WORST_CASE(?,O(n^1))
* Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. evalrandom1dstart(A,B)    -> evalrandom1dentryin(A,B)   True         (1,1)
          1. evalrandom1dentryin(A,B)  -> evalrandom1dbb5in(A,1)     [A >= 1]     (?,1)
          2. evalrandom1dentryin(A,B)  -> evalrandom1dreturnin(A,B)  [0 >= A]     (?,1)
          3. evalrandom1dbb5in(A,B)    -> evalrandom1dbb1in(A,B)     [A >= B]     (?,1)
          4. evalrandom1dbb5in(A,B)    -> evalrandom1dreturnin(A,B)  [B >= 1 + A] (?,1)
          5. evalrandom1dbb1in(A,B)    -> evalrandom1dbb5in(A,1 + B) [0 >= 1 + C] (?,1)
          6. evalrandom1dbb1in(A,B)    -> evalrandom1dbb5in(A,1 + B) [C >= 1]     (?,1)
          7. evalrandom1dbb1in(A,B)    -> evalrandom1dbb5in(A,1 + B) True         (?,1)
          8. evalrandom1dreturnin(A,B) -> evalrandom1dstop(A,B)      True         (?,1)
        Signature:
          {(evalrandom1dbb1in,2)
          ;(evalrandom1dbb5in,2)
          ;(evalrandom1dentryin,2)
          ;(evalrandom1dreturnin,2)
          ;(evalrandom1dstart,2)
          ;(evalrandom1dstop,2)}
        Flow Graph:
          [0->{1,2},1->{3,4},2->{8},3->{5,6,7},4->{8},5->{3,4},6->{3,4},7->{3,4},8->{}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (<0,0,A>, A, .= 0) (<0,0,B>,     B, .= 0) 
          (<1,0,A>, A, .= 0) (<1,0,B>,     1, .= 1) 
          (<2,0,A>, A, .= 0) (<2,0,B>,     B, .= 0) 
          (<3,0,A>, A, .= 0) (<3,0,B>,     B, .= 0) 
          (<4,0,A>, A, .= 0) (<4,0,B>,     B, .= 0) 
          (<5,0,A>, A, .= 0) (<5,0,B>, 1 + B, .+ 1) 
          (<6,0,A>, A, .= 0) (<6,0,B>, 1 + B, .+ 1) 
          (<7,0,A>, A, .= 0) (<7,0,B>, 1 + B, .+ 1) 
          (<8,0,A>, A, .= 0) (<8,0,B>,     B, .= 0) 
* Step 2: SizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. evalrandom1dstart(A,B)    -> evalrandom1dentryin(A,B)   True         (1,1)
          1. evalrandom1dentryin(A,B)  -> evalrandom1dbb5in(A,1)     [A >= 1]     (?,1)
          2. evalrandom1dentryin(A,B)  -> evalrandom1dreturnin(A,B)  [0 >= A]     (?,1)
          3. evalrandom1dbb5in(A,B)    -> evalrandom1dbb1in(A,B)     [A >= B]     (?,1)
          4. evalrandom1dbb5in(A,B)    -> evalrandom1dreturnin(A,B)  [B >= 1 + A] (?,1)
          5. evalrandom1dbb1in(A,B)    -> evalrandom1dbb5in(A,1 + B) [0 >= 1 + C] (?,1)
          6. evalrandom1dbb1in(A,B)    -> evalrandom1dbb5in(A,1 + B) [C >= 1]     (?,1)
          7. evalrandom1dbb1in(A,B)    -> evalrandom1dbb5in(A,1 + B) True         (?,1)
          8. evalrandom1dreturnin(A,B) -> evalrandom1dstop(A,B)      True         (?,1)
        Signature:
          {(evalrandom1dbb1in,2)
          ;(evalrandom1dbb5in,2)
          ;(evalrandom1dentryin,2)
          ;(evalrandom1dreturnin,2)
          ;(evalrandom1dstart,2)
          ;(evalrandom1dstop,2)}
        Flow Graph:
