WORST_CASE(?,O(n^1)) * Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalrandom1dstart(A,B) -> evalrandom1dentryin(A,B) True (1,1) 1. evalrandom1dentryin(A,B) -> evalrandom1dbb5in(A,1) [A >= 1] (?,1) 2. evalrandom1dentryin(A,B) -> evalrandom1dreturnin(A,B) [0 >= A] (?,1) 3. evalrandom1dbb5in(A,B) -> evalrandom1dbb1in(A,B) [A >= B] (?,1) 4. evalrandom1dbb5in(A,B) -> evalrandom1dreturnin(A,B) [B >= 1 + A] (?,1) 5. evalrandom1dbb1in(A,B) -> evalrandom1dbb5in(A,1 + B) [0 >= 1 + C] (?,1) 6. evalrandom1dbb1in(A,B) -> evalrandom1dbb5in(A,1 + B) [C >= 1] (?,1) 7. evalrandom1dbb1in(A,B) -> evalrandom1dbb5in(A,1 + B) True (?,1) 8. evalrandom1dreturnin(A,B) -> evalrandom1dstop(A,B) True (?,1) Signature: {(evalrandom1dbb1in,2) ;(evalrandom1dbb5in,2) ;(evalrandom1dentryin,2) ;(evalrandom1dreturnin,2) ;(evalrandom1dstart,2) ;(evalrandom1dstop,2)} Flow Graph: [0->{1,2},1->{3,4},2->{8},3->{5,6,7},4->{8},5->{3,4},6->{3,4},7->{3,4},8->{}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<0,0,A>, A, .= 0) (<0,0,B>, B, .= 0) (<1,0,A>, A, .= 0) (<1,0,B>, 1, .= 1) (<2,0,A>, A, .= 0) (<2,0,B>, B, .= 0) (<3,0,A>, A, .= 0) (<3,0,B>, B, .= 0) (<4,0,A>, A, .= 0) (<4,0,B>, B, .= 0) (<5,0,A>, A, .= 0) (<5,0,B>, 1 + B, .+ 1) (<6,0,A>, A, .= 0) (<6,0,B>, 1 + B, .+ 1) (<7,0,A>, A, .= 0) (<7,0,B>, 1 + B, .+ 1) (<8,0,A>, A, .= 0) (<8,0,B>, B, .= 0) * Step 2: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalrandom1dstart(A,B) -> evalrandom1dentryin(A,B) True (1,1) 1. evalrandom1dentryin(A,B) -> evalrandom1dbb5in(A,1) [A >= 1] (?,1) 2. evalrandom1dentryin(A,B) -> evalrandom1dreturnin(A,B) [0 >= A] (?,1) 3. evalrandom1dbb5in(A,B) -> evalrandom1dbb1in(A,B) [A >= B] (?,1) 4. evalrandom1dbb5in(A,B) -> evalrandom1dreturnin(A,B) [B >= 1 + A] (?,1) 5. evalrandom1dbb1in(A,B) -> evalrandom1dbb5in(A,1 + B) [0 >= 1 + C] (?,1) 6. evalrandom1dbb1in(A,B) -> evalrandom1dbb5in(A,1 + B) [C >= 1] (?,1) 7. evalrandom1dbb1in(A,B) -> evalrandom1dbb5in(A,1 + B) True (?,1) 8. evalrandom1dreturnin(A,B) -> evalrandom1dstop(A,B) True (?,1) Signature: {(evalrandom1dbb1in,2) ;(evalrandom1dbb5in,2) ;(evalrandom1dentryin,2) ;(evalrandom1dreturnin,2) ;(evalrandom1dstart,2) ;(evalrandom1dstop,2)} Flow Graph: [0->{1,2},1->{3,4},2->{8},3->{5,6,7},4->{8},5->{3,4},6->{3,4},7->{3,4},8->{}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<1,0,A>, ?) (<1,0,B>, ?) (<2,0,A>, ?) (<2,0,B>, ?) (<3,0,A>, ?) (<3,0,B>, ?) (<4,0,A>, ?) (<4,0,B>, ?) (<5,0,A>, ?) (<5,0,B>, ?) (<6,0,A>, ?) (<6,0,B>, ?) (<7,0,A>, ?) (<7,0,B>, ?) (<8,0,A>, ?) (<8,0,B>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<0,0,A>, A) (<0,0,B>, B) (<1,0,A>, A) (<1,0,B>, 1) (<2,0,A>, A) (<2,0,B>, B) (<3,0,A>, A) (<3,0,B>, A) (<4,0,A>, A) (<4,0,B>, 1 + A) (<5,0,A>, A) (<5,0,B>, A) (<6,0,A>, A) (<6,0,B>, A) (<7,0,A>, A) (<7,0,B>, A) (<8,0,A>, A) (<8,0,B>, 1 + A + B) * Step 3: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalrandom1dstart(A,B) -> evalrandom1dentryin(A,B) True (1,1) 