WORST_CASE(?,O(n^1)) * Step 1: RestrictVarsProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) -> f13(0,0,2*D,D,4*D,3 + 4*D,4 + 4*D,D,B1,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) True (1,1) 1. f13(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) -> f13(A,B,C,D,E,F,G,H,I,1 + J,1,0,0,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) [C >= J] (?,1) 2. f13(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) -> f13(A + B1,B,C,D,E,F,G,H,I,1 + J,C1,1 + -1*C1,B1,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) [C1 >= 2 && C >= J] (?,1) 3. f13(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) -> f13(A + B1,B,C,D,E,F,G,H,I,1 + J,C1,1 + -1*C1,B1,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) [0 >= C1 && C >= J] (?,1) 4. f24(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) -> f24(A,B,C,D,E,F,G,H,I,1 + J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) [D >= J] (?,1) 5. f31(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) -> f31(A,B,C,D,E,F,G,H,I,1 + J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) [D >= J] (?,1) 6. f37(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) -> f40(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) [N >= O] (?,1) 7. f40(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) -> f44(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) [0 >= 1 + P && 0 >= Q] (?,1) 8. f40(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) -> f44(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) [P >= 1 && 0 >= Q] (?,1) 9. f44(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) -> f44(A,B,C,D,E,F,G,H,I,1 + J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) [D >= J] (?,1) 10. f50(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) -> f50(A,B,C,D,E,F,G,H,I,1 + J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) [D >= J] (?,1) 11. f57(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) -> f57(A,B,C,D,E,F,G,H,I,1 + J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) [D >= J] (?,1) 12. f40(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) -> f64(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,0,Q,R,S,T,U,V,W,X,Y,Z,A1) [0 >= Q && P = 0] (?,1) 13. f64(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) -> f64(A,B,C,D,E,F,G,H,I,2 + J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) [E >= J] (?,1) 14. f71(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) -> f71(A,B,C,D,E,F,G,H,I,1 + J,K,L,M,N,O,P,Q,2*J,B1,1 + -1*B1,U,V,W,X,Y,Z,A1) [C >= J] (?,1) 15. f86(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) -> f91(A,B,C,D,E,F,G,H,I,J,K,0,M,N,O,P,Q,R,S,T,0,V,W,X,Y,Z,A1) [L = 0] (?,1) 16. f86(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) -> f91(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,B1,V,W,X,Y,Z,A1) [0 >= 1 + L] (?,1) 17. f86(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) -> f91(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,B1,V,W,X,Y,Z,A1) [L >= 1] (?,1) 18. f91(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) -> f99(A,B,C,D,E,F,G,H,I,J,K,B1,M,N,O,P,Q,2*J,S,T,U,0,W,X,Y,Z,A1) [D >= J] (?,1) 19. f91(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) -> f99(A,B,C,D,E,F,G,H,I,J,K,B1,M,N,O,P,Q,2*J,S,T,U,C1,W,X,Y,Z,A1) [0 >= 1 + D1 && D >= J] (?,1) 20. f91(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) -> f99(A,B,C,D,E,F,G,H,I,J,K,B1,M,N,O,P,Q,2*J,S,T,U,C1,W,X,Y,Z,A1) [D1 >= 1 && D >= J] (?,1) 21. f99(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) -> f103(A,B,C,D,E,F,G,H,I,J,K,B1,M,N,O,P,Q,R,S,T,U,V,0,X,Y,Z,A1) [L = 0] (?,1) 22. f99(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) -> f103(A,B,C,D,E,F,G,H,I,J,K,B1,M,N,O,P,Q,R,S,T,U,V,C1,X,Y,Z,A1) [0 >= 1 + L] (?,1) 23. f99(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) -> f103(A,B,C,D,E,F,G,H,I,J,K,B1,M,N,O,P,Q,R,S,T,U,V,C1,X,Y,Z,A1) [L >= 1] (?,1) 24. f103(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) -> f107(A,B,C,D,E,F,G,H,I,J,K,B1,M,N,O,P,Q,R,S,T,U,V,W,0,Y,Z,A1) [L = 0] (?,1) 25. f103(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) -> f107(A,B,C,D,E,F,G,H,I,J,K,B1,M,N,O,P,Q,R,S,T,U,V,W,C1,Y,Z,A1) [0 >= 1 + L] (?,1) 26. f103(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) -> f107(A,B,C,D,E,F,G,H,I,J,K,B1,M,N,O,P,Q,R,S,T,U,V,W,C1,Y,Z,A1) [L >= 1] (?,1) 27. f107(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) -> f91(A,B,C,D,E,F,G,H,I,1 + J,K,0,M,N,O,P,Q,R,S,T,U,V,W,X,0,Z,A1) [L = 0] (?,1) 28. f107(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) -> f91(A,B,C,D,E,F,G,H,I,1 + J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,B1,Z,A1) [0 >= 1 + L] (?,1) 29. f107(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) -> f91(A,B,C,D,E,F,G,H,I,1 + J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,B1,Z,A1) [L >= 1] (?,1) 30. f118(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) -> f118(A,B,C,D,E,F,G,H,I,1 + J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) [D >= J] (?,1) 31. f118(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) -> f1(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) [J >= 1 + D] (?,1) 32. f91(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) -> f37(A,A + B,C,D,E,F,G,H,I,J,K,L,M,N,1 + O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) [J >= 1 + D] (?,1) 33. f71(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) -> f86(A,B,C,D,E,F,G,H,I,J,K,B1,M,N,O,P,Q,R,S,T,U,V,W,X,Y,0,A1) [J >= 1 + C] (?,1) 34. f71(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) -> f86(A,B,C,D,E,F,G,H,I,J,K,B1,M,N,O,P,Q,R,S,T,U,V,W,X,Y,C1,A1) [0 >= 1 + D1 && J >= 1 + C] (?,1) 35. f71(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) -> f86(A,B,C,D,E,F,G,H,I,J,K,B1,M,N,O,P,Q,R,S,T,U,V,W,X,Y,C1,A1) [D1 >= 1 && J >= 1 + C] (?,1) 36. f64(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) -> f40(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,1 + Q,R,S,T,U,V,W,X,Y,Z,A1) [J >= 1 + E] (?,1) 37. f57(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) -> f40(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,1 + Q,R,S,T,U,V,W,X,Y,Z,A1) [J >= 1 + D] (?,1) 38. f50(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) -> f57(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,C + Q) [J >= 1 + D] (?,1) 39. f44(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) -> f50(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) [J >= 1 + D] (?,1) 40. f40(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) -> f71(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) [Q >= 1] (?,1) 41. f37(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) -> f118(A,B1,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) [O >= 1 + N] (?,1) 42. f31(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) -> f37(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) [J >= 1 + D] (?,1) 43. f24(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) -> f31(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) [0 >= 1 + P && J >= 1 + D] (?,1) 44. f24(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) -> f31(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) [P >= 1 && J >= 1 + D] (?,1) 45. f24(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) -> f37(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,0,Q,R,S,T,U,V,W,X,Y,Z,A1) [J >= 1 + D && P = 0] (?,1) 46. f13(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) -> f24(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1) [J >= 1 + C] (?,1) Signature: {(f1,27) ;(f103,27) ;(f107,27) ;(f118,27) ;(f13,27) ;(f2,27) ;(f24,27) ;(f31,27) ;(f37,27) ;(f40,27) ;(f44,27) ;(f50,27) ;(f57,27) ;(f64,27) ;(f71,27) ;(f86,27) ;(f91,27) ;(f99,27)} Flow Graph: [0->{1,2,3,46},1->{1,2,3,46},2->{1,2,3,46},3->{1,2,3,46},4->{4,43,44,45},5->{5,42},6->{7,8,12,40},7->{9 ,39},8->{9,39},9->{9,39},10->{10,38},11->{11,37},12->{13,36},13->{13,36},14->{14,33,34,35},15->{18,19,20,32} ,16->{18,19,20,32},17->{18,19,20,32},18->{21,22,23},19->{21,22,23},20->{21,22,23},21->{24,25,26},22->{24,25 ,26},23->{24,25,26},24->{27,28,29},25->{27,28,29},26->{27,28,29},27->{18,19,20,32},28->{18,19,20,32},29->{18 ,19,20,32},30->{30,31},31->{},32->{6,41},33->{15,16,17},34->{15,16,17},35->{15,16,17},36->{7,8,12,40},37->{7 ,8,12,40},38->{11,37},39->{10,38},40->{14,33,34,35},41->{30,31},42->{6,41},43->{5,42},44->{5,42},45->{6,41} ,46->{4,43,44,45}] + Applied Processor: RestrictVarsProcessor + Details: We removed the arguments [B,F,G,H,I,K,M,R,S,T,U,V,W,X,Y,Z,A1] . * Step 2: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,C,D,E,J,L,N,O,P,Q) -> f13(0,2*D,D,4*D,J,L,N,O,P,Q) True (1,1) 1. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A,C,D,E,1 + J,0,N,O,P,Q) [C >= J] (?,1) 2. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [C1 >= 2 && C >= J] (?,1) 3. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [0 >= C1 && C >= J] (?,1) 4. f24(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 5. f31(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 6. f37(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,Q) [N >= O] (?,1) 7. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && 0 >= Q] (?,1) 8. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && 0 >= Q] (?,1) 9. f44(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 10. f50(A,C,D,E,J,L,N,O,P,Q) -> f50(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 11. f57(A,C,D,E,J,L,N,O,P,Q) -> f57(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 12. f40(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,J,L,N,O,0,Q) [0 >= Q && P = 0] (?,1) 13. f64(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,2 + J,L,N,O,P,Q) [E >= J] (?,1) 14. f71(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,1 + J,L,N,O,P,Q) [C >= J] (?,1) 15. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,0,N,O,P,Q) [L = 0] (?,1) 16. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + L] (?,1) 17. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [L >= 1] (?,1) 18. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D >= J] (?,1) 19. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && D >= J] (?,1) 20. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && D >= J] (?,1) 21. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (?,1) 22. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (?,1) 23. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (?,1) 24. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (?,1) 25. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (?,1) 26. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (?,1) 27. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,0,N,O,P,Q) [L = 0] (?,1) 28. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [0 >= 1 + L] (?,1) 29. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [L >= 1] (?,1) 30. f118(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 31. f118(A,C,D,E,J,L,N,O,P,Q) -> f1(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (?,1) 32. f91(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,1 + O,P,Q) [J >= 1 + D] (?,1) 33. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [J >= 1 + C] (?,1) 34. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && J >= 1 + C] (?,1) 35. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && J >= 1 + C] (?,1) 36. f64(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + E] (?,1) 37. f57(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] (?,1) 38. f50(A,C,D,E,J,L,N,O,P,Q) -> f57(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (?,1) 39. f44(A,C,D,E,J,L,N,O,P,Q) -> f50(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (?,1) 40. f40(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,J,L,N,O,P,Q) [Q >= 1] (?,1) 41. f37(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,J,L,N,O,P,Q) [O >= 1 + N] (?,1) 42. f31(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (?,1) 43. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && J >= 1 + D] (?,1) 44. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && J >= 1 + D] (?,1) 45. f24(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,0,Q) [J >= 1 + D && P = 0] (?,1) 46. f13(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + C] (?,1) Signature: {(f1,10) ;(f103,10) ;(f107,10) ;(f118,10) ;(f13,10) ;(f2,10) ;(f24,10) ;(f31,10) ;(f37,10) ;(f40,10) ;(f44,10) ;(f50,10) ;(f57,10) ;(f64,10) ;(f71,10) ;(f86,10) ;(f91,10) ;(f99,10)} Flow Graph: [0->{1,2,3,46},1->{1,2,3,46},2->{1,2,3,46},3->{1,2,3,46},4->{4,43,44,45},5->{5,42},6->{7,8,12,40},7->{9 ,39},8->{9,39},9->{9,39},10->{10,38},11->{11,37},12->{13,36},13->{13,36},14->{14,33,34,35},15->{18,19,20,32} ,16->{18,19,20,32},17->{18,19,20,32},18->{21,22,23},19->{21,22,23},20->{21,22,23},21->{24,25,26},22->{24,25 ,26},23->{24,25,26},24->{27,28,29},25->{27,28,29},26->{27,28,29},27->{18,19,20,32},28->{18,19,20,32},29->{18 ,19,20,32},30->{30,31},31->{},32->{6,41},33->{15,16,17},34->{15,16,17},35->{15,16,17},36->{7,8,12,40},37->{7 ,8,12,40},38->{11,37},39->{10,38},40->{14,33,34,35},41->{30,31},42->{6,41},43->{5,42},44->{5,42},45->{6,41} ,46->{4,43,44,45}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (< 0,0,A>, 0, .= 0) (< 0,0,C>, 2*D, .?) (< 0,0,D>, D, .= 0) (< 0,0,E>, 4*D, .?) (< 0,0,J>, J, .= 0) (< 0,0,L>, L, .= 0) (< 0,0,N>, N, .= 0) (< 0,0,O>, O, .= 0) (< 0,0,P>, P, .= 0) (< 0,0,Q>, Q, .= 0) (< 1,0,A>, A, .= 0) (< 1,0,C>, C, .= 0) (< 1,0,D>, D, .= 0) (< 1,0,E>, E, .= 0) (< 1,0,J>, 1 + J, .+ 1) (< 1,0,L>, 0, .= 0) (< 1,0,N>, N, .= 0) (< 1,0,O>, O, .= 0) (< 1,0,P>, P, .= 0) (< 1,0,Q>, Q, .= 0) (< 2,0,A>, ?, .?) (< 2,0,C>, C, .= 0) (< 2,0,D>, D, .= 0) (< 2,0,E>, E, .= 0) (< 2,0,J>, 1 + J, .+ 1) (< 2,0,L>, ?, .?) (< 2,0,N>, N, .= 0) (< 2,0,O>, O, .= 0) (< 2,0,P>, P, .= 0) (< 2,0,Q>, Q, .= 0) (< 3,0,A>, ?, .?) (< 3,0,C>, C, .= 0) (< 3,0,D>, D, .= 0) (< 3,0,E>, E, .= 0) (< 3,0,J>, 1 + J, .+ 1) (< 3,0,L>, ?, .?) (< 3,0,N>, N, .= 0) (< 3,0,O>, O, .= 0) (< 3,0,P>, P, .= 0) (< 3,0,Q>, Q, .= 0) (< 4,0,A>, A, .= 0) (< 4,0,C>, C, .= 0) (< 4,0,D>, D, .= 0) (< 4,0,E>, E, .= 0) (< 4,0,J>, 1 + J, .+ 1) (< 4,0,L>, L, .= 0) (< 4,0,N>, N, .= 0) (< 4,0,O>, O, .= 0) (< 4,0,P>, P, .= 0) (< 4,0,Q>, Q, .= 0) (< 5,0,A>, A, .= 0) (< 5,0,C>, C, .= 0) (< 5,0,D>, D, .= 0) (< 5,0,E>, E, .= 0) (< 5,0,J>, 1 + J, .+ 1) (< 5,0,L>, L, .= 0) (< 5,0,N>, N, .= 0) (< 5,0,O>, O, .= 0) (< 5,0,P>, P, .= 0) (< 5,0,Q>, Q, .= 0) (< 6,0,A>, A, .= 0) (< 6,0,C>, C, .= 0) (< 6,0,D>, D, .= 0) (< 6,0,E>, E, .= 0) (< 6,0,J>, J, .= 0) (< 6,0,L>, L, .= 0) (< 6,0,N>, N, .= 0) (< 6,0,O>, O, .= 0) (< 6,0,P>, P, .= 0) (< 6,0,Q>, Q, .= 0) (< 7,0,A>, A, .= 0) (< 7,0,C>, C, .= 0) (< 7,0,D>, D, .= 0) (< 7,0,E>, E, .= 0) (< 7,0,J>, J, .= 0) (< 7,0,L>, L, .= 0) (< 7,0,N>, N, .= 0) (< 7,0,O>, O, .= 0) (< 7,0,P>, P, .= 0) (< 7,0,Q>, Q, .= 0) (< 8,0,A>, A, .= 0) (< 8,0,C>, C, .= 0) (< 8,0,D>, D, .= 0) (< 8,0,E>, E, .= 0) (< 8,0,J>, J, .= 0) (< 8,0,L>, L, .= 0) (< 8,0,N>, N, .= 0) (< 8,0,O>, O, .= 0) (< 8,0,P>, P, .= 0) (< 8,0,Q>, Q, .= 0) (< 9,0,A>, A, .= 0) (< 9,0,C>, C, .= 0) (< 9,0,D>, D, .= 0) (< 9,0,E>, E, .= 0) (< 9,0,J>, 1 + J, .+ 1) (< 9,0,L>, L, .= 0) (< 9,0,N>, N, .= 0) (< 9,0,O>, O, .= 0) (< 9,0,P>, P, .= 0) (< 9,0,Q>, Q, .= 0) (<10,0,A>, A, .= 0) (<10,0,C>, C, .= 0) (<10,0,D>, D, .= 0) (<10,0,E>, E, .= 0) (<10,0,J>, 1 + J, .+ 1) (<10,0,L>, L, .= 0) (<10,0,N>, N, .= 0) (<10,0,O>, O, .= 0) (<10,0,P>, P, .= 0) (<10,0,Q>, Q, .= 0) (<11,0,A>, A, .= 0) (<11,0,C>, C, .= 0) (<11,0,D>, D, .= 0) (<11,0,E>, E, .= 0) (<11,0,J>, 1 + J, .+ 1) (<11,0,L>, L, .= 0) (<11,0,N>, N, .= 0) (<11,0,O>, O, .= 0) (<11,0,P>, P, .= 0) (<11,0,Q>, Q, .= 0) (<12,0,A>, A, .= 0) (<12,0,C>, C, .= 0) (<12,0,D>, D, .= 0) (<12,0,E>, E, .= 0) (<12,0,J>, J, .= 0) (<12,0,L>, L, .= 0) (<12,0,N>, N, .= 0) (<12,0,O>, O, .= 0) (<12,0,P>, 0, .= 0) (<12,0,Q>, Q, .= 0) (<13,0,A>, A, .= 0) (<13,0,C>, C, .= 0) (<13,0,D>, D, .= 0) (<13,0,E>, E, .= 0) (<13,0,J>, 2 + J, .+ 2) (<13,0,L>, L, .= 0) (<13,0,N>, N, .= 0) (<13,0,O>, O, .= 0) (<13,0,P>, P, .= 0) (<13,0,Q>, Q, .= 0) (<14,0,A>, A, .= 0) (<14,0,C>, C, .= 0) (<14,0,D>, D, .= 0) (<14,0,E>, E, .= 0) (<14,0,J>, 1 + J, .+ 1) (<14,0,L>, L, .= 0) (<14,0,N>, N, .= 0) (<14,0,O>, O, .= 0) (<14,0,P>, P, .= 0) (<14,0,Q>, Q, .= 0) (<15,0,A>, A, .= 0) (<15,0,C>, C, .= 0) (<15,0,D>, D, .= 0) (<15,0,E>, E, .= 0) (<15,0,J>, J, .= 0) (<15,0,L>, 0, .= 0) (<15,0,N>, N, .= 0) (<15,0,O>, O, .= 0) (<15,0,P>, P, .= 0) (<15,0,Q>, Q, .= 0) (<16,0,A>, A, .= 0) (<16,0,C>, C, .= 0) (<16,0,D>, D, .= 0) (<16,0,E>, E, .= 0) (<16,0,J>, J, .= 0) (<16,0,L>, L, .= 0) (<16,0,N>, N, .= 0) (<16,0,O>, O, .= 0) (<16,0,P>, P, .= 0) (<16,0,Q>, Q, .= 0) (<17,0,A>, A, .= 0) (<17,0,C>, C, .= 0) (<17,0,D>, D, .= 0) (<17,0,E>, E, .= 0) (<17,0,J>, J, .= 0) (<17,0,L>, L, .= 0) (<17,0,N>, N, .= 0) (<17,0,O>, O, .= 0) (<17,0,P>, P, .= 0) (<17,0,Q>, Q, .= 0) (<18,0,A>, A, .= 0) (<18,0,C>, C, .= 0) (<18,0,D>, D, .= 0) (<18,0,E>, E, .= 0) (<18,0,J>, J, .= 0) (<18,0,L>, ?, .?) (<18,0,N>, N, .= 0) (<18,0,O>, O, .= 0) (<18,0,P>, P, .= 0) (<18,0,Q>, Q, .= 0) (<19,0,A>, A, .= 0) (<19,0,C>, C, .= 0) (<19,0,D>, D, .= 0) (<19,0,E>, E, .= 0) (<19,0,J>, J, .= 0) (<19,0,L>, ?, .?) (<19,0,N>, N, .= 0) (<19,0,O>, O, .= 0) (<19,0,P>, P, .= 0) (<19,0,Q>, Q, .= 0) (<20,0,A>, A, .= 0) (<20,0,C>, C, .= 0) (<20,0,D>, D, .= 0) (<20,0,E>, E, .= 0) (<20,0,J>, J, .= 0) (<20,0,L>, ?, .?) (<20,0,N>, N, .= 0) (<20,0,O>, O, .= 0) (<20,0,P>, P, .= 0) (<20,0,Q>, Q, .= 0) (<21,0,A>, A, .= 0) (<21,0,C>, C, .= 0) (<21,0,D>, D, .= 0) (<21,0,E>, E, .= 0) (<21,0,J>, J, .= 0) (<21,0,L>, ?, .?) (<21,0,N>, N, .= 0) (<21,0,O>, O, .= 0) (<21,0,P>, P, .= 0) (<21,0,Q>, Q, .= 0) (<22,0,A>, A, .= 0) (<22,0,C>, C, .= 0) (<22,0,D>, D, .= 0) (<22,0,E>, E, .= 0) (<22,0,J>, J, .= 0) (<22,0,L>, ?, .?) (<22,0,N>, N, .= 0) (<22,0,O>, O, .= 0) (<22,0,P>, P, .= 0) (<22,0,Q>, Q, .= 0) (<23,0,A>, A, .= 0) (<23,0,C>, C, .= 0) (<23,0,D>, D, .= 0) (<23,0,E>, E, .= 0) (<23,0,J>, J, .= 0) (<23,0,L>, ?, .?) (<23,0,N>, N, .= 0) (<23,0,O>, O, .= 0) (<23,0,P>, P, .= 0) (<23,0,Q>, Q, .= 0) (<24,0,A>, A, .= 0) (<24,0,C>, C, .= 0) (<24,0,D>, D, .= 0) (<24,0,E>, E, .= 0) (<24,0,J>, J, .= 0) (<24,0,L>, ?, .?) (<24,0,N>, N, .= 0) (<24,0,O>, O, .= 0) (<24,0,P>, P, .= 0) (<24,0,Q>, Q, .= 0) (<25,0,A>, A, .= 0) (<25,0,C>, C, .= 0) (<25,0,D>, D, .= 0) (<25,0,E>, E, .= 0) (<25,0,J>, J, .= 0) (<25,0,L>, ?, .?) (<25,0,N>, N, .= 0) (<25,0,O>, O, .= 0) (<25,0,P>, P, .= 0) (<25,0,Q>, Q, .= 0) (<26,0,A>, A, .= 0) (<26,0,C>, C, .= 0) (<26,0,D>, D, .= 0) (<26,0,E>, E, .= 0) (<26,0,J>, J, .= 0) (<26,0,L>, ?, .?) (<26,0,N>, N, .= 0) (<26,0,O>, O, .= 0) (<26,0,P>, P, .= 0) (<26,0,Q>, Q, .= 0) (<27,0,A>, A, .= 0) (<27,0,C>, C, .= 0) (<27,0,D>, D, .= 0) (<27,0,E>, E, .= 0) (<27,0,J>, 1 + J, .+ 1) (<27,0,L>, 0, .= 0) (<27,0,N>, N, .= 0) (<27,0,O>, O, .= 0) (<27,0,P>, P, .= 0) (<27,0,Q>, Q, .= 0) (<28,0,A>, A, .= 0) (<28,0,C>, C, .= 0) (<28,0,D>, D, .= 0) (<28,0,E>, E, .= 0) (<28,0,J>, 1 + J, .+ 1) (<28,0,L>, L, .= 0) (<28,0,N>, N, .= 0) (<28,0,O>, O, .= 0) (<28,0,P>, P, .= 0) (<28,0,Q>, Q, .= 0) (<29,0,A>, A, .= 0) (<29,0,C>, C, .= 0) (<29,0,D>, D, .= 0) (<29,0,E>, E, .= 0) (<29,0,J>, 1 + J, .+ 1) (<29,0,L>, L, .= 0) (<29,0,N>, N, .= 0) (<29,0,O>, O, .= 0) (<29,0,P>, P, .= 0) (<29,0,Q>, Q, .= 0) (<30,0,A>, A, .= 0) (<30,0,C>, C, .= 0) (<30,0,D>, D, .= 0) (<30,0,E>, E, .= 0) (<30,0,J>, 1 + J, .+ 1) (<30,0,L>, L, .= 0) (<30,0,N>, N, .= 0) (<30,0,O>, O, .= 0) (<30,0,P>, P, .= 0) (<30,0,Q>, Q, .= 0) (<31,0,A>, A, .= 0) (<31,0,C>, C, .= 0) (<31,0,D>, D, .= 0) (<31,0,E>, E, .= 0) (<31,0,J>, J, .= 0) (<31,0,L>, L, .= 0) (<31,0,N>, N, .= 0) (<31,0,O>, O, .= 0) (<31,0,P>, P, .= 0) (<31,0,Q>, Q, .= 0) (<32,0,A>, A, .= 0) (<32,0,C>, C, .= 0) (<32,0,D>, D, .= 0) (<32,0,E>, E, .= 0) (<32,0,J>, J, .= 0) (<32,0,L>, L, .= 0) (<32,0,N>, N, .= 0) (<32,0,O>, 1 + O, .+ 1) (<32,0,P>, P, .= 0) (<32,0,Q>, Q, .= 0) (<33,0,A>, A, .= 0) (<33,0,C>, C, .= 0) (<33,0,D>, D, .= 0) (<33,0,E>, E, .= 0) (<33,0,J>, J, .= 0) (<33,0,L>, ?, .?) (<33,0,N>, N, .= 0) (<33,0,O>, O, .= 0) (<33,0,P>, P, .= 0) (<33,0,Q>, Q, .= 0) (<34,0,A>, A, .= 0) (<34,0,C>, C, .= 0) (<34,0,D>, D, .= 0) (<34,0,E>, E, .= 0) (<34,0,J>, J, .= 0) (<34,0,L>, ?, .?) (<34,0,N>, N, .= 0) (<34,0,O>, O, .= 0) (<34,0,P>, P, .= 0) (<34,0,Q>, Q, .= 0) (<35,0,A>, A, .= 0) (<35,0,C>, C, .= 0) (<35,0,D>, D, .= 0) (<35,0,E>, E, .= 0) (<35,0,J>, J, .= 0) (<35,0,L>, ?, .?) (<35,0,N>, N, .= 0) (<35,0,O>, O, .= 0) (<35,0,P>, P, .= 0) (<35,0,Q>, Q, .= 0) (<36,0,A>, A, .= 0) (<36,0,C>, C, .= 0) (<36,0,D>, D, .= 0) (<36,0,E>, E, .= 0) (<36,0,J>, J, .= 0) (<36,0,L>, L, .= 0) (<36,0,N>, N, .= 0) (<36,0,O>, O, .= 0) (<36,0,P>, P, .= 0) (<36,0,Q>, 1 + Q, .+ 1) (<37,0,A>, A, .= 0) (<37,0,C>, C, .= 0) (<37,0,D>, D, .= 0) (<37,0,E>, E, .= 0) (<37,0,J>, J, .= 0) (<37,0,L>, L, .= 0) (<37,0,N>, N, .= 0) (<37,0,O>, O, .= 0) (<37,0,P>, P, .= 0) (<37,0,Q>, 1 + Q, .+ 1) (<38,0,A>, A, .= 0) (<38,0,C>, C, .= 0) (<38,0,D>, D, .= 0) (<38,0,E>, E, .= 0) (<38,0,J>, J, .= 0) (<38,0,L>, L, .= 0) (<38,0,N>, N, .= 0) (<38,0,O>, O, .= 0) (<38,0,P>, P, .= 0) (<38,0,Q>, Q, .= 0) (<39,0,A>, A, .= 0) (<39,0,C>, C, .= 0) (<39,0,D>, D, .= 0) (<39,0,E>, E, .= 0) (<39,0,J>, J, .= 0) (<39,0,L>, L, .= 0) (<39,0,N>, N, .= 0) (<39,0,O>, O, .= 0) (<39,0,P>, P, .= 0) (<39,0,Q>, Q, .= 0) (<40,0,A>, A, .= 0) (<40,0,C>, C, .= 0) (<40,0,D>, D, .= 0) (<40,0,E>, E, .= 0) (<40,0,J>, J, .= 0) (<40,0,L>, L, .= 0) (<40,0,N>, N, .= 0) (<40,0,O>, O, .= 0) (<40,0,P>, P, .= 0) (<40,0,Q>, Q, .= 0) (<41,0,A>, A, .= 0) (<41,0,C>, C, .= 0) (<41,0,D>, D, .= 0) (<41,0,E>, E, .= 0) (<41,0,J>, J, .= 0) (<41,0,L>, L, .= 0) (<41,0,N>, N, .= 0) (<41,0,O>, O, .= 0) (<41,0,P>, P, .= 0) (<41,0,Q>, Q, .= 0) (<42,0,A>, A, .= 0) (<42,0,C>, C, .= 0) (<42,0,D>, D, .= 0) (<42,0,E>, E, .= 0) (<42,0,J>, J, .= 0) (<42,0,L>, L, .= 0) (<42,0,N>, N, .= 0) (<42,0,O>, O, .= 0) (<42,0,P>, P, .= 0) (<42,0,Q>, Q, .= 0) (<43,0,A>, A, .= 0) (<43,0,C>, C, .= 0) (<43,0,D>, D, .= 0) (<43,0,E>, E, .= 0) (<43,0,J>, J, .= 0) (<43,0,L>, L, .= 0) (<43,0,N>, N, .= 0) (<43,0,O>, O, .= 0) (<43,0,P>, P, .= 0) (<43,0,Q>, Q, .= 0) (<44,0,A>, A, .= 0) (<44,0,C>, C, .= 0) (<44,0,D>, D, .= 0) (<44,0,E>, E, .= 0) (<44,0,J>, J, .= 0) (<44,0,L>, L, .= 0) (<44,0,N>, N, .= 0) (<44,0,O>, O, .= 0) (<44,0,P>, P, .= 0) (<44,0,Q>, Q, .= 0) (<45,0,A>, A, .= 0) (<45,0,C>, C, .= 0) (<45,0,D>, D, .= 0) (<45,0,E>, E, .= 0) (<45,0,J>, J, .= 0) (<45,0,L>, L, .= 0) (<45,0,N>, N, .= 0) (<45,0,O>, O, .= 0) (<45,0,P>, 0, .= 0) (<45,0,Q>, Q, .= 0) (<46,0,A>, A, .= 0) (<46,0,C>, C, .= 0) (<46,0,D>, D, .= 0) (<46,0,E>, E, .= 0) (<46,0,J>, J, .= 0) (<46,0,L>, L, .= 0) (<46,0,N>, N, .= 0) (<46,0,O>, O, .= 0) (<46,0,P>, P, .= 0) (<46,0,Q>, Q, .= 0) * Step 3: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,C,D,E,J,L,N,O,P,Q) -> f13(0,2*D,D,4*D,J,L,N,O,P,Q) True (1,1) 1. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A,C,D,E,1 + J,0,N,O,P,Q) [C >= J] (?,1) 2. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [C1 >= 2 && C >= J] (?,1) 3. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [0 >= C1 && C >= J] (?,1) 4. f24(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 5. f31(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 6. f37(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,Q) [N >= O] (?,1) 7. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && 0 >= Q] (?,1) 8. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && 0 >= Q] (?,1) 9. f44(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 10. f50(A,C,D,E,J,L,N,O,P,Q) -> f50(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 11. f57(A,C,D,E,J,L,N,O,P,Q) -> f57(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 12. f40(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,J,L,N,O,0,Q) [0 >= Q && P = 0] (?,1) 13. f64(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,2 + J,L,N,O,P,Q) [E >= J] (?,1) 14. f71(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,1 + J,L,N,O,P,Q) [C >= J] (?,1) 15. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,0,N,O,P,Q) [L = 0] (?,1) 16. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + L] (?,1) 17. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [L >= 1] (?,1) 18. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D >= J] (?,1) 19. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && D >= J] (?,1) 20. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && D >= J] (?,1) 21. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (?,1) 22. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (?,1) 23. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (?,1) 24. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (?,1) 25. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (?,1) 26. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (?,1) 27. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,0,N,O,P,Q) [L = 0] (?,1) 28. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [0 >= 1 + L] (?,1) 29. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [L >= 1] (?,1) 30. f118(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 31. f118(A,C,D,E,J,L,N,O,P,Q) -> f1(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (?,1) 32. f91(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,1 + O,P,Q) [J >= 1 + D] (?,1) 33. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [J >= 1 + C] (?,1) 34. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && J >= 1 + C] (?,1) 35. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && J >= 1 + C] (?,1) 36. f64(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + E] (?,1) 37. f57(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] (?,1) 38. f50(A,C,D,E,J,L,N,O,P,Q) -> f57(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (?,1) 39. f44(A,C,D,E,J,L,N,O,P,Q) -> f50(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (?,1) 40. f40(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,J,L,N,O,P,Q) [Q >= 1] (?,1) 41. f37(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,J,L,N,O,P,Q) [O >= 1 + N] (?,1) 42. f31(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (?,1) 43. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && J >= 1 + D] (?,1) 44. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && J >= 1 + D] (?,1) 45. f24(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,0,Q) [J >= 1 + D && P = 0] (?,1) 46. f13(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + C] (?,1) Signature: {(f1,10) ;(f103,10) ;(f107,10) ;(f118,10) ;(f13,10) ;(f2,10) ;(f24,10) ;(f31,10) ;(f37,10) ;(f40,10) ;(f44,10) ;(f50,10) ;(f57,10) ;(f64,10) ;(f71,10) ;(f86,10) ;(f91,10) ;(f99,10)} Flow Graph: [0->{1,2,3,46},1->{1,2,3,46},2->{1,2,3,46},3->{1,2,3,46},4->{4,43,44,45},5->{5,42},6->{7,8,12,40},7->{9 ,39},8->{9,39},9->{9,39},10->{10,38},11->{11,37},12->{13,36},13->{13,36},14->{14,33,34,35},15->{18,19,20,32} ,16->{18,19,20,32},17->{18,19,20,32},18->{21,22,23},19->{21,22,23},20->{21,22,23},21->{24,25,26},22->{24,25 ,26},23->{24,25,26},24->{27,28,29},25->{27,28,29},26->{27,28,29},27->{18,19,20,32},28->{18,19,20,32},29->{18 ,19,20,32},30->{30,31},31->{},32->{6,41},33->{15,16,17},34->{15,16,17},35->{15,16,17},36->{7,8,12,40},37->{7 ,8,12,40},38->{11,37},39->{10,38},40->{14,33,34,35},41->{30,31},42->{6,41},43->{5,42},44->{5,42},45->{6,41} ,46->{4,43,44,45}] Sizebounds: (< 0,0,A>, ?) (< 0,0,C>, ?) (< 0,0,D>, ?) (< 0,0,E>, ?) (< 0,0,J>, ?) (< 0,0,L>, ?) (< 0,0,N>, ?) (< 0,0,O>, ?) (< 0,0,P>, ?) (< 0,0,Q>, ?) (< 1,0,A>, ?) (< 1,0,C>, ?) (< 1,0,D>, ?) (< 1,0,E>, ?) (< 1,0,J>, ?) (< 1,0,L>, ?) (< 1,0,N>, ?) (< 1,0,O>, ?) (< 1,0,P>, ?) (< 1,0,Q>, ?) (< 2,0,A>, ?) (< 2,0,C>, ?) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 2,0,J>, ?) (< 2,0,L>, ?) (< 2,0,N>, ?) (< 2,0,O>, ?) (< 2,0,P>, ?) (< 2,0,Q>, ?) (< 3,0,A>, ?) (< 3,0,C>, ?) (< 3,0,D>, ?) (< 3,0,E>, ?) (< 3,0,J>, ?) (< 3,0,L>, ?) (< 3,0,N>, ?) (< 3,0,O>, ?) (< 3,0,P>, ?) (< 3,0,Q>, ?) (< 4,0,A>, ?) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 4,0,J>, ?) (< 4,0,L>, ?) (< 4,0,N>, ?) (< 4,0,O>, ?) (< 4,0,P>, ?) (< 4,0,Q>, ?) (< 5,0,A>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 5,0,J>, ?) (< 5,0,L>, ?) (< 5,0,N>, ?) (< 5,0,O>, ?) (< 5,0,P>, ?) (< 5,0,Q>, ?) (< 6,0,A>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, ?) (< 6,0,J>, ?) (< 6,0,L>, ?) (< 6,0,N>, ?) (< 6,0,O>, ?) (< 6,0,P>, ?) (< 6,0,Q>, ?) (< 7,0,A>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 7,0,J>, ?) (< 7,0,L>, ?) (< 7,0,N>, ?) (< 7,0,O>, ?) (< 7,0,P>, ?) (< 7,0,Q>, ?) (< 8,0,A>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 8,0,J>, ?) (< 8,0,L>, ?) (< 8,0,N>, ?) (< 8,0,O>, ?) (< 8,0,P>, ?) (< 8,0,Q>, ?) (< 9,0,A>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (< 9,0,J>, ?) (< 9,0,L>, ?) (< 9,0,N>, ?) (< 9,0,O>, ?) (< 9,0,P>, ?) (< 9,0,Q>, ?) (<10,0,A>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<10,0,J>, ?) (<10,0,L>, ?) (<10,0,N>, ?) (<10,0,O>, ?) (<10,0,P>, ?) (<10,0,Q>, ?) (<11,0,A>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<11,0,J>, ?) (<11,0,L>, ?) (<11,0,N>, ?) (<11,0,O>, ?) (<11,0,P>, ?) (<11,0,Q>, ?) (<12,0,A>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<12,0,J>, ?) (<12,0,L>, ?) (<12,0,N>, ?) (<12,0,O>, ?) (<12,0,P>, ?) (<12,0,Q>, ?) (<13,0,A>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) (<13,0,J>, ?) (<13,0,L>, ?) (<13,0,N>, ?) (<13,0,O>, ?) (<13,0,P>, ?) (<13,0,Q>, ?) (<14,0,A>, ?) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, ?) (<14,0,J>, ?) (<14,0,L>, ?) (<14,0,N>, ?) (<14,0,O>, ?) (<14,0,P>, ?) (<14,0,Q>, ?) (<15,0,A>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, ?) (<15,0,J>, ?) (<15,0,L>, ?) (<15,0,N>, ?) (<15,0,O>, ?) (<15,0,P>, ?) (<15,0,Q>, ?) (<16,0,A>, ?) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,E>, ?) (<16,0,J>, ?) (<16,0,L>, ?) (<16,0,N>, ?) (<16,0,O>, ?) (<16,0,P>, ?) (<16,0,Q>, ?) (<17,0,A>, ?) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,E>, ?) (<17,0,J>, ?) (<17,0,L>, ?) (<17,0,N>, ?) (<17,0,O>, ?) (<17,0,P>, ?) (<17,0,Q>, ?) (<18,0,A>, ?) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,E>, ?) (<18,0,J>, ?) (<18,0,L>, ?) (<18,0,N>, ?) (<18,0,O>, ?) (<18,0,P>, ?) (<18,0,Q>, ?) (<19,0,A>, ?) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) (<19,0,J>, ?) (<19,0,L>, ?) (<19,0,N>, ?) (<19,0,O>, ?) (<19,0,P>, ?) (<19,0,Q>, ?) (<20,0,A>, ?) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) (<20,0,J>, ?) (<20,0,L>, ?) (<20,0,N>, ?) (<20,0,O>, ?) (<20,0,P>, ?) (<20,0,Q>, ?) (<21,0,A>, ?) (<21,0,C>, ?) (<21,0,D>, ?) (<21,0,E>, ?) (<21,0,J>, ?) (<21,0,L>, ?) (<21,0,N>, ?) (<21,0,O>, ?) (<21,0,P>, ?) (<21,0,Q>, ?) (<22,0,A>, ?) (<22,0,C>, ?) (<22,0,D>, ?) (<22,0,E>, ?) (<22,0,J>, ?) (<22,0,L>, ?) (<22,0,N>, ?) (<22,0,O>, ?) (<22,0,P>, ?) (<22,0,Q>, ?) (<23,0,A>, ?) (<23,0,C>, ?) (<23,0,D>, ?) (<23,0,E>, ?) (<23,0,J>, ?) (<23,0,L>, ?) (<23,0,N>, ?) (<23,0,O>, ?) (<23,0,P>, ?) (<23,0,Q>, ?) (<24,0,A>, ?) (<24,0,C>, ?) (<24,0,D>, ?) (<24,0,E>, ?) (<24,0,J>, ?) (<24,0,L>, ?) (<24,0,N>, ?) (<24,0,O>, ?) (<24,0,P>, ?) (<24,0,Q>, ?) (<25,0,A>, ?) (<25,0,C>, ?) (<25,0,D>, ?) (<25,0,E>, ?) (<25,0,J>, ?) (<25,0,L>, ?) (<25,0,N>, ?) (<25,0,O>, ?) (<25,0,P>, ?) (<25,0,Q>, ?) (<26,0,A>, ?) (<26,0,C>, ?) (<26,0,D>, ?) (<26,0,E>, ?) (<26,0,J>, ?) (<26,0,L>, ?) (<26,0,N>, ?) (<26,0,O>, ?) (<26,0,P>, ?) (<26,0,Q>, ?) (<27,0,A>, ?) (<27,0,C>, ?) (<27,0,D>, ?) (<27,0,E>, ?) (<27,0,J>, ?) (<27,0,L>, ?) (<27,0,N>, ?) (<27,0,O>, ?) (<27,0,P>, ?) (<27,0,Q>, ?) (<28,0,A>, ?) (<28,0,C>, ?) (<28,0,D>, ?) (<28,0,E>, ?) (<28,0,J>, ?) (<28,0,L>, ?) (<28,0,N>, ?) (<28,0,O>, ?) (<28,0,P>, ?) (<28,0,Q>, ?) (<29,0,A>, ?) (<29,0,C>, ?) (<29,0,D>, ?) (<29,0,E>, ?) (<29,0,J>, ?) (<29,0,L>, ?) (<29,0,N>, ?) (<29,0,O>, ?) (<29,0,P>, ?) (<29,0,Q>, ?) (<30,0,A>, ?) (<30,0,C>, ?) (<30,0,D>, ?) (<30,0,E>, ?) (<30,0,J>, ?) (<30,0,L>, ?) (<30,0,N>, ?) (<30,0,O>, ?) (<30,0,P>, ?) (<30,0,Q>, ?) (<31,0,A>, ?) (<31,0,C>, ?) (<31,0,D>, ?) (<31,0,E>, ?) (<31,0,J>, ?) (<31,0,L>, ?) (<31,0,N>, ?) (<31,0,O>, ?) (<31,0,P>, ?) (<31,0,Q>, ?) (<32,0,A>, ?) (<32,0,C>, ?) (<32,0,D>, ?) (<32,0,E>, ?) (<32,0,J>, ?) (<32,0,L>, ?) (<32,0,N>, ?) (<32,0,O>, ?) (<32,0,P>, ?) (<32,0,Q>, ?) (<33,0,A>, ?) (<33,0,C>, ?) (<33,0,D>, ?) (<33,0,E>, ?) (<33,0,J>, ?) (<33,0,L>, ?) (<33,0,N>, ?) (<33,0,O>, ?) (<33,0,P>, ?) (<33,0,Q>, ?) (<34,0,A>, ?) (<34,0,C>, ?) (<34,0,D>, ?) (<34,0,E>, ?) (<34,0,J>, ?) (<34,0,L>, ?) (<34,0,N>, ?) (<34,0,O>, ?) (<34,0,P>, ?) (<34,0,Q>, ?) (<35,0,A>, ?) (<35,0,C>, ?) (<35,0,D>, ?) (<35,0,E>, ?) (<35,0,J>, ?) (<35,0,L>, ?) (<35,0,N>, ?) (<35,0,O>, ?) (<35,0,P>, ?) (<35,0,Q>, ?) (<36,0,A>, ?) (<36,0,C>, ?) (<36,0,D>, ?) (<36,0,E>, ?) (<36,0,J>, ?) (<36,0,L>, ?) (<36,0,N>, ?) (<36,0,O>, ?) (<36,0,P>, ?) (<36,0,Q>, ?) (<37,0,A>, ?) (<37,0,C>, ?) (<37,0,D>, ?) (<37,0,E>, ?) (<37,0,J>, ?) (<37,0,L>, ?) (<37,0,N>, ?) (<37,0,O>, ?) (<37,0,P>, ?) (<37,0,Q>, ?) (<38,0,A>, ?) (<38,0,C>, ?) (<38,0,D>, ?) (<38,0,E>, ?) (<38,0,J>, ?) (<38,0,L>, ?) (<38,0,N>, ?) (<38,0,O>, ?) (<38,0,P>, ?) (<38,0,Q>, ?) (<39,0,A>, ?) (<39,0,C>, ?) (<39,0,D>, ?) (<39,0,E>, ?) (<39,0,J>, ?) (<39,0,L>, ?) (<39,0,N>, ?) (<39,0,O>, ?) (<39,0,P>, ?) (<39,0,Q>, ?) (<40,0,A>, ?) (<40,0,C>, ?) (<40,0,D>, ?) (<40,0,E>, ?) (<40,0,J>, ?) (<40,0,L>, ?) (<40,0,N>, ?) (<40,0,O>, ?) (<40,0,P>, ?) (<40,0,Q>, ?) (<41,0,A>, ?) (<41,0,C>, ?) (<41,0,D>, ?) (<41,0,E>, ?) (<41,0,J>, ?) (<41,0,L>, ?) (<41,0,N>, ?) (<41,0,O>, ?) (<41,0,P>, ?) (<41,0,Q>, ?) (<42,0,A>, ?) (<42,0,C>, ?) (<42,0,D>, ?) (<42,0,E>, ?) (<42,0,J>, ?) (<42,0,L>, ?) (<42,0,N>, ?) (<42,0,O>, ?) (<42,0,P>, ?) (<42,0,Q>, ?) (<43,0,A>, ?) (<43,0,C>, ?) (<43,0,D>, ?) (<43,0,E>, ?) (<43,0,J>, ?) (<43,0,L>, ?) (<43,0,N>, ?) (<43,0,O>, ?) (<43,0,P>, ?) (<43,0,Q>, ?) (<44,0,A>, ?) (<44,0,C>, ?) (<44,0,D>, ?) (<44,0,E>, ?) (<44,0,J>, ?) (<44,0,L>, ?) (<44,0,N>, ?) (<44,0,O>, ?) (<44,0,P>, ?) (<44,0,Q>, ?) (<45,0,A>, ?) (<45,0,C>, ?) (<45,0,D>, ?) (<45,0,E>, ?) (<45,0,J>, ?) (<45,0,L>, ?) (<45,0,N>, ?) (<45,0,O>, ?) (<45,0,P>, ?) (<45,0,Q>, ?) (<46,0,A>, ?) (<46,0,C>, ?) (<46,0,D>, ?) (<46,0,E>, ?) (<46,0,J>, ?) (<46,0,L>, ?) (<46,0,N>, ?) (<46,0,O>, ?) (<46,0,P>, ?) (<46,0,Q>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (< 0,0,A>, 0) (< 0,0,C>, 2*D) (< 0,0,D>, D) (< 0,0,E>, 4*D) (< 0,0,J>, J) (< 0,0,L>, L) (< 0,0,N>, N) (< 0,0,O>, O) (< 0,0,P>, P) (< 0,0,Q>, Q) (< 1,0,A>, ?) (< 1,0,C>, 2*D) (< 1,0,D>, D) (< 1,0,E>, 4*D) (< 1,0,J>, 1 + 2*D) (< 1,0,L>, 0) (< 1,0,N>, N) (< 1,0,O>, O) (< 1,0,P>, P) (< 1,0,Q>, Q) (< 2,0,A>, ?) (< 2,0,C>, 2*D) (< 2,0,D>, D) (< 2,0,E>, 4*D) (< 2,0,J>, 1 + 2*D) (< 2,0,L>, ?) (< 2,0,N>, N) (< 2,0,O>, O) (< 2,0,P>, P) (< 2,0,Q>, Q) (< 3,0,A>, ?) (< 3,0,C>, 2*D) (< 3,0,D>, D) (< 3,0,E>, 4*D) (< 3,0,J>, 1 + 2*D) (< 3,0,L>, ?) (< 3,0,N>, N) (< 3,0,O>, O) (< 3,0,P>, P) (< 3,0,Q>, Q) (< 4,0,A>, ?) (< 4,0,C>, 2*D) (< 4,0,D>, D) (< 4,0,E>, 4*D) (< 4,0,J>, 1 + D) (< 4,0,L>, ?) (< 4,0,N>, N) (< 4,0,O>, O) (< 4,0,P>, P) (< 4,0,Q>, Q) (< 5,0,A>, ?) (< 5,0,C>, 2*D) (< 5,0,D>, D) (< 5,0,E>, 4*D) (< 5,0,J>, 1 + D) (< 5,0,L>, ?) (< 5,0,N>, N) (< 5,0,O>, O) (< 5,0,P>, P) (< 5,0,Q>, Q) (< 6,0,A>, ?) (< 6,0,C>, 2*D) (< 6,0,D>, D) (< 6,0,E>, 4*D) (< 6,0,J>, ?) (< 6,0,L>, ?) (< 6,0,N>, N) (< 6,0,O>, N) (< 6,0,P>, P) (< 6,0,Q>, ?) (< 7,0,A>, ?) (< 7,0,C>, 2*D) (< 7,0,D>, D) (< 7,0,E>, 4*D) (< 7,0,J>, ?) (< 7,0,L>, ?) (< 7,0,N>, N) (< 7,0,O>, ?) (< 7,0,P>, P) (< 7,0,Q>, 0) (< 8,0,A>, ?) (< 8,0,C>, 2*D) (< 8,0,D>, D) (< 8,0,E>, 4*D) (< 8,0,J>, ?) (< 8,0,L>, ?) (< 8,0,N>, N) (< 8,0,O>, ?) (< 8,0,P>, P) (< 8,0,Q>, 0) (< 9,0,A>, ?) (< 9,0,C>, 2*D) (< 9,0,D>, D) (< 9,0,E>, 4*D) (< 9,0,J>, 1 + D) (< 9,0,L>, ?) (< 9,0,N>, N) (< 9,0,O>, ?) (< 9,0,P>, P) (< 9,0,Q>, 0) (<10,0,A>, ?) (<10,0,C>, 2*D) (<10,0,D>, D) (<10,0,E>, 4*D) (<10,0,J>, 1 + D) (<10,0,L>, ?) (<10,0,N>, N) (<10,0,O>, ?) (<10,0,P>, P) (<10,0,Q>, 0) (<11,0,A>, ?) (<11,0,C>, 2*D) (<11,0,D>, D) (<11,0,E>, 4*D) (<11,0,J>, 1 + D) (<11,0,L>, ?) (<11,0,N>, N) (<11,0,O>, ?) (<11,0,P>, P) (<11,0,Q>, 0) (<12,0,A>, ?) (<12,0,C>, 2*D) (<12,0,D>, D) (<12,0,E>, 4*D) (<12,0,J>, ?) (<12,0,L>, ?) (<12,0,N>, N) (<12,0,O>, ?) (<12,0,P>, 0) (<12,0,Q>, P) (<13,0,A>, ?) (<13,0,C>, 2*D) (<13,0,D>, D) (<13,0,E>, 4*D) (<13,0,J>, 2 + 4*D) (<13,0,L>, ?) (<13,0,N>, N) (<13,0,O>, ?) (<13,0,P>, 0) (<13,0,Q>, P) (<14,0,A>, ?) (<14,0,C>, 2*D) (<14,0,D>, D) (<14,0,E>, 4*D) (<14,0,J>, 1 + 2*D) (<14,0,L>, ?) (<14,0,N>, N) (<14,0,O>, ?) (<14,0,P>, P) (<14,0,Q>, ?) (<15,0,A>, ?) (<15,0,C>, 2*D) (<15,0,D>, D) (<15,0,E>, 4*D) (<15,0,J>, ?) (<15,0,L>, 0) (<15,0,N>, N) (<15,0,O>, ?) (<15,0,P>, P) (<15,0,Q>, ?) (<16,0,A>, ?) (<16,0,C>, 2*D) (<16,0,D>, D) (<16,0,E>, 4*D) (<16,0,J>, ?) (<16,0,L>, ?) (<16,0,N>, N) (<16,0,O>, ?) (<16,0,P>, P) (<16,0,Q>, ?) (<17,0,A>, ?) (<17,0,C>, 2*D) (<17,0,D>, D) (<17,0,E>, 4*D) (<17,0,J>, ?) (<17,0,L>, ?) (<17,0,N>, N) (<17,0,O>, ?) (<17,0,P>, P) (<17,0,Q>, ?) (<18,0,A>, ?) (<18,0,C>, 2*D) (<18,0,D>, D) (<18,0,E>, 4*D) (<18,0,J>, D) (<18,0,L>, ?) (<18,0,N>, N) (<18,0,O>, ?) (<18,0,P>, P) (<18,0,Q>, ?) (<19,0,A>, ?) (<19,0,C>, 2*D) (<19,0,D>, D) (<19,0,E>, 4*D) (<19,0,J>, D) (<19,0,L>, ?) (<19,0,N>, N) (<19,0,O>, ?) (<19,0,P>, P) (<19,0,Q>, ?) (<20,0,A>, ?) (<20,0,C>, 2*D) (<20,0,D>, D) (<20,0,E>, 4*D) (<20,0,J>, D) (<20,0,L>, ?) (<20,0,N>, N) (<20,0,O>, ?) (<20,0,P>, P) (<20,0,Q>, ?) (<21,0,A>, ?) (<21,0,C>, 2*D) (<21,0,D>, D) (<21,0,E>, 4*D) (<21,0,J>, D) (<21,0,L>, ?) (<21,0,N>, N) (<21,0,O>, ?) (<21,0,P>, P) (<21,0,Q>, ?) (<22,0,A>, ?) (<22,0,C>, 2*D) (<22,0,D>, D) (<22,0,E>, 4*D) (<22,0,J>, D) (<22,0,L>, ?) (<22,0,N>, N) (<22,0,O>, ?) (<22,0,P>, P) (<22,0,Q>, ?) (<23,0,A>, ?) (<23,0,C>, 2*D) (<23,0,D>, D) (<23,0,E>, 4*D) (<23,0,J>, D) (<23,0,L>, ?) (<23,0,N>, N) (<23,0,O>, ?) (<23,0,P>, P) (<23,0,Q>, ?) (<24,0,A>, ?) (<24,0,C>, 2*D) (<24,0,D>, D) (<24,0,E>, 4*D) (<24,0,J>, D) (<24,0,L>, ?) (<24,0,N>, N) (<24,0,O>, ?) (<24,0,P>, P) (<24,0,Q>, ?) (<25,0,A>, ?) (<25,0,C>, 2*D) (<25,0,D>, D) (<25,0,E>, 4*D) (<25,0,J>, D) (<25,0,L>, ?) (<25,0,N>, N) (<25,0,O>, ?) (<25,0,P>, P) (<25,0,Q>, ?) (<26,0,A>, ?) (<26,0,C>, 2*D) (<26,0,D>, D) (<26,0,E>, 4*D) (<26,0,J>, D) (<26,0,L>, ?) (<26,0,N>, N) (<26,0,O>, ?) (<26,0,P>, P) (<26,0,Q>, ?) (<27,0,A>, ?) (<27,0,C>, 2*D) (<27,0,D>, D) (<27,0,E>, 4*D) (<27,0,J>, D) (<27,0,L>, 0) (<27,0,N>, N) (<27,0,O>, ?) (<27,0,P>, P) (<27,0,Q>, ?) (<28,0,A>, ?) (<28,0,C>, 2*D) (<28,0,D>, D) (<28,0,E>, 4*D) (<28,0,J>, D) (<28,0,L>, ?) (<28,0,N>, N) (<28,0,O>, ?) (<28,0,P>, P) (<28,0,Q>, ?) (<29,0,A>, ?) (<29,0,C>, 2*D) (<29,0,D>, D) (<29,0,E>, 4*D) (<29,0,J>, D) (<29,0,L>, ?) (<29,0,N>, N) (<29,0,O>, ?) (<29,0,P>, P) (<29,0,Q>, ?) (<30,0,A>, ?) (<30,0,C>, 2*D) (<30,0,D>, D) (<30,0,E>, 4*D) (<30,0,J>, 1 + D) (<30,0,L>, ?) (<30,0,N>, N) (<30,0,O>, ?) (<30,0,P>, P) (<30,0,Q>, ?) (<31,0,A>, ?) (<31,0,C>, 2*D) (<31,0,D>, D) (<31,0,E>, 4*D) (<31,0,J>, ?) (<31,0,L>, ?) (<31,0,N>, N) (<31,0,O>, ?) (<31,0,P>, P) (<31,0,Q>, ?) (<32,0,A>, ?) (<32,0,C>, 2*D) (<32,0,D>, D) (<32,0,E>, 4*D) (<32,0,J>, ?) (<32,0,L>, ?) (<32,0,N>, N) (<32,0,O>, ?) (<32,0,P>, P) (<32,0,Q>, ?) (<33,0,A>, ?) (<33,0,C>, 2*D) (<33,0,D>, D) (<33,0,E>, 4*D) (<33,0,J>, ?) (<33,0,L>, ?) (<33,0,N>, N) (<33,0,O>, ?) (<33,0,P>, P) (<33,0,Q>, ?) (<34,0,A>, ?) (<34,0,C>, 2*D) (<34,0,D>, D) (<34,0,E>, 4*D) (<34,0,J>, ?) (<34,0,L>, ?) (<34,0,N>, N) (<34,0,O>, ?) (<34,0,P>, P) (<34,0,Q>, ?) (<35,0,A>, ?) (<35,0,C>, 2*D) (<35,0,D>, D) (<35,0,E>, 4*D) (<35,0,J>, ?) (<35,0,L>, ?) (<35,0,N>, N) (<35,0,O>, ?) (<35,0,P>, P) (<35,0,Q>, ?) (<36,0,A>, ?) (<36,0,C>, 2*D) (<36,0,D>, D) (<36,0,E>, 4*D) (<36,0,J>, ?) (<36,0,L>, ?) (<36,0,N>, N) (<36,0,O>, ?) (<36,0,P>, 0) (<36,0,Q>, P) (<37,0,A>, ?) (<37,0,C>, 2*D) (<37,0,D>, D) (<37,0,E>, 4*D) (<37,0,J>, ?) (<37,0,L>, ?) (<37,0,N>, N) (<37,0,O>, ?) (<37,0,P>, P) (<37,0,Q>, 0) (<38,0,A>, ?) (<38,0,C>, 2*D) (<38,0,D>, D) (<38,0,E>, 4*D) (<38,0,J>, ?) (<38,0,L>, ?) (<38,0,N>, N) (<38,0,O>, ?) (<38,0,P>, P) (<38,0,Q>, 0) (<39,0,A>, ?) (<39,0,C>, 2*D) (<39,0,D>, D) (<39,0,E>, 4*D) (<39,0,J>, ?) (<39,0,L>, ?) (<39,0,N>, N) (<39,0,O>, ?) (<39,0,P>, P) (<39,0,Q>, 0) (<40,0,A>, ?) (<40,0,C>, 2*D) (<40,0,D>, D) (<40,0,E>, 4*D) (<40,0,J>, ?) (<40,0,L>, ?) (<40,0,N>, N) (<40,0,O>, ?) (<40,0,P>, P) (<40,0,Q>, ?) (<41,0,A>, ?) (<41,0,C>, 2*D) (<41,0,D>, D) (<41,0,E>, 4*D) (<41,0,J>, ?) (<41,0,L>, ?) (<41,0,N>, N) (<41,0,O>, ?) (<41,0,P>, P) (<41,0,Q>, ?) (<42,0,A>, ?) (<42,0,C>, 2*D) (<42,0,D>, D) (<42,0,E>, 4*D) (<42,0,J>, 1 + 2*D + J) (<42,0,L>, ?) (<42,0,N>, N) (<42,0,O>, O) (<42,0,P>, P) (<42,0,Q>, Q) (<43,0,A>, ?) (<43,0,C>, 2*D) (<43,0,D>, D) (<43,0,E>, 4*D) (<43,0,J>, 1 + 2*D + J) (<43,0,L>, ?) (<43,0,N>, N) (<43,0,O>, O) (<43,0,P>, P) (<43,0,Q>, Q) (<44,0,A>, ?) (<44,0,C>, 2*D) (<44,0,D>, D) (<44,0,E>, 4*D) (<44,0,J>, 1 + 2*D + J) (<44,0,L>, ?) (<44,0,N>, N) (<44,0,O>, O) (<44,0,P>, P) (<44,0,Q>, Q) (<45,0,A>, ?) (<45,0,C>, 2*D) (<45,0,D>, D) (<45,0,E>, 4*D) (<45,0,J>, 1 + 2*D + J) (<45,0,L>, ?) (<45,0,N>, N) (<45,0,O>, O) (<45,0,P>, 0) (<45,0,Q>, Q) (<46,0,A>, ?) (<46,0,C>, 2*D) (<46,0,D>, D) (<46,0,E>, 4*D) (<46,0,J>, 1 + 2*D + J) (<46,0,L>, ?) (<46,0,N>, N) (<46,0,O>, O) (<46,0,P>, P) (<46,0,Q>, Q) * Step 4: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,C,D,E,J,L,N,O,P,Q) -> f13(0,2*D,D,4*D,J,L,N,O,P,Q) True (1,1) 1. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A,C,D,E,1 + J,0,N,O,P,Q) [C >= J] (?,1) 2. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [C1 >= 2 && C >= J] (?,1) 3. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [0 >= C1 && C >= J] (?,1) 4. f24(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 5. f31(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 6. f37(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,Q) [N >= O] (?,1) 7. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && 0 >= Q] (?,1) 8. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && 0 >= Q] (?,1) 9. f44(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 10. f50(A,C,D,E,J,L,N,O,P,Q) -> f50(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 11. f57(A,C,D,E,J,L,N,O,P,Q) -> f57(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 12. f40(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,J,L,N,O,0,Q) [0 >= Q && P = 0] (?,1) 13. f64(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,2 + J,L,N,O,P,Q) [E >= J] (?,1) 14. f71(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,1 + J,L,N,O,P,Q) [C >= J] (?,1) 15. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,0,N,O,P,Q) [L = 0] (?,1) 16. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + L] (?,1) 17. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [L >= 1] (?,1) 18. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D >= J] (?,1) 19. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && D >= J] (?,1) 20. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && D >= J] (?,1) 21. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (?,1) 22. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (?,1) 23. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (?,1) 24. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (?,1) 25. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (?,1) 26. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (?,1) 27. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,0,N,O,P,Q) [L = 0] (?,1) 28. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [0 >= 1 + L] (?,1) 29. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [L >= 1] (?,1) 30. f118(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 31. f118(A,C,D,E,J,L,N,O,P,Q) -> f1(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (?,1) 32. f91(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,1 + O,P,Q) [J >= 1 + D] (?,1) 33. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [J >= 1 + C] (?,1) 34. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && J >= 1 + C] (?,1) 35. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && J >= 1 + C] (?,1) 36. f64(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + E] (?,1) 37. f57(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] (?,1) 38. f50(A,C,D,E,J,L,N,O,P,Q) -> f57(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (?,1) 39. f44(A,C,D,E,J,L,N,O,P,Q) -> f50(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (?,1) 40. f40(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,J,L,N,O,P,Q) [Q >= 1] (?,1) 41. f37(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,J,L,N,O,P,Q) [O >= 1 + N] (?,1) 42. f31(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (?,1) 43. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && J >= 1 + D] (?,1) 44. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && J >= 1 + D] (?,1) 45. f24(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,0,Q) [J >= 1 + D && P = 0] (?,1) 46. f13(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + C] (?,1) Signature: {(f1,10) ;(f103,10) ;(f107,10) ;(f118,10) ;(f13,10) ;(f2,10) ;(f24,10) ;(f31,10) ;(f37,10) ;(f40,10) ;(f44,10) ;(f50,10) ;(f57,10) ;(f64,10) ;(f71,10) ;(f86,10) ;(f91,10) ;(f99,10)} Flow Graph: [0->{1,2,3,46},1->{1,2,3,46},2->{1,2,3,46},3->{1,2,3,46},4->{4,43,44,45},5->{5,42},6->{7,8,12,40},7->{9 ,39},8->{9,39},9->{9,39},10->{10,38},11->{11,37},12->{13,36},13->{13,36},14->{14,33,34,35},15->{18,19,20,32} ,16->{18,19,20,32},17->{18,19,20,32},18->{21,22,23},19->{21,22,23},20->{21,22,23},21->{24,25,26},22->{24,25 ,26},23->{24,25,26},24->{27,28,29},25->{27,28,29},26->{27,28,29},27->{18,19,20,32},28->{18,19,20,32},29->{18 ,19,20,32},30->{30,31},31->{},32->{6,41},33->{15,16,17},34->{15,16,17},35->{15,16,17},36->{7,8,12,40},37->{7 ,8,12,40},38->{11,37},39->{10,38},40->{14,33,34,35},41->{30,31},42->{6,41},43->{5,42},44->{5,42},45->{6,41} ,46->{4,43,44,45}] Sizebounds: (< 0,0,A>, 0) (< 0,0,C>, 2*D) (< 0,0,D>, D) (< 0,0,E>, 4*D) (< 0,0,J>, J) (< 0,0,L>, L) (< 0,0,N>, N) (< 0,0,O>, O) (< 0,0,P>, P) (< 0,0,Q>, Q) (< 1,0,A>, ?) (< 1,0,C>, 2*D) (< 1,0,D>, D) (< 1,0,E>, 4*D) (< 1,0,J>, 1 + 2*D) (< 1,0,L>, 0) (< 1,0,N>, N) (< 1,0,O>, O) (< 1,0,P>, P) (< 1,0,Q>, Q) (< 2,0,A>, ?) (< 2,0,C>, 2*D) (< 2,0,D>, D) (< 2,0,E>, 4*D) (< 2,0,J>, 1 + 2*D) (< 2,0,L>, ?) (< 2,0,N>, N) (< 2,0,O>, O) (< 2,0,P>, P) (< 2,0,Q>, Q) (< 3,0,A>, ?) (< 3,0,C>, 2*D) (< 3,0,D>, D) (< 3,0,E>, 4*D) (< 3,0,J>, 1 + 2*D) (< 3,0,L>, ?) (< 3,0,N>, N) (< 3,0,O>, O) (< 3,0,P>, P) (< 3,0,Q>, Q) (< 4,0,A>, ?) (< 4,0,C>, 2*D) (< 4,0,D>, D) (< 4,0,E>, 4*D) (< 4,0,J>, 1 + D) (< 4,0,L>, ?) (< 4,0,N>, N) (< 4,0,O>, O) (< 4,0,P>, P) (< 4,0,Q>, Q) (< 5,0,A>, ?) (< 5,0,C>, 2*D) (< 5,0,D>, D) (< 5,0,E>, 4*D) (< 5,0,J>, 1 + D) (< 5,0,L>, ?) (< 5,0,N>, N) (< 5,0,O>, O) (< 5,0,P>, P) (< 5,0,Q>, Q) (< 6,0,A>, ?) (< 6,0,C>, 2*D) (< 6,0,D>, D) (< 6,0,E>, 4*D) (< 6,0,J>, ?) (< 6,0,L>, ?) (< 6,0,N>, N) (< 6,0,O>, N) (< 6,0,P>, P) (< 6,0,Q>, ?) (< 7,0,A>, ?) (< 7,0,C>, 2*D) (< 7,0,D>, D) (< 7,0,E>, 4*D) (< 7,0,J>, ?) (< 7,0,L>, ?) (< 7,0,N>, N) (< 7,0,O>, ?) (< 7,0,P>, P) (< 7,0,Q>, 0) (< 8,0,A>, ?) (< 8,0,C>, 2*D) (< 8,0,D>, D) (< 8,0,E>, 4*D) (< 8,0,J>, ?) (< 8,0,L>, ?) (< 8,0,N>, N) (< 8,0,O>, ?) (< 8,0,P>, P) (< 8,0,Q>, 0) (< 9,0,A>, ?) (< 9,0,C>, 2*D) (< 9,0,D>, D) (< 9,0,E>, 4*D) (< 9,0,J>, 1 + D) (< 9,0,L>, ?) (< 9,0,N>, N) (< 9,0,O>, ?) (< 9,0,P>, P) (< 9,0,Q>, 0) (<10,0,A>, ?) (<10,0,C>, 2*D) (<10,0,D>, D) (<10,0,E>, 4*D) (<10,0,J>, 1 + D) (<10,0,L>, ?) (<10,0,N>, N) (<10,0,O>, ?) (<10,0,P>, P) (<10,0,Q>, 0) (<11,0,A>, ?) (<11,0,C>, 2*D) (<11,0,D>, D) (<11,0,E>, 4*D) (<11,0,J>, 1 + D) (<11,0,L>, ?) (<11,0,N>, N) (<11,0,O>, ?) (<11,0,P>, P) (<11,0,Q>, 0) (<12,0,A>, ?) (<12,0,C>, 2*D) (<12,0,D>, D) (<12,0,E>, 4*D) (<12,0,J>, ?) (<12,0,L>, ?) (<12,0,N>, N) (<12,0,O>, ?) (<12,0,P>, 0) (<12,0,Q>, P) (<13,0,A>, ?) (<13,0,C>, 2*D) (<13,0,D>, D) (<13,0,E>, 4*D) (<13,0,J>, 2 + 4*D) (<13,0,L>, ?) (<13,0,N>, N) (<13,0,O>, ?) (<13,0,P>, 0) (<13,0,Q>, P) (<14,0,A>, ?) (<14,0,C>, 2*D) (<14,0,D>, D) (<14,0,E>, 4*D) (<14,0,J>, 1 + 2*D) (<14,0,L>, ?) (<14,0,N>, N) (<14,0,O>, ?) (<14,0,P>, P) (<14,0,Q>, ?) (<15,0,A>, ?) (<15,0,C>, 2*D) (<15,0,D>, D) (<15,0,E>, 4*D) (<15,0,J>, ?) (<15,0,L>, 0) (<15,0,N>, N) (<15,0,O>, ?) (<15,0,P>, P) (<15,0,Q>, ?) (<16,0,A>, ?) (<16,0,C>, 2*D) (<16,0,D>, D) (<16,0,E>, 4*D) (<16,0,J>, ?) (<16,0,L>, ?) (<16,0,N>, N) (<16,0,O>, ?) (<16,0,P>, P) (<16,0,Q>, ?) (<17,0,A>, ?) (<17,0,C>, 2*D) (<17,0,D>, D) (<17,0,E>, 4*D) (<17,0,J>, ?) (<17,0,L>, ?) (<17,0,N>, N) (<17,0,O>, ?) (<17,0,P>, P) (<17,0,Q>, ?) (<18,0,A>, ?) (<18,0,C>, 2*D) (<18,0,D>, D) (<18,0,E>, 4*D) (<18,0,J>, D) (<18,0,L>, ?) (<18,0,N>, N) (<18,0,O>, ?) (<18,0,P>, P) (<18,0,Q>, ?) (<19,0,A>, ?) (<19,0,C>, 2*D) (<19,0,D>, D) (<19,0,E>, 4*D) (<19,0,J>, D) (<19,0,L>, ?) (<19,0,N>, N) (<19,0,O>, ?) (<19,0,P>, P) (<19,0,Q>, ?) (<20,0,A>, ?) (<20,0,C>, 2*D) (<20,0,D>, D) (<20,0,E>, 4*D) (<20,0,J>, D) (<20,0,L>, ?) (<20,0,N>, N) (<20,0,O>, ?) (<20,0,P>, P) (<20,0,Q>, ?) (<21,0,A>, ?) (<21,0,C>, 2*D) (<21,0,D>, D) (<21,0,E>, 4*D) (<21,0,J>, D) (<21,0,L>, ?) (<21,0,N>, N) (<21,0,O>, ?) (<21,0,P>, P) (<21,0,Q>, ?) (<22,0,A>, ?) (<22,0,C>, 2*D) (<22,0,D>, D) (<22,0,E>, 4*D) (<22,0,J>, D) (<22,0,L>, ?) (<22,0,N>, N) (<22,0,O>, ?) (<22,0,P>, P) (<22,0,Q>, ?) (<23,0,A>, ?) (<23,0,C>, 2*D) (<23,0,D>, D) (<23,0,E>, 4*D) (<23,0,J>, D) (<23,0,L>, ?) (<23,0,N>, N) (<23,0,O>, ?) (<23,0,P>, P) (<23,0,Q>, ?) (<24,0,A>, ?) (<24,0,C>, 2*D) (<24,0,D>, D) (<24,0,E>, 4*D) (<24,0,J>, D) (<24,0,L>, ?) (<24,0,N>, N) (<24,0,O>, ?) (<24,0,P>, P) (<24,0,Q>, ?) (<25,0,A>, ?) (<25,0,C>, 2*D) (<25,0,D>, D) (<25,0,E>, 4*D) (<25,0,J>, D) (<25,0,L>, ?) (<25,0,N>, N) (<25,0,O>, ?) (<25,0,P>, P) (<25,0,Q>, ?) (<26,0,A>, ?) (<26,0,C>, 2*D) (<26,0,D>, D) (<26,0,E>, 4*D) (<26,0,J>, D) (<26,0,L>, ?) (<26,0,N>, N) (<26,0,O>, ?) (<26,0,P>, P) (<26,0,Q>, ?) (<27,0,A>, ?) (<27,0,C>, 2*D) (<27,0,D>, D) (<27,0,E>, 4*D) (<27,0,J>, D) (<27,0,L>, 0) (<27,0,N>, N) (<27,0,O>, ?) (<27,0,P>, P) (<27,0,Q>, ?) (<28,0,A>, ?) (<28,0,C>, 2*D) (<28,0,D>, D) (<28,0,E>, 4*D) (<28,0,J>, D) (<28,0,L>, ?) (<28,0,N>, N) (<28,0,O>, ?) (<28,0,P>, P) (<28,0,Q>, ?) (<29,0,A>, ?) (<29,0,C>, 2*D) (<29,0,D>, D) (<29,0,E>, 4*D) (<29,0,J>, D) (<29,0,L>, ?) (<29,0,N>, N) (<29,0,O>, ?) (<29,0,P>, P) (<29,0,Q>, ?) (<30,0,A>, ?) (<30,0,C>, 2*D) (<30,0,D>, D) (<30,0,E>, 4*D) (<30,0,J>, 1 + D) (<30,0,L>, ?) (<30,0,N>, N) (<30,0,O>, ?) (<30,0,P>, P) (<30,0,Q>, ?) (<31,0,A>, ?) (<31,0,C>, 2*D) (<31,0,D>, D) (<31,0,E>, 4*D) (<31,0,J>, ?) (<31,0,L>, ?) (<31,0,N>, N) (<31,0,O>, ?) (<31,0,P>, P) (<31,0,Q>, ?) (<32,0,A>, ?) (<32,0,C>, 2*D) (<32,0,D>, D) (<32,0,E>, 4*D) (<32,0,J>, ?) (<32,0,L>, ?) (<32,0,N>, N) (<32,0,O>, ?) (<32,0,P>, P) (<32,0,Q>, ?) (<33,0,A>, ?) (<33,0,C>, 2*D) (<33,0,D>, D) (<33,0,E>, 4*D) (<33,0,J>, ?) (<33,0,L>, ?) (<33,0,N>, N) (<33,0,O>, ?) (<33,0,P>, P) (<33,0,Q>, ?) (<34,0,A>, ?) (<34,0,C>, 2*D) (<34,0,D>, D) (<34,0,E>, 4*D) (<34,0,J>, ?) (<34,0,L>, ?) (<34,0,N>, N) (<34,0,O>, ?) (<34,0,P>, P) (<34,0,Q>, ?) (<35,0,A>, ?) (<35,0,C>, 2*D) (<35,0,D>, D) (<35,0,E>, 4*D) (<35,0,J>, ?) (<35,0,L>, ?) (<35,0,N>, N) (<35,0,O>, ?) (<35,0,P>, P) (<35,0,Q>, ?) (<36,0,A>, ?) (<36,0,C>, 2*D) (<36,0,D>, D) (<36,0,E>, 4*D) (<36,0,J>, ?) (<36,0,L>, ?) (<36,0,N>, N) (<36,0,O>, ?) (<36,0,P>, 0) (<36,0,Q>, P) (<37,0,A>, ?) (<37,0,C>, 2*D) (<37,0,D>, D) (<37,0,E>, 4*D) (<37,0,J>, ?) (<37,0,L>, ?) (<37,0,N>, N) (<37,0,O>, ?) (<37,0,P>, P) (<37,0,Q>, 0) (<38,0,A>, ?) (<38,0,C>, 2*D) (<38,0,D>, D) (<38,0,E>, 4*D) (<38,0,J>, ?) (<38,0,L>, ?) (<38,0,N>, N) (<38,0,O>, ?) (<38,0,P>, P) (<38,0,Q>, 0) (<39,0,A>, ?) (<39,0,C>, 2*D) (<39,0,D>, D) (<39,0,E>, 4*D) (<39,0,J>, ?) (<39,0,L>, ?) (<39,0,N>, N) (<39,0,O>, ?) (<39,0,P>, P) (<39,0,Q>, 0) (<40,0,A>, ?) (<40,0,C>, 2*D) (<40,0,D>, D) (<40,0,E>, 4*D) (<40,0,J>, ?) (<40,0,L>, ?) (<40,0,N>, N) (<40,0,O>, ?) (<40,0,P>, P) (<40,0,Q>, ?) (<41,0,A>, ?) (<41,0,C>, 2*D) (<41,0,D>, D) (<41,0,E>, 4*D) (<41,0,J>, ?) (<41,0,L>, ?) (<41,0,N>, N) (<41,0,O>, ?) (<41,0,P>, P) (<41,0,Q>, ?) (<42,0,A>, ?) (<42,0,C>, 2*D) (<42,0,D>, D) (<42,0,E>, 4*D) (<42,0,J>, 1 + 2*D + J) (<42,0,L>, ?) (<42,0,N>, N) (<42,0,O>, O) (<42,0,P>, P) (<42,0,Q>, Q) (<43,0,A>, ?) (<43,0,C>, 2*D) (<43,0,D>, D) (<43,0,E>, 4*D) (<43,0,J>, 1 + 2*D + J) (<43,0,L>, ?) (<43,0,N>, N) (<43,0,O>, O) (<43,0,P>, P) (<43,0,Q>, Q) (<44,0,A>, ?) (<44,0,C>, 2*D) (<44,0,D>, D) (<44,0,E>, 4*D) (<44,0,J>, 1 + 2*D + J) (<44,0,L>, ?) (<44,0,N>, N) (<44,0,O>, O) (<44,0,P>, P) (<44,0,Q>, Q) (<45,0,A>, ?) (<45,0,C>, 2*D) (<45,0,D>, D) (<45,0,E>, 4*D) (<45,0,J>, 1 + 2*D + J) (<45,0,L>, ?) (<45,0,N>, N) (<45,0,O>, O) (<45,0,P>, 0) (<45,0,Q>, Q) (<46,0,A>, ?) (<46,0,C>, 2*D) (<46,0,D>, D) (<46,0,E>, 4*D) (<46,0,J>, 1 + 2*D + J) (<46,0,L>, ?) (<46,0,N>, N) (<46,0,O>, O) (<46,0,P>, P) (<46,0,Q>, Q) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(38,11),(39,10),(43,5),(44,5)] * Step 5: UnreachableRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,C,D,E,J,L,N,O,P,Q) -> f13(0,2*D,D,4*D,J,L,N,O,P,Q) True (1,1) 1. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A,C,D,E,1 + J,0,N,O,P,Q) [C >= J] (?,1) 2. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [C1 >= 2 && C >= J] (?,1) 3. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [0 >= C1 && C >= J] (?,1) 4. f24(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 5. f31(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 6. f37(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,Q) [N >= O] (?,1) 7. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && 0 >= Q] (?,1) 8. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && 0 >= Q] (?,1) 9. f44(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 10. f50(A,C,D,E,J,L,N,O,P,Q) -> f50(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 11. f57(A,C,D,E,J,L,N,O,P,Q) -> f57(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 12. f40(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,J,L,N,O,0,Q) [0 >= Q && P = 0] (?,1) 13. f64(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,2 + J,L,N,O,P,Q) [E >= J] (?,1) 14. f71(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,1 + J,L,N,O,P,Q) [C >= J] (?,1) 15. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,0,N,O,P,Q) [L = 0] (?,1) 16. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + L] (?,1) 17. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [L >= 1] (?,1) 18. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D >= J] (?,1) 19. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && D >= J] (?,1) 20. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && D >= J] (?,1) 21. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (?,1) 22. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (?,1) 23. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (?,1) 24. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (?,1) 25. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (?,1) 26. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (?,1) 27. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,0,N,O,P,Q) [L = 0] (?,1) 28. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [0 >= 1 + L] (?,1) 29. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [L >= 1] (?,1) 30. f118(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 31. f118(A,C,D,E,J,L,N,O,P,Q) -> f1(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (?,1) 32. f91(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,1 + O,P,Q) [J >= 1 + D] (?,1) 33. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [J >= 1 + C] (?,1) 34. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && J >= 1 + C] (?,1) 35. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && J >= 1 + C] (?,1) 36. f64(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + E] (?,1) 37. f57(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] (?,1) 38. f50(A,C,D,E,J,L,N,O,P,Q) -> f57(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (?,1) 39. f44(A,C,D,E,J,L,N,O,P,Q) -> f50(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (?,1) 40. f40(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,J,L,N,O,P,Q) [Q >= 1] (?,1) 41. f37(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,J,L,N,O,P,Q) [O >= 1 + N] (?,1) 42. f31(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (?,1) 43. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && J >= 1 + D] (?,1) 44. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && J >= 1 + D] (?,1) 45. f24(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,0,Q) [J >= 1 + D && P = 0] (?,1) 46. f13(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + C] (?,1) Signature: {(f1,10) ;(f103,10) ;(f107,10) ;(f118,10) ;(f13,10) ;(f2,10) ;(f24,10) ;(f31,10) ;(f37,10) ;(f40,10) ;(f44,10) ;(f50,10) ;(f57,10) ;(f64,10) ;(f71,10) ;(f86,10) ;(f91,10) ;(f99,10)} Flow Graph: [0->{1,2,3,46},1->{1,2,3,46},2->{1,2,3,46},3->{1,2,3,46},4->{4,43,44,45},5->{5,42},6->{7,8,12,40},7->{9 ,39},8->{9,39},9->{9,39},10->{10,38},11->{11,37},12->{13,36},13->{13,36},14->{14,33,34,35},15->{18,19,20,32} ,16->{18,19,20,32},17->{18,19,20,32},18->{21,22,23},19->{21,22,23},20->{21,22,23},21->{24,25,26},22->{24,25 ,26},23->{24,25,26},24->{27,28,29},25->{27,28,29},26->{27,28,29},27->{18,19,20,32},28->{18,19,20,32},29->{18 ,19,20,32},30->{30,31},31->{},32->{6,41},33->{15,16,17},34->{15,16,17},35->{15,16,17},36->{7,8,12,40},37->{7 ,8,12,40},38->{37},39->{38},40->{14,33,34,35},41->{30,31},42->{6,41},43->{42},44->{42},45->{6,41},46->{4,43 ,44,45}] Sizebounds: (< 0,0,A>, 0) (< 0,0,C>, 2*D) (< 0,0,D>, D) (< 0,0,E>, 4*D) (< 0,0,J>, J) (< 0,0,L>, L) (< 0,0,N>, N) (< 0,0,O>, O) (< 0,0,P>, P) (< 0,0,Q>, Q) (< 1,0,A>, ?) (< 1,0,C>, 2*D) (< 1,0,D>, D) (< 1,0,E>, 4*D) (< 1,0,J>, 1 + 2*D) (< 1,0,L>, 0) (< 1,0,N>, N) (< 1,0,O>, O) (< 1,0,P>, P) (< 1,0,Q>, Q) (< 2,0,A>, ?) (< 2,0,C>, 2*D) (< 2,0,D>, D) (< 2,0,E>, 4*D) (< 2,0,J>, 1 + 2*D) (< 2,0,L>, ?) (< 2,0,N>, N) (< 2,0,O>, O) (< 2,0,P>, P) (< 2,0,Q>, Q) (< 3,0,A>, ?) (< 3,0,C>, 2*D) (< 3,0,D>, D) (< 3,0,E>, 4*D) (< 3,0,J>, 1 + 2*D) (< 3,0,L>, ?) (< 3,0,N>, N) (< 3,0,O>, O) (< 3,0,P>, P) (< 3,0,Q>, Q) (< 4,0,A>, ?) (< 4,0,C>, 2*D) (< 4,0,D>, D) (< 4,0,E>, 4*D) (< 4,0,J>, 1 + D) (< 4,0,L>, ?) (< 4,0,N>, N) (< 4,0,O>, O) (< 4,0,P>, P) (< 4,0,Q>, Q) (< 5,0,A>, ?) (< 5,0,C>, 2*D) (< 5,0,D>, D) (< 5,0,E>, 4*D) (< 5,0,J>, 1 + D) (< 5,0,L>, ?) (< 5,0,N>, N) (< 5,0,O>, O) (< 5,0,P>, P) (< 5,0,Q>, Q) (< 6,0,A>, ?) (< 6,0,C>, 2*D) (< 6,0,D>, D) (< 6,0,E>, 4*D) (< 6,0,J>, ?) (< 6,0,L>, ?) (< 6,0,N>, N) (< 6,0,O>, N) (< 6,0,P>, P) (< 6,0,Q>, ?) (< 7,0,A>, ?) (< 7,0,C>, 2*D) (< 7,0,D>, D) (< 7,0,E>, 4*D) (< 7,0,J>, ?) (< 7,0,L>, ?) (< 7,0,N>, N) (< 7,0,O>, ?) (< 7,0,P>, P) (< 7,0,Q>, 0) (< 8,0,A>, ?) (< 8,0,C>, 2*D) (< 8,0,D>, D) (< 8,0,E>, 4*D) (< 8,0,J>, ?) (< 8,0,L>, ?) (< 8,0,N>, N) (< 8,0,O>, ?) (< 8,0,P>, P) (< 8,0,Q>, 0) (< 9,0,A>, ?) (< 9,0,C>, 2*D) (< 9,0,D>, D) (< 9,0,E>, 4*D) (< 9,0,J>, 1 + D) (< 9,0,L>, ?) (< 9,0,N>, N) (< 9,0,O>, ?) (< 9,0,P>, P) (< 9,0,Q>, 0) (<10,0,A>, ?) (<10,0,C>, 2*D) (<10,0,D>, D) (<10,0,E>, 4*D) (<10,0,J>, 1 + D) (<10,0,L>, ?) (<10,0,N>, N) (<10,0,O>, ?) (<10,0,P>, P) (<10,0,Q>, 0) (<11,0,A>, ?) (<11,0,C>, 2*D) (<11,0,D>, D) (<11,0,E>, 4*D) (<11,0,J>, 1 + D) (<11,0,L>, ?) (<11,0,N>, N) (<11,0,O>, ?) (<11,0,P>, P) (<11,0,Q>, 0) (<12,0,A>, ?) (<12,0,C>, 2*D) (<12,0,D>, D) (<12,0,E>, 4*D) (<12,0,J>, ?) (<12,0,L>, ?) (<12,0,N>, N) (<12,0,O>, ?) (<12,0,P>, 0) (<12,0,Q>, P) (<13,0,A>, ?) (<13,0,C>, 2*D) (<13,0,D>, D) (<13,0,E>, 4*D) (<13,0,J>, 2 + 4*D) (<13,0,L>, ?) (<13,0,N>, N) (<13,0,O>, ?) (<13,0,P>, 0) (<13,0,Q>, P) (<14,0,A>, ?) (<14,0,C>, 2*D) (<14,0,D>, D) (<14,0,E>, 4*D) (<14,0,J>, 1 + 2*D) (<14,0,L>, ?) (<14,0,N>, N) (<14,0,O>, ?) (<14,0,P>, P) (<14,0,Q>, ?) (<15,0,A>, ?) (<15,0,C>, 2*D) (<15,0,D>, D) (<15,0,E>, 4*D) (<15,0,J>, ?) (<15,0,L>, 0) (<15,0,N>, N) (<15,0,O>, ?) (<15,0,P>, P) (<15,0,Q>, ?) (<16,0,A>, ?) (<16,0,C>, 2*D) (<16,0,D>, D) (<16,0,E>, 4*D) (<16,0,J>, ?) (<16,0,L>, ?) (<16,0,N>, N) (<16,0,O>, ?) (<16,0,P>, P) (<16,0,Q>, ?) (<17,0,A>, ?) (<17,0,C>, 2*D) (<17,0,D>, D) (<17,0,E>, 4*D) (<17,0,J>, ?) (<17,0,L>, ?) (<17,0,N>, N) (<17,0,O>, ?) (<17,0,P>, P) (<17,0,Q>, ?) (<18,0,A>, ?) (<18,0,C>, 2*D) (<18,0,D>, D) (<18,0,E>, 4*D) (<18,0,J>, D) (<18,0,L>, ?) (<18,0,N>, N) (<18,0,O>, ?) (<18,0,P>, P) (<18,0,Q>, ?) (<19,0,A>, ?) (<19,0,C>, 2*D) (<19,0,D>, D) (<19,0,E>, 4*D) (<19,0,J>, D) (<19,0,L>, ?) (<19,0,N>, N) (<19,0,O>, ?) (<19,0,P>, P) (<19,0,Q>, ?) (<20,0,A>, ?) (<20,0,C>, 2*D) (<20,0,D>, D) (<20,0,E>, 4*D) (<20,0,J>, D) (<20,0,L>, ?) (<20,0,N>, N) (<20,0,O>, ?) (<20,0,P>, P) (<20,0,Q>, ?) (<21,0,A>, ?) (<21,0,C>, 2*D) (<21,0,D>, D) (<21,0,E>, 4*D) (<21,0,J>, D) (<21,0,L>, ?) (<21,0,N>, N) (<21,0,O>, ?) (<21,0,P>, P) (<21,0,Q>, ?) (<22,0,A>, ?) (<22,0,C>, 2*D) (<22,0,D>, D) (<22,0,E>, 4*D) (<22,0,J>, D) (<22,0,L>, ?) (<22,0,N>, N) (<22,0,O>, ?) (<22,0,P>, P) (<22,0,Q>, ?) (<23,0,A>, ?) (<23,0,C>, 2*D) (<23,0,D>, D) (<23,0,E>, 4*D) (<23,0,J>, D) (<23,0,L>, ?) (<23,0,N>, N) (<23,0,O>, ?) (<23,0,P>, P) (<23,0,Q>, ?) (<24,0,A>, ?) (<24,0,C>, 2*D) (<24,0,D>, D) (<24,0,E>, 4*D) (<24,0,J>, D) (<24,0,L>, ?) (<24,0,N>, N) (<24,0,O>, ?) (<24,0,P>, P) (<24,0,Q>, ?) (<25,0,A>, ?) (<25,0,C>, 2*D) (<25,0,D>, D) (<25,0,E>, 4*D) (<25,0,J>, D) (<25,0,L>, ?) (<25,0,N>, N) (<25,0,O>, ?) (<25,0,P>, P) (<25,0,Q>, ?) (<26,0,A>, ?) (<26,0,C>, 2*D) (<26,0,D>, D) (<26,0,E>, 4*D) (<26,0,J>, D) (<26,0,L>, ?) (<26,0,N>, N) (<26,0,O>, ?) (<26,0,P>, P) (<26,0,Q>, ?) (<27,0,A>, ?) (<27,0,C>, 2*D) (<27,0,D>, D) (<27,0,E>, 4*D) (<27,0,J>, D) (<27,0,L>, 0) (<27,0,N>, N) (<27,0,O>, ?) (<27,0,P>, P) (<27,0,Q>, ?) (<28,0,A>, ?) (<28,0,C>, 2*D) (<28,0,D>, D) (<28,0,E>, 4*D) (<28,0,J>, D) (<28,0,L>, ?) (<28,0,N>, N) (<28,0,O>, ?) (<28,0,P>, P) (<28,0,Q>, ?) (<29,0,A>, ?) (<29,0,C>, 2*D) (<29,0,D>, D) (<29,0,E>, 4*D) (<29,0,J>, D) (<29,0,L>, ?) (<29,0,N>, N) (<29,0,O>, ?) (<29,0,P>, P) (<29,0,Q>, ?) (<30,0,A>, ?) (<30,0,C>, 2*D) (<30,0,D>, D) (<30,0,E>, 4*D) (<30,0,J>, 1 + D) (<30,0,L>, ?) (<30,0,N>, N) (<30,0,O>, ?) (<30,0,P>, P) (<30,0,Q>, ?) (<31,0,A>, ?) (<31,0,C>, 2*D) (<31,0,D>, D) (<31,0,E>, 4*D) (<31,0,J>, ?) (<31,0,L>, ?) (<31,0,N>, N) (<31,0,O>, ?) (<31,0,P>, P) (<31,0,Q>, ?) (<32,0,A>, ?) (<32,0,C>, 2*D) (<32,0,D>, D) (<32,0,E>, 4*D) (<32,0,J>, ?) (<32,0,L>, ?) (<32,0,N>, N) (<32,0,O>, ?) (<32,0,P>, P) (<32,0,Q>, ?) (<33,0,A>, ?) (<33,0,C>, 2*D) (<33,0,D>, D) (<33,0,E>, 4*D) (<33,0,J>, ?) (<33,0,L>, ?) (<33,0,N>, N) (<33,0,O>, ?) (<33,0,P>, P) (<33,0,Q>, ?) (<34,0,A>, ?) (<34,0,C>, 2*D) (<34,0,D>, D) (<34,0,E>, 4*D) (<34,0,J>, ?) (<34,0,L>, ?) (<34,0,N>, N) (<34,0,O>, ?) (<34,0,P>, P) (<34,0,Q>, ?) (<35,0,A>, ?) (<35,0,C>, 2*D) (<35,0,D>, D) (<35,0,E>, 4*D) (<35,0,J>, ?) (<35,0,L>, ?) (<35,0,N>, N) (<35,0,O>, ?) (<35,0,P>, P) (<35,0,Q>, ?) (<36,0,A>, ?) (<36,0,C>, 2*D) (<36,0,D>, D) (<36,0,E>, 4*D) (<36,0,J>, ?) (<36,0,L>, ?) (<36,0,N>, N) (<36,0,O>, ?) (<36,0,P>, 0) (<36,0,Q>, P) (<37,0,A>, ?) (<37,0,C>, 2*D) (<37,0,D>, D) (<37,0,E>, 4*D) (<37,0,J>, ?) (<37,0,L>, ?) (<37,0,N>, N) (<37,0,O>, ?) (<37,0,P>, P) (<37,0,Q>, 0) (<38,0,A>, ?) (<38,0,C>, 2*D) (<38,0,D>, D) (<38,0,E>, 4*D) (<38,0,J>, ?) (<38,0,L>, ?) (<38,0,N>, N) (<38,0,O>, ?) (<38,0,P>, P) (<38,0,Q>, 0) (<39,0,A>, ?) (<39,0,C>, 2*D) (<39,0,D>, D) (<39,0,E>, 4*D) (<39,0,J>, ?) (<39,0,L>, ?) (<39,0,N>, N) (<39,0,O>, ?) (<39,0,P>, P) (<39,0,Q>, 0) (<40,0,A>, ?) (<40,0,C>, 2*D) (<40,0,D>, D) (<40,0,E>, 4*D) (<40,0,J>, ?) (<40,0,L>, ?) (<40,0,N>, N) (<40,0,O>, ?) (<40,0,P>, P) (<40,0,Q>, ?) (<41,0,A>, ?) (<41,0,C>, 2*D) (<41,0,D>, D) (<41,0,E>, 4*D) (<41,0,J>, ?) (<41,0,L>, ?) (<41,0,N>, N) (<41,0,O>, ?) (<41,0,P>, P) (<41,0,Q>, ?) (<42,0,A>, ?) (<42,0,C>, 2*D) (<42,0,D>, D) (<42,0,E>, 4*D) (<42,0,J>, 1 + 2*D + J) (<42,0,L>, ?) (<42,0,N>, N) (<42,0,O>, O) (<42,0,P>, P) (<42,0,Q>, Q) (<43,0,A>, ?) (<43,0,C>, 2*D) (<43,0,D>, D) (<43,0,E>, 4*D) (<43,0,J>, 1 + 2*D + J) (<43,0,L>, ?) (<43,0,N>, N) (<43,0,O>, O) (<43,0,P>, P) (<43,0,Q>, Q) (<44,0,A>, ?) (<44,0,C>, 2*D) (<44,0,D>, D) (<44,0,E>, 4*D) (<44,0,J>, 1 + 2*D + J) (<44,0,L>, ?) (<44,0,N>, N) (<44,0,O>, O) (<44,0,P>, P) (<44,0,Q>, Q) (<45,0,A>, ?) (<45,0,C>, 2*D) (<45,0,D>, D) (<45,0,E>, 4*D) (<45,0,J>, 1 + 2*D + J) (<45,0,L>, ?) (<45,0,N>, N) (<45,0,O>, O) (<45,0,P>, 0) (<45,0,Q>, Q) (<46,0,A>, ?) (<46,0,C>, 2*D) (<46,0,D>, D) (<46,0,E>, 4*D) (<46,0,J>, 1 + 2*D + J) (<46,0,L>, ?) (<46,0,N>, N) (<46,0,O>, O) (<46,0,P>, P) (<46,0,Q>, Q) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [5,10,11] * Step 6: LeafRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,C,D,E,J,L,N,O,P,Q) -> f13(0,2*D,D,4*D,J,L,N,O,P,Q) True (1,1) 1. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A,C,D,E,1 + J,0,N,O,P,Q) [C >= J] (?,1) 2. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [C1 >= 2 && C >= J] (?,1) 3. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [0 >= C1 && C >= J] (?,1) 4. f24(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 6. f37(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,Q) [N >= O] (?,1) 7. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && 0 >= Q] (?,1) 8. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && 0 >= Q] (?,1) 9. f44(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 12. f40(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,J,L,N,O,0,Q) [0 >= Q && P = 0] (?,1) 13. f64(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,2 + J,L,N,O,P,Q) [E >= J] (?,1) 14. f71(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,1 + J,L,N,O,P,Q) [C >= J] (?,1) 15. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,0,N,O,P,Q) [L = 0] (?,1) 16. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + L] (?,1) 17. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [L >= 1] (?,1) 18. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D >= J] (?,1) 19. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && D >= J] (?,1) 20. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && D >= J] (?,1) 21. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (?,1) 22. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (?,1) 23. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (?,1) 24. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (?,1) 25. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (?,1) 26. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (?,1) 27. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,0,N,O,P,Q) [L = 0] (?,1) 28. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [0 >= 1 + L] (?,1) 29. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [L >= 1] (?,1) 30. f118(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 31. f118(A,C,D,E,J,L,N,O,P,Q) -> f1(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (?,1) 32. f91(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,1 + O,P,Q) [J >= 1 + D] (?,1) 33. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [J >= 1 + C] (?,1) 34. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && J >= 1 + C] (?,1) 35. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && J >= 1 + C] (?,1) 36. f64(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + E] (?,1) 37. f57(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] (?,1) 38. f50(A,C,D,E,J,L,N,O,P,Q) -> f57(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (?,1) 39. f44(A,C,D,E,J,L,N,O,P,Q) -> f50(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (?,1) 40. f40(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,J,L,N,O,P,Q) [Q >= 1] (?,1) 41. f37(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,J,L,N,O,P,Q) [O >= 1 + N] (?,1) 42. f31(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (?,1) 43. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && J >= 1 + D] (?,1) 44. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && J >= 1 + D] (?,1) 45. f24(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,0,Q) [J >= 1 + D && P = 0] (?,1) 46. f13(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + C] (?,1) Signature: {(f1,10) ;(f103,10) ;(f107,10) ;(f118,10) ;(f13,10) ;(f2,10) ;(f24,10) ;(f31,10) ;(f37,10) ;(f40,10) ;(f44,10) ;(f50,10) ;(f57,10) ;(f64,10) ;(f71,10) ;(f86,10) ;(f91,10) ;(f99,10)} Flow Graph: [0->{1,2,3,46},1->{1,2,3,46},2->{1,2,3,46},3->{1,2,3,46},4->{4,43,44,45},6->{7,8,12,40},7->{9,39},8->{9 ,39},9->{9,39},12->{13,36},13->{13,36},14->{14,33,34,35},15->{18,19,20,32},16->{18,19,20,32},17->{18,19,20 ,32},18->{21,22,23},19->{21,22,23},20->{21,22,23},21->{24,25,26},22->{24,25,26},23->{24,25,26},24->{27,28 ,29},25->{27,28,29},26->{27,28,29},27->{18,19,20,32},28->{18,19,20,32},29->{18,19,20,32},30->{30,31},31->{} ,32->{6,41},33->{15,16,17},34->{15,16,17},35->{15,16,17},36->{7,8,12,40},37->{7,8,12,40},38->{37},39->{38} ,40->{14,33,34,35},41->{30,31},42->{6,41},43->{42},44->{42},45->{6,41},46->{4,43,44,45}] Sizebounds: (< 0,0,A>, 0) (< 0,0,C>, 2*D) (< 0,0,D>, D) (< 0,0,E>, 4*D) (< 0,0,J>, J) (< 0,0,L>, L) (< 0,0,N>, N) (< 0,0,O>, O) (< 0,0,P>, P) (< 0,0,Q>, Q) (< 1,0,A>, ?) (< 1,0,C>, 2*D) (< 1,0,D>, D) (< 1,0,E>, 4*D) (< 1,0,J>, 1 + 2*D) (< 1,0,L>, 0) (< 1,0,N>, N) (< 1,0,O>, O) (< 1,0,P>, P) (< 1,0,Q>, Q) (< 2,0,A>, ?) (< 2,0,C>, 2*D) (< 2,0,D>, D) (< 2,0,E>, 4*D) (< 2,0,J>, 1 + 2*D) (< 2,0,L>, ?) (< 2,0,N>, N) (< 2,0,O>, O) (< 2,0,P>, P) (< 2,0,Q>, Q) (< 3,0,A>, ?) (< 3,0,C>, 2*D) (< 3,0,D>, D) (< 3,0,E>, 4*D) (< 3,0,J>, 1 + 2*D) (< 3,0,L>, ?) (< 3,0,N>, N) (< 3,0,O>, O) (< 3,0,P>, P) (< 3,0,Q>, Q) (< 4,0,A>, ?) (< 4,0,C>, 2*D) (< 4,0,D>, D) (< 4,0,E>, 4*D) (< 4,0,J>, 1 + D) (< 4,0,L>, ?) (< 4,0,N>, N) (< 4,0,O>, O) (< 4,0,P>, P) (< 4,0,Q>, Q) (< 6,0,A>, ?) (< 6,0,C>, 2*D) (< 6,0,D>, D) (< 6,0,E>, 4*D) (< 6,0,J>, ?) (< 6,0,L>, ?) (< 6,0,N>, N) (< 6,0,O>, N) (< 6,0,P>, P) (< 6,0,Q>, ?) (< 7,0,A>, ?) (< 7,0,C>, 2*D) (< 7,0,D>, D) (< 7,0,E>, 4*D) (< 7,0,J>, ?) (< 7,0,L>, ?) (< 7,0,N>, N) (< 7,0,O>, ?) (< 7,0,P>, P) (< 7,0,Q>, 0) (< 8,0,A>, ?) (< 8,0,C>, 2*D) (< 8,0,D>, D) (< 8,0,E>, 4*D) (< 8,0,J>, ?) (< 8,0,L>, ?) (< 8,0,N>, N) (< 8,0,O>, ?) (< 8,0,P>, P) (< 8,0,Q>, 0) (< 9,0,A>, ?) (< 9,0,C>, 2*D) (< 9,0,D>, D) (< 9,0,E>, 4*D) (< 9,0,J>, 1 + D) (< 9,0,L>, ?) (< 9,0,N>, N) (< 9,0,O>, ?) (< 9,0,P>, P) (< 9,0,Q>, 0) (<12,0,A>, ?) (<12,0,C>, 2*D) (<12,0,D>, D) (<12,0,E>, 4*D) (<12,0,J>, ?) (<12,0,L>, ?) (<12,0,N>, N) (<12,0,O>, ?) (<12,0,P>, 0) (<12,0,Q>, P) (<13,0,A>, ?) (<13,0,C>, 2*D) (<13,0,D>, D) (<13,0,E>, 4*D) (<13,0,J>, 2 + 4*D) (<13,0,L>, ?) (<13,0,N>, N) (<13,0,O>, ?) (<13,0,P>, 0) (<13,0,Q>, P) (<14,0,A>, ?) (<14,0,C>, 2*D) (<14,0,D>, D) (<14,0,E>, 4*D) (<14,0,J>, 1 + 2*D) (<14,0,L>, ?) (<14,0,N>, N) (<14,0,O>, ?) (<14,0,P>, P) (<14,0,Q>, ?) (<15,0,A>, ?) (<15,0,C>, 2*D) (<15,0,D>, D) (<15,0,E>, 4*D) (<15,0,J>, ?) (<15,0,L>, 0) (<15,0,N>, N) (<15,0,O>, ?) (<15,0,P>, P) (<15,0,Q>, ?) (<16,0,A>, ?) (<16,0,C>, 2*D) (<16,0,D>, D) (<16,0,E>, 4*D) (<16,0,J>, ?) (<16,0,L>, ?) (<16,0,N>, N) (<16,0,O>, ?) (<16,0,P>, P) (<16,0,Q>, ?) (<17,0,A>, ?) (<17,0,C>, 2*D) (<17,0,D>, D) (<17,0,E>, 4*D) (<17,0,J>, ?) (<17,0,L>, ?) (<17,0,N>, N) (<17,0,O>, ?) (<17,0,P>, P) (<17,0,Q>, ?) (<18,0,A>, ?) (<18,0,C>, 2*D) (<18,0,D>, D) (<18,0,E>, 4*D) (<18,0,J>, D) (<18,0,L>, ?) (<18,0,N>, N) (<18,0,O>, ?) (<18,0,P>, P) (<18,0,Q>, ?) (<19,0,A>, ?) (<19,0,C>, 2*D) (<19,0,D>, D) (<19,0,E>, 4*D) (<19,0,J>, D) (<19,0,L>, ?) (<19,0,N>, N) (<19,0,O>, ?) (<19,0,P>, P) (<19,0,Q>, ?) (<20,0,A>, ?) (<20,0,C>, 2*D) (<20,0,D>, D) (<20,0,E>, 4*D) (<20,0,J>, D) (<20,0,L>, ?) (<20,0,N>, N) (<20,0,O>, ?) (<20,0,P>, P) (<20,0,Q>, ?) (<21,0,A>, ?) (<21,0,C>, 2*D) (<21,0,D>, D) (<21,0,E>, 4*D) (<21,0,J>, D) (<21,0,L>, ?) (<21,0,N>, N) (<21,0,O>, ?) (<21,0,P>, P) (<21,0,Q>, ?) (<22,0,A>, ?) (<22,0,C>, 2*D) (<22,0,D>, D) (<22,0,E>, 4*D) (<22,0,J>, D) (<22,0,L>, ?) (<22,0,N>, N) (<22,0,O>, ?) (<22,0,P>, P) (<22,0,Q>, ?) (<23,0,A>, ?) (<23,0,C>, 2*D) (<23,0,D>, D) (<23,0,E>, 4*D) (<23,0,J>, D) (<23,0,L>, ?) (<23,0,N>, N) (<23,0,O>, ?) (<23,0,P>, P) (<23,0,Q>, ?) (<24,0,A>, ?) (<24,0,C>, 2*D) (<24,0,D>, D) (<24,0,E>, 4*D) (<24,0,J>, D) (<24,0,L>, ?) (<24,0,N>, N) (<24,0,O>, ?) (<24,0,P>, P) (<24,0,Q>, ?) (<25,0,A>, ?) (<25,0,C>, 2*D) (<25,0,D>, D) (<25,0,E>, 4*D) (<25,0,J>, D) (<25,0,L>, ?) (<25,0,N>, N) (<25,0,O>, ?) (<25,0,P>, P) (<25,0,Q>, ?) (<26,0,A>, ?) (<26,0,C>, 2*D) (<26,0,D>, D) (<26,0,E>, 4*D) (<26,0,J>, D) (<26,0,L>, ?) (<26,0,N>, N) (<26,0,O>, ?) (<26,0,P>, P) (<26,0,Q>, ?) (<27,0,A>, ?) (<27,0,C>, 2*D) (<27,0,D>, D) (<27,0,E>, 4*D) (<27,0,J>, D) (<27,0,L>, 0) (<27,0,N>, N) (<27,0,O>, ?) (<27,0,P>, P) (<27,0,Q>, ?) (<28,0,A>, ?) (<28,0,C>, 2*D) (<28,0,D>, D) (<28,0,E>, 4*D) (<28,0,J>, D) (<28,0,L>, ?) (<28,0,N>, N) (<28,0,O>, ?) (<28,0,P>, P) (<28,0,Q>, ?) (<29,0,A>, ?) (<29,0,C>, 2*D) (<29,0,D>, D) (<29,0,E>, 4*D) (<29,0,J>, D) (<29,0,L>, ?) (<29,0,N>, N) (<29,0,O>, ?) (<29,0,P>, P) (<29,0,Q>, ?) (<30,0,A>, ?) (<30,0,C>, 2*D) (<30,0,D>, D) (<30,0,E>, 4*D) (<30,0,J>, 1 + D) (<30,0,L>, ?) (<30,0,N>, N) (<30,0,O>, ?) (<30,0,P>, P) (<30,0,Q>, ?) (<31,0,A>, ?) (<31,0,C>, 2*D) (<31,0,D>, D) (<31,0,E>, 4*D) (<31,0,J>, ?) (<31,0,L>, ?) (<31,0,N>, N) (<31,0,O>, ?) (<31,0,P>, P) (<31,0,Q>, ?) (<32,0,A>, ?) (<32,0,C>, 2*D) (<32,0,D>, D) (<32,0,E>, 4*D) (<32,0,J>, ?) (<32,0,L>, ?) (<32,0,N>, N) (<32,0,O>, ?) (<32,0,P>, P) (<32,0,Q>, ?) (<33,0,A>, ?) (<33,0,C>, 2*D) (<33,0,D>, D) (<33,0,E>, 4*D) (<33,0,J>, ?) (<33,0,L>, ?) (<33,0,N>, N) (<33,0,O>, ?) (<33,0,P>, P) (<33,0,Q>, ?) (<34,0,A>, ?) (<34,0,C>, 2*D) (<34,0,D>, D) (<34,0,E>, 4*D) (<34,0,J>, ?) (<34,0,L>, ?) (<34,0,N>, N) (<34,0,O>, ?) (<34,0,P>, P) (<34,0,Q>, ?) (<35,0,A>, ?) (<35,0,C>, 2*D) (<35,0,D>, D) (<35,0,E>, 4*D) (<35,0,J>, ?) (<35,0,L>, ?) (<35,0,N>, N) (<35,0,O>, ?) (<35,0,P>, P) (<35,0,Q>, ?) (<36,0,A>, ?) (<36,0,C>, 2*D) (<36,0,D>, D) (<36,0,E>, 4*D) (<36,0,J>, ?) (<36,0,L>, ?) (<36,0,N>, N) (<36,0,O>, ?) (<36,0,P>, 0) (<36,0,Q>, P) (<37,0,A>, ?) (<37,0,C>, 2*D) (<37,0,D>, D) (<37,0,E>, 4*D) (<37,0,J>, ?) (<37,0,L>, ?) (<37,0,N>, N) (<37,0,O>, ?) (<37,0,P>, P) (<37,0,Q>, 0) (<38,0,A>, ?) (<38,0,C>, 2*D) (<38,0,D>, D) (<38,0,E>, 4*D) (<38,0,J>, ?) (<38,0,L>, ?) (<38,0,N>, N) (<38,0,O>, ?) (<38,0,P>, P) (<38,0,Q>, 0) (<39,0,A>, ?) (<39,0,C>, 2*D) (<39,0,D>, D) (<39,0,E>, 4*D) (<39,0,J>, ?) (<39,0,L>, ?) (<39,0,N>, N) (<39,0,O>, ?) (<39,0,P>, P) (<39,0,Q>, 0) (<40,0,A>, ?) (<40,0,C>, 2*D) (<40,0,D>, D) (<40,0,E>, 4*D) (<40,0,J>, ?) (<40,0,L>, ?) (<40,0,N>, N) (<40,0,O>, ?) (<40,0,P>, P) (<40,0,Q>, ?) (<41,0,A>, ?) (<41,0,C>, 2*D) (<41,0,D>, D) (<41,0,E>, 4*D) (<41,0,J>, ?) (<41,0,L>, ?) (<41,0,N>, N) (<41,0,O>, ?) (<41,0,P>, P) (<41,0,Q>, ?) (<42,0,A>, ?) (<42,0,C>, 2*D) (<42,0,D>, D) (<42,0,E>, 4*D) (<42,0,J>, 1 + 2*D + J) (<42,0,L>, ?) (<42,0,N>, N) (<42,0,O>, O) (<42,0,P>, P) (<42,0,Q>, Q) (<43,0,A>, ?) (<43,0,C>, 2*D) (<43,0,D>, D) (<43,0,E>, 4*D) (<43,0,J>, 1 + 2*D + J) (<43,0,L>, ?) (<43,0,N>, N) (<43,0,O>, O) (<43,0,P>, P) (<43,0,Q>, Q) (<44,0,A>, ?) (<44,0,C>, 2*D) (<44,0,D>, D) (<44,0,E>, 4*D) (<44,0,J>, 1 + 2*D + J) (<44,0,L>, ?) (<44,0,N>, N) (<44,0,O>, O) (<44,0,P>, P) (<44,0,Q>, Q) (<45,0,A>, ?) (<45,0,C>, 2*D) (<45,0,D>, D) (<45,0,E>, 4*D) (<45,0,J>, 1 + 2*D + J) (<45,0,L>, ?) (<45,0,N>, N) (<45,0,O>, O) (<45,0,P>, 0) (<45,0,Q>, Q) (<46,0,A>, ?) (<46,0,C>, 2*D) (<46,0,D>, D) (<46,0,E>, 4*D) (<46,0,J>, 1 + 2*D + J) (<46,0,L>, ?) (<46,0,N>, N) (<46,0,O>, O) (<46,0,P>, P) (<46,0,Q>, Q) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [31] * Step 7: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,C,D,E,J,L,N,O,P,Q) -> f13(0,2*D,D,4*D,J,L,N,O,P,Q) True (1,1) 1. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A,C,D,E,1 + J,0,N,O,P,Q) [C >= J] (?,1) 2. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [C1 >= 2 && C >= J] (?,1) 3. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [0 >= C1 && C >= J] (?,1) 4. f24(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 6. f37(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,Q) [N >= O] (?,1) 7. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && 0 >= Q] (?,1) 8. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && 0 >= Q] (?,1) 9. f44(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 12. f40(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,J,L,N,O,0,Q) [0 >= Q && P = 0] (?,1) 13. f64(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,2 + J,L,N,O,P,Q) [E >= J] (?,1) 14. f71(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,1 + J,L,N,O,P,Q) [C >= J] (?,1) 15. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,0,N,O,P,Q) [L = 0] (?,1) 16. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + L] (?,1) 17. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [L >= 1] (?,1) 18. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D >= J] (?,1) 19. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && D >= J] (?,1) 20. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && D >= J] (?,1) 21. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (?,1) 22. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (?,1) 23. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (?,1) 24. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (?,1) 25. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (?,1) 26. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (?,1) 27. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,0,N,O,P,Q) [L = 0] (?,1) 28. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [0 >= 1 + L] (?,1) 29. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [L >= 1] (?,1) 30. f118(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 32. f91(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,1 + O,P,Q) [J >= 1 + D] (?,1) 33. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [J >= 1 + C] (?,1) 34. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && J >= 1 + C] (?,1) 35. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && J >= 1 + C] (?,1) 36. f64(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + E] (?,1) 37. f57(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] (?,1) 38. f50(A,C,D,E,J,L,N,O,P,Q) -> f57(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (?,1) 39. f44(A,C,D,E,J,L,N,O,P,Q) -> f50(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (?,1) 40. f40(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,J,L,N,O,P,Q) [Q >= 1] (?,1) 41. f37(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,J,L,N,O,P,Q) [O >= 1 + N] (?,1) 42. f31(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (?,1) 43. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && J >= 1 + D] (?,1) 44. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && J >= 1 + D] (?,1) 45. f24(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,0,Q) [J >= 1 + D && P = 0] (?,1) 46. f13(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + C] (?,1) Signature: {(f1,10) ;(f103,10) ;(f107,10) ;(f118,10) ;(f13,10) ;(f2,10) ;(f24,10) ;(f31,10) ;(f37,10) ;(f40,10) ;(f44,10) ;(f50,10) ;(f57,10) ;(f64,10) ;(f71,10) ;(f86,10) ;(f91,10) ;(f99,10)} Flow Graph: [0->{1,2,3,46},1->{1,2,3,46},2->{1,2,3,46},3->{1,2,3,46},4->{4,43,44,45},6->{7,8,12,40},7->{9,39},8->{9 ,39},9->{9,39},12->{13,36},13->{13,36},14->{14,33,34,35},15->{18,19,20,32},16->{18,19,20,32},17->{18,19,20 ,32},18->{21,22,23},19->{21,22,23},20->{21,22,23},21->{24,25,26},22->{24,25,26},23->{24,25,26},24->{27,28 ,29},25->{27,28,29},26->{27,28,29},27->{18,19,20,32},28->{18,19,20,32},29->{18,19,20,32},30->{30},32->{6,41} ,33->{15,16,17},34->{15,16,17},35->{15,16,17},36->{7,8,12,40},37->{7,8,12,40},38->{37},39->{38},40->{14,33 ,34,35},41->{30},42->{6,41},43->{42},44->{42},45->{6,41},46->{4,43,44,45}] Sizebounds: (< 0,0,A>, 0) (< 0,0,C>, 2*D) (< 0,0,D>, D) (< 0,0,E>, 4*D) (< 0,0,J>, J) (< 0,0,L>, L) (< 0,0,N>, N) (< 0,0,O>, O) (< 0,0,P>, P) (< 0,0,Q>, Q) (< 1,0,A>, ?) (< 1,0,C>, 2*D) (< 1,0,D>, D) (< 1,0,E>, 4*D) (< 1,0,J>, 1 + 2*D) (< 1,0,L>, 0) (< 1,0,N>, N) (< 1,0,O>, O) (< 1,0,P>, P) (< 1,0,Q>, Q) (< 2,0,A>, ?) (< 2,0,C>, 2*D) (< 2,0,D>, D) (< 2,0,E>, 4*D) (< 2,0,J>, 1 + 2*D) (< 2,0,L>, ?) (< 2,0,N>, N) (< 2,0,O>, O) (< 2,0,P>, P) (< 2,0,Q>, Q) (< 3,0,A>, ?) (< 3,0,C>, 2*D) (< 3,0,D>, D) (< 3,0,E>, 4*D) (< 3,0,J>, 1 + 2*D) (< 3,0,L>, ?) (< 3,0,N>, N) (< 3,0,O>, O) (< 3,0,P>, P) (< 3,0,Q>, Q) (< 4,0,A>, ?) (< 4,0,C>, 2*D) (< 4,0,D>, D) (< 4,0,E>, 4*D) (< 4,0,J>, 1 + D) (< 4,0,L>, ?) (< 4,0,N>, N) (< 4,0,O>, O) (< 4,0,P>, P) (< 4,0,Q>, Q) (< 6,0,A>, ?) (< 6,0,C>, 2*D) (< 6,0,D>, D) (< 6,0,E>, 4*D) (< 6,0,J>, ?) (< 6,0,L>, ?) (< 6,0,N>, N) (< 6,0,O>, N) (< 6,0,P>, P) (< 6,0,Q>, ?) (< 7,0,A>, ?) (< 7,0,C>, 2*D) (< 7,0,D>, D) (< 7,0,E>, 4*D) (< 7,0,J>, ?) (< 7,0,L>, ?) (< 7,0,N>, N) (< 7,0,O>, ?) (< 7,0,P>, P) (< 7,0,Q>, 0) (< 8,0,A>, ?) (< 8,0,C>, 2*D) (< 8,0,D>, D) (< 8,0,E>, 4*D) (< 8,0,J>, ?) (< 8,0,L>, ?) (< 8,0,N>, N) (< 8,0,O>, ?) (< 8,0,P>, P) (< 8,0,Q>, 0) (< 9,0,A>, ?) (< 9,0,C>, 2*D) (< 9,0,D>, D) (< 9,0,E>, 4*D) (< 9,0,J>, 1 + D) (< 9,0,L>, ?) (< 9,0,N>, N) (< 9,0,O>, ?) (< 9,0,P>, P) (< 9,0,Q>, 0) (<12,0,A>, ?) (<12,0,C>, 2*D) (<12,0,D>, D) (<12,0,E>, 4*D) (<12,0,J>, ?) (<12,0,L>, ?) (<12,0,N>, N) (<12,0,O>, ?) (<12,0,P>, 0) (<12,0,Q>, P) (<13,0,A>, ?) (<13,0,C>, 2*D) (<13,0,D>, D) (<13,0,E>, 4*D) (<13,0,J>, 2 + 4*D) (<13,0,L>, ?) (<13,0,N>, N) (<13,0,O>, ?) (<13,0,P>, 0) (<13,0,Q>, P) (<14,0,A>, ?) (<14,0,C>, 2*D) (<14,0,D>, D) (<14,0,E>, 4*D) (<14,0,J>, 1 + 2*D) (<14,0,L>, ?) (<14,0,N>, N) (<14,0,O>, ?) (<14,0,P>, P) (<14,0,Q>, ?) (<15,0,A>, ?) (<15,0,C>, 2*D) (<15,0,D>, D) (<15,0,E>, 4*D) (<15,0,J>, ?) (<15,0,L>, 0) (<15,0,N>, N) (<15,0,O>, ?) (<15,0,P>, P) (<15,0,Q>, ?) (<16,0,A>, ?) (<16,0,C>, 2*D) (<16,0,D>, D) (<16,0,E>, 4*D) (<16,0,J>, ?) (<16,0,L>, ?) (<16,0,N>, N) (<16,0,O>, ?) (<16,0,P>, P) (<16,0,Q>, ?) (<17,0,A>, ?) (<17,0,C>, 2*D) (<17,0,D>, D) (<17,0,E>, 4*D) (<17,0,J>, ?) (<17,0,L>, ?) (<17,0,N>, N) (<17,0,O>, ?) (<17,0,P>, P) (<17,0,Q>, ?) (<18,0,A>, ?) (<18,0,C>, 2*D) (<18,0,D>, D) (<18,0,E>, 4*D) (<18,0,J>, D) (<18,0,L>, ?) (<18,0,N>, N) (<18,0,O>, ?) (<18,0,P>, P) (<18,0,Q>, ?) (<19,0,A>, ?) (<19,0,C>, 2*D) (<19,0,D>, D) (<19,0,E>, 4*D) (<19,0,J>, D) (<19,0,L>, ?) (<19,0,N>, N) (<19,0,O>, ?) (<19,0,P>, P) (<19,0,Q>, ?) (<20,0,A>, ?) (<20,0,C>, 2*D) (<20,0,D>, D) (<20,0,E>, 4*D) (<20,0,J>, D) (<20,0,L>, ?) (<20,0,N>, N) (<20,0,O>, ?) (<20,0,P>, P) (<20,0,Q>, ?) (<21,0,A>, ?) (<21,0,C>, 2*D) (<21,0,D>, D) (<21,0,E>, 4*D) (<21,0,J>, D) (<21,0,L>, ?) (<21,0,N>, N) (<21,0,O>, ?) (<21,0,P>, P) (<21,0,Q>, ?) (<22,0,A>, ?) (<22,0,C>, 2*D) (<22,0,D>, D) (<22,0,E>, 4*D) (<22,0,J>, D) (<22,0,L>, ?) (<22,0,N>, N) (<22,0,O>, ?) (<22,0,P>, P) (<22,0,Q>, ?) (<23,0,A>, ?) (<23,0,C>, 2*D) (<23,0,D>, D) (<23,0,E>, 4*D) (<23,0,J>, D) (<23,0,L>, ?) (<23,0,N>, N) (<23,0,O>, ?) (<23,0,P>, P) (<23,0,Q>, ?) (<24,0,A>, ?) (<24,0,C>, 2*D) (<24,0,D>, D) (<24,0,E>, 4*D) (<24,0,J>, D) (<24,0,L>, ?) (<24,0,N>, N) (<24,0,O>, ?) (<24,0,P>, P) (<24,0,Q>, ?) (<25,0,A>, ?) (<25,0,C>, 2*D) (<25,0,D>, D) (<25,0,E>, 4*D) (<25,0,J>, D) (<25,0,L>, ?) (<25,0,N>, N) (<25,0,O>, ?) (<25,0,P>, P) (<25,0,Q>, ?) (<26,0,A>, ?) (<26,0,C>, 2*D) (<26,0,D>, D) (<26,0,E>, 4*D) (<26,0,J>, D) (<26,0,L>, ?) (<26,0,N>, N) (<26,0,O>, ?) (<26,0,P>, P) (<26,0,Q>, ?) (<27,0,A>, ?) (<27,0,C>, 2*D) (<27,0,D>, D) (<27,0,E>, 4*D) (<27,0,J>, D) (<27,0,L>, 0) (<27,0,N>, N) (<27,0,O>, ?) (<27,0,P>, P) (<27,0,Q>, ?) (<28,0,A>, ?) (<28,0,C>, 2*D) (<28,0,D>, D) (<28,0,E>, 4*D) (<28,0,J>, D) (<28,0,L>, ?) (<28,0,N>, N) (<28,0,O>, ?) (<28,0,P>, P) (<28,0,Q>, ?) (<29,0,A>, ?) (<29,0,C>, 2*D) (<29,0,D>, D) (<29,0,E>, 4*D) (<29,0,J>, D) (<29,0,L>, ?) (<29,0,N>, N) (<29,0,O>, ?) (<29,0,P>, P) (<29,0,Q>, ?) (<30,0,A>, ?) (<30,0,C>, 2*D) (<30,0,D>, D) (<30,0,E>, 4*D) (<30,0,J>, 1 + D) (<30,0,L>, ?) (<30,0,N>, N) (<30,0,O>, ?) (<30,0,P>, P) (<30,0,Q>, ?) (<32,0,A>, ?) (<32,0,C>, 2*D) (<32,0,D>, D) (<32,0,E>, 4*D) (<32,0,J>, ?) (<32,0,L>, ?) (<32,0,N>, N) (<32,0,O>, ?) (<32,0,P>, P) (<32,0,Q>, ?) (<33,0,A>, ?) (<33,0,C>, 2*D) (<33,0,D>, D) (<33,0,E>, 4*D) (<33,0,J>, ?) (<33,0,L>, ?) (<33,0,N>, N) (<33,0,O>, ?) (<33,0,P>, P) (<33,0,Q>, ?) (<34,0,A>, ?) (<34,0,C>, 2*D) (<34,0,D>, D) (<34,0,E>, 4*D) (<34,0,J>, ?) (<34,0,L>, ?) (<34,0,N>, N) (<34,0,O>, ?) (<34,0,P>, P) (<34,0,Q>, ?) (<35,0,A>, ?) (<35,0,C>, 2*D) (<35,0,D>, D) (<35,0,E>, 4*D) (<35,0,J>, ?) (<35,0,L>, ?) (<35,0,N>, N) (<35,0,O>, ?) (<35,0,P>, P) (<35,0,Q>, ?) (<36,0,A>, ?) (<36,0,C>, 2*D) (<36,0,D>, D) (<36,0,E>, 4*D) (<36,0,J>, ?) (<36,0,L>, ?) (<36,0,N>, N) (<36,0,O>, ?) (<36,0,P>, 0) (<36,0,Q>, P) (<37,0,A>, ?) (<37,0,C>, 2*D) (<37,0,D>, D) (<37,0,E>, 4*D) (<37,0,J>, ?) (<37,0,L>, ?) (<37,0,N>, N) (<37,0,O>, ?) (<37,0,P>, P) (<37,0,Q>, 0) (<38,0,A>, ?) (<38,0,C>, 2*D) (<38,0,D>, D) (<38,0,E>, 4*D) (<38,0,J>, ?) (<38,0,L>, ?) (<38,0,N>, N) (<38,0,O>, ?) (<38,0,P>, P) (<38,0,Q>, 0) (<39,0,A>, ?) (<39,0,C>, 2*D) (<39,0,D>, D) (<39,0,E>, 4*D) (<39,0,J>, ?) (<39,0,L>, ?) (<39,0,N>, N) (<39,0,O>, ?) (<39,0,P>, P) (<39,0,Q>, 0) (<40,0,A>, ?) (<40,0,C>, 2*D) (<40,0,D>, D) (<40,0,E>, 4*D) (<40,0,J>, ?) (<40,0,L>, ?) (<40,0,N>, N) (<40,0,O>, ?) (<40,0,P>, P) (<40,0,Q>, ?) (<41,0,A>, ?) (<41,0,C>, 2*D) (<41,0,D>, D) (<41,0,E>, 4*D) (<41,0,J>, ?) (<41,0,L>, ?) (<41,0,N>, N) (<41,0,O>, ?) (<41,0,P>, P) (<41,0,Q>, ?) (<42,0,A>, ?) (<42,0,C>, 2*D) (<42,0,D>, D) (<42,0,E>, 4*D) (<42,0,J>, 1 + 2*D + J) (<42,0,L>, ?) (<42,0,N>, N) (<42,0,O>, O) (<42,0,P>, P) (<42,0,Q>, Q) (<43,0,A>, ?) (<43,0,C>, 2*D) (<43,0,D>, D) (<43,0,E>, 4*D) (<43,0,J>, 1 + 2*D + J) (<43,0,L>, ?) (<43,0,N>, N) (<43,0,O>, O) (<43,0,P>, P) (<43,0,Q>, Q) (<44,0,A>, ?) (<44,0,C>, 2*D) (<44,0,D>, D) (<44,0,E>, 4*D) (<44,0,J>, 1 + 2*D + J) (<44,0,L>, ?) (<44,0,N>, N) (<44,0,O>, O) (<44,0,P>, P) (<44,0,Q>, Q) (<45,0,A>, ?) (<45,0,C>, 2*D) (<45,0,D>, D) (<45,0,E>, 4*D) (<45,0,J>, 1 + 2*D + J) (<45,0,L>, ?) (<45,0,N>, N) (<45,0,O>, O) (<45,0,P>, 0) (<45,0,Q>, Q) (<46,0,A>, ?) (<46,0,C>, 2*D) (<46,0,D>, D) (<46,0,E>, 4*D) (<46,0,J>, 1 + 2*D + J) (<46,0,L>, ?) (<46,0,N>, N) (<46,0,O>, O) (<46,0,P>, P) (<46,0,Q>, Q) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f103) = 0 p(f107) = 0 p(f118) = 0 p(f13) = 1 p(f2) = 1 p(f24) = 0 p(f31) = 0 p(f37) = 0 p(f40) = 0 p(f44) = 0 p(f50) = 0 p(f57) = 0 p(f64) = 0 p(f71) = 0 p(f86) = 0 p(f91) = 0 p(f99) = 0 The following rules are strictly oriented: [J >= 1 + C] ==> f13(A,C,D,E,J,L,N,O,P,Q) = 1 > 0 = f24(A,C,D,E,J,L,N,O,P,Q) The following rules are weakly oriented: True ==> f2(A,C,D,E,J,L,N,O,P,Q) = 1 >= 1 = f13(0,2*D,D,4*D,J,L,N,O,P,Q) [C >= J] ==> f13(A,C,D,E,J,L,N,O,P,Q) = 1 >= 1 = f13(A,C,D,E,1 + J,0,N,O,P,Q) [C1 >= 2 && C >= J] ==> f13(A,C,D,E,J,L,N,O,P,Q) = 1 >= 1 = f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [0 >= C1 && C >= J] ==> f13(A,C,D,E,J,L,N,O,P,Q) = 1 >= 1 = f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [D >= J] ==> f24(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f24(A,C,D,E,1 + J,L,N,O,P,Q) [N >= O] ==> f37(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f40(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && 0 >= Q] ==> f40(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f44(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && 0 >= Q] ==> f40(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f44(A,C,D,E,J,L,N,O,P,Q) [D >= J] ==> f44(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f44(A,C,D,E,1 + J,L,N,O,P,Q) [0 >= Q && P = 0] ==> f40(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f64(A,C,D,E,J,L,N,O,0,Q) [E >= J] ==> f64(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f64(A,C,D,E,2 + J,L,N,O,P,Q) [C >= J] ==> f71(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f71(A,C,D,E,1 + J,L,N,O,P,Q) [L = 0] ==> f86(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f91(A,C,D,E,J,0,N,O,P,Q) [0 >= 1 + L] ==> f86(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f91(A,C,D,E,J,L,N,O,P,Q) [L >= 1] ==> f86(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f91(A,C,D,E,J,L,N,O,P,Q) [D >= J] ==> f91(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f99(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && D >= J] ==> f91(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f99(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && D >= J] ==> f91(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f99(A,C,D,E,J,B1,N,O,P,Q) [L = 0] ==> f99(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f103(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] ==> f99(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f103(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] ==> f99(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f103(A,C,D,E,J,B1,N,O,P,Q) [L = 0] ==> f103(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f107(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] ==> f103(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f107(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] ==> f103(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f107(A,C,D,E,J,B1,N,O,P,Q) [L = 0] ==> f107(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f91(A,C,D,E,1 + J,0,N,O,P,Q) [0 >= 1 + L] ==> f107(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f91(A,C,D,E,1 + J,L,N,O,P,Q) [L >= 1] ==> f107(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f91(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] ==> f118(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f118(A,C,D,E,1 + J,L,N,O,P,Q) [J >= 1 + D] ==> f91(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f37(A,C,D,E,J,L,N,1 + O,P,Q) [J >= 1 + C] ==> f71(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f86(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && J >= 1 + C] ==> f71(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f86(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && J >= 1 + C] ==> f71(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f86(A,C,D,E,J,B1,N,O,P,Q) [J >= 1 + E] ==> f64(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] ==> f57(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] ==> f50(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f57(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] ==> f44(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f50(A,C,D,E,J,L,N,O,P,Q) [Q >= 1] ==> f40(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f71(A,C,D,E,J,L,N,O,P,Q) [O >= 1 + N] ==> f37(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f118(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] ==> f31(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f37(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && J >= 1 + D] ==> f24(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f31(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && J >= 1 + D] ==> f24(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f31(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D && P = 0] ==> f24(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f37(A,C,D,E,J,L,N,O,0,Q) * Step 8: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,C,D,E,J,L,N,O,P,Q) -> f13(0,2*D,D,4*D,J,L,N,O,P,Q) True (1,1) 1. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A,C,D,E,1 + J,0,N,O,P,Q) [C >= J] (?,1) 2. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [C1 >= 2 && C >= J] (?,1) 3. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [0 >= C1 && C >= J] (?,1) 4. f24(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 6. f37(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,Q) [N >= O] (?,1) 7. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && 0 >= Q] (?,1) 8. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && 0 >= Q] (?,1) 9. f44(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 12. f40(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,J,L,N,O,0,Q) [0 >= Q && P = 0] (?,1) 13. f64(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,2 + J,L,N,O,P,Q) [E >= J] (?,1) 14. f71(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,1 + J,L,N,O,P,Q) [C >= J] (?,1) 15. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,0,N,O,P,Q) [L = 0] (?,1) 16. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + L] (?,1) 17. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [L >= 1] (?,1) 18. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D >= J] (?,1) 19. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && D >= J] (?,1) 20. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && D >= J] (?,1) 21. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (?,1) 22. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (?,1) 23. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (?,1) 24. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (?,1) 25. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (?,1) 26. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (?,1) 27. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,0,N,O,P,Q) [L = 0] (?,1) 28. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [0 >= 1 + L] (?,1) 29. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [L >= 1] (?,1) 30. f118(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 32. f91(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,1 + O,P,Q) [J >= 1 + D] (?,1) 33. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [J >= 1 + C] (?,1) 34. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && J >= 1 + C] (?,1) 35. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && J >= 1 + C] (?,1) 36. f64(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + E] (?,1) 37. f57(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] (?,1) 38. f50(A,C,D,E,J,L,N,O,P,Q) -> f57(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (?,1) 39. f44(A,C,D,E,J,L,N,O,P,Q) -> f50(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (?,1) 40. f40(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,J,L,N,O,P,Q) [Q >= 1] (?,1) 41. f37(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,J,L,N,O,P,Q) [O >= 1 + N] (?,1) 42. f31(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (?,1) 43. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && J >= 1 + D] (?,1) 44. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && J >= 1 + D] (?,1) 45. f24(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,0,Q) [J >= 1 + D && P = 0] (?,1) 46. f13(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + C] (1,1) Signature: {(f1,10) ;(f103,10) ;(f107,10) ;(f118,10) ;(f13,10) ;(f2,10) ;(f24,10) ;(f31,10) ;(f37,10) ;(f40,10) ;(f44,10) ;(f50,10) ;(f57,10) ;(f64,10) ;(f71,10) ;(f86,10) ;(f91,10) ;(f99,10)} Flow Graph: [0->{1,2,3,46},1->{1,2,3,46},2->{1,2,3,46},3->{1,2,3,46},4->{4,43,44,45},6->{7,8,12,40},7->{9,39},8->{9 ,39},9->{9,39},12->{13,36},13->{13,36},14->{14,33,34,35},15->{18,19,20,32},16->{18,19,20,32},17->{18,19,20 ,32},18->{21,22,23},19->{21,22,23},20->{21,22,23},21->{24,25,26},22->{24,25,26},23->{24,25,26},24->{27,28 ,29},25->{27,28,29},26->{27,28,29},27->{18,19,20,32},28->{18,19,20,32},29->{18,19,20,32},30->{30},32->{6,41} ,33->{15,16,17},34->{15,16,17},35->{15,16,17},36->{7,8,12,40},37->{7,8,12,40},38->{37},39->{38},40->{14,33 ,34,35},41->{30},42->{6,41},43->{42},44->{42},45->{6,41},46->{4,43,44,45}] Sizebounds: (< 0,0,A>, 0) (< 0,0,C>, 2*D) (< 0,0,D>, D) (< 0,0,E>, 4*D) (< 0,0,J>, J) (< 0,0,L>, L) (< 0,0,N>, N) (< 0,0,O>, O) (< 0,0,P>, P) (< 0,0,Q>, Q) (< 1,0,A>, ?) (< 1,0,C>, 2*D) (< 1,0,D>, D) (< 1,0,E>, 4*D) (< 1,0,J>, 1 + 2*D) (< 1,0,L>, 0) (< 1,0,N>, N) (< 1,0,O>, O) (< 1,0,P>, P) (< 1,0,Q>, Q) (< 2,0,A>, ?) (< 2,0,C>, 2*D) (< 2,0,D>, D) (< 2,0,E>, 4*D) (< 2,0,J>, 1 + 2*D) (< 2,0,L>, ?) (< 2,0,N>, N) (< 2,0,O>, O) (< 2,0,P>, P) (< 2,0,Q>, Q) (< 3,0,A>, ?) (< 3,0,C>, 2*D) (< 3,0,D>, D) (< 3,0,E>, 4*D) (< 3,0,J>, 1 + 2*D) (< 3,0,L>, ?) (< 3,0,N>, N) (< 3,0,O>, O) (< 3,0,P>, P) (< 3,0,Q>, Q) (< 4,0,A>, ?) (< 4,0,C>, 2*D) (< 4,0,D>, D) (< 4,0,E>, 4*D) (< 4,0,J>, 1 + D) (< 4,0,L>, ?) (< 4,0,N>, N) (< 4,0,O>, O) (< 4,0,P>, P) (< 4,0,Q>, Q) (< 6,0,A>, ?) (< 6,0,C>, 2*D) (< 6,0,D>, D) (< 6,0,E>, 4*D) (< 6,0,J>, ?) (< 6,0,L>, ?) (< 6,0,N>, N) (< 6,0,O>, N) (< 6,0,P>, P) (< 6,0,Q>, ?) (< 7,0,A>, ?) (< 7,0,C>, 2*D) (< 7,0,D>, D) (< 7,0,E>, 4*D) (< 7,0,J>, ?) (< 7,0,L>, ?) (< 7,0,N>, N) (< 7,0,O>, ?) (< 7,0,P>, P) (< 7,0,Q>, 0) (< 8,0,A>, ?) (< 8,0,C>, 2*D) (< 8,0,D>, D) (< 8,0,E>, 4*D) (< 8,0,J>, ?) (< 8,0,L>, ?) (< 8,0,N>, N) (< 8,0,O>, ?) (< 8,0,P>, P) (< 8,0,Q>, 0) (< 9,0,A>, ?) (< 9,0,C>, 2*D) (< 9,0,D>, D) (< 9,0,E>, 4*D) (< 9,0,J>, 1 + D) (< 9,0,L>, ?) (< 9,0,N>, N) (< 9,0,O>, ?) (< 9,0,P>, P) (< 9,0,Q>, 0) (<12,0,A>, ?) (<12,0,C>, 2*D) (<12,0,D>, D) (<12,0,E>, 4*D) (<12,0,J>, ?) (<12,0,L>, ?) (<12,0,N>, N) (<12,0,O>, ?) (<12,0,P>, 0) (<12,0,Q>, P) (<13,0,A>, ?) (<13,0,C>, 2*D) (<13,0,D>, D) (<13,0,E>, 4*D) (<13,0,J>, 2 + 4*D) (<13,0,L>, ?) (<13,0,N>, N) (<13,0,O>, ?) (<13,0,P>, 0) (<13,0,Q>, P) (<14,0,A>, ?) (<14,0,C>, 2*D) (<14,0,D>, D) (<14,0,E>, 4*D) (<14,0,J>, 1 + 2*D) (<14,0,L>, ?) (<14,0,N>, N) (<14,0,O>, ?) (<14,0,P>, P) (<14,0,Q>, ?) (<15,0,A>, ?) (<15,0,C>, 2*D) (<15,0,D>, D) (<15,0,E>, 4*D) (<15,0,J>, ?) (<15,0,L>, 0) (<15,0,N>, N) (<15,0,O>, ?) (<15,0,P>, P) (<15,0,Q>, ?) (<16,0,A>, ?) (<16,0,C>, 2*D) (<16,0,D>, D) (<16,0,E>, 4*D) (<16,0,J>, ?) (<16,0,L>, ?) (<16,0,N>, N) (<16,0,O>, ?) (<16,0,P>, P) (<16,0,Q>, ?) (<17,0,A>, ?) (<17,0,C>, 2*D) (<17,0,D>, D) (<17,0,E>, 4*D) (<17,0,J>, ?) (<17,0,L>, ?) (<17,0,N>, N) (<17,0,O>, ?) (<17,0,P>, P) (<17,0,Q>, ?) (<18,0,A>, ?) (<18,0,C>, 2*D) (<18,0,D>, D) (<18,0,E>, 4*D) (<18,0,J>, D) (<18,0,L>, ?) (<18,0,N>, N) (<18,0,O>, ?) (<18,0,P>, P) (<18,0,Q>, ?) (<19,0,A>, ?) (<19,0,C>, 2*D) (<19,0,D>, D) (<19,0,E>, 4*D) (<19,0,J>, D) (<19,0,L>, ?) (<19,0,N>, N) (<19,0,O>, ?) (<19,0,P>, P) (<19,0,Q>, ?) (<20,0,A>, ?) (<20,0,C>, 2*D) (<20,0,D>, D) (<20,0,E>, 4*D) (<20,0,J>, D) (<20,0,L>, ?) (<20,0,N>, N) (<20,0,O>, ?) (<20,0,P>, P) (<20,0,Q>, ?) (<21,0,A>, ?) (<21,0,C>, 2*D) (<21,0,D>, D) (<21,0,E>, 4*D) (<21,0,J>, D) (<21,0,L>, ?) (<21,0,N>, N) (<21,0,O>, ?) (<21,0,P>, P) (<21,0,Q>, ?) (<22,0,A>, ?) (<22,0,C>, 2*D) (<22,0,D>, D) (<22,0,E>, 4*D) (<22,0,J>, D) (<22,0,L>, ?) (<22,0,N>, N) (<22,0,O>, ?) (<22,0,P>, P) (<22,0,Q>, ?) (<23,0,A>, ?) (<23,0,C>, 2*D) (<23,0,D>, D) (<23,0,E>, 4*D) (<23,0,J>, D) (<23,0,L>, ?) (<23,0,N>, N) (<23,0,O>, ?) (<23,0,P>, P) (<23,0,Q>, ?) (<24,0,A>, ?) (<24,0,C>, 2*D) (<24,0,D>, D) (<24,0,E>, 4*D) (<24,0,J>, D) (<24,0,L>, ?) (<24,0,N>, N) (<24,0,O>, ?) (<24,0,P>, P) (<24,0,Q>, ?) (<25,0,A>, ?) (<25,0,C>, 2*D) (<25,0,D>, D) (<25,0,E>, 4*D) (<25,0,J>, D) (<25,0,L>, ?) (<25,0,N>, N) (<25,0,O>, ?) (<25,0,P>, P) (<25,0,Q>, ?) (<26,0,A>, ?) (<26,0,C>, 2*D) (<26,0,D>, D) (<26,0,E>, 4*D) (<26,0,J>, D) (<26,0,L>, ?) (<26,0,N>, N) (<26,0,O>, ?) (<26,0,P>, P) (<26,0,Q>, ?) (<27,0,A>, ?) (<27,0,C>, 2*D) (<27,0,D>, D) (<27,0,E>, 4*D) (<27,0,J>, D) (<27,0,L>, 0) (<27,0,N>, N) (<27,0,O>, ?) (<27,0,P>, P) (<27,0,Q>, ?) (<28,0,A>, ?) (<28,0,C>, 2*D) (<28,0,D>, D) (<28,0,E>, 4*D) (<28,0,J>, D) (<28,0,L>, ?) (<28,0,N>, N) (<28,0,O>, ?) (<28,0,P>, P) (<28,0,Q>, ?) (<29,0,A>, ?) (<29,0,C>, 2*D) (<29,0,D>, D) (<29,0,E>, 4*D) (<29,0,J>, D) (<29,0,L>, ?) (<29,0,N>, N) (<29,0,O>, ?) (<29,0,P>, P) (<29,0,Q>, ?) (<30,0,A>, ?) (<30,0,C>, 2*D) (<30,0,D>, D) (<30,0,E>, 4*D) (<30,0,J>, 1 + D) (<30,0,L>, ?) (<30,0,N>, N) (<30,0,O>, ?) (<30,0,P>, P) (<30,0,Q>, ?) (<32,0,A>, ?) (<32,0,C>, 2*D) (<32,0,D>, D) (<32,0,E>, 4*D) (<32,0,J>, ?) (<32,0,L>, ?) (<32,0,N>, N) (<32,0,O>, ?) (<32,0,P>, P) (<32,0,Q>, ?) (<33,0,A>, ?) (<33,0,C>, 2*D) (<33,0,D>, D) (<33,0,E>, 4*D) (<33,0,J>, ?) (<33,0,L>, ?) (<33,0,N>, N) (<33,0,O>, ?) (<33,0,P>, P) (<33,0,Q>, ?) (<34,0,A>, ?) (<34,0,C>, 2*D) (<34,0,D>, D) (<34,0,E>, 4*D) (<34,0,J>, ?) (<34,0,L>, ?) (<34,0,N>, N) (<34,0,O>, ?) (<34,0,P>, P) (<34,0,Q>, ?) (<35,0,A>, ?) (<35,0,C>, 2*D) (<35,0,D>, D) (<35,0,E>, 4*D) (<35,0,J>, ?) (<35,0,L>, ?) (<35,0,N>, N) (<35,0,O>, ?) (<35,0,P>, P) (<35,0,Q>, ?) (<36,0,A>, ?) (<36,0,C>, 2*D) (<36,0,D>, D) (<36,0,E>, 4*D) (<36,0,J>, ?) (<36,0,L>, ?) (<36,0,N>, N) (<36,0,O>, ?) (<36,0,P>, 0) (<36,0,Q>, P) (<37,0,A>, ?) (<37,0,C>, 2*D) (<37,0,D>, D) (<37,0,E>, 4*D) (<37,0,J>, ?) (<37,0,L>, ?) (<37,0,N>, N) (<37,0,O>, ?) (<37,0,P>, P) (<37,0,Q>, 0) (<38,0,A>, ?) (<38,0,C>, 2*D) (<38,0,D>, D) (<38,0,E>, 4*D) (<38,0,J>, ?) (<38,0,L>, ?) (<38,0,N>, N) (<38,0,O>, ?) (<38,0,P>, P) (<38,0,Q>, 0) (<39,0,A>, ?) (<39,0,C>, 2*D) (<39,0,D>, D) (<39,0,E>, 4*D) (<39,0,J>, ?) (<39,0,L>, ?) (<39,0,N>, N) (<39,0,O>, ?) (<39,0,P>, P) (<39,0,Q>, 0) (<40,0,A>, ?) (<40,0,C>, 2*D) (<40,0,D>, D) (<40,0,E>, 4*D) (<40,0,J>, ?) (<40,0,L>, ?) (<40,0,N>, N) (<40,0,O>, ?) (<40,0,P>, P) (<40,0,Q>, ?) (<41,0,A>, ?) (<41,0,C>, 2*D) (<41,0,D>, D) (<41,0,E>, 4*D) (<41,0,J>, ?) (<41,0,L>, ?) (<41,0,N>, N) (<41,0,O>, ?) (<41,0,P>, P) (<41,0,Q>, ?) (<42,0,A>, ?) (<42,0,C>, 2*D) (<42,0,D>, D) (<42,0,E>, 4*D) (<42,0,J>, 1 + 2*D + J) (<42,0,L>, ?) (<42,0,N>, N) (<42,0,O>, O) (<42,0,P>, P) (<42,0,Q>, Q) (<43,0,A>, ?) (<43,0,C>, 2*D) (<43,0,D>, D) (<43,0,E>, 4*D) (<43,0,J>, 1 + 2*D + J) (<43,0,L>, ?) (<43,0,N>, N) (<43,0,O>, O) (<43,0,P>, P) (<43,0,Q>, Q) (<44,0,A>, ?) (<44,0,C>, 2*D) (<44,0,D>, D) (<44,0,E>, 4*D) (<44,0,J>, 1 + 2*D + J) (<44,0,L>, ?) (<44,0,N>, N) (<44,0,O>, O) (<44,0,P>, P) (<44,0,Q>, Q) (<45,0,A>, ?) (<45,0,C>, 2*D) (<45,0,D>, D) (<45,0,E>, 4*D) (<45,0,J>, 1 + 2*D + J) (<45,0,L>, ?) (<45,0,N>, N) (<45,0,O>, O) (<45,0,P>, 0) (<45,0,Q>, Q) (<46,0,A>, ?) (<46,0,C>, 2*D) (<46,0,D>, D) (<46,0,E>, 4*D) (<46,0,J>, 1 + 2*D + J) (<46,0,L>, ?) (<46,0,N>, N) (<46,0,O>, O) (<46,0,P>, P) (<46,0,Q>, Q) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f103) = -1 + x9 p(f107) = -1 + x9 p(f118) = -1 + x9 p(f13) = x9 p(f2) = x9 p(f24) = x9 p(f31) = -1 + x9 p(f37) = -1 + x9 p(f40) = -1 + x9 p(f44) = -1 + x9 p(f50) = -1 + x9 p(f57) = -1 + x9 p(f64) = -1 + x9 p(f71) = -1 + x9 p(f86) = -1 + x9 p(f91) = -1 + x9 p(f99) = -1 + x9 The following rules are strictly oriented: [P >= 1 && J >= 1 + D] ==> f24(A,C,D,E,J,L,N,O,P,Q) = P > -1 + P = f31(A,C,D,E,J,L,N,O,P,Q) The following rules are weakly oriented: True ==> f2(A,C,D,E,J,L,N,O,P,Q) = P >= P = f13(0,2*D,D,4*D,J,L,N,O,P,Q) [C >= J] ==> f13(A,C,D,E,J,L,N,O,P,Q) = P >= P = f13(A,C,D,E,1 + J,0,N,O,P,Q) [C1 >= 2 && C >= J] ==> f13(A,C,D,E,J,L,N,O,P,Q) = P >= P = f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [0 >= C1 && C >= J] ==> f13(A,C,D,E,J,L,N,O,P,Q) = P >= P = f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [D >= J] ==> f24(A,C,D,E,J,L,N,O,P,Q) = P >= P = f24(A,C,D,E,1 + J,L,N,O,P,Q) [N >= O] ==> f37(A,C,D,E,J,L,N,O,P,Q) = -1 + P >= -1 + P = f40(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && 0 >= Q] ==> f40(A,C,D,E,J,L,N,O,P,Q) = -1 + P >= -1 + P = f44(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && 0 >= Q] ==> f40(A,C,D,E,J,L,N,O,P,Q) = -1 + P >= -1 + P = f44(A,C,D,E,J,L,N,O,P,Q) [D >= J] ==> f44(A,C,D,E,J,L,N,O,P,Q) = -1 + P >= -1 + P = f44(A,C,D,E,1 + J,L,N,O,P,Q) [0 >= Q && P = 0] ==> f40(A,C,D,E,J,L,N,O,P,Q) = -1 + P >= -1 = f64(A,C,D,E,J,L,N,O,0,Q) [E >= J] ==> f64(A,C,D,E,J,L,N,O,P,Q) = -1 + P >= -1 + P = f64(A,C,D,E,2 + J,L,N,O,P,Q) [C >= J] ==> f71(A,C,D,E,J,L,N,O,P,Q) = -1 + P >= -1 + P = f71(A,C,D,E,1 + J,L,N,O,P,Q) [L = 0] ==> f86(A,C,D,E,J,L,N,O,P,Q) = -1 + P >= -1 + P = f91(A,C,D,E,J,0,N,O,P,Q) [0 >= 1 + L] ==> f86(A,C,D,E,J,L,N,O,P,Q) = -1 + P >= -1 + P = f91(A,C,D,E,J,L,N,O,P,Q) [L >= 1] ==> f86(A,C,D,E,J,L,N,O,P,Q) = -1 + P >= -1 + P = f91(A,C,D,E,J,L,N,O,P,Q) [D >= J] ==> f91(A,C,D,E,J,L,N,O,P,Q) = -1 + P >= -1 + P = f99(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && D >= J] ==> f91(A,C,D,E,J,L,N,O,P,Q) = -1 + P >= -1 + P = f99(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && D >= J] ==> f91(A,C,D,E,J,L,N,O,P,Q) = -1 + P >= -1 + P = f99(A,C,D,E,J,B1,N,O,P,Q) [L = 0] ==> f99(A,C,D,E,J,L,N,O,P,Q) = -1 + P >= -1 + P = f103(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] ==> f99(A,C,D,E,J,L,N,O,P,Q) = -1 + P >= -1 + P = f103(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] ==> f99(A,C,D,E,J,L,N,O,P,Q) = -1 + P >= -1 + P = f103(A,C,D,E,J,B1,N,O,P,Q) [L = 0] ==> f103(A,C,D,E,J,L,N,O,P,Q) = -1 + P >= -1 + P = f107(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] ==> f103(A,C,D,E,J,L,N,O,P,Q) = -1 + P >= -1 + P = f107(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] ==> f103(A,C,D,E,J,L,N,O,P,Q) = -1 + P >= -1 + P = f107(A,C,D,E,J,B1,N,O,P,Q) [L = 0] ==> f107(A,C,D,E,J,L,N,O,P,Q) = -1 + P >= -1 + P = f91(A,C,D,E,1 + J,0,N,O,P,Q) [0 >= 1 + L] ==> f107(A,C,D,E,J,L,N,O,P,Q) = -1 + P >= -1 + P = f91(A,C,D,E,1 + J,L,N,O,P,Q) [L >= 1] ==> f107(A,C,D,E,J,L,N,O,P,Q) = -1 + P >= -1 + P = f91(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] ==> f118(A,C,D,E,J,L,N,O,P,Q) = -1 + P >= -1 + P = f118(A,C,D,E,1 + J,L,N,O,P,Q) [J >= 1 + D] ==> f91(A,C,D,E,J,L,N,O,P,Q) = -1 + P >= -1 + P = f37(A,C,D,E,J,L,N,1 + O,P,Q) [J >= 1 + C] ==> f71(A,C,D,E,J,L,N,O,P,Q) = -1 + P >= -1 + P = f86(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && J >= 1 + C] ==> f71(A,C,D,E,J,L,N,O,P,Q) = -1 + P >= -1 + P = f86(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && J >= 1 + C] ==> f71(A,C,D,E,J,L,N,O,P,Q) = -1 + P >= -1 + P = f86(A,C,D,E,J,B1,N,O,P,Q) [J >= 1 + E] ==> f64(A,C,D,E,J,L,N,O,P,Q) = -1 + P >= -1 + P = f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] ==> f57(A,C,D,E,J,L,N,O,P,Q) = -1 + P >= -1 + P = f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] ==> f50(A,C,D,E,J,L,N,O,P,Q) = -1 + P >= -1 + P = f57(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] ==> f44(A,C,D,E,J,L,N,O,P,Q) = -1 + P >= -1 + P = f50(A,C,D,E,J,L,N,O,P,Q) [Q >= 1] ==> f40(A,C,D,E,J,L,N,O,P,Q) = -1 + P >= -1 + P = f71(A,C,D,E,J,L,N,O,P,Q) [O >= 1 + N] ==> f37(A,C,D,E,J,L,N,O,P,Q) = -1 + P >= -1 + P = f118(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] ==> f31(A,C,D,E,J,L,N,O,P,Q) = -1 + P >= -1 + P = f37(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && J >= 1 + D] ==> f24(A,C,D,E,J,L,N,O,P,Q) = P >= -1 + P = f31(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D && P = 0] ==> f24(A,C,D,E,J,L,N,O,P,Q) = P >= -1 = f37(A,C,D,E,J,L,N,O,0,Q) [J >= 1 + C] ==> f13(A,C,D,E,J,L,N,O,P,Q) = P >= P = f24(A,C,D,E,J,L,N,O,P,Q) * Step 9: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,C,D,E,J,L,N,O,P,Q) -> f13(0,2*D,D,4*D,J,L,N,O,P,Q) True (1,1) 1. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A,C,D,E,1 + J,0,N,O,P,Q) [C >= J] (?,1) 2. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [C1 >= 2 && C >= J] (?,1) 3. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [0 >= C1 && C >= J] (?,1) 4. f24(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 6. f37(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,Q) [N >= O] (?,1) 7. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && 0 >= Q] (?,1) 8. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && 0 >= Q] (?,1) 9. f44(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 12. f40(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,J,L,N,O,0,Q) [0 >= Q && P = 0] (?,1) 13. f64(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,2 + J,L,N,O,P,Q) [E >= J] (?,1) 14. f71(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,1 + J,L,N,O,P,Q) [C >= J] (?,1) 15. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,0,N,O,P,Q) [L = 0] (?,1) 16. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + L] (?,1) 17. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [L >= 1] (?,1) 18. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D >= J] (?,1) 19. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && D >= J] (?,1) 20. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && D >= J] (?,1) 21. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (?,1) 22. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (?,1) 23. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (?,1) 24. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (?,1) 25. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (?,1) 26. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (?,1) 27. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,0,N,O,P,Q) [L = 0] (?,1) 28. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [0 >= 1 + L] (?,1) 29. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [L >= 1] (?,1) 30. f118(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 32. f91(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,1 + O,P,Q) [J >= 1 + D] (?,1) 33. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [J >= 1 + C] (?,1) 34. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && J >= 1 + C] (?,1) 35. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && J >= 1 + C] (?,1) 36. f64(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + E] (?,1) 37. f57(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] (?,1) 38. f50(A,C,D,E,J,L,N,O,P,Q) -> f57(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (?,1) 39. f44(A,C,D,E,J,L,N,O,P,Q) -> f50(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (?,1) 40. f40(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,J,L,N,O,P,Q) [Q >= 1] (?,1) 41. f37(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,J,L,N,O,P,Q) [O >= 1 + N] (?,1) 42. f31(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (?,1) 43. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && J >= 1 + D] (?,1) 44. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && J >= 1 + D] (P,1) 45. f24(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,0,Q) [J >= 1 + D && P = 0] (?,1) 46. f13(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + C] (1,1) Signature: {(f1,10) ;(f103,10) ;(f107,10) ;(f118,10) ;(f13,10) ;(f2,10) ;(f24,10) ;(f31,10) ;(f37,10) ;(f40,10) ;(f44,10) ;(f50,10) ;(f57,10) ;(f64,10) ;(f71,10) ;(f86,10) ;(f91,10) ;(f99,10)} Flow Graph: [0->{1,2,3,46},1->{1,2,3,46},2->{1,2,3,46},3->{1,2,3,46},4->{4,43,44,45},6->{7,8,12,40},7->{9,39},8->{9 ,39},9->{9,39},12->{13,36},13->{13,36},14->{14,33,34,35},15->{18,19,20,32},16->{18,19,20,32},17->{18,19,20 ,32},18->{21,22,23},19->{21,22,23},20->{21,22,23},21->{24,25,26},22->{24,25,26},23->{24,25,26},24->{27,28 ,29},25->{27,28,29},26->{27,28,29},27->{18,19,20,32},28->{18,19,20,32},29->{18,19,20,32},30->{30},32->{6,41} ,33->{15,16,17},34->{15,16,17},35->{15,16,17},36->{7,8,12,40},37->{7,8,12,40},38->{37},39->{38},40->{14,33 ,34,35},41->{30},42->{6,41},43->{42},44->{42},45->{6,41},46->{4,43,44,45}] Sizebounds: (< 0,0,A>, 0) (< 0,0,C>, 2*D) (< 0,0,D>, D) (< 0,0,E>, 4*D) (< 0,0,J>, J) (< 0,0,L>, L) (< 0,0,N>, N) (< 0,0,O>, O) (< 0,0,P>, P) (< 0,0,Q>, Q) (< 1,0,A>, ?) (< 1,0,C>, 2*D) (< 1,0,D>, D) (< 1,0,E>, 4*D) (< 1,0,J>, 1 + 2*D) (< 1,0,L>, 0) (< 1,0,N>, N) (< 1,0,O>, O) (< 1,0,P>, P) (< 1,0,Q>, Q) (< 2,0,A>, ?) (< 2,0,C>, 2*D) (< 2,0,D>, D) (< 2,0,E>, 4*D) (< 2,0,J>, 1 + 2*D) (< 2,0,L>, ?) (< 2,0,N>, N) (< 2,0,O>, O) (< 2,0,P>, P) (< 2,0,Q>, Q) (< 3,0,A>, ?) (< 3,0,C>, 2*D) (< 3,0,D>, D) (< 3,0,E>, 4*D) (< 3,0,J>, 1 + 2*D) (< 3,0,L>, ?) (< 3,0,N>, N) (< 3,0,O>, O) (< 3,0,P>, P) (< 3,0,Q>, Q) (< 4,0,A>, ?) (< 4,0,C>, 2*D) (< 4,0,D>, D) (< 4,0,E>, 4*D) (< 4,0,J>, 1 + D) (< 4,0,L>, ?) (< 4,0,N>, N) (< 4,0,O>, O) (< 4,0,P>, P) (< 4,0,Q>, Q) (< 6,0,A>, ?) (< 6,0,C>, 2*D) (< 6,0,D>, D) (< 6,0,E>, 4*D) (< 6,0,J>, ?) (< 6,0,L>, ?) (< 6,0,N>, N) (< 6,0,O>, N) (< 6,0,P>, P) (< 6,0,Q>, ?) (< 7,0,A>, ?) (< 7,0,C>, 2*D) (< 7,0,D>, D) (< 7,0,E>, 4*D) (< 7,0,J>, ?) (< 7,0,L>, ?) (< 7,0,N>, N) (< 7,0,O>, ?) (< 7,0,P>, P) (< 7,0,Q>, 0) (< 8,0,A>, ?) (< 8,0,C>, 2*D) (< 8,0,D>, D) (< 8,0,E>, 4*D) (< 8,0,J>, ?) (< 8,0,L>, ?) (< 8,0,N>, N) (< 8,0,O>, ?) (< 8,0,P>, P) (< 8,0,Q>, 0) (< 9,0,A>, ?) (< 9,0,C>, 2*D) (< 9,0,D>, D) (< 9,0,E>, 4*D) (< 9,0,J>, 1 + D) (< 9,0,L>, ?) (< 9,0,N>, N) (< 9,0,O>, ?) (< 9,0,P>, P) (< 9,0,Q>, 0) (<12,0,A>, ?) (<12,0,C>, 2*D) (<12,0,D>, D) (<12,0,E>, 4*D) (<12,0,J>, ?) (<12,0,L>, ?) (<12,0,N>, N) (<12,0,O>, ?) (<12,0,P>, 0) (<12,0,Q>, P) (<13,0,A>, ?) (<13,0,C>, 2*D) (<13,0,D>, D) (<13,0,E>, 4*D) (<13,0,J>, 2 + 4*D) (<13,0,L>, ?) (<13,0,N>, N) (<13,0,O>, ?) (<13,0,P>, 0) (<13,0,Q>, P) (<14,0,A>, ?) (<14,0,C>, 2*D) (<14,0,D>, D) (<14,0,E>, 4*D) (<14,0,J>, 1 + 2*D) (<14,0,L>, ?) (<14,0,N>, N) (<14,0,O>, ?) (<14,0,P>, P) (<14,0,Q>, ?) (<15,0,A>, ?) (<15,0,C>, 2*D) (<15,0,D>, D) (<15,0,E>, 4*D) (<15,0,J>, ?) (<15,0,L>, 0) (<15,0,N>, N) (<15,0,O>, ?) (<15,0,P>, P) (<15,0,Q>, ?) (<16,0,A>, ?) (<16,0,C>, 2*D) (<16,0,D>, D) (<16,0,E>, 4*D) (<16,0,J>, ?) (<16,0,L>, ?) (<16,0,N>, N) (<16,0,O>, ?) (<16,0,P>, P) (<16,0,Q>, ?) (<17,0,A>, ?) (<17,0,C>, 2*D) (<17,0,D>, D) (<17,0,E>, 4*D) (<17,0,J>, ?) (<17,0,L>, ?) (<17,0,N>, N) (<17,0,O>, ?) (<17,0,P>, P) (<17,0,Q>, ?) (<18,0,A>, ?) (<18,0,C>, 2*D) (<18,0,D>, D) (<18,0,E>, 4*D) (<18,0,J>, D) (<18,0,L>, ?) (<18,0,N>, N) (<18,0,O>, ?) (<18,0,P>, P) (<18,0,Q>, ?) (<19,0,A>, ?) (<19,0,C>, 2*D) (<19,0,D>, D) (<19,0,E>, 4*D) (<19,0,J>, D) (<19,0,L>, ?) (<19,0,N>, N) (<19,0,O>, ?) (<19,0,P>, P) (<19,0,Q>, ?) (<20,0,A>, ?) (<20,0,C>, 2*D) (<20,0,D>, D) (<20,0,E>, 4*D) (<20,0,J>, D) (<20,0,L>, ?) (<20,0,N>, N) (<20,0,O>, ?) (<20,0,P>, P) (<20,0,Q>, ?) (<21,0,A>, ?) (<21,0,C>, 2*D) (<21,0,D>, D) (<21,0,E>, 4*D) (<21,0,J>, D) (<21,0,L>, ?) (<21,0,N>, N) (<21,0,O>, ?) (<21,0,P>, P) (<21,0,Q>, ?) (<22,0,A>, ?) (<22,0,C>, 2*D) (<22,0,D>, D) (<22,0,E>, 4*D) (<22,0,J>, D) (<22,0,L>, ?) (<22,0,N>, N) (<22,0,O>, ?) (<22,0,P>, P) (<22,0,Q>, ?) (<23,0,A>, ?) (<23,0,C>, 2*D) (<23,0,D>, D) (<23,0,E>, 4*D) (<23,0,J>, D) (<23,0,L>, ?) (<23,0,N>, N) (<23,0,O>, ?) (<23,0,P>, P) (<23,0,Q>, ?) (<24,0,A>, ?) (<24,0,C>, 2*D) (<24,0,D>, D) (<24,0,E>, 4*D) (<24,0,J>, D) (<24,0,L>, ?) (<24,0,N>, N) (<24,0,O>, ?) (<24,0,P>, P) (<24,0,Q>, ?) (<25,0,A>, ?) (<25,0,C>, 2*D) (<25,0,D>, D) (<25,0,E>, 4*D) (<25,0,J>, D) (<25,0,L>, ?) (<25,0,N>, N) (<25,0,O>, ?) (<25,0,P>, P) (<25,0,Q>, ?) (<26,0,A>, ?) (<26,0,C>, 2*D) (<26,0,D>, D) (<26,0,E>, 4*D) (<26,0,J>, D) (<26,0,L>, ?) (<26,0,N>, N) (<26,0,O>, ?) (<26,0,P>, P) (<26,0,Q>, ?) (<27,0,A>, ?) (<27,0,C>, 2*D) (<27,0,D>, D) (<27,0,E>, 4*D) (<27,0,J>, D) (<27,0,L>, 0) (<27,0,N>, N) (<27,0,O>, ?) (<27,0,P>, P) (<27,0,Q>, ?) (<28,0,A>, ?) (<28,0,C>, 2*D) (<28,0,D>, D) (<28,0,E>, 4*D) (<28,0,J>, D) (<28,0,L>, ?) (<28,0,N>, N) (<28,0,O>, ?) (<28,0,P>, P) (<28,0,Q>, ?) (<29,0,A>, ?) (<29,0,C>, 2*D) (<29,0,D>, D) (<29,0,E>, 4*D) (<29,0,J>, D) (<29,0,L>, ?) (<29,0,N>, N) (<29,0,O>, ?) (<29,0,P>, P) (<29,0,Q>, ?) (<30,0,A>, ?) (<30,0,C>, 2*D) (<30,0,D>, D) (<30,0,E>, 4*D) (<30,0,J>, 1 + D) (<30,0,L>, ?) (<30,0,N>, N) (<30,0,O>, ?) (<30,0,P>, P) (<30,0,Q>, ?) (<32,0,A>, ?) (<32,0,C>, 2*D) (<32,0,D>, D) (<32,0,E>, 4*D) (<32,0,J>, ?) (<32,0,L>, ?) (<32,0,N>, N) (<32,0,O>, ?) (<32,0,P>, P) (<32,0,Q>, ?) (<33,0,A>, ?) (<33,0,C>, 2*D) (<33,0,D>, D) (<33,0,E>, 4*D) (<33,0,J>, ?) (<33,0,L>, ?) (<33,0,N>, N) (<33,0,O>, ?) (<33,0,P>, P) (<33,0,Q>, ?) (<34,0,A>, ?) (<34,0,C>, 2*D) (<34,0,D>, D) (<34,0,E>, 4*D) (<34,0,J>, ?) (<34,0,L>, ?) (<34,0,N>, N) (<34,0,O>, ?) (<34,0,P>, P) (<34,0,Q>, ?) (<35,0,A>, ?) (<35,0,C>, 2*D) (<35,0,D>, D) (<35,0,E>, 4*D) (<35,0,J>, ?) (<35,0,L>, ?) (<35,0,N>, N) (<35,0,O>, ?) (<35,0,P>, P) (<35,0,Q>, ?) (<36,0,A>, ?) (<36,0,C>, 2*D) (<36,0,D>, D) (<36,0,E>, 4*D) (<36,0,J>, ?) (<36,0,L>, ?) (<36,0,N>, N) (<36,0,O>, ?) (<36,0,P>, 0) (<36,0,Q>, P) (<37,0,A>, ?) (<37,0,C>, 2*D) (<37,0,D>, D) (<37,0,E>, 4*D) (<37,0,J>, ?) (<37,0,L>, ?) (<37,0,N>, N) (<37,0,O>, ?) (<37,0,P>, P) (<37,0,Q>, 0) (<38,0,A>, ?) (<38,0,C>, 2*D) (<38,0,D>, D) (<38,0,E>, 4*D) (<38,0,J>, ?) (<38,0,L>, ?) (<38,0,N>, N) (<38,0,O>, ?) (<38,0,P>, P) (<38,0,Q>, 0) (<39,0,A>, ?) (<39,0,C>, 2*D) (<39,0,D>, D) (<39,0,E>, 4*D) (<39,0,J>, ?) (<39,0,L>, ?) (<39,0,N>, N) (<39,0,O>, ?) (<39,0,P>, P) (<39,0,Q>, 0) (<40,0,A>, ?) (<40,0,C>, 2*D) (<40,0,D>, D) (<40,0,E>, 4*D) (<40,0,J>, ?) (<40,0,L>, ?) (<40,0,N>, N) (<40,0,O>, ?) (<40,0,P>, P) (<40,0,Q>, ?) (<41,0,A>, ?) (<41,0,C>, 2*D) (<41,0,D>, D) (<41,0,E>, 4*D) (<41,0,J>, ?) (<41,0,L>, ?) (<41,0,N>, N) (<41,0,O>, ?) (<41,0,P>, P) (<41,0,Q>, ?) (<42,0,A>, ?) (<42,0,C>, 2*D) (<42,0,D>, D) (<42,0,E>, 4*D) (<42,0,J>, 1 + 2*D + J) (<42,0,L>, ?) (<42,0,N>, N) (<42,0,O>, O) (<42,0,P>, P) (<42,0,Q>, Q) (<43,0,A>, ?) (<43,0,C>, 2*D) (<43,0,D>, D) (<43,0,E>, 4*D) (<43,0,J>, 1 + 2*D + J) (<43,0,L>, ?) (<43,0,N>, N) (<43,0,O>, O) (<43,0,P>, P) (<43,0,Q>, Q) (<44,0,A>, ?) (<44,0,C>, 2*D) (<44,0,D>, D) (<44,0,E>, 4*D) (<44,0,J>, 1 + 2*D + J) (<44,0,L>, ?) (<44,0,N>, N) (<44,0,O>, O) (<44,0,P>, P) (<44,0,Q>, Q) (<45,0,A>, ?) (<45,0,C>, 2*D) (<45,0,D>, D) (<45,0,E>, 4*D) (<45,0,J>, 1 + 2*D + J) (<45,0,L>, ?) (<45,0,N>, N) (<45,0,O>, O) (<45,0,P>, 0) (<45,0,Q>, Q) (<46,0,A>, ?) (<46,0,C>, 2*D) (<46,0,D>, D) (<46,0,E>, 4*D) (<46,0,J>, 1 + 2*D + J) (<46,0,L>, ?) (<46,0,N>, N) (<46,0,O>, O) (<46,0,P>, P) (<46,0,Q>, Q) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f103) = -1 + -1*x9 p(f107) = -1 + -1*x9 p(f118) = -1 + -1*x9 p(f13) = -1*x9 p(f2) = -1*x9 p(f24) = -1*x9 p(f31) = -1 + -1*x9 p(f37) = -1 + -1*x9 p(f40) = -1 + -1*x9 p(f44) = -1 + -1*x9 p(f50) = -1 + -1*x9 p(f57) = -1 + -1*x9 p(f64) = -1 + -1*x9 p(f71) = -1 + -1*x9 p(f86) = -1 + -1*x9 p(f91) = -1 + -1*x9 p(f99) = -1 + -1*x9 The following rules are strictly oriented: [0 >= 1 + P && J >= 1 + D] ==> f24(A,C,D,E,J,L,N,O,P,Q) = -1*P > -1 + -1*P = f31(A,C,D,E,J,L,N,O,P,Q) The following rules are weakly oriented: True ==> f2(A,C,D,E,J,L,N,O,P,Q) = -1*P >= -1*P = f13(0,2*D,D,4*D,J,L,N,O,P,Q) [C >= J] ==> f13(A,C,D,E,J,L,N,O,P,Q) = -1*P >= -1*P = f13(A,C,D,E,1 + J,0,N,O,P,Q) [C1 >= 2 && C >= J] ==> f13(A,C,D,E,J,L,N,O,P,Q) = -1*P >= -1*P = f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [0 >= C1 && C >= J] ==> f13(A,C,D,E,J,L,N,O,P,Q) = -1*P >= -1*P = f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [D >= J] ==> f24(A,C,D,E,J,L,N,O,P,Q) = -1*P >= -1*P = f24(A,C,D,E,1 + J,L,N,O,P,Q) [N >= O] ==> f37(A,C,D,E,J,L,N,O,P,Q) = -1 + -1*P >= -1 + -1*P = f40(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && 0 >= Q] ==> f40(A,C,D,E,J,L,N,O,P,Q) = -1 + -1*P >= -1 + -1*P = f44(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && 0 >= Q] ==> f40(A,C,D,E,J,L,N,O,P,Q) = -1 + -1*P >= -1 + -1*P = f44(A,C,D,E,J,L,N,O,P,Q) [D >= J] ==> f44(A,C,D,E,J,L,N,O,P,Q) = -1 + -1*P >= -1 + -1*P = f44(A,C,D,E,1 + J,L,N,O,P,Q) [0 >= Q && P = 0] ==> f40(A,C,D,E,J,L,N,O,P,Q) = -1 + -1*P >= -1 = f64(A,C,D,E,J,L,N,O,0,Q) [E >= J] ==> f64(A,C,D,E,J,L,N,O,P,Q) = -1 + -1*P >= -1 + -1*P = f64(A,C,D,E,2 + J,L,N,O,P,Q) [C >= J] ==> f71(A,C,D,E,J,L,N,O,P,Q) = -1 + -1*P >= -1 + -1*P = f71(A,C,D,E,1 + J,L,N,O,P,Q) [L = 0] ==> f86(A,C,D,E,J,L,N,O,P,Q) = -1 + -1*P >= -1 + -1*P = f91(A,C,D,E,J,0,N,O,P,Q) [0 >= 1 + L] ==> f86(A,C,D,E,J,L,N,O,P,Q) = -1 + -1*P >= -1 + -1*P = f91(A,C,D,E,J,L,N,O,P,Q) [L >= 1] ==> f86(A,C,D,E,J,L,N,O,P,Q) = -1 + -1*P >= -1 + -1*P = f91(A,C,D,E,J,L,N,O,P,Q) [D >= J] ==> f91(A,C,D,E,J,L,N,O,P,Q) = -1 + -1*P >= -1 + -1*P = f99(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && D >= J] ==> f91(A,C,D,E,J,L,N,O,P,Q) = -1 + -1*P >= -1 + -1*P = f99(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && D >= J] ==> f91(A,C,D,E,J,L,N,O,P,Q) = -1 + -1*P >= -1 + -1*P = f99(A,C,D,E,J,B1,N,O,P,Q) [L = 0] ==> f99(A,C,D,E,J,L,N,O,P,Q) = -1 + -1*P >= -1 + -1*P = f103(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] ==> f99(A,C,D,E,J,L,N,O,P,Q) = -1 + -1*P >= -1 + -1*P = f103(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] ==> f99(A,C,D,E,J,L,N,O,P,Q) = -1 + -1*P >= -1 + -1*P = f103(A,C,D,E,J,B1,N,O,P,Q) [L = 0] ==> f103(A,C,D,E,J,L,N,O,P,Q) = -1 + -1*P >= -1 + -1*P = f107(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] ==> f103(A,C,D,E,J,L,N,O,P,Q) = -1 + -1*P >= -1 + -1*P = f107(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] ==> f103(A,C,D,E,J,L,N,O,P,Q) = -1 + -1*P >= -1 + -1*P = f107(A,C,D,E,J,B1,N,O,P,Q) [L = 0] ==> f107(A,C,D,E,J,L,N,O,P,Q) = -1 + -1*P >= -1 + -1*P = f91(A,C,D,E,1 + J,0,N,O,P,Q) [0 >= 1 + L] ==> f107(A,C,D,E,J,L,N,O,P,Q) = -1 + -1*P >= -1 + -1*P = f91(A,C,D,E,1 + J,L,N,O,P,Q) [L >= 1] ==> f107(A,C,D,E,J,L,N,O,P,Q) = -1 + -1*P >= -1 + -1*P = f91(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] ==> f118(A,C,D,E,J,L,N,O,P,Q) = -1 + -1*P >= -1 + -1*P = f118(A,C,D,E,1 + J,L,N,O,P,Q) [J >= 1 + D] ==> f91(A,C,D,E,J,L,N,O,P,Q) = -1 + -1*P >= -1 + -1*P = f37(A,C,D,E,J,L,N,1 + O,P,Q) [J >= 1 + C] ==> f71(A,C,D,E,J,L,N,O,P,Q) = -1 + -1*P >= -1 + -1*P = f86(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && J >= 1 + C] ==> f71(A,C,D,E,J,L,N,O,P,Q) = -1 + -1*P >= -1 + -1*P = f86(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && J >= 1 + C] ==> f71(A,C,D,E,J,L,N,O,P,Q) = -1 + -1*P >= -1 + -1*P = f86(A,C,D,E,J,B1,N,O,P,Q) [J >= 1 + E] ==> f64(A,C,D,E,J,L,N,O,P,Q) = -1 + -1*P >= -1 + -1*P = f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] ==> f57(A,C,D,E,J,L,N,O,P,Q) = -1 + -1*P >= -1 + -1*P = f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] ==> f50(A,C,D,E,J,L,N,O,P,Q) = -1 + -1*P >= -1 + -1*P = f57(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] ==> f44(A,C,D,E,J,L,N,O,P,Q) = -1 + -1*P >= -1 + -1*P = f50(A,C,D,E,J,L,N,O,P,Q) [Q >= 1] ==> f40(A,C,D,E,J,L,N,O,P,Q) = -1 + -1*P >= -1 + -1*P = f71(A,C,D,E,J,L,N,O,P,Q) [O >= 1 + N] ==> f37(A,C,D,E,J,L,N,O,P,Q) = -1 + -1*P >= -1 + -1*P = f118(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] ==> f31(A,C,D,E,J,L,N,O,P,Q) = -1 + -1*P >= -1 + -1*P = f37(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && J >= 1 + D] ==> f24(A,C,D,E,J,L,N,O,P,Q) = -1*P >= -1 + -1*P = f31(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D && P = 0] ==> f24(A,C,D,E,J,L,N,O,P,Q) = -1*P >= -1 = f37(A,C,D,E,J,L,N,O,0,Q) [J >= 1 + C] ==> f13(A,C,D,E,J,L,N,O,P,Q) = -1*P >= -1*P = f24(A,C,D,E,J,L,N,O,P,Q) * Step 10: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,C,D,E,J,L,N,O,P,Q) -> f13(0,2*D,D,4*D,J,L,N,O,P,Q) True (1,1) 1. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A,C,D,E,1 + J,0,N,O,P,Q) [C >= J] (?,1) 2. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [C1 >= 2 && C >= J] (?,1) 3. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [0 >= C1 && C >= J] (?,1) 4. f24(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 6. f37(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,Q) [N >= O] (?,1) 7. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && 0 >= Q] (?,1) 8. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && 0 >= Q] (?,1) 9. f44(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 12. f40(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,J,L,N,O,0,Q) [0 >= Q && P = 0] (?,1) 13. f64(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,2 + J,L,N,O,P,Q) [E >= J] (?,1) 14. f71(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,1 + J,L,N,O,P,Q) [C >= J] (?,1) 15. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,0,N,O,P,Q) [L = 0] (?,1) 16. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + L] (?,1) 17. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [L >= 1] (?,1) 18. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D >= J] (?,1) 19. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && D >= J] (?,1) 20. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && D >= J] (?,1) 21. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (?,1) 22. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (?,1) 23. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (?,1) 24. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (?,1) 25. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (?,1) 26. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (?,1) 27. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,0,N,O,P,Q) [L = 0] (?,1) 28. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [0 >= 1 + L] (?,1) 29. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [L >= 1] (?,1) 30. f118(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 32. f91(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,1 + O,P,Q) [J >= 1 + D] (?,1) 33. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [J >= 1 + C] (?,1) 34. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && J >= 1 + C] (?,1) 35. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && J >= 1 + C] (?,1) 36. f64(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + E] (?,1) 37. f57(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] (?,1) 38. f50(A,C,D,E,J,L,N,O,P,Q) -> f57(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (?,1) 39. f44(A,C,D,E,J,L,N,O,P,Q) -> f50(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (?,1) 40. f40(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,J,L,N,O,P,Q) [Q >= 1] (?,1) 41. f37(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,J,L,N,O,P,Q) [O >= 1 + N] (?,1) 42. f31(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (?,1) 43. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && J >= 1 + D] (P,1) 44. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && J >= 1 + D] (P,1) 45. f24(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,0,Q) [J >= 1 + D && P = 0] (?,1) 46. f13(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + C] (1,1) Signature: {(f1,10) ;(f103,10) ;(f107,10) ;(f118,10) ;(f13,10) ;(f2,10) ;(f24,10) ;(f31,10) ;(f37,10) ;(f40,10) ;(f44,10) ;(f50,10) ;(f57,10) ;(f64,10) ;(f71,10) ;(f86,10) ;(f91,10) ;(f99,10)} Flow Graph: [0->{1,2,3,46},1->{1,2,3,46},2->{1,2,3,46},3->{1,2,3,46},4->{4,43,44,45},6->{7,8,12,40},7->{9,39},8->{9 ,39},9->{9,39},12->{13,36},13->{13,36},14->{14,33,34,35},15->{18,19,20,32},16->{18,19,20,32},17->{18,19,20 ,32},18->{21,22,23},19->{21,22,23},20->{21,22,23},21->{24,25,26},22->{24,25,26},23->{24,25,26},24->{27,28 ,29},25->{27,28,29},26->{27,28,29},27->{18,19,20,32},28->{18,19,20,32},29->{18,19,20,32},30->{30},32->{6,41} ,33->{15,16,17},34->{15,16,17},35->{15,16,17},36->{7,8,12,40},37->{7,8,12,40},38->{37},39->{38},40->{14,33 ,34,35},41->{30},42->{6,41},43->{42},44->{42},45->{6,41},46->{4,43,44,45}] Sizebounds: (< 0,0,A>, 0) (< 0,0,C>, 2*D) (< 0,0,D>, D) (< 0,0,E>, 4*D) (< 0,0,J>, J) (< 0,0,L>, L) (< 0,0,N>, N) (< 0,0,O>, O) (< 0,0,P>, P) (< 0,0,Q>, Q) (< 1,0,A>, ?) (< 1,0,C>, 2*D) (< 1,0,D>, D) (< 1,0,E>, 4*D) (< 1,0,J>, 1 + 2*D) (< 1,0,L>, 0) (< 1,0,N>, N) (< 1,0,O>, O) (< 1,0,P>, P) (< 1,0,Q>, Q) (< 2,0,A>, ?) (< 2,0,C>, 2*D) (< 2,0,D>, D) (< 2,0,E>, 4*D) (< 2,0,J>, 1 + 2*D) (< 2,0,L>, ?) (< 2,0,N>, N) (< 2,0,O>, O) (< 2,0,P>, P) (< 2,0,Q>, Q) (< 3,0,A>, ?) (< 3,0,C>, 2*D) (< 3,0,D>, D) (< 3,0,E>, 4*D) (< 3,0,J>, 1 + 2*D) (< 3,0,L>, ?) (< 3,0,N>, N) (< 3,0,O>, O) (< 3,0,P>, P) (< 3,0,Q>, Q) (< 4,0,A>, ?) (< 4,0,C>, 2*D) (< 4,0,D>, D) (< 4,0,E>, 4*D) (< 4,0,J>, 1 + D) (< 4,0,L>, ?) (< 4,0,N>, N) (< 4,0,O>, O) (< 4,0,P>, P) (< 4,0,Q>, Q) (< 6,0,A>, ?) (< 6,0,C>, 2*D) (< 6,0,D>, D) (< 6,0,E>, 4*D) (< 6,0,J>, ?) (< 6,0,L>, ?) (< 6,0,N>, N) (< 6,0,O>, N) (< 6,0,P>, P) (< 6,0,Q>, ?) (< 7,0,A>, ?) (< 7,0,C>, 2*D) (< 7,0,D>, D) (< 7,0,E>, 4*D) (< 7,0,J>, ?) (< 7,0,L>, ?) (< 7,0,N>, N) (< 7,0,O>, ?) (< 7,0,P>, P) (< 7,0,Q>, 0) (< 8,0,A>, ?) (< 8,0,C>, 2*D) (< 8,0,D>, D) (< 8,0,E>, 4*D) (< 8,0,J>, ?) (< 8,0,L>, ?) (< 8,0,N>, N) (< 8,0,O>, ?) (< 8,0,P>, P) (< 8,0,Q>, 0) (< 9,0,A>, ?) (< 9,0,C>, 2*D) (< 9,0,D>, D) (< 9,0,E>, 4*D) (< 9,0,J>, 1 + D) (< 9,0,L>, ?) (< 9,0,N>, N) (< 9,0,O>, ?) (< 9,0,P>, P) (< 9,0,Q>, 0) (<12,0,A>, ?) (<12,0,C>, 2*D) (<12,0,D>, D) (<12,0,E>, 4*D) (<12,0,J>, ?) (<12,0,L>, ?) (<12,0,N>, N) (<12,0,O>, ?) (<12,0,P>, 0) (<12,0,Q>, P) (<13,0,A>, ?) (<13,0,C>, 2*D) (<13,0,D>, D) (<13,0,E>, 4*D) (<13,0,J>, 2 + 4*D) (<13,0,L>, ?) (<13,0,N>, N) (<13,0,O>, ?) (<13,0,P>, 0) (<13,0,Q>, P) (<14,0,A>, ?) (<14,0,C>, 2*D) (<14,0,D>, D) (<14,0,E>, 4*D) (<14,0,J>, 1 + 2*D) (<14,0,L>, ?) (<14,0,N>, N) (<14,0,O>, ?) (<14,0,P>, P) (<14,0,Q>, ?) (<15,0,A>, ?) (<15,0,C>, 2*D) (<15,0,D>, D) (<15,0,E>, 4*D) (<15,0,J>, ?) (<15,0,L>, 0) (<15,0,N>, N) (<15,0,O>, ?) (<15,0,P>, P) (<15,0,Q>, ?) (<16,0,A>, ?) (<16,0,C>, 2*D) (<16,0,D>, D) (<16,0,E>, 4*D) (<16,0,J>, ?) (<16,0,L>, ?) (<16,0,N>, N) (<16,0,O>, ?) (<16,0,P>, P) (<16,0,Q>, ?) (<17,0,A>, ?) (<17,0,C>, 2*D) (<17,0,D>, D) (<17,0,E>, 4*D) (<17,0,J>, ?) (<17,0,L>, ?) (<17,0,N>, N) (<17,0,O>, ?) (<17,0,P>, P) (<17,0,Q>, ?) (<18,0,A>, ?) (<18,0,C>, 2*D) (<18,0,D>, D) (<18,0,E>, 4*D) (<18,0,J>, D) (<18,0,L>, ?) (<18,0,N>, N) (<18,0,O>, ?) (<18,0,P>, P) (<18,0,Q>, ?) (<19,0,A>, ?) (<19,0,C>, 2*D) (<19,0,D>, D) (<19,0,E>, 4*D) (<19,0,J>, D) (<19,0,L>, ?) (<19,0,N>, N) (<19,0,O>, ?) (<19,0,P>, P) (<19,0,Q>, ?) (<20,0,A>, ?) (<20,0,C>, 2*D) (<20,0,D>, D) (<20,0,E>, 4*D) (<20,0,J>, D) (<20,0,L>, ?) (<20,0,N>, N) (<20,0,O>, ?) (<20,0,P>, P) (<20,0,Q>, ?) (<21,0,A>, ?) (<21,0,C>, 2*D) (<21,0,D>, D) (<21,0,E>, 4*D) (<21,0,J>, D) (<21,0,L>, ?) (<21,0,N>, N) (<21,0,O>, ?) (<21,0,P>, P) (<21,0,Q>, ?) (<22,0,A>, ?) (<22,0,C>, 2*D) (<22,0,D>, D) (<22,0,E>, 4*D) (<22,0,J>, D) (<22,0,L>, ?) (<22,0,N>, N) (<22,0,O>, ?) (<22,0,P>, P) (<22,0,Q>, ?) (<23,0,A>, ?) (<23,0,C>, 2*D) (<23,0,D>, D) (<23,0,E>, 4*D) (<23,0,J>, D) (<23,0,L>, ?) (<23,0,N>, N) (<23,0,O>, ?) (<23,0,P>, P) (<23,0,Q>, ?) (<24,0,A>, ?) (<24,0,C>, 2*D) (<24,0,D>, D) (<24,0,E>, 4*D) (<24,0,J>, D) (<24,0,L>, ?) (<24,0,N>, N) (<24,0,O>, ?) (<24,0,P>, P) (<24,0,Q>, ?) (<25,0,A>, ?) (<25,0,C>, 2*D) (<25,0,D>, D) (<25,0,E>, 4*D) (<25,0,J>, D) (<25,0,L>, ?) (<25,0,N>, N) (<25,0,O>, ?) (<25,0,P>, P) (<25,0,Q>, ?) (<26,0,A>, ?) (<26,0,C>, 2*D) (<26,0,D>, D) (<26,0,E>, 4*D) (<26,0,J>, D) (<26,0,L>, ?) (<26,0,N>, N) (<26,0,O>, ?) (<26,0,P>, P) (<26,0,Q>, ?) (<27,0,A>, ?) (<27,0,C>, 2*D) (<27,0,D>, D) (<27,0,E>, 4*D) (<27,0,J>, D) (<27,0,L>, 0) (<27,0,N>, N) (<27,0,O>, ?) (<27,0,P>, P) (<27,0,Q>, ?) (<28,0,A>, ?) (<28,0,C>, 2*D) (<28,0,D>, D) (<28,0,E>, 4*D) (<28,0,J>, D) (<28,0,L>, ?) (<28,0,N>, N) (<28,0,O>, ?) (<28,0,P>, P) (<28,0,Q>, ?) (<29,0,A>, ?) (<29,0,C>, 2*D) (<29,0,D>, D) (<29,0,E>, 4*D) (<29,0,J>, D) (<29,0,L>, ?) (<29,0,N>, N) (<29,0,O>, ?) (<29,0,P>, P) (<29,0,Q>, ?) (<30,0,A>, ?) (<30,0,C>, 2*D) (<30,0,D>, D) (<30,0,E>, 4*D) (<30,0,J>, 1 + D) (<30,0,L>, ?) (<30,0,N>, N) (<30,0,O>, ?) (<30,0,P>, P) (<30,0,Q>, ?) (<32,0,A>, ?) (<32,0,C>, 2*D) (<32,0,D>, D) (<32,0,E>, 4*D) (<32,0,J>, ?) (<32,0,L>, ?) (<32,0,N>, N) (<32,0,O>, ?) (<32,0,P>, P) (<32,0,Q>, ?) (<33,0,A>, ?) (<33,0,C>, 2*D) (<33,0,D>, D) (<33,0,E>, 4*D) (<33,0,J>, ?) (<33,0,L>, ?) (<33,0,N>, N) (<33,0,O>, ?) (<33,0,P>, P) (<33,0,Q>, ?) (<34,0,A>, ?) (<34,0,C>, 2*D) (<34,0,D>, D) (<34,0,E>, 4*D) (<34,0,J>, ?) (<34,0,L>, ?) (<34,0,N>, N) (<34,0,O>, ?) (<34,0,P>, P) (<34,0,Q>, ?) (<35,0,A>, ?) (<35,0,C>, 2*D) (<35,0,D>, D) (<35,0,E>, 4*D) (<35,0,J>, ?) (<35,0,L>, ?) (<35,0,N>, N) (<35,0,O>, ?) (<35,0,P>, P) (<35,0,Q>, ?) (<36,0,A>, ?) (<36,0,C>, 2*D) (<36,0,D>, D) (<36,0,E>, 4*D) (<36,0,J>, ?) (<36,0,L>, ?) (<36,0,N>, N) (<36,0,O>, ?) (<36,0,P>, 0) (<36,0,Q>, P) (<37,0,A>, ?) (<37,0,C>, 2*D) (<37,0,D>, D) (<37,0,E>, 4*D) (<37,0,J>, ?) (<37,0,L>, ?) (<37,0,N>, N) (<37,0,O>, ?) (<37,0,P>, P) (<37,0,Q>, 0) (<38,0,A>, ?) (<38,0,C>, 2*D) (<38,0,D>, D) (<38,0,E>, 4*D) (<38,0,J>, ?) (<38,0,L>, ?) (<38,0,N>, N) (<38,0,O>, ?) (<38,0,P>, P) (<38,0,Q>, 0) (<39,0,A>, ?) (<39,0,C>, 2*D) (<39,0,D>, D) (<39,0,E>, 4*D) (<39,0,J>, ?) (<39,0,L>, ?) (<39,0,N>, N) (<39,0,O>, ?) (<39,0,P>, P) (<39,0,Q>, 0) (<40,0,A>, ?) (<40,0,C>, 2*D) (<40,0,D>, D) (<40,0,E>, 4*D) (<40,0,J>, ?) (<40,0,L>, ?) (<40,0,N>, N) (<40,0,O>, ?) (<40,0,P>, P) (<40,0,Q>, ?) (<41,0,A>, ?) (<41,0,C>, 2*D) (<41,0,D>, D) (<41,0,E>, 4*D) (<41,0,J>, ?) (<41,0,L>, ?) (<41,0,N>, N) (<41,0,O>, ?) (<41,0,P>, P) (<41,0,Q>, ?) (<42,0,A>, ?) (<42,0,C>, 2*D) (<42,0,D>, D) (<42,0,E>, 4*D) (<42,0,J>, 1 + 2*D + J) (<42,0,L>, ?) (<42,0,N>, N) (<42,0,O>, O) (<42,0,P>, P) (<42,0,Q>, Q) (<43,0,A>, ?) (<43,0,C>, 2*D) (<43,0,D>, D) (<43,0,E>, 4*D) (<43,0,J>, 1 + 2*D + J) (<43,0,L>, ?) (<43,0,N>, N) (<43,0,O>, O) (<43,0,P>, P) (<43,0,Q>, Q) (<44,0,A>, ?) (<44,0,C>, 2*D) (<44,0,D>, D) (<44,0,E>, 4*D) (<44,0,J>, 1 + 2*D + J) (<44,0,L>, ?) (<44,0,N>, N) (<44,0,O>, O) (<44,0,P>, P) (<44,0,Q>, Q) (<45,0,A>, ?) (<45,0,C>, 2*D) (<45,0,D>, D) (<45,0,E>, 4*D) (<45,0,J>, 1 + 2*D + J) (<45,0,L>, ?) (<45,0,N>, N) (<45,0,O>, O) (<45,0,P>, 0) (<45,0,Q>, Q) (<46,0,A>, ?) (<46,0,C>, 2*D) (<46,0,D>, D) (<46,0,E>, 4*D) (<46,0,J>, 1 + 2*D + J) (<46,0,L>, ?) (<46,0,N>, N) (<46,0,O>, O) (<46,0,P>, P) (<46,0,Q>, Q) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 11: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,C,D,E,J,L,N,O,P,Q) -> f13(0,2*D,D,4*D,J,L,N,O,P,Q) True (1,1) 1. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A,C,D,E,1 + J,0,N,O,P,Q) [C >= J] (?,1) 2. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [C1 >= 2 && C >= J] (?,1) 3. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [0 >= C1 && C >= J] (?,1) 4. f24(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 6. f37(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,Q) [N >= O] (?,1) 7. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && 0 >= Q] (?,1) 8. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && 0 >= Q] (?,1) 9. f44(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 12. f40(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,J,L,N,O,0,Q) [0 >= Q && P = 0] (?,1) 13. f64(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,2 + J,L,N,O,P,Q) [E >= J] (?,1) 14. f71(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,1 + J,L,N,O,P,Q) [C >= J] (?,1) 15. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,0,N,O,P,Q) [L = 0] (?,1) 16. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + L] (?,1) 17. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [L >= 1] (?,1) 18. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D >= J] (?,1) 19. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && D >= J] (?,1) 20. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && D >= J] (?,1) 21. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (?,1) 22. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (?,1) 23. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (?,1) 24. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (?,1) 25. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (?,1) 26. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (?,1) 27. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,0,N,O,P,Q) [L = 0] (?,1) 28. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [0 >= 1 + L] (?,1) 29. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [L >= 1] (?,1) 30. f118(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 32. f91(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,1 + O,P,Q) [J >= 1 + D] (?,1) 33. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [J >= 1 + C] (?,1) 34. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && J >= 1 + C] (?,1) 35. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && J >= 1 + C] (?,1) 36. f64(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + E] (?,1) 37. f57(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] (?,1) 38. f50(A,C,D,E,J,L,N,O,P,Q) -> f57(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (?,1) 39. f44(A,C,D,E,J,L,N,O,P,Q) -> f50(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (?,1) 40. f40(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,J,L,N,O,P,Q) [Q >= 1] (?,1) 41. f37(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,J,L,N,O,P,Q) [O >= 1 + N] (?,1) 42. f31(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (2*P,1) 43. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && J >= 1 + D] (P,1) 44. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && J >= 1 + D] (P,1) 45. f24(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,0,Q) [J >= 1 + D && P = 0] (?,1) 46. f13(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + C] (1,1) Signature: {(f1,10) ;(f103,10) ;(f107,10) ;(f118,10) ;(f13,10) ;(f2,10) ;(f24,10) ;(f31,10) ;(f37,10) ;(f40,10) ;(f44,10) ;(f50,10) ;(f57,10) ;(f64,10) ;(f71,10) ;(f86,10) ;(f91,10) ;(f99,10)} Flow Graph: [0->{1,2,3,46},1->{1,2,3,46},2->{1,2,3,46},3->{1,2,3,46},4->{4,43,44,45},6->{7,8,12,40},7->{9,39},8->{9 ,39},9->{9,39},12->{13,36},13->{13,36},14->{14,33,34,35},15->{18,19,20,32},16->{18,19,20,32},17->{18,19,20 ,32},18->{21,22,23},19->{21,22,23},20->{21,22,23},21->{24,25,26},22->{24,25,26},23->{24,25,26},24->{27,28 ,29},25->{27,28,29},26->{27,28,29},27->{18,19,20,32},28->{18,19,20,32},29->{18,19,20,32},30->{30},32->{6,41} ,33->{15,16,17},34->{15,16,17},35->{15,16,17},36->{7,8,12,40},37->{7,8,12,40},38->{37},39->{38},40->{14,33 ,34,35},41->{30},42->{6,41},43->{42},44->{42},45->{6,41},46->{4,43,44,45}] Sizebounds: (< 0,0,A>, 0) (< 0,0,C>, 2*D) (< 0,0,D>, D) (< 0,0,E>, 4*D) (< 0,0,J>, J) (< 0,0,L>, L) (< 0,0,N>, N) (< 0,0,O>, O) (< 0,0,P>, P) (< 0,0,Q>, Q) (< 1,0,A>, ?) (< 1,0,C>, 2*D) (< 1,0,D>, D) (< 1,0,E>, 4*D) (< 1,0,J>, 1 + 2*D) (< 1,0,L>, 0) (< 1,0,N>, N) (< 1,0,O>, O) (< 1,0,P>, P) (< 1,0,Q>, Q) (< 2,0,A>, ?) (< 2,0,C>, 2*D) (< 2,0,D>, D) (< 2,0,E>, 4*D) (< 2,0,J>, 1 + 2*D) (< 2,0,L>, ?) (< 2,0,N>, N) (< 2,0,O>, O) (< 2,0,P>, P) (< 2,0,Q>, Q) (< 3,0,A>, ?) (< 3,0,C>, 2*D) (< 3,0,D>, D) (< 3,0,E>, 4*D) (< 3,0,J>, 1 + 2*D) (< 3,0,L>, ?) (< 3,0,N>, N) (< 3,0,O>, O) (< 3,0,P>, P) (< 3,0,Q>, Q) (< 4,0,A>, ?) (< 4,0,C>, 2*D) (< 4,0,D>, D) (< 4,0,E>, 4*D) (< 4,0,J>, 1 + D) (< 4,0,L>, ?) (< 4,0,N>, N) (< 4,0,O>, O) (< 4,0,P>, P) (< 4,0,Q>, Q) (< 6,0,A>, ?) (< 6,0,C>, 2*D) (< 6,0,D>, D) (< 6,0,E>, 4*D) (< 6,0,J>, ?) (< 6,0,L>, ?) (< 6,0,N>, N) (< 6,0,O>, N) (< 6,0,P>, P) (< 6,0,Q>, ?) (< 7,0,A>, ?) (< 7,0,C>, 2*D) (< 7,0,D>, D) (< 7,0,E>, 4*D) (< 7,0,J>, ?) (< 7,0,L>, ?) (< 7,0,N>, N) (< 7,0,O>, ?) (< 7,0,P>, P) (< 7,0,Q>, 0) (< 8,0,A>, ?) (< 8,0,C>, 2*D) (< 8,0,D>, D) (< 8,0,E>, 4*D) (< 8,0,J>, ?) (< 8,0,L>, ?) (< 8,0,N>, N) (< 8,0,O>, ?) (< 8,0,P>, P) (< 8,0,Q>, 0) (< 9,0,A>, ?) (< 9,0,C>, 2*D) (< 9,0,D>, D) (< 9,0,E>, 4*D) (< 9,0,J>, 1 + D) (< 9,0,L>, ?) (< 9,0,N>, N) (< 9,0,O>, ?) (< 9,0,P>, P) (< 9,0,Q>, 0) (<12,0,A>, ?) (<12,0,C>, 2*D) (<12,0,D>, D) (<12,0,E>, 4*D) (<12,0,J>, ?) (<12,0,L>, ?) (<12,0,N>, N) (<12,0,O>, ?) (<12,0,P>, 0) (<12,0,Q>, P) (<13,0,A>, ?) (<13,0,C>, 2*D) (<13,0,D>, D) (<13,0,E>, 4*D) (<13,0,J>, 2 + 4*D) (<13,0,L>, ?) (<13,0,N>, N) (<13,0,O>, ?) (<13,0,P>, 0) (<13,0,Q>, P) (<14,0,A>, ?) (<14,0,C>, 2*D) (<14,0,D>, D) (<14,0,E>, 4*D) (<14,0,J>, 1 + 2*D) (<14,0,L>, ?) (<14,0,N>, N) (<14,0,O>, ?) (<14,0,P>, P) (<14,0,Q>, ?) (<15,0,A>, ?) (<15,0,C>, 2*D) (<15,0,D>, D) (<15,0,E>, 4*D) (<15,0,J>, ?) (<15,0,L>, 0) (<15,0,N>, N) (<15,0,O>, ?) (<15,0,P>, P) (<15,0,Q>, ?) (<16,0,A>, ?) (<16,0,C>, 2*D) (<16,0,D>, D) (<16,0,E>, 4*D) (<16,0,J>, ?) (<16,0,L>, ?) (<16,0,N>, N) (<16,0,O>, ?) (<16,0,P>, P) (<16,0,Q>, ?) (<17,0,A>, ?) (<17,0,C>, 2*D) (<17,0,D>, D) (<17,0,E>, 4*D) (<17,0,J>, ?) (<17,0,L>, ?) (<17,0,N>, N) (<17,0,O>, ?) (<17,0,P>, P) (<17,0,Q>, ?) (<18,0,A>, ?) (<18,0,C>, 2*D) (<18,0,D>, D) (<18,0,E>, 4*D) (<18,0,J>, D) (<18,0,L>, ?) (<18,0,N>, N) (<18,0,O>, ?) (<18,0,P>, P) (<18,0,Q>, ?) (<19,0,A>, ?) (<19,0,C>, 2*D) (<19,0,D>, D) (<19,0,E>, 4*D) (<19,0,J>, D) (<19,0,L>, ?) (<19,0,N>, N) (<19,0,O>, ?) (<19,0,P>, P) (<19,0,Q>, ?) (<20,0,A>, ?) (<20,0,C>, 2*D) (<20,0,D>, D) (<20,0,E>, 4*D) (<20,0,J>, D) (<20,0,L>, ?) (<20,0,N>, N) (<20,0,O>, ?) (<20,0,P>, P) (<20,0,Q>, ?) (<21,0,A>, ?) (<21,0,C>, 2*D) (<21,0,D>, D) (<21,0,E>, 4*D) (<21,0,J>, D) (<21,0,L>, ?) (<21,0,N>, N) (<21,0,O>, ?) (<21,0,P>, P) (<21,0,Q>, ?) (<22,0,A>, ?) (<22,0,C>, 2*D) (<22,0,D>, D) (<22,0,E>, 4*D) (<22,0,J>, D) (<22,0,L>, ?) (<22,0,N>, N) (<22,0,O>, ?) (<22,0,P>, P) (<22,0,Q>, ?) (<23,0,A>, ?) (<23,0,C>, 2*D) (<23,0,D>, D) (<23,0,E>, 4*D) (<23,0,J>, D) (<23,0,L>, ?) (<23,0,N>, N) (<23,0,O>, ?) (<23,0,P>, P) (<23,0,Q>, ?) (<24,0,A>, ?) (<24,0,C>, 2*D) (<24,0,D>, D) (<24,0,E>, 4*D) (<24,0,J>, D) (<24,0,L>, ?) (<24,0,N>, N) (<24,0,O>, ?) (<24,0,P>, P) (<24,0,Q>, ?) (<25,0,A>, ?) (<25,0,C>, 2*D) (<25,0,D>, D) (<25,0,E>, 4*D) (<25,0,J>, D) (<25,0,L>, ?) (<25,0,N>, N) (<25,0,O>, ?) (<25,0,P>, P) (<25,0,Q>, ?) (<26,0,A>, ?) (<26,0,C>, 2*D) (<26,0,D>, D) (<26,0,E>, 4*D) (<26,0,J>, D) (<26,0,L>, ?) (<26,0,N>, N) (<26,0,O>, ?) (<26,0,P>, P) (<26,0,Q>, ?) (<27,0,A>, ?) (<27,0,C>, 2*D) (<27,0,D>, D) (<27,0,E>, 4*D) (<27,0,J>, D) (<27,0,L>, 0) (<27,0,N>, N) (<27,0,O>, ?) (<27,0,P>, P) (<27,0,Q>, ?) (<28,0,A>, ?) (<28,0,C>, 2*D) (<28,0,D>, D) (<28,0,E>, 4*D) (<28,0,J>, D) (<28,0,L>, ?) (<28,0,N>, N) (<28,0,O>, ?) (<28,0,P>, P) (<28,0,Q>, ?) (<29,0,A>, ?) (<29,0,C>, 2*D) (<29,0,D>, D) (<29,0,E>, 4*D) (<29,0,J>, D) (<29,0,L>, ?) (<29,0,N>, N) (<29,0,O>, ?) (<29,0,P>, P) (<29,0,Q>, ?) (<30,0,A>, ?) (<30,0,C>, 2*D) (<30,0,D>, D) (<30,0,E>, 4*D) (<30,0,J>, 1 + D) (<30,0,L>, ?) (<30,0,N>, N) (<30,0,O>, ?) (<30,0,P>, P) (<30,0,Q>, ?) (<32,0,A>, ?) (<32,0,C>, 2*D) (<32,0,D>, D) (<32,0,E>, 4*D) (<32,0,J>, ?) (<32,0,L>, ?) (<32,0,N>, N) (<32,0,O>, ?) (<32,0,P>, P) (<32,0,Q>, ?) (<33,0,A>, ?) (<33,0,C>, 2*D) (<33,0,D>, D) (<33,0,E>, 4*D) (<33,0,J>, ?) (<33,0,L>, ?) (<33,0,N>, N) (<33,0,O>, ?) (<33,0,P>, P) (<33,0,Q>, ?) (<34,0,A>, ?) (<34,0,C>, 2*D) (<34,0,D>, D) (<34,0,E>, 4*D) (<34,0,J>, ?) (<34,0,L>, ?) (<34,0,N>, N) (<34,0,O>, ?) (<34,0,P>, P) (<34,0,Q>, ?) (<35,0,A>, ?) (<35,0,C>, 2*D) (<35,0,D>, D) (<35,0,E>, 4*D) (<35,0,J>, ?) (<35,0,L>, ?) (<35,0,N>, N) (<35,0,O>, ?) (<35,0,P>, P) (<35,0,Q>, ?) (<36,0,A>, ?) (<36,0,C>, 2*D) (<36,0,D>, D) (<36,0,E>, 4*D) (<36,0,J>, ?) (<36,0,L>, ?) (<36,0,N>, N) (<36,0,O>, ?) (<36,0,P>, 0) (<36,0,Q>, P) (<37,0,A>, ?) (<37,0,C>, 2*D) (<37,0,D>, D) (<37,0,E>, 4*D) (<37,0,J>, ?) (<37,0,L>, ?) (<37,0,N>, N) (<37,0,O>, ?) (<37,0,P>, P) (<37,0,Q>, 0) (<38,0,A>, ?) (<38,0,C>, 2*D) (<38,0,D>, D) (<38,0,E>, 4*D) (<38,0,J>, ?) (<38,0,L>, ?) (<38,0,N>, N) (<38,0,O>, ?) (<38,0,P>, P) (<38,0,Q>, 0) (<39,0,A>, ?) (<39,0,C>, 2*D) (<39,0,D>, D) (<39,0,E>, 4*D) (<39,0,J>, ?) (<39,0,L>, ?) (<39,0,N>, N) (<39,0,O>, ?) (<39,0,P>, P) (<39,0,Q>, 0) (<40,0,A>, ?) (<40,0,C>, 2*D) (<40,0,D>, D) (<40,0,E>, 4*D) (<40,0,J>, ?) (<40,0,L>, ?) (<40,0,N>, N) (<40,0,O>, ?) (<40,0,P>, P) (<40,0,Q>, ?) (<41,0,A>, ?) (<41,0,C>, 2*D) (<41,0,D>, D) (<41,0,E>, 4*D) (<41,0,J>, ?) (<41,0,L>, ?) (<41,0,N>, N) (<41,0,O>, ?) (<41,0,P>, P) (<41,0,Q>, ?) (<42,0,A>, ?) (<42,0,C>, 2*D) (<42,0,D>, D) (<42,0,E>, 4*D) (<42,0,J>, 1 + 2*D + J) (<42,0,L>, ?) (<42,0,N>, N) (<42,0,O>, O) (<42,0,P>, P) (<42,0,Q>, Q) (<43,0,A>, ?) (<43,0,C>, 2*D) (<43,0,D>, D) (<43,0,E>, 4*D) (<43,0,J>, 1 + 2*D + J) (<43,0,L>, ?) (<43,0,N>, N) (<43,0,O>, O) (<43,0,P>, P) (<43,0,Q>, Q) (<44,0,A>, ?) (<44,0,C>, 2*D) (<44,0,D>, D) (<44,0,E>, 4*D) (<44,0,J>, 1 + 2*D + J) (<44,0,L>, ?) (<44,0,N>, N) (<44,0,O>, O) (<44,0,P>, P) (<44,0,Q>, Q) (<45,0,A>, ?) (<45,0,C>, 2*D) (<45,0,D>, D) (<45,0,E>, 4*D) (<45,0,J>, 1 + 2*D + J) (<45,0,L>, ?) (<45,0,N>, N) (<45,0,O>, O) (<45,0,P>, 0) (<45,0,Q>, Q) (<46,0,A>, ?) (<46,0,C>, 2*D) (<46,0,D>, D) (<46,0,E>, 4*D) (<46,0,J>, 1 + 2*D + J) (<46,0,L>, ?) (<46,0,N>, N) (<46,0,O>, O) (<46,0,P>, P) (<46,0,Q>, Q) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f103) = 1 + x3 + -1*x5 p(f107) = 1 + x3 + -1*x5 p(f118) = 1 + x3 + -1*x5 p(f13) = 0 p(f2) = 0 p(f24) = 0 p(f31) = 0 p(f37) = 1 + x3 + -1*x5 p(f40) = 1 + x3 + -1*x5 p(f44) = 1 + x3 + -1*x5 p(f50) = 1 + x3 + -1*x5 p(f57) = 1 + x3 + -1*x5 p(f64) = 1 + x3 + -1*x5 p(f71) = 1 + x3 + -1*x5 p(f86) = 1 + x3 + -1*x5 p(f91) = 1 + x3 + -1*x5 p(f99) = 1 + x3 + -1*x5 The following rules are strictly oriented: [D >= J] ==> f118(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J > D + -1*J = f118(A,C,D,E,1 + J,L,N,O,P,Q) The following rules are weakly oriented: True ==> f2(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f13(0,2*D,D,4*D,J,L,N,O,P,Q) [C >= J] ==> f13(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f13(A,C,D,E,1 + J,0,N,O,P,Q) [C1 >= 2 && C >= J] ==> f13(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [0 >= C1 && C >= J] ==> f13(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [D >= J] ==> f24(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f24(A,C,D,E,1 + J,L,N,O,P,Q) [N >= O] ==> f37(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f40(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && 0 >= Q] ==> f40(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f44(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && 0 >= Q] ==> f40(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f44(A,C,D,E,J,L,N,O,P,Q) [D >= J] ==> f44(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= D + -1*J = f44(A,C,D,E,1 + J,L,N,O,P,Q) [0 >= Q && P = 0] ==> f40(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f64(A,C,D,E,J,L,N,O,0,Q) [E >= J] ==> f64(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= -1 + D + -1*J = f64(A,C,D,E,2 + J,L,N,O,P,Q) [C >= J] ==> f71(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= D + -1*J = f71(A,C,D,E,1 + J,L,N,O,P,Q) [L = 0] ==> f86(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f91(A,C,D,E,J,0,N,O,P,Q) [0 >= 1 + L] ==> f86(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f91(A,C,D,E,J,L,N,O,P,Q) [L >= 1] ==> f86(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f91(A,C,D,E,J,L,N,O,P,Q) [D >= J] ==> f91(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f99(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && D >= J] ==> f91(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f99(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && D >= J] ==> f91(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f99(A,C,D,E,J,B1,N,O,P,Q) [L = 0] ==> f99(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f103(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] ==> f99(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f103(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] ==> f99(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f103(A,C,D,E,J,B1,N,O,P,Q) [L = 0] ==> f103(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f107(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] ==> f103(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f107(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] ==> f103(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f107(A,C,D,E,J,B1,N,O,P,Q) [L = 0] ==> f107(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= D + -1*J = f91(A,C,D,E,1 + J,0,N,O,P,Q) [0 >= 1 + L] ==> f107(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= D + -1*J = f91(A,C,D,E,1 + J,L,N,O,P,Q) [L >= 1] ==> f107(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= D + -1*J = f91(A,C,D,E,1 + J,L,N,O,P,Q) [J >= 1 + D] ==> f91(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f37(A,C,D,E,J,L,N,1 + O,P,Q) [J >= 1 + C] ==> f71(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f86(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && J >= 1 + C] ==> f71(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f86(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && J >= 1 + C] ==> f71(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f86(A,C,D,E,J,B1,N,O,P,Q) [J >= 1 + E] ==> f64(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] ==> f57(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] ==> f50(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f57(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] ==> f44(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f50(A,C,D,E,J,L,N,O,P,Q) [Q >= 1] ==> f40(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f71(A,C,D,E,J,L,N,O,P,Q) [O >= 1 + N] ==> f37(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f118(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] ==> f31(A,C,D,E,J,L,N,O,P,Q) = 0 >= 1 + D + -1*J = f37(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && J >= 1 + D] ==> f24(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f31(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && J >= 1 + D] ==> f24(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f31(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D && P = 0] ==> f24(A,C,D,E,J,L,N,O,P,Q) = 0 >= 1 + D + -1*J = f37(A,C,D,E,J,L,N,O,0,Q) [J >= 1 + C] ==> f13(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f24(A,C,D,E,J,L,N,O,P,Q) * Step 12: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,C,D,E,J,L,N,O,P,Q) -> f13(0,2*D,D,4*D,J,L,N,O,P,Q) True (1,1) 1. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A,C,D,E,1 + J,0,N,O,P,Q) [C >= J] (?,1) 2. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [C1 >= 2 && C >= J] (?,1) 3. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [0 >= C1 && C >= J] (?,1) 4. f24(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 6. f37(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,Q) [N >= O] (?,1) 7. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && 0 >= Q] (?,1) 8. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && 0 >= Q] (?,1) 9. f44(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 12. f40(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,J,L,N,O,0,Q) [0 >= Q && P = 0] (?,1) 13. f64(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,2 + J,L,N,O,P,Q) [E >= J] (?,1) 14. f71(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,1 + J,L,N,O,P,Q) [C >= J] (?,1) 15. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,0,N,O,P,Q) [L = 0] (?,1) 16. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + L] (?,1) 17. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [L >= 1] (?,1) 18. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D >= J] (?,1) 19. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && D >= J] (?,1) 20. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && D >= J] (?,1) 21. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (?,1) 22. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (?,1) 23. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (?,1) 24. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (?,1) 25. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (?,1) 26. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (?,1) 27. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,0,N,O,P,Q) [L = 0] (?,1) 28. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [0 >= 1 + L] (?,1) 29. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [L >= 1] (?,1) 30. f118(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (0,1) 32. f91(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,1 + O,P,Q) [J >= 1 + D] (?,1) 33. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [J >= 1 + C] (?,1) 34. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && J >= 1 + C] (?,1) 35. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && J >= 1 + C] (?,1) 36. f64(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + E] (?,1) 37. f57(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] (?,1) 38. f50(A,C,D,E,J,L,N,O,P,Q) -> f57(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (?,1) 39. f44(A,C,D,E,J,L,N,O,P,Q) -> f50(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (?,1) 40. f40(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,J,L,N,O,P,Q) [Q >= 1] (?,1) 41. f37(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,J,L,N,O,P,Q) [O >= 1 + N] (?,1) 42. f31(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (2*P,1) 43. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && J >= 1 + D] (P,1) 44. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && J >= 1 + D] (P,1) 45. f24(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,0,Q) [J >= 1 + D && P = 0] (?,1) 46. f13(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + C] (1,1) Signature: {(f1,10) ;(f103,10) ;(f107,10) ;(f118,10) ;(f13,10) ;(f2,10) ;(f24,10) ;(f31,10) ;(f37,10) ;(f40,10) ;(f44,10) ;(f50,10) ;(f57,10) ;(f64,10) ;(f71,10) ;(f86,10) ;(f91,10) ;(f99,10)} Flow Graph: [0->{1,2,3,46},1->{1,2,3,46},2->{1,2,3,46},3->{1,2,3,46},4->{4,43,44,45},6->{7,8,12,40},7->{9,39},8->{9 ,39},9->{9,39},12->{13,36},13->{13,36},14->{14,33,34,35},15->{18,19,20,32},16->{18,19,20,32},17->{18,19,20 ,32},18->{21,22,23},19->{21,22,23},20->{21,22,23},21->{24,25,26},22->{24,25,26},23->{24,25,26},24->{27,28 ,29},25->{27,28,29},26->{27,28,29},27->{18,19,20,32},28->{18,19,20,32},29->{18,19,20,32},30->{30},32->{6,41} ,33->{15,16,17},34->{15,16,17},35->{15,16,17},36->{7,8,12,40},37->{7,8,12,40},38->{37},39->{38},40->{14,33 ,34,35},41->{30},42->{6,41},43->{42},44->{42},45->{6,41},46->{4,43,44,45}] Sizebounds: (< 0,0,A>, 0) (< 0,0,C>, 2*D) (< 0,0,D>, D) (< 0,0,E>, 4*D) (< 0,0,J>, J) (< 0,0,L>, L) (< 0,0,N>, N) (< 0,0,O>, O) (< 0,0,P>, P) (< 0,0,Q>, Q) (< 1,0,A>, ?) (< 1,0,C>, 2*D) (< 1,0,D>, D) (< 1,0,E>, 4*D) (< 1,0,J>, 1 + 2*D) (< 1,0,L>, 0) (< 1,0,N>, N) (< 1,0,O>, O) (< 1,0,P>, P) (< 1,0,Q>, Q) (< 2,0,A>, ?) (< 2,0,C>, 2*D) (< 2,0,D>, D) (< 2,0,E>, 4*D) (< 2,0,J>, 1 + 2*D) (< 2,0,L>, ?) (< 2,0,N>, N) (< 2,0,O>, O) (< 2,0,P>, P) (< 2,0,Q>, Q) (< 3,0,A>, ?) (< 3,0,C>, 2*D) (< 3,0,D>, D) (< 3,0,E>, 4*D) (< 3,0,J>, 1 + 2*D) (< 3,0,L>, ?) (< 3,0,N>, N) (< 3,0,O>, O) (< 3,0,P>, P) (< 3,0,Q>, Q) (< 4,0,A>, ?) (< 4,0,C>, 2*D) (< 4,0,D>, D) (< 4,0,E>, 4*D) (< 4,0,J>, 1 + D) (< 4,0,L>, ?) (< 4,0,N>, N) (< 4,0,O>, O) (< 4,0,P>, P) (< 4,0,Q>, Q) (< 6,0,A>, ?) (< 6,0,C>, 2*D) (< 6,0,D>, D) (< 6,0,E>, 4*D) (< 6,0,J>, ?) (< 6,0,L>, ?) (< 6,0,N>, N) (< 6,0,O>, N) (< 6,0,P>, P) (< 6,0,Q>, ?) (< 7,0,A>, ?) (< 7,0,C>, 2*D) (< 7,0,D>, D) (< 7,0,E>, 4*D) (< 7,0,J>, ?) (< 7,0,L>, ?) (< 7,0,N>, N) (< 7,0,O>, ?) (< 7,0,P>, P) (< 7,0,Q>, 0) (< 8,0,A>, ?) (< 8,0,C>, 2*D) (< 8,0,D>, D) (< 8,0,E>, 4*D) (< 8,0,J>, ?) (< 8,0,L>, ?) (< 8,0,N>, N) (< 8,0,O>, ?) (< 8,0,P>, P) (< 8,0,Q>, 0) (< 9,0,A>, ?) (< 9,0,C>, 2*D) (< 9,0,D>, D) (< 9,0,E>, 4*D) (< 9,0,J>, 1 + D) (< 9,0,L>, ?) (< 9,0,N>, N) (< 9,0,O>, ?) (< 9,0,P>, P) (< 9,0,Q>, 0) (<12,0,A>, ?) (<12,0,C>, 2*D) (<12,0,D>, D) (<12,0,E>, 4*D) (<12,0,J>, ?) (<12,0,L>, ?) (<12,0,N>, N) (<12,0,O>, ?) (<12,0,P>, 0) (<12,0,Q>, P) (<13,0,A>, ?) (<13,0,C>, 2*D) (<13,0,D>, D) (<13,0,E>, 4*D) (<13,0,J>, 2 + 4*D) (<13,0,L>, ?) (<13,0,N>, N) (<13,0,O>, ?) (<13,0,P>, 0) (<13,0,Q>, P) (<14,0,A>, ?) (<14,0,C>, 2*D) (<14,0,D>, D) (<14,0,E>, 4*D) (<14,0,J>, 1 + 2*D) (<14,0,L>, ?) (<14,0,N>, N) (<14,0,O>, ?) (<14,0,P>, P) (<14,0,Q>, ?) (<15,0,A>, ?) (<15,0,C>, 2*D) (<15,0,D>, D) (<15,0,E>, 4*D) (<15,0,J>, ?) (<15,0,L>, 0) (<15,0,N>, N) (<15,0,O>, ?) (<15,0,P>, P) (<15,0,Q>, ?) (<16,0,A>, ?) (<16,0,C>, 2*D) (<16,0,D>, D) (<16,0,E>, 4*D) (<16,0,J>, ?) (<16,0,L>, ?) (<16,0,N>, N) (<16,0,O>, ?) (<16,0,P>, P) (<16,0,Q>, ?) (<17,0,A>, ?) (<17,0,C>, 2*D) (<17,0,D>, D) (<17,0,E>, 4*D) (<17,0,J>, ?) (<17,0,L>, ?) (<17,0,N>, N) (<17,0,O>, ?) (<17,0,P>, P) (<17,0,Q>, ?) (<18,0,A>, ?) (<18,0,C>, 2*D) (<18,0,D>, D) (<18,0,E>, 4*D) (<18,0,J>, D) (<18,0,L>, ?) (<18,0,N>, N) (<18,0,O>, ?) (<18,0,P>, P) (<18,0,Q>, ?) (<19,0,A>, ?) (<19,0,C>, 2*D) (<19,0,D>, D) (<19,0,E>, 4*D) (<19,0,J>, D) (<19,0,L>, ?) (<19,0,N>, N) (<19,0,O>, ?) (<19,0,P>, P) (<19,0,Q>, ?) (<20,0,A>, ?) (<20,0,C>, 2*D) (<20,0,D>, D) (<20,0,E>, 4*D) (<20,0,J>, D) (<20,0,L>, ?) (<20,0,N>, N) (<20,0,O>, ?) (<20,0,P>, P) (<20,0,Q>, ?) (<21,0,A>, ?) (<21,0,C>, 2*D) (<21,0,D>, D) (<21,0,E>, 4*D) (<21,0,J>, D) (<21,0,L>, ?) (<21,0,N>, N) (<21,0,O>, ?) (<21,0,P>, P) (<21,0,Q>, ?) (<22,0,A>, ?) (<22,0,C>, 2*D) (<22,0,D>, D) (<22,0,E>, 4*D) (<22,0,J>, D) (<22,0,L>, ?) (<22,0,N>, N) (<22,0,O>, ?) (<22,0,P>, P) (<22,0,Q>, ?) (<23,0,A>, ?) (<23,0,C>, 2*D) (<23,0,D>, D) (<23,0,E>, 4*D) (<23,0,J>, D) (<23,0,L>, ?) (<23,0,N>, N) (<23,0,O>, ?) (<23,0,P>, P) (<23,0,Q>, ?) (<24,0,A>, ?) (<24,0,C>, 2*D) (<24,0,D>, D) (<24,0,E>, 4*D) (<24,0,J>, D) (<24,0,L>, ?) (<24,0,N>, N) (<24,0,O>, ?) (<24,0,P>, P) (<24,0,Q>, ?) (<25,0,A>, ?) (<25,0,C>, 2*D) (<25,0,D>, D) (<25,0,E>, 4*D) (<25,0,J>, D) (<25,0,L>, ?) (<25,0,N>, N) (<25,0,O>, ?) (<25,0,P>, P) (<25,0,Q>, ?) (<26,0,A>, ?) (<26,0,C>, 2*D) (<26,0,D>, D) (<26,0,E>, 4*D) (<26,0,J>, D) (<26,0,L>, ?) (<26,0,N>, N) (<26,0,O>, ?) (<26,0,P>, P) (<26,0,Q>, ?) (<27,0,A>, ?) (<27,0,C>, 2*D) (<27,0,D>, D) (<27,0,E>, 4*D) (<27,0,J>, D) (<27,0,L>, 0) (<27,0,N>, N) (<27,0,O>, ?) (<27,0,P>, P) (<27,0,Q>, ?) (<28,0,A>, ?) (<28,0,C>, 2*D) (<28,0,D>, D) (<28,0,E>, 4*D) (<28,0,J>, D) (<28,0,L>, ?) (<28,0,N>, N) (<28,0,O>, ?) (<28,0,P>, P) (<28,0,Q>, ?) (<29,0,A>, ?) (<29,0,C>, 2*D) (<29,0,D>, D) (<29,0,E>, 4*D) (<29,0,J>, D) (<29,0,L>, ?) (<29,0,N>, N) (<29,0,O>, ?) (<29,0,P>, P) (<29,0,Q>, ?) (<30,0,A>, ?) (<30,0,C>, 2*D) (<30,0,D>, D) (<30,0,E>, 4*D) (<30,0,J>, 1 + D) (<30,0,L>, ?) (<30,0,N>, N) (<30,0,O>, ?) (<30,0,P>, P) (<30,0,Q>, ?) (<32,0,A>, ?) (<32,0,C>, 2*D) (<32,0,D>, D) (<32,0,E>, 4*D) (<32,0,J>, ?) (<32,0,L>, ?) (<32,0,N>, N) (<32,0,O>, ?) (<32,0,P>, P) (<32,0,Q>, ?) (<33,0,A>, ?) (<33,0,C>, 2*D) (<33,0,D>, D) (<33,0,E>, 4*D) (<33,0,J>, ?) (<33,0,L>, ?) (<33,0,N>, N) (<33,0,O>, ?) (<33,0,P>, P) (<33,0,Q>, ?) (<34,0,A>, ?) (<34,0,C>, 2*D) (<34,0,D>, D) (<34,0,E>, 4*D) (<34,0,J>, ?) (<34,0,L>, ?) (<34,0,N>, N) (<34,0,O>, ?) (<34,0,P>, P) (<34,0,Q>, ?) (<35,0,A>, ?) (<35,0,C>, 2*D) (<35,0,D>, D) (<35,0,E>, 4*D) (<35,0,J>, ?) (<35,0,L>, ?) (<35,0,N>, N) (<35,0,O>, ?) (<35,0,P>, P) (<35,0,Q>, ?) (<36,0,A>, ?) (<36,0,C>, 2*D) (<36,0,D>, D) (<36,0,E>, 4*D) (<36,0,J>, ?) (<36,0,L>, ?) (<36,0,N>, N) (<36,0,O>, ?) (<36,0,P>, 0) (<36,0,Q>, P) (<37,0,A>, ?) (<37,0,C>, 2*D) (<37,0,D>, D) (<37,0,E>, 4*D) (<37,0,J>, ?) (<37,0,L>, ?) (<37,0,N>, N) (<37,0,O>, ?) (<37,0,P>, P) (<37,0,Q>, 0) (<38,0,A>, ?) (<38,0,C>, 2*D) (<38,0,D>, D) (<38,0,E>, 4*D) (<38,0,J>, ?) (<38,0,L>, ?) (<38,0,N>, N) (<38,0,O>, ?) (<38,0,P>, P) (<38,0,Q>, 0) (<39,0,A>, ?) (<39,0,C>, 2*D) (<39,0,D>, D) (<39,0,E>, 4*D) (<39,0,J>, ?) (<39,0,L>, ?) (<39,0,N>, N) (<39,0,O>, ?) (<39,0,P>, P) (<39,0,Q>, 0) (<40,0,A>, ?) (<40,0,C>, 2*D) (<40,0,D>, D) (<40,0,E>, 4*D) (<40,0,J>, ?) (<40,0,L>, ?) (<40,0,N>, N) (<40,0,O>, ?) (<40,0,P>, P) (<40,0,Q>, ?) (<41,0,A>, ?) (<41,0,C>, 2*D) (<41,0,D>, D) (<41,0,E>, 4*D) (<41,0,J>, ?) (<41,0,L>, ?) (<41,0,N>, N) (<41,0,O>, ?) (<41,0,P>, P) (<41,0,Q>, ?) (<42,0,A>, ?) (<42,0,C>, 2*D) (<42,0,D>, D) (<42,0,E>, 4*D) (<42,0,J>, 1 + 2*D + J) (<42,0,L>, ?) (<42,0,N>, N) (<42,0,O>, O) (<42,0,P>, P) (<42,0,Q>, Q) (<43,0,A>, ?) (<43,0,C>, 2*D) (<43,0,D>, D) (<43,0,E>, 4*D) (<43,0,J>, 1 + 2*D + J) (<43,0,L>, ?) (<43,0,N>, N) (<43,0,O>, O) (<43,0,P>, P) (<43,0,Q>, Q) (<44,0,A>, ?) (<44,0,C>, 2*D) (<44,0,D>, D) (<44,0,E>, 4*D) (<44,0,J>, 1 + 2*D + J) (<44,0,L>, ?) (<44,0,N>, N) (<44,0,O>, O) (<44,0,P>, P) (<44,0,Q>, Q) (<45,0,A>, ?) (<45,0,C>, 2*D) (<45,0,D>, D) (<45,0,E>, 4*D) (<45,0,J>, 1 + 2*D + J) (<45,0,L>, ?) (<45,0,N>, N) (<45,0,O>, O) (<45,0,P>, 0) (<45,0,Q>, Q) (<46,0,A>, ?) (<46,0,C>, 2*D) (<46,0,D>, D) (<46,0,E>, 4*D) (<46,0,J>, 1 + 2*D + J) (<46,0,L>, ?) (<46,0,N>, N) (<46,0,O>, O) (<46,0,P>, P) (<46,0,Q>, Q) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f103) = x3 + -1*x5 p(f107) = x3 + -1*x5 p(f118) = 1 + x3 + -1*x5 p(f13) = 0 p(f2) = 0 p(f24) = 0 p(f31) = 0 p(f37) = 1 + x3 + -1*x5 p(f40) = 1 + x3 + -1*x5 p(f44) = 1 + x3 + -1*x5 p(f50) = 1 + x3 + -1*x5 p(f57) = 1 + x3 + -1*x5 p(f64) = 1 + x3 + -1*x5 p(f71) = 1 + x3 + -1*x5 p(f86) = 1 + x3 + -1*x5 p(f91) = 1 + x3 + -1*x5 p(f99) = x3 + -1*x5 The following rules are strictly oriented: [0 >= 1 + D1 && D >= J] ==> f91(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J > D + -1*J = f99(A,C,D,E,J,B1,N,O,P,Q) [D >= J] ==> f118(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J > D + -1*J = f118(A,C,D,E,1 + J,L,N,O,P,Q) The following rules are weakly oriented: True ==> f2(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f13(0,2*D,D,4*D,J,L,N,O,P,Q) [C >= J] ==> f13(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f13(A,C,D,E,1 + J,0,N,O,P,Q) [C1 >= 2 && C >= J] ==> f13(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [0 >= C1 && C >= J] ==> f13(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [D >= J] ==> f24(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f24(A,C,D,E,1 + J,L,N,O,P,Q) [N >= O] ==> f37(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f40(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && 0 >= Q] ==> f40(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f44(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && 0 >= Q] ==> f40(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f44(A,C,D,E,J,L,N,O,P,Q) [D >= J] ==> f44(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= D + -1*J = f44(A,C,D,E,1 + J,L,N,O,P,Q) [0 >= Q && P = 0] ==> f40(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f64(A,C,D,E,J,L,N,O,0,Q) [E >= J] ==> f64(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= -1 + D + -1*J = f64(A,C,D,E,2 + J,L,N,O,P,Q) [C >= J] ==> f71(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= D + -1*J = f71(A,C,D,E,1 + J,L,N,O,P,Q) [L = 0] ==> f86(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f91(A,C,D,E,J,0,N,O,P,Q) [0 >= 1 + L] ==> f86(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f91(A,C,D,E,J,L,N,O,P,Q) [L >= 1] ==> f86(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f91(A,C,D,E,J,L,N,O,P,Q) [D >= J] ==> f91(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= D + -1*J = f99(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && D >= J] ==> f91(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= D + -1*J = f99(A,C,D,E,J,B1,N,O,P,Q) [L = 0] ==> f99(A,C,D,E,J,L,N,O,P,Q) = D + -1*J >= D + -1*J = f103(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] ==> f99(A,C,D,E,J,L,N,O,P,Q) = D + -1*J >= D + -1*J = f103(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] ==> f99(A,C,D,E,J,L,N,O,P,Q) = D + -1*J >= D + -1*J = f103(A,C,D,E,J,B1,N,O,P,Q) [L = 0] ==> f103(A,C,D,E,J,L,N,O,P,Q) = D + -1*J >= D + -1*J = f107(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] ==> f103(A,C,D,E,J,L,N,O,P,Q) = D + -1*J >= D + -1*J = f107(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] ==> f103(A,C,D,E,J,L,N,O,P,Q) = D + -1*J >= D + -1*J = f107(A,C,D,E,J,B1,N,O,P,Q) [L = 0] ==> f107(A,C,D,E,J,L,N,O,P,Q) = D + -1*J >= D + -1*J = f91(A,C,D,E,1 + J,0,N,O,P,Q) [0 >= 1 + L] ==> f107(A,C,D,E,J,L,N,O,P,Q) = D + -1*J >= D + -1*J = f91(A,C,D,E,1 + J,L,N,O,P,Q) [L >= 1] ==> f107(A,C,D,E,J,L,N,O,P,Q) = D + -1*J >= D + -1*J = f91(A,C,D,E,1 + J,L,N,O,P,Q) [J >= 1 + D] ==> f91(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f37(A,C,D,E,J,L,N,1 + O,P,Q) [J >= 1 + C] ==> f71(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f86(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && J >= 1 + C] ==> f71(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f86(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && J >= 1 + C] ==> f71(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f86(A,C,D,E,J,B1,N,O,P,Q) [J >= 1 + E] ==> f64(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] ==> f57(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] ==> f50(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f57(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] ==> f44(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f50(A,C,D,E,J,L,N,O,P,Q) [Q >= 1] ==> f40(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f71(A,C,D,E,J,L,N,O,P,Q) [O >= 1 + N] ==> f37(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f118(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] ==> f31(A,C,D,E,J,L,N,O,P,Q) = 0 >= 1 + D + -1*J = f37(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && J >= 1 + D] ==> f24(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f31(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && J >= 1 + D] ==> f24(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f31(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D && P = 0] ==> f24(A,C,D,E,J,L,N,O,P,Q) = 0 >= 1 + D + -1*J = f37(A,C,D,E,J,L,N,O,0,Q) [J >= 1 + C] ==> f13(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f24(A,C,D,E,J,L,N,O,P,Q) * Step 13: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,C,D,E,J,L,N,O,P,Q) -> f13(0,2*D,D,4*D,J,L,N,O,P,Q) True (1,1) 1. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A,C,D,E,1 + J,0,N,O,P,Q) [C >= J] (?,1) 2. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [C1 >= 2 && C >= J] (?,1) 3. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [0 >= C1 && C >= J] (?,1) 4. f24(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 6. f37(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,Q) [N >= O] (?,1) 7. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && 0 >= Q] (?,1) 8. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && 0 >= Q] (?,1) 9. f44(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 12. f40(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,J,L,N,O,0,Q) [0 >= Q && P = 0] (?,1) 13. f64(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,2 + J,L,N,O,P,Q) [E >= J] (?,1) 14. f71(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,1 + J,L,N,O,P,Q) [C >= J] (?,1) 15. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,0,N,O,P,Q) [L = 0] (?,1) 16. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + L] (?,1) 17. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [L >= 1] (?,1) 18. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D >= J] (?,1) 19. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && D >= J] (0,1) 20. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && D >= J] (?,1) 21. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (?,1) 22. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (?,1) 23. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (?,1) 24. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (?,1) 25. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (?,1) 26. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (?,1) 27. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,0,N,O,P,Q) [L = 0] (?,1) 28. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [0 >= 1 + L] (?,1) 29. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [L >= 1] (?,1) 30. f118(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (0,1) 32. f91(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,1 + O,P,Q) [J >= 1 + D] (?,1) 33. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [J >= 1 + C] (?,1) 34. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && J >= 1 + C] (?,1) 35. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && J >= 1 + C] (?,1) 36. f64(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + E] (?,1) 37. f57(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] (?,1) 38. f50(A,C,D,E,J,L,N,O,P,Q) -> f57(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (?,1) 39. f44(A,C,D,E,J,L,N,O,P,Q) -> f50(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (?,1) 40. f40(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,J,L,N,O,P,Q) [Q >= 1] (?,1) 41. f37(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,J,L,N,O,P,Q) [O >= 1 + N] (?,1) 42. f31(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (2*P,1) 43. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && J >= 1 + D] (P,1) 44. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && J >= 1 + D] (P,1) 45. f24(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,0,Q) [J >= 1 + D && P = 0] (?,1) 46. f13(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + C] (1,1) Signature: {(f1,10) ;(f103,10) ;(f107,10) ;(f118,10) ;(f13,10) ;(f2,10) ;(f24,10) ;(f31,10) ;(f37,10) ;(f40,10) ;(f44,10) ;(f50,10) ;(f57,10) ;(f64,10) ;(f71,10) ;(f86,10) ;(f91,10) ;(f99,10)} Flow Graph: [0->{1,2,3,46},1->{1,2,3,46},2->{1,2,3,46},3->{1,2,3,46},4->{4,43,44,45},6->{7,8,12,40},7->{9,39},8->{9 ,39},9->{9,39},12->{13,36},13->{13,36},14->{14,33,34,35},15->{18,19,20,32},16->{18,19,20,32},17->{18,19,20 ,32},18->{21,22,23},19->{21,22,23},20->{21,22,23},21->{24,25,26},22->{24,25,26},23->{24,25,26},24->{27,28 ,29},25->{27,28,29},26->{27,28,29},27->{18,19,20,32},28->{18,19,20,32},29->{18,19,20,32},30->{30},32->{6,41} ,33->{15,16,17},34->{15,16,17},35->{15,16,17},36->{7,8,12,40},37->{7,8,12,40},38->{37},39->{38},40->{14,33 ,34,35},41->{30},42->{6,41},43->{42},44->{42},45->{6,41},46->{4,43,44,45}] Sizebounds: (< 0,0,A>, 0) (< 0,0,C>, 2*D) (< 0,0,D>, D) (< 0,0,E>, 4*D) (< 0,0,J>, J) (< 0,0,L>, L) (< 0,0,N>, N) (< 0,0,O>, O) (< 0,0,P>, P) (< 0,0,Q>, Q) (< 1,0,A>, ?) (< 1,0,C>, 2*D) (< 1,0,D>, D) (< 1,0,E>, 4*D) (< 1,0,J>, 1 + 2*D) (< 1,0,L>, 0) (< 1,0,N>, N) (< 1,0,O>, O) (< 1,0,P>, P) (< 1,0,Q>, Q) (< 2,0,A>, ?) (< 2,0,C>, 2*D) (< 2,0,D>, D) (< 2,0,E>, 4*D) (< 2,0,J>, 1 + 2*D) (< 2,0,L>, ?) (< 2,0,N>, N) (< 2,0,O>, O) (< 2,0,P>, P) (< 2,0,Q>, Q) (< 3,0,A>, ?) (< 3,0,C>, 2*D) (< 3,0,D>, D) (< 3,0,E>, 4*D) (< 3,0,J>, 1 + 2*D) (< 3,0,L>, ?) (< 3,0,N>, N) (< 3,0,O>, O) (< 3,0,P>, P) (< 3,0,Q>, Q) (< 4,0,A>, ?) (< 4,0,C>, 2*D) (< 4,0,D>, D) (< 4,0,E>, 4*D) (< 4,0,J>, 1 + D) (< 4,0,L>, ?) (< 4,0,N>, N) (< 4,0,O>, O) (< 4,0,P>, P) (< 4,0,Q>, Q) (< 6,0,A>, ?) (< 6,0,C>, 2*D) (< 6,0,D>, D) (< 6,0,E>, 4*D) (< 6,0,J>, ?) (< 6,0,L>, ?) (< 6,0,N>, N) (< 6,0,O>, N) (< 6,0,P>, P) (< 6,0,Q>, ?) (< 7,0,A>, ?) (< 7,0,C>, 2*D) (< 7,0,D>, D) (< 7,0,E>, 4*D) (< 7,0,J>, ?) (< 7,0,L>, ?) (< 7,0,N>, N) (< 7,0,O>, ?) (< 7,0,P>, P) (< 7,0,Q>, 0) (< 8,0,A>, ?) (< 8,0,C>, 2*D) (< 8,0,D>, D) (< 8,0,E>, 4*D) (< 8,0,J>, ?) (< 8,0,L>, ?) (< 8,0,N>, N) (< 8,0,O>, ?) (< 8,0,P>, P) (< 8,0,Q>, 0) (< 9,0,A>, ?) (< 9,0,C>, 2*D) (< 9,0,D>, D) (< 9,0,E>, 4*D) (< 9,0,J>, 1 + D) (< 9,0,L>, ?) (< 9,0,N>, N) (< 9,0,O>, ?) (< 9,0,P>, P) (< 9,0,Q>, 0) (<12,0,A>, ?) (<12,0,C>, 2*D) (<12,0,D>, D) (<12,0,E>, 4*D) (<12,0,J>, ?) (<12,0,L>, ?) (<12,0,N>, N) (<12,0,O>, ?) (<12,0,P>, 0) (<12,0,Q>, P) (<13,0,A>, ?) (<13,0,C>, 2*D) (<13,0,D>, D) (<13,0,E>, 4*D) (<13,0,J>, 2 + 4*D) (<13,0,L>, ?) (<13,0,N>, N) (<13,0,O>, ?) (<13,0,P>, 0) (<13,0,Q>, P) (<14,0,A>, ?) (<14,0,C>, 2*D) (<14,0,D>, D) (<14,0,E>, 4*D) (<14,0,J>, 1 + 2*D) (<14,0,L>, ?) (<14,0,N>, N) (<14,0,O>, ?) (<14,0,P>, P) (<14,0,Q>, ?) (<15,0,A>, ?) (<15,0,C>, 2*D) (<15,0,D>, D) (<15,0,E>, 4*D) (<15,0,J>, ?) (<15,0,L>, 0) (<15,0,N>, N) (<15,0,O>, ?) (<15,0,P>, P) (<15,0,Q>, ?) (<16,0,A>, ?) (<16,0,C>, 2*D) (<16,0,D>, D) (<16,0,E>, 4*D) (<16,0,J>, ?) (<16,0,L>, ?) (<16,0,N>, N) (<16,0,O>, ?) (<16,0,P>, P) (<16,0,Q>, ?) (<17,0,A>, ?) (<17,0,C>, 2*D) (<17,0,D>, D) (<17,0,E>, 4*D) (<17,0,J>, ?) (<17,0,L>, ?) (<17,0,N>, N) (<17,0,O>, ?) (<17,0,P>, P) (<17,0,Q>, ?) (<18,0,A>, ?) (<18,0,C>, 2*D) (<18,0,D>, D) (<18,0,E>, 4*D) (<18,0,J>, D) (<18,0,L>, ?) (<18,0,N>, N) (<18,0,O>, ?) (<18,0,P>, P) (<18,0,Q>, ?) (<19,0,A>, ?) (<19,0,C>, 2*D) (<19,0,D>, D) (<19,0,E>, 4*D) (<19,0,J>, D) (<19,0,L>, ?) (<19,0,N>, N) (<19,0,O>, ?) (<19,0,P>, P) (<19,0,Q>, ?) (<20,0,A>, ?) (<20,0,C>, 2*D) (<20,0,D>, D) (<20,0,E>, 4*D) (<20,0,J>, D) (<20,0,L>, ?) (<20,0,N>, N) (<20,0,O>, ?) (<20,0,P>, P) (<20,0,Q>, ?) (<21,0,A>, ?) (<21,0,C>, 2*D) (<21,0,D>, D) (<21,0,E>, 4*D) (<21,0,J>, D) (<21,0,L>, ?) (<21,0,N>, N) (<21,0,O>, ?) (<21,0,P>, P) (<21,0,Q>, ?) (<22,0,A>, ?) (<22,0,C>, 2*D) (<22,0,D>, D) (<22,0,E>, 4*D) (<22,0,J>, D) (<22,0,L>, ?) (<22,0,N>, N) (<22,0,O>, ?) (<22,0,P>, P) (<22,0,Q>, ?) (<23,0,A>, ?) (<23,0,C>, 2*D) (<23,0,D>, D) (<23,0,E>, 4*D) (<23,0,J>, D) (<23,0,L>, ?) (<23,0,N>, N) (<23,0,O>, ?) (<23,0,P>, P) (<23,0,Q>, ?) (<24,0,A>, ?) (<24,0,C>, 2*D) (<24,0,D>, D) (<24,0,E>, 4*D) (<24,0,J>, D) (<24,0,L>, ?) (<24,0,N>, N) (<24,0,O>, ?) (<24,0,P>, P) (<24,0,Q>, ?) (<25,0,A>, ?) (<25,0,C>, 2*D) (<25,0,D>, D) (<25,0,E>, 4*D) (<25,0,J>, D) (<25,0,L>, ?) (<25,0,N>, N) (<25,0,O>, ?) (<25,0,P>, P) (<25,0,Q>, ?) (<26,0,A>, ?) (<26,0,C>, 2*D) (<26,0,D>, D) (<26,0,E>, 4*D) (<26,0,J>, D) (<26,0,L>, ?) (<26,0,N>, N) (<26,0,O>, ?) (<26,0,P>, P) (<26,0,Q>, ?) (<27,0,A>, ?) (<27,0,C>, 2*D) (<27,0,D>, D) (<27,0,E>, 4*D) (<27,0,J>, D) (<27,0,L>, 0) (<27,0,N>, N) (<27,0,O>, ?) (<27,0,P>, P) (<27,0,Q>, ?) (<28,0,A>, ?) (<28,0,C>, 2*D) (<28,0,D>, D) (<28,0,E>, 4*D) (<28,0,J>, D) (<28,0,L>, ?) (<28,0,N>, N) (<28,0,O>, ?) (<28,0,P>, P) (<28,0,Q>, ?) (<29,0,A>, ?) (<29,0,C>, 2*D) (<29,0,D>, D) (<29,0,E>, 4*D) (<29,0,J>, D) (<29,0,L>, ?) (<29,0,N>, N) (<29,0,O>, ?) (<29,0,P>, P) (<29,0,Q>, ?) (<30,0,A>, ?) (<30,0,C>, 2*D) (<30,0,D>, D) (<30,0,E>, 4*D) (<30,0,J>, 1 + D) (<30,0,L>, ?) (<30,0,N>, N) (<30,0,O>, ?) (<30,0,P>, P) (<30,0,Q>, ?) (<32,0,A>, ?) (<32,0,C>, 2*D) (<32,0,D>, D) (<32,0,E>, 4*D) (<32,0,J>, ?) (<32,0,L>, ?) (<32,0,N>, N) (<32,0,O>, ?) (<32,0,P>, P) (<32,0,Q>, ?) (<33,0,A>, ?) (<33,0,C>, 2*D) (<33,0,D>, D) (<33,0,E>, 4*D) (<33,0,J>, ?) (<33,0,L>, ?) (<33,0,N>, N) (<33,0,O>, ?) (<33,0,P>, P) (<33,0,Q>, ?) (<34,0,A>, ?) (<34,0,C>, 2*D) (<34,0,D>, D) (<34,0,E>, 4*D) (<34,0,J>, ?) (<34,0,L>, ?) (<34,0,N>, N) (<34,0,O>, ?) (<34,0,P>, P) (<34,0,Q>, ?) (<35,0,A>, ?) (<35,0,C>, 2*D) (<35,0,D>, D) (<35,0,E>, 4*D) (<35,0,J>, ?) (<35,0,L>, ?) (<35,0,N>, N) (<35,0,O>, ?) (<35,0,P>, P) (<35,0,Q>, ?) (<36,0,A>, ?) (<36,0,C>, 2*D) (<36,0,D>, D) (<36,0,E>, 4*D) (<36,0,J>, ?) (<36,0,L>, ?) (<36,0,N>, N) (<36,0,O>, ?) (<36,0,P>, 0) (<36,0,Q>, P) (<37,0,A>, ?) (<37,0,C>, 2*D) (<37,0,D>, D) (<37,0,E>, 4*D) (<37,0,J>, ?) (<37,0,L>, ?) (<37,0,N>, N) (<37,0,O>, ?) (<37,0,P>, P) (<37,0,Q>, 0) (<38,0,A>, ?) (<38,0,C>, 2*D) (<38,0,D>, D) (<38,0,E>, 4*D) (<38,0,J>, ?) (<38,0,L>, ?) (<38,0,N>, N) (<38,0,O>, ?) (<38,0,P>, P) (<38,0,Q>, 0) (<39,0,A>, ?) (<39,0,C>, 2*D) (<39,0,D>, D) (<39,0,E>, 4*D) (<39,0,J>, ?) (<39,0,L>, ?) (<39,0,N>, N) (<39,0,O>, ?) (<39,0,P>, P) (<39,0,Q>, 0) (<40,0,A>, ?) (<40,0,C>, 2*D) (<40,0,D>, D) (<40,0,E>, 4*D) (<40,0,J>, ?) (<40,0,L>, ?) (<40,0,N>, N) (<40,0,O>, ?) (<40,0,P>, P) (<40,0,Q>, ?) (<41,0,A>, ?) (<41,0,C>, 2*D) (<41,0,D>, D) (<41,0,E>, 4*D) (<41,0,J>, ?) (<41,0,L>, ?) (<41,0,N>, N) (<41,0,O>, ?) (<41,0,P>, P) (<41,0,Q>, ?) (<42,0,A>, ?) (<42,0,C>, 2*D) (<42,0,D>, D) (<42,0,E>, 4*D) (<42,0,J>, 1 + 2*D + J) (<42,0,L>, ?) (<42,0,N>, N) (<42,0,O>, O) (<42,0,P>, P) (<42,0,Q>, Q) (<43,0,A>, ?) (<43,0,C>, 2*D) (<43,0,D>, D) (<43,0,E>, 4*D) (<43,0,J>, 1 + 2*D + J) (<43,0,L>, ?) (<43,0,N>, N) (<43,0,O>, O) (<43,0,P>, P) (<43,0,Q>, Q) (<44,0,A>, ?) (<44,0,C>, 2*D) (<44,0,D>, D) (<44,0,E>, 4*D) (<44,0,J>, 1 + 2*D + J) (<44,0,L>, ?) (<44,0,N>, N) (<44,0,O>, O) (<44,0,P>, P) (<44,0,Q>, Q) (<45,0,A>, ?) (<45,0,C>, 2*D) (<45,0,D>, D) (<45,0,E>, 4*D) (<45,0,J>, 1 + 2*D + J) (<45,0,L>, ?) (<45,0,N>, N) (<45,0,O>, O) (<45,0,P>, 0) (<45,0,Q>, Q) (<46,0,A>, ?) (<46,0,C>, 2*D) (<46,0,D>, D) (<46,0,E>, 4*D) (<46,0,J>, 1 + 2*D + J) (<46,0,L>, ?) (<46,0,N>, N) (<46,0,O>, O) (<46,0,P>, P) (<46,0,Q>, Q) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f103) = x3 + -1*x5 p(f107) = x3 + -1*x5 p(f118) = 1 + x3 + -1*x5 p(f13) = 0 p(f2) = 0 p(f24) = 0 p(f31) = 0 p(f37) = 1 + x3 + -1*x5 p(f40) = 1 + x3 + -1*x5 p(f44) = 1 + x3 + -1*x5 p(f50) = 1 + x3 + -1*x5 p(f57) = 1 + x3 + -1*x5 p(f64) = 1 + x3 + -1*x5 p(f71) = 1 + x3 + -1*x5 p(f86) = 1 + x3 + -1*x5 p(f91) = 1 + x3 + -1*x5 p(f99) = x3 + -1*x5 The following rules are strictly oriented: [0 >= 1 + D1 && D >= J] ==> f91(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J > D + -1*J = f99(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && D >= J] ==> f91(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J > D + -1*J = f99(A,C,D,E,J,B1,N,O,P,Q) [D >= J] ==> f118(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J > D + -1*J = f118(A,C,D,E,1 + J,L,N,O,P,Q) The following rules are weakly oriented: True ==> f2(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f13(0,2*D,D,4*D,J,L,N,O,P,Q) [C >= J] ==> f13(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f13(A,C,D,E,1 + J,0,N,O,P,Q) [C1 >= 2 && C >= J] ==> f13(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [0 >= C1 && C >= J] ==> f13(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [D >= J] ==> f24(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f24(A,C,D,E,1 + J,L,N,O,P,Q) [N >= O] ==> f37(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f40(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && 0 >= Q] ==> f40(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f44(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && 0 >= Q] ==> f40(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f44(A,C,D,E,J,L,N,O,P,Q) [D >= J] ==> f44(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= D + -1*J = f44(A,C,D,E,1 + J,L,N,O,P,Q) [0 >= Q && P = 0] ==> f40(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f64(A,C,D,E,J,L,N,O,0,Q) [E >= J] ==> f64(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= -1 + D + -1*J = f64(A,C,D,E,2 + J,L,N,O,P,Q) [C >= J] ==> f71(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= D + -1*J = f71(A,C,D,E,1 + J,L,N,O,P,Q) [L = 0] ==> f86(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f91(A,C,D,E,J,0,N,O,P,Q) [0 >= 1 + L] ==> f86(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f91(A,C,D,E,J,L,N,O,P,Q) [L >= 1] ==> f86(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f91(A,C,D,E,J,L,N,O,P,Q) [D >= J] ==> f91(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= D + -1*J = f99(A,C,D,E,J,B1,N,O,P,Q) [L = 0] ==> f99(A,C,D,E,J,L,N,O,P,Q) = D + -1*J >= D + -1*J = f103(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] ==> f99(A,C,D,E,J,L,N,O,P,Q) = D + -1*J >= D + -1*J = f103(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] ==> f99(A,C,D,E,J,L,N,O,P,Q) = D + -1*J >= D + -1*J = f103(A,C,D,E,J,B1,N,O,P,Q) [L = 0] ==> f103(A,C,D,E,J,L,N,O,P,Q) = D + -1*J >= D + -1*J = f107(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] ==> f103(A,C,D,E,J,L,N,O,P,Q) = D + -1*J >= D + -1*J = f107(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] ==> f103(A,C,D,E,J,L,N,O,P,Q) = D + -1*J >= D + -1*J = f107(A,C,D,E,J,B1,N,O,P,Q) [L = 0] ==> f107(A,C,D,E,J,L,N,O,P,Q) = D + -1*J >= D + -1*J = f91(A,C,D,E,1 + J,0,N,O,P,Q) [0 >= 1 + L] ==> f107(A,C,D,E,J,L,N,O,P,Q) = D + -1*J >= D + -1*J = f91(A,C,D,E,1 + J,L,N,O,P,Q) [L >= 1] ==> f107(A,C,D,E,J,L,N,O,P,Q) = D + -1*J >= D + -1*J = f91(A,C,D,E,1 + J,L,N,O,P,Q) [J >= 1 + D] ==> f91(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f37(A,C,D,E,J,L,N,1 + O,P,Q) [J >= 1 + C] ==> f71(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f86(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && J >= 1 + C] ==> f71(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f86(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && J >= 1 + C] ==> f71(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f86(A,C,D,E,J,B1,N,O,P,Q) [J >= 1 + E] ==> f64(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] ==> f57(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] ==> f50(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f57(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] ==> f44(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f50(A,C,D,E,J,L,N,O,P,Q) [Q >= 1] ==> f40(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f71(A,C,D,E,J,L,N,O,P,Q) [O >= 1 + N] ==> f37(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f118(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] ==> f31(A,C,D,E,J,L,N,O,P,Q) = 0 >= 1 + D + -1*J = f37(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && J >= 1 + D] ==> f24(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f31(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && J >= 1 + D] ==> f24(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f31(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D && P = 0] ==> f24(A,C,D,E,J,L,N,O,P,Q) = 0 >= 1 + D + -1*J = f37(A,C,D,E,J,L,N,O,0,Q) [J >= 1 + C] ==> f13(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f24(A,C,D,E,J,L,N,O,P,Q) * Step 14: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,C,D,E,J,L,N,O,P,Q) -> f13(0,2*D,D,4*D,J,L,N,O,P,Q) True (1,1) 1. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A,C,D,E,1 + J,0,N,O,P,Q) [C >= J] (?,1) 2. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [C1 >= 2 && C >= J] (?,1) 3. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [0 >= C1 && C >= J] (?,1) 4. f24(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 6. f37(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,Q) [N >= O] (?,1) 7. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && 0 >= Q] (?,1) 8. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && 0 >= Q] (?,1) 9. f44(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 12. f40(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,J,L,N,O,0,Q) [0 >= Q && P = 0] (?,1) 13. f64(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,2 + J,L,N,O,P,Q) [E >= J] (?,1) 14. f71(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,1 + J,L,N,O,P,Q) [C >= J] (?,1) 15. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,0,N,O,P,Q) [L = 0] (?,1) 16. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + L] (?,1) 17. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [L >= 1] (?,1) 18. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D >= J] (?,1) 19. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && D >= J] (0,1) 20. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && D >= J] (0,1) 21. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (?,1) 22. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (?,1) 23. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (?,1) 24. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (?,1) 25. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (?,1) 26. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (?,1) 27. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,0,N,O,P,Q) [L = 0] (?,1) 28. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [0 >= 1 + L] (?,1) 29. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [L >= 1] (?,1) 30. f118(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (0,1) 32. f91(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,1 + O,P,Q) [J >= 1 + D] (?,1) 33. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [J >= 1 + C] (?,1) 34. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && J >= 1 + C] (?,1) 35. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && J >= 1 + C] (?,1) 36. f64(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + E] (?,1) 37. f57(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] (?,1) 38. f50(A,C,D,E,J,L,N,O,P,Q) -> f57(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (?,1) 39. f44(A,C,D,E,J,L,N,O,P,Q) -> f50(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (?,1) 40. f40(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,J,L,N,O,P,Q) [Q >= 1] (?,1) 41. f37(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,J,L,N,O,P,Q) [O >= 1 + N] (?,1) 42. f31(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (2*P,1) 43. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && J >= 1 + D] (P,1) 44. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && J >= 1 + D] (P,1) 45. f24(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,0,Q) [J >= 1 + D && P = 0] (?,1) 46. f13(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + C] (1,1) Signature: {(f1,10) ;(f103,10) ;(f107,10) ;(f118,10) ;(f13,10) ;(f2,10) ;(f24,10) ;(f31,10) ;(f37,10) ;(f40,10) ;(f44,10) ;(f50,10) ;(f57,10) ;(f64,10) ;(f71,10) ;(f86,10) ;(f91,10) ;(f99,10)} Flow Graph: [0->{1,2,3,46},1->{1,2,3,46},2->{1,2,3,46},3->{1,2,3,46},4->{4,43,44,45},6->{7,8,12,40},7->{9,39},8->{9 ,39},9->{9,39},12->{13,36},13->{13,36},14->{14,33,34,35},15->{18,19,20,32},16->{18,19,20,32},17->{18,19,20 ,32},18->{21,22,23},19->{21,22,23},20->{21,22,23},21->{24,25,26},22->{24,25,26},23->{24,25,26},24->{27,28 ,29},25->{27,28,29},26->{27,28,29},27->{18,19,20,32},28->{18,19,20,32},29->{18,19,20,32},30->{30},32->{6,41} ,33->{15,16,17},34->{15,16,17},35->{15,16,17},36->{7,8,12,40},37->{7,8,12,40},38->{37},39->{38},40->{14,33 ,34,35},41->{30},42->{6,41},43->{42},44->{42},45->{6,41},46->{4,43,44,45}] Sizebounds: (< 0,0,A>, 0) (< 0,0,C>, 2*D) (< 0,0,D>, D) (< 0,0,E>, 4*D) (< 0,0,J>, J) (< 0,0,L>, L) (< 0,0,N>, N) (< 0,0,O>, O) (< 0,0,P>, P) (< 0,0,Q>, Q) (< 1,0,A>, ?) (< 1,0,C>, 2*D) (< 1,0,D>, D) (< 1,0,E>, 4*D) (< 1,0,J>, 1 + 2*D) (< 1,0,L>, 0) (< 1,0,N>, N) (< 1,0,O>, O) (< 1,0,P>, P) (< 1,0,Q>, Q) (< 2,0,A>, ?) (< 2,0,C>, 2*D) (< 2,0,D>, D) (< 2,0,E>, 4*D) (< 2,0,J>, 1 + 2*D) (< 2,0,L>, ?) (< 2,0,N>, N) (< 2,0,O>, O) (< 2,0,P>, P) (< 2,0,Q>, Q) (< 3,0,A>, ?) (< 3,0,C>, 2*D) (< 3,0,D>, D) (< 3,0,E>, 4*D) (< 3,0,J>, 1 + 2*D) (< 3,0,L>, ?) (< 3,0,N>, N) (< 3,0,O>, O) (< 3,0,P>, P) (< 3,0,Q>, Q) (< 4,0,A>, ?) (< 4,0,C>, 2*D) (< 4,0,D>, D) (< 4,0,E>, 4*D) (< 4,0,J>, 1 + D) (< 4,0,L>, ?) (< 4,0,N>, N) (< 4,0,O>, O) (< 4,0,P>, P) (< 4,0,Q>, Q) (< 6,0,A>, ?) (< 6,0,C>, 2*D) (< 6,0,D>, D) (< 6,0,E>, 4*D) (< 6,0,J>, ?) (< 6,0,L>, ?) (< 6,0,N>, N) (< 6,0,O>, N) (< 6,0,P>, P) (< 6,0,Q>, ?) (< 7,0,A>, ?) (< 7,0,C>, 2*D) (< 7,0,D>, D) (< 7,0,E>, 4*D) (< 7,0,J>, ?) (< 7,0,L>, ?) (< 7,0,N>, N) (< 7,0,O>, ?) (< 7,0,P>, P) (< 7,0,Q>, 0) (< 8,0,A>, ?) (< 8,0,C>, 2*D) (< 8,0,D>, D) (< 8,0,E>, 4*D) (< 8,0,J>, ?) (< 8,0,L>, ?) (< 8,0,N>, N) (< 8,0,O>, ?) (< 8,0,P>, P) (< 8,0,Q>, 0) (< 9,0,A>, ?) (< 9,0,C>, 2*D) (< 9,0,D>, D) (< 9,0,E>, 4*D) (< 9,0,J>, 1 + D) (< 9,0,L>, ?) (< 9,0,N>, N) (< 9,0,O>, ?) (< 9,0,P>, P) (< 9,0,Q>, 0) (<12,0,A>, ?) (<12,0,C>, 2*D) (<12,0,D>, D) (<12,0,E>, 4*D) (<12,0,J>, ?) (<12,0,L>, ?) (<12,0,N>, N) (<12,0,O>, ?) (<12,0,P>, 0) (<12,0,Q>, P) (<13,0,A>, ?) (<13,0,C>, 2*D) (<13,0,D>, D) (<13,0,E>, 4*D) (<13,0,J>, 2 + 4*D) (<13,0,L>, ?) (<13,0,N>, N) (<13,0,O>, ?) (<13,0,P>, 0) (<13,0,Q>, P) (<14,0,A>, ?) (<14,0,C>, 2*D) (<14,0,D>, D) (<14,0,E>, 4*D) (<14,0,J>, 1 + 2*D) (<14,0,L>, ?) (<14,0,N>, N) (<14,0,O>, ?) (<14,0,P>, P) (<14,0,Q>, ?) (<15,0,A>, ?) (<15,0,C>, 2*D) (<15,0,D>, D) (<15,0,E>, 4*D) (<15,0,J>, ?) (<15,0,L>, 0) (<15,0,N>, N) (<15,0,O>, ?) (<15,0,P>, P) (<15,0,Q>, ?) (<16,0,A>, ?) (<16,0,C>, 2*D) (<16,0,D>, D) (<16,0,E>, 4*D) (<16,0,J>, ?) (<16,0,L>, ?) (<16,0,N>, N) (<16,0,O>, ?) (<16,0,P>, P) (<16,0,Q>, ?) (<17,0,A>, ?) (<17,0,C>, 2*D) (<17,0,D>, D) (<17,0,E>, 4*D) (<17,0,J>, ?) (<17,0,L>, ?) (<17,0,N>, N) (<17,0,O>, ?) (<17,0,P>, P) (<17,0,Q>, ?) (<18,0,A>, ?) (<18,0,C>, 2*D) (<18,0,D>, D) (<18,0,E>, 4*D) (<18,0,J>, D) (<18,0,L>, ?) (<18,0,N>, N) (<18,0,O>, ?) (<18,0,P>, P) (<18,0,Q>, ?) (<19,0,A>, ?) (<19,0,C>, 2*D) (<19,0,D>, D) (<19,0,E>, 4*D) (<19,0,J>, D) (<19,0,L>, ?) (<19,0,N>, N) (<19,0,O>, ?) (<19,0,P>, P) (<19,0,Q>, ?) (<20,0,A>, ?) (<20,0,C>, 2*D) (<20,0,D>, D) (<20,0,E>, 4*D) (<20,0,J>, D) (<20,0,L>, ?) (<20,0,N>, N) (<20,0,O>, ?) (<20,0,P>, P) (<20,0,Q>, ?) (<21,0,A>, ?) (<21,0,C>, 2*D) (<21,0,D>, D) (<21,0,E>, 4*D) (<21,0,J>, D) (<21,0,L>, ?) (<21,0,N>, N) (<21,0,O>, ?) (<21,0,P>, P) (<21,0,Q>, ?) (<22,0,A>, ?) (<22,0,C>, 2*D) (<22,0,D>, D) (<22,0,E>, 4*D) (<22,0,J>, D) (<22,0,L>, ?) (<22,0,N>, N) (<22,0,O>, ?) (<22,0,P>, P) (<22,0,Q>, ?) (<23,0,A>, ?) (<23,0,C>, 2*D) (<23,0,D>, D) (<23,0,E>, 4*D) (<23,0,J>, D) (<23,0,L>, ?) (<23,0,N>, N) (<23,0,O>, ?) (<23,0,P>, P) (<23,0,Q>, ?) (<24,0,A>, ?) (<24,0,C>, 2*D) (<24,0,D>, D) (<24,0,E>, 4*D) (<24,0,J>, D) (<24,0,L>, ?) (<24,0,N>, N) (<24,0,O>, ?) (<24,0,P>, P) (<24,0,Q>, ?) (<25,0,A>, ?) (<25,0,C>, 2*D) (<25,0,D>, D) (<25,0,E>, 4*D) (<25,0,J>, D) (<25,0,L>, ?) (<25,0,N>, N) (<25,0,O>, ?) (<25,0,P>, P) (<25,0,Q>, ?) (<26,0,A>, ?) (<26,0,C>, 2*D) (<26,0,D>, D) (<26,0,E>, 4*D) (<26,0,J>, D) (<26,0,L>, ?) (<26,0,N>, N) (<26,0,O>, ?) (<26,0,P>, P) (<26,0,Q>, ?) (<27,0,A>, ?) (<27,0,C>, 2*D) (<27,0,D>, D) (<27,0,E>, 4*D) (<27,0,J>, D) (<27,0,L>, 0) (<27,0,N>, N) (<27,0,O>, ?) (<27,0,P>, P) (<27,0,Q>, ?) (<28,0,A>, ?) (<28,0,C>, 2*D) (<28,0,D>, D) (<28,0,E>, 4*D) (<28,0,J>, D) (<28,0,L>, ?) (<28,0,N>, N) (<28,0,O>, ?) (<28,0,P>, P) (<28,0,Q>, ?) (<29,0,A>, ?) (<29,0,C>, 2*D) (<29,0,D>, D) (<29,0,E>, 4*D) (<29,0,J>, D) (<29,0,L>, ?) (<29,0,N>, N) (<29,0,O>, ?) (<29,0,P>, P) (<29,0,Q>, ?) (<30,0,A>, ?) (<30,0,C>, 2*D) (<30,0,D>, D) (<30,0,E>, 4*D) (<30,0,J>, 1 + D) (<30,0,L>, ?) (<30,0,N>, N) (<30,0,O>, ?) (<30,0,P>, P) (<30,0,Q>, ?) (<32,0,A>, ?) (<32,0,C>, 2*D) (<32,0,D>, D) (<32,0,E>, 4*D) (<32,0,J>, ?) (<32,0,L>, ?) (<32,0,N>, N) (<32,0,O>, ?) (<32,0,P>, P) (<32,0,Q>, ?) (<33,0,A>, ?) (<33,0,C>, 2*D) (<33,0,D>, D) (<33,0,E>, 4*D) (<33,0,J>, ?) (<33,0,L>, ?) (<33,0,N>, N) (<33,0,O>, ?) (<33,0,P>, P) (<33,0,Q>, ?) (<34,0,A>, ?) (<34,0,C>, 2*D) (<34,0,D>, D) (<34,0,E>, 4*D) (<34,0,J>, ?) (<34,0,L>, ?) (<34,0,N>, N) (<34,0,O>, ?) (<34,0,P>, P) (<34,0,Q>, ?) (<35,0,A>, ?) (<35,0,C>, 2*D) (<35,0,D>, D) (<35,0,E>, 4*D) (<35,0,J>, ?) (<35,0,L>, ?) (<35,0,N>, N) (<35,0,O>, ?) (<35,0,P>, P) (<35,0,Q>, ?) (<36,0,A>, ?) (<36,0,C>, 2*D) (<36,0,D>, D) (<36,0,E>, 4*D) (<36,0,J>, ?) (<36,0,L>, ?) (<36,0,N>, N) (<36,0,O>, ?) (<36,0,P>, 0) (<36,0,Q>, P) (<37,0,A>, ?) (<37,0,C>, 2*D) (<37,0,D>, D) (<37,0,E>, 4*D) (<37,0,J>, ?) (<37,0,L>, ?) (<37,0,N>, N) (<37,0,O>, ?) (<37,0,P>, P) (<37,0,Q>, 0) (<38,0,A>, ?) (<38,0,C>, 2*D) (<38,0,D>, D) (<38,0,E>, 4*D) (<38,0,J>, ?) (<38,0,L>, ?) (<38,0,N>, N) (<38,0,O>, ?) (<38,0,P>, P) (<38,0,Q>, 0) (<39,0,A>, ?) (<39,0,C>, 2*D) (<39,0,D>, D) (<39,0,E>, 4*D) (<39,0,J>, ?) (<39,0,L>, ?) (<39,0,N>, N) (<39,0,O>, ?) (<39,0,P>, P) (<39,0,Q>, 0) (<40,0,A>, ?) (<40,0,C>, 2*D) (<40,0,D>, D) (<40,0,E>, 4*D) (<40,0,J>, ?) (<40,0,L>, ?) (<40,0,N>, N) (<40,0,O>, ?) (<40,0,P>, P) (<40,0,Q>, ?) (<41,0,A>, ?) (<41,0,C>, 2*D) (<41,0,D>, D) (<41,0,E>, 4*D) (<41,0,J>, ?) (<41,0,L>, ?) (<41,0,N>, N) (<41,0,O>, ?) (<41,0,P>, P) (<41,0,Q>, ?) (<42,0,A>, ?) (<42,0,C>, 2*D) (<42,0,D>, D) (<42,0,E>, 4*D) (<42,0,J>, 1 + 2*D + J) (<42,0,L>, ?) (<42,0,N>, N) (<42,0,O>, O) (<42,0,P>, P) (<42,0,Q>, Q) (<43,0,A>, ?) (<43,0,C>, 2*D) (<43,0,D>, D) (<43,0,E>, 4*D) (<43,0,J>, 1 + 2*D + J) (<43,0,L>, ?) (<43,0,N>, N) (<43,0,O>, O) (<43,0,P>, P) (<43,0,Q>, Q) (<44,0,A>, ?) (<44,0,C>, 2*D) (<44,0,D>, D) (<44,0,E>, 4*D) (<44,0,J>, 1 + 2*D + J) (<44,0,L>, ?) (<44,0,N>, N) (<44,0,O>, O) (<44,0,P>, P) (<44,0,Q>, Q) (<45,0,A>, ?) (<45,0,C>, 2*D) (<45,0,D>, D) (<45,0,E>, 4*D) (<45,0,J>, 1 + 2*D + J) (<45,0,L>, ?) (<45,0,N>, N) (<45,0,O>, O) (<45,0,P>, 0) (<45,0,Q>, Q) (<46,0,A>, ?) (<46,0,C>, 2*D) (<46,0,D>, D) (<46,0,E>, 4*D) (<46,0,J>, 1 + 2*D + J) (<46,0,L>, ?) (<46,0,N>, N) (<46,0,O>, O) (<46,0,P>, P) (<46,0,Q>, Q) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f103) = x3 + -1*x5 p(f107) = x3 + -1*x5 p(f118) = 1 + x3 + -1*x5 p(f13) = 0 p(f2) = 0 p(f24) = 0 p(f31) = 0 p(f37) = 1 + x3 + -1*x5 p(f40) = 1 + x3 + -1*x5 p(f44) = 1 + x3 + -1*x5 p(f50) = 1 + x3 + -1*x5 p(f57) = 1 + x3 + -1*x5 p(f64) = 1 + x3 + -1*x5 p(f71) = 1 + x3 + -1*x5 p(f86) = 1 + x3 + -1*x5 p(f91) = 1 + x3 + -1*x5 p(f99) = x3 + -1*x5 The following rules are strictly oriented: [D >= J] ==> f91(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J > D + -1*J = f99(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && D >= J] ==> f91(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J > D + -1*J = f99(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && D >= J] ==> f91(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J > D + -1*J = f99(A,C,D,E,J,B1,N,O,P,Q) [D >= J] ==> f118(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J > D + -1*J = f118(A,C,D,E,1 + J,L,N,O,P,Q) The following rules are weakly oriented: True ==> f2(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f13(0,2*D,D,4*D,J,L,N,O,P,Q) [C >= J] ==> f13(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f13(A,C,D,E,1 + J,0,N,O,P,Q) [C1 >= 2 && C >= J] ==> f13(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [0 >= C1 && C >= J] ==> f13(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [D >= J] ==> f24(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f24(A,C,D,E,1 + J,L,N,O,P,Q) [N >= O] ==> f37(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f40(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && 0 >= Q] ==> f40(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f44(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && 0 >= Q] ==> f40(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f44(A,C,D,E,J,L,N,O,P,Q) [D >= J] ==> f44(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= D + -1*J = f44(A,C,D,E,1 + J,L,N,O,P,Q) [0 >= Q && P = 0] ==> f40(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f64(A,C,D,E,J,L,N,O,0,Q) [E >= J] ==> f64(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= -1 + D + -1*J = f64(A,C,D,E,2 + J,L,N,O,P,Q) [C >= J] ==> f71(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= D + -1*J = f71(A,C,D,E,1 + J,L,N,O,P,Q) [L = 0] ==> f86(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f91(A,C,D,E,J,0,N,O,P,Q) [0 >= 1 + L] ==> f86(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f91(A,C,D,E,J,L,N,O,P,Q) [L >= 1] ==> f86(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f91(A,C,D,E,J,L,N,O,P,Q) [L = 0] ==> f99(A,C,D,E,J,L,N,O,P,Q) = D + -1*J >= D + -1*J = f103(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] ==> f99(A,C,D,E,J,L,N,O,P,Q) = D + -1*J >= D + -1*J = f103(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] ==> f99(A,C,D,E,J,L,N,O,P,Q) = D + -1*J >= D + -1*J = f103(A,C,D,E,J,B1,N,O,P,Q) [L = 0] ==> f103(A,C,D,E,J,L,N,O,P,Q) = D + -1*J >= D + -1*J = f107(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] ==> f103(A,C,D,E,J,L,N,O,P,Q) = D + -1*J >= D + -1*J = f107(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] ==> f103(A,C,D,E,J,L,N,O,P,Q) = D + -1*J >= D + -1*J = f107(A,C,D,E,J,B1,N,O,P,Q) [L = 0] ==> f107(A,C,D,E,J,L,N,O,P,Q) = D + -1*J >= D + -1*J = f91(A,C,D,E,1 + J,0,N,O,P,Q) [0 >= 1 + L] ==> f107(A,C,D,E,J,L,N,O,P,Q) = D + -1*J >= D + -1*J = f91(A,C,D,E,1 + J,L,N,O,P,Q) [L >= 1] ==> f107(A,C,D,E,J,L,N,O,P,Q) = D + -1*J >= D + -1*J = f91(A,C,D,E,1 + J,L,N,O,P,Q) [J >= 1 + D] ==> f91(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f37(A,C,D,E,J,L,N,1 + O,P,Q) [J >= 1 + C] ==> f71(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f86(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && J >= 1 + C] ==> f71(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f86(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && J >= 1 + C] ==> f71(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f86(A,C,D,E,J,B1,N,O,P,Q) [J >= 1 + E] ==> f64(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] ==> f57(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] ==> f50(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f57(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] ==> f44(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f50(A,C,D,E,J,L,N,O,P,Q) [Q >= 1] ==> f40(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f71(A,C,D,E,J,L,N,O,P,Q) [O >= 1 + N] ==> f37(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f118(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] ==> f31(A,C,D,E,J,L,N,O,P,Q) = 0 >= 1 + D + -1*J = f37(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && J >= 1 + D] ==> f24(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f31(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && J >= 1 + D] ==> f24(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f31(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D && P = 0] ==> f24(A,C,D,E,J,L,N,O,P,Q) = 0 >= 1 + D + -1*J = f37(A,C,D,E,J,L,N,O,0,Q) [J >= 1 + C] ==> f13(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f24(A,C,D,E,J,L,N,O,P,Q) * Step 15: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,C,D,E,J,L,N,O,P,Q) -> f13(0,2*D,D,4*D,J,L,N,O,P,Q) True (1,1) 1. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A,C,D,E,1 + J,0,N,O,P,Q) [C >= J] (?,1) 2. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [C1 >= 2 && C >= J] (?,1) 3. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [0 >= C1 && C >= J] (?,1) 4. f24(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 6. f37(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,Q) [N >= O] (?,1) 7. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && 0 >= Q] (?,1) 8. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && 0 >= Q] (?,1) 9. f44(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 12. f40(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,J,L,N,O,0,Q) [0 >= Q && P = 0] (?,1) 13. f64(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,2 + J,L,N,O,P,Q) [E >= J] (?,1) 14. f71(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,1 + J,L,N,O,P,Q) [C >= J] (?,1) 15. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,0,N,O,P,Q) [L = 0] (?,1) 16. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + L] (?,1) 17. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [L >= 1] (?,1) 18. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D >= J] (0,1) 19. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && D >= J] (0,1) 20. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && D >= J] (0,1) 21. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (?,1) 22. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (?,1) 23. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (?,1) 24. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (?,1) 25. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (?,1) 26. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (?,1) 27. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,0,N,O,P,Q) [L = 0] (?,1) 28. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [0 >= 1 + L] (?,1) 29. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [L >= 1] (?,1) 30. f118(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (0,1) 32. f91(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,1 + O,P,Q) [J >= 1 + D] (?,1) 33. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [J >= 1 + C] (?,1) 34. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && J >= 1 + C] (?,1) 35. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && J >= 1 + C] (?,1) 36. f64(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + E] (?,1) 37. f57(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] (?,1) 38. f50(A,C,D,E,J,L,N,O,P,Q) -> f57(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (?,1) 39. f44(A,C,D,E,J,L,N,O,P,Q) -> f50(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (?,1) 40. f40(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,J,L,N,O,P,Q) [Q >= 1] (?,1) 41. f37(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,J,L,N,O,P,Q) [O >= 1 + N] (?,1) 42. f31(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (2*P,1) 43. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && J >= 1 + D] (P,1) 44. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && J >= 1 + D] (P,1) 45. f24(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,0,Q) [J >= 1 + D && P = 0] (?,1) 46. f13(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + C] (1,1) Signature: {(f1,10) ;(f103,10) ;(f107,10) ;(f118,10) ;(f13,10) ;(f2,10) ;(f24,10) ;(f31,10) ;(f37,10) ;(f40,10) ;(f44,10) ;(f50,10) ;(f57,10) ;(f64,10) ;(f71,10) ;(f86,10) ;(f91,10) ;(f99,10)} Flow Graph: [0->{1,2,3,46},1->{1,2,3,46},2->{1,2,3,46},3->{1,2,3,46},4->{4,43,44,45},6->{7,8,12,40},7->{9,39},8->{9 ,39},9->{9,39},12->{13,36},13->{13,36},14->{14,33,34,35},15->{18,19,20,32},16->{18,19,20,32},17->{18,19,20 ,32},18->{21,22,23},19->{21,22,23},20->{21,22,23},21->{24,25,26},22->{24,25,26},23->{24,25,26},24->{27,28 ,29},25->{27,28,29},26->{27,28,29},27->{18,19,20,32},28->{18,19,20,32},29->{18,19,20,32},30->{30},32->{6,41} ,33->{15,16,17},34->{15,16,17},35->{15,16,17},36->{7,8,12,40},37->{7,8,12,40},38->{37},39->{38},40->{14,33 ,34,35},41->{30},42->{6,41},43->{42},44->{42},45->{6,41},46->{4,43,44,45}] Sizebounds: (< 0,0,A>, 0) (< 0,0,C>, 2*D) (< 0,0,D>, D) (< 0,0,E>, 4*D) (< 0,0,J>, J) (< 0,0,L>, L) (< 0,0,N>, N) (< 0,0,O>, O) (< 0,0,P>, P) (< 0,0,Q>, Q) (< 1,0,A>, ?) (< 1,0,C>, 2*D) (< 1,0,D>, D) (< 1,0,E>, 4*D) (< 1,0,J>, 1 + 2*D) (< 1,0,L>, 0) (< 1,0,N>, N) (< 1,0,O>, O) (< 1,0,P>, P) (< 1,0,Q>, Q) (< 2,0,A>, ?) (< 2,0,C>, 2*D) (< 2,0,D>, D) (< 2,0,E>, 4*D) (< 2,0,J>, 1 + 2*D) (< 2,0,L>, ?) (< 2,0,N>, N) (< 2,0,O>, O) (< 2,0,P>, P) (< 2,0,Q>, Q) (< 3,0,A>, ?) (< 3,0,C>, 2*D) (< 3,0,D>, D) (< 3,0,E>, 4*D) (< 3,0,J>, 1 + 2*D) (< 3,0,L>, ?) (< 3,0,N>, N) (< 3,0,O>, O) (< 3,0,P>, P) (< 3,0,Q>, Q) (< 4,0,A>, ?) (< 4,0,C>, 2*D) (< 4,0,D>, D) (< 4,0,E>, 4*D) (< 4,0,J>, 1 + D) (< 4,0,L>, ?) (< 4,0,N>, N) (< 4,0,O>, O) (< 4,0,P>, P) (< 4,0,Q>, Q) (< 6,0,A>, ?) (< 6,0,C>, 2*D) (< 6,0,D>, D) (< 6,0,E>, 4*D) (< 6,0,J>, ?) (< 6,0,L>, ?) (< 6,0,N>, N) (< 6,0,O>, N) (< 6,0,P>, P) (< 6,0,Q>, ?) (< 7,0,A>, ?) (< 7,0,C>, 2*D) (< 7,0,D>, D) (< 7,0,E>, 4*D) (< 7,0,J>, ?) (< 7,0,L>, ?) (< 7,0,N>, N) (< 7,0,O>, ?) (< 7,0,P>, P) (< 7,0,Q>, 0) (< 8,0,A>, ?) (< 8,0,C>, 2*D) (< 8,0,D>, D) (< 8,0,E>, 4*D) (< 8,0,J>, ?) (< 8,0,L>, ?) (< 8,0,N>, N) (< 8,0,O>, ?) (< 8,0,P>, P) (< 8,0,Q>, 0) (< 9,0,A>, ?) (< 9,0,C>, 2*D) (< 9,0,D>, D) (< 9,0,E>, 4*D) (< 9,0,J>, 1 + D) (< 9,0,L>, ?) (< 9,0,N>, N) (< 9,0,O>, ?) (< 9,0,P>, P) (< 9,0,Q>, 0) (<12,0,A>, ?) (<12,0,C>, 2*D) (<12,0,D>, D) (<12,0,E>, 4*D) (<12,0,J>, ?) (<12,0,L>, ?) (<12,0,N>, N) (<12,0,O>, ?) (<12,0,P>, 0) (<12,0,Q>, P) (<13,0,A>, ?) (<13,0,C>, 2*D) (<13,0,D>, D) (<13,0,E>, 4*D) (<13,0,J>, 2 + 4*D) (<13,0,L>, ?) (<13,0,N>, N) (<13,0,O>, ?) (<13,0,P>, 0) (<13,0,Q>, P) (<14,0,A>, ?) (<14,0,C>, 2*D) (<14,0,D>, D) (<14,0,E>, 4*D) (<14,0,J>, 1 + 2*D) (<14,0,L>, ?) (<14,0,N>, N) (<14,0,O>, ?) (<14,0,P>, P) (<14,0,Q>, ?) (<15,0,A>, ?) (<15,0,C>, 2*D) (<15,0,D>, D) (<15,0,E>, 4*D) (<15,0,J>, ?) (<15,0,L>, 0) (<15,0,N>, N) (<15,0,O>, ?) (<15,0,P>, P) (<15,0,Q>, ?) (<16,0,A>, ?) (<16,0,C>, 2*D) (<16,0,D>, D) (<16,0,E>, 4*D) (<16,0,J>, ?) (<16,0,L>, ?) (<16,0,N>, N) (<16,0,O>, ?) (<16,0,P>, P) (<16,0,Q>, ?) (<17,0,A>, ?) (<17,0,C>, 2*D) (<17,0,D>, D) (<17,0,E>, 4*D) (<17,0,J>, ?) (<17,0,L>, ?) (<17,0,N>, N) (<17,0,O>, ?) (<17,0,P>, P) (<17,0,Q>, ?) (<18,0,A>, ?) (<18,0,C>, 2*D) (<18,0,D>, D) (<18,0,E>, 4*D) (<18,0,J>, D) (<18,0,L>, ?) (<18,0,N>, N) (<18,0,O>, ?) (<18,0,P>, P) (<18,0,Q>, ?) (<19,0,A>, ?) (<19,0,C>, 2*D) (<19,0,D>, D) (<19,0,E>, 4*D) (<19,0,J>, D) (<19,0,L>, ?) (<19,0,N>, N) (<19,0,O>, ?) (<19,0,P>, P) (<19,0,Q>, ?) (<20,0,A>, ?) (<20,0,C>, 2*D) (<20,0,D>, D) (<20,0,E>, 4*D) (<20,0,J>, D) (<20,0,L>, ?) (<20,0,N>, N) (<20,0,O>, ?) (<20,0,P>, P) (<20,0,Q>, ?) (<21,0,A>, ?) (<21,0,C>, 2*D) (<21,0,D>, D) (<21,0,E>, 4*D) (<21,0,J>, D) (<21,0,L>, ?) (<21,0,N>, N) (<21,0,O>, ?) (<21,0,P>, P) (<21,0,Q>, ?) (<22,0,A>, ?) (<22,0,C>, 2*D) (<22,0,D>, D) (<22,0,E>, 4*D) (<22,0,J>, D) (<22,0,L>, ?) (<22,0,N>, N) (<22,0,O>, ?) (<22,0,P>, P) (<22,0,Q>, ?) (<23,0,A>, ?) (<23,0,C>, 2*D) (<23,0,D>, D) (<23,0,E>, 4*D) (<23,0,J>, D) (<23,0,L>, ?) (<23,0,N>, N) (<23,0,O>, ?) (<23,0,P>, P) (<23,0,Q>, ?) (<24,0,A>, ?) (<24,0,C>, 2*D) (<24,0,D>, D) (<24,0,E>, 4*D) (<24,0,J>, D) (<24,0,L>, ?) (<24,0,N>, N) (<24,0,O>, ?) (<24,0,P>, P) (<24,0,Q>, ?) (<25,0,A>, ?) (<25,0,C>, 2*D) (<25,0,D>, D) (<25,0,E>, 4*D) (<25,0,J>, D) (<25,0,L>, ?) (<25,0,N>, N) (<25,0,O>, ?) (<25,0,P>, P) (<25,0,Q>, ?) (<26,0,A>, ?) (<26,0,C>, 2*D) (<26,0,D>, D) (<26,0,E>, 4*D) (<26,0,J>, D) (<26,0,L>, ?) (<26,0,N>, N) (<26,0,O>, ?) (<26,0,P>, P) (<26,0,Q>, ?) (<27,0,A>, ?) (<27,0,C>, 2*D) (<27,0,D>, D) (<27,0,E>, 4*D) (<27,0,J>, D) (<27,0,L>, 0) (<27,0,N>, N) (<27,0,O>, ?) (<27,0,P>, P) (<27,0,Q>, ?) (<28,0,A>, ?) (<28,0,C>, 2*D) (<28,0,D>, D) (<28,0,E>, 4*D) (<28,0,J>, D) (<28,0,L>, ?) (<28,0,N>, N) (<28,0,O>, ?) (<28,0,P>, P) (<28,0,Q>, ?) (<29,0,A>, ?) (<29,0,C>, 2*D) (<29,0,D>, D) (<29,0,E>, 4*D) (<29,0,J>, D) (<29,0,L>, ?) (<29,0,N>, N) (<29,0,O>, ?) (<29,0,P>, P) (<29,0,Q>, ?) (<30,0,A>, ?) (<30,0,C>, 2*D) (<30,0,D>, D) (<30,0,E>, 4*D) (<30,0,J>, 1 + D) (<30,0,L>, ?) (<30,0,N>, N) (<30,0,O>, ?) (<30,0,P>, P) (<30,0,Q>, ?) (<32,0,A>, ?) (<32,0,C>, 2*D) (<32,0,D>, D) (<32,0,E>, 4*D) (<32,0,J>, ?) (<32,0,L>, ?) (<32,0,N>, N) (<32,0,O>, ?) (<32,0,P>, P) (<32,0,Q>, ?) (<33,0,A>, ?) (<33,0,C>, 2*D) (<33,0,D>, D) (<33,0,E>, 4*D) (<33,0,J>, ?) (<33,0,L>, ?) (<33,0,N>, N) (<33,0,O>, ?) (<33,0,P>, P) (<33,0,Q>, ?) (<34,0,A>, ?) (<34,0,C>, 2*D) (<34,0,D>, D) (<34,0,E>, 4*D) (<34,0,J>, ?) (<34,0,L>, ?) (<34,0,N>, N) (<34,0,O>, ?) (<34,0,P>, P) (<34,0,Q>, ?) (<35,0,A>, ?) (<35,0,C>, 2*D) (<35,0,D>, D) (<35,0,E>, 4*D) (<35,0,J>, ?) (<35,0,L>, ?) (<35,0,N>, N) (<35,0,O>, ?) (<35,0,P>, P) (<35,0,Q>, ?) (<36,0,A>, ?) (<36,0,C>, 2*D) (<36,0,D>, D) (<36,0,E>, 4*D) (<36,0,J>, ?) (<36,0,L>, ?) (<36,0,N>, N) (<36,0,O>, ?) (<36,0,P>, 0) (<36,0,Q>, P) (<37,0,A>, ?) (<37,0,C>, 2*D) (<37,0,D>, D) (<37,0,E>, 4*D) (<37,0,J>, ?) (<37,0,L>, ?) (<37,0,N>, N) (<37,0,O>, ?) (<37,0,P>, P) (<37,0,Q>, 0) (<38,0,A>, ?) (<38,0,C>, 2*D) (<38,0,D>, D) (<38,0,E>, 4*D) (<38,0,J>, ?) (<38,0,L>, ?) (<38,0,N>, N) (<38,0,O>, ?) (<38,0,P>, P) (<38,0,Q>, 0) (<39,0,A>, ?) (<39,0,C>, 2*D) (<39,0,D>, D) (<39,0,E>, 4*D) (<39,0,J>, ?) (<39,0,L>, ?) (<39,0,N>, N) (<39,0,O>, ?) (<39,0,P>, P) (<39,0,Q>, 0) (<40,0,A>, ?) (<40,0,C>, 2*D) (<40,0,D>, D) (<40,0,E>, 4*D) (<40,0,J>, ?) (<40,0,L>, ?) (<40,0,N>, N) (<40,0,O>, ?) (<40,0,P>, P) (<40,0,Q>, ?) (<41,0,A>, ?) (<41,0,C>, 2*D) (<41,0,D>, D) (<41,0,E>, 4*D) (<41,0,J>, ?) (<41,0,L>, ?) (<41,0,N>, N) (<41,0,O>, ?) (<41,0,P>, P) (<41,0,Q>, ?) (<42,0,A>, ?) (<42,0,C>, 2*D) (<42,0,D>, D) (<42,0,E>, 4*D) (<42,0,J>, 1 + 2*D + J) (<42,0,L>, ?) (<42,0,N>, N) (<42,0,O>, O) (<42,0,P>, P) (<42,0,Q>, Q) (<43,0,A>, ?) (<43,0,C>, 2*D) (<43,0,D>, D) (<43,0,E>, 4*D) (<43,0,J>, 1 + 2*D + J) (<43,0,L>, ?) (<43,0,N>, N) (<43,0,O>, O) (<43,0,P>, P) (<43,0,Q>, Q) (<44,0,A>, ?) (<44,0,C>, 2*D) (<44,0,D>, D) (<44,0,E>, 4*D) (<44,0,J>, 1 + 2*D + J) (<44,0,L>, ?) (<44,0,N>, N) (<44,0,O>, O) (<44,0,P>, P) (<44,0,Q>, Q) (<45,0,A>, ?) (<45,0,C>, 2*D) (<45,0,D>, D) (<45,0,E>, 4*D) (<45,0,J>, 1 + 2*D + J) (<45,0,L>, ?) (<45,0,N>, N) (<45,0,O>, O) (<45,0,P>, 0) (<45,0,Q>, Q) (<46,0,A>, ?) (<46,0,C>, 2*D) (<46,0,D>, D) (<46,0,E>, 4*D) (<46,0,J>, 1 + 2*D + J) (<46,0,L>, ?) (<46,0,N>, N) (<46,0,O>, O) (<46,0,P>, P) (<46,0,Q>, Q) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 16: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,C,D,E,J,L,N,O,P,Q) -> f13(0,2*D,D,4*D,J,L,N,O,P,Q) True (1,1) 1. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A,C,D,E,1 + J,0,N,O,P,Q) [C >= J] (?,1) 2. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [C1 >= 2 && C >= J] (?,1) 3. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [0 >= C1 && C >= J] (?,1) 4. f24(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 6. f37(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,Q) [N >= O] (?,1) 7. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && 0 >= Q] (?,1) 8. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && 0 >= Q] (?,1) 9. f44(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 12. f40(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,J,L,N,O,0,Q) [0 >= Q && P = 0] (?,1) 13. f64(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,2 + J,L,N,O,P,Q) [E >= J] (?,1) 14. f71(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,1 + J,L,N,O,P,Q) [C >= J] (?,1) 15. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,0,N,O,P,Q) [L = 0] (?,1) 16. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + L] (?,1) 17. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [L >= 1] (?,1) 18. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D >= J] (0,1) 19. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && D >= J] (0,1) 20. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && D >= J] (0,1) 21. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (0,1) 22. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (0,1) 23. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (0,1) 24. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (?,1) 25. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (?,1) 26. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (0,1) 27. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,0,N,O,P,Q) [L = 0] (?,1) 28. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [0 >= 1 + L] (?,1) 29. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [L >= 1] (?,1) 30. f118(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (0,1) 32. f91(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,1 + O,P,Q) [J >= 1 + D] (?,1) 33. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [J >= 1 + C] (?,1) 34. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && J >= 1 + C] (?,1) 35. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && J >= 1 + C] (?,1) 36. f64(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + E] (?,1) 37. f57(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] (?,1) 38. f50(A,C,D,E,J,L,N,O,P,Q) -> f57(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (?,1) 39. f44(A,C,D,E,J,L,N,O,P,Q) -> f50(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (?,1) 40. f40(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,J,L,N,O,P,Q) [Q >= 1] (?,1) 41. f37(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,J,L,N,O,P,Q) [O >= 1 + N] (?,1) 42. f31(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (2*P,1) 43. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && J >= 1 + D] (P,1) 44. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && J >= 1 + D] (P,1) 45. f24(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,0,Q) [J >= 1 + D && P = 0] (?,1) 46. f13(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + C] (1,1) Signature: {(f1,10) ;(f103,10) ;(f107,10) ;(f118,10) ;(f13,10) ;(f2,10) ;(f24,10) ;(f31,10) ;(f37,10) ;(f40,10) ;(f44,10) ;(f50,10) ;(f57,10) ;(f64,10) ;(f71,10) ;(f86,10) ;(f91,10) ;(f99,10)} Flow Graph: [0->{1,2,3,46},1->{1,2,3,46},2->{1,2,3,46},3->{1,2,3,46},4->{4,43,44,45},6->{7,8,12,40},7->{9,39},8->{9 ,39},9->{9,39},12->{13,36},13->{13,36},14->{14,33,34,35},15->{18,19,20,32},16->{18,19,20,32},17->{18,19,20 ,32},18->{21,22,23},19->{21,22,23},20->{21,22,23},21->{24,25,26},22->{24,25,26},23->{24,25,26},24->{27,28 ,29},25->{27,28,29},26->{27,28,29},27->{18,19,20,32},28->{18,19,20,32},29->{18,19,20,32},30->{30},32->{6,41} ,33->{15,16,17},34->{15,16,17},35->{15,16,17},36->{7,8,12,40},37->{7,8,12,40},38->{37},39->{38},40->{14,33 ,34,35},41->{30},42->{6,41},43->{42},44->{42},45->{6,41},46->{4,43,44,45}] Sizebounds: (< 0,0,A>, 0) (< 0,0,C>, 2*D) (< 0,0,D>, D) (< 0,0,E>, 4*D) (< 0,0,J>, J) (< 0,0,L>, L) (< 0,0,N>, N) (< 0,0,O>, O) (< 0,0,P>, P) (< 0,0,Q>, Q) (< 1,0,A>, ?) (< 1,0,C>, 2*D) (< 1,0,D>, D) (< 1,0,E>, 4*D) (< 1,0,J>, 1 + 2*D) (< 1,0,L>, 0) (< 1,0,N>, N) (< 1,0,O>, O) (< 1,0,P>, P) (< 1,0,Q>, Q) (< 2,0,A>, ?) (< 2,0,C>, 2*D) (< 2,0,D>, D) (< 2,0,E>, 4*D) (< 2,0,J>, 1 + 2*D) (< 2,0,L>, ?) (< 2,0,N>, N) (< 2,0,O>, O) (< 2,0,P>, P) (< 2,0,Q>, Q) (< 3,0,A>, ?) (< 3,0,C>, 2*D) (< 3,0,D>, D) (< 3,0,E>, 4*D) (< 3,0,J>, 1 + 2*D) (< 3,0,L>, ?) (< 3,0,N>, N) (< 3,0,O>, O) (< 3,0,P>, P) (< 3,0,Q>, Q) (< 4,0,A>, ?) (< 4,0,C>, 2*D) (< 4,0,D>, D) (< 4,0,E>, 4*D) (< 4,0,J>, 1 + D) (< 4,0,L>, ?) (< 4,0,N>, N) (< 4,0,O>, O) (< 4,0,P>, P) (< 4,0,Q>, Q) (< 6,0,A>, ?) (< 6,0,C>, 2*D) (< 6,0,D>, D) (< 6,0,E>, 4*D) (< 6,0,J>, ?) (< 6,0,L>, ?) (< 6,0,N>, N) (< 6,0,O>, N) (< 6,0,P>, P) (< 6,0,Q>, ?) (< 7,0,A>, ?) (< 7,0,C>, 2*D) (< 7,0,D>, D) (< 7,0,E>, 4*D) (< 7,0,J>, ?) (< 7,0,L>, ?) (< 7,0,N>, N) (< 7,0,O>, ?) (< 7,0,P>, P) (< 7,0,Q>, 0) (< 8,0,A>, ?) (< 8,0,C>, 2*D) (< 8,0,D>, D) (< 8,0,E>, 4*D) (< 8,0,J>, ?) (< 8,0,L>, ?) (< 8,0,N>, N) (< 8,0,O>, ?) (< 8,0,P>, P) (< 8,0,Q>, 0) (< 9,0,A>, ?) (< 9,0,C>, 2*D) (< 9,0,D>, D) (< 9,0,E>, 4*D) (< 9,0,J>, 1 + D) (< 9,0,L>, ?) (< 9,0,N>, N) (< 9,0,O>, ?) (< 9,0,P>, P) (< 9,0,Q>, 0) (<12,0,A>, ?) (<12,0,C>, 2*D) (<12,0,D>, D) (<12,0,E>, 4*D) (<12,0,J>, ?) (<12,0,L>, ?) (<12,0,N>, N) (<12,0,O>, ?) (<12,0,P>, 0) (<12,0,Q>, P) (<13,0,A>, ?) (<13,0,C>, 2*D) (<13,0,D>, D) (<13,0,E>, 4*D) (<13,0,J>, 2 + 4*D) (<13,0,L>, ?) (<13,0,N>, N) (<13,0,O>, ?) (<13,0,P>, 0) (<13,0,Q>, P) (<14,0,A>, ?) (<14,0,C>, 2*D) (<14,0,D>, D) (<14,0,E>, 4*D) (<14,0,J>, 1 + 2*D) (<14,0,L>, ?) (<14,0,N>, N) (<14,0,O>, ?) (<14,0,P>, P) (<14,0,Q>, ?) (<15,0,A>, ?) (<15,0,C>, 2*D) (<15,0,D>, D) (<15,0,E>, 4*D) (<15,0,J>, ?) (<15,0,L>, 0) (<15,0,N>, N) (<15,0,O>, ?) (<15,0,P>, P) (<15,0,Q>, ?) (<16,0,A>, ?) (<16,0,C>, 2*D) (<16,0,D>, D) (<16,0,E>, 4*D) (<16,0,J>, ?) (<16,0,L>, ?) (<16,0,N>, N) (<16,0,O>, ?) (<16,0,P>, P) (<16,0,Q>, ?) (<17,0,A>, ?) (<17,0,C>, 2*D) (<17,0,D>, D) (<17,0,E>, 4*D) (<17,0,J>, ?) (<17,0,L>, ?) (<17,0,N>, N) (<17,0,O>, ?) (<17,0,P>, P) (<17,0,Q>, ?) (<18,0,A>, ?) (<18,0,C>, 2*D) (<18,0,D>, D) (<18,0,E>, 4*D) (<18,0,J>, D) (<18,0,L>, ?) (<18,0,N>, N) (<18,0,O>, ?) (<18,0,P>, P) (<18,0,Q>, ?) (<19,0,A>, ?) (<19,0,C>, 2*D) (<19,0,D>, D) (<19,0,E>, 4*D) (<19,0,J>, D) (<19,0,L>, ?) (<19,0,N>, N) (<19,0,O>, ?) (<19,0,P>, P) (<19,0,Q>, ?) (<20,0,A>, ?) (<20,0,C>, 2*D) (<20,0,D>, D) (<20,0,E>, 4*D) (<20,0,J>, D) (<20,0,L>, ?) (<20,0,N>, N) (<20,0,O>, ?) (<20,0,P>, P) (<20,0,Q>, ?) (<21,0,A>, ?) (<21,0,C>, 2*D) (<21,0,D>, D) (<21,0,E>, 4*D) (<21,0,J>, D) (<21,0,L>, ?) (<21,0,N>, N) (<21,0,O>, ?) (<21,0,P>, P) (<21,0,Q>, ?) (<22,0,A>, ?) (<22,0,C>, 2*D) (<22,0,D>, D) (<22,0,E>, 4*D) (<22,0,J>, D) (<22,0,L>, ?) (<22,0,N>, N) (<22,0,O>, ?) (<22,0,P>, P) (<22,0,Q>, ?) (<23,0,A>, ?) (<23,0,C>, 2*D) (<23,0,D>, D) (<23,0,E>, 4*D) (<23,0,J>, D) (<23,0,L>, ?) (<23,0,N>, N) (<23,0,O>, ?) (<23,0,P>, P) (<23,0,Q>, ?) (<24,0,A>, ?) (<24,0,C>, 2*D) (<24,0,D>, D) (<24,0,E>, 4*D) (<24,0,J>, D) (<24,0,L>, ?) (<24,0,N>, N) (<24,0,O>, ?) (<24,0,P>, P) (<24,0,Q>, ?) (<25,0,A>, ?) (<25,0,C>, 2*D) (<25,0,D>, D) (<25,0,E>, 4*D) (<25,0,J>, D) (<25,0,L>, ?) (<25,0,N>, N) (<25,0,O>, ?) (<25,0,P>, P) (<25,0,Q>, ?) (<26,0,A>, ?) (<26,0,C>, 2*D) (<26,0,D>, D) (<26,0,E>, 4*D) (<26,0,J>, D) (<26,0,L>, ?) (<26,0,N>, N) (<26,0,O>, ?) (<26,0,P>, P) (<26,0,Q>, ?) (<27,0,A>, ?) (<27,0,C>, 2*D) (<27,0,D>, D) (<27,0,E>, 4*D) (<27,0,J>, D) (<27,0,L>, 0) (<27,0,N>, N) (<27,0,O>, ?) (<27,0,P>, P) (<27,0,Q>, ?) (<28,0,A>, ?) (<28,0,C>, 2*D) (<28,0,D>, D) (<28,0,E>, 4*D) (<28,0,J>, D) (<28,0,L>, ?) (<28,0,N>, N) (<28,0,O>, ?) (<28,0,P>, P) (<28,0,Q>, ?) (<29,0,A>, ?) (<29,0,C>, 2*D) (<29,0,D>, D) (<29,0,E>, 4*D) (<29,0,J>, D) (<29,0,L>, ?) (<29,0,N>, N) (<29,0,O>, ?) (<29,0,P>, P) (<29,0,Q>, ?) (<30,0,A>, ?) (<30,0,C>, 2*D) (<30,0,D>, D) (<30,0,E>, 4*D) (<30,0,J>, 1 + D) (<30,0,L>, ?) (<30,0,N>, N) (<30,0,O>, ?) (<30,0,P>, P) (<30,0,Q>, ?) (<32,0,A>, ?) (<32,0,C>, 2*D) (<32,0,D>, D) (<32,0,E>, 4*D) (<32,0,J>, ?) (<32,0,L>, ?) (<32,0,N>, N) (<32,0,O>, ?) (<32,0,P>, P) (<32,0,Q>, ?) (<33,0,A>, ?) (<33,0,C>, 2*D) (<33,0,D>, D) (<33,0,E>, 4*D) (<33,0,J>, ?) (<33,0,L>, ?) (<33,0,N>, N) (<33,0,O>, ?) (<33,0,P>, P) (<33,0,Q>, ?) (<34,0,A>, ?) (<34,0,C>, 2*D) (<34,0,D>, D) (<34,0,E>, 4*D) (<34,0,J>, ?) (<34,0,L>, ?) (<34,0,N>, N) (<34,0,O>, ?) (<34,0,P>, P) (<34,0,Q>, ?) (<35,0,A>, ?) (<35,0,C>, 2*D) (<35,0,D>, D) (<35,0,E>, 4*D) (<35,0,J>, ?) (<35,0,L>, ?) (<35,0,N>, N) (<35,0,O>, ?) (<35,0,P>, P) (<35,0,Q>, ?) (<36,0,A>, ?) (<36,0,C>, 2*D) (<36,0,D>, D) (<36,0,E>, 4*D) (<36,0,J>, ?) (<36,0,L>, ?) (<36,0,N>, N) (<36,0,O>, ?) (<36,0,P>, 0) (<36,0,Q>, P) (<37,0,A>, ?) (<37,0,C>, 2*D) (<37,0,D>, D) (<37,0,E>, 4*D) (<37,0,J>, ?) (<37,0,L>, ?) (<37,0,N>, N) (<37,0,O>, ?) (<37,0,P>, P) (<37,0,Q>, 0) (<38,0,A>, ?) (<38,0,C>, 2*D) (<38,0,D>, D) (<38,0,E>, 4*D) (<38,0,J>, ?) (<38,0,L>, ?) (<38,0,N>, N) (<38,0,O>, ?) (<38,0,P>, P) (<38,0,Q>, 0) (<39,0,A>, ?) (<39,0,C>, 2*D) (<39,0,D>, D) (<39,0,E>, 4*D) (<39,0,J>, ?) (<39,0,L>, ?) (<39,0,N>, N) (<39,0,O>, ?) (<39,0,P>, P) (<39,0,Q>, 0) (<40,0,A>, ?) (<40,0,C>, 2*D) (<40,0,D>, D) (<40,0,E>, 4*D) (<40,0,J>, ?) (<40,0,L>, ?) (<40,0,N>, N) (<40,0,O>, ?) (<40,0,P>, P) (<40,0,Q>, ?) (<41,0,A>, ?) (<41,0,C>, 2*D) (<41,0,D>, D) (<41,0,E>, 4*D) (<41,0,J>, ?) (<41,0,L>, ?) (<41,0,N>, N) (<41,0,O>, ?) (<41,0,P>, P) (<41,0,Q>, ?) (<42,0,A>, ?) (<42,0,C>, 2*D) (<42,0,D>, D) (<42,0,E>, 4*D) (<42,0,J>, 1 + 2*D + J) (<42,0,L>, ?) (<42,0,N>, N) (<42,0,O>, O) (<42,0,P>, P) (<42,0,Q>, Q) (<43,0,A>, ?) (<43,0,C>, 2*D) (<43,0,D>, D) (<43,0,E>, 4*D) (<43,0,J>, 1 + 2*D + J) (<43,0,L>, ?) (<43,0,N>, N) (<43,0,O>, O) (<43,0,P>, P) (<43,0,Q>, Q) (<44,0,A>, ?) (<44,0,C>, 2*D) (<44,0,D>, D) (<44,0,E>, 4*D) (<44,0,J>, 1 + 2*D + J) (<44,0,L>, ?) (<44,0,N>, N) (<44,0,O>, O) (<44,0,P>, P) (<44,0,Q>, Q) (<45,0,A>, ?) (<45,0,C>, 2*D) (<45,0,D>, D) (<45,0,E>, 4*D) (<45,0,J>, 1 + 2*D + J) (<45,0,L>, ?) (<45,0,N>, N) (<45,0,O>, O) (<45,0,P>, 0) (<45,0,Q>, Q) (<46,0,A>, ?) (<46,0,C>, 2*D) (<46,0,D>, D) (<46,0,E>, 4*D) (<46,0,J>, 1 + 2*D + J) (<46,0,L>, ?) (<46,0,N>, N) (<46,0,O>, O) (<46,0,P>, P) (<46,0,Q>, Q) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f103) = 1 + x3 + -1*x5 p(f107) = x3 + -1*x5 p(f118) = 1 + x3 + -1*x5 p(f13) = 0 p(f2) = 0 p(f24) = 0 p(f31) = 0 p(f37) = 1 + x3 + -1*x5 p(f40) = 1 + x3 + -1*x5 p(f44) = 1 + x3 + -1*x5 p(f50) = 1 + x3 + -1*x5 p(f57) = 1 + x3 + -1*x5 p(f64) = 1 + x3 + -1*x5 p(f71) = 1 + x3 + -1*x5 p(f86) = 1 + x3 + -1*x5 p(f91) = 1 + x3 + -1*x5 p(f99) = 1 + x3 + -1*x5 The following rules are strictly oriented: [D >= J] ==> f44(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J > D + -1*J = f44(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] ==> f118(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J > D + -1*J = f118(A,C,D,E,1 + J,L,N,O,P,Q) The following rules are weakly oriented: True ==> f2(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f13(0,2*D,D,4*D,J,L,N,O,P,Q) [C >= J] ==> f13(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f13(A,C,D,E,1 + J,0,N,O,P,Q) [C1 >= 2 && C >= J] ==> f13(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [0 >= C1 && C >= J] ==> f13(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [D >= J] ==> f24(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f24(A,C,D,E,1 + J,L,N,O,P,Q) [N >= O] ==> f37(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f40(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && 0 >= Q] ==> f40(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f44(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && 0 >= Q] ==> f40(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f44(A,C,D,E,J,L,N,O,P,Q) [0 >= Q && P = 0] ==> f40(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f64(A,C,D,E,J,L,N,O,0,Q) [E >= J] ==> f64(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= -1 + D + -1*J = f64(A,C,D,E,2 + J,L,N,O,P,Q) [C >= J] ==> f71(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= D + -1*J = f71(A,C,D,E,1 + J,L,N,O,P,Q) [L = 0] ==> f86(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f91(A,C,D,E,J,0,N,O,P,Q) [0 >= 1 + L] ==> f86(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f91(A,C,D,E,J,L,N,O,P,Q) [L >= 1] ==> f86(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f91(A,C,D,E,J,L,N,O,P,Q) [D >= J] ==> f91(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f99(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && D >= J] ==> f91(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f99(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && D >= J] ==> f91(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f99(A,C,D,E,J,B1,N,O,P,Q) [L = 0] ==> f99(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f103(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] ==> f99(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f103(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] ==> f99(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f103(A,C,D,E,J,B1,N,O,P,Q) [L = 0] ==> f103(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= D + -1*J = f107(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] ==> f103(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= D + -1*J = f107(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] ==> f103(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= D + -1*J = f107(A,C,D,E,J,B1,N,O,P,Q) [L = 0] ==> f107(A,C,D,E,J,L,N,O,P,Q) = D + -1*J >= D + -1*J = f91(A,C,D,E,1 + J,0,N,O,P,Q) [0 >= 1 + L] ==> f107(A,C,D,E,J,L,N,O,P,Q) = D + -1*J >= D + -1*J = f91(A,C,D,E,1 + J,L,N,O,P,Q) [L >= 1] ==> f107(A,C,D,E,J,L,N,O,P,Q) = D + -1*J >= D + -1*J = f91(A,C,D,E,1 + J,L,N,O,P,Q) [J >= 1 + D] ==> f91(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f37(A,C,D,E,J,L,N,1 + O,P,Q) [J >= 1 + C] ==> f71(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f86(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && J >= 1 + C] ==> f71(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f86(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && J >= 1 + C] ==> f71(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f86(A,C,D,E,J,B1,N,O,P,Q) [J >= 1 + E] ==> f64(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] ==> f57(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] ==> f50(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f57(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] ==> f44(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f50(A,C,D,E,J,L,N,O,P,Q) [Q >= 1] ==> f40(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f71(A,C,D,E,J,L,N,O,P,Q) [O >= 1 + N] ==> f37(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f118(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] ==> f31(A,C,D,E,J,L,N,O,P,Q) = 0 >= 1 + D + -1*J = f37(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && J >= 1 + D] ==> f24(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f31(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && J >= 1 + D] ==> f24(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f31(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D && P = 0] ==> f24(A,C,D,E,J,L,N,O,P,Q) = 0 >= 1 + D + -1*J = f37(A,C,D,E,J,L,N,O,0,Q) [J >= 1 + C] ==> f13(A,C,D,E,J,L,N,O,P,Q) = 0 >= 0 = f24(A,C,D,E,J,L,N,O,P,Q) * Step 17: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,C,D,E,J,L,N,O,P,Q) -> f13(0,2*D,D,4*D,J,L,N,O,P,Q) True (1,1) 1. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A,C,D,E,1 + J,0,N,O,P,Q) [C >= J] (?,1) 2. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [C1 >= 2 && C >= J] (?,1) 3. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [0 >= C1 && C >= J] (?,1) 4. f24(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 6. f37(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,Q) [N >= O] (?,1) 7. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && 0 >= Q] (?,1) 8. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && 0 >= Q] (?,1) 9. f44(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (0,1) 12. f40(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,J,L,N,O,0,Q) [0 >= Q && P = 0] (?,1) 13. f64(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,2 + J,L,N,O,P,Q) [E >= J] (?,1) 14. f71(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,1 + J,L,N,O,P,Q) [C >= J] (?,1) 15. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,0,N,O,P,Q) [L = 0] (?,1) 16. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + L] (?,1) 17. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [L >= 1] (?,1) 18. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D >= J] (0,1) 19. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && D >= J] (0,1) 20. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && D >= J] (0,1) 21. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (0,1) 22. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (0,1) 23. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (0,1) 24. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (?,1) 25. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (?,1) 26. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (0,1) 27. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,0,N,O,P,Q) [L = 0] (?,1) 28. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [0 >= 1 + L] (?,1) 29. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [L >= 1] (?,1) 30. f118(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (0,1) 32. f91(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,1 + O,P,Q) [J >= 1 + D] (?,1) 33. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [J >= 1 + C] (?,1) 34. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && J >= 1 + C] (?,1) 35. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && J >= 1 + C] (?,1) 36. f64(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + E] (?,1) 37. f57(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] (?,1) 38. f50(A,C,D,E,J,L,N,O,P,Q) -> f57(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (?,1) 39. f44(A,C,D,E,J,L,N,O,P,Q) -> f50(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (?,1) 40. f40(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,J,L,N,O,P,Q) [Q >= 1] (?,1) 41. f37(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,J,L,N,O,P,Q) [O >= 1 + N] (?,1) 42. f31(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (2*P,1) 43. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && J >= 1 + D] (P,1) 44. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && J >= 1 + D] (P,1) 45. f24(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,0,Q) [J >= 1 + D && P = 0] (?,1) 46. f13(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + C] (1,1) Signature: {(f1,10) ;(f103,10) ;(f107,10) ;(f118,10) ;(f13,10) ;(f2,10) ;(f24,10) ;(f31,10) ;(f37,10) ;(f40,10) ;(f44,10) ;(f50,10) ;(f57,10) ;(f64,10) ;(f71,10) ;(f86,10) ;(f91,10) ;(f99,10)} Flow Graph: [0->{1,2,3,46},1->{1,2,3,46},2->{1,2,3,46},3->{1,2,3,46},4->{4,43,44,45},6->{7,8,12,40},7->{9,39},8->{9 ,39},9->{9,39},12->{13,36},13->{13,36},14->{14,33,34,35},15->{18,19,20,32},16->{18,19,20,32},17->{18,19,20 ,32},18->{21,22,23},19->{21,22,23},20->{21,22,23},21->{24,25,26},22->{24,25,26},23->{24,25,26},24->{27,28 ,29},25->{27,28,29},26->{27,28,29},27->{18,19,20,32},28->{18,19,20,32},29->{18,19,20,32},30->{30},32->{6,41} ,33->{15,16,17},34->{15,16,17},35->{15,16,17},36->{7,8,12,40},37->{7,8,12,40},38->{37},39->{38},40->{14,33 ,34,35},41->{30},42->{6,41},43->{42},44->{42},45->{6,41},46->{4,43,44,45}] Sizebounds: (< 0,0,A>, 0) (< 0,0,C>, 2*D) (< 0,0,D>, D) (< 0,0,E>, 4*D) (< 0,0,J>, J) (< 0,0,L>, L) (< 0,0,N>, N) (< 0,0,O>, O) (< 0,0,P>, P) (< 0,0,Q>, Q) (< 1,0,A>, ?) (< 1,0,C>, 2*D) (< 1,0,D>, D) (< 1,0,E>, 4*D) (< 1,0,J>, 1 + 2*D) (< 1,0,L>, 0) (< 1,0,N>, N) (< 1,0,O>, O) (< 1,0,P>, P) (< 1,0,Q>, Q) (< 2,0,A>, ?) (< 2,0,C>, 2*D) (< 2,0,D>, D) (< 2,0,E>, 4*D) (< 2,0,J>, 1 + 2*D) (< 2,0,L>, ?) (< 2,0,N>, N) (< 2,0,O>, O) (< 2,0,P>, P) (< 2,0,Q>, Q) (< 3,0,A>, ?) (< 3,0,C>, 2*D) (< 3,0,D>, D) (< 3,0,E>, 4*D) (< 3,0,J>, 1 + 2*D) (< 3,0,L>, ?) (< 3,0,N>, N) (< 3,0,O>, O) (< 3,0,P>, P) (< 3,0,Q>, Q) (< 4,0,A>, ?) (< 4,0,C>, 2*D) (< 4,0,D>, D) (< 4,0,E>, 4*D) (< 4,0,J>, 1 + D) (< 4,0,L>, ?) (< 4,0,N>, N) (< 4,0,O>, O) (< 4,0,P>, P) (< 4,0,Q>, Q) (< 6,0,A>, ?) (< 6,0,C>, 2*D) (< 6,0,D>, D) (< 6,0,E>, 4*D) (< 6,0,J>, ?) (< 6,0,L>, ?) (< 6,0,N>, N) (< 6,0,O>, N) (< 6,0,P>, P) (< 6,0,Q>, ?) (< 7,0,A>, ?) (< 7,0,C>, 2*D) (< 7,0,D>, D) (< 7,0,E>, 4*D) (< 7,0,J>, ?) (< 7,0,L>, ?) (< 7,0,N>, N) (< 7,0,O>, ?) (< 7,0,P>, P) (< 7,0,Q>, 0) (< 8,0,A>, ?) (< 8,0,C>, 2*D) (< 8,0,D>, D) (< 8,0,E>, 4*D) (< 8,0,J>, ?) (< 8,0,L>, ?) (< 8,0,N>, N) (< 8,0,O>, ?) (< 8,0,P>, P) (< 8,0,Q>, 0) (< 9,0,A>, ?) (< 9,0,C>, 2*D) (< 9,0,D>, D) (< 9,0,E>, 4*D) (< 9,0,J>, 1 + D) (< 9,0,L>, ?) (< 9,0,N>, N) (< 9,0,O>, ?) (< 9,0,P>, P) (< 9,0,Q>, 0) (<12,0,A>, ?) (<12,0,C>, 2*D) (<12,0,D>, D) (<12,0,E>, 4*D) (<12,0,J>, ?) (<12,0,L>, ?) (<12,0,N>, N) (<12,0,O>, ?) (<12,0,P>, 0) (<12,0,Q>, P) (<13,0,A>, ?) (<13,0,C>, 2*D) (<13,0,D>, D) (<13,0,E>, 4*D) (<13,0,J>, 2 + 4*D) (<13,0,L>, ?) (<13,0,N>, N) (<13,0,O>, ?) (<13,0,P>, 0) (<13,0,Q>, P) (<14,0,A>, ?) (<14,0,C>, 2*D) (<14,0,D>, D) (<14,0,E>, 4*D) (<14,0,J>, 1 + 2*D) (<14,0,L>, ?) (<14,0,N>, N) (<14,0,O>, ?) (<14,0,P>, P) (<14,0,Q>, ?) (<15,0,A>, ?) (<15,0,C>, 2*D) (<15,0,D>, D) (<15,0,E>, 4*D) (<15,0,J>, ?) (<15,0,L>, 0) (<15,0,N>, N) (<15,0,O>, ?) (<15,0,P>, P) (<15,0,Q>, ?) (<16,0,A>, ?) (<16,0,C>, 2*D) (<16,0,D>, D) (<16,0,E>, 4*D) (<16,0,J>, ?) (<16,0,L>, ?) (<16,0,N>, N) (<16,0,O>, ?) (<16,0,P>, P) (<16,0,Q>, ?) (<17,0,A>, ?) (<17,0,C>, 2*D) (<17,0,D>, D) (<17,0,E>, 4*D) (<17,0,J>, ?) (<17,0,L>, ?) (<17,0,N>, N) (<17,0,O>, ?) (<17,0,P>, P) (<17,0,Q>, ?) (<18,0,A>, ?) (<18,0,C>, 2*D) (<18,0,D>, D) (<18,0,E>, 4*D) (<18,0,J>, D) (<18,0,L>, ?) (<18,0,N>, N) (<18,0,O>, ?) (<18,0,P>, P) (<18,0,Q>, ?) (<19,0,A>, ?) (<19,0,C>, 2*D) (<19,0,D>, D) (<19,0,E>, 4*D) (<19,0,J>, D) (<19,0,L>, ?) (<19,0,N>, N) (<19,0,O>, ?) (<19,0,P>, P) (<19,0,Q>, ?) (<20,0,A>, ?) (<20,0,C>, 2*D) (<20,0,D>, D) (<20,0,E>, 4*D) (<20,0,J>, D) (<20,0,L>, ?) (<20,0,N>, N) (<20,0,O>, ?) (<20,0,P>, P) (<20,0,Q>, ?) (<21,0,A>, ?) (<21,0,C>, 2*D) (<21,0,D>, D) (<21,0,E>, 4*D) (<21,0,J>, D) (<21,0,L>, ?) (<21,0,N>, N) (<21,0,O>, ?) (<21,0,P>, P) (<21,0,Q>, ?) (<22,0,A>, ?) (<22,0,C>, 2*D) (<22,0,D>, D) (<22,0,E>, 4*D) (<22,0,J>, D) (<22,0,L>, ?) (<22,0,N>, N) (<22,0,O>, ?) (<22,0,P>, P) (<22,0,Q>, ?) (<23,0,A>, ?) (<23,0,C>, 2*D) (<23,0,D>, D) (<23,0,E>, 4*D) (<23,0,J>, D) (<23,0,L>, ?) (<23,0,N>, N) (<23,0,O>, ?) (<23,0,P>, P) (<23,0,Q>, ?) (<24,0,A>, ?) (<24,0,C>, 2*D) (<24,0,D>, D) (<24,0,E>, 4*D) (<24,0,J>, D) (<24,0,L>, ?) (<24,0,N>, N) (<24,0,O>, ?) (<24,0,P>, P) (<24,0,Q>, ?) (<25,0,A>, ?) (<25,0,C>, 2*D) (<25,0,D>, D) (<25,0,E>, 4*D) (<25,0,J>, D) (<25,0,L>, ?) (<25,0,N>, N) (<25,0,O>, ?) (<25,0,P>, P) (<25,0,Q>, ?) (<26,0,A>, ?) (<26,0,C>, 2*D) (<26,0,D>, D) (<26,0,E>, 4*D) (<26,0,J>, D) (<26,0,L>, ?) (<26,0,N>, N) (<26,0,O>, ?) (<26,0,P>, P) (<26,0,Q>, ?) (<27,0,A>, ?) (<27,0,C>, 2*D) (<27,0,D>, D) (<27,0,E>, 4*D) (<27,0,J>, D) (<27,0,L>, 0) (<27,0,N>, N) (<27,0,O>, ?) (<27,0,P>, P) (<27,0,Q>, ?) (<28,0,A>, ?) (<28,0,C>, 2*D) (<28,0,D>, D) (<28,0,E>, 4*D) (<28,0,J>, D) (<28,0,L>, ?) (<28,0,N>, N) (<28,0,O>, ?) (<28,0,P>, P) (<28,0,Q>, ?) (<29,0,A>, ?) (<29,0,C>, 2*D) (<29,0,D>, D) (<29,0,E>, 4*D) (<29,0,J>, D) (<29,0,L>, ?) (<29,0,N>, N) (<29,0,O>, ?) (<29,0,P>, P) (<29,0,Q>, ?) (<30,0,A>, ?) (<30,0,C>, 2*D) (<30,0,D>, D) (<30,0,E>, 4*D) (<30,0,J>, 1 + D) (<30,0,L>, ?) (<30,0,N>, N) (<30,0,O>, ?) (<30,0,P>, P) (<30,0,Q>, ?) (<32,0,A>, ?) (<32,0,C>, 2*D) (<32,0,D>, D) (<32,0,E>, 4*D) (<32,0,J>, ?) (<32,0,L>, ?) (<32,0,N>, N) (<32,0,O>, ?) (<32,0,P>, P) (<32,0,Q>, ?) (<33,0,A>, ?) (<33,0,C>, 2*D) (<33,0,D>, D) (<33,0,E>, 4*D) (<33,0,J>, ?) (<33,0,L>, ?) (<33,0,N>, N) (<33,0,O>, ?) (<33,0,P>, P) (<33,0,Q>, ?) (<34,0,A>, ?) (<34,0,C>, 2*D) (<34,0,D>, D) (<34,0,E>, 4*D) (<34,0,J>, ?) (<34,0,L>, ?) (<34,0,N>, N) (<34,0,O>, ?) (<34,0,P>, P) (<34,0,Q>, ?) (<35,0,A>, ?) (<35,0,C>, 2*D) (<35,0,D>, D) (<35,0,E>, 4*D) (<35,0,J>, ?) (<35,0,L>, ?) (<35,0,N>, N) (<35,0,O>, ?) (<35,0,P>, P) (<35,0,Q>, ?) (<36,0,A>, ?) (<36,0,C>, 2*D) (<36,0,D>, D) (<36,0,E>, 4*D) (<36,0,J>, ?) (<36,0,L>, ?) (<36,0,N>, N) (<36,0,O>, ?) (<36,0,P>, 0) (<36,0,Q>, P) (<37,0,A>, ?) (<37,0,C>, 2*D) (<37,0,D>, D) (<37,0,E>, 4*D) (<37,0,J>, ?) (<37,0,L>, ?) (<37,0,N>, N) (<37,0,O>, ?) (<37,0,P>, P) (<37,0,Q>, 0) (<38,0,A>, ?) (<38,0,C>, 2*D) (<38,0,D>, D) (<38,0,E>, 4*D) (<38,0,J>, ?) (<38,0,L>, ?) (<38,0,N>, N) (<38,0,O>, ?) (<38,0,P>, P) (<38,0,Q>, 0) (<39,0,A>, ?) (<39,0,C>, 2*D) (<39,0,D>, D) (<39,0,E>, 4*D) (<39,0,J>, ?) (<39,0,L>, ?) (<39,0,N>, N) (<39,0,O>, ?) (<39,0,P>, P) (<39,0,Q>, 0) (<40,0,A>, ?) (<40,0,C>, 2*D) (<40,0,D>, D) (<40,0,E>, 4*D) (<40,0,J>, ?) (<40,0,L>, ?) (<40,0,N>, N) (<40,0,O>, ?) (<40,0,P>, P) (<40,0,Q>, ?) (<41,0,A>, ?) (<41,0,C>, 2*D) (<41,0,D>, D) (<41,0,E>, 4*D) (<41,0,J>, ?) (<41,0,L>, ?) (<41,0,N>, N) (<41,0,O>, ?) (<41,0,P>, P) (<41,0,Q>, ?) (<42,0,A>, ?) (<42,0,C>, 2*D) (<42,0,D>, D) (<42,0,E>, 4*D) (<42,0,J>, 1 + 2*D + J) (<42,0,L>, ?) (<42,0,N>, N) (<42,0,O>, O) (<42,0,P>, P) (<42,0,Q>, Q) (<43,0,A>, ?) (<43,0,C>, 2*D) (<43,0,D>, D) (<43,0,E>, 4*D) (<43,0,J>, 1 + 2*D + J) (<43,0,L>, ?) (<43,0,N>, N) (<43,0,O>, O) (<43,0,P>, P) (<43,0,Q>, Q) (<44,0,A>, ?) (<44,0,C>, 2*D) (<44,0,D>, D) (<44,0,E>, 4*D) (<44,0,J>, 1 + 2*D + J) (<44,0,L>, ?) (<44,0,N>, N) (<44,0,O>, O) (<44,0,P>, P) (<44,0,Q>, Q) (<45,0,A>, ?) (<45,0,C>, 2*D) (<45,0,D>, D) (<45,0,E>, 4*D) (<45,0,J>, 1 + 2*D + J) (<45,0,L>, ?) (<45,0,N>, N) (<45,0,O>, O) (<45,0,P>, 0) (<45,0,Q>, Q) (<46,0,A>, ?) (<46,0,C>, 2*D) (<46,0,D>, D) (<46,0,E>, 4*D) (<46,0,J>, 1 + 2*D + J) (<46,0,L>, ?) (<46,0,N>, N) (<46,0,O>, O) (<46,0,P>, P) (<46,0,Q>, Q) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 18: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,C,D,E,J,L,N,O,P,Q) -> f13(0,2*D,D,4*D,J,L,N,O,P,Q) True (1,1) 1. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A,C,D,E,1 + J,0,N,O,P,Q) [C >= J] (?,1) 2. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [C1 >= 2 && C >= J] (?,1) 3. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [0 >= C1 && C >= J] (?,1) 4. f24(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 6. f37(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,Q) [N >= O] (?,1) 7. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && 0 >= Q] (?,1) 8. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && 0 >= Q] (?,1) 9. f44(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (0,1) 12. f40(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,J,L,N,O,0,Q) [0 >= Q && P = 0] (?,1) 13. f64(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,2 + J,L,N,O,P,Q) [E >= J] (?,1) 14. f71(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,1 + J,L,N,O,P,Q) [C >= J] (?,1) 15. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,0,N,O,P,Q) [L = 0] (?,1) 16. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + L] (?,1) 17. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [L >= 1] (?,1) 18. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D >= J] (0,1) 19. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && D >= J] (0,1) 20. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && D >= J] (0,1) 21. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (0,1) 22. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (0,1) 23. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (0,1) 24. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (0,1) 25. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (0,1) 26. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (0,1) 27. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,0,N,O,P,Q) [L = 0] (?,1) 28. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [0 >= 1 + L] (0,1) 29. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [L >= 1] (0,1) 30. f118(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (0,1) 32. f91(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,1 + O,P,Q) [J >= 1 + D] (?,1) 33. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [J >= 1 + C] (?,1) 34. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && J >= 1 + C] (?,1) 35. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && J >= 1 + C] (?,1) 36. f64(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + E] (?,1) 37. f57(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] (?,1) 38. f50(A,C,D,E,J,L,N,O,P,Q) -> f57(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (?,1) 39. f44(A,C,D,E,J,L,N,O,P,Q) -> f50(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (?,1) 40. f40(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,J,L,N,O,P,Q) [Q >= 1] (?,1) 41. f37(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,J,L,N,O,P,Q) [O >= 1 + N] (?,1) 42. f31(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (2*P,1) 43. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && J >= 1 + D] (P,1) 44. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && J >= 1 + D] (P,1) 45. f24(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,0,Q) [J >= 1 + D && P = 0] (?,1) 46. f13(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + C] (1,1) Signature: {(f1,10) ;(f103,10) ;(f107,10) ;(f118,10) ;(f13,10) ;(f2,10) ;(f24,10) ;(f31,10) ;(f37,10) ;(f40,10) ;(f44,10) ;(f50,10) ;(f57,10) ;(f64,10) ;(f71,10) ;(f86,10) ;(f91,10) ;(f99,10)} Flow Graph: [0->{1,2,3,46},1->{1,2,3,46},2->{1,2,3,46},3->{1,2,3,46},4->{4,43,44,45},6->{7,8,12,40},7->{9,39},8->{9 ,39},9->{9,39},12->{13,36},13->{13,36},14->{14,33,34,35},15->{18,19,20,32},16->{18,19,20,32},17->{18,19,20 ,32},18->{21,22,23},19->{21,22,23},20->{21,22,23},21->{24,25,26},22->{24,25,26},23->{24,25,26},24->{27,28 ,29},25->{27,28,29},26->{27,28,29},27->{18,19,20,32},28->{18,19,20,32},29->{18,19,20,32},30->{30},32->{6,41} ,33->{15,16,17},34->{15,16,17},35->{15,16,17},36->{7,8,12,40},37->{7,8,12,40},38->{37},39->{38},40->{14,33 ,34,35},41->{30},42->{6,41},43->{42},44->{42},45->{6,41},46->{4,43,44,45}] Sizebounds: (< 0,0,A>, 0) (< 0,0,C>, 2*D) (< 0,0,D>, D) (< 0,0,E>, 4*D) (< 0,0,J>, J) (< 0,0,L>, L) (< 0,0,N>, N) (< 0,0,O>, O) (< 0,0,P>, P) (< 0,0,Q>, Q) (< 1,0,A>, ?) (< 1,0,C>, 2*D) (< 1,0,D>, D) (< 1,0,E>, 4*D) (< 1,0,J>, 1 + 2*D) (< 1,0,L>, 0) (< 1,0,N>, N) (< 1,0,O>, O) (< 1,0,P>, P) (< 1,0,Q>, Q) (< 2,0,A>, ?) (< 2,0,C>, 2*D) (< 2,0,D>, D) (< 2,0,E>, 4*D) (< 2,0,J>, 1 + 2*D) (< 2,0,L>, ?) (< 2,0,N>, N) (< 2,0,O>, O) (< 2,0,P>, P) (< 2,0,Q>, Q) (< 3,0,A>, ?) (< 3,0,C>, 2*D) (< 3,0,D>, D) (< 3,0,E>, 4*D) (< 3,0,J>, 1 + 2*D) (< 3,0,L>, ?) (< 3,0,N>, N) (< 3,0,O>, O) (< 3,0,P>, P) (< 3,0,Q>, Q) (< 4,0,A>, ?) (< 4,0,C>, 2*D) (< 4,0,D>, D) (< 4,0,E>, 4*D) (< 4,0,J>, 1 + D) (< 4,0,L>, ?) (< 4,0,N>, N) (< 4,0,O>, O) (< 4,0,P>, P) (< 4,0,Q>, Q) (< 6,0,A>, ?) (< 6,0,C>, 2*D) (< 6,0,D>, D) (< 6,0,E>, 4*D) (< 6,0,J>, ?) (< 6,0,L>, ?) (< 6,0,N>, N) (< 6,0,O>, N) (< 6,0,P>, P) (< 6,0,Q>, ?) (< 7,0,A>, ?) (< 7,0,C>, 2*D) (< 7,0,D>, D) (< 7,0,E>, 4*D) (< 7,0,J>, ?) (< 7,0,L>, ?) (< 7,0,N>, N) (< 7,0,O>, ?) (< 7,0,P>, P) (< 7,0,Q>, 0) (< 8,0,A>, ?) (< 8,0,C>, 2*D) (< 8,0,D>, D) (< 8,0,E>, 4*D) (< 8,0,J>, ?) (< 8,0,L>, ?) (< 8,0,N>, N) (< 8,0,O>, ?) (< 8,0,P>, P) (< 8,0,Q>, 0) (< 9,0,A>, ?) (< 9,0,C>, 2*D) (< 9,0,D>, D) (< 9,0,E>, 4*D) (< 9,0,J>, 1 + D) (< 9,0,L>, ?) (< 9,0,N>, N) (< 9,0,O>, ?) (< 9,0,P>, P) (< 9,0,Q>, 0) (<12,0,A>, ?) (<12,0,C>, 2*D) (<12,0,D>, D) (<12,0,E>, 4*D) (<12,0,J>, ?) (<12,0,L>, ?) (<12,0,N>, N) (<12,0,O>, ?) (<12,0,P>, 0) (<12,0,Q>, P) (<13,0,A>, ?) (<13,0,C>, 2*D) (<13,0,D>, D) (<13,0,E>, 4*D) (<13,0,J>, 2 + 4*D) (<13,0,L>, ?) (<13,0,N>, N) (<13,0,O>, ?) (<13,0,P>, 0) (<13,0,Q>, P) (<14,0,A>, ?) (<14,0,C>, 2*D) (<14,0,D>, D) (<14,0,E>, 4*D) (<14,0,J>, 1 + 2*D) (<14,0,L>, ?) (<14,0,N>, N) (<14,0,O>, ?) (<14,0,P>, P) (<14,0,Q>, ?) (<15,0,A>, ?) (<15,0,C>, 2*D) (<15,0,D>, D) (<15,0,E>, 4*D) (<15,0,J>, ?) (<15,0,L>, 0) (<15,0,N>, N) (<15,0,O>, ?) (<15,0,P>, P) (<15,0,Q>, ?) (<16,0,A>, ?) (<16,0,C>, 2*D) (<16,0,D>, D) (<16,0,E>, 4*D) (<16,0,J>, ?) (<16,0,L>, ?) (<16,0,N>, N) (<16,0,O>, ?) (<16,0,P>, P) (<16,0,Q>, ?) (<17,0,A>, ?) (<17,0,C>, 2*D) (<17,0,D>, D) (<17,0,E>, 4*D) (<17,0,J>, ?) (<17,0,L>, ?) (<17,0,N>, N) (<17,0,O>, ?) (<17,0,P>, P) (<17,0,Q>, ?) (<18,0,A>, ?) (<18,0,C>, 2*D) (<18,0,D>, D) (<18,0,E>, 4*D) (<18,0,J>, D) (<18,0,L>, ?) (<18,0,N>, N) (<18,0,O>, ?) (<18,0,P>, P) (<18,0,Q>, ?) (<19,0,A>, ?) (<19,0,C>, 2*D) (<19,0,D>, D) (<19,0,E>, 4*D) (<19,0,J>, D) (<19,0,L>, ?) (<19,0,N>, N) (<19,0,O>, ?) (<19,0,P>, P) (<19,0,Q>, ?) (<20,0,A>, ?) (<20,0,C>, 2*D) (<20,0,D>, D) (<20,0,E>, 4*D) (<20,0,J>, D) (<20,0,L>, ?) (<20,0,N>, N) (<20,0,O>, ?) (<20,0,P>, P) (<20,0,Q>, ?) (<21,0,A>, ?) (<21,0,C>, 2*D) (<21,0,D>, D) (<21,0,E>, 4*D) (<21,0,J>, D) (<21,0,L>, ?) (<21,0,N>, N) (<21,0,O>, ?) (<21,0,P>, P) (<21,0,Q>, ?) (<22,0,A>, ?) (<22,0,C>, 2*D) (<22,0,D>, D) (<22,0,E>, 4*D) (<22,0,J>, D) (<22,0,L>, ?) (<22,0,N>, N) (<22,0,O>, ?) (<22,0,P>, P) (<22,0,Q>, ?) (<23,0,A>, ?) (<23,0,C>, 2*D) (<23,0,D>, D) (<23,0,E>, 4*D) (<23,0,J>, D) (<23,0,L>, ?) (<23,0,N>, N) (<23,0,O>, ?) (<23,0,P>, P) (<23,0,Q>, ?) (<24,0,A>, ?) (<24,0,C>, 2*D) (<24,0,D>, D) (<24,0,E>, 4*D) (<24,0,J>, D) (<24,0,L>, ?) (<24,0,N>, N) (<24,0,O>, ?) (<24,0,P>, P) (<24,0,Q>, ?) (<25,0,A>, ?) (<25,0,C>, 2*D) (<25,0,D>, D) (<25,0,E>, 4*D) (<25,0,J>, D) (<25,0,L>, ?) (<25,0,N>, N) (<25,0,O>, ?) (<25,0,P>, P) (<25,0,Q>, ?) (<26,0,A>, ?) (<26,0,C>, 2*D) (<26,0,D>, D) (<26,0,E>, 4*D) (<26,0,J>, D) (<26,0,L>, ?) (<26,0,N>, N) (<26,0,O>, ?) (<26,0,P>, P) (<26,0,Q>, ?) (<27,0,A>, ?) (<27,0,C>, 2*D) (<27,0,D>, D) (<27,0,E>, 4*D) (<27,0,J>, D) (<27,0,L>, 0) (<27,0,N>, N) (<27,0,O>, ?) (<27,0,P>, P) (<27,0,Q>, ?) (<28,0,A>, ?) (<28,0,C>, 2*D) (<28,0,D>, D) (<28,0,E>, 4*D) (<28,0,J>, D) (<28,0,L>, ?) (<28,0,N>, N) (<28,0,O>, ?) (<28,0,P>, P) (<28,0,Q>, ?) (<29,0,A>, ?) (<29,0,C>, 2*D) (<29,0,D>, D) (<29,0,E>, 4*D) (<29,0,J>, D) (<29,0,L>, ?) (<29,0,N>, N) (<29,0,O>, ?) (<29,0,P>, P) (<29,0,Q>, ?) (<30,0,A>, ?) (<30,0,C>, 2*D) (<30,0,D>, D) (<30,0,E>, 4*D) (<30,0,J>, 1 + D) (<30,0,L>, ?) (<30,0,N>, N) (<30,0,O>, ?) (<30,0,P>, P) (<30,0,Q>, ?) (<32,0,A>, ?) (<32,0,C>, 2*D) (<32,0,D>, D) (<32,0,E>, 4*D) (<32,0,J>, ?) (<32,0,L>, ?) (<32,0,N>, N) (<32,0,O>, ?) (<32,0,P>, P) (<32,0,Q>, ?) (<33,0,A>, ?) (<33,0,C>, 2*D) (<33,0,D>, D) (<33,0,E>, 4*D) (<33,0,J>, ?) (<33,0,L>, ?) (<33,0,N>, N) (<33,0,O>, ?) (<33,0,P>, P) (<33,0,Q>, ?) (<34,0,A>, ?) (<34,0,C>, 2*D) (<34,0,D>, D) (<34,0,E>, 4*D) (<34,0,J>, ?) (<34,0,L>, ?) (<34,0,N>, N) (<34,0,O>, ?) (<34,0,P>, P) (<34,0,Q>, ?) (<35,0,A>, ?) (<35,0,C>, 2*D) (<35,0,D>, D) (<35,0,E>, 4*D) (<35,0,J>, ?) (<35,0,L>, ?) (<35,0,N>, N) (<35,0,O>, ?) (<35,0,P>, P) (<35,0,Q>, ?) (<36,0,A>, ?) (<36,0,C>, 2*D) (<36,0,D>, D) (<36,0,E>, 4*D) (<36,0,J>, ?) (<36,0,L>, ?) (<36,0,N>, N) (<36,0,O>, ?) (<36,0,P>, 0) (<36,0,Q>, P) (<37,0,A>, ?) (<37,0,C>, 2*D) (<37,0,D>, D) (<37,0,E>, 4*D) (<37,0,J>, ?) (<37,0,L>, ?) (<37,0,N>, N) (<37,0,O>, ?) (<37,0,P>, P) (<37,0,Q>, 0) (<38,0,A>, ?) (<38,0,C>, 2*D) (<38,0,D>, D) (<38,0,E>, 4*D) (<38,0,J>, ?) (<38,0,L>, ?) (<38,0,N>, N) (<38,0,O>, ?) (<38,0,P>, P) (<38,0,Q>, 0) (<39,0,A>, ?) (<39,0,C>, 2*D) (<39,0,D>, D) (<39,0,E>, 4*D) (<39,0,J>, ?) (<39,0,L>, ?) (<39,0,N>, N) (<39,0,O>, ?) (<39,0,P>, P) (<39,0,Q>, 0) (<40,0,A>, ?) (<40,0,C>, 2*D) (<40,0,D>, D) (<40,0,E>, 4*D) (<40,0,J>, ?) (<40,0,L>, ?) (<40,0,N>, N) (<40,0,O>, ?) (<40,0,P>, P) (<40,0,Q>, ?) (<41,0,A>, ?) (<41,0,C>, 2*D) (<41,0,D>, D) (<41,0,E>, 4*D) (<41,0,J>, ?) (<41,0,L>, ?) (<41,0,N>, N) (<41,0,O>, ?) (<41,0,P>, P) (<41,0,Q>, ?) (<42,0,A>, ?) (<42,0,C>, 2*D) (<42,0,D>, D) (<42,0,E>, 4*D) (<42,0,J>, 1 + 2*D + J) (<42,0,L>, ?) (<42,0,N>, N) (<42,0,O>, O) (<42,0,P>, P) (<42,0,Q>, Q) (<43,0,A>, ?) (<43,0,C>, 2*D) (<43,0,D>, D) (<43,0,E>, 4*D) (<43,0,J>, 1 + 2*D + J) (<43,0,L>, ?) (<43,0,N>, N) (<43,0,O>, O) (<43,0,P>, P) (<43,0,Q>, Q) (<44,0,A>, ?) (<44,0,C>, 2*D) (<44,0,D>, D) (<44,0,E>, 4*D) (<44,0,J>, 1 + 2*D + J) (<44,0,L>, ?) (<44,0,N>, N) (<44,0,O>, O) (<44,0,P>, P) (<44,0,Q>, Q) (<45,0,A>, ?) (<45,0,C>, 2*D) (<45,0,D>, D) (<45,0,E>, 4*D) (<45,0,J>, 1 + 2*D + J) (<45,0,L>, ?) (<45,0,N>, N) (<45,0,O>, O) (<45,0,P>, 0) (<45,0,Q>, Q) (<46,0,A>, ?) (<46,0,C>, 2*D) (<46,0,D>, D) (<46,0,E>, 4*D) (<46,0,J>, 1 + 2*D + J) (<46,0,L>, ?) (<46,0,N>, N) (<46,0,O>, O) (<46,0,P>, P) (<46,0,Q>, Q) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f103) = 1 + x2 + -1*x5 p(f107) = 1 + x2 + -1*x5 p(f118) = 1 + x2 + -1*x5 p(f13) = x2 + -1*x3 p(f2) = x3 p(f24) = x2 + -1*x3 p(f31) = x2 + -1*x3 p(f37) = 1 + x2 + -1*x5 p(f40) = 1 + x2 + -1*x5 p(f44) = 1 + x2 + -1*x5 p(f50) = 1 + x2 + -1*x5 p(f57) = 1 + x2 + -1*x5 p(f64) = 1 + x2 + -1*x5 p(f71) = 1 + x2 + -1*x5 p(f86) = 1 + x2 + -1*x5 p(f91) = 1 + x2 + -1*x5 p(f99) = 1 + x2 + -1*x5 The following rules are strictly oriented: [C >= J] ==> f71(A,C,D,E,J,L,N,O,P,Q) = 1 + C + -1*J > C + -1*J = f71(A,C,D,E,1 + J,L,N,O,P,Q) The following rules are weakly oriented: True ==> f2(A,C,D,E,J,L,N,O,P,Q) = D >= D = f13(0,2*D,D,4*D,J,L,N,O,P,Q) [C >= J] ==> f13(A,C,D,E,J,L,N,O,P,Q) = C + -1*D >= C + -1*D = f13(A,C,D,E,1 + J,0,N,O,P,Q) [C1 >= 2 && C >= J] ==> f13(A,C,D,E,J,L,N,O,P,Q) = C + -1*D >= C + -1*D = f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [0 >= C1 && C >= J] ==> f13(A,C,D,E,J,L,N,O,P,Q) = C + -1*D >= C + -1*D = f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [D >= J] ==> f24(A,C,D,E,J,L,N,O,P,Q) = C + -1*D >= C + -1*D = f24(A,C,D,E,1 + J,L,N,O,P,Q) [N >= O] ==> f37(A,C,D,E,J,L,N,O,P,Q) = 1 + C + -1*J >= 1 + C + -1*J = f40(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && 0 >= Q] ==> f40(A,C,D,E,J,L,N,O,P,Q) = 1 + C + -1*J >= 1 + C + -1*J = f44(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && 0 >= Q] ==> f40(A,C,D,E,J,L,N,O,P,Q) = 1 + C + -1*J >= 1 + C + -1*J = f44(A,C,D,E,J,L,N,O,P,Q) [D >= J] ==> f44(A,C,D,E,J,L,N,O,P,Q) = 1 + C + -1*J >= C + -1*J = f44(A,C,D,E,1 + J,L,N,O,P,Q) [0 >= Q && P = 0] ==> f40(A,C,D,E,J,L,N,O,P,Q) = 1 + C + -1*J >= 1 + C + -1*J = f64(A,C,D,E,J,L,N,O,0,Q) [E >= J] ==> f64(A,C,D,E,J,L,N,O,P,Q) = 1 + C + -1*J >= -1 + C + -1*J = f64(A,C,D,E,2 + J,L,N,O,P,Q) [L = 0] ==> f86(A,C,D,E,J,L,N,O,P,Q) = 1 + C + -1*J >= 1 + C + -1*J = f91(A,C,D,E,J,0,N,O,P,Q) [0 >= 1 + L] ==> f86(A,C,D,E,J,L,N,O,P,Q) = 1 + C + -1*J >= 1 + C + -1*J = f91(A,C,D,E,J,L,N,O,P,Q) [L >= 1] ==> f86(A,C,D,E,J,L,N,O,P,Q) = 1 + C + -1*J >= 1 + C + -1*J = f91(A,C,D,E,J,L,N,O,P,Q) [D >= J] ==> f91(A,C,D,E,J,L,N,O,P,Q) = 1 + C + -1*J >= 1 + C + -1*J = f99(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && D >= J] ==> f91(A,C,D,E,J,L,N,O,P,Q) = 1 + C + -1*J >= 1 + C + -1*J = f99(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && D >= J] ==> f91(A,C,D,E,J,L,N,O,P,Q) = 1 + C + -1*J >= 1 + C + -1*J = f99(A,C,D,E,J,B1,N,O,P,Q) [L = 0] ==> f99(A,C,D,E,J,L,N,O,P,Q) = 1 + C + -1*J >= 1 + C + -1*J = f103(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] ==> f99(A,C,D,E,J,L,N,O,P,Q) = 1 + C + -1*J >= 1 + C + -1*J = f103(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] ==> f99(A,C,D,E,J,L,N,O,P,Q) = 1 + C + -1*J >= 1 + C + -1*J = f103(A,C,D,E,J,B1,N,O,P,Q) [L = 0] ==> f103(A,C,D,E,J,L,N,O,P,Q) = 1 + C + -1*J >= 1 + C + -1*J = f107(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] ==> f103(A,C,D,E,J,L,N,O,P,Q) = 1 + C + -1*J >= 1 + C + -1*J = f107(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] ==> f103(A,C,D,E,J,L,N,O,P,Q) = 1 + C + -1*J >= 1 + C + -1*J = f107(A,C,D,E,J,B1,N,O,P,Q) [L = 0] ==> f107(A,C,D,E,J,L,N,O,P,Q) = 1 + C + -1*J >= C + -1*J = f91(A,C,D,E,1 + J,0,N,O,P,Q) [0 >= 1 + L] ==> f107(A,C,D,E,J,L,N,O,P,Q) = 1 + C + -1*J >= C + -1*J = f91(A,C,D,E,1 + J,L,N,O,P,Q) [L >= 1] ==> f107(A,C,D,E,J,L,N,O,P,Q) = 1 + C + -1*J >= C + -1*J = f91(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] ==> f118(A,C,D,E,J,L,N,O,P,Q) = 1 + C + -1*J >= C + -1*J = f118(A,C,D,E,1 + J,L,N,O,P,Q) [J >= 1 + D] ==> f91(A,C,D,E,J,L,N,O,P,Q) = 1 + C + -1*J >= 1 + C + -1*J = f37(A,C,D,E,J,L,N,1 + O,P,Q) [J >= 1 + C] ==> f71(A,C,D,E,J,L,N,O,P,Q) = 1 + C + -1*J >= 1 + C + -1*J = f86(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && J >= 1 + C] ==> f71(A,C,D,E,J,L,N,O,P,Q) = 1 + C + -1*J >= 1 + C + -1*J = f86(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && J >= 1 + C] ==> f71(A,C,D,E,J,L,N,O,P,Q) = 1 + C + -1*J >= 1 + C + -1*J = f86(A,C,D,E,J,B1,N,O,P,Q) [J >= 1 + E] ==> f64(A,C,D,E,J,L,N,O,P,Q) = 1 + C + -1*J >= 1 + C + -1*J = f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] ==> f57(A,C,D,E,J,L,N,O,P,Q) = 1 + C + -1*J >= 1 + C + -1*J = f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] ==> f50(A,C,D,E,J,L,N,O,P,Q) = 1 + C + -1*J >= 1 + C + -1*J = f57(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] ==> f44(A,C,D,E,J,L,N,O,P,Q) = 1 + C + -1*J >= 1 + C + -1*J = f50(A,C,D,E,J,L,N,O,P,Q) [Q >= 1] ==> f40(A,C,D,E,J,L,N,O,P,Q) = 1 + C + -1*J >= 1 + C + -1*J = f71(A,C,D,E,J,L,N,O,P,Q) [O >= 1 + N] ==> f37(A,C,D,E,J,L,N,O,P,Q) = 1 + C + -1*J >= 1 + C + -1*J = f118(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] ==> f31(A,C,D,E,J,L,N,O,P,Q) = C + -1*D >= 1 + C + -1*J = f37(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && J >= 1 + D] ==> f24(A,C,D,E,J,L,N,O,P,Q) = C + -1*D >= C + -1*D = f31(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && J >= 1 + D] ==> f24(A,C,D,E,J,L,N,O,P,Q) = C + -1*D >= C + -1*D = f31(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D && P = 0] ==> f24(A,C,D,E,J,L,N,O,P,Q) = C + -1*D >= 1 + C + -1*J = f37(A,C,D,E,J,L,N,O,0,Q) [J >= 1 + C] ==> f13(A,C,D,E,J,L,N,O,P,Q) = C + -1*D >= C + -1*D = f24(A,C,D,E,J,L,N,O,P,Q) * Step 19: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,C,D,E,J,L,N,O,P,Q) -> f13(0,2*D,D,4*D,J,L,N,O,P,Q) True (1,1) 1. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A,C,D,E,1 + J,0,N,O,P,Q) [C >= J] (?,1) 2. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [C1 >= 2 && C >= J] (?,1) 3. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [0 >= C1 && C >= J] (?,1) 4. f24(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 6. f37(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,Q) [N >= O] (?,1) 7. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && 0 >= Q] (?,1) 8. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && 0 >= Q] (?,1) 9. f44(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (0,1) 12. f40(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,J,L,N,O,0,Q) [0 >= Q && P = 0] (?,1) 13. f64(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,2 + J,L,N,O,P,Q) [E >= J] (?,1) 14. f71(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,1 + J,L,N,O,P,Q) [C >= J] (D,1) 15. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,0,N,O,P,Q) [L = 0] (?,1) 16. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + L] (?,1) 17. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [L >= 1] (?,1) 18. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D >= J] (0,1) 19. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && D >= J] (0,1) 20. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && D >= J] (0,1) 21. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (0,1) 22. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (0,1) 23. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (0,1) 24. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (0,1) 25. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (0,1) 26. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (0,1) 27. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,0,N,O,P,Q) [L = 0] (?,1) 28. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [0 >= 1 + L] (0,1) 29. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [L >= 1] (0,1) 30. f118(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (0,1) 32. f91(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,1 + O,P,Q) [J >= 1 + D] (?,1) 33. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [J >= 1 + C] (?,1) 34. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && J >= 1 + C] (?,1) 35. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && J >= 1 + C] (?,1) 36. f64(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + E] (?,1) 37. f57(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] (?,1) 38. f50(A,C,D,E,J,L,N,O,P,Q) -> f57(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (?,1) 39. f44(A,C,D,E,J,L,N,O,P,Q) -> f50(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (?,1) 40. f40(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,J,L,N,O,P,Q) [Q >= 1] (?,1) 41. f37(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,J,L,N,O,P,Q) [O >= 1 + N] (?,1) 42. f31(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (2*P,1) 43. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && J >= 1 + D] (P,1) 44. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && J >= 1 + D] (P,1) 45. f24(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,0,Q) [J >= 1 + D && P = 0] (?,1) 46. f13(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + C] (1,1) Signature: {(f1,10) ;(f103,10) ;(f107,10) ;(f118,10) ;(f13,10) ;(f2,10) ;(f24,10) ;(f31,10) ;(f37,10) ;(f40,10) ;(f44,10) ;(f50,10) ;(f57,10) ;(f64,10) ;(f71,10) ;(f86,10) ;(f91,10) ;(f99,10)} Flow Graph: [0->{1,2,3,46},1->{1,2,3,46},2->{1,2,3,46},3->{1,2,3,46},4->{4,43,44,45},6->{7,8,12,40},7->{9,39},8->{9 ,39},9->{9,39},12->{13,36},13->{13,36},14->{14,33,34,35},15->{18,19,20,32},16->{18,19,20,32},17->{18,19,20 ,32},18->{21,22,23},19->{21,22,23},20->{21,22,23},21->{24,25,26},22->{24,25,26},23->{24,25,26},24->{27,28 ,29},25->{27,28,29},26->{27,28,29},27->{18,19,20,32},28->{18,19,20,32},29->{18,19,20,32},30->{30},32->{6,41} ,33->{15,16,17},34->{15,16,17},35->{15,16,17},36->{7,8,12,40},37->{7,8,12,40},38->{37},39->{38},40->{14,33 ,34,35},41->{30},42->{6,41},43->{42},44->{42},45->{6,41},46->{4,43,44,45}] Sizebounds: (< 0,0,A>, 0) (< 0,0,C>, 2*D) (< 0,0,D>, D) (< 0,0,E>, 4*D) (< 0,0,J>, J) (< 0,0,L>, L) (< 0,0,N>, N) (< 0,0,O>, O) (< 0,0,P>, P) (< 0,0,Q>, Q) (< 1,0,A>, ?) (< 1,0,C>, 2*D) (< 1,0,D>, D) (< 1,0,E>, 4*D) (< 1,0,J>, 1 + 2*D) (< 1,0,L>, 0) (< 1,0,N>, N) (< 1,0,O>, O) (< 1,0,P>, P) (< 1,0,Q>, Q) (< 2,0,A>, ?) (< 2,0,C>, 2*D) (< 2,0,D>, D) (< 2,0,E>, 4*D) (< 2,0,J>, 1 + 2*D) (< 2,0,L>, ?) (< 2,0,N>, N) (< 2,0,O>, O) (< 2,0,P>, P) (< 2,0,Q>, Q) (< 3,0,A>, ?) (< 3,0,C>, 2*D) (< 3,0,D>, D) (< 3,0,E>, 4*D) (< 3,0,J>, 1 + 2*D) (< 3,0,L>, ?) (< 3,0,N>, N) (< 3,0,O>, O) (< 3,0,P>, P) (< 3,0,Q>, Q) (< 4,0,A>, ?) (< 4,0,C>, 2*D) (< 4,0,D>, D) (< 4,0,E>, 4*D) (< 4,0,J>, 1 + D) (< 4,0,L>, ?) (< 4,0,N>, N) (< 4,0,O>, O) (< 4,0,P>, P) (< 4,0,Q>, Q) (< 6,0,A>, ?) (< 6,0,C>, 2*D) (< 6,0,D>, D) (< 6,0,E>, 4*D) (< 6,0,J>, ?) (< 6,0,L>, ?) (< 6,0,N>, N) (< 6,0,O>, N) (< 6,0,P>, P) (< 6,0,Q>, ?) (< 7,0,A>, ?) (< 7,0,C>, 2*D) (< 7,0,D>, D) (< 7,0,E>, 4*D) (< 7,0,J>, ?) (< 7,0,L>, ?) (< 7,0,N>, N) (< 7,0,O>, ?) (< 7,0,P>, P) (< 7,0,Q>, 0) (< 8,0,A>, ?) (< 8,0,C>, 2*D) (< 8,0,D>, D) (< 8,0,E>, 4*D) (< 8,0,J>, ?) (< 8,0,L>, ?) (< 8,0,N>, N) (< 8,0,O>, ?) (< 8,0,P>, P) (< 8,0,Q>, 0) (< 9,0,A>, ?) (< 9,0,C>, 2*D) (< 9,0,D>, D) (< 9,0,E>, 4*D) (< 9,0,J>, 1 + D) (< 9,0,L>, ?) (< 9,0,N>, N) (< 9,0,O>, ?) (< 9,0,P>, P) (< 9,0,Q>, 0) (<12,0,A>, ?) (<12,0,C>, 2*D) (<12,0,D>, D) (<12,0,E>, 4*D) (<12,0,J>, ?) (<12,0,L>, ?) (<12,0,N>, N) (<12,0,O>, ?) (<12,0,P>, 0) (<12,0,Q>, P) (<13,0,A>, ?) (<13,0,C>, 2*D) (<13,0,D>, D) (<13,0,E>, 4*D) (<13,0,J>, 2 + 4*D) (<13,0,L>, ?) (<13,0,N>, N) (<13,0,O>, ?) (<13,0,P>, 0) (<13,0,Q>, P) (<14,0,A>, ?) (<14,0,C>, 2*D) (<14,0,D>, D) (<14,0,E>, 4*D) (<14,0,J>, 1 + 2*D) (<14,0,L>, ?) (<14,0,N>, N) (<14,0,O>, ?) (<14,0,P>, P) (<14,0,Q>, ?) (<15,0,A>, ?) (<15,0,C>, 2*D) (<15,0,D>, D) (<15,0,E>, 4*D) (<15,0,J>, ?) (<15,0,L>, 0) (<15,0,N>, N) (<15,0,O>, ?) (<15,0,P>, P) (<15,0,Q>, ?) (<16,0,A>, ?) (<16,0,C>, 2*D) (<16,0,D>, D) (<16,0,E>, 4*D) (<16,0,J>, ?) (<16,0,L>, ?) (<16,0,N>, N) (<16,0,O>, ?) (<16,0,P>, P) (<16,0,Q>, ?) (<17,0,A>, ?) (<17,0,C>, 2*D) (<17,0,D>, D) (<17,0,E>, 4*D) (<17,0,J>, ?) (<17,0,L>, ?) (<17,0,N>, N) (<17,0,O>, ?) (<17,0,P>, P) (<17,0,Q>, ?) (<18,0,A>, ?) (<18,0,C>, 2*D) (<18,0,D>, D) (<18,0,E>, 4*D) (<18,0,J>, D) (<18,0,L>, ?) (<18,0,N>, N) (<18,0,O>, ?) (<18,0,P>, P) (<18,0,Q>, ?) (<19,0,A>, ?) (<19,0,C>, 2*D) (<19,0,D>, D) (<19,0,E>, 4*D) (<19,0,J>, D) (<19,0,L>, ?) (<19,0,N>, N) (<19,0,O>, ?) (<19,0,P>, P) (<19,0,Q>, ?) (<20,0,A>, ?) (<20,0,C>, 2*D) (<20,0,D>, D) (<20,0,E>, 4*D) (<20,0,J>, D) (<20,0,L>, ?) (<20,0,N>, N) (<20,0,O>, ?) (<20,0,P>, P) (<20,0,Q>, ?) (<21,0,A>, ?) (<21,0,C>, 2*D) (<21,0,D>, D) (<21,0,E>, 4*D) (<21,0,J>, D) (<21,0,L>, ?) (<21,0,N>, N) (<21,0,O>, ?) (<21,0,P>, P) (<21,0,Q>, ?) (<22,0,A>, ?) (<22,0,C>, 2*D) (<22,0,D>, D) (<22,0,E>, 4*D) (<22,0,J>, D) (<22,0,L>, ?) (<22,0,N>, N) (<22,0,O>, ?) (<22,0,P>, P) (<22,0,Q>, ?) (<23,0,A>, ?) (<23,0,C>, 2*D) (<23,0,D>, D) (<23,0,E>, 4*D) (<23,0,J>, D) (<23,0,L>, ?) (<23,0,N>, N) (<23,0,O>, ?) (<23,0,P>, P) (<23,0,Q>, ?) (<24,0,A>, ?) (<24,0,C>, 2*D) (<24,0,D>, D) (<24,0,E>, 4*D) (<24,0,J>, D) (<24,0,L>, ?) (<24,0,N>, N) (<24,0,O>, ?) (<24,0,P>, P) (<24,0,Q>, ?) (<25,0,A>, ?) (<25,0,C>, 2*D) (<25,0,D>, D) (<25,0,E>, 4*D) (<25,0,J>, D) (<25,0,L>, ?) (<25,0,N>, N) (<25,0,O>, ?) (<25,0,P>, P) (<25,0,Q>, ?) (<26,0,A>, ?) (<26,0,C>, 2*D) (<26,0,D>, D) (<26,0,E>, 4*D) (<26,0,J>, D) (<26,0,L>, ?) (<26,0,N>, N) (<26,0,O>, ?) (<26,0,P>, P) (<26,0,Q>, ?) (<27,0,A>, ?) (<27,0,C>, 2*D) (<27,0,D>, D) (<27,0,E>, 4*D) (<27,0,J>, D) (<27,0,L>, 0) (<27,0,N>, N) (<27,0,O>, ?) (<27,0,P>, P) (<27,0,Q>, ?) (<28,0,A>, ?) (<28,0,C>, 2*D) (<28,0,D>, D) (<28,0,E>, 4*D) (<28,0,J>, D) (<28,0,L>, ?) (<28,0,N>, N) (<28,0,O>, ?) (<28,0,P>, P) (<28,0,Q>, ?) (<29,0,A>, ?) (<29,0,C>, 2*D) (<29,0,D>, D) (<29,0,E>, 4*D) (<29,0,J>, D) (<29,0,L>, ?) (<29,0,N>, N) (<29,0,O>, ?) (<29,0,P>, P) (<29,0,Q>, ?) (<30,0,A>, ?) (<30,0,C>, 2*D) (<30,0,D>, D) (<30,0,E>, 4*D) (<30,0,J>, 1 + D) (<30,0,L>, ?) (<30,0,N>, N) (<30,0,O>, ?) (<30,0,P>, P) (<30,0,Q>, ?) (<32,0,A>, ?) (<32,0,C>, 2*D) (<32,0,D>, D) (<32,0,E>, 4*D) (<32,0,J>, ?) (<32,0,L>, ?) (<32,0,N>, N) (<32,0,O>, ?) (<32,0,P>, P) (<32,0,Q>, ?) (<33,0,A>, ?) (<33,0,C>, 2*D) (<33,0,D>, D) (<33,0,E>, 4*D) (<33,0,J>, ?) (<33,0,L>, ?) (<33,0,N>, N) (<33,0,O>, ?) (<33,0,P>, P) (<33,0,Q>, ?) (<34,0,A>, ?) (<34,0,C>, 2*D) (<34,0,D>, D) (<34,0,E>, 4*D) (<34,0,J>, ?) (<34,0,L>, ?) (<34,0,N>, N) (<34,0,O>, ?) (<34,0,P>, P) (<34,0,Q>, ?) (<35,0,A>, ?) (<35,0,C>, 2*D) (<35,0,D>, D) (<35,0,E>, 4*D) (<35,0,J>, ?) (<35,0,L>, ?) (<35,0,N>, N) (<35,0,O>, ?) (<35,0,P>, P) (<35,0,Q>, ?) (<36,0,A>, ?) (<36,0,C>, 2*D) (<36,0,D>, D) (<36,0,E>, 4*D) (<36,0,J>, ?) (<36,0,L>, ?) (<36,0,N>, N) (<36,0,O>, ?) (<36,0,P>, 0) (<36,0,Q>, P) (<37,0,A>, ?) (<37,0,C>, 2*D) (<37,0,D>, D) (<37,0,E>, 4*D) (<37,0,J>, ?) (<37,0,L>, ?) (<37,0,N>, N) (<37,0,O>, ?) (<37,0,P>, P) (<37,0,Q>, 0) (<38,0,A>, ?) (<38,0,C>, 2*D) (<38,0,D>, D) (<38,0,E>, 4*D) (<38,0,J>, ?) (<38,0,L>, ?) (<38,0,N>, N) (<38,0,O>, ?) (<38,0,P>, P) (<38,0,Q>, 0) (<39,0,A>, ?) (<39,0,C>, 2*D) (<39,0,D>, D) (<39,0,E>, 4*D) (<39,0,J>, ?) (<39,0,L>, ?) (<39,0,N>, N) (<39,0,O>, ?) (<39,0,P>, P) (<39,0,Q>, 0) (<40,0,A>, ?) (<40,0,C>, 2*D) (<40,0,D>, D) (<40,0,E>, 4*D) (<40,0,J>, ?) (<40,0,L>, ?) (<40,0,N>, N) (<40,0,O>, ?) (<40,0,P>, P) (<40,0,Q>, ?) (<41,0,A>, ?) (<41,0,C>, 2*D) (<41,0,D>, D) (<41,0,E>, 4*D) (<41,0,J>, ?) (<41,0,L>, ?) (<41,0,N>, N) (<41,0,O>, ?) (<41,0,P>, P) (<41,0,Q>, ?) (<42,0,A>, ?) (<42,0,C>, 2*D) (<42,0,D>, D) (<42,0,E>, 4*D) (<42,0,J>, 1 + 2*D + J) (<42,0,L>, ?) (<42,0,N>, N) (<42,0,O>, O) (<42,0,P>, P) (<42,0,Q>, Q) (<43,0,A>, ?) (<43,0,C>, 2*D) (<43,0,D>, D) (<43,0,E>, 4*D) (<43,0,J>, 1 + 2*D + J) (<43,0,L>, ?) (<43,0,N>, N) (<43,0,O>, O) (<43,0,P>, P) (<43,0,Q>, Q) (<44,0,A>, ?) (<44,0,C>, 2*D) (<44,0,D>, D) (<44,0,E>, 4*D) (<44,0,J>, 1 + 2*D + J) (<44,0,L>, ?) (<44,0,N>, N) (<44,0,O>, O) (<44,0,P>, P) (<44,0,Q>, Q) (<45,0,A>, ?) (<45,0,C>, 2*D) (<45,0,D>, D) (<45,0,E>, 4*D) (<45,0,J>, 1 + 2*D + J) (<45,0,L>, ?) (<45,0,N>, N) (<45,0,O>, O) (<45,0,P>, 0) (<45,0,Q>, Q) (<46,0,A>, ?) (<46,0,C>, 2*D) (<46,0,D>, D) (<46,0,E>, 4*D) (<46,0,J>, 1 + 2*D + J) (<46,0,L>, ?) (<46,0,N>, N) (<46,0,O>, O) (<46,0,P>, P) (<46,0,Q>, Q) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 20: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,C,D,E,J,L,N,O,P,Q) -> f13(0,2*D,D,4*D,J,L,N,O,P,Q) True (1,1) 1. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A,C,D,E,1 + J,0,N,O,P,Q) [C >= J] (?,1) 2. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [C1 >= 2 && C >= J] (?,1) 3. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [0 >= C1 && C >= J] (?,1) 4. f24(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 6. f37(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,Q) [N >= O] (?,1) 7. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && 0 >= Q] (?,1) 8. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && 0 >= Q] (?,1) 9. f44(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (0,1) 12. f40(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,J,L,N,O,0,Q) [0 >= Q && P = 0] (?,1) 13. f64(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,2 + J,L,N,O,P,Q) [E >= J] (?,1) 14. f71(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,1 + J,L,N,O,P,Q) [C >= J] (D,1) 15. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,0,N,O,P,Q) [L = 0] (?,1) 16. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + L] (?,1) 17. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [L >= 1] (?,1) 18. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D >= J] (0,1) 19. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && D >= J] (0,1) 20. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && D >= J] (0,1) 21. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (0,1) 22. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (0,1) 23. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (0,1) 24. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (0,1) 25. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (0,1) 26. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (0,1) 27. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,0,N,O,P,Q) [L = 0] (0,1) 28. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [0 >= 1 + L] (0,1) 29. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [L >= 1] (0,1) 30. f118(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (0,1) 32. f91(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,1 + O,P,Q) [J >= 1 + D] (?,1) 33. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [J >= 1 + C] (?,1) 34. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && J >= 1 + C] (?,1) 35. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && J >= 1 + C] (?,1) 36. f64(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + E] (?,1) 37. f57(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] (?,1) 38. f50(A,C,D,E,J,L,N,O,P,Q) -> f57(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (?,1) 39. f44(A,C,D,E,J,L,N,O,P,Q) -> f50(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (?,1) 40. f40(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,J,L,N,O,P,Q) [Q >= 1] (?,1) 41. f37(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,J,L,N,O,P,Q) [O >= 1 + N] (?,1) 42. f31(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (2*P,1) 43. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && J >= 1 + D] (P,1) 44. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && J >= 1 + D] (P,1) 45. f24(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,0,Q) [J >= 1 + D && P = 0] (?,1) 46. f13(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + C] (1,1) Signature: {(f1,10) ;(f103,10) ;(f107,10) ;(f118,10) ;(f13,10) ;(f2,10) ;(f24,10) ;(f31,10) ;(f37,10) ;(f40,10) ;(f44,10) ;(f50,10) ;(f57,10) ;(f64,10) ;(f71,10) ;(f86,10) ;(f91,10) ;(f99,10)} Flow Graph: [0->{1,2,3,46},1->{1,2,3,46},2->{1,2,3,46},3->{1,2,3,46},4->{4,43,44,45},6->{7,8,12,40},7->{9,39},8->{9 ,39},9->{9,39},12->{13,36},13->{13,36},14->{14,33,34,35},15->{18,19,20,32},16->{18,19,20,32},17->{18,19,20 ,32},18->{21,22,23},19->{21,22,23},20->{21,22,23},21->{24,25,26},22->{24,25,26},23->{24,25,26},24->{27,28 ,29},25->{27,28,29},26->{27,28,29},27->{18,19,20,32},28->{18,19,20,32},29->{18,19,20,32},30->{30},32->{6,41} ,33->{15,16,17},34->{15,16,17},35->{15,16,17},36->{7,8,12,40},37->{7,8,12,40},38->{37},39->{38},40->{14,33 ,34,35},41->{30},42->{6,41},43->{42},44->{42},45->{6,41},46->{4,43,44,45}] Sizebounds: (< 0,0,A>, 0) (< 0,0,C>, 2*D) (< 0,0,D>, D) (< 0,0,E>, 4*D) (< 0,0,J>, J) (< 0,0,L>, L) (< 0,0,N>, N) (< 0,0,O>, O) (< 0,0,P>, P) (< 0,0,Q>, Q) (< 1,0,A>, ?) (< 1,0,C>, 2*D) (< 1,0,D>, D) (< 1,0,E>, 4*D) (< 1,0,J>, 1 + 2*D) (< 1,0,L>, 0) (< 1,0,N>, N) (< 1,0,O>, O) (< 1,0,P>, P) (< 1,0,Q>, Q) (< 2,0,A>, ?) (< 2,0,C>, 2*D) (< 2,0,D>, D) (< 2,0,E>, 4*D) (< 2,0,J>, 1 + 2*D) (< 2,0,L>, ?) (< 2,0,N>, N) (< 2,0,O>, O) (< 2,0,P>, P) (< 2,0,Q>, Q) (< 3,0,A>, ?) (< 3,0,C>, 2*D) (< 3,0,D>, D) (< 3,0,E>, 4*D) (< 3,0,J>, 1 + 2*D) (< 3,0,L>, ?) (< 3,0,N>, N) (< 3,0,O>, O) (< 3,0,P>, P) (< 3,0,Q>, Q) (< 4,0,A>, ?) (< 4,0,C>, 2*D) (< 4,0,D>, D) (< 4,0,E>, 4*D) (< 4,0,J>, 1 + D) (< 4,0,L>, ?) (< 4,0,N>, N) (< 4,0,O>, O) (< 4,0,P>, P) (< 4,0,Q>, Q) (< 6,0,A>, ?) (< 6,0,C>, 2*D) (< 6,0,D>, D) (< 6,0,E>, 4*D) (< 6,0,J>, ?) (< 6,0,L>, ?) (< 6,0,N>, N) (< 6,0,O>, N) (< 6,0,P>, P) (< 6,0,Q>, ?) (< 7,0,A>, ?) (< 7,0,C>, 2*D) (< 7,0,D>, D) (< 7,0,E>, 4*D) (< 7,0,J>, ?) (< 7,0,L>, ?) (< 7,0,N>, N) (< 7,0,O>, ?) (< 7,0,P>, P) (< 7,0,Q>, 0) (< 8,0,A>, ?) (< 8,0,C>, 2*D) (< 8,0,D>, D) (< 8,0,E>, 4*D) (< 8,0,J>, ?) (< 8,0,L>, ?) (< 8,0,N>, N) (< 8,0,O>, ?) (< 8,0,P>, P) (< 8,0,Q>, 0) (< 9,0,A>, ?) (< 9,0,C>, 2*D) (< 9,0,D>, D) (< 9,0,E>, 4*D) (< 9,0,J>, 1 + D) (< 9,0,L>, ?) (< 9,0,N>, N) (< 9,0,O>, ?) (< 9,0,P>, P) (< 9,0,Q>, 0) (<12,0,A>, ?) (<12,0,C>, 2*D) (<12,0,D>, D) (<12,0,E>, 4*D) (<12,0,J>, ?) (<12,0,L>, ?) (<12,0,N>, N) (<12,0,O>, ?) (<12,0,P>, 0) (<12,0,Q>, P) (<13,0,A>, ?) (<13,0,C>, 2*D) (<13,0,D>, D) (<13,0,E>, 4*D) (<13,0,J>, 2 + 4*D) (<13,0,L>, ?) (<13,0,N>, N) (<13,0,O>, ?) (<13,0,P>, 0) (<13,0,Q>, P) (<14,0,A>, ?) (<14,0,C>, 2*D) (<14,0,D>, D) (<14,0,E>, 4*D) (<14,0,J>, 1 + 2*D) (<14,0,L>, ?) (<14,0,N>, N) (<14,0,O>, ?) (<14,0,P>, P) (<14,0,Q>, ?) (<15,0,A>, ?) (<15,0,C>, 2*D) (<15,0,D>, D) (<15,0,E>, 4*D) (<15,0,J>, ?) (<15,0,L>, 0) (<15,0,N>, N) (<15,0,O>, ?) (<15,0,P>, P) (<15,0,Q>, ?) (<16,0,A>, ?) (<16,0,C>, 2*D) (<16,0,D>, D) (<16,0,E>, 4*D) (<16,0,J>, ?) (<16,0,L>, ?) (<16,0,N>, N) (<16,0,O>, ?) (<16,0,P>, P) (<16,0,Q>, ?) (<17,0,A>, ?) (<17,0,C>, 2*D) (<17,0,D>, D) (<17,0,E>, 4*D) (<17,0,J>, ?) (<17,0,L>, ?) (<17,0,N>, N) (<17,0,O>, ?) (<17,0,P>, P) (<17,0,Q>, ?) (<18,0,A>, ?) (<18,0,C>, 2*D) (<18,0,D>, D) (<18,0,E>, 4*D) (<18,0,J>, D) (<18,0,L>, ?) (<18,0,N>, N) (<18,0,O>, ?) (<18,0,P>, P) (<18,0,Q>, ?) (<19,0,A>, ?) (<19,0,C>, 2*D) (<19,0,D>, D) (<19,0,E>, 4*D) (<19,0,J>, D) (<19,0,L>, ?) (<19,0,N>, N) (<19,0,O>, ?) (<19,0,P>, P) (<19,0,Q>, ?) (<20,0,A>, ?) (<20,0,C>, 2*D) (<20,0,D>, D) (<20,0,E>, 4*D) (<20,0,J>, D) (<20,0,L>, ?) (<20,0,N>, N) (<20,0,O>, ?) (<20,0,P>, P) (<20,0,Q>, ?) (<21,0,A>, ?) (<21,0,C>, 2*D) (<21,0,D>, D) (<21,0,E>, 4*D) (<21,0,J>, D) (<21,0,L>, ?) (<21,0,N>, N) (<21,0,O>, ?) (<21,0,P>, P) (<21,0,Q>, ?) (<22,0,A>, ?) (<22,0,C>, 2*D) (<22,0,D>, D) (<22,0,E>, 4*D) (<22,0,J>, D) (<22,0,L>, ?) (<22,0,N>, N) (<22,0,O>, ?) (<22,0,P>, P) (<22,0,Q>, ?) (<23,0,A>, ?) (<23,0,C>, 2*D) (<23,0,D>, D) (<23,0,E>, 4*D) (<23,0,J>, D) (<23,0,L>, ?) (<23,0,N>, N) (<23,0,O>, ?) (<23,0,P>, P) (<23,0,Q>, ?) (<24,0,A>, ?) (<24,0,C>, 2*D) (<24,0,D>, D) (<24,0,E>, 4*D) (<24,0,J>, D) (<24,0,L>, ?) (<24,0,N>, N) (<24,0,O>, ?) (<24,0,P>, P) (<24,0,Q>, ?) (<25,0,A>, ?) (<25,0,C>, 2*D) (<25,0,D>, D) (<25,0,E>, 4*D) (<25,0,J>, D) (<25,0,L>, ?) (<25,0,N>, N) (<25,0,O>, ?) (<25,0,P>, P) (<25,0,Q>, ?) (<26,0,A>, ?) (<26,0,C>, 2*D) (<26,0,D>, D) (<26,0,E>, 4*D) (<26,0,J>, D) (<26,0,L>, ?) (<26,0,N>, N) (<26,0,O>, ?) (<26,0,P>, P) (<26,0,Q>, ?) (<27,0,A>, ?) (<27,0,C>, 2*D) (<27,0,D>, D) (<27,0,E>, 4*D) (<27,0,J>, D) (<27,0,L>, 0) (<27,0,N>, N) (<27,0,O>, ?) (<27,0,P>, P) (<27,0,Q>, ?) (<28,0,A>, ?) (<28,0,C>, 2*D) (<28,0,D>, D) (<28,0,E>, 4*D) (<28,0,J>, D) (<28,0,L>, ?) (<28,0,N>, N) (<28,0,O>, ?) (<28,0,P>, P) (<28,0,Q>, ?) (<29,0,A>, ?) (<29,0,C>, 2*D) (<29,0,D>, D) (<29,0,E>, 4*D) (<29,0,J>, D) (<29,0,L>, ?) (<29,0,N>, N) (<29,0,O>, ?) (<29,0,P>, P) (<29,0,Q>, ?) (<30,0,A>, ?) (<30,0,C>, 2*D) (<30,0,D>, D) (<30,0,E>, 4*D) (<30,0,J>, 1 + D) (<30,0,L>, ?) (<30,0,N>, N) (<30,0,O>, ?) (<30,0,P>, P) (<30,0,Q>, ?) (<32,0,A>, ?) (<32,0,C>, 2*D) (<32,0,D>, D) (<32,0,E>, 4*D) (<32,0,J>, ?) (<32,0,L>, ?) (<32,0,N>, N) (<32,0,O>, ?) (<32,0,P>, P) (<32,0,Q>, ?) (<33,0,A>, ?) (<33,0,C>, 2*D) (<33,0,D>, D) (<33,0,E>, 4*D) (<33,0,J>, ?) (<33,0,L>, ?) (<33,0,N>, N) (<33,0,O>, ?) (<33,0,P>, P) (<33,0,Q>, ?) (<34,0,A>, ?) (<34,0,C>, 2*D) (<34,0,D>, D) (<34,0,E>, 4*D) (<34,0,J>, ?) (<34,0,L>, ?) (<34,0,N>, N) (<34,0,O>, ?) (<34,0,P>, P) (<34,0,Q>, ?) (<35,0,A>, ?) (<35,0,C>, 2*D) (<35,0,D>, D) (<35,0,E>, 4*D) (<35,0,J>, ?) (<35,0,L>, ?) (<35,0,N>, N) (<35,0,O>, ?) (<35,0,P>, P) (<35,0,Q>, ?) (<36,0,A>, ?) (<36,0,C>, 2*D) (<36,0,D>, D) (<36,0,E>, 4*D) (<36,0,J>, ?) (<36,0,L>, ?) (<36,0,N>, N) (<36,0,O>, ?) (<36,0,P>, 0) (<36,0,Q>, P) (<37,0,A>, ?) (<37,0,C>, 2*D) (<37,0,D>, D) (<37,0,E>, 4*D) (<37,0,J>, ?) (<37,0,L>, ?) (<37,0,N>, N) (<37,0,O>, ?) (<37,0,P>, P) (<37,0,Q>, 0) (<38,0,A>, ?) (<38,0,C>, 2*D) (<38,0,D>, D) (<38,0,E>, 4*D) (<38,0,J>, ?) (<38,0,L>, ?) (<38,0,N>, N) (<38,0,O>, ?) (<38,0,P>, P) (<38,0,Q>, 0) (<39,0,A>, ?) (<39,0,C>, 2*D) (<39,0,D>, D) (<39,0,E>, 4*D) (<39,0,J>, ?) (<39,0,L>, ?) (<39,0,N>, N) (<39,0,O>, ?) (<39,0,P>, P) (<39,0,Q>, 0) (<40,0,A>, ?) (<40,0,C>, 2*D) (<40,0,D>, D) (<40,0,E>, 4*D) (<40,0,J>, ?) (<40,0,L>, ?) (<40,0,N>, N) (<40,0,O>, ?) (<40,0,P>, P) (<40,0,Q>, ?) (<41,0,A>, ?) (<41,0,C>, 2*D) (<41,0,D>, D) (<41,0,E>, 4*D) (<41,0,J>, ?) (<41,0,L>, ?) (<41,0,N>, N) (<41,0,O>, ?) (<41,0,P>, P) (<41,0,Q>, ?) (<42,0,A>, ?) (<42,0,C>, 2*D) (<42,0,D>, D) (<42,0,E>, 4*D) (<42,0,J>, 1 + 2*D + J) (<42,0,L>, ?) (<42,0,N>, N) (<42,0,O>, O) (<42,0,P>, P) (<42,0,Q>, Q) (<43,0,A>, ?) (<43,0,C>, 2*D) (<43,0,D>, D) (<43,0,E>, 4*D) (<43,0,J>, 1 + 2*D + J) (<43,0,L>, ?) (<43,0,N>, N) (<43,0,O>, O) (<43,0,P>, P) (<43,0,Q>, Q) (<44,0,A>, ?) (<44,0,C>, 2*D) (<44,0,D>, D) (<44,0,E>, 4*D) (<44,0,J>, 1 + 2*D + J) (<44,0,L>, ?) (<44,0,N>, N) (<44,0,O>, O) (<44,0,P>, P) (<44,0,Q>, Q) (<45,0,A>, ?) (<45,0,C>, 2*D) (<45,0,D>, D) (<45,0,E>, 4*D) (<45,0,J>, 1 + 2*D + J) (<45,0,L>, ?) (<45,0,N>, N) (<45,0,O>, O) (<45,0,P>, 0) (<45,0,Q>, Q) (<46,0,A>, ?) (<46,0,C>, 2*D) (<46,0,D>, D) (<46,0,E>, 4*D) (<46,0,J>, 1 + 2*D + J) (<46,0,L>, ?) (<46,0,N>, N) (<46,0,O>, O) (<46,0,P>, P) (<46,0,Q>, Q) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f103) = 1 + x4 + -1*x5 p(f107) = 1 + x4 + -1*x5 p(f118) = 1 + x4 + -1*x5 p(f13) = -1*x3 + x4 p(f2) = 3*x3 p(f24) = -1*x3 + x4 p(f31) = -1*x3 + x4 p(f37) = 1 + x4 + -1*x5 p(f40) = 1 + x4 + -1*x5 p(f44) = 1 + x4 + -1*x5 p(f50) = 1 + x4 + -1*x5 p(f57) = 1 + x4 + -1*x5 p(f64) = 1 + x4 + -1*x5 p(f71) = 1 + x4 + -1*x5 p(f86) = 1 + x4 + -1*x5 p(f91) = 1 + x4 + -1*x5 p(f99) = 1 + x4 + -1*x5 The following rules are strictly oriented: [E >= J] ==> f64(A,C,D,E,J,L,N,O,P,Q) = 1 + E + -1*J > -1 + E + -1*J = f64(A,C,D,E,2 + J,L,N,O,P,Q) The following rules are weakly oriented: True ==> f2(A,C,D,E,J,L,N,O,P,Q) = 3*D >= 3*D = f13(0,2*D,D,4*D,J,L,N,O,P,Q) [C >= J] ==> f13(A,C,D,E,J,L,N,O,P,Q) = -1*D + E >= -1*D + E = f13(A,C,D,E,1 + J,0,N,O,P,Q) [C1 >= 2 && C >= J] ==> f13(A,C,D,E,J,L,N,O,P,Q) = -1*D + E >= -1*D + E = f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [0 >= C1 && C >= J] ==> f13(A,C,D,E,J,L,N,O,P,Q) = -1*D + E >= -1*D + E = f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [D >= J] ==> f24(A,C,D,E,J,L,N,O,P,Q) = -1*D + E >= -1*D + E = f24(A,C,D,E,1 + J,L,N,O,P,Q) [N >= O] ==> f37(A,C,D,E,J,L,N,O,P,Q) = 1 + E + -1*J >= 1 + E + -1*J = f40(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && 0 >= Q] ==> f40(A,C,D,E,J,L,N,O,P,Q) = 1 + E + -1*J >= 1 + E + -1*J = f44(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && 0 >= Q] ==> f40(A,C,D,E,J,L,N,O,P,Q) = 1 + E + -1*J >= 1 + E + -1*J = f44(A,C,D,E,J,L,N,O,P,Q) [D >= J] ==> f44(A,C,D,E,J,L,N,O,P,Q) = 1 + E + -1*J >= E + -1*J = f44(A,C,D,E,1 + J,L,N,O,P,Q) [0 >= Q && P = 0] ==> f40(A,C,D,E,J,L,N,O,P,Q) = 1 + E + -1*J >= 1 + E + -1*J = f64(A,C,D,E,J,L,N,O,0,Q) [C >= J] ==> f71(A,C,D,E,J,L,N,O,P,Q) = 1 + E + -1*J >= E + -1*J = f71(A,C,D,E,1 + J,L,N,O,P,Q) [L = 0] ==> f86(A,C,D,E,J,L,N,O,P,Q) = 1 + E + -1*J >= 1 + E + -1*J = f91(A,C,D,E,J,0,N,O,P,Q) [0 >= 1 + L] ==> f86(A,C,D,E,J,L,N,O,P,Q) = 1 + E + -1*J >= 1 + E + -1*J = f91(A,C,D,E,J,L,N,O,P,Q) [L >= 1] ==> f86(A,C,D,E,J,L,N,O,P,Q) = 1 + E + -1*J >= 1 + E + -1*J = f91(A,C,D,E,J,L,N,O,P,Q) [D >= J] ==> f91(A,C,D,E,J,L,N,O,P,Q) = 1 + E + -1*J >= 1 + E + -1*J = f99(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && D >= J] ==> f91(A,C,D,E,J,L,N,O,P,Q) = 1 + E + -1*J >= 1 + E + -1*J = f99(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && D >= J] ==> f91(A,C,D,E,J,L,N,O,P,Q) = 1 + E + -1*J >= 1 + E + -1*J = f99(A,C,D,E,J,B1,N,O,P,Q) [L = 0] ==> f99(A,C,D,E,J,L,N,O,P,Q) = 1 + E + -1*J >= 1 + E + -1*J = f103(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] ==> f99(A,C,D,E,J,L,N,O,P,Q) = 1 + E + -1*J >= 1 + E + -1*J = f103(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] ==> f99(A,C,D,E,J,L,N,O,P,Q) = 1 + E + -1*J >= 1 + E + -1*J = f103(A,C,D,E,J,B1,N,O,P,Q) [L = 0] ==> f103(A,C,D,E,J,L,N,O,P,Q) = 1 + E + -1*J >= 1 + E + -1*J = f107(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] ==> f103(A,C,D,E,J,L,N,O,P,Q) = 1 + E + -1*J >= 1 + E + -1*J = f107(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] ==> f103(A,C,D,E,J,L,N,O,P,Q) = 1 + E + -1*J >= 1 + E + -1*J = f107(A,C,D,E,J,B1,N,O,P,Q) [L = 0] ==> f107(A,C,D,E,J,L,N,O,P,Q) = 1 + E + -1*J >= E + -1*J = f91(A,C,D,E,1 + J,0,N,O,P,Q) [0 >= 1 + L] ==> f107(A,C,D,E,J,L,N,O,P,Q) = 1 + E + -1*J >= E + -1*J = f91(A,C,D,E,1 + J,L,N,O,P,Q) [L >= 1] ==> f107(A,C,D,E,J,L,N,O,P,Q) = 1 + E + -1*J >= E + -1*J = f91(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] ==> f118(A,C,D,E,J,L,N,O,P,Q) = 1 + E + -1*J >= E + -1*J = f118(A,C,D,E,1 + J,L,N,O,P,Q) [J >= 1 + D] ==> f91(A,C,D,E,J,L,N,O,P,Q) = 1 + E + -1*J >= 1 + E + -1*J = f37(A,C,D,E,J,L,N,1 + O,P,Q) [J >= 1 + C] ==> f71(A,C,D,E,J,L,N,O,P,Q) = 1 + E + -1*J >= 1 + E + -1*J = f86(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && J >= 1 + C] ==> f71(A,C,D,E,J,L,N,O,P,Q) = 1 + E + -1*J >= 1 + E + -1*J = f86(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && J >= 1 + C] ==> f71(A,C,D,E,J,L,N,O,P,Q) = 1 + E + -1*J >= 1 + E + -1*J = f86(A,C,D,E,J,B1,N,O,P,Q) [J >= 1 + E] ==> f64(A,C,D,E,J,L,N,O,P,Q) = 1 + E + -1*J >= 1 + E + -1*J = f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] ==> f57(A,C,D,E,J,L,N,O,P,Q) = 1 + E + -1*J >= 1 + E + -1*J = f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] ==> f50(A,C,D,E,J,L,N,O,P,Q) = 1 + E + -1*J >= 1 + E + -1*J = f57(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] ==> f44(A,C,D,E,J,L,N,O,P,Q) = 1 + E + -1*J >= 1 + E + -1*J = f50(A,C,D,E,J,L,N,O,P,Q) [Q >= 1] ==> f40(A,C,D,E,J,L,N,O,P,Q) = 1 + E + -1*J >= 1 + E + -1*J = f71(A,C,D,E,J,L,N,O,P,Q) [O >= 1 + N] ==> f37(A,C,D,E,J,L,N,O,P,Q) = 1 + E + -1*J >= 1 + E + -1*J = f118(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] ==> f31(A,C,D,E,J,L,N,O,P,Q) = -1*D + E >= 1 + E + -1*J = f37(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && J >= 1 + D] ==> f24(A,C,D,E,J,L,N,O,P,Q) = -1*D + E >= -1*D + E = f31(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && J >= 1 + D] ==> f24(A,C,D,E,J,L,N,O,P,Q) = -1*D + E >= -1*D + E = f31(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D && P = 0] ==> f24(A,C,D,E,J,L,N,O,P,Q) = -1*D + E >= 1 + E + -1*J = f37(A,C,D,E,J,L,N,O,0,Q) [J >= 1 + C] ==> f13(A,C,D,E,J,L,N,O,P,Q) = -1*D + E >= -1*D + E = f24(A,C,D,E,J,L,N,O,P,Q) * Step 21: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,C,D,E,J,L,N,O,P,Q) -> f13(0,2*D,D,4*D,J,L,N,O,P,Q) True (1,1) 1. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A,C,D,E,1 + J,0,N,O,P,Q) [C >= J] (?,1) 2. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [C1 >= 2 && C >= J] (?,1) 3. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [0 >= C1 && C >= J] (?,1) 4. f24(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 6. f37(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,Q) [N >= O] (?,1) 7. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && 0 >= Q] (?,1) 8. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && 0 >= Q] (?,1) 9. f44(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (0,1) 12. f40(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,J,L,N,O,0,Q) [0 >= Q && P = 0] (?,1) 13. f64(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,2 + J,L,N,O,P,Q) [E >= J] (3*D,1) 14. f71(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,1 + J,L,N,O,P,Q) [C >= J] (D,1) 15. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,0,N,O,P,Q) [L = 0] (?,1) 16. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + L] (?,1) 17. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [L >= 1] (?,1) 18. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D >= J] (0,1) 19. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && D >= J] (0,1) 20. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && D >= J] (0,1) 21. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (0,1) 22. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (0,1) 23. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (0,1) 24. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (0,1) 25. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (0,1) 26. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (0,1) 27. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,0,N,O,P,Q) [L = 0] (0,1) 28. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [0 >= 1 + L] (0,1) 29. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [L >= 1] (0,1) 30. f118(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (0,1) 32. f91(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,1 + O,P,Q) [J >= 1 + D] (?,1) 33. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [J >= 1 + C] (?,1) 34. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && J >= 1 + C] (?,1) 35. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && J >= 1 + C] (?,1) 36. f64(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + E] (?,1) 37. f57(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] (?,1) 38. f50(A,C,D,E,J,L,N,O,P,Q) -> f57(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (?,1) 39. f44(A,C,D,E,J,L,N,O,P,Q) -> f50(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (?,1) 40. f40(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,J,L,N,O,P,Q) [Q >= 1] (?,1) 41. f37(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,J,L,N,O,P,Q) [O >= 1 + N] (?,1) 42. f31(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (2*P,1) 43. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && J >= 1 + D] (P,1) 44. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && J >= 1 + D] (P,1) 45. f24(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,0,Q) [J >= 1 + D && P = 0] (?,1) 46. f13(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + C] (1,1) Signature: {(f1,10) ;(f103,10) ;(f107,10) ;(f118,10) ;(f13,10) ;(f2,10) ;(f24,10) ;(f31,10) ;(f37,10) ;(f40,10) ;(f44,10) ;(f50,10) ;(f57,10) ;(f64,10) ;(f71,10) ;(f86,10) ;(f91,10) ;(f99,10)} Flow Graph: [0->{1,2,3,46},1->{1,2,3,46},2->{1,2,3,46},3->{1,2,3,46},4->{4,43,44,45},6->{7,8,12,40},7->{9,39},8->{9 ,39},9->{9,39},12->{13,36},13->{13,36},14->{14,33,34,35},15->{18,19,20,32},16->{18,19,20,32},17->{18,19,20 ,32},18->{21,22,23},19->{21,22,23},20->{21,22,23},21->{24,25,26},22->{24,25,26},23->{24,25,26},24->{27,28 ,29},25->{27,28,29},26->{27,28,29},27->{18,19,20,32},28->{18,19,20,32},29->{18,19,20,32},30->{30},32->{6,41} ,33->{15,16,17},34->{15,16,17},35->{15,16,17},36->{7,8,12,40},37->{7,8,12,40},38->{37},39->{38},40->{14,33 ,34,35},41->{30},42->{6,41},43->{42},44->{42},45->{6,41},46->{4,43,44,45}] Sizebounds: (< 0,0,A>, 0) (< 0,0,C>, 2*D) (< 0,0,D>, D) (< 0,0,E>, 4*D) (< 0,0,J>, J) (< 0,0,L>, L) (< 0,0,N>, N) (< 0,0,O>, O) (< 0,0,P>, P) (< 0,0,Q>, Q) (< 1,0,A>, ?) (< 1,0,C>, 2*D) (< 1,0,D>, D) (< 1,0,E>, 4*D) (< 1,0,J>, 1 + 2*D) (< 1,0,L>, 0) (< 1,0,N>, N) (< 1,0,O>, O) (< 1,0,P>, P) (< 1,0,Q>, Q) (< 2,0,A>, ?) (< 2,0,C>, 2*D) (< 2,0,D>, D) (< 2,0,E>, 4*D) (< 2,0,J>, 1 + 2*D) (< 2,0,L>, ?) (< 2,0,N>, N) (< 2,0,O>, O) (< 2,0,P>, P) (< 2,0,Q>, Q) (< 3,0,A>, ?) (< 3,0,C>, 2*D) (< 3,0,D>, D) (< 3,0,E>, 4*D) (< 3,0,J>, 1 + 2*D) (< 3,0,L>, ?) (< 3,0,N>, N) (< 3,0,O>, O) (< 3,0,P>, P) (< 3,0,Q>, Q) (< 4,0,A>, ?) (< 4,0,C>, 2*D) (< 4,0,D>, D) (< 4,0,E>, 4*D) (< 4,0,J>, 1 + D) (< 4,0,L>, ?) (< 4,0,N>, N) (< 4,0,O>, O) (< 4,0,P>, P) (< 4,0,Q>, Q) (< 6,0,A>, ?) (< 6,0,C>, 2*D) (< 6,0,D>, D) (< 6,0,E>, 4*D) (< 6,0,J>, ?) (< 6,0,L>, ?) (< 6,0,N>, N) (< 6,0,O>, N) (< 6,0,P>, P) (< 6,0,Q>, ?) (< 7,0,A>, ?) (< 7,0,C>, 2*D) (< 7,0,D>, D) (< 7,0,E>, 4*D) (< 7,0,J>, ?) (< 7,0,L>, ?) (< 7,0,N>, N) (< 7,0,O>, ?) (< 7,0,P>, P) (< 7,0,Q>, 0) (< 8,0,A>, ?) (< 8,0,C>, 2*D) (< 8,0,D>, D) (< 8,0,E>, 4*D) (< 8,0,J>, ?) (< 8,0,L>, ?) (< 8,0,N>, N) (< 8,0,O>, ?) (< 8,0,P>, P) (< 8,0,Q>, 0) (< 9,0,A>, ?) (< 9,0,C>, 2*D) (< 9,0,D>, D) (< 9,0,E>, 4*D) (< 9,0,J>, 1 + D) (< 9,0,L>, ?) (< 9,0,N>, N) (< 9,0,O>, ?) (< 9,0,P>, P) (< 9,0,Q>, 0) (<12,0,A>, ?) (<12,0,C>, 2*D) (<12,0,D>, D) (<12,0,E>, 4*D) (<12,0,J>, ?) (<12,0,L>, ?) (<12,0,N>, N) (<12,0,O>, ?) (<12,0,P>, 0) (<12,0,Q>, P) (<13,0,A>, ?) (<13,0,C>, 2*D) (<13,0,D>, D) (<13,0,E>, 4*D) (<13,0,J>, 2 + 4*D) (<13,0,L>, ?) (<13,0,N>, N) (<13,0,O>, ?) (<13,0,P>, 0) (<13,0,Q>, P) (<14,0,A>, ?) (<14,0,C>, 2*D) (<14,0,D>, D) (<14,0,E>, 4*D) (<14,0,J>, 1 + 2*D) (<14,0,L>, ?) (<14,0,N>, N) (<14,0,O>, ?) (<14,0,P>, P) (<14,0,Q>, ?) (<15,0,A>, ?) (<15,0,C>, 2*D) (<15,0,D>, D) (<15,0,E>, 4*D) (<15,0,J>, ?) (<15,0,L>, 0) (<15,0,N>, N) (<15,0,O>, ?) (<15,0,P>, P) (<15,0,Q>, ?) (<16,0,A>, ?) (<16,0,C>, 2*D) (<16,0,D>, D) (<16,0,E>, 4*D) (<16,0,J>, ?) (<16,0,L>, ?) (<16,0,N>, N) (<16,0,O>, ?) (<16,0,P>, P) (<16,0,Q>, ?) (<17,0,A>, ?) (<17,0,C>, 2*D) (<17,0,D>, D) (<17,0,E>, 4*D) (<17,0,J>, ?) (<17,0,L>, ?) (<17,0,N>, N) (<17,0,O>, ?) (<17,0,P>, P) (<17,0,Q>, ?) (<18,0,A>, ?) (<18,0,C>, 2*D) (<18,0,D>, D) (<18,0,E>, 4*D) (<18,0,J>, D) (<18,0,L>, ?) (<18,0,N>, N) (<18,0,O>, ?) (<18,0,P>, P) (<18,0,Q>, ?) (<19,0,A>, ?) (<19,0,C>, 2*D) (<19,0,D>, D) (<19,0,E>, 4*D) (<19,0,J>, D) (<19,0,L>, ?) (<19,0,N>, N) (<19,0,O>, ?) (<19,0,P>, P) (<19,0,Q>, ?) (<20,0,A>, ?) (<20,0,C>, 2*D) (<20,0,D>, D) (<20,0,E>, 4*D) (<20,0,J>, D) (<20,0,L>, ?) (<20,0,N>, N) (<20,0,O>, ?) (<20,0,P>, P) (<20,0,Q>, ?) (<21,0,A>, ?) (<21,0,C>, 2*D) (<21,0,D>, D) (<21,0,E>, 4*D) (<21,0,J>, D) (<21,0,L>, ?) (<21,0,N>, N) (<21,0,O>, ?) (<21,0,P>, P) (<21,0,Q>, ?) (<22,0,A>, ?) (<22,0,C>, 2*D) (<22,0,D>, D) (<22,0,E>, 4*D) (<22,0,J>, D) (<22,0,L>, ?) (<22,0,N>, N) (<22,0,O>, ?) (<22,0,P>, P) (<22,0,Q>, ?) (<23,0,A>, ?) (<23,0,C>, 2*D) (<23,0,D>, D) (<23,0,E>, 4*D) (<23,0,J>, D) (<23,0,L>, ?) (<23,0,N>, N) (<23,0,O>, ?) (<23,0,P>, P) (<23,0,Q>, ?) (<24,0,A>, ?) (<24,0,C>, 2*D) (<24,0,D>, D) (<24,0,E>, 4*D) (<24,0,J>, D) (<24,0,L>, ?) (<24,0,N>, N) (<24,0,O>, ?) (<24,0,P>, P) (<24,0,Q>, ?) (<25,0,A>, ?) (<25,0,C>, 2*D) (<25,0,D>, D) (<25,0,E>, 4*D) (<25,0,J>, D) (<25,0,L>, ?) (<25,0,N>, N) (<25,0,O>, ?) (<25,0,P>, P) (<25,0,Q>, ?) (<26,0,A>, ?) (<26,0,C>, 2*D) (<26,0,D>, D) (<26,0,E>, 4*D) (<26,0,J>, D) (<26,0,L>, ?) (<26,0,N>, N) (<26,0,O>, ?) (<26,0,P>, P) (<26,0,Q>, ?) (<27,0,A>, ?) (<27,0,C>, 2*D) (<27,0,D>, D) (<27,0,E>, 4*D) (<27,0,J>, D) (<27,0,L>, 0) (<27,0,N>, N) (<27,0,O>, ?) (<27,0,P>, P) (<27,0,Q>, ?) (<28,0,A>, ?) (<28,0,C>, 2*D) (<28,0,D>, D) (<28,0,E>, 4*D) (<28,0,J>, D) (<28,0,L>, ?) (<28,0,N>, N) (<28,0,O>, ?) (<28,0,P>, P) (<28,0,Q>, ?) (<29,0,A>, ?) (<29,0,C>, 2*D) (<29,0,D>, D) (<29,0,E>, 4*D) (<29,0,J>, D) (<29,0,L>, ?) (<29,0,N>, N) (<29,0,O>, ?) (<29,0,P>, P) (<29,0,Q>, ?) (<30,0,A>, ?) (<30,0,C>, 2*D) (<30,0,D>, D) (<30,0,E>, 4*D) (<30,0,J>, 1 + D) (<30,0,L>, ?) (<30,0,N>, N) (<30,0,O>, ?) (<30,0,P>, P) (<30,0,Q>, ?) (<32,0,A>, ?) (<32,0,C>, 2*D) (<32,0,D>, D) (<32,0,E>, 4*D) (<32,0,J>, ?) (<32,0,L>, ?) (<32,0,N>, N) (<32,0,O>, ?) (<32,0,P>, P) (<32,0,Q>, ?) (<33,0,A>, ?) (<33,0,C>, 2*D) (<33,0,D>, D) (<33,0,E>, 4*D) (<33,0,J>, ?) (<33,0,L>, ?) (<33,0,N>, N) (<33,0,O>, ?) (<33,0,P>, P) (<33,0,Q>, ?) (<34,0,A>, ?) (<34,0,C>, 2*D) (<34,0,D>, D) (<34,0,E>, 4*D) (<34,0,J>, ?) (<34,0,L>, ?) (<34,0,N>, N) (<34,0,O>, ?) (<34,0,P>, P) (<34,0,Q>, ?) (<35,0,A>, ?) (<35,0,C>, 2*D) (<35,0,D>, D) (<35,0,E>, 4*D) (<35,0,J>, ?) (<35,0,L>, ?) (<35,0,N>, N) (<35,0,O>, ?) (<35,0,P>, P) (<35,0,Q>, ?) (<36,0,A>, ?) (<36,0,C>, 2*D) (<36,0,D>, D) (<36,0,E>, 4*D) (<36,0,J>, ?) (<36,0,L>, ?) (<36,0,N>, N) (<36,0,O>, ?) (<36,0,P>, 0) (<36,0,Q>, P) (<37,0,A>, ?) (<37,0,C>, 2*D) (<37,0,D>, D) (<37,0,E>, 4*D) (<37,0,J>, ?) (<37,0,L>, ?) (<37,0,N>, N) (<37,0,O>, ?) (<37,0,P>, P) (<37,0,Q>, 0) (<38,0,A>, ?) (<38,0,C>, 2*D) (<38,0,D>, D) (<38,0,E>, 4*D) (<38,0,J>, ?) (<38,0,L>, ?) (<38,0,N>, N) (<38,0,O>, ?) (<38,0,P>, P) (<38,0,Q>, 0) (<39,0,A>, ?) (<39,0,C>, 2*D) (<39,0,D>, D) (<39,0,E>, 4*D) (<39,0,J>, ?) (<39,0,L>, ?) (<39,0,N>, N) (<39,0,O>, ?) (<39,0,P>, P) (<39,0,Q>, 0) (<40,0,A>, ?) (<40,0,C>, 2*D) (<40,0,D>, D) (<40,0,E>, 4*D) (<40,0,J>, ?) (<40,0,L>, ?) (<40,0,N>, N) (<40,0,O>, ?) (<40,0,P>, P) (<40,0,Q>, ?) (<41,0,A>, ?) (<41,0,C>, 2*D) (<41,0,D>, D) (<41,0,E>, 4*D) (<41,0,J>, ?) (<41,0,L>, ?) (<41,0,N>, N) (<41,0,O>, ?) (<41,0,P>, P) (<41,0,Q>, ?) (<42,0,A>, ?) (<42,0,C>, 2*D) (<42,0,D>, D) (<42,0,E>, 4*D) (<42,0,J>, 1 + 2*D + J) (<42,0,L>, ?) (<42,0,N>, N) (<42,0,O>, O) (<42,0,P>, P) (<42,0,Q>, Q) (<43,0,A>, ?) (<43,0,C>, 2*D) (<43,0,D>, D) (<43,0,E>, 4*D) (<43,0,J>, 1 + 2*D + J) (<43,0,L>, ?) (<43,0,N>, N) (<43,0,O>, O) (<43,0,P>, P) (<43,0,Q>, Q) (<44,0,A>, ?) (<44,0,C>, 2*D) (<44,0,D>, D) (<44,0,E>, 4*D) (<44,0,J>, 1 + 2*D + J) (<44,0,L>, ?) (<44,0,N>, N) (<44,0,O>, O) (<44,0,P>, P) (<44,0,Q>, Q) (<45,0,A>, ?) (<45,0,C>, 2*D) (<45,0,D>, D) (<45,0,E>, 4*D) (<45,0,J>, 1 + 2*D + J) (<45,0,L>, ?) (<45,0,N>, N) (<45,0,O>, O) (<45,0,P>, 0) (<45,0,Q>, Q) (<46,0,A>, ?) (<46,0,C>, 2*D) (<46,0,D>, D) (<46,0,E>, 4*D) (<46,0,J>, 1 + 2*D + J) (<46,0,L>, ?) (<46,0,N>, N) (<46,0,O>, O) (<46,0,P>, P) (<46,0,Q>, Q) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f103) = -1*x9 + -1*x10 p(f107) = -1*x9 + -1*x10 p(f118) = -1*x9 + -1*x10 p(f13) = -1*x9 + -1*x10 p(f2) = -1*x9 + -1*x10 p(f24) = -1*x9 + -1*x10 p(f31) = -1*x9 + -1*x10 p(f37) = -1*x9 + -1*x10 p(f40) = -1*x9 + -1*x10 p(f44) = -1 + -1*x9 + -1*x10 p(f50) = -1 + -1*x9 + -1*x10 p(f57) = -1 + -1*x9 + -1*x10 p(f64) = -1*x9 + -1*x10 p(f71) = -1*x9 + -1*x10 p(f86) = -1*x9 + -1*x10 p(f91) = -1*x9 + -1*x10 p(f99) = -1*x9 + -1*x10 The following rules are strictly oriented: [0 >= 1 + P && 0 >= Q] ==> f40(A,C,D,E,J,L,N,O,P,Q) = -1*P + -1*Q > -1 + -1*P + -1*Q = f44(A,C,D,E,J,L,N,O,P,Q) The following rules are weakly oriented: True ==> f2(A,C,D,E,J,L,N,O,P,Q) = -1*P + -1*Q >= -1*P + -1*Q = f13(0,2*D,D,4*D,J,L,N,O,P,Q) [C >= J] ==> f13(A,C,D,E,J,L,N,O,P,Q) = -1*P + -1*Q >= -1*P + -1*Q = f13(A,C,D,E,1 + J,0,N,O,P,Q) [C1 >= 2 && C >= J] ==> f13(A,C,D,E,J,L,N,O,P,Q) = -1*P + -1*Q >= -1*P + -1*Q = f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [0 >= C1 && C >= J] ==> f13(A,C,D,E,J,L,N,O,P,Q) = -1*P + -1*Q >= -1*P + -1*Q = f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [D >= J] ==> f24(A,C,D,E,J,L,N,O,P,Q) = -1*P + -1*Q >= -1*P + -1*Q = f24(A,C,D,E,1 + J,L,N,O,P,Q) [N >= O] ==> f37(A,C,D,E,J,L,N,O,P,Q) = -1*P + -1*Q >= -1*P + -1*Q = f40(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && 0 >= Q] ==> f40(A,C,D,E,J,L,N,O,P,Q) = -1*P + -1*Q >= -1 + -1*P + -1*Q = f44(A,C,D,E,J,L,N,O,P,Q) [D >= J] ==> f44(A,C,D,E,J,L,N,O,P,Q) = -1 + -1*P + -1*Q >= -1 + -1*P + -1*Q = f44(A,C,D,E,1 + J,L,N,O,P,Q) [0 >= Q && P = 0] ==> f40(A,C,D,E,J,L,N,O,P,Q) = -1*P + -1*Q >= -1*Q = f64(A,C,D,E,J,L,N,O,0,Q) [E >= J] ==> f64(A,C,D,E,J,L,N,O,P,Q) = -1*P + -1*Q >= -1*P + -1*Q = f64(A,C,D,E,2 + J,L,N,O,P,Q) [C >= J] ==> f71(A,C,D,E,J,L,N,O,P,Q) = -1*P + -1*Q >= -1*P + -1*Q = f71(A,C,D,E,1 + J,L,N,O,P,Q) [L = 0] ==> f86(A,C,D,E,J,L,N,O,P,Q) = -1*P + -1*Q >= -1*P + -1*Q = f91(A,C,D,E,J,0,N,O,P,Q) [0 >= 1 + L] ==> f86(A,C,D,E,J,L,N,O,P,Q) = -1*P + -1*Q >= -1*P + -1*Q = f91(A,C,D,E,J,L,N,O,P,Q) [L >= 1] ==> f86(A,C,D,E,J,L,N,O,P,Q) = -1*P + -1*Q >= -1*P + -1*Q = f91(A,C,D,E,J,L,N,O,P,Q) [D >= J] ==> f91(A,C,D,E,J,L,N,O,P,Q) = -1*P + -1*Q >= -1*P + -1*Q = f99(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && D >= J] ==> f91(A,C,D,E,J,L,N,O,P,Q) = -1*P + -1*Q >= -1*P + -1*Q = f99(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && D >= J] ==> f91(A,C,D,E,J,L,N,O,P,Q) = -1*P + -1*Q >= -1*P + -1*Q = f99(A,C,D,E,J,B1,N,O,P,Q) [L = 0] ==> f99(A,C,D,E,J,L,N,O,P,Q) = -1*P + -1*Q >= -1*P + -1*Q = f103(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] ==> f99(A,C,D,E,J,L,N,O,P,Q) = -1*P + -1*Q >= -1*P + -1*Q = f103(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] ==> f99(A,C,D,E,J,L,N,O,P,Q) = -1*P + -1*Q >= -1*P + -1*Q = f103(A,C,D,E,J,B1,N,O,P,Q) [L = 0] ==> f103(A,C,D,E,J,L,N,O,P,Q) = -1*P + -1*Q >= -1*P + -1*Q = f107(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] ==> f103(A,C,D,E,J,L,N,O,P,Q) = -1*P + -1*Q >= -1*P + -1*Q = f107(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] ==> f103(A,C,D,E,J,L,N,O,P,Q) = -1*P + -1*Q >= -1*P + -1*Q = f107(A,C,D,E,J,B1,N,O,P,Q) [L = 0] ==> f107(A,C,D,E,J,L,N,O,P,Q) = -1*P + -1*Q >= -1*P + -1*Q = f91(A,C,D,E,1 + J,0,N,O,P,Q) [0 >= 1 + L] ==> f107(A,C,D,E,J,L,N,O,P,Q) = -1*P + -1*Q >= -1*P + -1*Q = f91(A,C,D,E,1 + J,L,N,O,P,Q) [L >= 1] ==> f107(A,C,D,E,J,L,N,O,P,Q) = -1*P + -1*Q >= -1*P + -1*Q = f91(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] ==> f118(A,C,D,E,J,L,N,O,P,Q) = -1*P + -1*Q >= -1*P + -1*Q = f118(A,C,D,E,1 + J,L,N,O,P,Q) [J >= 1 + D] ==> f91(A,C,D,E,J,L,N,O,P,Q) = -1*P + -1*Q >= -1*P + -1*Q = f37(A,C,D,E,J,L,N,1 + O,P,Q) [J >= 1 + C] ==> f71(A,C,D,E,J,L,N,O,P,Q) = -1*P + -1*Q >= -1*P + -1*Q = f86(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && J >= 1 + C] ==> f71(A,C,D,E,J,L,N,O,P,Q) = -1*P + -1*Q >= -1*P + -1*Q = f86(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && J >= 1 + C] ==> f71(A,C,D,E,J,L,N,O,P,Q) = -1*P + -1*Q >= -1*P + -1*Q = f86(A,C,D,E,J,B1,N,O,P,Q) [J >= 1 + E] ==> f64(A,C,D,E,J,L,N,O,P,Q) = -1*P + -1*Q >= -1 + -1*P + -1*Q = f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] ==> f57(A,C,D,E,J,L,N,O,P,Q) = -1 + -1*P + -1*Q >= -1 + -1*P + -1*Q = f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] ==> f50(A,C,D,E,J,L,N,O,P,Q) = -1 + -1*P + -1*Q >= -1 + -1*P + -1*Q = f57(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] ==> f44(A,C,D,E,J,L,N,O,P,Q) = -1 + -1*P + -1*Q >= -1 + -1*P + -1*Q = f50(A,C,D,E,J,L,N,O,P,Q) [Q >= 1] ==> f40(A,C,D,E,J,L,N,O,P,Q) = -1*P + -1*Q >= -1*P + -1*Q = f71(A,C,D,E,J,L,N,O,P,Q) [O >= 1 + N] ==> f37(A,C,D,E,J,L,N,O,P,Q) = -1*P + -1*Q >= -1*P + -1*Q = f118(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] ==> f31(A,C,D,E,J,L,N,O,P,Q) = -1*P + -1*Q >= -1*P + -1*Q = f37(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && J >= 1 + D] ==> f24(A,C,D,E,J,L,N,O,P,Q) = -1*P + -1*Q >= -1*P + -1*Q = f31(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && J >= 1 + D] ==> f24(A,C,D,E,J,L,N,O,P,Q) = -1*P + -1*Q >= -1*P + -1*Q = f31(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D && P = 0] ==> f24(A,C,D,E,J,L,N,O,P,Q) = -1*P + -1*Q >= -1*Q = f37(A,C,D,E,J,L,N,O,0,Q) [J >= 1 + C] ==> f13(A,C,D,E,J,L,N,O,P,Q) = -1*P + -1*Q >= -1*P + -1*Q = f24(A,C,D,E,J,L,N,O,P,Q) * Step 22: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,C,D,E,J,L,N,O,P,Q) -> f13(0,2*D,D,4*D,J,L,N,O,P,Q) True (1,1) 1. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A,C,D,E,1 + J,0,N,O,P,Q) [C >= J] (?,1) 2. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [C1 >= 2 && C >= J] (?,1) 3. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [0 >= C1 && C >= J] (?,1) 4. f24(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 6. f37(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,Q) [N >= O] (?,1) 7. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && 0 >= Q] (P + Q,1) 8. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && 0 >= Q] (?,1) 9. f44(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (0,1) 12. f40(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,J,L,N,O,0,Q) [0 >= Q && P = 0] (?,1) 13. f64(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,2 + J,L,N,O,P,Q) [E >= J] (3*D,1) 14. f71(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,1 + J,L,N,O,P,Q) [C >= J] (D,1) 15. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,0,N,O,P,Q) [L = 0] (?,1) 16. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + L] (?,1) 17. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [L >= 1] (?,1) 18. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D >= J] (0,1) 19. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && D >= J] (0,1) 20. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && D >= J] (0,1) 21. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (0,1) 22. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (0,1) 23. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (0,1) 24. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (0,1) 25. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (0,1) 26. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (0,1) 27. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,0,N,O,P,Q) [L = 0] (0,1) 28. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [0 >= 1 + L] (0,1) 29. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [L >= 1] (0,1) 30. f118(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (0,1) 32. f91(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,1 + O,P,Q) [J >= 1 + D] (?,1) 33. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [J >= 1 + C] (?,1) 34. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && J >= 1 + C] (?,1) 35. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && J >= 1 + C] (?,1) 36. f64(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + E] (?,1) 37. f57(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] (?,1) 38. f50(A,C,D,E,J,L,N,O,P,Q) -> f57(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (?,1) 39. f44(A,C,D,E,J,L,N,O,P,Q) -> f50(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (?,1) 40. f40(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,J,L,N,O,P,Q) [Q >= 1] (?,1) 41. f37(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,J,L,N,O,P,Q) [O >= 1 + N] (?,1) 42. f31(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (2*P,1) 43. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && J >= 1 + D] (P,1) 44. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && J >= 1 + D] (P,1) 45. f24(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,0,Q) [J >= 1 + D && P = 0] (?,1) 46. f13(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + C] (1,1) Signature: {(f1,10) ;(f103,10) ;(f107,10) ;(f118,10) ;(f13,10) ;(f2,10) ;(f24,10) ;(f31,10) ;(f37,10) ;(f40,10) ;(f44,10) ;(f50,10) ;(f57,10) ;(f64,10) ;(f71,10) ;(f86,10) ;(f91,10) ;(f99,10)} Flow Graph: [0->{1,2,3,46},1->{1,2,3,46},2->{1,2,3,46},3->{1,2,3,46},4->{4,43,44,45},6->{7,8,12,40},7->{9,39},8->{9 ,39},9->{9,39},12->{13,36},13->{13,36},14->{14,33,34,35},15->{18,19,20,32},16->{18,19,20,32},17->{18,19,20 ,32},18->{21,22,23},19->{21,22,23},20->{21,22,23},21->{24,25,26},22->{24,25,26},23->{24,25,26},24->{27,28 ,29},25->{27,28,29},26->{27,28,29},27->{18,19,20,32},28->{18,19,20,32},29->{18,19,20,32},30->{30},32->{6,41} ,33->{15,16,17},34->{15,16,17},35->{15,16,17},36->{7,8,12,40},37->{7,8,12,40},38->{37},39->{38},40->{14,33 ,34,35},41->{30},42->{6,41},43->{42},44->{42},45->{6,41},46->{4,43,44,45}] Sizebounds: (< 0,0,A>, 0) (< 0,0,C>, 2*D) (< 0,0,D>, D) (< 0,0,E>, 4*D) (< 0,0,J>, J) (< 0,0,L>, L) (< 0,0,N>, N) (< 0,0,O>, O) (< 0,0,P>, P) (< 0,0,Q>, Q) (< 1,0,A>, ?) (< 1,0,C>, 2*D) (< 1,0,D>, D) (< 1,0,E>, 4*D) (< 1,0,J>, 1 + 2*D) (< 1,0,L>, 0) (< 1,0,N>, N) (< 1,0,O>, O) (< 1,0,P>, P) (< 1,0,Q>, Q) (< 2,0,A>, ?) (< 2,0,C>, 2*D) (< 2,0,D>, D) (< 2,0,E>, 4*D) (< 2,0,J>, 1 + 2*D) (< 2,0,L>, ?) (< 2,0,N>, N) (< 2,0,O>, O) (< 2,0,P>, P) (< 2,0,Q>, Q) (< 3,0,A>, ?) (< 3,0,C>, 2*D) (< 3,0,D>, D) (< 3,0,E>, 4*D) (< 3,0,J>, 1 + 2*D) (< 3,0,L>, ?) (< 3,0,N>, N) (< 3,0,O>, O) (< 3,0,P>, P) (< 3,0,Q>, Q) (< 4,0,A>, ?) (< 4,0,C>, 2*D) (< 4,0,D>, D) (< 4,0,E>, 4*D) (< 4,0,J>, 1 + D) (< 4,0,L>, ?) (< 4,0,N>, N) (< 4,0,O>, O) (< 4,0,P>, P) (< 4,0,Q>, Q) (< 6,0,A>, ?) (< 6,0,C>, 2*D) (< 6,0,D>, D) (< 6,0,E>, 4*D) (< 6,0,J>, ?) (< 6,0,L>, ?) (< 6,0,N>, N) (< 6,0,O>, N) (< 6,0,P>, P) (< 6,0,Q>, ?) (< 7,0,A>, ?) (< 7,0,C>, 2*D) (< 7,0,D>, D) (< 7,0,E>, 4*D) (< 7,0,J>, ?) (< 7,0,L>, ?) (< 7,0,N>, N) (< 7,0,O>, ?) (< 7,0,P>, P) (< 7,0,Q>, 0) (< 8,0,A>, ?) (< 8,0,C>, 2*D) (< 8,0,D>, D) (< 8,0,E>, 4*D) (< 8,0,J>, ?) (< 8,0,L>, ?) (< 8,0,N>, N) (< 8,0,O>, ?) (< 8,0,P>, P) (< 8,0,Q>, 0) (< 9,0,A>, ?) (< 9,0,C>, 2*D) (< 9,0,D>, D) (< 9,0,E>, 4*D) (< 9,0,J>, 1 + D) (< 9,0,L>, ?) (< 9,0,N>, N) (< 9,0,O>, ?) (< 9,0,P>, P) (< 9,0,Q>, 0) (<12,0,A>, ?) (<12,0,C>, 2*D) (<12,0,D>, D) (<12,0,E>, 4*D) (<12,0,J>, ?) (<12,0,L>, ?) (<12,0,N>, N) (<12,0,O>, ?) (<12,0,P>, 0) (<12,0,Q>, P) (<13,0,A>, ?) (<13,0,C>, 2*D) (<13,0,D>, D) (<13,0,E>, 4*D) (<13,0,J>, 2 + 4*D) (<13,0,L>, ?) (<13,0,N>, N) (<13,0,O>, ?) (<13,0,P>, 0) (<13,0,Q>, P) (<14,0,A>, ?) (<14,0,C>, 2*D) (<14,0,D>, D) (<14,0,E>, 4*D) (<14,0,J>, 1 + 2*D) (<14,0,L>, ?) (<14,0,N>, N) (<14,0,O>, ?) (<14,0,P>, P) (<14,0,Q>, ?) (<15,0,A>, ?) (<15,0,C>, 2*D) (<15,0,D>, D) (<15,0,E>, 4*D) (<15,0,J>, ?) (<15,0,L>, 0) (<15,0,N>, N) (<15,0,O>, ?) (<15,0,P>, P) (<15,0,Q>, ?) (<16,0,A>, ?) (<16,0,C>, 2*D) (<16,0,D>, D) (<16,0,E>, 4*D) (<16,0,J>, ?) (<16,0,L>, ?) (<16,0,N>, N) (<16,0,O>, ?) (<16,0,P>, P) (<16,0,Q>, ?) (<17,0,A>, ?) (<17,0,C>, 2*D) (<17,0,D>, D) (<17,0,E>, 4*D) (<17,0,J>, ?) (<17,0,L>, ?) (<17,0,N>, N) (<17,0,O>, ?) (<17,0,P>, P) (<17,0,Q>, ?) (<18,0,A>, ?) (<18,0,C>, 2*D) (<18,0,D>, D) (<18,0,E>, 4*D) (<18,0,J>, D) (<18,0,L>, ?) (<18,0,N>, N) (<18,0,O>, ?) (<18,0,P>, P) (<18,0,Q>, ?) (<19,0,A>, ?) (<19,0,C>, 2*D) (<19,0,D>, D) (<19,0,E>, 4*D) (<19,0,J>, D) (<19,0,L>, ?) (<19,0,N>, N) (<19,0,O>, ?) (<19,0,P>, P) (<19,0,Q>, ?) (<20,0,A>, ?) (<20,0,C>, 2*D) (<20,0,D>, D) (<20,0,E>, 4*D) (<20,0,J>, D) (<20,0,L>, ?) (<20,0,N>, N) (<20,0,O>, ?) (<20,0,P>, P) (<20,0,Q>, ?) (<21,0,A>, ?) (<21,0,C>, 2*D) (<21,0,D>, D) (<21,0,E>, 4*D) (<21,0,J>, D) (<21,0,L>, ?) (<21,0,N>, N) (<21,0,O>, ?) (<21,0,P>, P) (<21,0,Q>, ?) (<22,0,A>, ?) (<22,0,C>, 2*D) (<22,0,D>, D) (<22,0,E>, 4*D) (<22,0,J>, D) (<22,0,L>, ?) (<22,0,N>, N) (<22,0,O>, ?) (<22,0,P>, P) (<22,0,Q>, ?) (<23,0,A>, ?) (<23,0,C>, 2*D) (<23,0,D>, D) (<23,0,E>, 4*D) (<23,0,J>, D) (<23,0,L>, ?) (<23,0,N>, N) (<23,0,O>, ?) (<23,0,P>, P) (<23,0,Q>, ?) (<24,0,A>, ?) (<24,0,C>, 2*D) (<24,0,D>, D) (<24,0,E>, 4*D) (<24,0,J>, D) (<24,0,L>, ?) (<24,0,N>, N) (<24,0,O>, ?) (<24,0,P>, P) (<24,0,Q>, ?) (<25,0,A>, ?) (<25,0,C>, 2*D) (<25,0,D>, D) (<25,0,E>, 4*D) (<25,0,J>, D) (<25,0,L>, ?) (<25,0,N>, N) (<25,0,O>, ?) (<25,0,P>, P) (<25,0,Q>, ?) (<26,0,A>, ?) (<26,0,C>, 2*D) (<26,0,D>, D) (<26,0,E>, 4*D) (<26,0,J>, D) (<26,0,L>, ?) (<26,0,N>, N) (<26,0,O>, ?) (<26,0,P>, P) (<26,0,Q>, ?) (<27,0,A>, ?) (<27,0,C>, 2*D) (<27,0,D>, D) (<27,0,E>, 4*D) (<27,0,J>, D) (<27,0,L>, 0) (<27,0,N>, N) (<27,0,O>, ?) (<27,0,P>, P) (<27,0,Q>, ?) (<28,0,A>, ?) (<28,0,C>, 2*D) (<28,0,D>, D) (<28,0,E>, 4*D) (<28,0,J>, D) (<28,0,L>, ?) (<28,0,N>, N) (<28,0,O>, ?) (<28,0,P>, P) (<28,0,Q>, ?) (<29,0,A>, ?) (<29,0,C>, 2*D) (<29,0,D>, D) (<29,0,E>, 4*D) (<29,0,J>, D) (<29,0,L>, ?) (<29,0,N>, N) (<29,0,O>, ?) (<29,0,P>, P) (<29,0,Q>, ?) (<30,0,A>, ?) (<30,0,C>, 2*D) (<30,0,D>, D) (<30,0,E>, 4*D) (<30,0,J>, 1 + D) (<30,0,L>, ?) (<30,0,N>, N) (<30,0,O>, ?) (<30,0,P>, P) (<30,0,Q>, ?) (<32,0,A>, ?) (<32,0,C>, 2*D) (<32,0,D>, D) (<32,0,E>, 4*D) (<32,0,J>, ?) (<32,0,L>, ?) (<32,0,N>, N) (<32,0,O>, ?) (<32,0,P>, P) (<32,0,Q>, ?) (<33,0,A>, ?) (<33,0,C>, 2*D) (<33,0,D>, D) (<33,0,E>, 4*D) (<33,0,J>, ?) (<33,0,L>, ?) (<33,0,N>, N) (<33,0,O>, ?) (<33,0,P>, P) (<33,0,Q>, ?) (<34,0,A>, ?) (<34,0,C>, 2*D) (<34,0,D>, D) (<34,0,E>, 4*D) (<34,0,J>, ?) (<34,0,L>, ?) (<34,0,N>, N) (<34,0,O>, ?) (<34,0,P>, P) (<34,0,Q>, ?) (<35,0,A>, ?) (<35,0,C>, 2*D) (<35,0,D>, D) (<35,0,E>, 4*D) (<35,0,J>, ?) (<35,0,L>, ?) (<35,0,N>, N) (<35,0,O>, ?) (<35,0,P>, P) (<35,0,Q>, ?) (<36,0,A>, ?) (<36,0,C>, 2*D) (<36,0,D>, D) (<36,0,E>, 4*D) (<36,0,J>, ?) (<36,0,L>, ?) (<36,0,N>, N) (<36,0,O>, ?) (<36,0,P>, 0) (<36,0,Q>, P) (<37,0,A>, ?) (<37,0,C>, 2*D) (<37,0,D>, D) (<37,0,E>, 4*D) (<37,0,J>, ?) (<37,0,L>, ?) (<37,0,N>, N) (<37,0,O>, ?) (<37,0,P>, P) (<37,0,Q>, 0) (<38,0,A>, ?) (<38,0,C>, 2*D) (<38,0,D>, D) (<38,0,E>, 4*D) (<38,0,J>, ?) (<38,0,L>, ?) (<38,0,N>, N) (<38,0,O>, ?) (<38,0,P>, P) (<38,0,Q>, 0) (<39,0,A>, ?) (<39,0,C>, 2*D) (<39,0,D>, D) (<39,0,E>, 4*D) (<39,0,J>, ?) (<39,0,L>, ?) (<39,0,N>, N) (<39,0,O>, ?) (<39,0,P>, P) (<39,0,Q>, 0) (<40,0,A>, ?) (<40,0,C>, 2*D) (<40,0,D>, D) (<40,0,E>, 4*D) (<40,0,J>, ?) (<40,0,L>, ?) (<40,0,N>, N) (<40,0,O>, ?) (<40,0,P>, P) (<40,0,Q>, ?) (<41,0,A>, ?) (<41,0,C>, 2*D) (<41,0,D>, D) (<41,0,E>, 4*D) (<41,0,J>, ?) (<41,0,L>, ?) (<41,0,N>, N) (<41,0,O>, ?) (<41,0,P>, P) (<41,0,Q>, ?) (<42,0,A>, ?) (<42,0,C>, 2*D) (<42,0,D>, D) (<42,0,E>, 4*D) (<42,0,J>, 1 + 2*D + J) (<42,0,L>, ?) (<42,0,N>, N) (<42,0,O>, O) (<42,0,P>, P) (<42,0,Q>, Q) (<43,0,A>, ?) (<43,0,C>, 2*D) (<43,0,D>, D) (<43,0,E>, 4*D) (<43,0,J>, 1 + 2*D + J) (<43,0,L>, ?) (<43,0,N>, N) (<43,0,O>, O) (<43,0,P>, P) (<43,0,Q>, Q) (<44,0,A>, ?) (<44,0,C>, 2*D) (<44,0,D>, D) (<44,0,E>, 4*D) (<44,0,J>, 1 + 2*D + J) (<44,0,L>, ?) (<44,0,N>, N) (<44,0,O>, O) (<44,0,P>, P) (<44,0,Q>, Q) (<45,0,A>, ?) (<45,0,C>, 2*D) (<45,0,D>, D) (<45,0,E>, 4*D) (<45,0,J>, 1 + 2*D + J) (<45,0,L>, ?) (<45,0,N>, N) (<45,0,O>, O) (<45,0,P>, 0) (<45,0,Q>, Q) (<46,0,A>, ?) (<46,0,C>, 2*D) (<46,0,D>, D) (<46,0,E>, 4*D) (<46,0,J>, 1 + 2*D + J) (<46,0,L>, ?) (<46,0,N>, N) (<46,0,O>, O) (<46,0,P>, P) (<46,0,Q>, Q) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f103) = x9 + -1*x10 p(f107) = x9 + -1*x10 p(f118) = x9 + -1*x10 p(f13) = x9 + -1*x10 p(f2) = x9 + -1*x10 p(f24) = x9 + -1*x10 p(f31) = x9 + -1*x10 p(f37) = x9 + -1*x10 p(f40) = x9 + -1*x10 p(f44) = -1 + x9 + -1*x10 p(f50) = -1 + x9 + -1*x10 p(f57) = -1 + x9 + -1*x10 p(f64) = x9 + -1*x10 p(f71) = x9 + -1*x10 p(f86) = x9 + -1*x10 p(f91) = x9 + -1*x10 p(f99) = x9 + -1*x10 The following rules are strictly oriented: [P >= 1 && 0 >= Q] ==> f40(A,C,D,E,J,L,N,O,P,Q) = P + -1*Q > -1 + P + -1*Q = f44(A,C,D,E,J,L,N,O,P,Q) The following rules are weakly oriented: True ==> f2(A,C,D,E,J,L,N,O,P,Q) = P + -1*Q >= P + -1*Q = f13(0,2*D,D,4*D,J,L,N,O,P,Q) [C >= J] ==> f13(A,C,D,E,J,L,N,O,P,Q) = P + -1*Q >= P + -1*Q = f13(A,C,D,E,1 + J,0,N,O,P,Q) [C1 >= 2 && C >= J] ==> f13(A,C,D,E,J,L,N,O,P,Q) = P + -1*Q >= P + -1*Q = f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [0 >= C1 && C >= J] ==> f13(A,C,D,E,J,L,N,O,P,Q) = P + -1*Q >= P + -1*Q = f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [D >= J] ==> f24(A,C,D,E,J,L,N,O,P,Q) = P + -1*Q >= P + -1*Q = f24(A,C,D,E,1 + J,L,N,O,P,Q) [N >= O] ==> f37(A,C,D,E,J,L,N,O,P,Q) = P + -1*Q >= P + -1*Q = f40(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && 0 >= Q] ==> f40(A,C,D,E,J,L,N,O,P,Q) = P + -1*Q >= -1 + P + -1*Q = f44(A,C,D,E,J,L,N,O,P,Q) [D >= J] ==> f44(A,C,D,E,J,L,N,O,P,Q) = -1 + P + -1*Q >= -1 + P + -1*Q = f44(A,C,D,E,1 + J,L,N,O,P,Q) [0 >= Q && P = 0] ==> f40(A,C,D,E,J,L,N,O,P,Q) = P + -1*Q >= -1*Q = f64(A,C,D,E,J,L,N,O,0,Q) [E >= J] ==> f64(A,C,D,E,J,L,N,O,P,Q) = P + -1*Q >= P + -1*Q = f64(A,C,D,E,2 + J,L,N,O,P,Q) [C >= J] ==> f71(A,C,D,E,J,L,N,O,P,Q) = P + -1*Q >= P + -1*Q = f71(A,C,D,E,1 + J,L,N,O,P,Q) [L = 0] ==> f86(A,C,D,E,J,L,N,O,P,Q) = P + -1*Q >= P + -1*Q = f91(A,C,D,E,J,0,N,O,P,Q) [0 >= 1 + L] ==> f86(A,C,D,E,J,L,N,O,P,Q) = P + -1*Q >= P + -1*Q = f91(A,C,D,E,J,L,N,O,P,Q) [L >= 1] ==> f86(A,C,D,E,J,L,N,O,P,Q) = P + -1*Q >= P + -1*Q = f91(A,C,D,E,J,L,N,O,P,Q) [D >= J] ==> f91(A,C,D,E,J,L,N,O,P,Q) = P + -1*Q >= P + -1*Q = f99(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && D >= J] ==> f91(A,C,D,E,J,L,N,O,P,Q) = P + -1*Q >= P + -1*Q = f99(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && D >= J] ==> f91(A,C,D,E,J,L,N,O,P,Q) = P + -1*Q >= P + -1*Q = f99(A,C,D,E,J,B1,N,O,P,Q) [L = 0] ==> f99(A,C,D,E,J,L,N,O,P,Q) = P + -1*Q >= P + -1*Q = f103(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] ==> f99(A,C,D,E,J,L,N,O,P,Q) = P + -1*Q >= P + -1*Q = f103(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] ==> f99(A,C,D,E,J,L,N,O,P,Q) = P + -1*Q >= P + -1*Q = f103(A,C,D,E,J,B1,N,O,P,Q) [L = 0] ==> f103(A,C,D,E,J,L,N,O,P,Q) = P + -1*Q >= P + -1*Q = f107(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] ==> f103(A,C,D,E,J,L,N,O,P,Q) = P + -1*Q >= P + -1*Q = f107(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] ==> f103(A,C,D,E,J,L,N,O,P,Q) = P + -1*Q >= P + -1*Q = f107(A,C,D,E,J,B1,N,O,P,Q) [L = 0] ==> f107(A,C,D,E,J,L,N,O,P,Q) = P + -1*Q >= P + -1*Q = f91(A,C,D,E,1 + J,0,N,O,P,Q) [0 >= 1 + L] ==> f107(A,C,D,E,J,L,N,O,P,Q) = P + -1*Q >= P + -1*Q = f91(A,C,D,E,1 + J,L,N,O,P,Q) [L >= 1] ==> f107(A,C,D,E,J,L,N,O,P,Q) = P + -1*Q >= P + -1*Q = f91(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] ==> f118(A,C,D,E,J,L,N,O,P,Q) = P + -1*Q >= P + -1*Q = f118(A,C,D,E,1 + J,L,N,O,P,Q) [J >= 1 + D] ==> f91(A,C,D,E,J,L,N,O,P,Q) = P + -1*Q >= P + -1*Q = f37(A,C,D,E,J,L,N,1 + O,P,Q) [J >= 1 + C] ==> f71(A,C,D,E,J,L,N,O,P,Q) = P + -1*Q >= P + -1*Q = f86(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && J >= 1 + C] ==> f71(A,C,D,E,J,L,N,O,P,Q) = P + -1*Q >= P + -1*Q = f86(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && J >= 1 + C] ==> f71(A,C,D,E,J,L,N,O,P,Q) = P + -1*Q >= P + -1*Q = f86(A,C,D,E,J,B1,N,O,P,Q) [J >= 1 + E] ==> f64(A,C,D,E,J,L,N,O,P,Q) = P + -1*Q >= -1 + P + -1*Q = f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] ==> f57(A,C,D,E,J,L,N,O,P,Q) = -1 + P + -1*Q >= -1 + P + -1*Q = f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] ==> f50(A,C,D,E,J,L,N,O,P,Q) = -1 + P + -1*Q >= -1 + P + -1*Q = f57(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] ==> f44(A,C,D,E,J,L,N,O,P,Q) = -1 + P + -1*Q >= -1 + P + -1*Q = f50(A,C,D,E,J,L,N,O,P,Q) [Q >= 1] ==> f40(A,C,D,E,J,L,N,O,P,Q) = P + -1*Q >= P + -1*Q = f71(A,C,D,E,J,L,N,O,P,Q) [O >= 1 + N] ==> f37(A,C,D,E,J,L,N,O,P,Q) = P + -1*Q >= P + -1*Q = f118(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] ==> f31(A,C,D,E,J,L,N,O,P,Q) = P + -1*Q >= P + -1*Q = f37(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && J >= 1 + D] ==> f24(A,C,D,E,J,L,N,O,P,Q) = P + -1*Q >= P + -1*Q = f31(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && J >= 1 + D] ==> f24(A,C,D,E,J,L,N,O,P,Q) = P + -1*Q >= P + -1*Q = f31(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D && P = 0] ==> f24(A,C,D,E,J,L,N,O,P,Q) = P + -1*Q >= -1*Q = f37(A,C,D,E,J,L,N,O,0,Q) [J >= 1 + C] ==> f13(A,C,D,E,J,L,N,O,P,Q) = P + -1*Q >= P + -1*Q = f24(A,C,D,E,J,L,N,O,P,Q) * Step 23: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,C,D,E,J,L,N,O,P,Q) -> f13(0,2*D,D,4*D,J,L,N,O,P,Q) True (1,1) 1. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A,C,D,E,1 + J,0,N,O,P,Q) [C >= J] (?,1) 2. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [C1 >= 2 && C >= J] (?,1) 3. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [0 >= C1 && C >= J] (?,1) 4. f24(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 6. f37(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,Q) [N >= O] (?,1) 7. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && 0 >= Q] (P + Q,1) 8. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && 0 >= Q] (P + Q,1) 9. f44(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (0,1) 12. f40(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,J,L,N,O,0,Q) [0 >= Q && P = 0] (?,1) 13. f64(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,2 + J,L,N,O,P,Q) [E >= J] (3*D,1) 14. f71(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,1 + J,L,N,O,P,Q) [C >= J] (D,1) 15. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,0,N,O,P,Q) [L = 0] (?,1) 16. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + L] (?,1) 17. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [L >= 1] (?,1) 18. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D >= J] (0,1) 19. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && D >= J] (0,1) 20. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && D >= J] (0,1) 21. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (0,1) 22. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (0,1) 23. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (0,1) 24. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (0,1) 25. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (0,1) 26. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (0,1) 27. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,0,N,O,P,Q) [L = 0] (0,1) 28. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [0 >= 1 + L] (0,1) 29. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [L >= 1] (0,1) 30. f118(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (0,1) 32. f91(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,1 + O,P,Q) [J >= 1 + D] (?,1) 33. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [J >= 1 + C] (?,1) 34. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && J >= 1 + C] (?,1) 35. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && J >= 1 + C] (?,1) 36. f64(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + E] (?,1) 37. f57(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] (?,1) 38. f50(A,C,D,E,J,L,N,O,P,Q) -> f57(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (?,1) 39. f44(A,C,D,E,J,L,N,O,P,Q) -> f50(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (?,1) 40. f40(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,J,L,N,O,P,Q) [Q >= 1] (?,1) 41. f37(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,J,L,N,O,P,Q) [O >= 1 + N] (?,1) 42. f31(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (2*P,1) 43. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && J >= 1 + D] (P,1) 44. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && J >= 1 + D] (P,1) 45. f24(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,0,Q) [J >= 1 + D && P = 0] (?,1) 46. f13(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + C] (1,1) Signature: {(f1,10) ;(f103,10) ;(f107,10) ;(f118,10) ;(f13,10) ;(f2,10) ;(f24,10) ;(f31,10) ;(f37,10) ;(f40,10) ;(f44,10) ;(f50,10) ;(f57,10) ;(f64,10) ;(f71,10) ;(f86,10) ;(f91,10) ;(f99,10)} Flow Graph: [0->{1,2,3,46},1->{1,2,3,46},2->{1,2,3,46},3->{1,2,3,46},4->{4,43,44,45},6->{7,8,12,40},7->{9,39},8->{9 ,39},9->{9,39},12->{13,36},13->{13,36},14->{14,33,34,35},15->{18,19,20,32},16->{18,19,20,32},17->{18,19,20 ,32},18->{21,22,23},19->{21,22,23},20->{21,22,23},21->{24,25,26},22->{24,25,26},23->{24,25,26},24->{27,28 ,29},25->{27,28,29},26->{27,28,29},27->{18,19,20,32},28->{18,19,20,32},29->{18,19,20,32},30->{30},32->{6,41} ,33->{15,16,17},34->{15,16,17},35->{15,16,17},36->{7,8,12,40},37->{7,8,12,40},38->{37},39->{38},40->{14,33 ,34,35},41->{30},42->{6,41},43->{42},44->{42},45->{6,41},46->{4,43,44,45}] Sizebounds: (< 0,0,A>, 0) (< 0,0,C>, 2*D) (< 0,0,D>, D) (< 0,0,E>, 4*D) (< 0,0,J>, J) (< 0,0,L>, L) (< 0,0,N>, N) (< 0,0,O>, O) (< 0,0,P>, P) (< 0,0,Q>, Q) (< 1,0,A>, ?) (< 1,0,C>, 2*D) (< 1,0,D>, D) (< 1,0,E>, 4*D) (< 1,0,J>, 1 + 2*D) (< 1,0,L>, 0) (< 1,0,N>, N) (< 1,0,O>, O) (< 1,0,P>, P) (< 1,0,Q>, Q) (< 2,0,A>, ?) (< 2,0,C>, 2*D) (< 2,0,D>, D) (< 2,0,E>, 4*D) (< 2,0,J>, 1 + 2*D) (< 2,0,L>, ?) (< 2,0,N>, N) (< 2,0,O>, O) (< 2,0,P>, P) (< 2,0,Q>, Q) (< 3,0,A>, ?) (< 3,0,C>, 2*D) (< 3,0,D>, D) (< 3,0,E>, 4*D) (< 3,0,J>, 1 + 2*D) (< 3,0,L>, ?) (< 3,0,N>, N) (< 3,0,O>, O) (< 3,0,P>, P) (< 3,0,Q>, Q) (< 4,0,A>, ?) (< 4,0,C>, 2*D) (< 4,0,D>, D) (< 4,0,E>, 4*D) (< 4,0,J>, 1 + D) (< 4,0,L>, ?) (< 4,0,N>, N) (< 4,0,O>, O) (< 4,0,P>, P) (< 4,0,Q>, Q) (< 6,0,A>, ?) (< 6,0,C>, 2*D) (< 6,0,D>, D) (< 6,0,E>, 4*D) (< 6,0,J>, ?) (< 6,0,L>, ?) (< 6,0,N>, N) (< 6,0,O>, N) (< 6,0,P>, P) (< 6,0,Q>, ?) (< 7,0,A>, ?) (< 7,0,C>, 2*D) (< 7,0,D>, D) (< 7,0,E>, 4*D) (< 7,0,J>, ?) (< 7,0,L>, ?) (< 7,0,N>, N) (< 7,0,O>, ?) (< 7,0,P>, P) (< 7,0,Q>, 0) (< 8,0,A>, ?) (< 8,0,C>, 2*D) (< 8,0,D>, D) (< 8,0,E>, 4*D) (< 8,0,J>, ?) (< 8,0,L>, ?) (< 8,0,N>, N) (< 8,0,O>, ?) (< 8,0,P>, P) (< 8,0,Q>, 0) (< 9,0,A>, ?) (< 9,0,C>, 2*D) (< 9,0,D>, D) (< 9,0,E>, 4*D) (< 9,0,J>, 1 + D) (< 9,0,L>, ?) (< 9,0,N>, N) (< 9,0,O>, ?) (< 9,0,P>, P) (< 9,0,Q>, 0) (<12,0,A>, ?) (<12,0,C>, 2*D) (<12,0,D>, D) (<12,0,E>, 4*D) (<12,0,J>, ?) (<12,0,L>, ?) (<12,0,N>, N) (<12,0,O>, ?) (<12,0,P>, 0) (<12,0,Q>, P) (<13,0,A>, ?) (<13,0,C>, 2*D) (<13,0,D>, D) (<13,0,E>, 4*D) (<13,0,J>, 2 + 4*D) (<13,0,L>, ?) (<13,0,N>, N) (<13,0,O>, ?) (<13,0,P>, 0) (<13,0,Q>, P) (<14,0,A>, ?) (<14,0,C>, 2*D) (<14,0,D>, D) (<14,0,E>, 4*D) (<14,0,J>, 1 + 2*D) (<14,0,L>, ?) (<14,0,N>, N) (<14,0,O>, ?) (<14,0,P>, P) (<14,0,Q>, ?) (<15,0,A>, ?) (<15,0,C>, 2*D) (<15,0,D>, D) (<15,0,E>, 4*D) (<15,0,J>, ?) (<15,0,L>, 0) (<15,0,N>, N) (<15,0,O>, ?) (<15,0,P>, P) (<15,0,Q>, ?) (<16,0,A>, ?) (<16,0,C>, 2*D) (<16,0,D>, D) (<16,0,E>, 4*D) (<16,0,J>, ?) (<16,0,L>, ?) (<16,0,N>, N) (<16,0,O>, ?) (<16,0,P>, P) (<16,0,Q>, ?) (<17,0,A>, ?) (<17,0,C>, 2*D) (<17,0,D>, D) (<17,0,E>, 4*D) (<17,0,J>, ?) (<17,0,L>, ?) (<17,0,N>, N) (<17,0,O>, ?) (<17,0,P>, P) (<17,0,Q>, ?) (<18,0,A>, ?) (<18,0,C>, 2*D) (<18,0,D>, D) (<18,0,E>, 4*D) (<18,0,J>, D) (<18,0,L>, ?) (<18,0,N>, N) (<18,0,O>, ?) (<18,0,P>, P) (<18,0,Q>, ?) (<19,0,A>, ?) (<19,0,C>, 2*D) (<19,0,D>, D) (<19,0,E>, 4*D) (<19,0,J>, D) (<19,0,L>, ?) (<19,0,N>, N) (<19,0,O>, ?) (<19,0,P>, P) (<19,0,Q>, ?) (<20,0,A>, ?) (<20,0,C>, 2*D) (<20,0,D>, D) (<20,0,E>, 4*D) (<20,0,J>, D) (<20,0,L>, ?) (<20,0,N>, N) (<20,0,O>, ?) (<20,0,P>, P) (<20,0,Q>, ?) (<21,0,A>, ?) (<21,0,C>, 2*D) (<21,0,D>, D) (<21,0,E>, 4*D) (<21,0,J>, D) (<21,0,L>, ?) (<21,0,N>, N) (<21,0,O>, ?) (<21,0,P>, P) (<21,0,Q>, ?) (<22,0,A>, ?) (<22,0,C>, 2*D) (<22,0,D>, D) (<22,0,E>, 4*D) (<22,0,J>, D) (<22,0,L>, ?) (<22,0,N>, N) (<22,0,O>, ?) (<22,0,P>, P) (<22,0,Q>, ?) (<23,0,A>, ?) (<23,0,C>, 2*D) (<23,0,D>, D) (<23,0,E>, 4*D) (<23,0,J>, D) (<23,0,L>, ?) (<23,0,N>, N) (<23,0,O>, ?) (<23,0,P>, P) (<23,0,Q>, ?) (<24,0,A>, ?) (<24,0,C>, 2*D) (<24,0,D>, D) (<24,0,E>, 4*D) (<24,0,J>, D) (<24,0,L>, ?) (<24,0,N>, N) (<24,0,O>, ?) (<24,0,P>, P) (<24,0,Q>, ?) (<25,0,A>, ?) (<25,0,C>, 2*D) (<25,0,D>, D) (<25,0,E>, 4*D) (<25,0,J>, D) (<25,0,L>, ?) (<25,0,N>, N) (<25,0,O>, ?) (<25,0,P>, P) (<25,0,Q>, ?) (<26,0,A>, ?) (<26,0,C>, 2*D) (<26,0,D>, D) (<26,0,E>, 4*D) (<26,0,J>, D) (<26,0,L>, ?) (<26,0,N>, N) (<26,0,O>, ?) (<26,0,P>, P) (<26,0,Q>, ?) (<27,0,A>, ?) (<27,0,C>, 2*D) (<27,0,D>, D) (<27,0,E>, 4*D) (<27,0,J>, D) (<27,0,L>, 0) (<27,0,N>, N) (<27,0,O>, ?) (<27,0,P>, P) (<27,0,Q>, ?) (<28,0,A>, ?) (<28,0,C>, 2*D) (<28,0,D>, D) (<28,0,E>, 4*D) (<28,0,J>, D) (<28,0,L>, ?) (<28,0,N>, N) (<28,0,O>, ?) (<28,0,P>, P) (<28,0,Q>, ?) (<29,0,A>, ?) (<29,0,C>, 2*D) (<29,0,D>, D) (<29,0,E>, 4*D) (<29,0,J>, D) (<29,0,L>, ?) (<29,0,N>, N) (<29,0,O>, ?) (<29,0,P>, P) (<29,0,Q>, ?) (<30,0,A>, ?) (<30,0,C>, 2*D) (<30,0,D>, D) (<30,0,E>, 4*D) (<30,0,J>, 1 + D) (<30,0,L>, ?) (<30,0,N>, N) (<30,0,O>, ?) (<30,0,P>, P) (<30,0,Q>, ?) (<32,0,A>, ?) (<32,0,C>, 2*D) (<32,0,D>, D) (<32,0,E>, 4*D) (<32,0,J>, ?) (<32,0,L>, ?) (<32,0,N>, N) (<32,0,O>, ?) (<32,0,P>, P) (<32,0,Q>, ?) (<33,0,A>, ?) (<33,0,C>, 2*D) (<33,0,D>, D) (<33,0,E>, 4*D) (<33,0,J>, ?) (<33,0,L>, ?) (<33,0,N>, N) (<33,0,O>, ?) (<33,0,P>, P) (<33,0,Q>, ?) (<34,0,A>, ?) (<34,0,C>, 2*D) (<34,0,D>, D) (<34,0,E>, 4*D) (<34,0,J>, ?) (<34,0,L>, ?) (<34,0,N>, N) (<34,0,O>, ?) (<34,0,P>, P) (<34,0,Q>, ?) (<35,0,A>, ?) (<35,0,C>, 2*D) (<35,0,D>, D) (<35,0,E>, 4*D) (<35,0,J>, ?) (<35,0,L>, ?) (<35,0,N>, N) (<35,0,O>, ?) (<35,0,P>, P) (<35,0,Q>, ?) (<36,0,A>, ?) (<36,0,C>, 2*D) (<36,0,D>, D) (<36,0,E>, 4*D) (<36,0,J>, ?) (<36,0,L>, ?) (<36,0,N>, N) (<36,0,O>, ?) (<36,0,P>, 0) (<36,0,Q>, P) (<37,0,A>, ?) (<37,0,C>, 2*D) (<37,0,D>, D) (<37,0,E>, 4*D) (<37,0,J>, ?) (<37,0,L>, ?) (<37,0,N>, N) (<37,0,O>, ?) (<37,0,P>, P) (<37,0,Q>, 0) (<38,0,A>, ?) (<38,0,C>, 2*D) (<38,0,D>, D) (<38,0,E>, 4*D) (<38,0,J>, ?) (<38,0,L>, ?) (<38,0,N>, N) (<38,0,O>, ?) (<38,0,P>, P) (<38,0,Q>, 0) (<39,0,A>, ?) (<39,0,C>, 2*D) (<39,0,D>, D) (<39,0,E>, 4*D) (<39,0,J>, ?) (<39,0,L>, ?) (<39,0,N>, N) (<39,0,O>, ?) (<39,0,P>, P) (<39,0,Q>, 0) (<40,0,A>, ?) (<40,0,C>, 2*D) (<40,0,D>, D) (<40,0,E>, 4*D) (<40,0,J>, ?) (<40,0,L>, ?) (<40,0,N>, N) (<40,0,O>, ?) (<40,0,P>, P) (<40,0,Q>, ?) (<41,0,A>, ?) (<41,0,C>, 2*D) (<41,0,D>, D) (<41,0,E>, 4*D) (<41,0,J>, ?) (<41,0,L>, ?) (<41,0,N>, N) (<41,0,O>, ?) (<41,0,P>, P) (<41,0,Q>, ?) (<42,0,A>, ?) (<42,0,C>, 2*D) (<42,0,D>, D) (<42,0,E>, 4*D) (<42,0,J>, 1 + 2*D + J) (<42,0,L>, ?) (<42,0,N>, N) (<42,0,O>, O) (<42,0,P>, P) (<42,0,Q>, Q) (<43,0,A>, ?) (<43,0,C>, 2*D) (<43,0,D>, D) (<43,0,E>, 4*D) (<43,0,J>, 1 + 2*D + J) (<43,0,L>, ?) (<43,0,N>, N) (<43,0,O>, O) (<43,0,P>, P) (<43,0,Q>, Q) (<44,0,A>, ?) (<44,0,C>, 2*D) (<44,0,D>, D) (<44,0,E>, 4*D) (<44,0,J>, 1 + 2*D + J) (<44,0,L>, ?) (<44,0,N>, N) (<44,0,O>, O) (<44,0,P>, P) (<44,0,Q>, Q) (<45,0,A>, ?) (<45,0,C>, 2*D) (<45,0,D>, D) (<45,0,E>, 4*D) (<45,0,J>, 1 + 2*D + J) (<45,0,L>, ?) (<45,0,N>, N) (<45,0,O>, O) (<45,0,P>, 0) (<45,0,Q>, Q) (<46,0,A>, ?) (<46,0,C>, 2*D) (<46,0,D>, D) (<46,0,E>, 4*D) (<46,0,J>, 1 + 2*D + J) (<46,0,L>, ?) (<46,0,N>, N) (<46,0,O>, O) (<46,0,P>, P) (<46,0,Q>, Q) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 24: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,C,D,E,J,L,N,O,P,Q) -> f13(0,2*D,D,4*D,J,L,N,O,P,Q) True (1,1) 1. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A,C,D,E,1 + J,0,N,O,P,Q) [C >= J] (?,1) 2. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [C1 >= 2 && C >= J] (?,1) 3. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [0 >= C1 && C >= J] (?,1) 4. f24(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 6. f37(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,Q) [N >= O] (?,1) 7. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && 0 >= Q] (P + Q,1) 8. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && 0 >= Q] (P + Q,1) 9. f44(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (0,1) 12. f40(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,J,L,N,O,0,Q) [0 >= Q && P = 0] (?,1) 13. f64(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,2 + J,L,N,O,P,Q) [E >= J] (3*D,1) 14. f71(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,1 + J,L,N,O,P,Q) [C >= J] (D,1) 15. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,0,N,O,P,Q) [L = 0] (?,1) 16. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + L] (?,1) 17. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [L >= 1] (?,1) 18. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D >= J] (0,1) 19. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && D >= J] (0,1) 20. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && D >= J] (0,1) 21. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (0,1) 22. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (0,1) 23. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (0,1) 24. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (0,1) 25. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (0,1) 26. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (0,1) 27. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,0,N,O,P,Q) [L = 0] (0,1) 28. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [0 >= 1 + L] (0,1) 29. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [L >= 1] (0,1) 30. f118(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (0,1) 32. f91(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,1 + O,P,Q) [J >= 1 + D] (?,1) 33. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [J >= 1 + C] (?,1) 34. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && J >= 1 + C] (?,1) 35. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && J >= 1 + C] (?,1) 36. f64(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + E] (?,1) 37. f57(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] (2*P + 2*Q,1) 38. f50(A,C,D,E,J,L,N,O,P,Q) -> f57(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (2*P + 2*Q,1) 39. f44(A,C,D,E,J,L,N,O,P,Q) -> f50(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (2*P + 2*Q,1) 40. f40(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,J,L,N,O,P,Q) [Q >= 1] (?,1) 41. f37(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,J,L,N,O,P,Q) [O >= 1 + N] (?,1) 42. f31(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (2*P,1) 43. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && J >= 1 + D] (P,1) 44. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && J >= 1 + D] (P,1) 45. f24(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,0,Q) [J >= 1 + D && P = 0] (?,1) 46. f13(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + C] (1,1) Signature: {(f1,10) ;(f103,10) ;(f107,10) ;(f118,10) ;(f13,10) ;(f2,10) ;(f24,10) ;(f31,10) ;(f37,10) ;(f40,10) ;(f44,10) ;(f50,10) ;(f57,10) ;(f64,10) ;(f71,10) ;(f86,10) ;(f91,10) ;(f99,10)} Flow Graph: [0->{1,2,3,46},1->{1,2,3,46},2->{1,2,3,46},3->{1,2,3,46},4->{4,43,44,45},6->{7,8,12,40},7->{9,39},8->{9 ,39},9->{9,39},12->{13,36},13->{13,36},14->{14,33,34,35},15->{18,19,20,32},16->{18,19,20,32},17->{18,19,20 ,32},18->{21,22,23},19->{21,22,23},20->{21,22,23},21->{24,25,26},22->{24,25,26},23->{24,25,26},24->{27,28 ,29},25->{27,28,29},26->{27,28,29},27->{18,19,20,32},28->{18,19,20,32},29->{18,19,20,32},30->{30},32->{6,41} ,33->{15,16,17},34->{15,16,17},35->{15,16,17},36->{7,8,12,40},37->{7,8,12,40},38->{37},39->{38},40->{14,33 ,34,35},41->{30},42->{6,41},43->{42},44->{42},45->{6,41},46->{4,43,44,45}] Sizebounds: (< 0,0,A>, 0) (< 0,0,C>, 2*D) (< 0,0,D>, D) (< 0,0,E>, 4*D) (< 0,0,J>, J) (< 0,0,L>, L) (< 0,0,N>, N) (< 0,0,O>, O) (< 0,0,P>, P) (< 0,0,Q>, Q) (< 1,0,A>, ?) (< 1,0,C>, 2*D) (< 1,0,D>, D) (< 1,0,E>, 4*D) (< 1,0,J>, 1 + 2*D) (< 1,0,L>, 0) (< 1,0,N>, N) (< 1,0,O>, O) (< 1,0,P>, P) (< 1,0,Q>, Q) (< 2,0,A>, ?) (< 2,0,C>, 2*D) (< 2,0,D>, D) (< 2,0,E>, 4*D) (< 2,0,J>, 1 + 2*D) (< 2,0,L>, ?) (< 2,0,N>, N) (< 2,0,O>, O) (< 2,0,P>, P) (< 2,0,Q>, Q) (< 3,0,A>, ?) (< 3,0,C>, 2*D) (< 3,0,D>, D) (< 3,0,E>, 4*D) (< 3,0,J>, 1 + 2*D) (< 3,0,L>, ?) (< 3,0,N>, N) (< 3,0,O>, O) (< 3,0,P>, P) (< 3,0,Q>, Q) (< 4,0,A>, ?) (< 4,0,C>, 2*D) (< 4,0,D>, D) (< 4,0,E>, 4*D) (< 4,0,J>, 1 + D) (< 4,0,L>, ?) (< 4,0,N>, N) (< 4,0,O>, O) (< 4,0,P>, P) (< 4,0,Q>, Q) (< 6,0,A>, ?) (< 6,0,C>, 2*D) (< 6,0,D>, D) (< 6,0,E>, 4*D) (< 6,0,J>, ?) (< 6,0,L>, ?) (< 6,0,N>, N) (< 6,0,O>, N) (< 6,0,P>, P) (< 6,0,Q>, ?) (< 7,0,A>, ?) (< 7,0,C>, 2*D) (< 7,0,D>, D) (< 7,0,E>, 4*D) (< 7,0,J>, ?) (< 7,0,L>, ?) (< 7,0,N>, N) (< 7,0,O>, ?) (< 7,0,P>, P) (< 7,0,Q>, 0) (< 8,0,A>, ?) (< 8,0,C>, 2*D) (< 8,0,D>, D) (< 8,0,E>, 4*D) (< 8,0,J>, ?) (< 8,0,L>, ?) (< 8,0,N>, N) (< 8,0,O>, ?) (< 8,0,P>, P) (< 8,0,Q>, 0) (< 9,0,A>, ?) (< 9,0,C>, 2*D) (< 9,0,D>, D) (< 9,0,E>, 4*D) (< 9,0,J>, 1 + D) (< 9,0,L>, ?) (< 9,0,N>, N) (< 9,0,O>, ?) (< 9,0,P>, P) (< 9,0,Q>, 0) (<12,0,A>, ?) (<12,0,C>, 2*D) (<12,0,D>, D) (<12,0,E>, 4*D) (<12,0,J>, ?) (<12,0,L>, ?) (<12,0,N>, N) (<12,0,O>, ?) (<12,0,P>, 0) (<12,0,Q>, P) (<13,0,A>, ?) (<13,0,C>, 2*D) (<13,0,D>, D) (<13,0,E>, 4*D) (<13,0,J>, 2 + 4*D) (<13,0,L>, ?) (<13,0,N>, N) (<13,0,O>, ?) (<13,0,P>, 0) (<13,0,Q>, P) (<14,0,A>, ?) (<14,0,C>, 2*D) (<14,0,D>, D) (<14,0,E>, 4*D) (<14,0,J>, 1 + 2*D) (<14,0,L>, ?) (<14,0,N>, N) (<14,0,O>, ?) (<14,0,P>, P) (<14,0,Q>, ?) (<15,0,A>, ?) (<15,0,C>, 2*D) (<15,0,D>, D) (<15,0,E>, 4*D) (<15,0,J>, ?) (<15,0,L>, 0) (<15,0,N>, N) (<15,0,O>, ?) (<15,0,P>, P) (<15,0,Q>, ?) (<16,0,A>, ?) (<16,0,C>, 2*D) (<16,0,D>, D) (<16,0,E>, 4*D) (<16,0,J>, ?) (<16,0,L>, ?) (<16,0,N>, N) (<16,0,O>, ?) (<16,0,P>, P) (<16,0,Q>, ?) (<17,0,A>, ?) (<17,0,C>, 2*D) (<17,0,D>, D) (<17,0,E>, 4*D) (<17,0,J>, ?) (<17,0,L>, ?) (<17,0,N>, N) (<17,0,O>, ?) (<17,0,P>, P) (<17,0,Q>, ?) (<18,0,A>, ?) (<18,0,C>, 2*D) (<18,0,D>, D) (<18,0,E>, 4*D) (<18,0,J>, D) (<18,0,L>, ?) (<18,0,N>, N) (<18,0,O>, ?) (<18,0,P>, P) (<18,0,Q>, ?) (<19,0,A>, ?) (<19,0,C>, 2*D) (<19,0,D>, D) (<19,0,E>, 4*D) (<19,0,J>, D) (<19,0,L>, ?) (<19,0,N>, N) (<19,0,O>, ?) (<19,0,P>, P) (<19,0,Q>, ?) (<20,0,A>, ?) (<20,0,C>, 2*D) (<20,0,D>, D) (<20,0,E>, 4*D) (<20,0,J>, D) (<20,0,L>, ?) (<20,0,N>, N) (<20,0,O>, ?) (<20,0,P>, P) (<20,0,Q>, ?) (<21,0,A>, ?) (<21,0,C>, 2*D) (<21,0,D>, D) (<21,0,E>, 4*D) (<21,0,J>, D) (<21,0,L>, ?) (<21,0,N>, N) (<21,0,O>, ?) (<21,0,P>, P) (<21,0,Q>, ?) (<22,0,A>, ?) (<22,0,C>, 2*D) (<22,0,D>, D) (<22,0,E>, 4*D) (<22,0,J>, D) (<22,0,L>, ?) (<22,0,N>, N) (<22,0,O>, ?) (<22,0,P>, P) (<22,0,Q>, ?) (<23,0,A>, ?) (<23,0,C>, 2*D) (<23,0,D>, D) (<23,0,E>, 4*D) (<23,0,J>, D) (<23,0,L>, ?) (<23,0,N>, N) (<23,0,O>, ?) (<23,0,P>, P) (<23,0,Q>, ?) (<24,0,A>, ?) (<24,0,C>, 2*D) (<24,0,D>, D) (<24,0,E>, 4*D) (<24,0,J>, D) (<24,0,L>, ?) (<24,0,N>, N) (<24,0,O>, ?) (<24,0,P>, P) (<24,0,Q>, ?) (<25,0,A>, ?) (<25,0,C>, 2*D) (<25,0,D>, D) (<25,0,E>, 4*D) (<25,0,J>, D) (<25,0,L>, ?) (<25,0,N>, N) (<25,0,O>, ?) (<25,0,P>, P) (<25,0,Q>, ?) (<26,0,A>, ?) (<26,0,C>, 2*D) (<26,0,D>, D) (<26,0,E>, 4*D) (<26,0,J>, D) (<26,0,L>, ?) (<26,0,N>, N) (<26,0,O>, ?) (<26,0,P>, P) (<26,0,Q>, ?) (<27,0,A>, ?) (<27,0,C>, 2*D) (<27,0,D>, D) (<27,0,E>, 4*D) (<27,0,J>, D) (<27,0,L>, 0) (<27,0,N>, N) (<27,0,O>, ?) (<27,0,P>, P) (<27,0,Q>, ?) (<28,0,A>, ?) (<28,0,C>, 2*D) (<28,0,D>, D) (<28,0,E>, 4*D) (<28,0,J>, D) (<28,0,L>, ?) (<28,0,N>, N) (<28,0,O>, ?) (<28,0,P>, P) (<28,0,Q>, ?) (<29,0,A>, ?) (<29,0,C>, 2*D) (<29,0,D>, D) (<29,0,E>, 4*D) (<29,0,J>, D) (<29,0,L>, ?) (<29,0,N>, N) (<29,0,O>, ?) (<29,0,P>, P) (<29,0,Q>, ?) (<30,0,A>, ?) (<30,0,C>, 2*D) (<30,0,D>, D) (<30,0,E>, 4*D) (<30,0,J>, 1 + D) (<30,0,L>, ?) (<30,0,N>, N) (<30,0,O>, ?) (<30,0,P>, P) (<30,0,Q>, ?) (<32,0,A>, ?) (<32,0,C>, 2*D) (<32,0,D>, D) (<32,0,E>, 4*D) (<32,0,J>, ?) (<32,0,L>, ?) (<32,0,N>, N) (<32,0,O>, ?) (<32,0,P>, P) (<32,0,Q>, ?) (<33,0,A>, ?) (<33,0,C>, 2*D) (<33,0,D>, D) (<33,0,E>, 4*D) (<33,0,J>, ?) (<33,0,L>, ?) (<33,0,N>, N) (<33,0,O>, ?) (<33,0,P>, P) (<33,0,Q>, ?) (<34,0,A>, ?) (<34,0,C>, 2*D) (<34,0,D>, D) (<34,0,E>, 4*D) (<34,0,J>, ?) (<34,0,L>, ?) (<34,0,N>, N) (<34,0,O>, ?) (<34,0,P>, P) (<34,0,Q>, ?) (<35,0,A>, ?) (<35,0,C>, 2*D) (<35,0,D>, D) (<35,0,E>, 4*D) (<35,0,J>, ?) (<35,0,L>, ?) (<35,0,N>, N) (<35,0,O>, ?) (<35,0,P>, P) (<35,0,Q>, ?) (<36,0,A>, ?) (<36,0,C>, 2*D) (<36,0,D>, D) (<36,0,E>, 4*D) (<36,0,J>, ?) (<36,0,L>, ?) (<36,0,N>, N) (<36,0,O>, ?) (<36,0,P>, 0) (<36,0,Q>, P) (<37,0,A>, ?) (<37,0,C>, 2*D) (<37,0,D>, D) (<37,0,E>, 4*D) (<37,0,J>, ?) (<37,0,L>, ?) (<37,0,N>, N) (<37,0,O>, ?) (<37,0,P>, P) (<37,0,Q>, 0) (<38,0,A>, ?) (<38,0,C>, 2*D) (<38,0,D>, D) (<38,0,E>, 4*D) (<38,0,J>, ?) (<38,0,L>, ?) (<38,0,N>, N) (<38,0,O>, ?) (<38,0,P>, P) (<38,0,Q>, 0) (<39,0,A>, ?) (<39,0,C>, 2*D) (<39,0,D>, D) (<39,0,E>, 4*D) (<39,0,J>, ?) (<39,0,L>, ?) (<39,0,N>, N) (<39,0,O>, ?) (<39,0,P>, P) (<39,0,Q>, 0) (<40,0,A>, ?) (<40,0,C>, 2*D) (<40,0,D>, D) (<40,0,E>, 4*D) (<40,0,J>, ?) (<40,0,L>, ?) (<40,0,N>, N) (<40,0,O>, ?) (<40,0,P>, P) (<40,0,Q>, ?) (<41,0,A>, ?) (<41,0,C>, 2*D) (<41,0,D>, D) (<41,0,E>, 4*D) (<41,0,J>, ?) (<41,0,L>, ?) (<41,0,N>, N) (<41,0,O>, ?) (<41,0,P>, P) (<41,0,Q>, ?) (<42,0,A>, ?) (<42,0,C>, 2*D) (<42,0,D>, D) (<42,0,E>, 4*D) (<42,0,J>, 1 + 2*D + J) (<42,0,L>, ?) (<42,0,N>, N) (<42,0,O>, O) (<42,0,P>, P) (<42,0,Q>, Q) (<43,0,A>, ?) (<43,0,C>, 2*D) (<43,0,D>, D) (<43,0,E>, 4*D) (<43,0,J>, 1 + 2*D + J) (<43,0,L>, ?) (<43,0,N>, N) (<43,0,O>, O) (<43,0,P>, P) (<43,0,Q>, Q) (<44,0,A>, ?) (<44,0,C>, 2*D) (<44,0,D>, D) (<44,0,E>, 4*D) (<44,0,J>, 1 + 2*D + J) (<44,0,L>, ?) (<44,0,N>, N) (<44,0,O>, O) (<44,0,P>, P) (<44,0,Q>, Q) (<45,0,A>, ?) (<45,0,C>, 2*D) (<45,0,D>, D) (<45,0,E>, 4*D) (<45,0,J>, 1 + 2*D + J) (<45,0,L>, ?) (<45,0,N>, N) (<45,0,O>, O) (<45,0,P>, 0) (<45,0,Q>, Q) (<46,0,A>, ?) (<46,0,C>, 2*D) (<46,0,D>, D) (<46,0,E>, 4*D) (<46,0,J>, 1 + 2*D + J) (<46,0,L>, ?) (<46,0,N>, N) (<46,0,O>, O) (<46,0,P>, P) (<46,0,Q>, Q) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f103) = x7 + -1*x8 p(f107) = x7 + -1*x8 p(f118) = 1 + x7 + -1*x8 p(f13) = 1 + x7 + -1*x8 p(f2) = 1 + x7 + -1*x8 p(f24) = 1 + x7 + -1*x8 p(f31) = 1 + x7 + -1*x8 p(f37) = 1 + x7 + -1*x8 p(f40) = x7 + -1*x8 p(f44) = x7 + -1*x8 p(f50) = x7 + -1*x8 p(f57) = x7 + -1*x8 p(f64) = x7 + -1*x8 p(f71) = x7 + -1*x8 p(f86) = x7 + -1*x8 p(f91) = x7 + -1*x8 p(f99) = x7 + -1*x8 The following rules are strictly oriented: [N >= O] ==> f37(A,C,D,E,J,L,N,O,P,Q) = 1 + N + -1*O > N + -1*O = f40(A,C,D,E,J,L,N,O,P,Q) The following rules are weakly oriented: True ==> f2(A,C,D,E,J,L,N,O,P,Q) = 1 + N + -1*O >= 1 + N + -1*O = f13(0,2*D,D,4*D,J,L,N,O,P,Q) [C >= J] ==> f13(A,C,D,E,J,L,N,O,P,Q) = 1 + N + -1*O >= 1 + N + -1*O = f13(A,C,D,E,1 + J,0,N,O,P,Q) [C1 >= 2 && C >= J] ==> f13(A,C,D,E,J,L,N,O,P,Q) = 1 + N + -1*O >= 1 + N + -1*O = f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [0 >= C1 && C >= J] ==> f13(A,C,D,E,J,L,N,O,P,Q) = 1 + N + -1*O >= 1 + N + -1*O = f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [D >= J] ==> f24(A,C,D,E,J,L,N,O,P,Q) = 1 + N + -1*O >= 1 + N + -1*O = f24(A,C,D,E,1 + J,L,N,O,P,Q) [0 >= 1 + P && 0 >= Q] ==> f40(A,C,D,E,J,L,N,O,P,Q) = N + -1*O >= N + -1*O = f44(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && 0 >= Q] ==> f40(A,C,D,E,J,L,N,O,P,Q) = N + -1*O >= N + -1*O = f44(A,C,D,E,J,L,N,O,P,Q) [D >= J] ==> f44(A,C,D,E,J,L,N,O,P,Q) = N + -1*O >= N + -1*O = f44(A,C,D,E,1 + J,L,N,O,P,Q) [0 >= Q && P = 0] ==> f40(A,C,D,E,J,L,N,O,P,Q) = N + -1*O >= N + -1*O = f64(A,C,D,E,J,L,N,O,0,Q) [E >= J] ==> f64(A,C,D,E,J,L,N,O,P,Q) = N + -1*O >= N + -1*O = f64(A,C,D,E,2 + J,L,N,O,P,Q) [C >= J] ==> f71(A,C,D,E,J,L,N,O,P,Q) = N + -1*O >= N + -1*O = f71(A,C,D,E,1 + J,L,N,O,P,Q) [L = 0] ==> f86(A,C,D,E,J,L,N,O,P,Q) = N + -1*O >= N + -1*O = f91(A,C,D,E,J,0,N,O,P,Q) [0 >= 1 + L] ==> f86(A,C,D,E,J,L,N,O,P,Q) = N + -1*O >= N + -1*O = f91(A,C,D,E,J,L,N,O,P,Q) [L >= 1] ==> f86(A,C,D,E,J,L,N,O,P,Q) = N + -1*O >= N + -1*O = f91(A,C,D,E,J,L,N,O,P,Q) [D >= J] ==> f91(A,C,D,E,J,L,N,O,P,Q) = N + -1*O >= N + -1*O = f99(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && D >= J] ==> f91(A,C,D,E,J,L,N,O,P,Q) = N + -1*O >= N + -1*O = f99(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && D >= J] ==> f91(A,C,D,E,J,L,N,O,P,Q) = N + -1*O >= N + -1*O = f99(A,C,D,E,J,B1,N,O,P,Q) [L = 0] ==> f99(A,C,D,E,J,L,N,O,P,Q) = N + -1*O >= N + -1*O = f103(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] ==> f99(A,C,D,E,J,L,N,O,P,Q) = N + -1*O >= N + -1*O = f103(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] ==> f99(A,C,D,E,J,L,N,O,P,Q) = N + -1*O >= N + -1*O = f103(A,C,D,E,J,B1,N,O,P,Q) [L = 0] ==> f103(A,C,D,E,J,L,N,O,P,Q) = N + -1*O >= N + -1*O = f107(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] ==> f103(A,C,D,E,J,L,N,O,P,Q) = N + -1*O >= N + -1*O = f107(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] ==> f103(A,C,D,E,J,L,N,O,P,Q) = N + -1*O >= N + -1*O = f107(A,C,D,E,J,B1,N,O,P,Q) [L = 0] ==> f107(A,C,D,E,J,L,N,O,P,Q) = N + -1*O >= N + -1*O = f91(A,C,D,E,1 + J,0,N,O,P,Q) [0 >= 1 + L] ==> f107(A,C,D,E,J,L,N,O,P,Q) = N + -1*O >= N + -1*O = f91(A,C,D,E,1 + J,L,N,O,P,Q) [L >= 1] ==> f107(A,C,D,E,J,L,N,O,P,Q) = N + -1*O >= N + -1*O = f91(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] ==> f118(A,C,D,E,J,L,N,O,P,Q) = 1 + N + -1*O >= 1 + N + -1*O = f118(A,C,D,E,1 + J,L,N,O,P,Q) [J >= 1 + D] ==> f91(A,C,D,E,J,L,N,O,P,Q) = N + -1*O >= N + -1*O = f37(A,C,D,E,J,L,N,1 + O,P,Q) [J >= 1 + C] ==> f71(A,C,D,E,J,L,N,O,P,Q) = N + -1*O >= N + -1*O = f86(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && J >= 1 + C] ==> f71(A,C,D,E,J,L,N,O,P,Q) = N + -1*O >= N + -1*O = f86(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && J >= 1 + C] ==> f71(A,C,D,E,J,L,N,O,P,Q) = N + -1*O >= N + -1*O = f86(A,C,D,E,J,B1,N,O,P,Q) [J >= 1 + E] ==> f64(A,C,D,E,J,L,N,O,P,Q) = N + -1*O >= N + -1*O = f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] ==> f57(A,C,D,E,J,L,N,O,P,Q) = N + -1*O >= N + -1*O = f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] ==> f50(A,C,D,E,J,L,N,O,P,Q) = N + -1*O >= N + -1*O = f57(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] ==> f44(A,C,D,E,J,L,N,O,P,Q) = N + -1*O >= N + -1*O = f50(A,C,D,E,J,L,N,O,P,Q) [Q >= 1] ==> f40(A,C,D,E,J,L,N,O,P,Q) = N + -1*O >= N + -1*O = f71(A,C,D,E,J,L,N,O,P,Q) [O >= 1 + N] ==> f37(A,C,D,E,J,L,N,O,P,Q) = 1 + N + -1*O >= 1 + N + -1*O = f118(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] ==> f31(A,C,D,E,J,L,N,O,P,Q) = 1 + N + -1*O >= 1 + N + -1*O = f37(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && J >= 1 + D] ==> f24(A,C,D,E,J,L,N,O,P,Q) = 1 + N + -1*O >= 1 + N + -1*O = f31(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && J >= 1 + D] ==> f24(A,C,D,E,J,L,N,O,P,Q) = 1 + N + -1*O >= 1 + N + -1*O = f31(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D && P = 0] ==> f24(A,C,D,E,J,L,N,O,P,Q) = 1 + N + -1*O >= 1 + N + -1*O = f37(A,C,D,E,J,L,N,O,0,Q) [J >= 1 + C] ==> f13(A,C,D,E,J,L,N,O,P,Q) = 1 + N + -1*O >= 1 + N + -1*O = f24(A,C,D,E,J,L,N,O,P,Q) * Step 25: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,C,D,E,J,L,N,O,P,Q) -> f13(0,2*D,D,4*D,J,L,N,O,P,Q) True (1,1) 1. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A,C,D,E,1 + J,0,N,O,P,Q) [C >= J] (?,1) 2. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [C1 >= 2 && C >= J] (?,1) 3. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [0 >= C1 && C >= J] (?,1) 4. f24(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (?,1) 6. f37(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,Q) [N >= O] (1 + N + O,1) 7. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && 0 >= Q] (P + Q,1) 8. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && 0 >= Q] (P + Q,1) 9. f44(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (0,1) 12. f40(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,J,L,N,O,0,Q) [0 >= Q && P = 0] (?,1) 13. f64(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,2 + J,L,N,O,P,Q) [E >= J] (3*D,1) 14. f71(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,1 + J,L,N,O,P,Q) [C >= J] (D,1) 15. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,0,N,O,P,Q) [L = 0] (?,1) 16. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + L] (?,1) 17. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [L >= 1] (?,1) 18. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D >= J] (0,1) 19. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && D >= J] (0,1) 20. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && D >= J] (0,1) 21. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (0,1) 22. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (0,1) 23. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (0,1) 24. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (0,1) 25. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (0,1) 26. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (0,1) 27. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,0,N,O,P,Q) [L = 0] (0,1) 28. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [0 >= 1 + L] (0,1) 29. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [L >= 1] (0,1) 30. f118(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (0,1) 32. f91(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,1 + O,P,Q) [J >= 1 + D] (?,1) 33. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [J >= 1 + C] (?,1) 34. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && J >= 1 + C] (?,1) 35. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && J >= 1 + C] (?,1) 36. f64(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + E] (?,1) 37. f57(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] (2*P + 2*Q,1) 38. f50(A,C,D,E,J,L,N,O,P,Q) -> f57(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (2*P + 2*Q,1) 39. f44(A,C,D,E,J,L,N,O,P,Q) -> f50(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (2*P + 2*Q,1) 40. f40(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,J,L,N,O,P,Q) [Q >= 1] (?,1) 41. f37(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,J,L,N,O,P,Q) [O >= 1 + N] (?,1) 42. f31(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (2*P,1) 43. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && J >= 1 + D] (P,1) 44. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && J >= 1 + D] (P,1) 45. f24(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,0,Q) [J >= 1 + D && P = 0] (?,1) 46. f13(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + C] (1,1) Signature: {(f1,10) ;(f103,10) ;(f107,10) ;(f118,10) ;(f13,10) ;(f2,10) ;(f24,10) ;(f31,10) ;(f37,10) ;(f40,10) ;(f44,10) ;(f50,10) ;(f57,10) ;(f64,10) ;(f71,10) ;(f86,10) ;(f91,10) ;(f99,10)} Flow Graph: [0->{1,2,3,46},1->{1,2,3,46},2->{1,2,3,46},3->{1,2,3,46},4->{4,43,44,45},6->{7,8,12,40},7->{9,39},8->{9 ,39},9->{9,39},12->{13,36},13->{13,36},14->{14,33,34,35},15->{18,19,20,32},16->{18,19,20,32},17->{18,19,20 ,32},18->{21,22,23},19->{21,22,23},20->{21,22,23},21->{24,25,26},22->{24,25,26},23->{24,25,26},24->{27,28 ,29},25->{27,28,29},26->{27,28,29},27->{18,19,20,32},28->{18,19,20,32},29->{18,19,20,32},30->{30},32->{6,41} ,33->{15,16,17},34->{15,16,17},35->{15,16,17},36->{7,8,12,40},37->{7,8,12,40},38->{37},39->{38},40->{14,33 ,34,35},41->{30},42->{6,41},43->{42},44->{42},45->{6,41},46->{4,43,44,45}] Sizebounds: (< 0,0,A>, 0) (< 0,0,C>, 2*D) (< 0,0,D>, D) (< 0,0,E>, 4*D) (< 0,0,J>, J) (< 0,0,L>, L) (< 0,0,N>, N) (< 0,0,O>, O) (< 0,0,P>, P) (< 0,0,Q>, Q) (< 1,0,A>, ?) (< 1,0,C>, 2*D) (< 1,0,D>, D) (< 1,0,E>, 4*D) (< 1,0,J>, 1 + 2*D) (< 1,0,L>, 0) (< 1,0,N>, N) (< 1,0,O>, O) (< 1,0,P>, P) (< 1,0,Q>, Q) (< 2,0,A>, ?) (< 2,0,C>, 2*D) (< 2,0,D>, D) (< 2,0,E>, 4*D) (< 2,0,J>, 1 + 2*D) (< 2,0,L>, ?) (< 2,0,N>, N) (< 2,0,O>, O) (< 2,0,P>, P) (< 2,0,Q>, Q) (< 3,0,A>, ?) (< 3,0,C>, 2*D) (< 3,0,D>, D) (< 3,0,E>, 4*D) (< 3,0,J>, 1 + 2*D) (< 3,0,L>, ?) (< 3,0,N>, N) (< 3,0,O>, O) (< 3,0,P>, P) (< 3,0,Q>, Q) (< 4,0,A>, ?) (< 4,0,C>, 2*D) (< 4,0,D>, D) (< 4,0,E>, 4*D) (< 4,0,J>, 1 + D) (< 4,0,L>, ?) (< 4,0,N>, N) (< 4,0,O>, O) (< 4,0,P>, P) (< 4,0,Q>, Q) (< 6,0,A>, ?) (< 6,0,C>, 2*D) (< 6,0,D>, D) (< 6,0,E>, 4*D) (< 6,0,J>, ?) (< 6,0,L>, ?) (< 6,0,N>, N) (< 6,0,O>, N) (< 6,0,P>, P) (< 6,0,Q>, ?) (< 7,0,A>, ?) (< 7,0,C>, 2*D) (< 7,0,D>, D) (< 7,0,E>, 4*D) (< 7,0,J>, ?) (< 7,0,L>, ?) (< 7,0,N>, N) (< 7,0,O>, ?) (< 7,0,P>, P) (< 7,0,Q>, 0) (< 8,0,A>, ?) (< 8,0,C>, 2*D) (< 8,0,D>, D) (< 8,0,E>, 4*D) (< 8,0,J>, ?) (< 8,0,L>, ?) (< 8,0,N>, N) (< 8,0,O>, ?) (< 8,0,P>, P) (< 8,0,Q>, 0) (< 9,0,A>, ?) (< 9,0,C>, 2*D) (< 9,0,D>, D) (< 9,0,E>, 4*D) (< 9,0,J>, 1 + D) (< 9,0,L>, ?) (< 9,0,N>, N) (< 9,0,O>, ?) (< 9,0,P>, P) (< 9,0,Q>, 0) (<12,0,A>, ?) (<12,0,C>, 2*D) (<12,0,D>, D) (<12,0,E>, 4*D) (<12,0,J>, ?) (<12,0,L>, ?) (<12,0,N>, N) (<12,0,O>, ?) (<12,0,P>, 0) (<12,0,Q>, P) (<13,0,A>, ?) (<13,0,C>, 2*D) (<13,0,D>, D) (<13,0,E>, 4*D) (<13,0,J>, 2 + 4*D) (<13,0,L>, ?) (<13,0,N>, N) (<13,0,O>, ?) (<13,0,P>, 0) (<13,0,Q>, P) (<14,0,A>, ?) (<14,0,C>, 2*D) (<14,0,D>, D) (<14,0,E>, 4*D) (<14,0,J>, 1 + 2*D) (<14,0,L>, ?) (<14,0,N>, N) (<14,0,O>, ?) (<14,0,P>, P) (<14,0,Q>, ?) (<15,0,A>, ?) (<15,0,C>, 2*D) (<15,0,D>, D) (<15,0,E>, 4*D) (<15,0,J>, ?) (<15,0,L>, 0) (<15,0,N>, N) (<15,0,O>, ?) (<15,0,P>, P) (<15,0,Q>, ?) (<16,0,A>, ?) (<16,0,C>, 2*D) (<16,0,D>, D) (<16,0,E>, 4*D) (<16,0,J>, ?) (<16,0,L>, ?) (<16,0,N>, N) (<16,0,O>, ?) (<16,0,P>, P) (<16,0,Q>, ?) (<17,0,A>, ?) (<17,0,C>, 2*D) (<17,0,D>, D) (<17,0,E>, 4*D) (<17,0,J>, ?) (<17,0,L>, ?) (<17,0,N>, N) (<17,0,O>, ?) (<17,0,P>, P) (<17,0,Q>, ?) (<18,0,A>, ?) (<18,0,C>, 2*D) (<18,0,D>, D) (<18,0,E>, 4*D) (<18,0,J>, D) (<18,0,L>, ?) (<18,0,N>, N) (<18,0,O>, ?) (<18,0,P>, P) (<18,0,Q>, ?) (<19,0,A>, ?) (<19,0,C>, 2*D) (<19,0,D>, D) (<19,0,E>, 4*D) (<19,0,J>, D) (<19,0,L>, ?) (<19,0,N>, N) (<19,0,O>, ?) (<19,0,P>, P) (<19,0,Q>, ?) (<20,0,A>, ?) (<20,0,C>, 2*D) (<20,0,D>, D) (<20,0,E>, 4*D) (<20,0,J>, D) (<20,0,L>, ?) (<20,0,N>, N) (<20,0,O>, ?) (<20,0,P>, P) (<20,0,Q>, ?) (<21,0,A>, ?) (<21,0,C>, 2*D) (<21,0,D>, D) (<21,0,E>, 4*D) (<21,0,J>, D) (<21,0,L>, ?) (<21,0,N>, N) (<21,0,O>, ?) (<21,0,P>, P) (<21,0,Q>, ?) (<22,0,A>, ?) (<22,0,C>, 2*D) (<22,0,D>, D) (<22,0,E>, 4*D) (<22,0,J>, D) (<22,0,L>, ?) (<22,0,N>, N) (<22,0,O>, ?) (<22,0,P>, P) (<22,0,Q>, ?) (<23,0,A>, ?) (<23,0,C>, 2*D) (<23,0,D>, D) (<23,0,E>, 4*D) (<23,0,J>, D) (<23,0,L>, ?) (<23,0,N>, N) (<23,0,O>, ?) (<23,0,P>, P) (<23,0,Q>, ?) (<24,0,A>, ?) (<24,0,C>, 2*D) (<24,0,D>, D) (<24,0,E>, 4*D) (<24,0,J>, D) (<24,0,L>, ?) (<24,0,N>, N) (<24,0,O>, ?) (<24,0,P>, P) (<24,0,Q>, ?) (<25,0,A>, ?) (<25,0,C>, 2*D) (<25,0,D>, D) (<25,0,E>, 4*D) (<25,0,J>, D) (<25,0,L>, ?) (<25,0,N>, N) (<25,0,O>, ?) (<25,0,P>, P) (<25,0,Q>, ?) (<26,0,A>, ?) (<26,0,C>, 2*D) (<26,0,D>, D) (<26,0,E>, 4*D) (<26,0,J>, D) (<26,0,L>, ?) (<26,0,N>, N) (<26,0,O>, ?) (<26,0,P>, P) (<26,0,Q>, ?) (<27,0,A>, ?) (<27,0,C>, 2*D) (<27,0,D>, D) (<27,0,E>, 4*D) (<27,0,J>, D) (<27,0,L>, 0) (<27,0,N>, N) (<27,0,O>, ?) (<27,0,P>, P) (<27,0,Q>, ?) (<28,0,A>, ?) (<28,0,C>, 2*D) (<28,0,D>, D) (<28,0,E>, 4*D) (<28,0,J>, D) (<28,0,L>, ?) (<28,0,N>, N) (<28,0,O>, ?) (<28,0,P>, P) (<28,0,Q>, ?) (<29,0,A>, ?) (<29,0,C>, 2*D) (<29,0,D>, D) (<29,0,E>, 4*D) (<29,0,J>, D) (<29,0,L>, ?) (<29,0,N>, N) (<29,0,O>, ?) (<29,0,P>, P) (<29,0,Q>, ?) (<30,0,A>, ?) (<30,0,C>, 2*D) (<30,0,D>, D) (<30,0,E>, 4*D) (<30,0,J>, 1 + D) (<30,0,L>, ?) (<30,0,N>, N) (<30,0,O>, ?) (<30,0,P>, P) (<30,0,Q>, ?) (<32,0,A>, ?) (<32,0,C>, 2*D) (<32,0,D>, D) (<32,0,E>, 4*D) (<32,0,J>, ?) (<32,0,L>, ?) (<32,0,N>, N) (<32,0,O>, ?) (<32,0,P>, P) (<32,0,Q>, ?) (<33,0,A>, ?) (<33,0,C>, 2*D) (<33,0,D>, D) (<33,0,E>, 4*D) (<33,0,J>, ?) (<33,0,L>, ?) (<33,0,N>, N) (<33,0,O>, ?) (<33,0,P>, P) (<33,0,Q>, ?) (<34,0,A>, ?) (<34,0,C>, 2*D) (<34,0,D>, D) (<34,0,E>, 4*D) (<34,0,J>, ?) (<34,0,L>, ?) (<34,0,N>, N) (<34,0,O>, ?) (<34,0,P>, P) (<34,0,Q>, ?) (<35,0,A>, ?) (<35,0,C>, 2*D) (<35,0,D>, D) (<35,0,E>, 4*D) (<35,0,J>, ?) (<35,0,L>, ?) (<35,0,N>, N) (<35,0,O>, ?) (<35,0,P>, P) (<35,0,Q>, ?) (<36,0,A>, ?) (<36,0,C>, 2*D) (<36,0,D>, D) (<36,0,E>, 4*D) (<36,0,J>, ?) (<36,0,L>, ?) (<36,0,N>, N) (<36,0,O>, ?) (<36,0,P>, 0) (<36,0,Q>, P) (<37,0,A>, ?) (<37,0,C>, 2*D) (<37,0,D>, D) (<37,0,E>, 4*D) (<37,0,J>, ?) (<37,0,L>, ?) (<37,0,N>, N) (<37,0,O>, ?) (<37,0,P>, P) (<37,0,Q>, 0) (<38,0,A>, ?) (<38,0,C>, 2*D) (<38,0,D>, D) (<38,0,E>, 4*D) (<38,0,J>, ?) (<38,0,L>, ?) (<38,0,N>, N) (<38,0,O>, ?) (<38,0,P>, P) (<38,0,Q>, 0) (<39,0,A>, ?) (<39,0,C>, 2*D) (<39,0,D>, D) (<39,0,E>, 4*D) (<39,0,J>, ?) (<39,0,L>, ?) (<39,0,N>, N) (<39,0,O>, ?) (<39,0,P>, P) (<39,0,Q>, 0) (<40,0,A>, ?) (<40,0,C>, 2*D) (<40,0,D>, D) (<40,0,E>, 4*D) (<40,0,J>, ?) (<40,0,L>, ?) (<40,0,N>, N) (<40,0,O>, ?) (<40,0,P>, P) (<40,0,Q>, ?) (<41,0,A>, ?) (<41,0,C>, 2*D) (<41,0,D>, D) (<41,0,E>, 4*D) (<41,0,J>, ?) (<41,0,L>, ?) (<41,0,N>, N) (<41,0,O>, ?) (<41,0,P>, P) (<41,0,Q>, ?) (<42,0,A>, ?) (<42,0,C>, 2*D) (<42,0,D>, D) (<42,0,E>, 4*D) (<42,0,J>, 1 + 2*D + J) (<42,0,L>, ?) (<42,0,N>, N) (<42,0,O>, O) (<42,0,P>, P) (<42,0,Q>, Q) (<43,0,A>, ?) (<43,0,C>, 2*D) (<43,0,D>, D) (<43,0,E>, 4*D) (<43,0,J>, 1 + 2*D + J) (<43,0,L>, ?) (<43,0,N>, N) (<43,0,O>, O) (<43,0,P>, P) (<43,0,Q>, Q) (<44,0,A>, ?) (<44,0,C>, 2*D) (<44,0,D>, D) (<44,0,E>, 4*D) (<44,0,J>, 1 + 2*D + J) (<44,0,L>, ?) (<44,0,N>, N) (<44,0,O>, O) (<44,0,P>, P) (<44,0,Q>, Q) (<45,0,A>, ?) (<45,0,C>, 2*D) (<45,0,D>, D) (<45,0,E>, 4*D) (<45,0,J>, 1 + 2*D + J) (<45,0,L>, ?) (<45,0,N>, N) (<45,0,O>, O) (<45,0,P>, 0) (<45,0,Q>, Q) (<46,0,A>, ?) (<46,0,C>, 2*D) (<46,0,D>, D) (<46,0,E>, 4*D) (<46,0,J>, 1 + 2*D + J) (<46,0,L>, ?) (<46,0,N>, N) (<46,0,O>, O) (<46,0,P>, P) (<46,0,Q>, Q) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f103) = 1 + x3 + -1*x5 p(f107) = 1 + x3 + -1*x5 p(f118) = 1 + x3 + -1*x5 p(f13) = -1*x2 + x3 p(f2) = -1*x3 p(f24) = 1 + x3 + -1*x5 p(f31) = 1 + x3 + -1*x5 p(f37) = 1 + x3 + -1*x5 p(f40) = 1 + x3 + -1*x5 p(f44) = 1 + x3 + -1*x5 p(f50) = 1 + x3 + -1*x5 p(f57) = 1 + x3 + -1*x5 p(f64) = 1 + x3 + -1*x5 p(f71) = 1 + x3 + -1*x5 p(f86) = 1 + x3 + -1*x5 p(f91) = 1 + x3 + -1*x5 p(f99) = 1 + x3 + -1*x5 The following rules are strictly oriented: [D >= J] ==> f24(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J > D + -1*J = f24(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] ==> f44(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J > D + -1*J = f44(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] ==> f118(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J > D + -1*J = f118(A,C,D,E,1 + J,L,N,O,P,Q) The following rules are weakly oriented: True ==> f2(A,C,D,E,J,L,N,O,P,Q) = -1*D >= -1*D = f13(0,2*D,D,4*D,J,L,N,O,P,Q) [C >= J] ==> f13(A,C,D,E,J,L,N,O,P,Q) = -1*C + D >= -1*C + D = f13(A,C,D,E,1 + J,0,N,O,P,Q) [C1 >= 2 && C >= J] ==> f13(A,C,D,E,J,L,N,O,P,Q) = -1*C + D >= -1*C + D = f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [0 >= C1 && C >= J] ==> f13(A,C,D,E,J,L,N,O,P,Q) = -1*C + D >= -1*C + D = f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [N >= O] ==> f37(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f40(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && 0 >= Q] ==> f40(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f44(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && 0 >= Q] ==> f40(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f44(A,C,D,E,J,L,N,O,P,Q) [0 >= Q && P = 0] ==> f40(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f64(A,C,D,E,J,L,N,O,0,Q) [E >= J] ==> f64(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= -1 + D + -1*J = f64(A,C,D,E,2 + J,L,N,O,P,Q) [C >= J] ==> f71(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= D + -1*J = f71(A,C,D,E,1 + J,L,N,O,P,Q) [L = 0] ==> f86(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f91(A,C,D,E,J,0,N,O,P,Q) [0 >= 1 + L] ==> f86(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f91(A,C,D,E,J,L,N,O,P,Q) [L >= 1] ==> f86(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f91(A,C,D,E,J,L,N,O,P,Q) [D >= J] ==> f91(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f99(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && D >= J] ==> f91(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f99(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && D >= J] ==> f91(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f99(A,C,D,E,J,B1,N,O,P,Q) [L = 0] ==> f99(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f103(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] ==> f99(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f103(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] ==> f99(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f103(A,C,D,E,J,B1,N,O,P,Q) [L = 0] ==> f103(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f107(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] ==> f103(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f107(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] ==> f103(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f107(A,C,D,E,J,B1,N,O,P,Q) [L = 0] ==> f107(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= D + -1*J = f91(A,C,D,E,1 + J,0,N,O,P,Q) [0 >= 1 + L] ==> f107(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= D + -1*J = f91(A,C,D,E,1 + J,L,N,O,P,Q) [L >= 1] ==> f107(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= D + -1*J = f91(A,C,D,E,1 + J,L,N,O,P,Q) [J >= 1 + D] ==> f91(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f37(A,C,D,E,J,L,N,1 + O,P,Q) [J >= 1 + C] ==> f71(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f86(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && J >= 1 + C] ==> f71(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f86(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && J >= 1 + C] ==> f71(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f86(A,C,D,E,J,B1,N,O,P,Q) [J >= 1 + E] ==> f64(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] ==> f57(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] ==> f50(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f57(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] ==> f44(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f50(A,C,D,E,J,L,N,O,P,Q) [Q >= 1] ==> f40(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f71(A,C,D,E,J,L,N,O,P,Q) [O >= 1 + N] ==> f37(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f118(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] ==> f31(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f37(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && J >= 1 + D] ==> f24(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f31(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && J >= 1 + D] ==> f24(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f31(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D && P = 0] ==> f24(A,C,D,E,J,L,N,O,P,Q) = 1 + D + -1*J >= 1 + D + -1*J = f37(A,C,D,E,J,L,N,O,0,Q) [J >= 1 + C] ==> f13(A,C,D,E,J,L,N,O,P,Q) = -1*C + D >= 1 + D + -1*J = f24(A,C,D,E,J,L,N,O,P,Q) * Step 26: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,C,D,E,J,L,N,O,P,Q) -> f13(0,2*D,D,4*D,J,L,N,O,P,Q) True (1,1) 1. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A,C,D,E,1 + J,0,N,O,P,Q) [C >= J] (?,1) 2. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [C1 >= 2 && C >= J] (?,1) 3. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [0 >= C1 && C >= J] (?,1) 4. f24(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (D,1) 6. f37(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,Q) [N >= O] (1 + N + O,1) 7. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && 0 >= Q] (P + Q,1) 8. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && 0 >= Q] (P + Q,1) 9. f44(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (0,1) 12. f40(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,J,L,N,O,0,Q) [0 >= Q && P = 0] (?,1) 13. f64(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,2 + J,L,N,O,P,Q) [E >= J] (3*D,1) 14. f71(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,1 + J,L,N,O,P,Q) [C >= J] (D,1) 15. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,0,N,O,P,Q) [L = 0] (?,1) 16. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + L] (?,1) 17. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [L >= 1] (?,1) 18. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D >= J] (0,1) 19. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && D >= J] (0,1) 20. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && D >= J] (0,1) 21. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (0,1) 22. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (0,1) 23. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (0,1) 24. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (0,1) 25. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (0,1) 26. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (0,1) 27. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,0,N,O,P,Q) [L = 0] (0,1) 28. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [0 >= 1 + L] (0,1) 29. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [L >= 1] (0,1) 30. f118(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (0,1) 32. f91(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,1 + O,P,Q) [J >= 1 + D] (?,1) 33. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [J >= 1 + C] (?,1) 34. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && J >= 1 + C] (?,1) 35. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && J >= 1 + C] (?,1) 36. f64(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + E] (?,1) 37. f57(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] (2*P + 2*Q,1) 38. f50(A,C,D,E,J,L,N,O,P,Q) -> f57(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (2*P + 2*Q,1) 39. f44(A,C,D,E,J,L,N,O,P,Q) -> f50(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (2*P + 2*Q,1) 40. f40(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,J,L,N,O,P,Q) [Q >= 1] (?,1) 41. f37(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,J,L,N,O,P,Q) [O >= 1 + N] (?,1) 42. f31(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (2*P,1) 43. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && J >= 1 + D] (P,1) 44. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && J >= 1 + D] (P,1) 45. f24(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,0,Q) [J >= 1 + D && P = 0] (?,1) 46. f13(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + C] (1,1) Signature: {(f1,10) ;(f103,10) ;(f107,10) ;(f118,10) ;(f13,10) ;(f2,10) ;(f24,10) ;(f31,10) ;(f37,10) ;(f40,10) ;(f44,10) ;(f50,10) ;(f57,10) ;(f64,10) ;(f71,10) ;(f86,10) ;(f91,10) ;(f99,10)} Flow Graph: [0->{1,2,3,46},1->{1,2,3,46},2->{1,2,3,46},3->{1,2,3,46},4->{4,43,44,45},6->{7,8,12,40},7->{9,39},8->{9 ,39},9->{9,39},12->{13,36},13->{13,36},14->{14,33,34,35},15->{18,19,20,32},16->{18,19,20,32},17->{18,19,20 ,32},18->{21,22,23},19->{21,22,23},20->{21,22,23},21->{24,25,26},22->{24,25,26},23->{24,25,26},24->{27,28 ,29},25->{27,28,29},26->{27,28,29},27->{18,19,20,32},28->{18,19,20,32},29->{18,19,20,32},30->{30},32->{6,41} ,33->{15,16,17},34->{15,16,17},35->{15,16,17},36->{7,8,12,40},37->{7,8,12,40},38->{37},39->{38},40->{14,33 ,34,35},41->{30},42->{6,41},43->{42},44->{42},45->{6,41},46->{4,43,44,45}] Sizebounds: (< 0,0,A>, 0) (< 0,0,C>, 2*D) (< 0,0,D>, D) (< 0,0,E>, 4*D) (< 0,0,J>, J) (< 0,0,L>, L) (< 0,0,N>, N) (< 0,0,O>, O) (< 0,0,P>, P) (< 0,0,Q>, Q) (< 1,0,A>, ?) (< 1,0,C>, 2*D) (< 1,0,D>, D) (< 1,0,E>, 4*D) (< 1,0,J>, 1 + 2*D) (< 1,0,L>, 0) (< 1,0,N>, N) (< 1,0,O>, O) (< 1,0,P>, P) (< 1,0,Q>, Q) (< 2,0,A>, ?) (< 2,0,C>, 2*D) (< 2,0,D>, D) (< 2,0,E>, 4*D) (< 2,0,J>, 1 + 2*D) (< 2,0,L>, ?) (< 2,0,N>, N) (< 2,0,O>, O) (< 2,0,P>, P) (< 2,0,Q>, Q) (< 3,0,A>, ?) (< 3,0,C>, 2*D) (< 3,0,D>, D) (< 3,0,E>, 4*D) (< 3,0,J>, 1 + 2*D) (< 3,0,L>, ?) (< 3,0,N>, N) (< 3,0,O>, O) (< 3,0,P>, P) (< 3,0,Q>, Q) (< 4,0,A>, ?) (< 4,0,C>, 2*D) (< 4,0,D>, D) (< 4,0,E>, 4*D) (< 4,0,J>, 1 + D) (< 4,0,L>, ?) (< 4,0,N>, N) (< 4,0,O>, O) (< 4,0,P>, P) (< 4,0,Q>, Q) (< 6,0,A>, ?) (< 6,0,C>, 2*D) (< 6,0,D>, D) (< 6,0,E>, 4*D) (< 6,0,J>, ?) (< 6,0,L>, ?) (< 6,0,N>, N) (< 6,0,O>, N) (< 6,0,P>, P) (< 6,0,Q>, ?) (< 7,0,A>, ?) (< 7,0,C>, 2*D) (< 7,0,D>, D) (< 7,0,E>, 4*D) (< 7,0,J>, ?) (< 7,0,L>, ?) (< 7,0,N>, N) (< 7,0,O>, ?) (< 7,0,P>, P) (< 7,0,Q>, 0) (< 8,0,A>, ?) (< 8,0,C>, 2*D) (< 8,0,D>, D) (< 8,0,E>, 4*D) (< 8,0,J>, ?) (< 8,0,L>, ?) (< 8,0,N>, N) (< 8,0,O>, ?) (< 8,0,P>, P) (< 8,0,Q>, 0) (< 9,0,A>, ?) (< 9,0,C>, 2*D) (< 9,0,D>, D) (< 9,0,E>, 4*D) (< 9,0,J>, 1 + D) (< 9,0,L>, ?) (< 9,0,N>, N) (< 9,0,O>, ?) (< 9,0,P>, P) (< 9,0,Q>, 0) (<12,0,A>, ?) (<12,0,C>, 2*D) (<12,0,D>, D) (<12,0,E>, 4*D) (<12,0,J>, ?) (<12,0,L>, ?) (<12,0,N>, N) (<12,0,O>, ?) (<12,0,P>, 0) (<12,0,Q>, P) (<13,0,A>, ?) (<13,0,C>, 2*D) (<13,0,D>, D) (<13,0,E>, 4*D) (<13,0,J>, 2 + 4*D) (<13,0,L>, ?) (<13,0,N>, N) (<13,0,O>, ?) (<13,0,P>, 0) (<13,0,Q>, P) (<14,0,A>, ?) (<14,0,C>, 2*D) (<14,0,D>, D) (<14,0,E>, 4*D) (<14,0,J>, 1 + 2*D) (<14,0,L>, ?) (<14,0,N>, N) (<14,0,O>, ?) (<14,0,P>, P) (<14,0,Q>, ?) (<15,0,A>, ?) (<15,0,C>, 2*D) (<15,0,D>, D) (<15,0,E>, 4*D) (<15,0,J>, ?) (<15,0,L>, 0) (<15,0,N>, N) (<15,0,O>, ?) (<15,0,P>, P) (<15,0,Q>, ?) (<16,0,A>, ?) (<16,0,C>, 2*D) (<16,0,D>, D) (<16,0,E>, 4*D) (<16,0,J>, ?) (<16,0,L>, ?) (<16,0,N>, N) (<16,0,O>, ?) (<16,0,P>, P) (<16,0,Q>, ?) (<17,0,A>, ?) (<17,0,C>, 2*D) (<17,0,D>, D) (<17,0,E>, 4*D) (<17,0,J>, ?) (<17,0,L>, ?) (<17,0,N>, N) (<17,0,O>, ?) (<17,0,P>, P) (<17,0,Q>, ?) (<18,0,A>, ?) (<18,0,C>, 2*D) (<18,0,D>, D) (<18,0,E>, 4*D) (<18,0,J>, D) (<18,0,L>, ?) (<18,0,N>, N) (<18,0,O>, ?) (<18,0,P>, P) (<18,0,Q>, ?) (<19,0,A>, ?) (<19,0,C>, 2*D) (<19,0,D>, D) (<19,0,E>, 4*D) (<19,0,J>, D) (<19,0,L>, ?) (<19,0,N>, N) (<19,0,O>, ?) (<19,0,P>, P) (<19,0,Q>, ?) (<20,0,A>, ?) (<20,0,C>, 2*D) (<20,0,D>, D) (<20,0,E>, 4*D) (<20,0,J>, D) (<20,0,L>, ?) (<20,0,N>, N) (<20,0,O>, ?) (<20,0,P>, P) (<20,0,Q>, ?) (<21,0,A>, ?) (<21,0,C>, 2*D) (<21,0,D>, D) (<21,0,E>, 4*D) (<21,0,J>, D) (<21,0,L>, ?) (<21,0,N>, N) (<21,0,O>, ?) (<21,0,P>, P) (<21,0,Q>, ?) (<22,0,A>, ?) (<22,0,C>, 2*D) (<22,0,D>, D) (<22,0,E>, 4*D) (<22,0,J>, D) (<22,0,L>, ?) (<22,0,N>, N) (<22,0,O>, ?) (<22,0,P>, P) (<22,0,Q>, ?) (<23,0,A>, ?) (<23,0,C>, 2*D) (<23,0,D>, D) (<23,0,E>, 4*D) (<23,0,J>, D) (<23,0,L>, ?) (<23,0,N>, N) (<23,0,O>, ?) (<23,0,P>, P) (<23,0,Q>, ?) (<24,0,A>, ?) (<24,0,C>, 2*D) (<24,0,D>, D) (<24,0,E>, 4*D) (<24,0,J>, D) (<24,0,L>, ?) (<24,0,N>, N) (<24,0,O>, ?) (<24,0,P>, P) (<24,0,Q>, ?) (<25,0,A>, ?) (<25,0,C>, 2*D) (<25,0,D>, D) (<25,0,E>, 4*D) (<25,0,J>, D) (<25,0,L>, ?) (<25,0,N>, N) (<25,0,O>, ?) (<25,0,P>, P) (<25,0,Q>, ?) (<26,0,A>, ?) (<26,0,C>, 2*D) (<26,0,D>, D) (<26,0,E>, 4*D) (<26,0,J>, D) (<26,0,L>, ?) (<26,0,N>, N) (<26,0,O>, ?) (<26,0,P>, P) (<26,0,Q>, ?) (<27,0,A>, ?) (<27,0,C>, 2*D) (<27,0,D>, D) (<27,0,E>, 4*D) (<27,0,J>, D) (<27,0,L>, 0) (<27,0,N>, N) (<27,0,O>, ?) (<27,0,P>, P) (<27,0,Q>, ?) (<28,0,A>, ?) (<28,0,C>, 2*D) (<28,0,D>, D) (<28,0,E>, 4*D) (<28,0,J>, D) (<28,0,L>, ?) (<28,0,N>, N) (<28,0,O>, ?) (<28,0,P>, P) (<28,0,Q>, ?) (<29,0,A>, ?) (<29,0,C>, 2*D) (<29,0,D>, D) (<29,0,E>, 4*D) (<29,0,J>, D) (<29,0,L>, ?) (<29,0,N>, N) (<29,0,O>, ?) (<29,0,P>, P) (<29,0,Q>, ?) (<30,0,A>, ?) (<30,0,C>, 2*D) (<30,0,D>, D) (<30,0,E>, 4*D) (<30,0,J>, 1 + D) (<30,0,L>, ?) (<30,0,N>, N) (<30,0,O>, ?) (<30,0,P>, P) (<30,0,Q>, ?) (<32,0,A>, ?) (<32,0,C>, 2*D) (<32,0,D>, D) (<32,0,E>, 4*D) (<32,0,J>, ?) (<32,0,L>, ?) (<32,0,N>, N) (<32,0,O>, ?) (<32,0,P>, P) (<32,0,Q>, ?) (<33,0,A>, ?) (<33,0,C>, 2*D) (<33,0,D>, D) (<33,0,E>, 4*D) (<33,0,J>, ?) (<33,0,L>, ?) (<33,0,N>, N) (<33,0,O>, ?) (<33,0,P>, P) (<33,0,Q>, ?) (<34,0,A>, ?) (<34,0,C>, 2*D) (<34,0,D>, D) (<34,0,E>, 4*D) (<34,0,J>, ?) (<34,0,L>, ?) (<34,0,N>, N) (<34,0,O>, ?) (<34,0,P>, P) (<34,0,Q>, ?) (<35,0,A>, ?) (<35,0,C>, 2*D) (<35,0,D>, D) (<35,0,E>, 4*D) (<35,0,J>, ?) (<35,0,L>, ?) (<35,0,N>, N) (<35,0,O>, ?) (<35,0,P>, P) (<35,0,Q>, ?) (<36,0,A>, ?) (<36,0,C>, 2*D) (<36,0,D>, D) (<36,0,E>, 4*D) (<36,0,J>, ?) (<36,0,L>, ?) (<36,0,N>, N) (<36,0,O>, ?) (<36,0,P>, 0) (<36,0,Q>, P) (<37,0,A>, ?) (<37,0,C>, 2*D) (<37,0,D>, D) (<37,0,E>, 4*D) (<37,0,J>, ?) (<37,0,L>, ?) (<37,0,N>, N) (<37,0,O>, ?) (<37,0,P>, P) (<37,0,Q>, 0) (<38,0,A>, ?) (<38,0,C>, 2*D) (<38,0,D>, D) (<38,0,E>, 4*D) (<38,0,J>, ?) (<38,0,L>, ?) (<38,0,N>, N) (<38,0,O>, ?) (<38,0,P>, P) (<38,0,Q>, 0) (<39,0,A>, ?) (<39,0,C>, 2*D) (<39,0,D>, D) (<39,0,E>, 4*D) (<39,0,J>, ?) (<39,0,L>, ?) (<39,0,N>, N) (<39,0,O>, ?) (<39,0,P>, P) (<39,0,Q>, 0) (<40,0,A>, ?) (<40,0,C>, 2*D) (<40,0,D>, D) (<40,0,E>, 4*D) (<40,0,J>, ?) (<40,0,L>, ?) (<40,0,N>, N) (<40,0,O>, ?) (<40,0,P>, P) (<40,0,Q>, ?) (<41,0,A>, ?) (<41,0,C>, 2*D) (<41,0,D>, D) (<41,0,E>, 4*D) (<41,0,J>, ?) (<41,0,L>, ?) (<41,0,N>, N) (<41,0,O>, ?) (<41,0,P>, P) (<41,0,Q>, ?) (<42,0,A>, ?) (<42,0,C>, 2*D) (<42,0,D>, D) (<42,0,E>, 4*D) (<42,0,J>, 1 + 2*D + J) (<42,0,L>, ?) (<42,0,N>, N) (<42,0,O>, O) (<42,0,P>, P) (<42,0,Q>, Q) (<43,0,A>, ?) (<43,0,C>, 2*D) (<43,0,D>, D) (<43,0,E>, 4*D) (<43,0,J>, 1 + 2*D + J) (<43,0,L>, ?) (<43,0,N>, N) (<43,0,O>, O) (<43,0,P>, P) (<43,0,Q>, Q) (<44,0,A>, ?) (<44,0,C>, 2*D) (<44,0,D>, D) (<44,0,E>, 4*D) (<44,0,J>, 1 + 2*D + J) (<44,0,L>, ?) (<44,0,N>, N) (<44,0,O>, O) (<44,0,P>, P) (<44,0,Q>, Q) (<45,0,A>, ?) (<45,0,C>, 2*D) (<45,0,D>, D) (<45,0,E>, 4*D) (<45,0,J>, 1 + 2*D + J) (<45,0,L>, ?) (<45,0,N>, N) (<45,0,O>, O) (<45,0,P>, 0) (<45,0,Q>, Q) (<46,0,A>, ?) (<46,0,C>, 2*D) (<46,0,D>, D) (<46,0,E>, 4*D) (<46,0,J>, 1 + 2*D + J) (<46,0,L>, ?) (<46,0,N>, N) (<46,0,O>, O) (<46,0,P>, P) (<46,0,Q>, Q) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 27: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,C,D,E,J,L,N,O,P,Q) -> f13(0,2*D,D,4*D,J,L,N,O,P,Q) True (1,1) 1. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A,C,D,E,1 + J,0,N,O,P,Q) [C >= J] (?,1) 2. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [C1 >= 2 && C >= J] (?,1) 3. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [0 >= C1 && C >= J] (?,1) 4. f24(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (D,1) 6. f37(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,Q) [N >= O] (1 + N + O,1) 7. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && 0 >= Q] (P + Q,1) 8. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && 0 >= Q] (P + Q,1) 9. f44(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (0,1) 12. f40(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,J,L,N,O,0,Q) [0 >= Q && P = 0] (?,1) 13. f64(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,2 + J,L,N,O,P,Q) [E >= J] (3*D,1) 14. f71(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,1 + J,L,N,O,P,Q) [C >= J] (D,1) 15. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,0,N,O,P,Q) [L = 0] (?,1) 16. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + L] (?,1) 17. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [L >= 1] (?,1) 18. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D >= J] (0,1) 19. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && D >= J] (0,1) 20. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && D >= J] (0,1) 21. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (0,1) 22. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (0,1) 23. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (0,1) 24. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (0,1) 25. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (0,1) 26. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (0,1) 27. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,0,N,O,P,Q) [L = 0] (0,1) 28. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [0 >= 1 + L] (0,1) 29. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [L >= 1] (0,1) 30. f118(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (0,1) 32. f91(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,1 + O,P,Q) [J >= 1 + D] (?,1) 33. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [J >= 1 + C] (?,1) 34. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && J >= 1 + C] (?,1) 35. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && J >= 1 + C] (?,1) 36. f64(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + E] (?,1) 37. f57(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] (2*P + 2*Q,1) 38. f50(A,C,D,E,J,L,N,O,P,Q) -> f57(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (2*P + 2*Q,1) 39. f44(A,C,D,E,J,L,N,O,P,Q) -> f50(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (2*P + 2*Q,1) 40. f40(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,J,L,N,O,P,Q) [Q >= 1] (?,1) 41. f37(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,J,L,N,O,P,Q) [O >= 1 + N] (?,1) 42. f31(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (2*P,1) 43. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && J >= 1 + D] (P,1) 44. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && J >= 1 + D] (P,1) 45. f24(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,0,Q) [J >= 1 + D && P = 0] (1 + D,1) 46. f13(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + C] (1,1) Signature: {(f1,10) ;(f103,10) ;(f107,10) ;(f118,10) ;(f13,10) ;(f2,10) ;(f24,10) ;(f31,10) ;(f37,10) ;(f40,10) ;(f44,10) ;(f50,10) ;(f57,10) ;(f64,10) ;(f71,10) ;(f86,10) ;(f91,10) ;(f99,10)} Flow Graph: [0->{1,2,3,46},1->{1,2,3,46},2->{1,2,3,46},3->{1,2,3,46},4->{4,43,44,45},6->{7,8,12,40},7->{9,39},8->{9 ,39},9->{9,39},12->{13,36},13->{13,36},14->{14,33,34,35},15->{18,19,20,32},16->{18,19,20,32},17->{18,19,20 ,32},18->{21,22,23},19->{21,22,23},20->{21,22,23},21->{24,25,26},22->{24,25,26},23->{24,25,26},24->{27,28 ,29},25->{27,28,29},26->{27,28,29},27->{18,19,20,32},28->{18,19,20,32},29->{18,19,20,32},30->{30},32->{6,41} ,33->{15,16,17},34->{15,16,17},35->{15,16,17},36->{7,8,12,40},37->{7,8,12,40},38->{37},39->{38},40->{14,33 ,34,35},41->{30},42->{6,41},43->{42},44->{42},45->{6,41},46->{4,43,44,45}] Sizebounds: (< 0,0,A>, 0) (< 0,0,C>, 2*D) (< 0,0,D>, D) (< 0,0,E>, 4*D) (< 0,0,J>, J) (< 0,0,L>, L) (< 0,0,N>, N) (< 0,0,O>, O) (< 0,0,P>, P) (< 0,0,Q>, Q) (< 1,0,A>, ?) (< 1,0,C>, 2*D) (< 1,0,D>, D) (< 1,0,E>, 4*D) (< 1,0,J>, 1 + 2*D) (< 1,0,L>, 0) (< 1,0,N>, N) (< 1,0,O>, O) (< 1,0,P>, P) (< 1,0,Q>, Q) (< 2,0,A>, ?) (< 2,0,C>, 2*D) (< 2,0,D>, D) (< 2,0,E>, 4*D) (< 2,0,J>, 1 + 2*D) (< 2,0,L>, ?) (< 2,0,N>, N) (< 2,0,O>, O) (< 2,0,P>, P) (< 2,0,Q>, Q) (< 3,0,A>, ?) (< 3,0,C>, 2*D) (< 3,0,D>, D) (< 3,0,E>, 4*D) (< 3,0,J>, 1 + 2*D) (< 3,0,L>, ?) (< 3,0,N>, N) (< 3,0,O>, O) (< 3,0,P>, P) (< 3,0,Q>, Q) (< 4,0,A>, ?) (< 4,0,C>, 2*D) (< 4,0,D>, D) (< 4,0,E>, 4*D) (< 4,0,J>, 1 + D) (< 4,0,L>, ?) (< 4,0,N>, N) (< 4,0,O>, O) (< 4,0,P>, P) (< 4,0,Q>, Q) (< 6,0,A>, ?) (< 6,0,C>, 2*D) (< 6,0,D>, D) (< 6,0,E>, 4*D) (< 6,0,J>, ?) (< 6,0,L>, ?) (< 6,0,N>, N) (< 6,0,O>, N) (< 6,0,P>, P) (< 6,0,Q>, ?) (< 7,0,A>, ?) (< 7,0,C>, 2*D) (< 7,0,D>, D) (< 7,0,E>, 4*D) (< 7,0,J>, ?) (< 7,0,L>, ?) (< 7,0,N>, N) (< 7,0,O>, ?) (< 7,0,P>, P) (< 7,0,Q>, 0) (< 8,0,A>, ?) (< 8,0,C>, 2*D) (< 8,0,D>, D) (< 8,0,E>, 4*D) (< 8,0,J>, ?) (< 8,0,L>, ?) (< 8,0,N>, N) (< 8,0,O>, ?) (< 8,0,P>, P) (< 8,0,Q>, 0) (< 9,0,A>, ?) (< 9,0,C>, 2*D) (< 9,0,D>, D) (< 9,0,E>, 4*D) (< 9,0,J>, 1 + D) (< 9,0,L>, ?) (< 9,0,N>, N) (< 9,0,O>, ?) (< 9,0,P>, P) (< 9,0,Q>, 0) (<12,0,A>, ?) (<12,0,C>, 2*D) (<12,0,D>, D) (<12,0,E>, 4*D) (<12,0,J>, ?) (<12,0,L>, ?) (<12,0,N>, N) (<12,0,O>, ?) (<12,0,P>, 0) (<12,0,Q>, P) (<13,0,A>, ?) (<13,0,C>, 2*D) (<13,0,D>, D) (<13,0,E>, 4*D) (<13,0,J>, 2 + 4*D) (<13,0,L>, ?) (<13,0,N>, N) (<13,0,O>, ?) (<13,0,P>, 0) (<13,0,Q>, P) (<14,0,A>, ?) (<14,0,C>, 2*D) (<14,0,D>, D) (<14,0,E>, 4*D) (<14,0,J>, 1 + 2*D) (<14,0,L>, ?) (<14,0,N>, N) (<14,0,O>, ?) (<14,0,P>, P) (<14,0,Q>, ?) (<15,0,A>, ?) (<15,0,C>, 2*D) (<15,0,D>, D) (<15,0,E>, 4*D) (<15,0,J>, ?) (<15,0,L>, 0) (<15,0,N>, N) (<15,0,O>, ?) (<15,0,P>, P) (<15,0,Q>, ?) (<16,0,A>, ?) (<16,0,C>, 2*D) (<16,0,D>, D) (<16,0,E>, 4*D) (<16,0,J>, ?) (<16,0,L>, ?) (<16,0,N>, N) (<16,0,O>, ?) (<16,0,P>, P) (<16,0,Q>, ?) (<17,0,A>, ?) (<17,0,C>, 2*D) (<17,0,D>, D) (<17,0,E>, 4*D) (<17,0,J>, ?) (<17,0,L>, ?) (<17,0,N>, N) (<17,0,O>, ?) (<17,0,P>, P) (<17,0,Q>, ?) (<18,0,A>, ?) (<18,0,C>, 2*D) (<18,0,D>, D) (<18,0,E>, 4*D) (<18,0,J>, D) (<18,0,L>, ?) (<18,0,N>, N) (<18,0,O>, ?) (<18,0,P>, P) (<18,0,Q>, ?) (<19,0,A>, ?) (<19,0,C>, 2*D) (<19,0,D>, D) (<19,0,E>, 4*D) (<19,0,J>, D) (<19,0,L>, ?) (<19,0,N>, N) (<19,0,O>, ?) (<19,0,P>, P) (<19,0,Q>, ?) (<20,0,A>, ?) (<20,0,C>, 2*D) (<20,0,D>, D) (<20,0,E>, 4*D) (<20,0,J>, D) (<20,0,L>, ?) (<20,0,N>, N) (<20,0,O>, ?) (<20,0,P>, P) (<20,0,Q>, ?) (<21,0,A>, ?) (<21,0,C>, 2*D) (<21,0,D>, D) (<21,0,E>, 4*D) (<21,0,J>, D) (<21,0,L>, ?) (<21,0,N>, N) (<21,0,O>, ?) (<21,0,P>, P) (<21,0,Q>, ?) (<22,0,A>, ?) (<22,0,C>, 2*D) (<22,0,D>, D) (<22,0,E>, 4*D) (<22,0,J>, D) (<22,0,L>, ?) (<22,0,N>, N) (<22,0,O>, ?) (<22,0,P>, P) (<22,0,Q>, ?) (<23,0,A>, ?) (<23,0,C>, 2*D) (<23,0,D>, D) (<23,0,E>, 4*D) (<23,0,J>, D) (<23,0,L>, ?) (<23,0,N>, N) (<23,0,O>, ?) (<23,0,P>, P) (<23,0,Q>, ?) (<24,0,A>, ?) (<24,0,C>, 2*D) (<24,0,D>, D) (<24,0,E>, 4*D) (<24,0,J>, D) (<24,0,L>, ?) (<24,0,N>, N) (<24,0,O>, ?) (<24,0,P>, P) (<24,0,Q>, ?) (<25,0,A>, ?) (<25,0,C>, 2*D) (<25,0,D>, D) (<25,0,E>, 4*D) (<25,0,J>, D) (<25,0,L>, ?) (<25,0,N>, N) (<25,0,O>, ?) (<25,0,P>, P) (<25,0,Q>, ?) (<26,0,A>, ?) (<26,0,C>, 2*D) (<26,0,D>, D) (<26,0,E>, 4*D) (<26,0,J>, D) (<26,0,L>, ?) (<26,0,N>, N) (<26,0,O>, ?) (<26,0,P>, P) (<26,0,Q>, ?) (<27,0,A>, ?) (<27,0,C>, 2*D) (<27,0,D>, D) (<27,0,E>, 4*D) (<27,0,J>, D) (<27,0,L>, 0) (<27,0,N>, N) (<27,0,O>, ?) (<27,0,P>, P) (<27,0,Q>, ?) (<28,0,A>, ?) (<28,0,C>, 2*D) (<28,0,D>, D) (<28,0,E>, 4*D) (<28,0,J>, D) (<28,0,L>, ?) (<28,0,N>, N) (<28,0,O>, ?) (<28,0,P>, P) (<28,0,Q>, ?) (<29,0,A>, ?) (<29,0,C>, 2*D) (<29,0,D>, D) (<29,0,E>, 4*D) (<29,0,J>, D) (<29,0,L>, ?) (<29,0,N>, N) (<29,0,O>, ?) (<29,0,P>, P) (<29,0,Q>, ?) (<30,0,A>, ?) (<30,0,C>, 2*D) (<30,0,D>, D) (<30,0,E>, 4*D) (<30,0,J>, 1 + D) (<30,0,L>, ?) (<30,0,N>, N) (<30,0,O>, ?) (<30,0,P>, P) (<30,0,Q>, ?) (<32,0,A>, ?) (<32,0,C>, 2*D) (<32,0,D>, D) (<32,0,E>, 4*D) (<32,0,J>, ?) (<32,0,L>, ?) (<32,0,N>, N) (<32,0,O>, ?) (<32,0,P>, P) (<32,0,Q>, ?) (<33,0,A>, ?) (<33,0,C>, 2*D) (<33,0,D>, D) (<33,0,E>, 4*D) (<33,0,J>, ?) (<33,0,L>, ?) (<33,0,N>, N) (<33,0,O>, ?) (<33,0,P>, P) (<33,0,Q>, ?) (<34,0,A>, ?) (<34,0,C>, 2*D) (<34,0,D>, D) (<34,0,E>, 4*D) (<34,0,J>, ?) (<34,0,L>, ?) (<34,0,N>, N) (<34,0,O>, ?) (<34,0,P>, P) (<34,0,Q>, ?) (<35,0,A>, ?) (<35,0,C>, 2*D) (<35,0,D>, D) (<35,0,E>, 4*D) (<35,0,J>, ?) (<35,0,L>, ?) (<35,0,N>, N) (<35,0,O>, ?) (<35,0,P>, P) (<35,0,Q>, ?) (<36,0,A>, ?) (<36,0,C>, 2*D) (<36,0,D>, D) (<36,0,E>, 4*D) (<36,0,J>, ?) (<36,0,L>, ?) (<36,0,N>, N) (<36,0,O>, ?) (<36,0,P>, 0) (<36,0,Q>, P) (<37,0,A>, ?) (<37,0,C>, 2*D) (<37,0,D>, D) (<37,0,E>, 4*D) (<37,0,J>, ?) (<37,0,L>, ?) (<37,0,N>, N) (<37,0,O>, ?) (<37,0,P>, P) (<37,0,Q>, 0) (<38,0,A>, ?) (<38,0,C>, 2*D) (<38,0,D>, D) (<38,0,E>, 4*D) (<38,0,J>, ?) (<38,0,L>, ?) (<38,0,N>, N) (<38,0,O>, ?) (<38,0,P>, P) (<38,0,Q>, 0) (<39,0,A>, ?) (<39,0,C>, 2*D) (<39,0,D>, D) (<39,0,E>, 4*D) (<39,0,J>, ?) (<39,0,L>, ?) (<39,0,N>, N) (<39,0,O>, ?) (<39,0,P>, P) (<39,0,Q>, 0) (<40,0,A>, ?) (<40,0,C>, 2*D) (<40,0,D>, D) (<40,0,E>, 4*D) (<40,0,J>, ?) (<40,0,L>, ?) (<40,0,N>, N) (<40,0,O>, ?) (<40,0,P>, P) (<40,0,Q>, ?) (<41,0,A>, ?) (<41,0,C>, 2*D) (<41,0,D>, D) (<41,0,E>, 4*D) (<41,0,J>, ?) (<41,0,L>, ?) (<41,0,N>, N) (<41,0,O>, ?) (<41,0,P>, P) (<41,0,Q>, ?) (<42,0,A>, ?) (<42,0,C>, 2*D) (<42,0,D>, D) (<42,0,E>, 4*D) (<42,0,J>, 1 + 2*D + J) (<42,0,L>, ?) (<42,0,N>, N) (<42,0,O>, O) (<42,0,P>, P) (<42,0,Q>, Q) (<43,0,A>, ?) (<43,0,C>, 2*D) (<43,0,D>, D) (<43,0,E>, 4*D) (<43,0,J>, 1 + 2*D + J) (<43,0,L>, ?) (<43,0,N>, N) (<43,0,O>, O) (<43,0,P>, P) (<43,0,Q>, Q) (<44,0,A>, ?) (<44,0,C>, 2*D) (<44,0,D>, D) (<44,0,E>, 4*D) (<44,0,J>, 1 + 2*D + J) (<44,0,L>, ?) (<44,0,N>, N) (<44,0,O>, O) (<44,0,P>, P) (<44,0,Q>, Q) (<45,0,A>, ?) (<45,0,C>, 2*D) (<45,0,D>, D) (<45,0,E>, 4*D) (<45,0,J>, 1 + 2*D + J) (<45,0,L>, ?) (<45,0,N>, N) (<45,0,O>, O) (<45,0,P>, 0) (<45,0,Q>, Q) (<46,0,A>, ?) (<46,0,C>, 2*D) (<46,0,D>, D) (<46,0,E>, 4*D) (<46,0,J>, 1 + 2*D + J) (<46,0,L>, ?) (<46,0,N>, N) (<46,0,O>, O) (<46,0,P>, P) (<46,0,Q>, Q) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f103) = 1 + -1*x10 p(f107) = 1 + -1*x10 p(f118) = 1 + -1*x10 p(f13) = 1 + -1*x10 p(f2) = 1 + -1*x10 p(f24) = 1 + -1*x10 p(f31) = 1 + -1*x10 p(f37) = 1 + -1*x10 p(f40) = 1 + -1*x10 p(f44) = -1*x10 p(f50) = -1*x10 p(f57) = -1*x10 p(f64) = -1*x10 p(f71) = 1 + -1*x10 p(f86) = 1 + -1*x10 p(f91) = 1 + -1*x10 p(f99) = 1 + -1*x10 The following rules are strictly oriented: [0 >= 1 + P && 0 >= Q] ==> f40(A,C,D,E,J,L,N,O,P,Q) = 1 + -1*Q > -1*Q = f44(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && 0 >= Q] ==> f40(A,C,D,E,J,L,N,O,P,Q) = 1 + -1*Q > -1*Q = f44(A,C,D,E,J,L,N,O,P,Q) [0 >= Q && P = 0] ==> f40(A,C,D,E,J,L,N,O,P,Q) = 1 + -1*Q > -1*Q = f64(A,C,D,E,J,L,N,O,0,Q) The following rules are weakly oriented: True ==> f2(A,C,D,E,J,L,N,O,P,Q) = 1 + -1*Q >= 1 + -1*Q = f13(0,2*D,D,4*D,J,L,N,O,P,Q) [C >= J] ==> f13(A,C,D,E,J,L,N,O,P,Q) = 1 + -1*Q >= 1 + -1*Q = f13(A,C,D,E,1 + J,0,N,O,P,Q) [C1 >= 2 && C >= J] ==> f13(A,C,D,E,J,L,N,O,P,Q) = 1 + -1*Q >= 1 + -1*Q = f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [0 >= C1 && C >= J] ==> f13(A,C,D,E,J,L,N,O,P,Q) = 1 + -1*Q >= 1 + -1*Q = f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [D >= J] ==> f24(A,C,D,E,J,L,N,O,P,Q) = 1 + -1*Q >= 1 + -1*Q = f24(A,C,D,E,1 + J,L,N,O,P,Q) [N >= O] ==> f37(A,C,D,E,J,L,N,O,P,Q) = 1 + -1*Q >= 1 + -1*Q = f40(A,C,D,E,J,L,N,O,P,Q) [D >= J] ==> f44(A,C,D,E,J,L,N,O,P,Q) = -1*Q >= -1*Q = f44(A,C,D,E,1 + J,L,N,O,P,Q) [E >= J] ==> f64(A,C,D,E,J,L,N,O,P,Q) = -1*Q >= -1*Q = f64(A,C,D,E,2 + J,L,N,O,P,Q) [C >= J] ==> f71(A,C,D,E,J,L,N,O,P,Q) = 1 + -1*Q >= 1 + -1*Q = f71(A,C,D,E,1 + J,L,N,O,P,Q) [L = 0] ==> f86(A,C,D,E,J,L,N,O,P,Q) = 1 + -1*Q >= 1 + -1*Q = f91(A,C,D,E,J,0,N,O,P,Q) [0 >= 1 + L] ==> f86(A,C,D,E,J,L,N,O,P,Q) = 1 + -1*Q >= 1 + -1*Q = f91(A,C,D,E,J,L,N,O,P,Q) [L >= 1] ==> f86(A,C,D,E,J,L,N,O,P,Q) = 1 + -1*Q >= 1 + -1*Q = f91(A,C,D,E,J,L,N,O,P,Q) [D >= J] ==> f91(A,C,D,E,J,L,N,O,P,Q) = 1 + -1*Q >= 1 + -1*Q = f99(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && D >= J] ==> f91(A,C,D,E,J,L,N,O,P,Q) = 1 + -1*Q >= 1 + -1*Q = f99(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && D >= J] ==> f91(A,C,D,E,J,L,N,O,P,Q) = 1 + -1*Q >= 1 + -1*Q = f99(A,C,D,E,J,B1,N,O,P,Q) [L = 0] ==> f99(A,C,D,E,J,L,N,O,P,Q) = 1 + -1*Q >= 1 + -1*Q = f103(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] ==> f99(A,C,D,E,J,L,N,O,P,Q) = 1 + -1*Q >= 1 + -1*Q = f103(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] ==> f99(A,C,D,E,J,L,N,O,P,Q) = 1 + -1*Q >= 1 + -1*Q = f103(A,C,D,E,J,B1,N,O,P,Q) [L = 0] ==> f103(A,C,D,E,J,L,N,O,P,Q) = 1 + -1*Q >= 1 + -1*Q = f107(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] ==> f103(A,C,D,E,J,L,N,O,P,Q) = 1 + -1*Q >= 1 + -1*Q = f107(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] ==> f103(A,C,D,E,J,L,N,O,P,Q) = 1 + -1*Q >= 1 + -1*Q = f107(A,C,D,E,J,B1,N,O,P,Q) [L = 0] ==> f107(A,C,D,E,J,L,N,O,P,Q) = 1 + -1*Q >= 1 + -1*Q = f91(A,C,D,E,1 + J,0,N,O,P,Q) [0 >= 1 + L] ==> f107(A,C,D,E,J,L,N,O,P,Q) = 1 + -1*Q >= 1 + -1*Q = f91(A,C,D,E,1 + J,L,N,O,P,Q) [L >= 1] ==> f107(A,C,D,E,J,L,N,O,P,Q) = 1 + -1*Q >= 1 + -1*Q = f91(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] ==> f118(A,C,D,E,J,L,N,O,P,Q) = 1 + -1*Q >= 1 + -1*Q = f118(A,C,D,E,1 + J,L,N,O,P,Q) [J >= 1 + D] ==> f91(A,C,D,E,J,L,N,O,P,Q) = 1 + -1*Q >= 1 + -1*Q = f37(A,C,D,E,J,L,N,1 + O,P,Q) [J >= 1 + C] ==> f71(A,C,D,E,J,L,N,O,P,Q) = 1 + -1*Q >= 1 + -1*Q = f86(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && J >= 1 + C] ==> f71(A,C,D,E,J,L,N,O,P,Q) = 1 + -1*Q >= 1 + -1*Q = f86(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && J >= 1 + C] ==> f71(A,C,D,E,J,L,N,O,P,Q) = 1 + -1*Q >= 1 + -1*Q = f86(A,C,D,E,J,B1,N,O,P,Q) [J >= 1 + E] ==> f64(A,C,D,E,J,L,N,O,P,Q) = -1*Q >= -1*Q = f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] ==> f57(A,C,D,E,J,L,N,O,P,Q) = -1*Q >= -1*Q = f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] ==> f50(A,C,D,E,J,L,N,O,P,Q) = -1*Q >= -1*Q = f57(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] ==> f44(A,C,D,E,J,L,N,O,P,Q) = -1*Q >= -1*Q = f50(A,C,D,E,J,L,N,O,P,Q) [Q >= 1] ==> f40(A,C,D,E,J,L,N,O,P,Q) = 1 + -1*Q >= 1 + -1*Q = f71(A,C,D,E,J,L,N,O,P,Q) [O >= 1 + N] ==> f37(A,C,D,E,J,L,N,O,P,Q) = 1 + -1*Q >= 1 + -1*Q = f118(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] ==> f31(A,C,D,E,J,L,N,O,P,Q) = 1 + -1*Q >= 1 + -1*Q = f37(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && J >= 1 + D] ==> f24(A,C,D,E,J,L,N,O,P,Q) = 1 + -1*Q >= 1 + -1*Q = f31(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && J >= 1 + D] ==> f24(A,C,D,E,J,L,N,O,P,Q) = 1 + -1*Q >= 1 + -1*Q = f31(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D && P = 0] ==> f24(A,C,D,E,J,L,N,O,P,Q) = 1 + -1*Q >= 1 + -1*Q = f37(A,C,D,E,J,L,N,O,0,Q) [J >= 1 + C] ==> f13(A,C,D,E,J,L,N,O,P,Q) = 1 + -1*Q >= 1 + -1*Q = f24(A,C,D,E,J,L,N,O,P,Q) * Step 28: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,C,D,E,J,L,N,O,P,Q) -> f13(0,2*D,D,4*D,J,L,N,O,P,Q) True (1,1) 1. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A,C,D,E,1 + J,0,N,O,P,Q) [C >= J] (?,1) 2. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [C1 >= 2 && C >= J] (?,1) 3. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [0 >= C1 && C >= J] (?,1) 4. f24(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (D,1) 6. f37(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,Q) [N >= O] (1 + N + O,1) 7. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && 0 >= Q] (P + Q,1) 8. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && 0 >= Q] (P + Q,1) 9. f44(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (0,1) 12. f40(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,J,L,N,O,0,Q) [0 >= Q && P = 0] (1 + Q,1) 13. f64(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,2 + J,L,N,O,P,Q) [E >= J] (3*D,1) 14. f71(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,1 + J,L,N,O,P,Q) [C >= J] (D,1) 15. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,0,N,O,P,Q) [L = 0] (?,1) 16. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + L] (?,1) 17. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [L >= 1] (?,1) 18. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D >= J] (0,1) 19. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && D >= J] (0,1) 20. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && D >= J] (0,1) 21. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (0,1) 22. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (0,1) 23. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (0,1) 24. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (0,1) 25. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (0,1) 26. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (0,1) 27. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,0,N,O,P,Q) [L = 0] (0,1) 28. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [0 >= 1 + L] (0,1) 29. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [L >= 1] (0,1) 30. f118(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (0,1) 32. f91(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,1 + O,P,Q) [J >= 1 + D] (?,1) 33. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [J >= 1 + C] (?,1) 34. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && J >= 1 + C] (?,1) 35. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && J >= 1 + C] (?,1) 36. f64(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + E] (?,1) 37. f57(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] (2*P + 2*Q,1) 38. f50(A,C,D,E,J,L,N,O,P,Q) -> f57(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (2*P + 2*Q,1) 39. f44(A,C,D,E,J,L,N,O,P,Q) -> f50(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (2*P + 2*Q,1) 40. f40(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,J,L,N,O,P,Q) [Q >= 1] (?,1) 41. f37(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,J,L,N,O,P,Q) [O >= 1 + N] (?,1) 42. f31(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (2*P,1) 43. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && J >= 1 + D] (P,1) 44. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && J >= 1 + D] (P,1) 45. f24(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,0,Q) [J >= 1 + D && P = 0] (1 + D,1) 46. f13(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + C] (1,1) Signature: {(f1,10) ;(f103,10) ;(f107,10) ;(f118,10) ;(f13,10) ;(f2,10) ;(f24,10) ;(f31,10) ;(f37,10) ;(f40,10) ;(f44,10) ;(f50,10) ;(f57,10) ;(f64,10) ;(f71,10) ;(f86,10) ;(f91,10) ;(f99,10)} Flow Graph: [0->{1,2,3,46},1->{1,2,3,46},2->{1,2,3,46},3->{1,2,3,46},4->{4,43,44,45},6->{7,8,12,40},7->{9,39},8->{9 ,39},9->{9,39},12->{13,36},13->{13,36},14->{14,33,34,35},15->{18,19,20,32},16->{18,19,20,32},17->{18,19,20 ,32},18->{21,22,23},19->{21,22,23},20->{21,22,23},21->{24,25,26},22->{24,25,26},23->{24,25,26},24->{27,28 ,29},25->{27,28,29},26->{27,28,29},27->{18,19,20,32},28->{18,19,20,32},29->{18,19,20,32},30->{30},32->{6,41} ,33->{15,16,17},34->{15,16,17},35->{15,16,17},36->{7,8,12,40},37->{7,8,12,40},38->{37},39->{38},40->{14,33 ,34,35},41->{30},42->{6,41},43->{42},44->{42},45->{6,41},46->{4,43,44,45}] Sizebounds: (< 0,0,A>, 0) (< 0,0,C>, 2*D) (< 0,0,D>, D) (< 0,0,E>, 4*D) (< 0,0,J>, J) (< 0,0,L>, L) (< 0,0,N>, N) (< 0,0,O>, O) (< 0,0,P>, P) (< 0,0,Q>, Q) (< 1,0,A>, ?) (< 1,0,C>, 2*D) (< 1,0,D>, D) (< 1,0,E>, 4*D) (< 1,0,J>, 1 + 2*D) (< 1,0,L>, 0) (< 1,0,N>, N) (< 1,0,O>, O) (< 1,0,P>, P) (< 1,0,Q>, Q) (< 2,0,A>, ?) (< 2,0,C>, 2*D) (< 2,0,D>, D) (< 2,0,E>, 4*D) (< 2,0,J>, 1 + 2*D) (< 2,0,L>, ?) (< 2,0,N>, N) (< 2,0,O>, O) (< 2,0,P>, P) (< 2,0,Q>, Q) (< 3,0,A>, ?) (< 3,0,C>, 2*D) (< 3,0,D>, D) (< 3,0,E>, 4*D) (< 3,0,J>, 1 + 2*D) (< 3,0,L>, ?) (< 3,0,N>, N) (< 3,0,O>, O) (< 3,0,P>, P) (< 3,0,Q>, Q) (< 4,0,A>, ?) (< 4,0,C>, 2*D) (< 4,0,D>, D) (< 4,0,E>, 4*D) (< 4,0,J>, 1 + D) (< 4,0,L>, ?) (< 4,0,N>, N) (< 4,0,O>, O) (< 4,0,P>, P) (< 4,0,Q>, Q) (< 6,0,A>, ?) (< 6,0,C>, 2*D) (< 6,0,D>, D) (< 6,0,E>, 4*D) (< 6,0,J>, ?) (< 6,0,L>, ?) (< 6,0,N>, N) (< 6,0,O>, N) (< 6,0,P>, P) (< 6,0,Q>, ?) (< 7,0,A>, ?) (< 7,0,C>, 2*D) (< 7,0,D>, D) (< 7,0,E>, 4*D) (< 7,0,J>, ?) (< 7,0,L>, ?) (< 7,0,N>, N) (< 7,0,O>, ?) (< 7,0,P>, P) (< 7,0,Q>, 0) (< 8,0,A>, ?) (< 8,0,C>, 2*D) (< 8,0,D>, D) (< 8,0,E>, 4*D) (< 8,0,J>, ?) (< 8,0,L>, ?) (< 8,0,N>, N) (< 8,0,O>, ?) (< 8,0,P>, P) (< 8,0,Q>, 0) (< 9,0,A>, ?) (< 9,0,C>, 2*D) (< 9,0,D>, D) (< 9,0,E>, 4*D) (< 9,0,J>, 1 + D) (< 9,0,L>, ?) (< 9,0,N>, N) (< 9,0,O>, ?) (< 9,0,P>, P) (< 9,0,Q>, 0) (<12,0,A>, ?) (<12,0,C>, 2*D) (<12,0,D>, D) (<12,0,E>, 4*D) (<12,0,J>, ?) (<12,0,L>, ?) (<12,0,N>, N) (<12,0,O>, ?) (<12,0,P>, 0) (<12,0,Q>, P) (<13,0,A>, ?) (<13,0,C>, 2*D) (<13,0,D>, D) (<13,0,E>, 4*D) (<13,0,J>, 2 + 4*D) (<13,0,L>, ?) (<13,0,N>, N) (<13,0,O>, ?) (<13,0,P>, 0) (<13,0,Q>, P) (<14,0,A>, ?) (<14,0,C>, 2*D) (<14,0,D>, D) (<14,0,E>, 4*D) (<14,0,J>, 1 + 2*D) (<14,0,L>, ?) (<14,0,N>, N) (<14,0,O>, ?) (<14,0,P>, P) (<14,0,Q>, ?) (<15,0,A>, ?) (<15,0,C>, 2*D) (<15,0,D>, D) (<15,0,E>, 4*D) (<15,0,J>, ?) (<15,0,L>, 0) (<15,0,N>, N) (<15,0,O>, ?) (<15,0,P>, P) (<15,0,Q>, ?) (<16,0,A>, ?) (<16,0,C>, 2*D) (<16,0,D>, D) (<16,0,E>, 4*D) (<16,0,J>, ?) (<16,0,L>, ?) (<16,0,N>, N) (<16,0,O>, ?) (<16,0,P>, P) (<16,0,Q>, ?) (<17,0,A>, ?) (<17,0,C>, 2*D) (<17,0,D>, D) (<17,0,E>, 4*D) (<17,0,J>, ?) (<17,0,L>, ?) (<17,0,N>, N) (<17,0,O>, ?) (<17,0,P>, P) (<17,0,Q>, ?) (<18,0,A>, ?) (<18,0,C>, 2*D) (<18,0,D>, D) (<18,0,E>, 4*D) (<18,0,J>, D) (<18,0,L>, ?) (<18,0,N>, N) (<18,0,O>, ?) (<18,0,P>, P) (<18,0,Q>, ?) (<19,0,A>, ?) (<19,0,C>, 2*D) (<19,0,D>, D) (<19,0,E>, 4*D) (<19,0,J>, D) (<19,0,L>, ?) (<19,0,N>, N) (<19,0,O>, ?) (<19,0,P>, P) (<19,0,Q>, ?) (<20,0,A>, ?) (<20,0,C>, 2*D) (<20,0,D>, D) (<20,0,E>, 4*D) (<20,0,J>, D) (<20,0,L>, ?) (<20,0,N>, N) (<20,0,O>, ?) (<20,0,P>, P) (<20,0,Q>, ?) (<21,0,A>, ?) (<21,0,C>, 2*D) (<21,0,D>, D) (<21,0,E>, 4*D) (<21,0,J>, D) (<21,0,L>, ?) (<21,0,N>, N) (<21,0,O>, ?) (<21,0,P>, P) (<21,0,Q>, ?) (<22,0,A>, ?) (<22,0,C>, 2*D) (<22,0,D>, D) (<22,0,E>, 4*D) (<22,0,J>, D) (<22,0,L>, ?) (<22,0,N>, N) (<22,0,O>, ?) (<22,0,P>, P) (<22,0,Q>, ?) (<23,0,A>, ?) (<23,0,C>, 2*D) (<23,0,D>, D) (<23,0,E>, 4*D) (<23,0,J>, D) (<23,0,L>, ?) (<23,0,N>, N) (<23,0,O>, ?) (<23,0,P>, P) (<23,0,Q>, ?) (<24,0,A>, ?) (<24,0,C>, 2*D) (<24,0,D>, D) (<24,0,E>, 4*D) (<24,0,J>, D) (<24,0,L>, ?) (<24,0,N>, N) (<24,0,O>, ?) (<24,0,P>, P) (<24,0,Q>, ?) (<25,0,A>, ?) (<25,0,C>, 2*D) (<25,0,D>, D) (<25,0,E>, 4*D) (<25,0,J>, D) (<25,0,L>, ?) (<25,0,N>, N) (<25,0,O>, ?) (<25,0,P>, P) (<25,0,Q>, ?) (<26,0,A>, ?) (<26,0,C>, 2*D) (<26,0,D>, D) (<26,0,E>, 4*D) (<26,0,J>, D) (<26,0,L>, ?) (<26,0,N>, N) (<26,0,O>, ?) (<26,0,P>, P) (<26,0,Q>, ?) (<27,0,A>, ?) (<27,0,C>, 2*D) (<27,0,D>, D) (<27,0,E>, 4*D) (<27,0,J>, D) (<27,0,L>, 0) (<27,0,N>, N) (<27,0,O>, ?) (<27,0,P>, P) (<27,0,Q>, ?) (<28,0,A>, ?) (<28,0,C>, 2*D) (<28,0,D>, D) (<28,0,E>, 4*D) (<28,0,J>, D) (<28,0,L>, ?) (<28,0,N>, N) (<28,0,O>, ?) (<28,0,P>, P) (<28,0,Q>, ?) (<29,0,A>, ?) (<29,0,C>, 2*D) (<29,0,D>, D) (<29,0,E>, 4*D) (<29,0,J>, D) (<29,0,L>, ?) (<29,0,N>, N) (<29,0,O>, ?) (<29,0,P>, P) (<29,0,Q>, ?) (<30,0,A>, ?) (<30,0,C>, 2*D) (<30,0,D>, D) (<30,0,E>, 4*D) (<30,0,J>, 1 + D) (<30,0,L>, ?) (<30,0,N>, N) (<30,0,O>, ?) (<30,0,P>, P) (<30,0,Q>, ?) (<32,0,A>, ?) (<32,0,C>, 2*D) (<32,0,D>, D) (<32,0,E>, 4*D) (<32,0,J>, ?) (<32,0,L>, ?) (<32,0,N>, N) (<32,0,O>, ?) (<32,0,P>, P) (<32,0,Q>, ?) (<33,0,A>, ?) (<33,0,C>, 2*D) (<33,0,D>, D) (<33,0,E>, 4*D) (<33,0,J>, ?) (<33,0,L>, ?) (<33,0,N>, N) (<33,0,O>, ?) (<33,0,P>, P) (<33,0,Q>, ?) (<34,0,A>, ?) (<34,0,C>, 2*D) (<34,0,D>, D) (<34,0,E>, 4*D) (<34,0,J>, ?) (<34,0,L>, ?) (<34,0,N>, N) (<34,0,O>, ?) (<34,0,P>, P) (<34,0,Q>, ?) (<35,0,A>, ?) (<35,0,C>, 2*D) (<35,0,D>, D) (<35,0,E>, 4*D) (<35,0,J>, ?) (<35,0,L>, ?) (<35,0,N>, N) (<35,0,O>, ?) (<35,0,P>, P) (<35,0,Q>, ?) (<36,0,A>, ?) (<36,0,C>, 2*D) (<36,0,D>, D) (<36,0,E>, 4*D) (<36,0,J>, ?) (<36,0,L>, ?) (<36,0,N>, N) (<36,0,O>, ?) (<36,0,P>, 0) (<36,0,Q>, P) (<37,0,A>, ?) (<37,0,C>, 2*D) (<37,0,D>, D) (<37,0,E>, 4*D) (<37,0,J>, ?) (<37,0,L>, ?) (<37,0,N>, N) (<37,0,O>, ?) (<37,0,P>, P) (<37,0,Q>, 0) (<38,0,A>, ?) (<38,0,C>, 2*D) (<38,0,D>, D) (<38,0,E>, 4*D) (<38,0,J>, ?) (<38,0,L>, ?) (<38,0,N>, N) (<38,0,O>, ?) (<38,0,P>, P) (<38,0,Q>, 0) (<39,0,A>, ?) (<39,0,C>, 2*D) (<39,0,D>, D) (<39,0,E>, 4*D) (<39,0,J>, ?) (<39,0,L>, ?) (<39,0,N>, N) (<39,0,O>, ?) (<39,0,P>, P) (<39,0,Q>, 0) (<40,0,A>, ?) (<40,0,C>, 2*D) (<40,0,D>, D) (<40,0,E>, 4*D) (<40,0,J>, ?) (<40,0,L>, ?) (<40,0,N>, N) (<40,0,O>, ?) (<40,0,P>, P) (<40,0,Q>, ?) (<41,0,A>, ?) (<41,0,C>, 2*D) (<41,0,D>, D) (<41,0,E>, 4*D) (<41,0,J>, ?) (<41,0,L>, ?) (<41,0,N>, N) (<41,0,O>, ?) (<41,0,P>, P) (<41,0,Q>, ?) (<42,0,A>, ?) (<42,0,C>, 2*D) (<42,0,D>, D) (<42,0,E>, 4*D) (<42,0,J>, 1 + 2*D + J) (<42,0,L>, ?) (<42,0,N>, N) (<42,0,O>, O) (<42,0,P>, P) (<42,0,Q>, Q) (<43,0,A>, ?) (<43,0,C>, 2*D) (<43,0,D>, D) (<43,0,E>, 4*D) (<43,0,J>, 1 + 2*D + J) (<43,0,L>, ?) (<43,0,N>, N) (<43,0,O>, O) (<43,0,P>, P) (<43,0,Q>, Q) (<44,0,A>, ?) (<44,0,C>, 2*D) (<44,0,D>, D) (<44,0,E>, 4*D) (<44,0,J>, 1 + 2*D + J) (<44,0,L>, ?) (<44,0,N>, N) (<44,0,O>, O) (<44,0,P>, P) (<44,0,Q>, Q) (<45,0,A>, ?) (<45,0,C>, 2*D) (<45,0,D>, D) (<45,0,E>, 4*D) (<45,0,J>, 1 + 2*D + J) (<45,0,L>, ?) (<45,0,N>, N) (<45,0,O>, O) (<45,0,P>, 0) (<45,0,Q>, Q) (<46,0,A>, ?) (<46,0,C>, 2*D) (<46,0,D>, D) (<46,0,E>, 4*D) (<46,0,J>, 1 + 2*D + J) (<46,0,L>, ?) (<46,0,N>, N) (<46,0,O>, O) (<46,0,P>, P) (<46,0,Q>, Q) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 29: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,C,D,E,J,L,N,O,P,Q) -> f13(0,2*D,D,4*D,J,L,N,O,P,Q) True (1,1) 1. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A,C,D,E,1 + J,0,N,O,P,Q) [C >= J] (?,1) 2. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [C1 >= 2 && C >= J] (?,1) 3. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [0 >= C1 && C >= J] (?,1) 4. f24(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (D,1) 6. f37(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,Q) [N >= O] (1 + N + O,1) 7. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && 0 >= Q] (P + Q,1) 8. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && 0 >= Q] (P + Q,1) 9. f44(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (0,1) 12. f40(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,J,L,N,O,0,Q) [0 >= Q && P = 0] (1 + Q,1) 13. f64(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,2 + J,L,N,O,P,Q) [E >= J] (3*D,1) 14. f71(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,1 + J,L,N,O,P,Q) [C >= J] (D,1) 15. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,0,N,O,P,Q) [L = 0] (6 + 12*D + 3*N + 3*O + 6*P + 9*Q,1) 16. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + L] (6 + 12*D + 3*N + 3*O + 6*P + 9*Q,1) 17. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [L >= 1] (6 + 12*D + 3*N + 3*O + 6*P + 9*Q,1) 18. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D >= J] (0,1) 19. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && D >= J] (0,1) 20. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && D >= J] (0,1) 21. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (0,1) 22. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (0,1) 23. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (0,1) 24. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (0,1) 25. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (0,1) 26. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (0,1) 27. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,0,N,O,P,Q) [L = 0] (0,1) 28. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [0 >= 1 + L] (0,1) 29. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [L >= 1] (0,1) 30. f118(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (0,1) 32. f91(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,1 + O,P,Q) [J >= 1 + D] (18 + 36*D + 9*N + 9*O + 18*P + 27*Q,1) 33. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [J >= 1 + C] (2 + 4*D + N + O + 2*P + 3*Q,1) 34. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && J >= 1 + C] (2 + 4*D + N + O + 2*P + 3*Q,1) 35. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && J >= 1 + C] (2 + 4*D + N + O + 2*P + 3*Q,1) 36. f64(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + E] (1 + 3*D + Q,1) 37. f57(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] (2*P + 2*Q,1) 38. f50(A,C,D,E,J,L,N,O,P,Q) -> f57(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (2*P + 2*Q,1) 39. f44(A,C,D,E,J,L,N,O,P,Q) -> f50(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (2*P + 2*Q,1) 40. f40(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,J,L,N,O,P,Q) [Q >= 1] (2 + 3*D + N + O + 2*P + 3*Q,1) 41. f37(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,J,L,N,O,P,Q) [O >= 1 + N] (19 + 37*D + 9*N + 9*O + 20*P + 27*Q,1) 42. f31(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (2*P,1) 43. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && J >= 1 + D] (P,1) 44. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && J >= 1 + D] (P,1) 45. f24(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,0,Q) [J >= 1 + D && P = 0] (1 + D,1) 46. f13(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + C] (1,1) Signature: {(f1,10) ;(f103,10) ;(f107,10) ;(f118,10) ;(f13,10) ;(f2,10) ;(f24,10) ;(f31,10) ;(f37,10) ;(f40,10) ;(f44,10) ;(f50,10) ;(f57,10) ;(f64,10) ;(f71,10) ;(f86,10) ;(f91,10) ;(f99,10)} Flow Graph: [0->{1,2,3,46},1->{1,2,3,46},2->{1,2,3,46},3->{1,2,3,46},4->{4,43,44,45},6->{7,8,12,40},7->{9,39},8->{9 ,39},9->{9,39},12->{13,36},13->{13,36},14->{14,33,34,35},15->{18,19,20,32},16->{18,19,20,32},17->{18,19,20 ,32},18->{21,22,23},19->{21,22,23},20->{21,22,23},21->{24,25,26},22->{24,25,26},23->{24,25,26},24->{27,28 ,29},25->{27,28,29},26->{27,28,29},27->{18,19,20,32},28->{18,19,20,32},29->{18,19,20,32},30->{30},32->{6,41} ,33->{15,16,17},34->{15,16,17},35->{15,16,17},36->{7,8,12,40},37->{7,8,12,40},38->{37},39->{38},40->{14,33 ,34,35},41->{30},42->{6,41},43->{42},44->{42},45->{6,41},46->{4,43,44,45}] Sizebounds: (< 0,0,A>, 0) (< 0,0,C>, 2*D) (< 0,0,D>, D) (< 0,0,E>, 4*D) (< 0,0,J>, J) (< 0,0,L>, L) (< 0,0,N>, N) (< 0,0,O>, O) (< 0,0,P>, P) (< 0,0,Q>, Q) (< 1,0,A>, ?) (< 1,0,C>, 2*D) (< 1,0,D>, D) (< 1,0,E>, 4*D) (< 1,0,J>, 1 + 2*D) (< 1,0,L>, 0) (< 1,0,N>, N) (< 1,0,O>, O) (< 1,0,P>, P) (< 1,0,Q>, Q) (< 2,0,A>, ?) (< 2,0,C>, 2*D) (< 2,0,D>, D) (< 2,0,E>, 4*D) (< 2,0,J>, 1 + 2*D) (< 2,0,L>, ?) (< 2,0,N>, N) (< 2,0,O>, O) (< 2,0,P>, P) (< 2,0,Q>, Q) (< 3,0,A>, ?) (< 3,0,C>, 2*D) (< 3,0,D>, D) (< 3,0,E>, 4*D) (< 3,0,J>, 1 + 2*D) (< 3,0,L>, ?) (< 3,0,N>, N) (< 3,0,O>, O) (< 3,0,P>, P) (< 3,0,Q>, Q) (< 4,0,A>, ?) (< 4,0,C>, 2*D) (< 4,0,D>, D) (< 4,0,E>, 4*D) (< 4,0,J>, 1 + D) (< 4,0,L>, ?) (< 4,0,N>, N) (< 4,0,O>, O) (< 4,0,P>, P) (< 4,0,Q>, Q) (< 6,0,A>, ?) (< 6,0,C>, 2*D) (< 6,0,D>, D) (< 6,0,E>, 4*D) (< 6,0,J>, ?) (< 6,0,L>, ?) (< 6,0,N>, N) (< 6,0,O>, N) (< 6,0,P>, P) (< 6,0,Q>, ?) (< 7,0,A>, ?) (< 7,0,C>, 2*D) (< 7,0,D>, D) (< 7,0,E>, 4*D) (< 7,0,J>, ?) (< 7,0,L>, ?) (< 7,0,N>, N) (< 7,0,O>, ?) (< 7,0,P>, P) (< 7,0,Q>, 0) (< 8,0,A>, ?) (< 8,0,C>, 2*D) (< 8,0,D>, D) (< 8,0,E>, 4*D) (< 8,0,J>, ?) (< 8,0,L>, ?) (< 8,0,N>, N) (< 8,0,O>, ?) (< 8,0,P>, P) (< 8,0,Q>, 0) (< 9,0,A>, ?) (< 9,0,C>, 2*D) (< 9,0,D>, D) (< 9,0,E>, 4*D) (< 9,0,J>, 1 + D) (< 9,0,L>, ?) (< 9,0,N>, N) (< 9,0,O>, ?) (< 9,0,P>, P) (< 9,0,Q>, 0) (<12,0,A>, ?) (<12,0,C>, 2*D) (<12,0,D>, D) (<12,0,E>, 4*D) (<12,0,J>, ?) (<12,0,L>, ?) (<12,0,N>, N) (<12,0,O>, ?) (<12,0,P>, 0) (<12,0,Q>, P) (<13,0,A>, ?) (<13,0,C>, 2*D) (<13,0,D>, D) (<13,0,E>, 4*D) (<13,0,J>, 2 + 4*D) (<13,0,L>, ?) (<13,0,N>, N) (<13,0,O>, ?) (<13,0,P>, 0) (<13,0,Q>, P) (<14,0,A>, ?) (<14,0,C>, 2*D) (<14,0,D>, D) (<14,0,E>, 4*D) (<14,0,J>, 1 + 2*D) (<14,0,L>, ?) (<14,0,N>, N) (<14,0,O>, ?) (<14,0,P>, P) (<14,0,Q>, ?) (<15,0,A>, ?) (<15,0,C>, 2*D) (<15,0,D>, D) (<15,0,E>, 4*D) (<15,0,J>, ?) (<15,0,L>, 0) (<15,0,N>, N) (<15,0,O>, ?) (<15,0,P>, P) (<15,0,Q>, ?) (<16,0,A>, ?) (<16,0,C>, 2*D) (<16,0,D>, D) (<16,0,E>, 4*D) (<16,0,J>, ?) (<16,0,L>, ?) (<16,0,N>, N) (<16,0,O>, ?) (<16,0,P>, P) (<16,0,Q>, ?) (<17,0,A>, ?) (<17,0,C>, 2*D) (<17,0,D>, D) (<17,0,E>, 4*D) (<17,0,J>, ?) (<17,0,L>, ?) (<17,0,N>, N) (<17,0,O>, ?) (<17,0,P>, P) (<17,0,Q>, ?) (<18,0,A>, ?) (<18,0,C>, 2*D) (<18,0,D>, D) (<18,0,E>, 4*D) (<18,0,J>, D) (<18,0,L>, ?) (<18,0,N>, N) (<18,0,O>, ?) (<18,0,P>, P) (<18,0,Q>, ?) (<19,0,A>, ?) (<19,0,C>, 2*D) (<19,0,D>, D) (<19,0,E>, 4*D) (<19,0,J>, D) (<19,0,L>, ?) (<19,0,N>, N) (<19,0,O>, ?) (<19,0,P>, P) (<19,0,Q>, ?) (<20,0,A>, ?) (<20,0,C>, 2*D) (<20,0,D>, D) (<20,0,E>, 4*D) (<20,0,J>, D) (<20,0,L>, ?) (<20,0,N>, N) (<20,0,O>, ?) (<20,0,P>, P) (<20,0,Q>, ?) (<21,0,A>, ?) (<21,0,C>, 2*D) (<21,0,D>, D) (<21,0,E>, 4*D) (<21,0,J>, D) (<21,0,L>, ?) (<21,0,N>, N) (<21,0,O>, ?) (<21,0,P>, P) (<21,0,Q>, ?) (<22,0,A>, ?) (<22,0,C>, 2*D) (<22,0,D>, D) (<22,0,E>, 4*D) (<22,0,J>, D) (<22,0,L>, ?) (<22,0,N>, N) (<22,0,O>, ?) (<22,0,P>, P) (<22,0,Q>, ?) (<23,0,A>, ?) (<23,0,C>, 2*D) (<23,0,D>, D) (<23,0,E>, 4*D) (<23,0,J>, D) (<23,0,L>, ?) (<23,0,N>, N) (<23,0,O>, ?) (<23,0,P>, P) (<23,0,Q>, ?) (<24,0,A>, ?) (<24,0,C>, 2*D) (<24,0,D>, D) (<24,0,E>, 4*D) (<24,0,J>, D) (<24,0,L>, ?) (<24,0,N>, N) (<24,0,O>, ?) (<24,0,P>, P) (<24,0,Q>, ?) (<25,0,A>, ?) (<25,0,C>, 2*D) (<25,0,D>, D) (<25,0,E>, 4*D) (<25,0,J>, D) (<25,0,L>, ?) (<25,0,N>, N) (<25,0,O>, ?) (<25,0,P>, P) (<25,0,Q>, ?) (<26,0,A>, ?) (<26,0,C>, 2*D) (<26,0,D>, D) (<26,0,E>, 4*D) (<26,0,J>, D) (<26,0,L>, ?) (<26,0,N>, N) (<26,0,O>, ?) (<26,0,P>, P) (<26,0,Q>, ?) (<27,0,A>, ?) (<27,0,C>, 2*D) (<27,0,D>, D) (<27,0,E>, 4*D) (<27,0,J>, D) (<27,0,L>, 0) (<27,0,N>, N) (<27,0,O>, ?) (<27,0,P>, P) (<27,0,Q>, ?) (<28,0,A>, ?) (<28,0,C>, 2*D) (<28,0,D>, D) (<28,0,E>, 4*D) (<28,0,J>, D) (<28,0,L>, ?) (<28,0,N>, N) (<28,0,O>, ?) (<28,0,P>, P) (<28,0,Q>, ?) (<29,0,A>, ?) (<29,0,C>, 2*D) (<29,0,D>, D) (<29,0,E>, 4*D) (<29,0,J>, D) (<29,0,L>, ?) (<29,0,N>, N) (<29,0,O>, ?) (<29,0,P>, P) (<29,0,Q>, ?) (<30,0,A>, ?) (<30,0,C>, 2*D) (<30,0,D>, D) (<30,0,E>, 4*D) (<30,0,J>, 1 + D) (<30,0,L>, ?) (<30,0,N>, N) (<30,0,O>, ?) (<30,0,P>, P) (<30,0,Q>, ?) (<32,0,A>, ?) (<32,0,C>, 2*D) (<32,0,D>, D) (<32,0,E>, 4*D) (<32,0,J>, ?) (<32,0,L>, ?) (<32,0,N>, N) (<32,0,O>, ?) (<32,0,P>, P) (<32,0,Q>, ?) (<33,0,A>, ?) (<33,0,C>, 2*D) (<33,0,D>, D) (<33,0,E>, 4*D) (<33,0,J>, ?) (<33,0,L>, ?) (<33,0,N>, N) (<33,0,O>, ?) (<33,0,P>, P) (<33,0,Q>, ?) (<34,0,A>, ?) (<34,0,C>, 2*D) (<34,0,D>, D) (<34,0,E>, 4*D) (<34,0,J>, ?) (<34,0,L>, ?) (<34,0,N>, N) (<34,0,O>, ?) (<34,0,P>, P) (<34,0,Q>, ?) (<35,0,A>, ?) (<35,0,C>, 2*D) (<35,0,D>, D) (<35,0,E>, 4*D) (<35,0,J>, ?) (<35,0,L>, ?) (<35,0,N>, N) (<35,0,O>, ?) (<35,0,P>, P) (<35,0,Q>, ?) (<36,0,A>, ?) (<36,0,C>, 2*D) (<36,0,D>, D) (<36,0,E>, 4*D) (<36,0,J>, ?) (<36,0,L>, ?) (<36,0,N>, N) (<36,0,O>, ?) (<36,0,P>, 0) (<36,0,Q>, P) (<37,0,A>, ?) (<37,0,C>, 2*D) (<37,0,D>, D) (<37,0,E>, 4*D) (<37,0,J>, ?) (<37,0,L>, ?) (<37,0,N>, N) (<37,0,O>, ?) (<37,0,P>, P) (<37,0,Q>, 0) (<38,0,A>, ?) (<38,0,C>, 2*D) (<38,0,D>, D) (<38,0,E>, 4*D) (<38,0,J>, ?) (<38,0,L>, ?) (<38,0,N>, N) (<38,0,O>, ?) (<38,0,P>, P) (<38,0,Q>, 0) (<39,0,A>, ?) (<39,0,C>, 2*D) (<39,0,D>, D) (<39,0,E>, 4*D) (<39,0,J>, ?) (<39,0,L>, ?) (<39,0,N>, N) (<39,0,O>, ?) (<39,0,P>, P) (<39,0,Q>, 0) (<40,0,A>, ?) (<40,0,C>, 2*D) (<40,0,D>, D) (<40,0,E>, 4*D) (<40,0,J>, ?) (<40,0,L>, ?) (<40,0,N>, N) (<40,0,O>, ?) (<40,0,P>, P) (<40,0,Q>, ?) (<41,0,A>, ?) (<41,0,C>, 2*D) (<41,0,D>, D) (<41,0,E>, 4*D) (<41,0,J>, ?) (<41,0,L>, ?) (<41,0,N>, N) (<41,0,O>, ?) (<41,0,P>, P) (<41,0,Q>, ?) (<42,0,A>, ?) (<42,0,C>, 2*D) (<42,0,D>, D) (<42,0,E>, 4*D) (<42,0,J>, 1 + 2*D + J) (<42,0,L>, ?) (<42,0,N>, N) (<42,0,O>, O) (<42,0,P>, P) (<42,0,Q>, Q) (<43,0,A>, ?) (<43,0,C>, 2*D) (<43,0,D>, D) (<43,0,E>, 4*D) (<43,0,J>, 1 + 2*D + J) (<43,0,L>, ?) (<43,0,N>, N) (<43,0,O>, O) (<43,0,P>, P) (<43,0,Q>, Q) (<44,0,A>, ?) (<44,0,C>, 2*D) (<44,0,D>, D) (<44,0,E>, 4*D) (<44,0,J>, 1 + 2*D + J) (<44,0,L>, ?) (<44,0,N>, N) (<44,0,O>, O) (<44,0,P>, P) (<44,0,Q>, Q) (<45,0,A>, ?) (<45,0,C>, 2*D) (<45,0,D>, D) (<45,0,E>, 4*D) (<45,0,J>, 1 + 2*D + J) (<45,0,L>, ?) (<45,0,N>, N) (<45,0,O>, O) (<45,0,P>, 0) (<45,0,Q>, Q) (<46,0,A>, ?) (<46,0,C>, 2*D) (<46,0,D>, D) (<46,0,E>, 4*D) (<46,0,J>, 1 + 2*D + J) (<46,0,L>, ?) (<46,0,N>, N) (<46,0,O>, O) (<46,0,P>, P) (<46,0,Q>, Q) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f103) = x2 + -1*x5 p(f107) = x2 + -1*x5 p(f118) = x2 + -1*x5 p(f13) = 1 + x2 + -1*x5 p(f2) = 1 + 2*x3 + -1*x5 p(f24) = x2 + -1*x5 p(f31) = x2 + -1*x5 p(f37) = x2 + -1*x5 p(f40) = x2 + -1*x5 p(f44) = x2 + -1*x5 p(f50) = x2 + -1*x5 p(f57) = x2 + -1*x5 p(f64) = x2 + -1*x5 p(f71) = x2 + -1*x5 p(f86) = x2 + -1*x5 p(f91) = x2 + -1*x5 p(f99) = x2 + -1*x5 The following rules are strictly oriented: [0 >= C1 && C >= J] ==> f13(A,C,D,E,J,L,N,O,P,Q) = 1 + C + -1*J > C + -1*J = f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) The following rules are weakly oriented: True ==> f2(A,C,D,E,J,L,N,O,P,Q) = 1 + 2*D + -1*J >= 1 + 2*D + -1*J = f13(0,2*D,D,4*D,J,L,N,O,P,Q) [C >= J] ==> f13(A,C,D,E,J,L,N,O,P,Q) = 1 + C + -1*J >= C + -1*J = f13(A,C,D,E,1 + J,0,N,O,P,Q) [C1 >= 2 && C >= J] ==> f13(A,C,D,E,J,L,N,O,P,Q) = 1 + C + -1*J >= C + -1*J = f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [D >= J] ==> f24(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= -1 + C + -1*J = f24(A,C,D,E,1 + J,L,N,O,P,Q) [N >= O] ==> f37(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f40(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && 0 >= Q] ==> f40(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f44(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && 0 >= Q] ==> f40(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f44(A,C,D,E,J,L,N,O,P,Q) [D >= J] ==> f44(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= -1 + C + -1*J = f44(A,C,D,E,1 + J,L,N,O,P,Q) [0 >= Q && P = 0] ==> f40(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f64(A,C,D,E,J,L,N,O,0,Q) [E >= J] ==> f64(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= -2 + C + -1*J = f64(A,C,D,E,2 + J,L,N,O,P,Q) [C >= J] ==> f71(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= -1 + C + -1*J = f71(A,C,D,E,1 + J,L,N,O,P,Q) [L = 0] ==> f86(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f91(A,C,D,E,J,0,N,O,P,Q) [0 >= 1 + L] ==> f86(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f91(A,C,D,E,J,L,N,O,P,Q) [L >= 1] ==> f86(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f91(A,C,D,E,J,L,N,O,P,Q) [D >= J] ==> f91(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f99(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && D >= J] ==> f91(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f99(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && D >= J] ==> f91(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f99(A,C,D,E,J,B1,N,O,P,Q) [L = 0] ==> f99(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f103(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] ==> f99(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f103(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] ==> f99(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f103(A,C,D,E,J,B1,N,O,P,Q) [L = 0] ==> f103(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f107(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] ==> f103(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f107(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] ==> f103(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f107(A,C,D,E,J,B1,N,O,P,Q) [L = 0] ==> f107(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= -1 + C + -1*J = f91(A,C,D,E,1 + J,0,N,O,P,Q) [0 >= 1 + L] ==> f107(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= -1 + C + -1*J = f91(A,C,D,E,1 + J,L,N,O,P,Q) [L >= 1] ==> f107(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= -1 + C + -1*J = f91(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] ==> f118(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= -1 + C + -1*J = f118(A,C,D,E,1 + J,L,N,O,P,Q) [J >= 1 + D] ==> f91(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f37(A,C,D,E,J,L,N,1 + O,P,Q) [J >= 1 + C] ==> f71(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f86(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && J >= 1 + C] ==> f71(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f86(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && J >= 1 + C] ==> f71(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f86(A,C,D,E,J,B1,N,O,P,Q) [J >= 1 + E] ==> f64(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] ==> f57(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] ==> f50(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f57(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] ==> f44(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f50(A,C,D,E,J,L,N,O,P,Q) [Q >= 1] ==> f40(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f71(A,C,D,E,J,L,N,O,P,Q) [O >= 1 + N] ==> f37(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f118(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] ==> f31(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f37(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && J >= 1 + D] ==> f24(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f31(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && J >= 1 + D] ==> f24(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f31(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D && P = 0] ==> f24(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f37(A,C,D,E,J,L,N,O,0,Q) [J >= 1 + C] ==> f13(A,C,D,E,J,L,N,O,P,Q) = 1 + C + -1*J >= C + -1*J = f24(A,C,D,E,J,L,N,O,P,Q) * Step 30: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,C,D,E,J,L,N,O,P,Q) -> f13(0,2*D,D,4*D,J,L,N,O,P,Q) True (1,1) 1. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A,C,D,E,1 + J,0,N,O,P,Q) [C >= J] (?,1) 2. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [C1 >= 2 && C >= J] (?,1) 3. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [0 >= C1 && C >= J] (1 + 2*D + J,1) 4. f24(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (D,1) 6. f37(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,Q) [N >= O] (1 + N + O,1) 7. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && 0 >= Q] (P + Q,1) 8. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && 0 >= Q] (P + Q,1) 9. f44(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (0,1) 12. f40(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,J,L,N,O,0,Q) [0 >= Q && P = 0] (1 + Q,1) 13. f64(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,2 + J,L,N,O,P,Q) [E >= J] (3*D,1) 14. f71(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,1 + J,L,N,O,P,Q) [C >= J] (D,1) 15. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,0,N,O,P,Q) [L = 0] (6 + 12*D + 3*N + 3*O + 6*P + 9*Q,1) 16. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + L] (6 + 12*D + 3*N + 3*O + 6*P + 9*Q,1) 17. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [L >= 1] (6 + 12*D + 3*N + 3*O + 6*P + 9*Q,1) 18. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D >= J] (0,1) 19. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && D >= J] (0,1) 20. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && D >= J] (0,1) 21. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (0,1) 22. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (0,1) 23. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (0,1) 24. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (0,1) 25. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (0,1) 26. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (0,1) 27. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,0,N,O,P,Q) [L = 0] (0,1) 28. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [0 >= 1 + L] (0,1) 29. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [L >= 1] (0,1) 30. f118(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (0,1) 32. f91(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,1 + O,P,Q) [J >= 1 + D] (18 + 36*D + 9*N + 9*O + 18*P + 27*Q,1) 33. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [J >= 1 + C] (2 + 4*D + N + O + 2*P + 3*Q,1) 34. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && J >= 1 + C] (2 + 4*D + N + O + 2*P + 3*Q,1) 35. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && J >= 1 + C] (2 + 4*D + N + O + 2*P + 3*Q,1) 36. f64(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + E] (1 + 3*D + Q,1) 37. f57(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] (2*P + 2*Q,1) 38. f50(A,C,D,E,J,L,N,O,P,Q) -> f57(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (2*P + 2*Q,1) 39. f44(A,C,D,E,J,L,N,O,P,Q) -> f50(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (2*P + 2*Q,1) 40. f40(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,J,L,N,O,P,Q) [Q >= 1] (2 + 3*D + N + O + 2*P + 3*Q,1) 41. f37(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,J,L,N,O,P,Q) [O >= 1 + N] (19 + 37*D + 9*N + 9*O + 20*P + 27*Q,1) 42. f31(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (2*P,1) 43. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && J >= 1 + D] (P,1) 44. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && J >= 1 + D] (P,1) 45. f24(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,0,Q) [J >= 1 + D && P = 0] (1 + D,1) 46. f13(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + C] (1,1) Signature: {(f1,10) ;(f103,10) ;(f107,10) ;(f118,10) ;(f13,10) ;(f2,10) ;(f24,10) ;(f31,10) ;(f37,10) ;(f40,10) ;(f44,10) ;(f50,10) ;(f57,10) ;(f64,10) ;(f71,10) ;(f86,10) ;(f91,10) ;(f99,10)} Flow Graph: [0->{1,2,3,46},1->{1,2,3,46},2->{1,2,3,46},3->{1,2,3,46},4->{4,43,44,45},6->{7,8,12,40},7->{9,39},8->{9 ,39},9->{9,39},12->{13,36},13->{13,36},14->{14,33,34,35},15->{18,19,20,32},16->{18,19,20,32},17->{18,19,20 ,32},18->{21,22,23},19->{21,22,23},20->{21,22,23},21->{24,25,26},22->{24,25,26},23->{24,25,26},24->{27,28 ,29},25->{27,28,29},26->{27,28,29},27->{18,19,20,32},28->{18,19,20,32},29->{18,19,20,32},30->{30},32->{6,41} ,33->{15,16,17},34->{15,16,17},35->{15,16,17},36->{7,8,12,40},37->{7,8,12,40},38->{37},39->{38},40->{14,33 ,34,35},41->{30},42->{6,41},43->{42},44->{42},45->{6,41},46->{4,43,44,45}] Sizebounds: (< 0,0,A>, 0) (< 0,0,C>, 2*D) (< 0,0,D>, D) (< 0,0,E>, 4*D) (< 0,0,J>, J) (< 0,0,L>, L) (< 0,0,N>, N) (< 0,0,O>, O) (< 0,0,P>, P) (< 0,0,Q>, Q) (< 1,0,A>, ?) (< 1,0,C>, 2*D) (< 1,0,D>, D) (< 1,0,E>, 4*D) (< 1,0,J>, 1 + 2*D) (< 1,0,L>, 0) (< 1,0,N>, N) (< 1,0,O>, O) (< 1,0,P>, P) (< 1,0,Q>, Q) (< 2,0,A>, ?) (< 2,0,C>, 2*D) (< 2,0,D>, D) (< 2,0,E>, 4*D) (< 2,0,J>, 1 + 2*D) (< 2,0,L>, ?) (< 2,0,N>, N) (< 2,0,O>, O) (< 2,0,P>, P) (< 2,0,Q>, Q) (< 3,0,A>, ?) (< 3,0,C>, 2*D) (< 3,0,D>, D) (< 3,0,E>, 4*D) (< 3,0,J>, 1 + 2*D) (< 3,0,L>, ?) (< 3,0,N>, N) (< 3,0,O>, O) (< 3,0,P>, P) (< 3,0,Q>, Q) (< 4,0,A>, ?) (< 4,0,C>, 2*D) (< 4,0,D>, D) (< 4,0,E>, 4*D) (< 4,0,J>, 1 + D) (< 4,0,L>, ?) (< 4,0,N>, N) (< 4,0,O>, O) (< 4,0,P>, P) (< 4,0,Q>, Q) (< 6,0,A>, ?) (< 6,0,C>, 2*D) (< 6,0,D>, D) (< 6,0,E>, 4*D) (< 6,0,J>, ?) (< 6,0,L>, ?) (< 6,0,N>, N) (< 6,0,O>, N) (< 6,0,P>, P) (< 6,0,Q>, ?) (< 7,0,A>, ?) (< 7,0,C>, 2*D) (< 7,0,D>, D) (< 7,0,E>, 4*D) (< 7,0,J>, ?) (< 7,0,L>, ?) (< 7,0,N>, N) (< 7,0,O>, ?) (< 7,0,P>, P) (< 7,0,Q>, 0) (< 8,0,A>, ?) (< 8,0,C>, 2*D) (< 8,0,D>, D) (< 8,0,E>, 4*D) (< 8,0,J>, ?) (< 8,0,L>, ?) (< 8,0,N>, N) (< 8,0,O>, ?) (< 8,0,P>, P) (< 8,0,Q>, 0) (< 9,0,A>, ?) (< 9,0,C>, 2*D) (< 9,0,D>, D) (< 9,0,E>, 4*D) (< 9,0,J>, 1 + D) (< 9,0,L>, ?) (< 9,0,N>, N) (< 9,0,O>, ?) (< 9,0,P>, P) (< 9,0,Q>, 0) (<12,0,A>, ?) (<12,0,C>, 2*D) (<12,0,D>, D) (<12,0,E>, 4*D) (<12,0,J>, ?) (<12,0,L>, ?) (<12,0,N>, N) (<12,0,O>, ?) (<12,0,P>, 0) (<12,0,Q>, P) (<13,0,A>, ?) (<13,0,C>, 2*D) (<13,0,D>, D) (<13,0,E>, 4*D) (<13,0,J>, 2 + 4*D) (<13,0,L>, ?) (<13,0,N>, N) (<13,0,O>, ?) (<13,0,P>, 0) (<13,0,Q>, P) (<14,0,A>, ?) (<14,0,C>, 2*D) (<14,0,D>, D) (<14,0,E>, 4*D) (<14,0,J>, 1 + 2*D) (<14,0,L>, ?) (<14,0,N>, N) (<14,0,O>, ?) (<14,0,P>, P) (<14,0,Q>, ?) (<15,0,A>, ?) (<15,0,C>, 2*D) (<15,0,D>, D) (<15,0,E>, 4*D) (<15,0,J>, ?) (<15,0,L>, 0) (<15,0,N>, N) (<15,0,O>, ?) (<15,0,P>, P) (<15,0,Q>, ?) (<16,0,A>, ?) (<16,0,C>, 2*D) (<16,0,D>, D) (<16,0,E>, 4*D) (<16,0,J>, ?) (<16,0,L>, ?) (<16,0,N>, N) (<16,0,O>, ?) (<16,0,P>, P) (<16,0,Q>, ?) (<17,0,A>, ?) (<17,0,C>, 2*D) (<17,0,D>, D) (<17,0,E>, 4*D) (<17,0,J>, ?) (<17,0,L>, ?) (<17,0,N>, N) (<17,0,O>, ?) (<17,0,P>, P) (<17,0,Q>, ?) (<18,0,A>, ?) (<18,0,C>, 2*D) (<18,0,D>, D) (<18,0,E>, 4*D) (<18,0,J>, D) (<18,0,L>, ?) (<18,0,N>, N) (<18,0,O>, ?) (<18,0,P>, P) (<18,0,Q>, ?) (<19,0,A>, ?) (<19,0,C>, 2*D) (<19,0,D>, D) (<19,0,E>, 4*D) (<19,0,J>, D) (<19,0,L>, ?) (<19,0,N>, N) (<19,0,O>, ?) (<19,0,P>, P) (<19,0,Q>, ?) (<20,0,A>, ?) (<20,0,C>, 2*D) (<20,0,D>, D) (<20,0,E>, 4*D) (<20,0,J>, D) (<20,0,L>, ?) (<20,0,N>, N) (<20,0,O>, ?) (<20,0,P>, P) (<20,0,Q>, ?) (<21,0,A>, ?) (<21,0,C>, 2*D) (<21,0,D>, D) (<21,0,E>, 4*D) (<21,0,J>, D) (<21,0,L>, ?) (<21,0,N>, N) (<21,0,O>, ?) (<21,0,P>, P) (<21,0,Q>, ?) (<22,0,A>, ?) (<22,0,C>, 2*D) (<22,0,D>, D) (<22,0,E>, 4*D) (<22,0,J>, D) (<22,0,L>, ?) (<22,0,N>, N) (<22,0,O>, ?) (<22,0,P>, P) (<22,0,Q>, ?) (<23,0,A>, ?) (<23,0,C>, 2*D) (<23,0,D>, D) (<23,0,E>, 4*D) (<23,0,J>, D) (<23,0,L>, ?) (<23,0,N>, N) (<23,0,O>, ?) (<23,0,P>, P) (<23,0,Q>, ?) (<24,0,A>, ?) (<24,0,C>, 2*D) (<24,0,D>, D) (<24,0,E>, 4*D) (<24,0,J>, D) (<24,0,L>, ?) (<24,0,N>, N) (<24,0,O>, ?) (<24,0,P>, P) (<24,0,Q>, ?) (<25,0,A>, ?) (<25,0,C>, 2*D) (<25,0,D>, D) (<25,0,E>, 4*D) (<25,0,J>, D) (<25,0,L>, ?) (<25,0,N>, N) (<25,0,O>, ?) (<25,0,P>, P) (<25,0,Q>, ?) (<26,0,A>, ?) (<26,0,C>, 2*D) (<26,0,D>, D) (<26,0,E>, 4*D) (<26,0,J>, D) (<26,0,L>, ?) (<26,0,N>, N) (<26,0,O>, ?) (<26,0,P>, P) (<26,0,Q>, ?) (<27,0,A>, ?) (<27,0,C>, 2*D) (<27,0,D>, D) (<27,0,E>, 4*D) (<27,0,J>, D) (<27,0,L>, 0) (<27,0,N>, N) (<27,0,O>, ?) (<27,0,P>, P) (<27,0,Q>, ?) (<28,0,A>, ?) (<28,0,C>, 2*D) (<28,0,D>, D) (<28,0,E>, 4*D) (<28,0,J>, D) (<28,0,L>, ?) (<28,0,N>, N) (<28,0,O>, ?) (<28,0,P>, P) (<28,0,Q>, ?) (<29,0,A>, ?) (<29,0,C>, 2*D) (<29,0,D>, D) (<29,0,E>, 4*D) (<29,0,J>, D) (<29,0,L>, ?) (<29,0,N>, N) (<29,0,O>, ?) (<29,0,P>, P) (<29,0,Q>, ?) (<30,0,A>, ?) (<30,0,C>, 2*D) (<30,0,D>, D) (<30,0,E>, 4*D) (<30,0,J>, 1 + D) (<30,0,L>, ?) (<30,0,N>, N) (<30,0,O>, ?) (<30,0,P>, P) (<30,0,Q>, ?) (<32,0,A>, ?) (<32,0,C>, 2*D) (<32,0,D>, D) (<32,0,E>, 4*D) (<32,0,J>, ?) (<32,0,L>, ?) (<32,0,N>, N) (<32,0,O>, ?) (<32,0,P>, P) (<32,0,Q>, ?) (<33,0,A>, ?) (<33,0,C>, 2*D) (<33,0,D>, D) (<33,0,E>, 4*D) (<33,0,J>, ?) (<33,0,L>, ?) (<33,0,N>, N) (<33,0,O>, ?) (<33,0,P>, P) (<33,0,Q>, ?) (<34,0,A>, ?) (<34,0,C>, 2*D) (<34,0,D>, D) (<34,0,E>, 4*D) (<34,0,J>, ?) (<34,0,L>, ?) (<34,0,N>, N) (<34,0,O>, ?) (<34,0,P>, P) (<34,0,Q>, ?) (<35,0,A>, ?) (<35,0,C>, 2*D) (<35,0,D>, D) (<35,0,E>, 4*D) (<35,0,J>, ?) (<35,0,L>, ?) (<35,0,N>, N) (<35,0,O>, ?) (<35,0,P>, P) (<35,0,Q>, ?) (<36,0,A>, ?) (<36,0,C>, 2*D) (<36,0,D>, D) (<36,0,E>, 4*D) (<36,0,J>, ?) (<36,0,L>, ?) (<36,0,N>, N) (<36,0,O>, ?) (<36,0,P>, 0) (<36,0,Q>, P) (<37,0,A>, ?) (<37,0,C>, 2*D) (<37,0,D>, D) (<37,0,E>, 4*D) (<37,0,J>, ?) (<37,0,L>, ?) (<37,0,N>, N) (<37,0,O>, ?) (<37,0,P>, P) (<37,0,Q>, 0) (<38,0,A>, ?) (<38,0,C>, 2*D) (<38,0,D>, D) (<38,0,E>, 4*D) (<38,0,J>, ?) (<38,0,L>, ?) (<38,0,N>, N) (<38,0,O>, ?) (<38,0,P>, P) (<38,0,Q>, 0) (<39,0,A>, ?) (<39,0,C>, 2*D) (<39,0,D>, D) (<39,0,E>, 4*D) (<39,0,J>, ?) (<39,0,L>, ?) (<39,0,N>, N) (<39,0,O>, ?) (<39,0,P>, P) (<39,0,Q>, 0) (<40,0,A>, ?) (<40,0,C>, 2*D) (<40,0,D>, D) (<40,0,E>, 4*D) (<40,0,J>, ?) (<40,0,L>, ?) (<40,0,N>, N) (<40,0,O>, ?) (<40,0,P>, P) (<40,0,Q>, ?) (<41,0,A>, ?) (<41,0,C>, 2*D) (<41,0,D>, D) (<41,0,E>, 4*D) (<41,0,J>, ?) (<41,0,L>, ?) (<41,0,N>, N) (<41,0,O>, ?) (<41,0,P>, P) (<41,0,Q>, ?) (<42,0,A>, ?) (<42,0,C>, 2*D) (<42,0,D>, D) (<42,0,E>, 4*D) (<42,0,J>, 1 + 2*D + J) (<42,0,L>, ?) (<42,0,N>, N) (<42,0,O>, O) (<42,0,P>, P) (<42,0,Q>, Q) (<43,0,A>, ?) (<43,0,C>, 2*D) (<43,0,D>, D) (<43,0,E>, 4*D) (<43,0,J>, 1 + 2*D + J) (<43,0,L>, ?) (<43,0,N>, N) (<43,0,O>, O) (<43,0,P>, P) (<43,0,Q>, Q) (<44,0,A>, ?) (<44,0,C>, 2*D) (<44,0,D>, D) (<44,0,E>, 4*D) (<44,0,J>, 1 + 2*D + J) (<44,0,L>, ?) (<44,0,N>, N) (<44,0,O>, O) (<44,0,P>, P) (<44,0,Q>, Q) (<45,0,A>, ?) (<45,0,C>, 2*D) (<45,0,D>, D) (<45,0,E>, 4*D) (<45,0,J>, 1 + 2*D + J) (<45,0,L>, ?) (<45,0,N>, N) (<45,0,O>, O) (<45,0,P>, 0) (<45,0,Q>, Q) (<46,0,A>, ?) (<46,0,C>, 2*D) (<46,0,D>, D) (<46,0,E>, 4*D) (<46,0,J>, 1 + 2*D + J) (<46,0,L>, ?) (<46,0,N>, N) (<46,0,O>, O) (<46,0,P>, P) (<46,0,Q>, Q) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f103) = x2 + -1*x5 p(f107) = x2 + -1*x5 p(f118) = x2 + -1*x5 p(f13) = 1 + x2 + -1*x5 p(f2) = 1 + 2*x3 + -1*x5 p(f24) = x2 + -1*x5 p(f31) = x2 + -1*x5 p(f37) = x2 + -1*x5 p(f40) = x2 + -1*x5 p(f44) = x2 + -1*x5 p(f50) = x2 + -1*x5 p(f57) = x2 + -1*x5 p(f64) = x2 + -1*x5 p(f71) = x2 + -1*x5 p(f86) = x2 + -1*x5 p(f91) = x2 + -1*x5 p(f99) = x2 + -1*x5 The following rules are strictly oriented: [C1 >= 2 && C >= J] ==> f13(A,C,D,E,J,L,N,O,P,Q) = 1 + C + -1*J > C + -1*J = f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [0 >= C1 && C >= J] ==> f13(A,C,D,E,J,L,N,O,P,Q) = 1 + C + -1*J > C + -1*J = f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) The following rules are weakly oriented: True ==> f2(A,C,D,E,J,L,N,O,P,Q) = 1 + 2*D + -1*J >= 1 + 2*D + -1*J = f13(0,2*D,D,4*D,J,L,N,O,P,Q) [C >= J] ==> f13(A,C,D,E,J,L,N,O,P,Q) = 1 + C + -1*J >= C + -1*J = f13(A,C,D,E,1 + J,0,N,O,P,Q) [D >= J] ==> f24(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= -1 + C + -1*J = f24(A,C,D,E,1 + J,L,N,O,P,Q) [N >= O] ==> f37(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f40(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && 0 >= Q] ==> f40(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f44(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && 0 >= Q] ==> f40(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f44(A,C,D,E,J,L,N,O,P,Q) [D >= J] ==> f44(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= -1 + C + -1*J = f44(A,C,D,E,1 + J,L,N,O,P,Q) [0 >= Q && P = 0] ==> f40(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f64(A,C,D,E,J,L,N,O,0,Q) [E >= J] ==> f64(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= -2 + C + -1*J = f64(A,C,D,E,2 + J,L,N,O,P,Q) [C >= J] ==> f71(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= -1 + C + -1*J = f71(A,C,D,E,1 + J,L,N,O,P,Q) [L = 0] ==> f86(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f91(A,C,D,E,J,0,N,O,P,Q) [0 >= 1 + L] ==> f86(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f91(A,C,D,E,J,L,N,O,P,Q) [L >= 1] ==> f86(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f91(A,C,D,E,J,L,N,O,P,Q) [D >= J] ==> f91(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f99(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && D >= J] ==> f91(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f99(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && D >= J] ==> f91(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f99(A,C,D,E,J,B1,N,O,P,Q) [L = 0] ==> f99(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f103(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] ==> f99(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f103(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] ==> f99(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f103(A,C,D,E,J,B1,N,O,P,Q) [L = 0] ==> f103(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f107(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] ==> f103(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f107(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] ==> f103(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f107(A,C,D,E,J,B1,N,O,P,Q) [L = 0] ==> f107(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= -1 + C + -1*J = f91(A,C,D,E,1 + J,0,N,O,P,Q) [0 >= 1 + L] ==> f107(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= -1 + C + -1*J = f91(A,C,D,E,1 + J,L,N,O,P,Q) [L >= 1] ==> f107(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= -1 + C + -1*J = f91(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] ==> f118(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= -1 + C + -1*J = f118(A,C,D,E,1 + J,L,N,O,P,Q) [J >= 1 + D] ==> f91(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f37(A,C,D,E,J,L,N,1 + O,P,Q) [J >= 1 + C] ==> f71(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f86(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && J >= 1 + C] ==> f71(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f86(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && J >= 1 + C] ==> f71(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f86(A,C,D,E,J,B1,N,O,P,Q) [J >= 1 + E] ==> f64(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] ==> f57(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] ==> f50(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f57(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] ==> f44(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f50(A,C,D,E,J,L,N,O,P,Q) [Q >= 1] ==> f40(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f71(A,C,D,E,J,L,N,O,P,Q) [O >= 1 + N] ==> f37(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f118(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] ==> f31(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f37(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && J >= 1 + D] ==> f24(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f31(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && J >= 1 + D] ==> f24(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f31(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D && P = 0] ==> f24(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f37(A,C,D,E,J,L,N,O,0,Q) [J >= 1 + C] ==> f13(A,C,D,E,J,L,N,O,P,Q) = 1 + C + -1*J >= C + -1*J = f24(A,C,D,E,J,L,N,O,P,Q) * Step 31: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,C,D,E,J,L,N,O,P,Q) -> f13(0,2*D,D,4*D,J,L,N,O,P,Q) True (1,1) 1. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A,C,D,E,1 + J,0,N,O,P,Q) [C >= J] (?,1) 2. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [C1 >= 2 && C >= J] (1 + 2*D + J,1) 3. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [0 >= C1 && C >= J] (1 + 2*D + J,1) 4. f24(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (D,1) 6. f37(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,Q) [N >= O] (1 + N + O,1) 7. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && 0 >= Q] (P + Q,1) 8. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && 0 >= Q] (P + Q,1) 9. f44(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (0,1) 12. f40(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,J,L,N,O,0,Q) [0 >= Q && P = 0] (1 + Q,1) 13. f64(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,2 + J,L,N,O,P,Q) [E >= J] (3*D,1) 14. f71(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,1 + J,L,N,O,P,Q) [C >= J] (D,1) 15. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,0,N,O,P,Q) [L = 0] (6 + 12*D + 3*N + 3*O + 6*P + 9*Q,1) 16. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + L] (6 + 12*D + 3*N + 3*O + 6*P + 9*Q,1) 17. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [L >= 1] (6 + 12*D + 3*N + 3*O + 6*P + 9*Q,1) 18. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D >= J] (0,1) 19. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && D >= J] (0,1) 20. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && D >= J] (0,1) 21. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (0,1) 22. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (0,1) 23. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (0,1) 24. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (0,1) 25. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (0,1) 26. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (0,1) 27. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,0,N,O,P,Q) [L = 0] (0,1) 28. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [0 >= 1 + L] (0,1) 29. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [L >= 1] (0,1) 30. f118(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (0,1) 32. f91(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,1 + O,P,Q) [J >= 1 + D] (18 + 36*D + 9*N + 9*O + 18*P + 27*Q,1) 33. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [J >= 1 + C] (2 + 4*D + N + O + 2*P + 3*Q,1) 34. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && J >= 1 + C] (2 + 4*D + N + O + 2*P + 3*Q,1) 35. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && J >= 1 + C] (2 + 4*D + N + O + 2*P + 3*Q,1) 36. f64(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + E] (1 + 3*D + Q,1) 37. f57(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] (2*P + 2*Q,1) 38. f50(A,C,D,E,J,L,N,O,P,Q) -> f57(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (2*P + 2*Q,1) 39. f44(A,C,D,E,J,L,N,O,P,Q) -> f50(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (2*P + 2*Q,1) 40. f40(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,J,L,N,O,P,Q) [Q >= 1] (2 + 3*D + N + O + 2*P + 3*Q,1) 41. f37(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,J,L,N,O,P,Q) [O >= 1 + N] (19 + 37*D + 9*N + 9*O + 20*P + 27*Q,1) 42. f31(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (2*P,1) 43. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && J >= 1 + D] (P,1) 44. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && J >= 1 + D] (P,1) 45. f24(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,0,Q) [J >= 1 + D && P = 0] (1 + D,1) 46. f13(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + C] (1,1) Signature: {(f1,10) ;(f103,10) ;(f107,10) ;(f118,10) ;(f13,10) ;(f2,10) ;(f24,10) ;(f31,10) ;(f37,10) ;(f40,10) ;(f44,10) ;(f50,10) ;(f57,10) ;(f64,10) ;(f71,10) ;(f86,10) ;(f91,10) ;(f99,10)} Flow Graph: [0->{1,2,3,46},1->{1,2,3,46},2->{1,2,3,46},3->{1,2,3,46},4->{4,43,44,45},6->{7,8,12,40},7->{9,39},8->{9 ,39},9->{9,39},12->{13,36},13->{13,36},14->{14,33,34,35},15->{18,19,20,32},16->{18,19,20,32},17->{18,19,20 ,32},18->{21,22,23},19->{21,22,23},20->{21,22,23},21->{24,25,26},22->{24,25,26},23->{24,25,26},24->{27,28 ,29},25->{27,28,29},26->{27,28,29},27->{18,19,20,32},28->{18,19,20,32},29->{18,19,20,32},30->{30},32->{6,41} ,33->{15,16,17},34->{15,16,17},35->{15,16,17},36->{7,8,12,40},37->{7,8,12,40},38->{37},39->{38},40->{14,33 ,34,35},41->{30},42->{6,41},43->{42},44->{42},45->{6,41},46->{4,43,44,45}] Sizebounds: (< 0,0,A>, 0) (< 0,0,C>, 2*D) (< 0,0,D>, D) (< 0,0,E>, 4*D) (< 0,0,J>, J) (< 0,0,L>, L) (< 0,0,N>, N) (< 0,0,O>, O) (< 0,0,P>, P) (< 0,0,Q>, Q) (< 1,0,A>, ?) (< 1,0,C>, 2*D) (< 1,0,D>, D) (< 1,0,E>, 4*D) (< 1,0,J>, 1 + 2*D) (< 1,0,L>, 0) (< 1,0,N>, N) (< 1,0,O>, O) (< 1,0,P>, P) (< 1,0,Q>, Q) (< 2,0,A>, ?) (< 2,0,C>, 2*D) (< 2,0,D>, D) (< 2,0,E>, 4*D) (< 2,0,J>, 1 + 2*D) (< 2,0,L>, ?) (< 2,0,N>, N) (< 2,0,O>, O) (< 2,0,P>, P) (< 2,0,Q>, Q) (< 3,0,A>, ?) (< 3,0,C>, 2*D) (< 3,0,D>, D) (< 3,0,E>, 4*D) (< 3,0,J>, 1 + 2*D) (< 3,0,L>, ?) (< 3,0,N>, N) (< 3,0,O>, O) (< 3,0,P>, P) (< 3,0,Q>, Q) (< 4,0,A>, ?) (< 4,0,C>, 2*D) (< 4,0,D>, D) (< 4,0,E>, 4*D) (< 4,0,J>, 1 + D) (< 4,0,L>, ?) (< 4,0,N>, N) (< 4,0,O>, O) (< 4,0,P>, P) (< 4,0,Q>, Q) (< 6,0,A>, ?) (< 6,0,C>, 2*D) (< 6,0,D>, D) (< 6,0,E>, 4*D) (< 6,0,J>, ?) (< 6,0,L>, ?) (< 6,0,N>, N) (< 6,0,O>, N) (< 6,0,P>, P) (< 6,0,Q>, ?) (< 7,0,A>, ?) (< 7,0,C>, 2*D) (< 7,0,D>, D) (< 7,0,E>, 4*D) (< 7,0,J>, ?) (< 7,0,L>, ?) (< 7,0,N>, N) (< 7,0,O>, ?) (< 7,0,P>, P) (< 7,0,Q>, 0) (< 8,0,A>, ?) (< 8,0,C>, 2*D) (< 8,0,D>, D) (< 8,0,E>, 4*D) (< 8,0,J>, ?) (< 8,0,L>, ?) (< 8,0,N>, N) (< 8,0,O>, ?) (< 8,0,P>, P) (< 8,0,Q>, 0) (< 9,0,A>, ?) (< 9,0,C>, 2*D) (< 9,0,D>, D) (< 9,0,E>, 4*D) (< 9,0,J>, 1 + D) (< 9,0,L>, ?) (< 9,0,N>, N) (< 9,0,O>, ?) (< 9,0,P>, P) (< 9,0,Q>, 0) (<12,0,A>, ?) (<12,0,C>, 2*D) (<12,0,D>, D) (<12,0,E>, 4*D) (<12,0,J>, ?) (<12,0,L>, ?) (<12,0,N>, N) (<12,0,O>, ?) (<12,0,P>, 0) (<12,0,Q>, P) (<13,0,A>, ?) (<13,0,C>, 2*D) (<13,0,D>, D) (<13,0,E>, 4*D) (<13,0,J>, 2 + 4*D) (<13,0,L>, ?) (<13,0,N>, N) (<13,0,O>, ?) (<13,0,P>, 0) (<13,0,Q>, P) (<14,0,A>, ?) (<14,0,C>, 2*D) (<14,0,D>, D) (<14,0,E>, 4*D) (<14,0,J>, 1 + 2*D) (<14,0,L>, ?) (<14,0,N>, N) (<14,0,O>, ?) (<14,0,P>, P) (<14,0,Q>, ?) (<15,0,A>, ?) (<15,0,C>, 2*D) (<15,0,D>, D) (<15,0,E>, 4*D) (<15,0,J>, ?) (<15,0,L>, 0) (<15,0,N>, N) (<15,0,O>, ?) (<15,0,P>, P) (<15,0,Q>, ?) (<16,0,A>, ?) (<16,0,C>, 2*D) (<16,0,D>, D) (<16,0,E>, 4*D) (<16,0,J>, ?) (<16,0,L>, ?) (<16,0,N>, N) (<16,0,O>, ?) (<16,0,P>, P) (<16,0,Q>, ?) (<17,0,A>, ?) (<17,0,C>, 2*D) (<17,0,D>, D) (<17,0,E>, 4*D) (<17,0,J>, ?) (<17,0,L>, ?) (<17,0,N>, N) (<17,0,O>, ?) (<17,0,P>, P) (<17,0,Q>, ?) (<18,0,A>, ?) (<18,0,C>, 2*D) (<18,0,D>, D) (<18,0,E>, 4*D) (<18,0,J>, D) (<18,0,L>, ?) (<18,0,N>, N) (<18,0,O>, ?) (<18,0,P>, P) (<18,0,Q>, ?) (<19,0,A>, ?) (<19,0,C>, 2*D) (<19,0,D>, D) (<19,0,E>, 4*D) (<19,0,J>, D) (<19,0,L>, ?) (<19,0,N>, N) (<19,0,O>, ?) (<19,0,P>, P) (<19,0,Q>, ?) (<20,0,A>, ?) (<20,0,C>, 2*D) (<20,0,D>, D) (<20,0,E>, 4*D) (<20,0,J>, D) (<20,0,L>, ?) (<20,0,N>, N) (<20,0,O>, ?) (<20,0,P>, P) (<20,0,Q>, ?) (<21,0,A>, ?) (<21,0,C>, 2*D) (<21,0,D>, D) (<21,0,E>, 4*D) (<21,0,J>, D) (<21,0,L>, ?) (<21,0,N>, N) (<21,0,O>, ?) (<21,0,P>, P) (<21,0,Q>, ?) (<22,0,A>, ?) (<22,0,C>, 2*D) (<22,0,D>, D) (<22,0,E>, 4*D) (<22,0,J>, D) (<22,0,L>, ?) (<22,0,N>, N) (<22,0,O>, ?) (<22,0,P>, P) (<22,0,Q>, ?) (<23,0,A>, ?) (<23,0,C>, 2*D) (<23,0,D>, D) (<23,0,E>, 4*D) (<23,0,J>, D) (<23,0,L>, ?) (<23,0,N>, N) (<23,0,O>, ?) (<23,0,P>, P) (<23,0,Q>, ?) (<24,0,A>, ?) (<24,0,C>, 2*D) (<24,0,D>, D) (<24,0,E>, 4*D) (<24,0,J>, D) (<24,0,L>, ?) (<24,0,N>, N) (<24,0,O>, ?) (<24,0,P>, P) (<24,0,Q>, ?) (<25,0,A>, ?) (<25,0,C>, 2*D) (<25,0,D>, D) (<25,0,E>, 4*D) (<25,0,J>, D) (<25,0,L>, ?) (<25,0,N>, N) (<25,0,O>, ?) (<25,0,P>, P) (<25,0,Q>, ?) (<26,0,A>, ?) (<26,0,C>, 2*D) (<26,0,D>, D) (<26,0,E>, 4*D) (<26,0,J>, D) (<26,0,L>, ?) (<26,0,N>, N) (<26,0,O>, ?) (<26,0,P>, P) (<26,0,Q>, ?) (<27,0,A>, ?) (<27,0,C>, 2*D) (<27,0,D>, D) (<27,0,E>, 4*D) (<27,0,J>, D) (<27,0,L>, 0) (<27,0,N>, N) (<27,0,O>, ?) (<27,0,P>, P) (<27,0,Q>, ?) (<28,0,A>, ?) (<28,0,C>, 2*D) (<28,0,D>, D) (<28,0,E>, 4*D) (<28,0,J>, D) (<28,0,L>, ?) (<28,0,N>, N) (<28,0,O>, ?) (<28,0,P>, P) (<28,0,Q>, ?) (<29,0,A>, ?) (<29,0,C>, 2*D) (<29,0,D>, D) (<29,0,E>, 4*D) (<29,0,J>, D) (<29,0,L>, ?) (<29,0,N>, N) (<29,0,O>, ?) (<29,0,P>, P) (<29,0,Q>, ?) (<30,0,A>, ?) (<30,0,C>, 2*D) (<30,0,D>, D) (<30,0,E>, 4*D) (<30,0,J>, 1 + D) (<30,0,L>, ?) (<30,0,N>, N) (<30,0,O>, ?) (<30,0,P>, P) (<30,0,Q>, ?) (<32,0,A>, ?) (<32,0,C>, 2*D) (<32,0,D>, D) (<32,0,E>, 4*D) (<32,0,J>, ?) (<32,0,L>, ?) (<32,0,N>, N) (<32,0,O>, ?) (<32,0,P>, P) (<32,0,Q>, ?) (<33,0,A>, ?) (<33,0,C>, 2*D) (<33,0,D>, D) (<33,0,E>, 4*D) (<33,0,J>, ?) (<33,0,L>, ?) (<33,0,N>, N) (<33,0,O>, ?) (<33,0,P>, P) (<33,0,Q>, ?) (<34,0,A>, ?) (<34,0,C>, 2*D) (<34,0,D>, D) (<34,0,E>, 4*D) (<34,0,J>, ?) (<34,0,L>, ?) (<34,0,N>, N) (<34,0,O>, ?) (<34,0,P>, P) (<34,0,Q>, ?) (<35,0,A>, ?) (<35,0,C>, 2*D) (<35,0,D>, D) (<35,0,E>, 4*D) (<35,0,J>, ?) (<35,0,L>, ?) (<35,0,N>, N) (<35,0,O>, ?) (<35,0,P>, P) (<35,0,Q>, ?) (<36,0,A>, ?) (<36,0,C>, 2*D) (<36,0,D>, D) (<36,0,E>, 4*D) (<36,0,J>, ?) (<36,0,L>, ?) (<36,0,N>, N) (<36,0,O>, ?) (<36,0,P>, 0) (<36,0,Q>, P) (<37,0,A>, ?) (<37,0,C>, 2*D) (<37,0,D>, D) (<37,0,E>, 4*D) (<37,0,J>, ?) (<37,0,L>, ?) (<37,0,N>, N) (<37,0,O>, ?) (<37,0,P>, P) (<37,0,Q>, 0) (<38,0,A>, ?) (<38,0,C>, 2*D) (<38,0,D>, D) (<38,0,E>, 4*D) (<38,0,J>, ?) (<38,0,L>, ?) (<38,0,N>, N) (<38,0,O>, ?) (<38,0,P>, P) (<38,0,Q>, 0) (<39,0,A>, ?) (<39,0,C>, 2*D) (<39,0,D>, D) (<39,0,E>, 4*D) (<39,0,J>, ?) (<39,0,L>, ?) (<39,0,N>, N) (<39,0,O>, ?) (<39,0,P>, P) (<39,0,Q>, 0) (<40,0,A>, ?) (<40,0,C>, 2*D) (<40,0,D>, D) (<40,0,E>, 4*D) (<40,0,J>, ?) (<40,0,L>, ?) (<40,0,N>, N) (<40,0,O>, ?) (<40,0,P>, P) (<40,0,Q>, ?) (<41,0,A>, ?) (<41,0,C>, 2*D) (<41,0,D>, D) (<41,0,E>, 4*D) (<41,0,J>, ?) (<41,0,L>, ?) (<41,0,N>, N) (<41,0,O>, ?) (<41,0,P>, P) (<41,0,Q>, ?) (<42,0,A>, ?) (<42,0,C>, 2*D) (<42,0,D>, D) (<42,0,E>, 4*D) (<42,0,J>, 1 + 2*D + J) (<42,0,L>, ?) (<42,0,N>, N) (<42,0,O>, O) (<42,0,P>, P) (<42,0,Q>, Q) (<43,0,A>, ?) (<43,0,C>, 2*D) (<43,0,D>, D) (<43,0,E>, 4*D) (<43,0,J>, 1 + 2*D + J) (<43,0,L>, ?) (<43,0,N>, N) (<43,0,O>, O) (<43,0,P>, P) (<43,0,Q>, Q) (<44,0,A>, ?) (<44,0,C>, 2*D) (<44,0,D>, D) (<44,0,E>, 4*D) (<44,0,J>, 1 + 2*D + J) (<44,0,L>, ?) (<44,0,N>, N) (<44,0,O>, O) (<44,0,P>, P) (<44,0,Q>, Q) (<45,0,A>, ?) (<45,0,C>, 2*D) (<45,0,D>, D) (<45,0,E>, 4*D) (<45,0,J>, 1 + 2*D + J) (<45,0,L>, ?) (<45,0,N>, N) (<45,0,O>, O) (<45,0,P>, 0) (<45,0,Q>, Q) (<46,0,A>, ?) (<46,0,C>, 2*D) (<46,0,D>, D) (<46,0,E>, 4*D) (<46,0,J>, 1 + 2*D + J) (<46,0,L>, ?) (<46,0,N>, N) (<46,0,O>, O) (<46,0,P>, P) (<46,0,Q>, Q) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f103) = x2 + -1*x5 p(f107) = x2 + -1*x5 p(f118) = x2 + -1*x5 p(f13) = 1 + x2 + -1*x5 p(f2) = 1 + 2*x3 + -1*x5 p(f24) = 1 + x2 + -1*x5 p(f31) = x2 + -1*x5 p(f37) = x2 + -1*x5 p(f40) = x2 + -1*x5 p(f44) = x2 + -1*x5 p(f50) = x2 + -1*x5 p(f57) = x2 + -1*x5 p(f64) = x2 + -1*x5 p(f71) = x2 + -1*x5 p(f86) = x2 + -1*x5 p(f91) = x2 + -1*x5 p(f99) = x2 + -1*x5 The following rules are strictly oriented: [C >= J] ==> f13(A,C,D,E,J,L,N,O,P,Q) = 1 + C + -1*J > C + -1*J = f13(A,C,D,E,1 + J,0,N,O,P,Q) [C1 >= 2 && C >= J] ==> f13(A,C,D,E,J,L,N,O,P,Q) = 1 + C + -1*J > C + -1*J = f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [0 >= C1 && C >= J] ==> f13(A,C,D,E,J,L,N,O,P,Q) = 1 + C + -1*J > C + -1*J = f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) The following rules are weakly oriented: True ==> f2(A,C,D,E,J,L,N,O,P,Q) = 1 + 2*D + -1*J >= 1 + 2*D + -1*J = f13(0,2*D,D,4*D,J,L,N,O,P,Q) [D >= J] ==> f24(A,C,D,E,J,L,N,O,P,Q) = 1 + C + -1*J >= C + -1*J = f24(A,C,D,E,1 + J,L,N,O,P,Q) [N >= O] ==> f37(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f40(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && 0 >= Q] ==> f40(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f44(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && 0 >= Q] ==> f40(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f44(A,C,D,E,J,L,N,O,P,Q) [D >= J] ==> f44(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= -1 + C + -1*J = f44(A,C,D,E,1 + J,L,N,O,P,Q) [0 >= Q && P = 0] ==> f40(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f64(A,C,D,E,J,L,N,O,0,Q) [E >= J] ==> f64(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= -2 + C + -1*J = f64(A,C,D,E,2 + J,L,N,O,P,Q) [C >= J] ==> f71(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= -1 + C + -1*J = f71(A,C,D,E,1 + J,L,N,O,P,Q) [L = 0] ==> f86(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f91(A,C,D,E,J,0,N,O,P,Q) [0 >= 1 + L] ==> f86(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f91(A,C,D,E,J,L,N,O,P,Q) [L >= 1] ==> f86(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f91(A,C,D,E,J,L,N,O,P,Q) [D >= J] ==> f91(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f99(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && D >= J] ==> f91(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f99(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && D >= J] ==> f91(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f99(A,C,D,E,J,B1,N,O,P,Q) [L = 0] ==> f99(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f103(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] ==> f99(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f103(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] ==> f99(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f103(A,C,D,E,J,B1,N,O,P,Q) [L = 0] ==> f103(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f107(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] ==> f103(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f107(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] ==> f103(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f107(A,C,D,E,J,B1,N,O,P,Q) [L = 0] ==> f107(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= -1 + C + -1*J = f91(A,C,D,E,1 + J,0,N,O,P,Q) [0 >= 1 + L] ==> f107(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= -1 + C + -1*J = f91(A,C,D,E,1 + J,L,N,O,P,Q) [L >= 1] ==> f107(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= -1 + C + -1*J = f91(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] ==> f118(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= -1 + C + -1*J = f118(A,C,D,E,1 + J,L,N,O,P,Q) [J >= 1 + D] ==> f91(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f37(A,C,D,E,J,L,N,1 + O,P,Q) [J >= 1 + C] ==> f71(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f86(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && J >= 1 + C] ==> f71(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f86(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && J >= 1 + C] ==> f71(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f86(A,C,D,E,J,B1,N,O,P,Q) [J >= 1 + E] ==> f64(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] ==> f57(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] ==> f50(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f57(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] ==> f44(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f50(A,C,D,E,J,L,N,O,P,Q) [Q >= 1] ==> f40(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f71(A,C,D,E,J,L,N,O,P,Q) [O >= 1 + N] ==> f37(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f118(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] ==> f31(A,C,D,E,J,L,N,O,P,Q) = C + -1*J >= C + -1*J = f37(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && J >= 1 + D] ==> f24(A,C,D,E,J,L,N,O,P,Q) = 1 + C + -1*J >= C + -1*J = f31(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && J >= 1 + D] ==> f24(A,C,D,E,J,L,N,O,P,Q) = 1 + C + -1*J >= C + -1*J = f31(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D && P = 0] ==> f24(A,C,D,E,J,L,N,O,P,Q) = 1 + C + -1*J >= C + -1*J = f37(A,C,D,E,J,L,N,O,0,Q) [J >= 1 + C] ==> f13(A,C,D,E,J,L,N,O,P,Q) = 1 + C + -1*J >= 1 + C + -1*J = f24(A,C,D,E,J,L,N,O,P,Q) * Step 32: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,C,D,E,J,L,N,O,P,Q) -> f13(0,2*D,D,4*D,J,L,N,O,P,Q) True (1,1) 1. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A,C,D,E,1 + J,0,N,O,P,Q) [C >= J] (1 + 2*D + J,1) 2. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [C1 >= 2 && C >= J] (1 + 2*D + J,1) 3. f13(A,C,D,E,J,L,N,O,P,Q) -> f13(A + B1,C,D,E,1 + J,1 + -1*C1,N,O,P,Q) [0 >= C1 && C >= J] (1 + 2*D + J,1) 4. f24(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (D,1) 6. f37(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,Q) [N >= O] (1 + N + O,1) 7. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && 0 >= Q] (P + Q,1) 8. f40(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && 0 >= Q] (P + Q,1) 9. f44(A,C,D,E,J,L,N,O,P,Q) -> f44(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (0,1) 12. f40(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,J,L,N,O,0,Q) [0 >= Q && P = 0] (1 + Q,1) 13. f64(A,C,D,E,J,L,N,O,P,Q) -> f64(A,C,D,E,2 + J,L,N,O,P,Q) [E >= J] (3*D,1) 14. f71(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,1 + J,L,N,O,P,Q) [C >= J] (D,1) 15. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,0,N,O,P,Q) [L = 0] (6 + 12*D + 3*N + 3*O + 6*P + 9*Q,1) 16. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + L] (6 + 12*D + 3*N + 3*O + 6*P + 9*Q,1) 17. f86(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,J,L,N,O,P,Q) [L >= 1] (6 + 12*D + 3*N + 3*O + 6*P + 9*Q,1) 18. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D >= J] (0,1) 19. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && D >= J] (0,1) 20. f91(A,C,D,E,J,L,N,O,P,Q) -> f99(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && D >= J] (0,1) 21. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (0,1) 22. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (0,1) 23. f99(A,C,D,E,J,L,N,O,P,Q) -> f103(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (0,1) 24. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L = 0] (0,1) 25. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + L] (0,1) 26. f103(A,C,D,E,J,L,N,O,P,Q) -> f107(A,C,D,E,J,B1,N,O,P,Q) [L >= 1] (0,1) 27. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,0,N,O,P,Q) [L = 0] (0,1) 28. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [0 >= 1 + L] (0,1) 29. f107(A,C,D,E,J,L,N,O,P,Q) -> f91(A,C,D,E,1 + J,L,N,O,P,Q) [L >= 1] (0,1) 30. f118(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,1 + J,L,N,O,P,Q) [D >= J] (0,1) 32. f91(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,1 + O,P,Q) [J >= 1 + D] (18 + 36*D + 9*N + 9*O + 18*P + 27*Q,1) 33. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [J >= 1 + C] (2 + 4*D + N + O + 2*P + 3*Q,1) 34. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [0 >= 1 + D1 && J >= 1 + C] (2 + 4*D + N + O + 2*P + 3*Q,1) 35. f71(A,C,D,E,J,L,N,O,P,Q) -> f86(A,C,D,E,J,B1,N,O,P,Q) [D1 >= 1 && J >= 1 + C] (2 + 4*D + N + O + 2*P + 3*Q,1) 36. f64(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + E] (1 + 3*D + Q,1) 37. f57(A,C,D,E,J,L,N,O,P,Q) -> f40(A,C,D,E,J,L,N,O,P,1 + Q) [J >= 1 + D] (2*P + 2*Q,1) 38. f50(A,C,D,E,J,L,N,O,P,Q) -> f57(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (2*P + 2*Q,1) 39. f44(A,C,D,E,J,L,N,O,P,Q) -> f50(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (2*P + 2*Q,1) 40. f40(A,C,D,E,J,L,N,O,P,Q) -> f71(A,C,D,E,J,L,N,O,P,Q) [Q >= 1] (2 + 3*D + N + O + 2*P + 3*Q,1) 41. f37(A,C,D,E,J,L,N,O,P,Q) -> f118(A,C,D,E,J,L,N,O,P,Q) [O >= 1 + N] (19 + 37*D + 9*N + 9*O + 20*P + 27*Q,1) 42. f31(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + D] (2*P,1) 43. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [0 >= 1 + P && J >= 1 + D] (P,1) 44. f24(A,C,D,E,J,L,N,O,P,Q) -> f31(A,C,D,E,J,L,N,O,P,Q) [P >= 1 && J >= 1 + D] (P,1) 45. f24(A,C,D,E,J,L,N,O,P,Q) -> f37(A,C,D,E,J,L,N,O,0,Q) [J >= 1 + D && P = 0] (1 + D,1) 46. f13(A,C,D,E,J,L,N,O,P,Q) -> f24(A,C,D,E,J,L,N,O,P,Q) [J >= 1 + C] (1,1) Signature: {(f1,10) ;(f103,10) ;(f107,10) ;(f118,10) ;(f13,10) ;(f2,10) ;(f24,10) ;(f31,10) ;(f37,10) ;(f40,10) ;(f44,10) ;(f50,10) ;(f57,10) ;(f64,10) ;(f71,10) ;(f86,10) ;(f91,10) ;(f99,10)} Flow Graph: [0->{1,2,3,46},1->{1,2,3,46},2->{1,2,3,46},3->{1,2,3,46},4->{4,43,44,45},6->{7,8,12,40},7->{9,39},8->{9 ,39},9->{9,39},12->{13,36},13->{13,36},14->{14,33,34,35},15->{18,19,20,32},16->{18,19,20,32},17->{18,19,20 ,32},18->{21,22,23},19->{21,22,23},20->{21,22,23},21->{24,25,26},22->{24,25,26},23->{24,25,26},24->{27,28 ,29},25->{27,28,29},26->{27,28,29},27->{18,19,20,32},28->{18,19,20,32},29->{18,19,20,32},30->{30},32->{6,41} ,33->{15,16,17},34->{15,16,17},35->{15,16,17},36->{7,8,12,40},37->{7,8,12,40},38->{37},39->{38},40->{14,33 ,34,35},41->{30},42->{6,41},43->{42},44->{42},45->{6,41},46->{4,43,44,45}] Sizebounds: (< 0,0,A>, 0) (< 0,0,C>, 2*D) (< 0,0,D>, D) (< 0,0,E>, 4*D) (< 0,0,J>, J) (< 0,0,L>, L) (< 0,0,N>, N) (< 0,0,O>, O) (< 0,0,P>, P) (< 0,0,Q>, Q) (< 1,0,A>, ?) (< 1,0,C>, 2*D) (< 1,0,D>, D) (< 1,0,E>, 4*D) (< 1,0,J>, 1 + 2*D) (< 1,0,L>, 0) (< 1,0,N>, N) (< 1,0,O>, O) (< 1,0,P>, P) (< 1,0,Q>, Q) (< 2,0,A>, ?) (< 2,0,C>, 2*D) (< 2,0,D>, D) (< 2,0,E>, 4*D) (< 2,0,J>, 1 + 2*D) (< 2,0,L>, ?) (< 2,0,N>, N) (< 2,0,O>, O) (< 2,0,P>, P) (< 2,0,Q>, Q) (< 3,0,A>, ?) (< 3,0,C>, 2*D) (< 3,0,D>, D) (< 3,0,E>, 4*D) (< 3,0,J>, 1 + 2*D) (< 3,0,L>, ?) (< 3,0,N>, N) (< 3,0,O>, O) (< 3,0,P>, P) (< 3,0,Q>, Q) (< 4,0,A>, ?) (< 4,0,C>, 2*D) (< 4,0,D>, D) (< 4,0,E>, 4*D) (< 4,0,J>, 1 + D) (< 4,0,L>, ?) (< 4,0,N>, N) (< 4,0,O>, O) (< 4,0,P>, P) (< 4,0,Q>, Q) (< 6,0,A>, ?) (< 6,0,C>, 2*D) (< 6,0,D>, D) (< 6,0,E>, 4*D) (< 6,0,J>, ?) (< 6,0,L>, ?) (< 6,0,N>, N) (< 6,0,O>, N) (< 6,0,P>, P) (< 6,0,Q>, ?) (< 7,0,A>, ?) (< 7,0,C>, 2*D) (< 7,0,D>, D) (< 7,0,E>, 4*D) (< 7,0,J>, ?) (< 7,0,L>, ?) (< 7,0,N>, N) (< 7,0,O>, ?) (< 7,0,P>, P) (< 7,0,Q>, 0) (< 8,0,A>, ?) (< 8,0,C>, 2*D) (< 8,0,D>, D) (< 8,0,E>, 4*D) (< 8,0,J>, ?) (< 8,0,L>, ?) (< 8,0,N>, N) (< 8,0,O>, ?) (< 8,0,P>, P) (< 8,0,Q>, 0) (< 9,0,A>, ?) (< 9,0,C>, 2*D) (< 9,0,D>, D) (< 9,0,E>, 4*D) (< 9,0,J>, 1 + D) (< 9,0,L>, ?) (< 9,0,N>, N) (< 9,0,O>, ?) (< 9,0,P>, P) (< 9,0,Q>, 0) (<12,0,A>, ?) (<12,0,C>, 2*D) (<12,0,D>, D) (<12,0,E>, 4*D) (<12,0,J>, ?) (<12,0,L>, ?) (<12,0,N>, N) (<12,0,O>, ?) (<12,0,P>, 0) (<12,0,Q>, P) (<13,0,A>, ?) (<13,0,C>, 2*D) (<13,0,D>, D) (<13,0,E>, 4*D) (<13,0,J>, 2 + 4*D) (<13,0,L>, ?) (<13,0,N>, N) (<13,0,O>, ?) (<13,0,P>, 0) (<13,0,Q>, P) (<14,0,A>, ?) (<14,0,C>, 2*D) (<14,0,D>, D) (<14,0,E>, 4*D) (<14,0,J>, 1 + 2*D) (<14,0,L>, ?) (<14,0,N>, N) (<14,0,O>, ?) (<14,0,P>, P) (<14,0,Q>, ?) (<15,0,A>, ?) (<15,0,C>, 2*D) (<15,0,D>, D) (<15,0,E>, 4*D) (<15,0,J>, ?) (<15,0,L>, 0) (<15,0,N>, N) (<15,0,O>, ?) (<15,0,P>, P) (<15,0,Q>, ?) (<16,0,A>, ?) (<16,0,C>, 2*D) (<16,0,D>, D) (<16,0,E>, 4*D) (<16,0,J>, ?) (<16,0,L>, ?) (<16,0,N>, N) (<16,0,O>, ?) (<16,0,P>, P) (<16,0,Q>, ?) (<17,0,A>, ?) (<17,0,C>, 2*D) (<17,0,D>, D) (<17,0,E>, 4*D) (<17,0,J>, ?) (<17,0,L>, ?) (<17,0,N>, N) (<17,0,O>, ?) (<17,0,P>, P) (<17,0,Q>, ?) (<18,0,A>, ?) (<18,0,C>, 2*D) (<18,0,D>, D) (<18,0,E>, 4*D) (<18,0,J>, D) (<18,0,L>, ?) (<18,0,N>, N) (<18,0,O>, ?) (<18,0,P>, P) (<18,0,Q>, ?) (<19,0,A>, ?) (<19,0,C>, 2*D) (<19,0,D>, D) (<19,0,E>, 4*D) (<19,0,J>, D) (<19,0,L>, ?) (<19,0,N>, N) (<19,0,O>, ?) (<19,0,P>, P) (<19,0,Q>, ?) (<20,0,A>, ?) (<20,0,C>, 2*D) (<20,0,D>, D) (<20,0,E>, 4*D) (<20,0,J>, D) (<20,0,L>, ?) (<20,0,N>, N) (<20,0,O>, ?) (<20,0,P>, P) (<20,0,Q>, ?) (<21,0,A>, ?) (<21,0,C>, 2*D) (<21,0,D>, D) (<21,0,E>, 4*D) (<21,0,J>, D) (<21,0,L>, ?) (<21,0,N>, N) (<21,0,O>, ?) (<21,0,P>, P) (<21,0,Q>, ?) (<22,0,A>, ?) (<22,0,C>, 2*D) (<22,0,D>, D) (<22,0,E>, 4*D) (<22,0,J>, D) (<22,0,L>, ?) (<22,0,N>, N) (<22,0,O>, ?) (<22,0,P>, P) (<22,0,Q>, ?) (<23,0,A>, ?) (<23,0,C>, 2*D) (<23,0,D>, D) (<23,0,E>, 4*D) (<23,0,J>, D) (<23,0,L>, ?) (<23,0,N>, N) (<23,0,O>, ?) (<23,0,P>, P) (<23,0,Q>, ?) (<24,0,A>, ?) (<24,0,C>, 2*D) (<24,0,D>, D) (<24,0,E>, 4*D) (<24,0,J>, D) (<24,0,L>, ?) (<24,0,N>, N) (<24,0,O>, ?) (<24,0,P>, P) (<24,0,Q>, ?) (<25,0,A>, ?) (<25,0,C>, 2*D) (<25,0,D>, D) (<25,0,E>, 4*D) (<25,0,J>, D) (<25,0,L>, ?) (<25,0,N>, N) (<25,0,O>, ?) (<25,0,P>, P) (<25,0,Q>, ?) (<26,0,A>, ?) (<26,0,C>, 2*D) (<26,0,D>, D) (<26,0,E>, 4*D) (<26,0,J>, D) (<26,0,L>, ?) (<26,0,N>, N) (<26,0,O>, ?) (<26,0,P>, P) (<26,0,Q>, ?) (<27,0,A>, ?) (<27,0,C>, 2*D) (<27,0,D>, D) (<27,0,E>, 4*D) (<27,0,J>, D) (<27,0,L>, 0) (<27,0,N>, N) (<27,0,O>, ?) (<27,0,P>, P) (<27,0,Q>, ?) (<28,0,A>, ?) (<28,0,C>, 2*D) (<28,0,D>, D) (<28,0,E>, 4*D) (<28,0,J>, D) (<28,0,L>, ?) (<28,0,N>, N) (<28,0,O>, ?) (<28,0,P>, P) (<28,0,Q>, ?) (<29,0,A>, ?) (<29,0,C>, 2*D) (<29,0,D>, D) (<29,0,E>, 4*D) (<29,0,J>, D) (<29,0,L>, ?) (<29,0,N>, N) (<29,0,O>, ?) (<29,0,P>, P) (<29,0,Q>, ?) (<30,0,A>, ?) (<30,0,C>, 2*D) (<30,0,D>, D) (<30,0,E>, 4*D) (<30,0,J>, 1 + D) (<30,0,L>, ?) (<30,0,N>, N) (<30,0,O>, ?) (<30,0,P>, P) (<30,0,Q>, ?) (<32,0,A>, ?) (<32,0,C>, 2*D) (<32,0,D>, D) (<32,0,E>, 4*D) (<32,0,J>, ?) (<32,0,L>, ?) (<32,0,N>, N) (<32,0,O>, ?) (<32,0,P>, P) (<32,0,Q>, ?) (<33,0,A>, ?) (<33,0,C>, 2*D) (<33,0,D>, D) (<33,0,E>, 4*D) (<33,0,J>, ?) (<33,0,L>, ?) (<33,0,N>, N) (<33,0,O>, ?) (<33,0,P>, P) (<33,0,Q>, ?) (<34,0,A>, ?) (<34,0,C>, 2*D) (<34,0,D>, D) (<34,0,E>, 4*D) (<34,0,J>, ?) (<34,0,L>, ?) (<34,0,N>, N) (<34,0,O>, ?) (<34,0,P>, P) (<34,0,Q>, ?) (<35,0,A>, ?) (<35,0,C>, 2*D) (<35,0,D>, D) (<35,0,E>, 4*D) (<35,0,J>, ?) (<35,0,L>, ?) (<35,0,N>, N) (<35,0,O>, ?) (<35,0,P>, P) (<35,0,Q>, ?) (<36,0,A>, ?) (<36,0,C>, 2*D) (<36,0,D>, D) (<36,0,E>, 4*D) (<36,0,J>, ?) (<36,0,L>, ?) (<36,0,N>, N) (<36,0,O>, ?) (<36,0,P>, 0) (<36,0,Q>, P) (<37,0,A>, ?) (<37,0,C>, 2*D) (<37,0,D>, D) (<37,0,E>, 4*D) (<37,0,J>, ?) (<37,0,L>, ?) (<37,0,N>, N) (<37,0,O>, ?) (<37,0,P>, P) (<37,0,Q>, 0) (<38,0,A>, ?) (<38,0,C>, 2*D) (<38,0,D>, D) (<38,0,E>, 4*D) (<38,0,J>, ?) (<38,0,L>, ?) (<38,0,N>, N) (<38,0,O>, ?) (<38,0,P>, P) (<38,0,Q>, 0) (<39,0,A>, ?) (<39,0,C>, 2*D) (<39,0,D>, D) (<39,0,E>, 4*D) (<39,0,J>, ?) (<39,0,L>, ?) (<39,0,N>, N) (<39,0,O>, ?) (<39,0,P>, P) (<39,0,Q>, 0) (<40,0,A>, ?) (<40,0,C>, 2*D) (<40,0,D>, D) (<40,0,E>, 4*D) (<40,0,J>, ?) (<40,0,L>, ?) (<40,0,N>, N) (<40,0,O>, ?) (<40,0,P>, P) (<40,0,Q>, ?) (<41,0,A>, ?) (<41,0,C>, 2*D) (<41,0,D>, D) (<41,0,E>, 4*D) (<41,0,J>, ?) (<41,0,L>, ?) (<41,0,N>, N) (<41,0,O>, ?) (<41,0,P>, P) (<41,0,Q>, ?) (<42,0,A>, ?) (<42,0,C>, 2*D) (<42,0,D>, D) (<42,0,E>, 4*D) (<42,0,J>, 1 + 2*D + J) (<42,0,L>, ?) (<42,0,N>, N) (<42,0,O>, O) (<42,0,P>, P) (<42,0,Q>, Q) (<43,0,A>, ?) (<43,0,C>, 2*D) (<43,0,D>, D) (<43,0,E>, 4*D) (<43,0,J>, 1 + 2*D + J) (<43,0,L>, ?) (<43,0,N>, N) (<43,0,O>, O) (<43,0,P>, P) (<43,0,Q>, Q) (<44,0,A>, ?) (<44,0,C>, 2*D) (<44,0,D>, D) (<44,0,E>, 4*D) (<44,0,J>, 1 + 2*D + J) (<44,0,L>, ?) (<44,0,N>, N) (<44,0,O>, O) (<44,0,P>, P) (<44,0,Q>, Q) (<45,0,A>, ?) (<45,0,C>, 2*D) (<45,0,D>, D) (<45,0,E>, 4*D) (<45,0,J>, 1 + 2*D + J) (<45,0,L>, ?) (<45,0,N>, N) (<45,0,O>, O) (<45,0,P>, 0) (<45,0,Q>, Q) (<46,0,A>, ?) (<46,0,C>, 2*D) (<46,0,D>, D) (<46,0,E>, 4*D) (<46,0,J>, 1 + 2*D + J) (<46,0,L>, ?) (<46,0,N>, N) (<46,0,O>, O) (<46,0,P>, P) (<46,0,Q>, Q) + Applied Processor: KnowledgePropagation + Details: The problem is already solved. WORST_CASE(?,O(n^1))