          [0->{1,2},1->{3,4},2->{8},3->{5,6,7},4->{8},5->{3,4},6->{3,4},7->{3,4},8->{}]
        Sizebounds:
          (<0,0,A>, ?) (<0,0,B>, ?) 
          (<1,0,A>, ?) (<1,0,B>, ?) 
          (<2,0,A>, ?) (<2,0,B>, ?) 
          (<3,0,A>, ?) (<3,0,B>, ?) 
          (<4,0,A>, ?) (<4,0,B>, ?) 
          (<5,0,A>, ?) (<5,0,B>, ?) 
          (<6,0,A>, ?) (<6,0,B>, ?) 
          (<7,0,A>, ?) (<7,0,B>, ?) 
          (<8,0,A>, ?) (<8,0,B>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (<0,0,A>, A) (<0,0,B>,         B) 
          (<1,0,A>, A) (<1,0,B>,         1) 
          (<2,0,A>, A) (<2,0,B>,         B) 
          (<3,0,A>, A) (<3,0,B>,         A) 
          (<4,0,A>, A) (<4,0,B>,     1 + A) 
          (<5,0,A>, A) (<5,0,B>,         A) 
          (<6,0,A>, A) (<6,0,B>,         A) 
          (<7,0,A>, A) (<7,0,B>,         A) 
          (<8,0,A>, A) (<8,0,B>, 1 + A + B) 
* Step 3: UnsatPaths WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. evalrandom1dstart(A,B)    -> evalrandom1dentryin(A,B)   True         (1,1)
          1. evalrandom1dentryin(A,B)  -> evalrandom1dbb5in(A,1)     [A >= 1]     (?,1)
          2. evalrandom1dentryin(A,B)  -> evalrandom1dreturnin(A,B)  [0 >= A]     (?,1)
          3. evalrandom1dbb5in(A,B)    -> evalrandom1dbb1in(A,B)     [A >= B]     (?,1)
          4. evalrandom1dbb5in(A,B)    -> evalrandom1dreturnin(A,B)  [B >= 1 + A] (?,1)
          5. evalrandom1dbb1in(A,B)    -> evalrandom1dbb5in(A,1 + B) [0 >= 1 + C] (?,1)
          6. evalrandom1dbb1in(A,B)    -> evalrandom1dbb5in(A,1 + B) [C >= 1]     (?,1)
          7. evalrandom1dbb1in(A,B)    -> evalrandom1dbb5in(A,1 + B) True         (?,1)
          8. evalrandom1dreturnin(A,B) -> evalrandom1dstop(A,B)      True         (?,1)
        Signature:
          {(evalrandom1dbb1in,2)
          ;(evalrandom1dbb5in,2)
          ;(evalrandom1dentryin,2)
          ;(evalrandom1dreturnin,2)
          ;(evalrandom1dstart,2)
          ;(evalrandom1dstop,2)}
        Flow Graph:
          [0->{1,2},1->{3,4},2->{8},3->{5,6,7},4->{8},5->{3,4},6->{3,4},7->{3,4},8->{}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>,         B) 
          (<1,0,A>, A) (<1,0,B>,         1) 
          (<2,0,A>, A) (<2,0,B>,         B) 
          (<3,0,A>, A) (<3,0,B>,         A) 
          (<4,0,A>, A) (<4,0,B>,     1 + A) 
          (<5,0,A>, A) (<5,0,B>,         A) 
          (<6,0,A>, A) (<6,0,B>,         A) 
          (<7,0,A>, A) (<7,0,B>,         A) 
          (<8,0,A>, A) (<8,0,B>, 1 + A + B) 
    + Applied Processor:
        UnsatPaths
    + Details:
        We remove following edges from the transition graph: [(1,4)]
* Step 4: LeafRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. evalrandom1dstart(A,B)    -> evalrandom1dentryin(A,B)   True         (1,1)
          1. evalrandom1dentryin(A,B)  -> evalrandom1dbb5in(A,1)     [A >= 1]     (?,1)
