3(1 + -1*A,B,0) [A >= 1 && C = 1] (?,1) 10. f5(A,B,C) -> f3(1 + -1*A,B,0) [0 >= 1 + A && C = 1] (1,1) 11. f5(A,B,C) -> f3(1 + -1*A,B,0) [A >= 1 && C = 1] (1,1) Signature: {(f0,3);(f3,3);(f4,3);(f5,3);(f6,3);(f7,3)} Flow Graph: [0->{1,4,5,6,7},1->{},2->{},3->{2,8,9},4->{2,8,9},5->{2,8,9},6->{2,8,9},7->{2,8,9},8->{1,4,5,6,7},9->{1,4 ,5,6,7},10->{1,4,5,6,7},11->{1,4,5,6,7}] + Applied Processor: RestrictVarsProcessor + Details: We removed the arguments [B] . * Step 3: UnreachableRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f0(A,C) -> f3(-1*A,C) True (?,1) 1. f3(A,C) -> f7(0,C) [A = 0] (?,1) 2. f4(A,C) -> f7(0,C) [A = 0] (?,1) 3. f6(A,C) -> f4(A,1) [A >= 1] (1,1) 4. f3(A,C) -> f4(-1 + -1*A,1) [0 >= 1 + A && 0 >= C] (?,1) 5. f3(A,C) -> f4(-1 + -1*A,1) [0 >= 1 + A && C >= 2] (?,1) 6. f3(A,C) -> f4(-1 + -1*A,1) [A >= 1 && 0 >= C] (?,1) 7. f3(A,C) -> f4(-1 + -1*A,1) [A >= 1 && C >= 2] (?,1) 8. f4(A,C) -> f3(1 + -1*A,0) [0 >= 1 + A && C = 1] (?,1) 9. f4(A,C) -> f3(1 + -1*A,0) [A >= 1 && C = 1] (?,1) 10. f5(A,C) -> f3(1 + -1*A,0) [0 >= 1 + A && C = 1] (?,1) 11. f5(A,C) -> f3(1 + -1*A,0) [A >= 1 && C = 1] (?,1) Signature: {(f0,2);(f3,2);(f4,2);(f5,2);(f6,2);(f7,2)} Flow Graph: [0->{1,4,5,6,7},1->{},2->{},3->{2,8,9},4->{2,8,9},5->{2,8,9},6->{2,8,9},7->{2,8,9},8->{1,4,5,6,7},9->{1,4 ,5,6,7},10->{1,4,5,6,7},11->{1,4,5,6,7}] + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [0,10,11] * Step 4: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 1. f3(A,C) -> f7(0,C) [A = 0] (?,1) 2. f4(A,C) -> f7(0,C) [A = 0] (?,1) 3. f6(A,C) -> f4(A,1) [A >= 1] (1,1) 4. f3(A,C) -> f4(-1 + -1*A,1) [0 >= 1 + A && 0 >= C] (?,1) 5. f3(A,C) -> f4(-1 + -1*A,1) [0 >= 1 + A && C >= 2] (?,1) 6. f3(A,C) -> f4(-1 + -1*A,1) [A >= 1 && 0 >= C] (?,1) 7. f3(A,C) -> f4(-1 + -1*A,1) [A >= 1 && C >= 2] (?,1) 8. f4(A,C) -> f3(1 + -1*A,0) [0 >= 1 + A && C = 1] (?,1) 9. f4(A,C) -> f3(1 + -1*A,0) [A >= 1 && C = 1] (?,1) Signature: {(f0,2);(f3,2);(f4,2);(f5,2);(f6,2);(f7,2)} Flow Graph: [1->{},2->{},3->{2,8,9},4->{2,8,9},5->{2,8,9},6->{2,8,9},7->{2,8,9},8->{1,4,5,6,7},9->{1,4,5,6,7}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<1,0,A>, 0, .= 0) (<1,0,C>, C, .= 0) (<2,0,A>, 0, .= 0) (<2,0,C>, C, .= 0) (<3,0,A>, A, .= 0) (<3,0,C>, 1, .= 1) (<4,0,A>, 1 + A, .+ 1) (<4,0,C>, 1, .= 1) (<5,0,A>, 1 + A, .+ 1) (<5,0,C>, 1, .= 1) (<6,0,A>, 1 + A, .+ 1) (<6,0,C>, 1, .= 1) (<7,0,A>, 1 + A, .+ 1) (<7,0,C>, 1, .= 1) (<8,0,A>, 1 + A, .+ 1) (<8,0,C>, 0, .= 0) (<9,0,A>, 1 + A, .+ 1) (<9,0,C>, 0, .