1. evalrandom1dentryin(A,B) -> evalrandom1dbb5in(A,1) [A >= 1] (?,1) 2. evalrandom1dentryin(A,B) -> evalrandom1dreturnin(A,B) [0 >= A] (?,1) 3. evalrandom1dbb5in(A,B) -> evalrandom1dbb1in(A,B) [A >= B] (?,1) 4. evalrandom1dbb5in(A,B) -> evalrandom1dreturnin(A,B) [B >= 1 + A] (?,1) 5. evalrandom1dbb1in(A,B) -> evalrandom1dbb5in(A,1 + B) [0 >= 1 + C] (?,1) 6. evalrandom1dbb1in(A,B) -> evalrandom1dbb5in(A,1 + B) [C >= 1] (?,1) 7. evalrandom1dbb1in(A,B) -> evalrandom1dbb5in(A,1 + B) True (?,1) 8. evalrandom1dreturnin(A,B) -> evalrandom1dstop(A,B) True (?,1) Signature: {(evalrandom1dbb1in,2) ;(evalrandom1dbb5in,2) ;(evalrandom1dentryin,2) ;(evalrandom1dreturnin,2) ;(evalrandom1dstart,2) ;(evalrandom1dstop,2)} Flow Graph: [0->{1,2},1->{3,4},2->{8},3->{5,6,7},4->{8},5->{3,4},6->{3,4},7->{3,4},8->{}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<1,0,A>, A) (<1,0,B>, 1) (<2,0,A>, A) (<2,0,B>, B) (<3,0,A>, A) (<3,0,B>, A) (<4,0,A>, A) (<4,0,B>, 1 + A) (<5,0,A>, A) (<5,0,B>, A) (<6,0,A>, A) (<6,0,B>, A) (<7,0,A>, A) (<7,0,B>, A) (<8,0,A>, A) (<8,0,B>, 1 + A + B) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(1,4)] * Step 4: LeafRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalrandom1dstart(A,B) -> evalrandom1dentryin(A,B) True (1,1) 1. evalrandom1dentryin(A,B) -> evalrandom1dbb5in(A,1) [A >= 1] (?,1) 2. evalrandom1dentryin(A,B) -> evalrandom1dreturnin(A,B) [0 >= A] (?,1) 3. evalrandom1dbb5in(A,B) -> evalrandom1dbb1in(A,B) [A >= B] (?,1) 4. evalrandom1dbb5in(A,B) -> evalrandom1dreturnin(A,B) [B >= 1 + A] (?,1) 5. evalrandom1dbb1in(A,B) -> evalrandom1dbb5in(A,1 + B) [0 >= 1 + C] (?,1) 6. evalrandom1dbb1in(A,B) -> evalrandom1dbb5in(A,1 + B) [C >= 1] (?,1) 7. evalrandom1dbb1in(A,B) -> evalrandom1dbb5in(A,1 + B) True (?,1) 8. evalrandom1dreturnin(A,B) -> evalrandom1dstop(A,B) True (?,1) Signature: {(evalrandom1dbb1in,2) ;(evalrandom1dbb5in,2) ;(evalrandom1dentryin,2) ;(evalrandom1dreturnin,2) ;(evalrandom1dstart,2) ;(evalrandom1dstop,2)} Flow Graph: [0->{1,2},1->{3},2->{8},3->{5,6,7},4->{8},5->{3,4},6->{3,4},7->{3,4},8->{}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<1,0,A>, A) (<1,0,B>, 1) (<2,0,A>, A) (<2,0,B>, B) (<3,0,A>, A) (<3,0,B>, A) (<4,0,A>, A) (<4,0,B>, 1 + A) (<5,0,A>, A) (<5,0,B>, A) (<6,0,A>, A) (<6,0,B>, A) (<7,0,A>, A) (<7,0,B>, A) (<8,0,A>, A) (<8,0,B>, 1 + A + B) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [2,4,8] * Step 5: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalrandom1dstart(A,B) -> evalrandom1dentryin(A,B) True (1,1) 1. evalrandom1dentryin(A,B) -> evalrandom1dbb5in(A,1) [A >= 1] (?,1) 3. evalrandom1dbb5in(A,B) -> evalrandom1dbb1in(A,B) [A >= B] (?,1) 5. evalrandom1dbb1in(A,B) -> evalrandom1dbb5in(A,1 + B) [0 >= 1 + C] (?,1) 6. evalrandom1dbb1in(A,B) -> evalrandom1dbb5in(A,1 + B) [C >= 1] (?,1) 7. evalrandom1dbb1in(A,B) -> evalrandom1dbb5in(A,1 + B) True (?,1) Signature: {(evalrandom1dbb1in,2) ;(evalrandom1dbb5in,2) ;(evalrandom1dentryin,2) ;(evalrandom1dreturnin,2) ;(evalrandom1dstart,2) ;(evalrandom1dstop,2)} Flow Graph: [0->{1},1->{3},3->{5,6,7},5->{3},6->{3},7->{3}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<1,0,A>, A) (<1,0,B>, 1) (<3,0,A>, A) (<3,0,B>, A) (<5,0,A>, A) (<5,0,B>, A) (<6,0,A>, A) (<6,0,B>, A) (<7,0,A>, A) (<7,0,B>, A) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalrandom1dbb1in) = x1 + -1*x2 p(evalrandom1dbb5in) = 1 + x1 + -1*x2 p(evalrandom1dentryin) = x1 p(evalrandom1dstart) = x1 The following rules are strictly oriented: [A >= B] ==> evalrandom1dbb5in(A,B) = 1 + A + -1*B > A + -1*B = evalrandom1dbb1in(A,B) The following rules are weakly oriented: True ==> evalrandom1dstart(A,B) = A >= A = evalrandom1dentryin(A,B) [A >= 1] ==> evalrandom1dentryin(A,B) = A >= A = evalrandom1dbb5in(A,1) [0 >= 1 + C] ==> evalrandom1dbb1in(A,B) = A + -1*B >= A + -1*B = evalrandom1dbb5in(A,1 + B) [C >= 1] ==> evalrandom1dbb1in(A,B) = A + -1*B >= A + -1*B = evalrandom1dbb5in(A,1 + B) True ==> evalrandom1dbb1in(A,B) = A + -1*B >= A + -1*B = evalrandom1dbb5in(A,1 + B) * Step 6: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalrandom1dstart(A,B) -> evalrandom1dentryin(A,B) True (1,1) 1. evalrandom1dentryin(A,B) -> evalrandom1dbb5in(A,1) [A >= 1] (?,1) 3. evalrandom1dbb5in(A,B) -> evalrandom1dbb1in(A,B) [A >= B] (A,1) 5. evalrandom1dbb1in(A,B) -> evalrandom1dbb5in(A,1 + B) [0 >= 1 + C] (?,1) 6. evalrandom1dbb1in(A,B) -> evalrandom1dbb5in(A,1 + B) [C >= 1] (?,1) 7. evalrandom1dbb1in(A,B) -> evalrandom1dbb5in(A,1 + B) True (?,1) Signature: {(evalrandom1dbb1in,2) ;(evalrandom1dbb5in,2) ;(evalrandom1dentryin,2) ;(evalrandom1dreturnin,2) ;(evalrandom1dstart,2) ;(evalrandom1dstop,2)} Flow Graph: [0->{1},1->{3},3->{5,6,7},5->{3},6->{3},7->{3}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<1,0,A>, A) (<1,0,B>, 1) (<3,0,A>, A) (<3,0,B>, A) (<5,0,A>, A) (<5,0,B>, A) (<6,0,A>, A) (<6,0,B>, A) (<7,0,A>, A) (<7,0,B>, A) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 7: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalrandom1dstart(A,B) -> evalrandom1dentryin(A,B) True (1,1) 1. evalrandom1dentryin(A,B) -> evalrandom1dbb5in(A,1) [A >= 1] (1,1) 3. evalrandom1dbb5in(A,B) -> evalrandom1dbb1in(A,B) [A >= B] (A,1) 5. evalrandom1dbb1in(A,B) -> evalrandom1dbb5in(A,1 + B) [0 >= 1 + C] (A,1) 6. evalrandom1dbb1in(A,B) -> evalrandom1dbb5in(A,1 + B) [C >= 1] (A,1) 7. evalrandom1dbb1in(A,B) -> evalrandom1dbb5in(A,1 + B) True (A,1) Signature: {(evalrandom1dbb1in,2) ;(evalrandom1dbb5in,2) ;(evalrandom1dentryin,2) ;(evalrandom1dreturnin,2) ;(evalrandom1dstart,2) ;(evalrandom1dstop,2)} Flow Graph: [0->{1},1->{3},3->{5,6,7},5->{3},6->{3},7->{3}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<1,0,A>, A) (<1,0,B>, 1) (<3,0,A>, A) (<3,0,B>, A) (<5,0,A>, A) (<5,0,B>, A) (<6,0,A>, A) (<6,0,B>, A) (<7,0,A>, A) (<7,0,B>, A) + Applied Processor: LocalSizeboundsProc + Details: The problem is already solved. WORST_CASE(?,O(n^1))