          2. evalrandom1dentryin(A,B)  -> evalrandom1dreturnin(A,B)  [0 >= A]     (?,1)
          3. evalrandom1dbb5in(A,B)    -> evalrandom1dbb1in(A,B)     [A >= B]     (?,1)
          4. evalrandom1dbb5in(A,B)    -> evalrandom1dreturnin(A,B)  [B >= 1 + A] (?,1)
          5. evalrandom1dbb1in(A,B)    -> evalrandom1dbb5in(A,1 + B) [0 >= 1 + C] (?,1)
          6. evalrandom1dbb1in(A,B)    -> evalrandom1dbb5in(A,1 + B) [C >= 1]     (?,1)
          7. evalrandom1dbb1in(A,B)    -> evalrandom1dbb5in(A,1 + B) True         (?,1)
          8. evalrandom1dreturnin(A,B) -> evalrandom1dstop(A,B)      True         (?,1)
        Signature:
          {(evalrandom1dbb1in,2)
          ;(evalrandom1dbb5in,2)
          ;(evalrandom1dentryin,2)
          ;(evalrandom1dreturnin,2)
          ;(evalrandom1dstart,2)
          ;(evalrandom1dstop,2)}
        Flow Graph:
          [0->{1,2},1->{3},2->{8},3->{5,6,7},4->{8},5->{3,4},6->{3,4},7->{3,4},8->{}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>,         B) 
          (<1,0,A>, A) (<1,0,B>,         1) 
          (<2,0,A>, A) (<2,0,B>,         B) 
          (<3,0,A>, A) (<3,0,B>,         A) 
          (<4,0,A>, A) (<4,0,B>,     1 + A) 
          (<5,0,A>, A) (<5,0,B>,         A) 
          (<6,0,A>, A) (<6,0,B>,         A) 
          (<7,0,A>, A) (<7,0,B>,         A) 
          (<8,0,A>, A) (<8,0,B>, 1 + A + B) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [2,4,8]
* Step 5: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. evalrandom1dstart(A,B)   -> evalrandom1dentryin(A,B)   True         (1,1)
          1. evalrandom1dentryin(A,B) -> evalrandom1dbb5in(A,1)     [A >= 1]     (?,1)
          3. evalrandom1dbb5in(A,B)   -> evalrandom1dbb1in(A,B)     [A >= B]     (?,1)
          5. evalrandom1dbb1in(A,B)   -> evalrandom1dbb5in(A,1 + B) [0 >= 1 + C] (?,1)
          6. evalrandom1dbb1in(A,B)   -> evalrandom1dbb5in(A,1 + B) [C >= 1]     (?,1)
          7. evalrandom1dbb1in(A,B)   -> evalrandom1dbb5in(A,1 + B) True         (?,1)
        Signature:
          {(evalrandom1dbb1in,2)
          ;(evalrandom1dbb5in,2)
          ;(evalrandom1dentryin,2)
          ;(evalrandom1dreturnin,2)
          ;(evalrandom1dstart,2)
          ;(evalrandom1dstop,2)}
        Flow Graph:
          [0->{1},1->{3},3->{5,6,7},5->{3},6->{3},7->{3}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>, B) 
          (<1,0,A>, A) (<1,0,B>, 1) 
          (<3,0,A>, A) (<3,0,B>, A) 
          (<5,0,A>, A) (<5,0,B>, A) 
          (<6,0,A>, A) (<6,0,B>, A) 
          (<7,0,A>, A) (<7,0,B>, A) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
            p(evalrandom1dbb1in) = x1 + -1*x2    
            p(evalrandom1dbb5in) = 1 + x1 + -1*x2
          p(evalrandom1dentryin) = x1            
            p(evalrandom1dstart) = x1            
        