= 0) * Step 5: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 1. f3(A,C) -> f7(0,C) [A = 0] (?,1) 2. f4(A,C) -> f7(0,C) [A = 0] (?,1) 3. f6(A,C) -> f4(A,1) [A >= 1] (1,1) 4. f3(A,C) -> f4(-1 + -1*A,1) [0 >= 1 + A && 0 >= C] (?,1) 5. f3(A,C) -> f4(-1 + -1*A,1) [0 >= 1 + A && C >= 2] (?,1) 6. f3(A,C) -> f4(-1 + -1*A,1) [A >= 1 && 0 >= C] (?,1) 7. f3(A,C) -> f4(-1 + -1*A,1) [A >= 1 && C >= 2] (?,1) 8. f4(A,C) -> f3(1 + -1*A,0) [0 >= 1 + A && C = 1] (?,1) 9. f4(A,C) -> f3(1 + -1*A,0) [A >= 1 && C = 1] (?,1) Signature: {(f0,2);(f3,2);(f4,2);(f5,2);(f6,2);(f7,2)} Flow Graph: [1->{},2->{},3->{2,8,9},4->{2,8,9},5->{2,8,9},6->{2,8,9},7->{2,8,9},8->{1,4,5,6,7},9->{1,4,5,6,7}] Sizebounds: (<1,0,A>, ?) (<1,0,C>, ?) (<2,0,A>, ?) (<2,0,C>, ?) (<3,0,A>, ?) (<3,0,C>, ?) (<4,0,A>, ?) (<4,0,C>, ?) (<5,0,A>, ?) (<5,0,C>, ?) (<6,0,A>, ?) (<6,0,C>, ?) (<7,0,A>, ?) (<7,0,C>, ?) (<8,0,A>, ?) (<8,0,C>, ?) (<9,0,A>, ?) (<9,0,C>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<1,0,A>, 0) (<1,0,C>, 0) (<2,0,A>, 0) (<2,0,C>, 1) (<3,0,A>, A) (<3,0,C>, 1) (<4,0,A>, 0) (<4,0,C>, 1) (<5,0,A>, 0) (<5,0,C>, 1) (<6,0,A>, ?) (<6,0,C>, 1) (<7,0,A>, ?) (<7,0,C>, 1) (<8,0,A>, 2) (<8,0,C>, 0) (<9,0,A>, ?) (<9,0,C>, 0) * Step 6: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 1. f3(A,C) -> f7(0,C) [A = 0] (?,1) 2. f4(A,C) -> f7(0,C) [A = 0] (?,1) 3. f6(A,C) -> f4(A,1) [A >= 1] (1,1) 4. f3(A,C) -> f4(-1 + -1*A,1) [0 >= 1 + A && 0 >= C] (?,1) 5. f3(A,C) -> f4(-1 + -1*A,1) [0 >= 1 + A && C >= 2] (?,1) 6. f3(A,C) -> f4(-1 + -1*A,1) [A >= 1 && 0 >= C] (?,1) 7. f3(A,C) -> f4(-1 + -1*A,1) [A >= 1 && C >= 2] (?,1) 8. f4(A,C) -> f3(1 + -1*A,0) [0 >= 1 + A && C = 1] (?,1) 9. f4(A,C) -> f3(1 + -1*A,0) [A >= 1 && C = 1] (?,1) Signature: {(f0,2);(f3,2);(f4,2);(f5,2);(f6,2);(f7,2)} Flow Graph: [1->{},2->{},3->{2,8,9},4->{2,8,9},5->{2,8,9},6->{2,8,9},7->{2,8,9},8->{1,4,5,6,7},9->{1,4,5,6,7}] Sizebounds: (<1,0,A>, 0) (<1,0,C>, 0) (<2,0,A>, 0) (<2,0,C>, 1) (<3,0,A>, A) (<3,0,C>, 1) (<4,0,A>, 0) (<4,0,C>, 1) (<5,0,A>, 0) (<5,0,C>, 1) (<6,0,A>, ?) (<6,0,C>, 1) (<7,0,A>, ?) (<7,0,C>, 1) (<8,0,A>, 2) (<8,0,C>, 0) (<9,0,A>, ?) (<9,0,C>, 0) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(3,2) ,(3,8) ,(4,8) ,(5,8) ,(6,2) ,(6,9) ,(7,2) ,(7,9) ,(8,1) ,(8,4) ,(8,5) ,(8,7) ,(9,5) ,(9,6) ,(9,7)] * Step 7: UnreachableRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 1. f3(A,C) -> f7(0,C) [A = 0] (?,1) 2. f4(A,C) -> f7(0,C) [A = 0] (?,1) 3. f6(A,C) -> f4(A,1) [A >= 1] (1,1) 4. f3(A,C) -> f4(-1 + -1*A,1) [0 >= 1 + A && 0 >= C] (?,1) 5. f3(A,C) -> f4(-1 + -1*A,1) [0 >= 1 + A && C >= 2] (?,1) 6. f3(A,C) -> f4(-1 + -1*A,1) [A >= 1 && 0 >= C] (?,1) 7. f3(A,C) -> f4(-1 + -1*A,1) [A >= 1 && C >= 2] (?,1) 8. f4(A,C) -> f3(1 + -1*A,0) [0 >= 1 + A && C = 1] (?,1) 9. f4(A,C) -> f3(1 + -1*A,0) [A >= 1 && C = 1] (?,1) Signature: {(f0,2);(f3,2);(f4,2);(f5,2);(f6,2);(f7,2)} Flow Graph: [1->{},2->{},3->{9},4->{2,9},5->{2,9},6->{8},7->{8},8->{6},9->{1,4}] Sizebounds: (<1,0,A>, 0) (<1,0,C>, 0) (<2,0,A>, 0) (<2,0,C>, 1) (<3,0,A>, A) (<3,0,C>, 1) (<4,0,A>, 0) (<4,0,C>, 1) (<5,0,A>, 0) (<5,0,C>, 1) (<6,0,A>, ?) (<6,0,C>, 1) (<7,0,A>, ?) (<7,0,C>, 1) (<8,0,A>, 2) (<8,0,C>, 0) (<9,0,A>, ?) (<9,0,C>, 0) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [5,6,7,8] * Step 8: LeafRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 1. f3(A,C) -> f7(0,C) [A = 0] (?,1) 2. f4(A,C) -> f7(0,C) [A = 0] (?,1) 3. f6(A,C) -> f4(A,1) [A >= 1] (1,1) 4. f3(A,C) -> f4(-1 + -1*A,1) [0 >= 1 + A && 0 >= C] (?,1) 9. f4(A,C) -> f3(1 + -1*A,0) [A >= 1 && C = 1] (?,1) Signature: {(f0,2);(f3,2);(f4,2);(f5,2);(f6,2);(f7,2)} Flow Graph: [1->{},2->{},3->{9},4->{2,9},9->{1,4}] Sizebounds: (<1,0,A>, 0) (<1,0,C>, 0) (<2,0,A>, 0) (<2,0,C>, 1) (<3,0,A>, A) (<3,0,C>, 1) (<4,0,A>, 0) (<4,0,C>, 1) (<9,0,A>, ?) (<9,0,C>, 0) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [1,2] * Step 9: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 3. f6(A,C) -> f4(A,1) [A >= 1] (1,1) 4. f3(A,C) -> f4(-1 + -1*A,1) [0 >= 1 + A && 0 >= C] (?,1) 9. f4(A,C) -> f3(1 + -1*A,0) [A >= 1 && C = 1] (?,1) Signature: {(f0,2);(f3,2);(f4,2);(f5,2);(f6,2);(f7,2)} Flow Graph: [3->{9},4->{9},9->{4}] Sizebounds: (<3,0,A>, A) (<3,0,C>, 1) (<4,0,A>, 0) (<4,0,C>, 1) (<9,0,A>, ?) (<9,0,C>, 0) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f3) = -1 + -1*x1 p(f4) = x1 p(f6) = x1 The following rules are strictly oriented: [A >= 1 && C = 1] ==> f4(A,C) = A > -2 + A = f3(1 + -1*A,0) The following rules are weakly oriented: [A >= 1] ==> f6(A,C) = A >= A = f4(A,1) [0 >= 1 + A && 0 >= C] ==> f3(A,C) = -1 + -1*A >= -1 + -1*A = f4(-1 + -1*A,1) * Step 10: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 3. f6(A,C) -> f4(A,1) [A >= 1] (1,1) 4. f3(A,C) -> f4(-1 + -1*A,1) [0 >= 1 + A && 0 >= C] (?,1) 9. f4(A,C) -> f3(1 + -1*A,0) [A >= 1 && C = 1] (A,1) Signature: {(f0,2);(f3,2);(f4,2);(f5,2);(f6,2);(f7,2)} Flow Graph: [3->{9},4->{9},9->{4}] Sizebounds: (<3,0,A>, A) (<3,0,C>, 1) (<4,0,A>, 0) (<4,0,C>, 1) (<9,0,A>, ?) (<9,0,C>, 0) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 11: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 3. f6(A,C) -> f4(A,1) [A >= 1] (1,1) 4. f3(A,C) -> f4(-1 + -1*A,1) [0 >= 1 + A && 0 >= C] (A,1) 9. f4(A,C) -> f3(1 + -1*A,0) [A >= 1 && C = 1] (A,1) Signature: {(f0,2);(f3,2);(f4,2);(f5,2);(f6,2);(f7,2)} Flow Graph: [3->{9},4->{9},9->{4}] Sizebounds: (<3,0,A>, A) (<3,0,C>, 1) (<4,0,A>, 0) (<4,0,C>, 1) (<9,0,A>, ?) (<9,0,C>, 0) + Applied Processor: LocalSizeboundsProc + Details: The problem is already solved. WORST_CASE(?,O(n^1))