        The following rules are strictly oriented:
                        [A >= B] ==>                       
          evalrandom1dbb5in(A,B)   = 1 + A + -1*B          
                                   > A + -1*B              
                                   = evalrandom1dbb1in(A,B)
        
        
        The following rules are weakly oriented:
                              True ==>                           
            evalrandom1dstart(A,B)   = A                         
                                    >= A                         
                                     = evalrandom1dentryin(A,B)  
        
                          [A >= 1] ==>                           
          evalrandom1dentryin(A,B)   = A                         
                                    >= A                         
                                     = evalrandom1dbb5in(A,1)    
        
                      [0 >= 1 + C] ==>                           
            evalrandom1dbb1in(A,B)   = A + -1*B                  
                                    >= A + -1*B                  
                                     = evalrandom1dbb5in(A,1 + B)
        
                          [C >= 1] ==>                           
            evalrandom1dbb1in(A,B)   = A + -1*B                  
                                    >= A + -1*B                  
                                     = evalrandom1dbb5in(A,1 + B)
        
                              True ==>                           
            evalrandom1dbb1in(A,B)   = A + -1*B                  
                                    >= A + -1*B                  
                                     = evalrandom1dbb5in(A,1 + B)
        
        
* Step 6: KnowledgePropagation WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. evalrandom1dstart(A,B)   -> evalrandom1dentryin(A,B)   True         (1,1)
          1. evalrandom1dentryin(A,B) -> evalrandom1dbb5in(A,1)     [A >= 1]     (?,1)
          3. evalrandom1dbb5in(A,B)   -> evalrandom1dbb1in(A,B)     [A >= B]     (A,1)
          5. evalrandom1dbb1in(A,B)   -> evalrandom1dbb5in(A,1 + B) [0 >= 1 + C] (?,1)
          6. evalrandom1dbb1in(A,B)   -> evalrandom1dbb5in(A,1 + B) [C >= 1]     (?,1)
          7. evalrandom1dbb1in(A,B)   -> evalrandom1dbb5in(A,1 + B) True         (?,1)
        Signature:
          {(evalrandom1dbb1in,2)
          ;(evalrandom1dbb5in,2)
          ;(evalrandom1dentryin,2)
          ;(evalrandom1dreturnin,2)
          ;(evalrandom1dstart,2)
          ;(evalrandom1dstop,2)}
        Flow Graph:
          [0->{1},1->{3},3->{5,6,7},5->{3},6->{3},7->{3}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>, B) 
          (<1,0,A>, A) (<1,0,B>, 1) 
          (<3,0,A>, A) (<3,0,B>, A) 
          (<5,0,A>, A) (<5,0,B>, A) 
          (<6,0,A>, A) (<6,0,B>, A) 
          (<7,0,A>, A) (<7,0,B>, A) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 7: LocalSizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. evalrandom1dstart(A,B)   -> evalrandom1dentryin(A,B)   True         (1,1)
          1. evalrandom1dentryin(A,B) -> evalrandom1dbb5in(A,1)     [A >= 1]     (1,1)
          3. evalrandom1dbb5in(A,B)   -> evalrandom1dbb1in(A,B)     [A >= B]     (A,1)
          5. evalrandom1dbb1in(A,B)   -> evalrandom1dbb5in(A,1 + B) [0 >= 1 + C] (A,1)
          6. evalrandom1dbb1in(A,B)   -> evalrandom1dbb5in(A,1 + B) [C >= 1]     (A,1)
          7. evalrandom1dbb1in(A,B)   -> evalrandom1dbb5in(A,1 + B) True         (A,1)
        Signature:
          {(evalrandom1dbb1in,2)
          ;(evalrandom1dbb5in,2)
          ;(evalrandom1dentryin,2)
          ;(evalrandom1dreturnin,2)
          ;(evalrandom1dstart,2)
          ;(evalrandom1dstop,2)}
        Flow Graph:
          [0->{1},1->{3},3->{5,6,7},5->{3},6->{3},7->{3}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>, B) 
          (<1,0,A>, A) (<1,0,B>, 1) 
          (<3,0,A>, A) (<3,0,B>, A) 
          (<5,0,A>, A) (<5,0,B>, A) 
          (<6,0,A>, A) (<6,0,B>, A) 
          (<7,0,A>, A) (<7,0,B>, A) 
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        The problem is already solved.

WORST_CASE(?,O(n^1))